
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-022-04565-w
Commun. Math. Phys. 401, 33–78 (2023) Communications in

Mathematical
Physics

Regularity of Minimizers for a Model of Charged Droplets

Guido de Philippis1, Jonas Hirsch2, Giulia Vescovo3

1 Courant Institute of Mathematical Sciences, New York University, New York, NY, USA.
E-mail: guido@cims.nyu.edu

2 Mathematisches Institut, Universität Leipzig, Augustus Platz 10, 04109 Leipzig, Germany.
E-mail: hirsch@math.uni-leipzig.de

3 SISSA, Via Bonomea 265, 34136 Trieste, Italy. E-mail: gvescovo@sissa.it; giulia.vescovo88@gmail.com

Published online: 19 November 2022 – © The Author(s), under exclusive licence to Springer-Verlag GmbH
Germany, part of Springer Nature 2022

Abstract: We investigate properties of minimizers of a variational model describing the
shape of charged liquid droplets. The model, proposed by Muratov and Novaga, takes
into account the regularizing effect due to the screening of free counterionions in the
droplet. In particular we prove partial regularity of minimizers, a first step toward the
understanding of further properties of minimizers.

1. Introduction

1.1. Background and description of themodel. In this paperwe investigate the regularity
of minimizers for a variational model describing the shape of charged liquid droplets.
Roughly speaking, the shape of a charged liquid droplet is determined by the competition
between an “aggregating” term, due to surface tension forces, and to a “disaggregating”
term due to the repulsion effect between charged particles.

Several models proposed in the literature are based on this principle. Among them,
one of the simplest and most used assumes that charged droplets are stationary points
of the following free energy:

P(E) +
Q2

C(E)
. (1.1)

Here, E ⊂ R
3 corresponds to the volume occupied by the droplet, P(E) is its perimeter,

Q is the total charge and

1

C(E)
:= inf

{
1

4π

¨
dμ(x)dμ(y)

|x − y| : sptμ ⊂ E, μ(E) = 1

}
, (1.2)

takes into account the repulsive forces between charged particles. Note that μ can be
though as a (normalized) density of charges and that C(E) is the classical Newtonian
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capacity of the set E . In particular one assumes that the optimal shapes are given by the
following variational problem:

min|E |=V

{
P(E) +

Q2

C(E)

}
. (1.3)

Heuristically, one expects the perimeter term to dominate for small values of the charge Q
thus forcing the droplet to have a spherical or almost spherical shape, while the repulsion
term should become dominant for large values of Q, thus leading to the formation of
singularities and/or to the ill-posedness of (1.3). This heuristics is confirmed by the
perturbative analysis of (1.1) around a spherical shape. This computation, performed
for the first time by Lord Rayleigh in 1882, [22], shows that the spherical droplet is
linearly stable only for Q smaller than a critical threshold. This is known as the Rayleigh
criterion.

The transition from a stable to an unstable behavior of spherical droplets has also
been verified experimentally, starting from the work of Zeleny at the beginning of 1900
[29] (in a slightly different context). More precisely, it has been observed that a spherical
droplet exposed to an electric field, remains stable until the total charge is below a critical
value Qc > 0, while, as soon as Q exceeds Qc the droplet changes its appearance and
the surface start to develop singularities, the so called Taylor’s cones, [26]. Whenever
Q > Qc a very thin steady jet composed by small but highly charged little balls is
formed, [9,10,23,28].

In spite of the interest of (1.3) in applications, a rigorous mathematical study of this
model has been only performed in the last years, mostly thanks to the work of Goldman,
Muratov, Novaga and Ruffini, see [15–17,20,21] and references therein.

The starting point of their analysis is the following remarkable and somehow dis-
appointing observation: Problem (1.3) is always ill-posed. More precisely, in [15], it is
shown that

inf|E |=V

{
P(E) +

Q2

C(E)

}
= P(BV ),

where BV is the ball of volume V . Since BV is a competitor for the variational problem
, this clearly implies that there are no minimizers of (1.3).

The above equality is obtained by constructing a minimizing sequence consisting of
a ball of roughly volume V together with several balls with vanishing perimeter and
volumes and very high charge escaping at infinity. Hence, on the mathematical side,
the phenomena observed by Zeleny appears for every value of the charge. Let us also
remark that ill-posedness of (1.3) is shown also if one assumes that all the set involved
in the minimization problem are a-priori bounded, [15, Theorem 1.3].

It then becomes natural to investigate the local minimality of the ball, at least for
“small” perturbations and small values of Q. In [15, Theorems 1.4 & 1.7] the linear
stability of the ball in the small charge regime, is upgraded to local minimality in a
sufficiently strong topology. On the other hand, Muratov and Novaga showed that the
ball is never a local minimizer of (1.3) under (smooth) perturbation which are small in
L∞, [20, Theorem 2].We also refer the reader to [17] where well-posedness is recovered
under suitable geometric restrictions and to [21] for the case of “flat” droplets.

Themain phenomena driving to the ill-posedness of (1.3) is the possibility of concen-
trating a high charge on small volumes. In order to avoid this situation, in [20], Muratov
and Novaga proposed as a possible regularization mechanism the finite screening length
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in the conducting liquid , by introducing the entropic effects associated with the presence
of free ions in the liquid, see also [8,27] for a related model. They suggested to consider
the following Debye-Hückel-type free energy (in every dimension)

F(E, u, ρ) := P(E) + Q2
{ ˆ

Rn
aE |∇u|2 dx + K

ˆ
E

ρ2 dx

}
. (1.4)

Here

aE (x) := 1Ec + β1E ,

where 1F is the characteristic function of a set F and β > 1 is the permittivity of the
droplet. The (normalized) density of charge ρ ∈ L2(Rn) satisfies

ρ1Ec = 0 and
ˆ

ρ = 1, (1.5)

and the electrostatic potential u is such that ∇u ∈ L2(Rn) and

− div
(
aE ∇u

) = ρ in D′(Rn). (1.6)

K > 0 is a physical constant related to the model.1

The variational model proposed in [20], where one assumes a-priori that all the sets
involved are contained in a fixed (large) ball BR , is the following

min
{F(E, u, ρ) : |E | = V, E ⊂ BR, (u, ρ) ∈ A(E)

}
, (1.7)

where we have set

A(E) := {
(u, ρ) ∈ D1(Rn) × L2(Rn) : u and ρ satisfy (1.6) and (1.5)

}
, (1.8)

and

D1(Rn) = C∞
c (Rn)

W̊ 1,2(Rn) ‖ϕ‖W̊ 1,2(Rn)
= ‖∇ϕ‖L2(Rn).

Note that the class of admissible couples A(E) is non-empty only if n ≥ 3, for this
reason this assumption will be in force throughout the whole paper, see also Remark
2.2.

Thanks to the a-priori boundedness assumption E ⊂ BR , existence of a minimizer
in the class of sets of finite perimeter can be easily shown, see [20, Theorem 3].

Note that the presence of the L2 norm of ρ in the energy is exactly what prevents the
concentration of charges. Indeed, if one assumes that β = 1 so that (1.6) reduces to

−�u = ρ,

1 Actually in [20], the energy (1.4) is written as

σ P(E) + Q2
{

β0

2

ˆ
Rn

aE |∇u|2 dx + K
ˆ
E

ρ2 dx

}
,

for suitable parameters σ and β0 and the relation (1.6) is replaced by −β0 div
(
aE ∇u

) = ρ. However it is
easy to see that the parameters σ and β0 can be absorbed in Q and K , see also the discussion below.
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then the minimization problem (1.7) can be written, in dimension n = 3, as

min|E |=V,E⊂BR
P(E) + Q2 min

{
1

4π

¨
ρ(x)ρ(y)dxdy

|x − y| + K
ˆ

ρ2 s.t.ρ1Ec = 0,
ˆ

ρ = 1

}
,

which should be compared with (1.2) and (1.3). In view of this we also note that, on
the mathematical ground, the variational problem (1.7) can also be considered as an
“interpolation” between the classical Ohta-Kawasaki problem, and the free-interface
problems arising in optimal design studied for instance in [3,6,12,18].

1.2. Main results. Once existence of a minimizers of (1.7) is obtained it is natural to
investigate their qualitative andquantitative properties, also to understand towhich extent
the predictions of the model agree with the observed phenomenology. In particular the
following questions arise, compare with [20]:

– Is every minimizers smooth, at least outside a small singular set?
– Which is the structure of (possible) singularities of minimizers? Do they agree with
Taylor’s cones2.?

– Is it possible to show existence/non-existence of minimizers removing the a-priori
confinement assumption?

– Can one show that for small values of the total charge the minimizers of (1.7) are
balls in agreement with experimental observations?

In this paper we address the question of regularity of minimizers. Our main result is
the following partial regularity theorem:

Theorem 1.1. Let n ≥ 3 and B ≥ 1. Then there exists η = η(n, B) > 0 with the
following property: if E is a minimizer of (1.7) with 1 ≤ β ≤ B then there exists a
closed set 	E ⊂ ∂E such that Hn−1−η(	E ) = 0 and ∂E\	E is a C1,ϑ manifold for
all ϑ ∈ (0, 1/2).

As it is customary in Geometric Measure Theory, the proof Theorem 1.1 is based
on an ε-regularity result which is interesting on its own. In order to keep track of the
various dependence on the parameters let us first fix some notation which will be useful
also in the sequel. For E ⊂ R

n we define

Gβ,K (E) := inf
(u,ρ)∈A(E)

{ˆ
Rn

aE |∇u|2 + K
ˆ
E

ρ2
}

, (1.9)

where the set of admissible pairs A(E) is defined in (1.8) (if the dependence on the
parameter is not relevant we will simply write G). Since

(u, ρ) ∈ A(E) 
⇒
(
λ2−nu

( ·
λ

)
, λ−nρ

( ·
λ

))
∈ A(λE),

one has

Gβ,λ2K (λE) = λ2−nGβ,K (E).

Setting

Fβ,K ,Q(E) := P(E) + Q2Gβ,K (E),

2 Note that this is possible only if β is large compared to 1, see the discussion at the end of this introduction
and Remark 4.6.
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one gets

Fβ,K ,Q(E) = λ1−nF
β,Kλ2,Qλ

2n−3
2

(λE).

In particular, by replacing K and Q with K (ωn/V )
2
n and Q(ωn/V )1− 3

2n we can assume
that V = |B1| =: ωn . Namely, for R ≥ 1 we will consider the following problem

min
{Fβ,K ,Q(E) : |E | = |B1|, E ⊂ BR

}
. (Pβ,K ,Q,R)

Furthermore, given a set of finite perimeter E we define the spherical excess at a point
x ∈ ∂E and at scale r > 0 as

eE (x, r) := inf
ν∈Sn−1

1

rn−1

ˆ
∂∗E∩Br (x)

|νE (y) − ν|2
2

dHn−1(y),

where, ∂∗E is the reduced boundary of E , νE is themeasure-theoretic unit normal to ∂E ,
see [19], and Br (x) is the ball of center x and radius r . We also define the normalized
Dirichlet energy as

DE (x, r) := 1

rn−1

ˆ
Br (x)

|∇uE |2 dy,

where uE is theminimizer in (1.9), whose existence and uniqueness can be easily proved,
see Proposition 2.3 below. With these conventions, the ε-regularity results can be stated
as follows, see also Theorem 8.1 below for a slightly more precise statement,

Theorem 1.2. Given n ≥ 3, A > 0 and ϑ ∈ (0, 1/2), there exits εreg = εreg(n, A, ϑ) >

0 such that if E is minimizer of (Pβ,K ,Q,R) with Q + β + K + 1
K ≤ A, x ∈ ∂E and

r + eE (x, r) + Q2 DE (x, r) ≤ εreg,

then E ∩ B(x, r/2) coincides with the epi-graph of a C1,ϑ function. In particular ∂E ∩
B(x, r/2) is a C1,ϑ (n − 1)-dimensional manifold.

Let us conclude this section with some remarks:
First beside its intrinsic interest, combining Theorem 1.2 with the analysis of the

linearized energy around a ball one can show show that the balls uniquely minimize
(Pβ,K ,Q,R) for small value of Q. This will be addressed in a forthcoming paper.

Secondwe note that the dimension of the singular set in Theorem 1.1 depends only on
the gap between the two permittivity constants and not on the other parameters appearing
in the model. On the other hand the “regularity scale” in Theorem 1.2 depends on all the
parameters involved. A similar fact has been observed in the context of free interfaces
models in [6,12].

Finally, it seems reasonable to expect that C1,ϑ regularity of ∂E can be upgraded to
C∞ smoothness by some bootstrap argument. We leave this interesting question open.
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1.3. Strategy of the proof and structure of the paper. Though the energywe are consider-
ing has a certain similaritywith those studied in optimal design problems, the fact that the
minimization problem in (1.9) is performed only among admissible pairs (u, ρ) ∈ A(E)

makes very difficult to make local perturbations. In particular, problem (Pβ,K ,Q,R) has
(a priori) no local scaling invariance. For this reason in Sect. 2 we study carefully the
energy G(E) and its minimizers (uE , ρE ). Moreover we establish boundedness of uE
and ρE .

In order to study the regularity of minimizers one needs to perform local variations
and hope that these give localized (or almost localized) changes of the energy. This
is not completely obvious due to the presence of a volume constraint and to the non-
local character of G. As it is well known the volume constraint can be relaxed into a
“perturbed”minimality property ofminimizers. In order to have estimates uniform in the
structural parameters it will be important to have this “perturbed” minimality property
uniform in the class of minimizers. In Sect. 3 we start studying how the energy varies
according to a flow of diffeomorphism, which will be important in performing small
volume adjustments and we establish the Euler Lagrange equations for minimizers. In
Sect. 4 we prove the perturbed minimality property and we study the behavior of the
energy under local perturbations. In Sect. 5 we prove the compactness of the class of
minimizers in the L1 topology, which though not used in the proof of our main results
is interesting by its own.

The next step consists in establishing local perimeter and volume estimates for the
minimizers of (Pβ,K ,Q,R). Usually these estimates are easily obtained by combining
minimality with local isoperimetric inequalities. Here, due to the non-local character of
the energy term G(E) and the absence of a natural scaling invariance of the problem,
more refined arguments are required. In particular we will first show that the energy G is
monotone by set inclusion. This implies that E is an outer minimizer for the perimeter
and leads to upper perimeter bounds and lower density estimates for Ec. Estimating
the density of E is instead more complicated and requires to perform an inductive
argument showing that if E has small relative measure in a ball Br (x), then the Dirichlet
energy of uE decays enough to preserve this information at smaller scales, leading to a
contradiction. In doing this, higher integrability of the gradient of minimizers of G plays
a key role. Local density estimates are obtained in Sect. 6 together with the boundedness
of DE (x, r). This fact combined with the local density and perimeter estimates allow
somehow to recover the scaling invariance of the problem.

The main step of the proof of Theorems 1.1 and 1.2 is the decay of the excess
established in Sect. 7. Once the local scaling invariance of the problem is recovered, the
proof Theorem 1.2 follows the classical De Giorgi’s idea of harmonic approximation.
Namely we will show that in the regime of small excess and small normalized Dirichlet
energy, ∂E can be well approximated by the graph of a function with “small” Laplacian.
This leads to the decay of the excess which, thanks to the higher integrability of ∇uE ,
in turn also implies the decay of the normalized Dirichlet energy and eventually allows
to conclude the proof.

In Sect. 8 we prove Theorems 1.1 and 1.2. Theorem 1.2 will be an immediate con-
sequence of Theorem 7.1 (see also Theorem 8.1 for a more quantitative version). The-
orem 1.1 is proved by following the strategy of [12] where one combines the the ε-
regularity result with the higher integrability of the ∇uE and the classical regularity
theory for minimal surfaces.

Let us remark thatmost of the above described difficulties arises only in the casewhen
β is relatively large compared to 1. Indeed in the regime β − 1 � 1, Cordes estimates,
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see [4], imply that ∇uE belongs to L p with p large. In this case Hölder inequality
immediately gives that the energy term G is lower order with respect to the perimeter at
small scales. E will then be an ω-minimizer of the perimeter and the regularity theory
follows for instance from [25], see Remark 4.6. In particular in this case one obtains full
regularity in n = 3, thus excluding the formation of Taylor’s cone singularities. This
phenomena was already observed in [24] for a different model of charged droplets.

2. Properties of Minimizers of G
In this section we start establishing some basic properties of minimizers of G. We start
with the following easy lemma. Here and in the following let 2∗ := 2n/(n − 2) (recall
that we are always working with n ≥ 3).

Lemma 2.1. Let n ≥ 3, β > 1 and let A : Rn → Symn(R
n) be a symmetric matrix

valued function such that

Id ≤ A(x) ≤ β Id for allx ∈ R
n .

Then for every ρ ∈ L(2∗)′ (i.e. the dual of L2∗
) there exists a unique u ∈ D1(Rn) such

that

− div(A∇u) = ρ.

Proof. Recall that for u ∈ D1(Rn) one has the following Sobolev inequality

‖u‖2∗ ≤ S(n)‖∇u‖L2 .

In particular by the assumptions on ρ and A the energy

E(v) := 1

2

ˆ
Rn

A∇v · ∇v dx −
ˆ
Rn

ρv dx,

is finite. By Young’s inequality E(v) is bounded from below by

‖∇v‖2L2 − C(n)‖ρ‖2(2∗)′ .

Hence, the direct method of the calculus of variations imply the existence of a unique
minimizer which is the desired solution. Furthermore for the solution u we have

min
v∈D1(Rn)

E(v) = E(u) = −1

2

ˆ
Rn

A∇u∇u dx = −1

2

ˆ
Rn

ρu dx .

��
Remark 2.2. In dimension n = 2 the above lemma is easily seen to be false, indeed even
for a smooth and compactly supported ρ, the solution of

−�u = ρ,

does not in general satisfy ∇u ∈ L2.
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By the above lemma , if |E | < ∞ the couple (u, ρ) defined by

ρ = 1E
|E | , − div(aE∇u) = ρ,

is admissible, (u, ρ) ∈ A(E). By testing the equation by u and using the Sobolev
embedding, we then get

ˆ
Rn

aE |∇u|2 dx =
 
E
u dx ≤

( 
E
u2

∗
dx

) 1
2∗

≤ S(n)

|E | 1
2∗

‖∇u‖2.

In particular (recall β > 1)

G(E) ≤
ˆ
Rn

aE |∇u|2 dx + K
ˆ
Rn

ρ2 dx ≤ C(n, β, K , 1/|E |). (2.1)

Proposition 2.3. Let E ⊂ R
n be a set of finite measure. Then there exists a unique pair

(uE , ρE ) ∈ A(E) minimizing Gβ,K (E). Moreover

uE + KρE = Gβ,K (E) in E (2.2)

and

0 ≤ uE ≤ Gβ,K (E) and 0 ≤ KρE ≤ Gβ,K (E)1E . (2.3)

In particular, ρE ∈ L p for all p ∈ [1,∞] and
‖ρE‖p ≤ C(n, β, K , 1/|E |). (2.4)

Proof. Existence of a minimizer is an immediate application of the direct method in
the calculus of variations. Uniqueness follows from the convexity of the admissible set
A(E) and of the strict convexity of the energy

(u, ρ) �→
ˆ
Rn

aE |∇u|2 dx + K
ˆ
Rn

ρ2 dx .

Let now ψ ∈ C∞
c (Rn) be such that

ψ1Ec = 0,
ˆ
Rn

ψ dx = 0. (2.5)

Let v ∈ D1(Rn) be the solution of

− div(aE∇v) = ψ. (2.6)

If (uE , ρE ) is the minimizing pair then (vε, ρε) = (uE + εv, ρE + εψ) ∈ A(E) is
admissible. Hence, by taking the derivative with respect to ε of its energy we get

0 =
ˆ
Rn

aE∇uE∇v dx + K
ˆ
Rn

ρEψ dx
(2.6)=

ˆ
Rn

(uE + KρE )ψ dx .

Since this holds for allψ satisfying (2.5) we get that uE +KρE = C in E . Bymultiplying
this equation by ρE , integrating and by recalling the identityˆ

uEρE =
ˆ

aE |∇uE |2,
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we obtain

C = C
ˆ

ρE =
ˆ

uEρE + K
ˆ

ρ2
E =

ˆ
aE |∇uE |2 + K

ˆ
ρ2
E = G(E),

which proves (2.2). In particular uE solves

− div(aE∇uE ) = G(E) − uE

K
1E . (2.7)

By testing the above with (G(E) − uE )− = −min{0,G(E) − uE } we obtain

0 =
ˆ

{G(E)<uE }
aE |∇uE |2 dx +

ˆ
{G(E)<uE }

(G(E) − uE )2

K
dx,

which implies the second half of the first inequality in (2.3). Testing (2.7) with u− =
−min{0, u} we obtain the first half. The second inequality in (2.3) follows now from
the first and (2.2). Inequality (2.4) follows from (2.1). ��

We establish now the monotonicity of G with respect to set inclusion. We start from
the following lemma.

Lemma 2.4. Let A, B : Rn → Symn(R
n) two symmetric matrix valued functions such

that Id ≤ A(x) ≤ B(x) for all x ∈ R
n. If ρ ∈ L(2∗)′(Rn) and u, v ∈ D1(Rn) are the

unique solutions of

− div(A∇u) = ρ and − div(B∇v) = ρ, in D′(Rn), (2.8)

then

2
ˆ
Rn

(B − A)∇v · ∇v dx +
ˆ
Rn

B ∇v · ∇v dx ≤
ˆ
Rn

A∇u · ∇u dx . (2.9)

In particular
ˆ
Rn

B ∇v · ∇v dx ≤
ˆ
Rn

A∇u · ∇u dx .

Proof. Let EA and EB be the following functionals defined on D1(Rn):

EA(w) := 1

2

ˆ
Rn

A∇w · ∇w dx −
ˆ
Rn

ρw dx,

EB(w) := 1

2

ˆ
Rn

B∇w · ∇w dx −
ˆ
Rn

ρw dx .

Hence EA(w) ≤ EB(w) for every w ∈ D1(Rn). Since the solutions of (2.8) are mini-
mizers of these energies, compare with Lemma 2.1, we have

EA(u) = min
D1(Rn)

EA ≤ min
D1(Rn)

EB = EB(v).

Then

−1

2

ˆ
Rn

A∇u · ∇u dx = EA(u) ≤ EB(v) = −1

2

ˆ
Rn

B ∇v · ∇v dx,
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and

−1

2

ˆ
Rn

B∇v · ∇v dx =
ˆ
Rn

B∇v · ∇v dx −
ˆ
Rn

ρv dx

=
ˆ
Rn

(B − A)∇v · ∇v dx +
ˆ
Rn

A∇v · ∇v dx −
ˆ
Rn

ρv dx

≥
ˆ
Rn

(B − A)∇v · ∇v dx − 1

2

ˆ
Rn

A∇u · ∇u dx,

concluding the proof. ��
The following corollary is an immediate consequence of the above lemma.

Corollary 2.5. Let E ⊂ F ⊂ R
n be two sets of finite measure. Then

Gβ,K (E) ≥ Gβ,K (F).

Proof. Let (uE , ρE ) be the optimal pair for E and let v be a solution of

− div(aF∇v) = ρE .

Then (v, ρE ) is admissible in the minimization problem defining Gβ,K (F), hence

Gβ,K (F) ≤
ˆ
Rn

aF |∇v|2 dx + K
ˆ
Rn

ρ2
E dx

≤
ˆ
Rn

aE |∇uE |2 dx + K
ˆ
Rn

ρ2
E dx = Gβ,K (E),

where the last inequality follows from Lemma 2.4. ��
Weconclude this section by proving the continuity ofG under L1 convergence. Recall

that given two sets E and F , E�F := (E ∪ F)\(E ∩ F) is their symmetric difference.

Proposition 2.6. Let {Eh} be a sequence of sets with |Eh | =: Vh → V > 0 when
h → ∞ and let E be such that

lim
h→∞ |Eh�E | = 0,

so that in particular |E | = V . Assume that βh → β and that Kh → K when h → ∞.
Then

lim
h→∞Gβh ,Kh (Eh) = Gβ,K (E).

Moreover, ∇uEh and ρEh converge in L2 to ∇uE and ρE respectively.

Proof. Note that by (2.1)

sup
h

Gβh ,Kh (Eh) < +∞. (2.10)

Thus

sup
h

ˆ
Rn

|∇vEh |2 dx +
ˆ
Rn

ρ2
Eh

dx < ∞.
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Moreover

ah := aEh

L2−→ aE = 1Ec + β1E .

In particular, if (uh, ρh) = (uEh , ρEh ) is the minimizing pair for Gβh ,Kh (Eh), then up to
subsequence there exists (u, ρ) such that

∇uh
L2

⇀ ∇u, ah∇uh
L2

⇀ aE∇u, ρh
L2

⇀ ρ.

Since (uh, ρh) are inA(Eh), one immediately deduces that (u, ρ) ∈ A(E) and thus, by
lower semicontinuity,

Gβ,K (E) ≤
ˆ
Rn

aE |∇u|2 dx + K
ˆ
Rn

ρ2 dx ≤ lim inf
h→∞

ˆ
Rn

ah |∇uh |2 dx + Kh

ˆ
Rn

ρ2
h dx .

To prove the opposite inequality we take (uE , ρE ) to be the minimizing pair for Gβ,K (E)

and we define (wh, ρ̃h) ∈ A(Eh) as

ρ̃h = σh ρE1Eh , − div(ah∇wh) = ρ̃h,

where σh → 1 is such that
´
Rn ρ̃h dx = 1. Since

− div(ah∇(uE − wh)) = − div((ah − aE )∇uE ) + ρE (1E − σh1Eh ),

by testing with uE − wh and by exploiting the Sobolev embedding we obtain

‖∇(uE − wh)‖22 ≤
ˆ
Rn

ah(∇uE − ∇wh) · (∇uE − ∇wh) dx

=
ˆ
Rn

(ah − aE )∇uE · ∇(uE − wh) dx +
ˆ
Rn

ρE (1E − σh1Eh )ρE (uE − wh) dx

≤ ‖(ah − aE )∇uE‖2‖∇(uE − wh)‖2 + S(n)‖ρE (1E − σh1Eh )‖2‖∇(uE − wh)‖2.

Then Young’s inequality implies that ‖∇(uE −wh)‖2 → 0. Since also ‖ρ̃h −ρE‖2 → 0
and (wh, ρ̃h) ∈ A(Eh), we get that

lim sup
h→∞

Gβh ,Kh (Eh) ≤ lim
h→∞

ˆ
Rn

ah |∇wh |2 dx + Kh

ˆ
Rn

ρ̃2
h dx

=
ˆ
Rn

aE |∇uE |2 dx + K
ˆ
Rn

ρ2 dx = Gβ,K (E).

The strong convergence of ∇uEh and ρEh is now a simple consequence of the conver-
gence of energies. ��
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3. Small Volume Adjustments and Euler Lagrange Equations

In this section we show how to adjust the volume of a given set without increasing
too much its energy which will be instrumental both to prove compactness of the class
of minimizers in Sect. 5 and to get rid of the volume constraint in studying regularity
of solutions of (Pβ,K ,Q,R), see Sect. 4. The “adjustment” lemma will be proved with
the aid of a deformation via a family of diffeomorphism close to the identity. Though
not needed in the sequel we also establishes the Euler Lagrange equations associated
to (Pβ,K ,Q,R). We start with the following lemma.

Lemma 3.1. For every η ∈ C1
c (BR;Rn) there exists t0 = t0(dist(spt η, ∂BR) > 0 such

that {ϕt }|t |≤t0 defined by ϕt (x) := x + t η(x) is a family of diffeomorphisms of BR into
itself. Moreover for some set E ⊂ BR let (u, ρ) be a solution of

− div(aE∇u) = ρ.

Then setting

ut := u ◦ ϕ−1
t and ρ̃t := det(∇ϕ−1

t ) ρ ◦ ϕ−1
t ,

we have

− div
(
aEt At∇ut

) = ρ̃t , (3.1)

where ‖At − Id ‖∞ = O(t) and the implicit constant depends only on ‖∇η‖∞.

Proof. The proof of the first part of the Lemma is straightforward. For the second we
see that for ψ ∈ C∞

c , by change of variables x = ϕt (y),ˆ
Rn

ρ̃t (x) ψ(x) dx =
ˆ
Rn

ρ(y)ψ(ϕt (y)) det(∇ϕ−1
t )(ϕt (y)) det(∇ϕt (y)) dy

=
ˆ
Rn

aE (y)∇u(y) · ∇ (ψ ◦ ϕt ) (y) dy

=
ˆ
Rn

aE (y)∇u(y) · (∇ϕt (y)
)T∇ψ(ϕt (y)) dy

=
ˆ
Rn

aEt∇u ◦ ϕ−1
t

(
∇ϕt ◦ ϕ−1

t

)T ∇ψ det∇ϕ−1
t dx

=
ˆ
Rn

aEt

(∇ϕ−1
t

)−T∇ut · (∇ϕt
−1)−T∇ψ det∇ϕ−1

t dx

=
ˆ
Rn

aEt At ∇ut · ∇ψ dx .

Where we have used the equality∇ϕ ◦ϕ−1
t = (∇ϕ−1

t )−1 and for a matrix N we denoted
by NT its transpose and we set N−T = (N−1)T . Hence ut is a solution of (3.1) with

At = det∇ϕ−1
t

(∇ϕ−1
t

)−T (∇ϕ−1
t

)−1
.

By an explicit computation we see that At satisfies the desired bound. ��
We now show how the energy G changes by the effect of a family of diffeomorphism.
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Lemma 3.2. Let E ⊆ BM be a measurable set and let {ϕt }|t |≤t0 be a family of diffeo-
morphisms as in Lemma 3.1. Then

Gβ,K (Et ) ≤ (1 + O(t)) Gβ,K (E), (3.2)

where Et := ϕt (E) and the implicit constant depends only on ‖∇η‖∞. Moreover

Gβ,K (Et ) ≤ Gβ,K (E)

+ t

(ˆ
Rn

aE
(
|∇uE |2 div η − 2∇uE · ∇η ∇uE

)
− K

ˆ
Rn

ρ2
E div η

)
+ O(t2). (3.3)

Proof. Let (uE , ρE ) ∈ A(E) be a the optimal pair for Gβ,K (E). By Lemma 3.1 ut =
uE ◦ ϕ−1

t solves (3.1) with ρ̃t = ρE ◦ ϕ−1
t det(∇ϕ−1

t ). Let vt be the solution of

− div
(
aEt∇vt

) = ρ̃t in D′(
R
n). (3.4)

Step 1: We start by proving the following estimateˆ
Rn

aEt

(
|∇vt |2 − |∇ut |2

)
dx ≤ O(t)

ˆ
Rn

aEt |∇ut |2 dx, (3.5)

where the implicit constant depends only on ‖∇η‖∞. In order to prove (3.5) we claim
that (ˆ

Rn
aEt |∇(ut − vt )|2 dx

)1/2

≤ O(t)

(ˆ
Rn

aEt |∇ut |2
)1/2

. (3.6)

Indeed assuming that (3.6) holds true and using that |a|2 −|b|2 = 2b · (a−b)+ |a−b|2
for every a,b ∈ R

n , we haveˆ
Rn

aEt

(
|∇vt |2 − |∇ut |2

)
dx = 2

ˆ
Rn

aEt∇ut · ∇(vt − ut ) dx

+
ˆ
Rn

aEt |∇(ut − vt )|2 dx .
(3.7)

We estimate the first term in the right hand side of (3.7). By (3.6), we find that
ˆ
Rn

aEt ∇ut · ∇(vt − ut ) dx ≤
(ˆ

Rn
aEt |∇ut |2 dx

)1/2 (ˆ
Rn

aEt |∇(ut − vt )|2 dx
)1/2

≤ O(t)
ˆ
Rn

aEt |∇ut |2 dx .
(3.8)

By (3.7) and (3.8), we have:ˆ
Rn

aEt

(
|∇vt |2 − |∇ut |2

)
dx ≤ O(t)

ˆ
Rn

aEt |∇ut |2 dx + O(t2)
ˆ
Rn

aEt |∇ut |2 dx,

which proves (3.5).
Let us now prove (3.6). By testing (3.1) and (3.4) with vt − ut we getˆ

Rn
aEt ∇vt · ∇(vt − ut ) dx =

ˆ
Rn

ρ̃t (vt − ut ) dx =
ˆ
Rn

aEt At ∇ut · ∇(vt − ut ) dx

=
ˆ
Rn

aEt (At − Id) ∇ut · ∇(vt − ut ) dx +
ˆ
Rn

aEt ∇ut · ∇(vt − ut ) dx .
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Rearranging terms and recalling that |At − Id | = O(t), this givesˆ
Rn

aEt |∇(vt − ut )|2 dx ≤ O(t)
ˆ
Rn

|∇vt − ∇ut ||∇ut |,

which, by Young’s inequality, implies (3.6).
Step 2: By changing variables:ˆ

Rn
aEt |∇ut |2 dx =

ˆ
Rn

|(∇ϕt )
−T∇u|2 det∇ϕt .

Moreover

∇φt = Id +t∇η + o(t) and det∇φt = 1 + t div η + o(t),

which gives ˆ
Rn

aEt |∇ut |2 dx = (1 + O(t))
ˆ
Rn

aE |∇u|2 dx, (3.9)

and the more precise equality ˆ
Rn

aEt |∇ut |2 dx =
ˆ
Rn

aE |∇u|2 dx

+t
ˆ
Rn

aE
(
div η |∇uE |2 − 2∇uE · ∇η ∇uE

)
+ o(t). (3.10)

In the same way we get
ˆ
Et

ρ̃2
t dx =

ˆ
E

ρ2

det∇ϕt
dx = (1 + O(t))

ˆ
E

ρ2 dx . (3.11)

Furthermore, since det∇ϕt = 1 + t div η + o(t), we also getˆ
Et

ρ̃2
t dx =

ˆ
E

ρ2 dx − t
ˆ
E

ρ2
E div η dx + o(t). (3.12)

Step 4: Since, by its definitionˆ
Rn

ρ̃t dx = 1, ρ̃t1Ec
t

= 0,

and vt solves (3.4), we see that (vt , ρ̃t ) ∈ A(Et ). Hence, by combining (3.5), (3.9) and
(3.11) we obtain

Gβ,K (Et ) ≤
ˆ
Rn

aEt |∇vt |2 dx + K
ˆ
Rn

ρ̃2
t dx

≤ (1 + O(t))
ˆ
Rn

aEt |∇ut |2 dx + K
ˆ
Rn

ρ̃2
t dx

≤ (1 + O(t))

(ˆ
Rn

aE |∇uE |2 dx + K
ˆ
E

ρ2
E dx

)
= (1 + O(t))Gβ,K (E),

which proves (3.2). The proof of (3.3) is obtained by combining the above argument
with (3.10) and (3.12). ��
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By combining the Taylor expansion of the perimeter, [19, Theorem 17.8],

P(ϕt (E)) = P(E) + t
ˆ

∂∗E
divE η dHn−1 + o(t), divE η = div η − νE · ∇η νE ,

with (3.3) we obtain the Euler Lagrange equations for minimizers of (Pβ,K ,Q,R) whose
proof is left to the reader.

Corollary 3.3. Let E be a minimizer of (Pβ,K ,Q,R), thenˆ
∂∗E

divE η dHn−1 + Q2
ˆ
Rn

aE
(
|∇uE |2 div η − 2∇uE · ∇η ∇uE

)
dx

− Q2 K
ˆ
Rn

ρ2
E div η dx = 0,

for all η ∈ C1
c (BR;Rn) with

´
E div η dx = 0.

The next series of results are modeled after [2] and allow to do small volume adjust-
ments without increasing too much the perimeter, see also [19, Chapter 17]. The first
lemma is elementary.

Lemma 3.4. Let E ⊆ R
n be a set of finite perimeter and let U be an open set such that

P(E,U ) > 0. Then there exist γ = γ (E) > 0 and a vector field ηE ∈ C1
c (U ;Rn) with

‖η‖C1 ≤ 1 such that ˆ
E
div ηE dx ≥ γ (E) > 0.

Proof. Since

P(E,U ) = sup

{ˆ
E
div η dx : η ∈ C1

c (U ;Rn), ‖η‖∞ ≤ 1

}
,

we find a vector field η̃ ∈ C1
c (U ;Rn) with ‖η̃‖∞ ≤ 1 such that
ˆ
E
div η̃ dx ≥ P(E,U )/2.

Taking η = η̃/‖η̃‖C1 we obtain the desired conclusion. ��
In order to have uniformcontrols on the constants involved in our regularity theory,we

need to enforce the above lemma in the following one. Note that this time the constants
depend only on the upper bound on the perimeter, in particular they do not depend on
the radius R in (Pβ,K ,Q,R).

Lemma 3.5. For every P > 0 there exist two constants γ̄ = γ̄ (n, P) > 0 and δ̄ =
δ̄(n, P) > 0 such that if R ∈ (1,∞) and E ⊂ BR satisfies

|B1|
2

≤ |E | ≤ 3|B1|
2

, P(E) ≤ P , (3.13)

then there exists a vector field η ∈ C1
c (BR−δ̄;Rn) with ‖η‖C1 ≤ 1 such that

ˆ
E
div η dx ≥ γ̄ .



48 G. de Philippis, J. Hirsch, G. Vescovo

Proof. Let us argue by contradiction: assume that there exist a sequence of radii Rk and
a sequence of sets Ek satisfying (3.13) such thatˆ

Ek

div η dx → 0 for all η ∈ C1
c (BRk−δ̄;Rn),with‖η‖C1 ≤ 1, (3.14)

where δ̄ = δ̄(n, P) is a small constant to be fixed later only in dependence of n and P .
By [19, Remark 29.11] there exist points yk ∈ R

n and a constant δ1 = δ1(n, P) such
that

|Ek ∩ B1(yk)| ≥ 2δ1.

Then by taking zk ∈ Ek ∩ B1(yk) ⊂ BRk ∩ B1(yk) we get

|Ek ∩ B2(zk)| ≥ 2δ1 zk ∈ BRk .

Let us now detail the proof in the case in which, up to subsequences, Rk → ∞ and
∂BRk−1∩B2(zk) �= ∅. The other cases are actually simpler andwe explain how tomodify
the argument at the end of the proof. We first note that since ∂BRk−1 ∩ B2(zk) �= ∅, we
can take xk ∈ ∂BRk such that

|Ek ∩ B4(xk)| ≥ |Ek ∩ B2(yk)| ≥ 2δ1 xk ∈ ∂BRk .

Now a simple geometric argument ensures that

lim
δ→0

sup
k

|B4(xk) ∩ (BRk\BRk−δ)| → 0.

In particular we can choose δ2 = δ2(n, P) such that

|Ek ∩ B4(xk) ∩ BRk−δ2 | ≥ δ1. (3.15)

Let us now assume that, up to subsequences and a possible rotation of coordinates

Fk := (
Ek ∩ B4(xk) ∩ BRk−δ2

) − xk → F,
xk
Rk

→ e1,

where the first limit exits due to our assumption on the perimeters. In particular

B4 ∩ BRk−δ2(−xk) → B̂ = B4(0) ∩ {x1 < −δ2} ,

and F ⊂ B̂. Note that by (3.15), F �= ∅ and, since |Fk | ≤ 3|B1|/2, |B̂\F | > 0. In
particular, P(F, B̂) > 0. By Lemma 3.4, we can find a constant γ = γ (F) > 0 and
vector field ηF ∈ C1

c (B̂; Rn) with ‖η‖C1 ≤ 1 such that

γ ≤
ˆ
F
div ηF dx .

For k large, the vector field ηk(·) = ηF (· + xk) satisfies: ηk ∈ C1
c (BRk−δ2/2;Rn),

‖η‖C1 ≤ 1 and contradicts (3.14) with δ̄ = δ2/2.
Let us conclude by explaining how to modify the proof in the case in which either

B2(zk) ∩ ∂BRk−1 = ∅ or Rk → R̄ < ∞. In the first case instead one argue as above
by considering the sets Fk := (

Ek ∩ B2(zk)
) − zk and by noticing that the vector fields

ηk(·) = ηF (·+ yk) with F := lim Fk are compactly supported in BRk−1/2. In the second
case one can simply reproduce the above argument. ��
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The next proposition will be crucial in removing the volume constraint and in making
comparison estimates for minimizers of (Pβ,K ,Q,R).

Proposition 3.6. For every P > 0 there exist constants σ̄ = σ̄ (n, P) > 0 andC = C(n)

such that if R ∈ (1,∞) and E ⊂ BR satisfies

|B1|
2

≤ |E | ≤ 3|B1|
2

, P(E) ≤ P ,

then for all σ ∈ (−σ̄ , σ̄ ) there exists Fσ ⊂ BR such that

|Fσ | = |E | + σ and |Fβ,K ,Q(Fσ ) − Fβ,K ,Q(E)| ≤ C |σ |Fβ,K ,Q(E).

Proof. By Lemma 3.5 we can find γ̄ = γ̄ (n, P) > 0, δ̄ = δ̄(n, P) > 0 and a vector
field η ∈ C1

c

(
BR−δ̄;Rn

)
with ‖η‖C1 ≤ 1 such that

γ̄ ≤
ˆ
E
div η dx . (3.16)

Define a family of diffeomorphismsϕt := Id +t η andnote that, sincedist(spt(η), ∂BR) ≥
δ̄(n, P), they send BR into itself for |t | ≤ t0(n, P). By Taylor expansion

|Et | = |E | + t
ˆ
E
div η dx + O(t2)|E |, (3.17)

and

P(Et ) = P(E) + t
ˆ

∂∗G
divE η dHn−1 + O(t2)P(E),

where the implicit constant is universal since ‖∇η‖∞ ≤ 1. Moreover

Gβ,K (Et ) ≤ (1 + C |t |)Gβ,K (E), (3.18)

where Et = ϕt (E) and the constant in (3.18) depends only on ‖∇η‖∞ ≤ 1. Hence we
can find t1 = t1(n, P) > 0 such that

∣∣|Et | − |E |∣∣ ≥ |t | γ̄

2
(by(3.16)), (3.19a)

and

|Fβ,K ,Q(Et ) − Fβ,K ,Q(E)| ≤ C |t |Fβ,K ,Q(E). (3.19b)

for every |t | ≤ t1. By equations (3.19a) and (3.19b) we get

|Fβ,K ,Q(Et ) − Fβ,K ,Q(E)| ≤ CFβ,K ,Q(E)
∣∣|Et | − |E |∣∣.

Let g(t) := |Et | and note that thanks to (3.17) and (3.16), g is increasing in a neigh-
borhood of 0. Take σ̄ > 0 such that (|E | − σ̄ , |E | + σ̄ ) ⊆ g

(
(−t1, t1)

)
. Then for every

|σ | ≤ σ̄ there exists tσ > 0 such that |Etσ | = |E | + σ . Setting Fσ = Etσ we obtain the
desired conclusion. ��
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4. �-Minimality and Local Variations

In order to study the regularity of minimizers it will be convenient to understand what is
the behavior under small perturbations in balls. In this section we start by removing the
volume constraint by showing that minimizers are �-minimizer of F under small per-
turbations. In order to keep track of the dependence of the parameters in Theorem 1.2, it
will be important that this “almost”-minimality depends only on the structural parameter
of the problem. We thus start by fixing the following convention, which will be in force
throughout all the rest of the paper:

Convention 4.1 (Universal constants). Given A > 0, we say that

• the parameters β, K , Q with β ≥ 1 are controlled by A if

β + K +
1

K
+ Q ≤ A.

• A constant is universal if it depends only on the dimension n and on A.
• For two positive quantities X and Y , we will write X � Y if there exists a universal
constant C such that X ≤ CY and we write X � Y if Y � X .

Note in particular that universal constants do not depend on the size of the container
where the minimization problem is solved. Moreover we also remark here the following
elementary fact: since B1 is always a competitor for (Pβ,K ,Q,R), if E is a minimizer
then

P(E) ≤ Fβ,K ,Q(E) ≤ Fβ,K ,Q(B1) ≤ C(n, A), (4.1)

whenever β, K , Q are controlled by A.
Let us now introduce the following perturbed minimality condition.

Definition 4.2 ((�, r̄)-minimizer). We say that E is a (�, r̄)-minimizer of the energy F
if there exist constants � > 0 and r̄ > 0 such that for every ball Br (x) ⊆ R

n with r ≤ r̄
we have

Fβ,K ,Q(E) ≤ Fβ,K ,Q(F) + � |E�F | wheneverE�F ⊂ Br̄ (x). (4.2)

Remark 4.3. Note that if E is (�̄, r̄)-minimizer than it is also a (�̄1, r̄1)-minimizer
whenever �̄1 ≥ �̄ and r̄1 ≤ r̄ . Hence there is no loss of generality in assuming that
r̄ ≤ 1.

Wecannowestablish thedesired�-minimality property forminimizers of (Pβ,K ,Q,R).

Proposition 4.4. Let A > 0 and let β, K , Q with β ≥ 1 be controlled by A and let
R ≥ 1. Then there exist �1, r̄1 > 0 universal such that all minimizers (Pβ,K ,Q,R)
satisfy

Fβ,K ,Q(E) ≤ Fβ,K ,Q(F) + �1 |E�F |,
whenever F ⊂ BR and E�F ⊂ Br (x0), r ≤ r̄1.
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Proof. Clearly we can suppose that

Fβ,K ,Q(F) ≤ Fβ,K ,Q(E) � 1 ,

since otherwise the result is trivial. In particular P(F) is bounded by a universal constant
P . Let σ̄ and C be the parameters in Proposition 3.6 associated to P . If r̄1 is chosen
small enough we have

|E�F | ≤ ωnr̄
n
1 � σ̄ .

Moreover, since |E | = |B1|, |F | ∈ (|B1|/2, 3|B1|/2). Hence we can apply Proposi-
tion 3.6 to F to obtain a set F̃ ⊂ BR such that |F̃ | = |B1| and

Fβ,K ,Q(E) ≤ Fβ,K ,Q(F̃) ≤ (
1 + C

∣∣|F̃ | − |F |∣∣)Fβ,K ,Q(F), (4.3)

where the first inequality is due to the minimality of E . Since Fβ,K ,Q(F) � 1 and

∣∣|F̃ | − |F |∣∣ = ||E | − |F || ≤ |F�E |,
we obtain the conclusion for a suitable universal constant �1.

��
We conclude this section by establishing the following “local” minimality properties

of minimizers (Pβ,K ,Q,R). Note that in (ii) below we are not requiring F to be contained
in BR .

Proposition 4.5. Let A > 0, and let β, K , Q be controlled by A and R ≥ 1. Then there
exist universal constants �2 and r̄2 such that given a minimizer E of (Pβ,K ,Q,R) we
have that it satisfies the following two properties:

(i) for every set of finite perimeter F ⊆ E with E\F ⊂ Br (x) and r ≤ r̄2 it holds:

P(E) ≤ P(F) + �2|E\F | + �2Q
2
ˆ
E\F

|∇uE |2 dx, (4.4)

where uE the minimizer in (1.9).
(ii) For every set of finite perimeter F ⊇ E with F\E ⊂ Br (x) and r ≤ r̄2 it holds:

P(E) ≤ P(F) + �2|F\E |. (4.5)

In particular, if uE is the minimizer in (1.9) then

P(E) ≤ P(F) + �2|E�F | + �2Q
2
ˆ
E�F

|∇uE |2 dx, (4.6)

whenever F�E ⊂ Br (x) with r ≤ r̄2.

Proof. We start proving (i). Let E be a minimizer and (uE , ρE ) be the minimizing pair
for G(E). Let F ⊆ E be such that E\F ⊂ Br (x) with r ≤ r̄2 ≤ r̄1 where r̄1 is the
constant defined in Proposition 4.4, by possibly choosing r̄2 smaller, we can assume that

|F | ≥ |E |
2

= |B1|
2

. (4.7)
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Let us set

ρ = (ρE + λF ) 1F where λF =
´
E\F ρE dx

|F | ,

and let u be the solution of

− div(aF∇u) = ρ.

Note that (u, ρ) ∈ A(F) and thus, by using the �-minimality of E established in
Proposition 4.4,

P(E) + Q2
(ˆ

Rn
aE |∇uE |2 dx + K

ˆ
ρ2E dx

)
≤ P(F) + Q2

(ˆ
Rn

aF |∇u|2 dx+ K
ˆ

ρ2 dx
)

+ �1|E\F |.

Item (ii) will then follow if we can prove

ˆ
Rn

(
ρ2 − ρ2

E

)
dx � |E\F |, (4.8)

and
ˆ
Rn

(
aF |∇uF |2 − aE |∇u|2

)
dx � |E\F | +

ˆ
E\F

|∇uE |2 dx . (4.9)

To prove (4.8) we estimate

ˆ
Rn

(ρ2 − ρ2
E ) dx = −

ˆ
E\F

ρ2
E dx +

ˆ
F
(λ2F + 2ρE λF ) dx

≤ −
ˆ
E\F

ρ2
E dx +

|E\F |
|F |

ˆ
E\F

ρ2
E dx + 2‖ρE‖∞

ˆ
E\F

ρE dx

≤ 2‖ρE‖2∞|E\F |,
where in the first inequality we have used (4.7) and the definition of λF . By (2.4),
‖ρE‖∞ � 1 and this concludes the proof of (4.8).

Let us now prove (4.9). First note that

ˆ
Rn

(
aF |∇u|2 − aE |∇uE |2

)
dx =

ˆ
Rn

aF ( |∇u|2 − |∇uE |2) dx

+
ˆ
Rn

(aF − aE ) |∇uE |2 dx .
(4.10)

Testing the equations satisfied by uE and u with uE and u respectively and subtracting
the result we obtain also

ˆ
Rn

(
aF |∇u|2 − aE |∇uE |2

)
dx =

ˆ
Rn

uρ dx −
ˆ
Rn

uEρE dx . (4.11)
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Subtracting (4.10) from two times (4.11) we getˆ
Rn

(
aF |∇u|2 − aE |∇uE |2

)
dx =

ˆ
Rn

aF
(

|∇uE |2 − |∇u|2
)
dx

+
ˆ
Rn

(aE − aF ) |∇uE |2 dx

+ 2
ˆ
Rn

uρ dx − 2
ˆ
Rn

uEρE dx .

(4.12)

Moreover,ˆ
Rn

aF
(

|∇uE |2 − |∇u|2
)
dx = 2

ˆ
Rn

aF ∇u · (∇uE − ∇u) dx

+
ˆ
Rn

aF |∇uE − ∇u|2 dx

= 2
ˆ
Rn

ρ(uE − u) dx

+
ˆ
Rn

aF |∇uF − ∇u|2 dx .

(4.13)

Combining (4.12) and (4.13) we then obtain:ˆ
Rn

(
aF |∇u|2 − aE |∇uE |2

)
dx = 2

ˆ
Rn

(ρ − ρE ) uE dx +
ˆ
Rn

aF |∇u − ∇uE |2 dx

+
ˆ
Rn

(aE − aF ) |∇uE |2 dx .
(4.14)

We start to estimate the first term in the right hand side of (4.14). By using Proposition 2.3
and by arguing as in the proof of (4.8) the first term can be easily estimated asˆ

Rn
(ρ − ρE ) uE dx � |E\F |.

To estimate the second term in the right hand side of (4.14), we write

− div
(
aF (∇u − ∇uE )

) = ρ − ρE + div
(
(aF − aE )∇uE

)
.

Thereforeˆ
Rn

aF |∇u − ∇uE |2 dx =
ˆ
Rn

(ρ − ρE ) (u − uE ) dx

+
ˆ
Rn

(aE − aF )∇uE · (∇u − ∇uE ) dx

≤ ‖ρ − ρE‖(2∗)′ ‖u − uE‖2∗

+

(ˆ
Rn

(aF − aE )2 |∇uE |2 dx

) 1
2 ‖∇u − ∇uE‖2.

By the Sobolev embedding and Young inequality (and recalling that 1 ≤ aF ≤ β), the
above inequality immediately implyˆ

Rn
aF |∇u − ∇uE |2 dx �

ˆ
Rn

(aF − aE )2 |∇uE |2 dx + ‖ρ − ρE‖2(2∗)′ .
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By the definition of ρ, the second term is � |E\F | (note that 2/(2∗)′ ≥ 1) while the
first one is less than

β2
ˆ
E\F

|∇uE |2 dx .

Since also the third term in (4.14) can be estimated by the above integral, this concludes
the proof of (4.9).

Let us now prove (ii). Let F ⊇ E , note that P(F ∩ BR) ≤ P(F) and that (F ∩
BR)\E ⊂ F\E . Hence if we can prove (i) for subsets of BR we will get it for all sets.
Let us then assume that E ⊆ F ⊆ BR . By �-minimality of E

Fβ,K ,Q(E) ≤ Fβ,K ,Q(F) + �|F\E |.
Since, by Lemma 2.4, Gβ,K (E) ≥ Gβ,K (F) the conclusion follows. ��
Remark 4.6. We record here the following simple consequence of (4.6). Assume that
|∇uE |2 ∈ L p, then (4.6) andHölder inequality imply that for F such that F�E ⊂ Br (x)
with r ≤ r̄2,

P(E) ≤ P(F) + �2|E�F | + �2Q
2
ˆ
E�F

|∇u|2 dx

≤ P(F) + �2|Br | + �2Q
2|Br |1−

1
p ‖∇uE‖22p ≤ P(F) + Crn− n

p .

In particular if p > n, then n − n
p > n − 1 and thus E is a ω minimizers of the

perimeter in the sense of [25]. Hence ∂E is a C1 manifold outside a singular closed
set 	 of dimension at most (n − 8). Note that by Cordes estimate, [4], the assumption
|∇uE |2 ∈ L p with p > n is satisfied wherever β − 1 � 1. In particular, in this regime,
Taylor cones singularities are excluded in R3.

5. Compactness of Minimizers

In this section we prove that the class of minimizers of (Pβ,K ,Q,R) is a compact subset
of L1, this is not really necessary in the proof of the main result, but we believe it can
be interesting by its own.

Proposition 5.1. Let Kh, Qh ∈ R, βh ≥ 1 and Rh ≥ 1 be such that

Kh → K > 0 , βh → β ≥ 1 , Rh → R ≥ 1 , Qh → Q ≥ 0,

when h → ∞. For every h ∈ N let Eh be a minimizer of
(Pβh ,Kh ,Qh ,Rh

)
. Then, up to a

non relabelled subsequence, there exists a set of finite perimeter E such that

lim
h→∞ |E�Eh | = 0. (5.1)

Moreover E is a minimizer of (Pβ,K ,Q,R) and

Fβ,K ,Q(E) = lim
h→∞Fβh ,Kh ,Qh (Eh), lim

h→∞ P(Eh) = P(E).
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Proof. Since if Rh = 1 for all h the problem is trivial (recall that |Eh | = |B1|) we can
assume that Rh and R are strictly bigger than one. Moreover B1 is always an admissible
competitor and thus,

lim sup
h

Fβh ,Kh ,Qh (Eh) ≤ lim sup
h

Fβh ,Kh ,Qh (B1) = C(n, K , Q, β).

In particular the perimeters of Eh are uniformly bounded and since all the sets are
included in, say, B2R there exists a non relabelled subsequence and set E ⊂ BR such
that (5.1) hold true. Since the perimeter is lower-semicontinuous and, by Proposition 2.6,
G is continuous we also get that

Fβ,K ,Q(E) ≤ lim inf
h

Fβh ,Kh ,Qh (Eh). (5.2)

We now show that E is a minimizer. For let F ⊂ BR with |F | = |B1|. Since Rh → R,
we can find λh → 1 such that Fh := λh F ⊂ BRh . Clearly, Fh → F , |Fh | = |F | + o(1)
and P(Fh) = P(F) + o(1). Thus

Fβ,K ,Q(F) = Fβh ,Kh ,Qh (Fh) + o(1). (5.3)

By Proposition 3.6 applied to Fh we can find sets F̃h ⊂ BRh such that |F̃h | = |B1| and
Fβh ,Kh ,Qh (F̃h) = Fβh ,Kh ,Qh (Fh) + o(1) = Fβ,K ,Q(F) + o(1).

where in the last equality we have used (5.3). By minimality of Eh we get

Fβh ,Kh ,Qh (Eh) ≤ Fβh ,Kh ,Qh (F̃h) = Fβ,K ,Q(F) + o(1),

which combined with (5.2) implies the minimality of E . By choosing E = F we
also deduce the convergence of the energies and, by Proposition 2.6, this implies the
convergence of the perimeters. ��

6. Decay of the Dirichlet Energy and Density Estimates

6.1. Decay of the Dirichlet energy. Following [12], in this subsection we establish an
almost Lipschitz decay for the Dirichlet energy of uE in certain regimes. Namely when
the set or the complement almost fill a ball or when the set is very close to an half space.

We start by recalling the following higher integrability lemma for solution of (1.6)
The proof can be found for instance in [14].

Lemma 6.1. Let E be set of finite measure and let (u, ρ) ∈ A(E). Then there exists
C = C(n, β) and p = p(n, β) > 1 such that for all balls Br (x) ⊂ R

n

 
Br (x)

|∇u|2p dx ≤ C

{( 
B2r (x)

|∇u|2 dx
)p

+ r2p
 
B2r (x)

ρ2p dx

}
. (6.1)

Furthermore, the constants C and p depends only on an upper bound for β.

We start with the following elementary lemma where the optimal decay is obtained
in some limiting situations.

Lemma 6.2. Let β ≥ 1 and ρ ∈ L∞(Rn). Then here exists a dimensional constant
C = C(n) such that:
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(i) if v ∈ W 1,2(Br (x)) is a solution of

−�v = ρ,

then for all λ ∈ (0, 1) 
Bλr (x)

|∇v|2 dx ≤ C
 
Br (x)

|∇v|2 dx +
C

λn
r2 ‖ρ‖2∞. (6.2)

(ii) If v ∈ W 1,2(Br (x)) is a solution of

− div(aH∇v) = ρ, aH = β1H + 1Hc ,

where H := {
y ∈ R

n : (y − x) · e ≤ 0
}
for some e ∈ S

n−1. Then for all λ ∈ (0, 1)
 
Bλr (x)

aH |∇v|2 dx ≤ C
 
Br (x)

aH |∇v|2 dx +
C

λn
r2 ‖ρ‖2∞. (6.3)

Proof. We just prove point (ii) since (i) is a particular case (and well known). By scaling
and translating, we can assume without loss of generality that x = 0 and r = 1. Let w

be the solution of {
− div(aH∇w) = 0 inB1

w = v on ∂B1,

so that u = v − w solves {
− div(aH∇u) = ρ inB1

u = 0 on ∂B1.

By multiplying the last equation by u, applying Poincaré inequality we obtain

ˆ
B1

aH |∇u|2 dx ≤ ‖ρ‖2‖u‖2 ≤ C(n)‖ρ‖∞‖∇u‖2 ≤ C(n)‖ρ‖∞
(ˆ

B1
aH |∇u|2 dx

) 1
2

.

where we have used that aH ≥ 1. Henceˆ
B1

aH |∇v − ∇w|2 dx =
ˆ
B1

aH |∇u|2 dx ≤ C‖ρ‖2∞. (6.4)

Moreover, by [12, Lemma 2.3], 
Bλ

aH |∇w|2 dx ≤
 
B1

aH |∇w|2 dx .

Hence, 
Bλ

aH |∇v|2 dx ≤ 2
 
Bλ

aH |∇w|2 dx + 2
 
Bλ

aH |∇v − ∇w|2 dx

≤ 2
 
B1

aH |∇w|2 dx + 2
 
Bλ

aH |∇v − ∇w|2 dx

≤ 4
 
B1

aH |∇v|2 dx + 2
 
Bλ

aH |∇v − ∇w|2 dx + 4
 
B1

aH |∇v − ∇w|2 dx .

(6.5)

which together with (6.4) concludes the proof. ��
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As in [12], we now exploit the higher integrability recalled in Lemma 6.1 to obtain
an “almost version” of the above decay.

Proposition 6.3 (Decay of Dirichlet energy). Let β ≥ 1 then there exists a constant
C = C(n, β) with the following property: if E ⊂ R

n, u and ρ satisfy

− div(aE∇u) = ρ, aE = β1E + 1Ec ,

then for all λ ∈ (
0, 1

2

)
there exists ε0 = ε0(λ, β) > 0 such that

(i) if

either
|E ∩ Br (x)|

|Br (x)| ≤ ε0 or
|Br (x)\E |
|Br (x)| ≤ ε0,

then
 
Bλr (x)

|∇u|2 dx ≤ C
 
Br (x)

|∇u|2 dx +
Cr2

λn
‖ρ‖2∞.

(ii) If

|(E�H) ∩ Br (x)|
|Br (x)| ≤ ε0,

where H := {
y ∈ R

n : (y − x) · e ≤ 0
}
for some e ∈ S

n−1, then

 
Bλr (x)

|∇u|2 dx ≤ C
 
Br (x)

|∇u|2 dx +
Cr2

λn
‖ρ‖2∞.

Moreover the constants C and ε0 can be chosen to depend only on un upper bound on
β.

Proof. We detail the proof of item (ii). Item (i) can be obtained in a similar way and we
sketch the argument at the end of the proof. Without loss of generality, by translating,
we can assume x = 0. Let λ ∈ (0, 1/2) be given and let v the solution of{

− div(aH∇v) = ρ inBr/2
v = u on ∂Br/2.

where aH = β1H + 1Hc . In particular, w = (u − v) ∈ W 1,2
0 (Br/2) and

− div(aH∇w) = − div((aE − aH )∇u).

By testing the above equation with w and using Young inequality we get
ˆ
Br/2

|∇u − ∇v|2 dx ≤
ˆ
Br/2

(aE − aH )2|∇u|2 dx ≤ β2
ˆ

(E�H)∩Br/2
|∇u|2 dx .

By the higher integrability lemma there exists p > 1 such that

( 
Br/2

|∇u|2p dx

) 1
p

≤ C
 
Br

|∇u|2 dx + C rn+2 ‖ρ‖2∞. (6.6)
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Hence by exploiting Hölder inequality with exponent p we have

ˆ
(E�H)∩Br/2

|∇u|2 dx ≤ ∣∣(E�H) ∩ Br/2
∣∣1− 1

p

(ˆ
Br/2

|∇u|2p dx

) 1
p

≤ c(2, p) |Br |
( |(E�H) ∩ Br |

|Br |
)1− 1

p
( 

Br/2
|∇u|2p dx

) 1
p

≤ C ε
1− 1

p
0

{ˆ
Br

|∇u|2 dx + rn+2 ‖ρ‖2∞
}

.

(6.7)

Therefore, (recall r < 1) the above estimates yield
ˆ
Br/2

|∇w|2 dx ≤ C

{
(β − 1)2 ε

1− 1
p

0

ˆ
Br

|∇u|2 dx + rn+2‖ρ‖2∞
}

. (6.8)

Since the decay estimate (6.3) apply to v, we can argue as in the proof of (6.5) to obtain

 
Bλr

|∇u|2 dx ≤ C
 
Br

|∇u|2 dx +
Cε

1− 1
p

0

λn

ˆ
Br

|∇u|2 dx +
C‖ρ‖2∞

λn
.

Choosing ε0 = ε0(n, λ) � λ sufficiently small we conclude the proof of (ii). The proof
of (i) can be obtained in the same way by comparing u to a solution of −�u = ρ (or
−β�u = ρ) and by using (6.2). ��

6.2. Density estimates. In this section we establish scaling invariant upper and lower
bounds for the perimeter and for the measure of a minimizer in balls. We also establish
a universal upper bound for the normalized Dirichlet energy of the minimizer of uE .
We start with the following proposition which is a simple consequence of the outward
minimizing property of E established in Proposition 4.5 (ii).

Proposition 6.4. Let A > 0, and let β, K , Q be controlled by A and R ≥ 1. Then
there exist universal constants Co and ro such that, if E is a minimizer of (Pβ,K ,Q,R),
r ∈ (0, ro), then3

P(E, Br (x)) ≤ Cor
n−1 for all x ∈ ∂E and r ∈ (0, ro), (6.9)

and

|Br (x)\E |
|Br (x)| ≥ 1

Co
for all x ∈ Ecand r ∈ (0, ro), (6.10)

3 Here and in the sequel we will always work with the representative of E such that

∂E =
{
x : |Br (x)\E |

|Br (x)| · |Br (x) ∩ E |
|Br (x)| > 0 for all r > 0

}
,

see [19, Proposition 12.19].
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Proof. We let �2 and r̄2 be the constants appearing in Proposition 4.5. We take ro ≤ r̄2.
For r ≤ ro, we plug F = E ∪ Br (x) in (4.5) and we obtain, after simple manipulations,

P(E, Br (x)) ≤ Hn−1(∂Br (x)\E) + �2|E\Br (x)| ≤ nωnr
n−1 + �2ωnr

n .

Hence, assuming that �2ro ≤ 1, we immediately get P(E, Br (x)) � rn−1. To obtain
the lower density bound for Ec we set m(r) := |Br (x)\E | and we use the isoperimetric
inequality to deduce

m(r)
n−1
n = |Br (x)\E | n−1

n � P(E\Br (x))
= P(E, Br (x)) +Hn−1(∂Br (x)\E)

� Hn−1(∂Br (x)\E) + |E\Br (x)|
� m′(r) + m(r),

where we have used that, by co-area formula m′(r) = Hn−1(∂Br (x)\E). If we choose

ro such that Cm(r)
1
n ≤ C(nωn)

1
n ro ≤ 1/2 where C is the implied universal constant in

the above estimate, we obtain

m(r)
n−1
n � m′(r).

Since x ∈ ∂E , m(r) > 0 for all r > 0 then the above inequality implies that

d

dr
m(r)

1
n � 1 for all r ∈ (0, ro).

Hence m(r) � rn and this concludes the proof. ��
The next lemma establishes a universal bound on the normalized Dirichlet integral.

Lemma 6.5. Let A > 0, and let β, K , Q be controlled by A and R ≥ 1. Then there
exists a universal constant Ce such that, if E is a minimizer of (Pβ,K ,Q,R), then for all
x ∈ BR,

Q2DE (x, r) = Q2

rn−1

ˆ
Br (x)

|∇u|2 dy ≤ Ce. (6.11)

Proof. The estimates is clearly true if r ≥ r0 where r0 = r0(n, A), indeed recall that

Q2
ˆ
Rn

|∇uE |2 dy ≤ Fβ,K ,Q(E) � 1.

Hence we can assume that r ≤ r0 � 1. We claim the following: there exist constants
λ = λ(n, A) ∈ (0, 1/2), C = C(n, A) and r0 = r0(n, A) such that

(a) If x ∈ ∂BR and r ≤ r0, then

Q2DE (x, λr) ≤ 1

2
Q2DE (x, r) + C. (6.12)

(b) If x ∈ BR and r ≤ min
{
dist(x, ∂BR), r0/2

}
, then

Q2DE (x, λr) ≤ 1

2
Q2DE (x, r) + C. (6.13)
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Let ε � 1 to be fixed and let r0 = r0(ε) � r̄1 where r̄1 is the constant in Proposition
4.4 and such that the following holds true

x ∈ ∂BR and r ≤ r0 
⇒ |(BR ∩ Br (x))�Hx |
|Br (x)| ≤ ε, (6.14)

where Hx := {y : (y − x) · x ≤ 0} is the supporting half space of BR at x . Note that
since the curvatures of ∂BR are universally bounded (recall that R ≥ 1), this can be
achieved by choosing r0 small only in dependence of ε.

Let now x ∈ BR and r ≤ r0 be a radius satisfying either condition (a) (if x ∈ ∂BR) or
condition (b) (if x ∈ BR) above. Let (uE , ρE ) be the minimizers for G(E) and consider

F = (E ∪ Br (x)) ∩ BR .

We define u to be the solution of

− div(aF∇u) = ρE . (6.15)

Note that (u, ρE ) ∈ A(F) since F ⊃ E . Hence, by Proposition 4.4,

P(E) + Q2
(ˆ

Rn
aE |∇uE |2 dx + K

ˆ
Rn

ρ2
E dx

)

≤ P(F) + Q2
(ˆ

Rn
aF |∇u|2 dx + K

ˆ
Rn

ρ2
E dx

)
+ �1|F\E |

≤ P(E ∪ Br (x)) + Q2
(ˆ

Rn
aF |∇u|2 dx + K

ˆ
Rn

ρ2
E dx

)
+ �1|Br (x)|,

wherewe have used that F\E ⊂ Br (x) and that P(F) ≤ P(E∪Br (x)), by the convexity
of BR . Rearranging the terms we get

Q2
(ˆ

Rn
aE |∇uE |2 dx −

ˆ
Rn

aF |∇u|2 dx
)

≤ P(E ∪ Br (x)) − P(E) + �1|Br (x)| � rn−1.

Recall now that uE solves

− div(aE∇uE ) = ρE ,

and we use (2.9) in Lemma 2.4 to infer that
ˆ

(aF − aE )|∇u|2 dx ≤
ˆ
Rn

aE |∇uE |2 dx −
ˆ
Rn

aF |∇u|2 dx � rn−1

Q2 . (6.16)

Since

− div(aE∇(uE − u)) = − div((aF − aE )∇u),

by testing with uE − u and by Young inequality we get

Q2
ˆ
Rn

|∇uE − ∇u|2 dx ≤ Q2
ˆ

(aF − aE )2|∇u|2 dx � rn−1,

where the last inequality follows from (6.16).
We want now apply Proposition 6.3 to u. Note that since

F ∩ Br (x) = Br (x) ∩ BR,
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then the assumption are satisfied both in case (a) (thanks to (6.14)) and in case (b) (since
Br (x) ⊂ BR). Hence, given λ ∈ (0, 1/2), we have:

1

(λr)n−1

ˆ
Bλr (x)

|∇uE |2 dy ≤ 2

(λr)n−1

ˆ
Bλr(x)

|∇u − ∇uE |2 dy + 2

(λr)n−1

ˆ
Bλr(x)

|∇u|2 dy

≤ 2

(λr)n−1

ˆ
Bλr (x)

|∇u − ∇uE |2 dy + Cλ

rn−1

ˆ
Br (x)

|∇u|2 dy + Cr2‖ρE‖∞
λn−1

≤ C

λn−1

1

rn−1

ˆ
Br (x)

|∇u − ∇uE |2 dy + Cλ

rn−1

ˆ
Br (x)

|∇uE |2 dy + Cr2‖ρE‖∞
λn−1 ,

(6.17)

for a constant C = C(n, A) provided ε (and thus r0) is chosen sufficiently small. Since
by (2.4) ‖ρE‖∞ � 1, we deduce from (6.17) that

Q2DE (x, λr) ≤ Cλ Q2DE (x, r) +
C(n, A)

λn−1 . (6.18)

Now choosing λ = λ(n, A) such that Cλ = 1/2 we conclude the proof of the claim.
Note that this fixes ε and thus r0 as functions depending only on n and A.

To conclude the proof we have to show that (a) and (b) above implies that

S := sup
y∈BR

sup
0<s≤r0

Q2DE (y, s) ≤ C(n, A).

We first assume that S < +∞ and show that we can bound it by a universal constant.
Let ȳ ∈ BR and s̄ ∈ (0, r0) be such that

3S

4
≤ Q2DE (ȳ, s̄).

Let us distinguish a few cases:
• Case 1: ȳ ∈ ∂BR . If s̄ ≤ λr0, (6.12) implies that

3S

4
≤ Q2DE (ȳ, s̄) ≤ 1

2
Q2DE

(
ȳ,

s̄

λ

)
+ C ≤ 1

2
S + C,

and we are done. On the other end if s̄ ≥ λr0, then

3S

4
≤ Q2DE (ȳ, s̄) ≤ Q2

(λr0)n−1

ˆ
Rn

|∇uE |2

≤ 1

(λr0)n−1Fβ,K ,Q(E) ≤ C(n, A).

• Case 2: ȳ ∈ BR . If s̄ ≤ λmin{dist(ȳ, ∂BR), r0/2}, we can use (6.13) and we argue as
in the first part of Case 1. If s̄ ≥ λr0/2 we argue instead as in the second part of Case 1
to conclude. We are thus left to consider the case

λ dist(x̄, ∂BR) ≤ s̄ ≤ λr0/2.

In this case Bs̄(ȳ) ⊂ Br0(ȳ), ȳ ∈ ∂BR and

3S

4
≤ Q2DE (ȳ, s̄) ≤ 1

2
S + C.



62 G. de Philippis, J. Hirsch, G. Vescovo

Thus we are done.
To show that one can actually assume that S < +∞ one can consider

Sδ = sup
y∈BR

sup
δ≤s≤r0

Q2DE (y, s) ≤ C(n, A)δ1−n,

and argue as above to show that Sδ ≤ C(n, A). Letting δ → 0 we conclude the proof. ��
We are now ready to complete the proof of density and perimeter estimates.

Proposition 6.6. Let A > 0, and let β, K , Q be controlled by A and R ≥ 1. Then there
exist universal constants Ci and r̄i such that, if E is a minimizer of (Pβ,K ,Q,R), then

P(E, Br (x)) ≥ rn−1

Ci
for all x ∈ ∂Eand r ∈ (0, r̄i), (6.19)

and

|Br (x) ∩ E |
|Br (x)| ≥ 1

Ci
for all x ∈ Eand r ∈ (0, r̄i), (6.20)

Proof. We start showing the validity of (6.19) and we divide the proof in few steps.
•Step 1:Weclaim that for everyλ ∈ (0, 1/4), there exist ε1 = ε1(λ, , A),C1 = C1(n, A)

and and r̄ = r̄(n, A, λ)

P(E, Br (x)) ≤ εrn−1 ε ≤ ε1 r ≤ r̄ ,

then,

P(E, Bλr (x)) +Q2
ˆ
Bλr (x)

|∇uE |2 dy

≤ C1λ
n
(
P(E, Br (x)) + Q2

ˆ
Br (x)

|∇uE |2 dy + rn
)

. (6.21)

For the ease of notation let us assume that x = 0. Let λ ∈ (0, 1/4) be fixed. By the
relative isoperimetric inequality

(
min

{ |E ∩ Br |
|Br | ,

|Br\E |
|Br |

}) n−1
n

≤ C(n)
P(E, Br )

rn−1 � ε.

By (6.10) and by choosing ε1, r̄ � 1 we get

|E ∩ Br |
|Br | ≤ C(n)

(
P(E, Br )

rn−1

) 1
n−1 P(E, Br )

rn−1 � ε
1

n−1
P(E, Br )

rn−1 . (6.22)

Let us choose t ∈ (λr, 2λr) such that

Hn−1(E ∩ ∂Bt ) ≤
 2λr

λr
Hn−1(E ∩ ∂Bs) ds

≤ |E ∩ B2λr |
λr

≤ C(n, λ)ε
1

n−1 P(E, Br ).

(6.23)
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By testing (4.5) with F = E\Bt we obtain

P(E, Bt ) ≤ Hn−1(E ∩ ∂Bt ) + �2|E ∩ Bt | + �2Q
2
ˆ
E∩Bt

|∇uE |2 dx, (6.24)

which, together with (6.23) and recalling that t ∈ (λr, 2λr), implies that

P(E, Bλr ) + Q2
ˆ
Bλr

|∇uE |2 dx

≤ C(n, λ)ε
1

n−1 P(E, Br ) + (�2 + 1)Q2
ˆ
B2λr

|∇uE |2 dx + �2|B2λr |. (6.25)

If we now choose ε1 = ε1(λ) � 1, (6.22) allows to apply Proposition 6.3 (i). Hence by
also choosing r̄ � λ we deduce that

ˆ
B2λr

|∇uE |2 dx ≤ C(n, A)λn
(ˆ

Br
|∇uE |2 dx +

r̄2

λn
rn

)

≤ C(n, A)λn
(ˆ

Br
|∇uE |2 dx + rn

)
,

(6.26)

where we have used that, by (2.4), ‖ρE‖∞ � 1. By gathering equations (6.25) and (6.26)
we then get

P(E, Bλr ) + Q2
ˆ
Bλr

|∇uE |2 dx

≤ C(n, λ)ε
1

n−1 P(E, Br ) + C(n, A)λn
(
Q2

ˆ
Br

|∇uE |2 dx + rn
)

.

If we choose ε1 = ε1(n, A, λ) � 1 such that C(n, λ)ε
1

n−1 ≤ λn the above inequality
implies (6.21).

• Step 2: We now prove the validity of (6.19). By density it is enough to prove it at all
x ∈ ∂∗E . Again we set coordinates so that x = 0. Let us choose λ = λ(n, A) ∈ (0, 1/4)
such that C1λ ≤ 1/2 where C1 is the constant appearing in (6.21) and let r̄ and ε1 be
the corresponding constants (which now depend only on A and n). We claim that

P(E, Br ) + Q2
ˆ
Br

|∇uE |2 dx ≥ ε1

2
rn−1 for all r ≤ min{r1, ε1/2}. (6.27)

Indeed otherwise, by (6.21) and the choice of λ

P(E, Bλr ) + Q2
ˆ
Bλr

|∇uE |2 dx

≤ λn−1

2

(
P(E, Br ) + Q2

ˆ
Br

|∇uE |2 dx +
ε1

2
rn−1

)
≤ ε1

2
(λr)n−1.

We can thus iterate the above estimate and deduce that

lim inf
r→0

P(E, Br )

rn−1 = 0 ,
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in contradiction with the assumption that 0 ∈ ∂∗E . Let now λ̄ � ε1 to be chosen where
ε1 is the constant obtained above. Let ε2 and r2 be the constants corresponding to λ̄ in
Step 1. We claim that if we choose λ̄ small enough depending only on n and A then

P(E, Br ) ≥ ε2r
n−1 for all r ≤ r3, (6.28)

where r3 � min{r2, r1} will depend only on n and A. Indeed otherwise we can apply
Step 1, (6.9), and Lemma 6.5 to get

P(E, Bλ̄r ) + Q2
ˆ
Bλ̄r

|∇uE |2 dx ≤ C(n, A)λ̄n
(
P(E, Br ) + Q2

ˆ
Br

|∇uE |2 dx + rn
)

≤ C̄(n, A)λ̄(λ̄r)n−1,

where ε2 � ε1 and r2 � r1 are universal constants. If λ̄ is chosen so that C̄(n, A)λ̄ ≤
ε1/4 this contradicts (6.27) and thus proves (6.19) with ci ≤ ε2.
• Step 3: We now prove the validity of (6.20). Assume indeed that

|E ∩ Br |
|Br | ≤ ε4 for r ≤ r4,

with ε4, r4 � 1 to be fixed only in term of n and A. Then, by (6.1) and (6.11), for all
s ∈ (r/4, r/2)

Q2
ˆ
Bs

|∇uE |2 dx ≤ Q2|E ∩ Bs |1−
1
p

( ˆ
Bs

|∇uE |2p dx
) 1

p

� Q2
( |E ∩ Br |

|Br |
)1− 1

p
ˆ
B2s

|∇uE |2p dx � ε
1− 1

p
4 rn−1 � ε

1− 1
p

4 sn−1.

(6.29)

Moreover, by the co-area formula, there exists s ∈ (r/4, r/2) such that

Hn−1(E ∩ Bs) ≤
 r/2

r/4
Hn−1(E ∩ Bt )dt ≤ 4|E ∩ Br |

r
� ε4r

n−1 � ε4s
n−1.

(6.30)

By testing (4.4) with E\Bs we get

P(E, Bs) ≤ Hn−1(E ∩ Bs) + �2|Bs | + Q2�2

ˆ
Bs

|∇uE |2 dx,

which together with (6.29) and (6.30) and provided r4 � ε4 � 1 implies

P(E, Bs) ≤ Cε
1− 1

p
4 sn−1,

for a suitable universal constant C . Choosing ε4 small with respect to ε2 we get

P(E, Bs) ≤ ε2s
n−1,

in contradiction with (6.28).
��
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7. Decay of the Excess

In this section we prove Theorem 1.2. First of all we recall the following definitions.

Notation. Let E ⊂ R
n be a set of finite perimeter and x ∈ R

n .

• The spherical excess of E at the point x ∈ ∂E is

eE (x, r) := inf
ν∈Sn−1

1

rn−1

ˆ
∂∗E∩Br (x)

|νE (y) − ν|2
2

dHn−1(y),

where ∂∗E is the reduced boundary and νE is themeasure-theoretic outer unit normal
to E .

• The normalized Dirichlet energy of E at a point x is

DE (x, r) = 1

rn−1

ˆ
Br (x)

|∇uE |2 dy,

where uE minimizes (1.9).

Since the seminal works of De Giorgi and Almgren, [1,5] the proof of Theorem 1.2
is based on an excess decay theorem, namely:

Theorem 7.1 (Excess improvement). Let A > 0, and let β, K , Q be controlled by A
and R ≥ 1. There exists a universal constant Cdec > 0 such that for all λ ∈ (0, 1/4)
there exists εdec = εdec(n, A, λ) > 0 satisfying the following: if E is a minimizer of
(Pβ,K ,Q,R) and

x ∈ ∂E, r + Q2DE (x, r) + eE (x, r) ≤ εdec,

then

Q2DE (x, λr) + eE (x, λr) ≤ Cdecλ
(
eE (x, r) + Q2DE (x, r) + r

)
. (7.1)

As it is customary, the proof of the above theorem is based on an “harmonic approxi-
mation” technique. More precisely we will go through the following steps:

(i) In the small excess regime, the boundary of E can be well approximated by the
graph of a Lipschitz function f with Dirichlet energy bounded by the excess.

(ii) If the excess and the normalizedDirichlet of uE are small, then f is almost harmonic.
(iii) Almost harmonicity of f implies closeness to an harmonic function g in the L2

topology. By classical estimates for harmonic functions, an L2 type of excess of g
decays. This in turn implies the decay of the flatness f of E , see (7.16) below for
the definition.

(iv) Via a Caccioppoli type inequality, the decay of the flatness can be transferred to the
decay of the excess.

(v) Via Proposition 6.3 (ii), the decay of the excess implies the decay of the normalized
Dirichlet energy.

Usually, Step (i) is obtained by reproducing at most points and at all scale an height
type bound for ∂E in the small excess regime and it thus relies on the scaling invariance
of the problem studied. Step (ii) and (iv) are obtained by simple comparison arguments
and Step (iii) is based on a compactness argument together with the classical regularity
theory for harmonic functions.
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In our situation the problem does not enjoy of a nice scaling behaviour, due to the
global constraint

´
Rn ρE dx = 1. However, the local estimates obtained in the previous

section are exactly what we need to carry on the proof of Step (i), see Lemma 7.2 below.
Since beside this fact, most of the proofs of the needed lemmas are almost verbatim
adaptation of those present in the literature, we will not detail all of them and we will
just focus on the key points and on the main differences.

7.1. Lipschitz approximation. In this subsection we prove the Lipschitz approximation
lemma. Let us first fix a few notation that will be useful through all the section.

Notation Let E ⊂ R
n be a set of finite perimeter, x ∈ R

n , z ∈ R
n−1, ν ∈ S

n−1 and
r > 0.

• We call pν(x) := x − (x · ν) ν and qν(x) := (x · ν) ν, respectively, the orthogonal
projection onto the plane ν⊥ and the projection on ν. For simplicity we denote
p(x) := pen (x) and q(x) := qen (x) = xn .

• We define the cylinder with center at x and radius r with respect to the direction ν

as

C(x, r, ν) := {
y ∈ R

n : |pν(y − x)| < r , |qν(y − x)| < r
}
.

We write Cr (x) := C(x, r, en), Cr := C(0, r, en) and C := C1.
• We denote the (n − 1)-dimensional disk centered at z and of radius r by

Dr (z) := {
y ∈ R

n−1 : |y − z| < r
}
.

For simplicity we write Dr = D(0, r) and D = D(0, 1).
• The cylindrical excess in a direction ν ∈ S

n−1 is defined as

eE (x, r, ν) = 1

rn−1

ˆ
C(x,r,ν)∩∂∗E

|νE (y) − ν|2
2

dHn−1(y) ,

so that

eE (x, r) ≤ inf
ν∈Sn−1

eE (x, r, ν). (7.2)

The following height bound is crucial in the sequel. Note that it does not require any
minimality property on E , only the validity of inequality (7.3) at all scales.

Lemma 7.2 Let C > 0. Then there exists an increasing function ωC : (0, 1) → R with
ωC (0+) = 0 depending only on C such that if E ⊆ R

n is of finite perimeter in C(x, 2r)
satisfying the following properties:

(i) x ∈ ∂E,
(ii) for all y ∈ ∂E and s such that Bs(y) ⊂ C(x, 2r)

1

C
≤ |E ∩ Bs(y))|

|Bs(y)| ≤
(
1 − 1

C

)
, P(E, Bs(y)) ≤ Csn−1, (7.3)
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then

eE (x, 2r, en) ≤ t 
⇒ sup
y∈C(x,r)∩∂E

|q(y − x)| ≤ ωC (t)r, (7.4)

∣∣{y ∈ C(x, r) ∩ E : q(y − x) > ωC (t)r}∣∣ = 0, (7.5)∣∣{y ∈ C(x, r)\E : q(y − x) < −ωC (t)r}∣∣ = 0. (7.6)

Remark 7.3 Note that the (7.3) and the relative isoperimetric inequality imply

P(E, Bs(y)) ≥ sn−1

C ′

for all y ∈ ∂E and s such that Bs(y) ⊂ C(x, 2r) and for a suitable constant C ′ =
C ′(C, n).

Proof Note that the assumptions are scaling and translation invariant, hence we can
assume that x = 0 and r = 1. For every t ∈ (0, 1) let

Mt := {
sets of finite perimeter satisfying eE (0, 2, en) ≤ t, (i) and (ii) with x = 0and r = 1

}
.

One can easily show that this is a compact class of sets (with respect to the L1 topology).
Moreover Mt1 ⊂ Mt2 for t1 ≤ t2. For every E ⊆ R

n let us call

hE := sup
x∈C∩∂E

|qx |,
gE := inf

{
s ∈ [0, 1] : |{x ∈ C ∩ E : qx > s}| = 0

}
and

fE := inf
{
s ∈ [0, 1] : |{x ∈ C\E : qx < −s}| = 0

}
.

(7.7)

Define the functions ω1, ω2, ω3 : (0, 1) → R as

ω1(t) := sup
E∈Mt

hE , ω2(t) := sup
E∈Mt

gE and ω3(t) := sup
E∈Mt

fE . (7.8)

Let ωC := max{ω1, ω2, ω3}. Notice that ωC is increasing since it is the maximum of
increasing functions and by definition it satisfies (7.4), (7.5), and (7.6). Let us prove
that ωC (0+) = 0. Assume by contradiction that limt→0+ ωC (t) > 0 then there exist a
sequence tk ↘ 0 and L > 0 such that ωC (tk) > L for all k. We now distinguish three
cases.

Case 1: Up to subsequences ωC (tk) = ω1(tk) for every k ∈ N. For every k there exists
Ek ∈ Mtk such that hEk ≥ L . By (7.3) up to subsequences there exists a set of finite
perimeter E ⊆ R

n such that Ek ∩ Cr → E ∩ Cr whenever r < 2 and

lim
k→+∞ eEk (0, 2, en) = 0. (7.9)

Now take Cs ⊂ Cr ⊂ C2 with s > 1. By the lower semicontinuity of the excess we
obtain that eE (0, s, en) = 0. Moreover let {xk}k∈N be a sequence such that xk ∈ ∂Ek ∩C
and let us assume that xk → x . By (ii) one easily deduce that

min
{|E ∩ Bs(x))|, |Bs(x)\E |}≥ |Bs(x)|

C
,

which implies that x ∈ ∂E (recall that we are working with the representative of E such
that ∂E = spt D1E ). This in particular implies that 0 ∈ ∂E . Since eE (0, s, en) = 0 we
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get E = {x : qx ≤ 0} in C2. Let xk ∈ ∂Ek be such that |qxk | ≥ L and let x̄ be such
that, up subsequence, xk → x̄ , clearly |qx̄ | ≥ L , however, by the previous discussion,
x̄ ∈ ∂E = {x : qx = 0}, a contradiction.
Case 2: Up to subsequences ωC (tk) = ω2(tk) for every k ∈ N. Hence for every k there
exists Ek ∈ Mtk such that gEk ≥ L . Note that if � ∈ (0, L) then

∣∣{x ∈ C ∩ Ek : qx > �}∣∣ > 0 for all k ∈ N. (7.10)

Hence (7.10) implies that, up to extracting a subsequence,
either

there exists� ∈ (0, L)such that forkthere existsxk ∈ C ∩ ∂Ek ∩ {qx > �}, (7.11)

or

1Ek∩{qx>0} −→ 1{qx>0} inL1(C). (7.12)

Indeed if by contradiction (7.11) does not hold then for every j � 1 there exists k j ∈ N

such that qx ≤ 1
j for every x ∈ C∩ ∂Ek j . By (7.10), since {qx > 1

j } is connected, then
necessarily C ∩ Ek j ⊇ {qx > 1

j }. By letting j → + ∞ we get (7.12).
By arguing as in Case 1, we have that Ek → {qx ≤ 0}, hence (7.12) cannot hold.

Hence (7.11) holds, which is again in contradiction with Case 1.

Case 3: Up to subsequences ωC (tk) = ω3(tk) for every k ∈ N. This case can be ruled
out by arguing as in Case 2 (or by working with Ec which satisfies the same assumption
of E). Therefore ωC is the required function. ��

Once the “qualitative” height bound has been established, one can repeat verbatim the
proof of the Lipschitz approximation in [19, Theorem 2.37] to deduce that in the small
excess regime ∂E is mostly covered by the graph of a Lipschitz function. Note that in the
cited reference one has an explicit formula for ωC (namely ωC (t) � t1/(n−1)) however
this plays at all no role in the proof, see also [7, Lemma 4.3]. Note also that the lower
perimeter bound P(E, Bs(y)) � sn−1 needed in the proof is ensured by Remark 7.3.

Lemma 7.4 (Lipschitz approximation I). Let C > 0. Then there exist εL = εL(n,C) >

0 and CL = CL(n,C) > 0 with the following property: if E is a set of finite perimeter
in C(x, 4r) satisfying x ∈ ∂E,

1

C
≤ |E ∩ Bs(y))|

|Bs(y)| ≤
(
1 − 1

C

)
, P(E, Bs(y)) ≤ Csn−1,

for all y ∈ ∂E ∩ C(x, 2r) such that Bs(y) ⊂ C(x, 2r),

and

eE (x, 2r, en) ≤ εL,

then there exists a function f : Rn−1 → R with

Lip( f ) ≤ 1,
1

rn−1

ˆ
Dr

|∇ f |2 ≤ CLeE (x, 2r, en),
‖ f ‖∞

r
≤ ωC

(
eE (x, 2r, en)

)
,

(7.13)
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such that, defining � f := x + {(z, f (z)) : z ∈ Dr ,

Hn−1
(
(∂E ∩ C(x, r, en))�� f

)
rn−1 ≤ CLeE (x, 2r, en), (7.14)

where ωC is the function in Lemma 7.2.

Note that if E is a minimizer of (Pβ,K ,Q,R), the assumption of the Lipschitz approx-
imation lemma are satisfied with some universal constant C by (6.9) and (6.19). Hence
we can cover most of its boundary by the graph of a Lipschitz function f . Moreover
a simple comparison argument implies that the laplacian of f is small in a suitable
negative norm. More precisely we have the following:

Proposition 7.5 (Lipschitz approximation II). Let A > 0, and let β, K , Q be controlled
by A and R ≥ 1. Then there exist universal constants εlip, Clip and a “universal”
increasing function (i.e. depending only on n and A) ωlip with ωlip(0+) = 0 such that if
E is a minimizer of (Pβ,K ,Q,R), x ∈ ∂E and

r + eE (x, 2r, en) ≤ εlip,

then there exists a function f satisfying (7.13) and (7.14) with CL and ωC replaced by
Clip and ωlip respectively. Moreover

1

rn−1

∣∣∣∣
ˆ
Dr

∇ f · ∇ϕ dz

∣∣∣∣ ≤ Clip ‖∇ϕ‖∞
(
eE (x, 2r, en) + r + Q2DE (x, 2r)

)
,

(7.15)

for every ϕ ∈ C1
c (Dr ).

Proof Upper and lower volume and perimeter estimates established in (6.10), (6.20)
and (6.19) ensure that in every cylinder C(x, 4r) centered at x ∈ ∂E , E satisfies the
assumption of Lemma 7.4 with a universal constant C = C(n, A), provided r is smaller
than a universal radius r̄ . This proves the first part of the proposition. The second part
follows by plugging in (4.6) F := ψt (E), ψt (x) = x + tϕ(px)en , and by performing
the same computations done in [19, Proof of Theorem 23.7]. ��

7.2. The Caccioppoli inequality. By (7.15) one will deduce that under the assumption
of Theorem 7.1, there exists a harmonic function h : Dr → R which is close to f in
L2. This closeness, together with the regularity theory for harmonic function will allow
to deduce the decay of an L2 type excess of f and thus for E . In order to pass from the
L2 excess to the classical one, one needs to establish a Caccioppoli type inequality. To
this end we recall the following definition.

Definition 7.6 Given a set E we define the flatness of E at the point x ∈ R
n , at the scale

r > 0 with respect to the direction ν ∈ S
n−1 as

fE (x, r, ν) := 1

rn−1 inf
h∈R

ˆ
C(x,r,ν)∩∂∗E

|ν · (y − x) − h|2
r2

dHn−1(y). (7.16)
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Proposition 7.7 (Caccioppoli inequality). Let A > 0, and let β, K , Q be controlled by
A and R ≥ 1. Then there exist universal constants εcac, and Ccac such that if E is a
minimizer of (Pβ,K ,Q,R), x ∈ ∂E, and

r + eE (x, 4r, en) ≤ εcac,

then

eE (x, r, en) ≤ Ccac

(
fE (x, 2r, en) + r + Q2DE (x, 2r)

)
. (7.17)

Proof The proof can be obtained by verbatim repeating the arguments of [19, Chapter
24] and using (4.6) instead of the perimeter minimality in the comparison estimate of
[19, Equation 24.48].

��

7.3. Dirichlet improvement. We now show that in the small excess regime there is fixed
scale decay of the Dirichlet energy.

Proposition 7.8 (Decay of the Dirichlet energy). Let A > 0, and let β, K , Q be con-
trolled by A and R ≥ 1. There exists a universal constant Cdir > 0 such that for all
λ ∈ (0, 1/2) there exists εdir = εdir(n, A, λ) satisfying the following: if E is a minimizer
of (Pβ,K ,Q,R), x ∈ ∂E and

r + eE (x, r, en) ≤ εdir, (7.18)

then

DE (x, λr) ≤ Cdirλ
(
DE (x, r) + r

)
.

Proof By (6.9) and (6.19) we have that if r is universally small we can apply Lemma 7.2
to E in C(x, r) to obtain a universal modulus of continuity ω such that for H = {y :
q(y − x) ≤ 0},

|(E�H) ∩ Br/2(x)|
|Br/2| ≤ ω

(
εdir

)
.

By Proposition 6.3 (ii) (applied in Br/2(x)) and the above inequality, for all λ ∈ (0, 1/2)
we can choose εdir = εdir(n, A, λ) sufficiently small such that

DE (x, λr) ≤ C(n, A)λ

(
DE

(
x,

r

2

)
+
r3

λn

)

≤ C(n, A)λ

(
DE (x, r) +

ε2dirr

λn

)
≤ C(n, A)λ

(
DE (x, r) + r

)
,

where in the first inequality we have also exploited (2.4) and in the second the obvious
inequality DE (x, r/2) ≤ 2n−1DE (x, r). This concludes the proof. ��
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7.4. Excess improvement. In this section we prove Theorem 7.1.

Proof (Proof of Theorem 7.1)We claim that there exists a universal constant Cexc such
that for all λ ∈ (0, 1/8) there exists εexc = εexc(n, A, λ) satisfying the following: for
all minimizers of (Pβ,K ,Q,R) with β, K , Q controlled by A and R ≥ 1 if x ∈ ∂E the
following holds

eE (x, r) + Q2 DE (x, r) + r leεexc 
⇒ eE (x, λr)

≤ Cexcλ
(
eE (x, r) + Q2 DE (x, r) + r

)
.

Note that the above claim, combined with Proposition 7.8 immediately implies the
conclusion of the theorem. Let us assume hence that there exist λ ∈ (0, 1/8) a sequence
ofminimizers Ek ⊂ BRk with parameters βk, Kk, Qk controlled by A, radii rk and points
xk ∈ ∂Ek such that

εk = eEk (xk, rk) + Q2 DE (xk, rk) + rk → 0

but

eEk (xk, λrk) ≥ Cexcλεk (7.19)

for a suitable universal constant Cexc. Note that up to translating and rotating we can
assume that xk = 0 and that

eEk (0, rk) = eEk (0, rk, en).

We apply Proposition 7.5 to each Ek . Hence, there exists a sequence of 1-Lipschitz
functions fk : Rn−1 → R such that

Hn−1
(
C rk

2
∩ ∂Ek�� fk

)

rn−1
k

≤ 2n−1Clipεk , (7.20a)

1

rn−1
k

ˆ
D rk

2

|∇ fk |2 dz ≤ 2n−1Clipεk , (7.20b)

‖ fk‖∞ ≤ ω(εk)rk, (7.20c)

∣∣∣∣
 
D rk

2

∇ fk · ∇ϕ dz

∣∣∣∣ ≤ 2n−1Clip‖∇ϕ‖∞εk for all ϕ ∈ C1
c (D rk

2
). (7.20d)

Let us set

gk := f rkk − mk√
εk

where mk :=
 
D rk

2

f rkk dz , and f rkk (z) := fk(rkz)

rk
.

By the Poincaré–Wirtinger inequality and (7.20b),

sup
k

‖gk‖W 1,2(D 1
2
) ≤ 2n−1Clip . (7.21)
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Hence there exists g inW 1,2(D 1
2
) such that gk ⇀ g weakly inW 1,2(D 1

2
) to some g and

strongly in L2(D 1
2
). Moreover, by (7.20d), for all ϕ ∈ C1

c (D 1
2
)

∣∣∣
ˆ
D 1

2

∇g · ∇ϕ dz
∣∣∣ = lim

k→+∞
1√
εk

∣∣∣
ˆ
D 1

2

∇ f rkk · ∇ϕ dz
∣∣∣

= lim
k→+∞

1√
εk

∣∣∣
 
D rk

2

∇ fk · ∇ϕrk dz
∣∣∣ = 0,

(7.22)

where ϕrk (z) = rkϕ(z/rk) ∈ C1
c (D rk

2
) satisfies ‖∇ϕrk‖∞ = ‖∇ϕ‖∞. Hence g is har-

monic. By the mean value property and (7.21)

sup
D1/4

|∇2g|2 ≤ C(n)

ˆ
D 1

2

|∇g|2 dz ≤ C(n, A).

By Taylor expansion,

|g(z) − g(0) − ∇g(0) · z| ≤ C(n, A)|z|2 for all z ∈ D 1
4
. (7.23)

If 2λ ∈ (0, 1/4) we can integrate the above inequality to get
 
D2λ

|g(z) − g(0) − ∇g(0) · z|2 dz ≤ C(n, A) λ4.

Recall that, by the mean value property of harmonic functions, for every r ≤ 1
2 we have

(g)r :=
 
Dr

g dz = g(0) and (∇g)r = ∇g(0).

Hence,

lim
k→+∞

 
D2λ

|gk(z) − (gk)2λ − (∇gk)2λ · z|2 dz =
 
D2λ

|g(z) − (g)2λ − (∇g)2λ · z|2dz

=
 
D2λ

|g(z) − g(0) − ∇g(0) · z|2 dz

≤ C(n, A)λ4.

which, by the definition of gk and changing variables implies

lim
k→+∞

1

εk(λrk)n+1

ˆ
D2λrk

∣∣ fk(z) − ( fk)2λrk − (∇ fk)2λrk · z∣∣2 dz ≤ C(n, A) λ2.

(7.24)

Let us define

νk :=
(− (∇ fk)2λrk , 1

)
√
1 +

∣∣(∇ fk)2λrk
∣∣2 hk := ( fk)2λrk√

1 +
∣∣(∇ fk)2λrk

∣∣2 ,
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and note that, by (7.20b), Jensen inequality and (7.20c)

|νk − en|2 ≤ C
( 

Dλrk

|∇ fk | dz
)2 ≤ C(n, A, λ)εk and |hk | ≤ Cω(εk)rk .

(7.25)

Since the fk’s are 1-Lipschitz, (7.24) implies

lim sup
k→+∞

1

εk(λrk)n+1

ˆ
� fk∩C2λrk

|νk · x − hk |2 dHn−1(x)

≤ lim
k→+∞

√
2

εk(λrk)n+1

ˆ
D2λrk

∣∣ fk(z) − ( fk)2λrk − (∇ fk)2λrk · z∣∣2 dz ≤ C(n, A) λ2.

and thus

lim sup
k→+∞

1

εk(λrk)n+1

ˆ
� fk∩∂Ek∩C2λrk

|νk · x − hk |2 dHn−1(x) ≤ C(n, A) λ2.

(7.26)

On the other hand, (7.20a), Lemma 7.2 and (7.25) imply

1

εk(λrk)n+1

ˆ
(∂Ek\� fk )∩C2λrk

|νk · x − hk |2 dHn−1(x)

≤ C(n, A, λ)
Hn−1

(
(∂Ek�� fk ) ∩ Crk

)
εkr

n−1
k

(
|νk − en|2 + sup

x∈∂Ek∩Crk

|qx |
r2k

+
|hk |2
r2k

)

≤ C(n, A, λ)
Hn−1

(
(∂Ek�� fk ) ∩ Crk

)
εkr

n−1
k

(
εk + ω(εk)

) = o(1).

(7.27)

Combining (7.26) and (7.27) we deduce that

lim sup
k→∞

fEk (0, 2λrk, νk)

εk

≤ lim sup
k→∞

1

εk(λrk)n+1

ˆ
∂Ek∩C2λrk

|νk · x − hk |2 dHn−1(x) ≤ C(n, A) λ2.

(7.28)

On the other hand, by the perimeter density estimates (6.9) and (7.25)

eEk (0, 4λrk , νk) ≤ 1

(4λrk)n−1

ˆ
∂Ek∩C4λrk

∣∣νEk − νk
∣∣2

2
dHn−1

≤ C(n, λ)

(
eEk (0, rk , en) + |en − νk |2 P(E, Brk )

rn−1
k

)
= o(1).

Hence we can apply Proposition 7.7 in B4λrk to get that

eEk (0, λrk) ≤ eEk (0, λrk, νk)

≤ Ccac

(
fEk (0, 2λrk, νk) + Q2DEk (0, 2λrk) + λrk

)
,

(7.29)
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where in the first inequality we have used (7.2). Furthermore, by Proposition 7.8 applied
in Brk we have

Q2DEk (0, 2λrk) ≤ Cdirλ(Q2DEk (0, rk) + Q2rk) ≤ C(n, A)λεk . (7.30)

Combining (7.28), (7.29) and (7.30) we thus infer that

lim sup
k→∞

eEk (0, λrk)

εk
≤ C(n, A)λ ,

in contradiction with (7.19) if Cexc is chosen big enough depending only on n and A. ��

8. Proof of Theorems 1.1 and 1.2

In this section we prove our main theorems. Theorem 1.2 is an immediate consequence
of the following slightly more general statement.

Theorem 8.1 Let A > 0 ϑ ∈ (0, 1), and let β, K , Q be controlled by A and R ≥ 1.
There exist constants Creg(n, A, θ) > 0 and εreg = εreg(n, A, θ) > 0 such that, if E is
a minimizer of (Pβ,K ,Q,R), x ∈ ∂E r > 0 and ν ∈ Sn−1 satisfy

r + Q2DE (x, 2r) + eE (x, 2r, ν) ≤ εreg,

then there exists a C1,ϑ function f : Rn−1 → R with 4

f (0) = 0 , |∇ f (0) − ν|2 + rϑ [∇ f ]2ϑ/2 ≤ Creg
(
r + Q2DE (x, 2r) + eE (x, 2r, ν)

)
,

such that

E ∩ Br (x) =
{
y ∈ Br (x) : ν · (y − x) ≤ f (pν(y − x))

}
.

Proof Given ϑ ∈ (0, 1) we fix λ̄ ∈ (0, 1/8) be such that

Cdecλ̄ + λ̄ ≤ λ̄ϑ , (8.1)

and we let ε̄ be the corresponding εdec in Theorem 7.1. Note that ε̄ depends only on n,
A and ϑ . We now choose εreg so that for all y ∈ ∂E ∩ Br (x)

r + Q2DE (y, r) + eE (y, r) ≤ r + Q2DE (y, r, ν) + eE (y, r, ν)

≤ 2n−1(r + Q2DE (x, 2r, ν) + eE (x, 2r, ν)
) ≤ 2n−1εreg ≤ ε̄.

Hence we can apply Theorem 7.1 and (8.1) to deduce that for all y ∈ ∂E ∩ Br/2(x),

λ̄r + Q2DE (y, λ̄r) + eE (y, λ̄r) ≤ λ̄ϑ
(
r + Q2DE (y, r) + eE (y, r)

)
.

4 Here

[∇ f ]ϑ/2 := sup
x �=y

|∇ f (x) − ∇ f (y)|
|x − y| ϑ

2

.
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Iterating we get

eE (y, λ̄kr) ≤ λ̄kϑ
(
r + Q2DE (y, r) + eE (y, r)

)
,

which implies

eE (y, s) ≤ C(ϑ)
( s
r

)ϑ(
r + Q2DE (y, r) + eE (y, r)

)
for all s ≤ r.

By classical arguments this together with the density estimates (6.9) and (6.19), implies
that for all y ∈ Br (x) ∩ ∂E there exists νy such that

eE (y, s/2, νy) = C(n, ϑ, A)
( s
r

)ϑ(
r + Q2DE (y, r) + eE (y, r)

)
for all s ≤ r.

and

|νy − ν|2 ≤ C(n, A)
(
r + Q2DE (y, 2r, ν) + eE (y, r)

)
,

The last two display yield the desired conclusion, see for instance [19, Theorem 26.3]
or [13, Theorem 4.8]. ��

We can now prove Theorem 1.1 by following the arguments in [12].

Proof (Proof of Theorem 1.1) By Theorem 1.2, if we set

	E = {
x ∈ ∂E : lim sup

r→0
eE (x, r) + DE (x, r) > 0

}

then ∂E\	E is a C1,ϑ manifold for all ϑ ∈ (0, 1/2). Hence we will conclude the proof
if we show that

Hn−1−η(	E ) = 0,

for some η = η(n, B) > 0. Recall that by Lemma 6.1, |∇uE |2p ∈ L1
loc for some

p = p(n, B) > 1 By Hölder inequality,

	1
E = {

x : lim sup
r→0

DE (x, r) > 0
} ⊂

{
x : lim sup

r→0

1

rn−p

ˆ
B(x,r)

|∇uE |2p > 0

}
,

hence, by [11, Theorem 2.10], Hn−p(	1
E ) = 0. We now show that

Hα(	E\	1
E ) = 0

for all α > n − 8 which clearly concludes the proof. Let us fix α > n − 8 and assume
the contrary. By [13, Proposition 11.3], there will be a point

x ∈ 	2
E :=

{
x ∈ ∂E : lim sup

r→0
eE (x, r) > 0 , lim

r→0
DE (x, r) = 0

}
,

and a sequence rk → 0 such that

lim sup
k→∞

Hα∞(	2
E ∩ B(x, rk))

rα
k

≥ c(α) > 0.
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whereHs∞ is the infinity Hausdorff pre-measure. Let us set Ek = (E − x)/rk and note
that by (6.9) and the above equation

P(Ek, Bs) � sn−1,

for all s > 0 and

lim sup
k→∞

Hα∞(	2
Ek

∩ B1) ≥ c(α), (8.2)

where 	2
Ek

= (	2
E − x)/rk . Up to subsequences, Ek → F . We claim that F is a

local minimizer of the perimeter. Indeed let G�F � Bs . By averaging we can choose
t ∈ (s, 2s) such that

Hn−1((Ek�G) ∩ ∂Bt ) = Hn−1((Ek�F) ∩ ∂Bt ) ≤ |(Ek�F) ∩ B2s |
s

= σk → 0.

With this choice, we define Gk := (x + rkG) ∩ Btrk (x) ∪ (E\Btrk (x)) and we note that
E�Gk � B2srk (x). Hence by (4.6) and classical computations

P(F, Bt ) − P(G, Bt ) ≤ lim sup
k→∞

P(Ek, Btrk (x)) − P(Gk, Btrk (x))

rn−1
k

� lim sup
k→∞

σk + snrk + sn−1DE (x, srk) = 0,

which implies the desired minimality property. Moreover, by using G = F we also
deduce that P(Ek, Bs) → P(F, Bs) for almost all s > 0.

Let now 	F be the singular set of F , and recall that, by the regularity theory for set
of minimal perimeter [19, Part III], Hα(	F ) = Hα∞(	F ) = 0. Hence by the definition
of Hausdorff measure, for all δ > 0 there exists an open set Uδ such that

	F ∩ B2 ⊂ Uδ and Hα∞(Uδ) ≤ δ.

We claim that there exists k = kδ > 0 such that 	2
Ek

∩ B1 ⊂ Uδ which will be in
contradiction with (8.2) if δ is chosen small enough. Assume the claim is false, hence
there is a sequence of points 	2

Ek
∩ B1 � yk → ȳ ∈ B1 with dist(ȳ, 	F ) > 0. It is easy

to see that, by the lower perimeter estimates (6.19), ȳ ∈ ∂F . Hence by regularity, for all
ε > 0 there exists r > 0 such that

eF (ȳ, r) ≤ ε.

By perimeter convergence, this implies that, for k large

eE (x + rk yk, rrk) = eEk (yk, r) ≤ eF (ȳ, r) + ε ≤ 2ε.

Choosing ε � 1 we can apply Theorem 1.2 to deduce that x +rk yk /∈ 	2
E , i.e. yk /∈ 	2

Ek
.

This final contradiction concludes the proof.
��
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