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Abstract: An algebraic quantum field theory (AQFT) may be expressed as a functor
from a category of spacetimes to a category of algebras of observables. However, a
generic category C whose objects admit interpretation as spacetimes is not necessarily
viable as the domain of an AQFT functor; often, additional constraints on the morphisms
ofCmust be imposed.We introduce disjointness relations, a generalisation of the orthog-
onality relations of Benini et al. (Commun ContempMath 23(2):2050007, 2021. https://
doi.org/10.1142/s0219199720500078. arXiv:1709.08657 [math-ph]). In any categoryC
equipped with a disjointness relation, we identify a subcategory DC which is suitable as
the domain of an AQFT.We verify that whenC is the category of all globally hyperbolic
spacetimes of dimension d + 1 and all local isometries, equipped with the disjointness
relation of spacelike separation, the specified subcategory DC is the commonly-used
domain Locd+1 of relativistic AQFTs. By identifying appropriate chiral disjointness
relations, we construct a category χLoc suitable as domain for chiral conformal field
theories (CFTs) in two dimensions.We compare this to an establishedAQFT formulation
of chiral CFTs, and show that any chiral CFT expressed in the established formulation
induces one defined on χLoc.
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1. Introduction

In the modern locally covariant approach, an algebraic quantum field theory (AQFT) is
realised as a functor whose domain is a category of spacetimes and whose codomain
is a category of algebras of observables [BFV03,FV15]. Such a functor must satisfy
physically motivated axioms, including causality and a time-slice axiom.

For relativistic theories in d+1 dimensions, the standard choice of domain category is
Locd+1. The objects ofLocd+1 are globally hyperbolic spacetimes of dimensiond+1.The
morphisms are maps simultaneously satisfying three separate properties: they preserve
metric structure (i.e. are local isometries), they are injective, and their images are causally
convex in their codomains. With this, a relativistic AQFT is a functor A : Locd+1 →
Obs; the codomain Obs is commonly taken to be a category of associative and unital
complex ∗-algebras whose morphisms are unit-preserving ∗-algebra homomorphisms.

It is noteworthy that the domain Locd+1 is a strict subcategory of the cate-
gory GlobHypSpTmd+1 of all (d + 1)-dimensional globally hyperbolic spacetimes
and all structure-preserving maps (local isometries) between them. Compared to
GlobHypSpTmd+1, the morphisms of Locd+1 are constrained to be injective with
causally convex image. This constraint is discovered by specific, ad hoc physical rea-
soning particular to relativistic QFTs in [BFV03], with motivation from [Kay96].

To formulate AQFTs beyond the standard relativistic setting, analogues of the domain
category Locd+1 must be found; this includes identifying analogous constraints on maps
to define appropriate morphisms. Several cases of physical interest are sufficiently simi-
lar to the standard relativistic case that the constraint of injectivity with causally convex
imagemay be adapted directly from Locd+1. Such examples include (non-chiral) confor-
mal field theories (CFTs) [Pin09,BGS21], and theories defined on globally hyperbolic
spacetimes equipped with extra structure (e.g. spin structures, background gauge fields)
[BS17]. However, venturing further afield from Locd+1 can lead to difficulties; see for
instance [BPS20] where a description of smooth AQFTs using stacks is limited to one-
dimensional spacetimes (i.e. time intervals) only.

In developing an homotopical description of AQFT [BSW19,BS19a,BS19b,Car21,
Yau19], Benini, Schenkel and Woike [BSW21] have described a structure called an
orthogonality relation on a category. To serve as the domain of an AQFT, a category
must be equipped with an orthogonality relation. On Locd+1, the orthogonality relation
formally encodes causal disjointness (spacelike separateness) in Lorentzian manifolds.
While the notion of causal disjointness also makes sense in GlobHypSpTmd+1, it fails
to satisfy the definition of an orthogonality relation there; the extra constraints on mor-
phisms of Locd+1 influence whether causal disjointness constitutes an orthogonality
relation.
Key contributions: Given a category C of spacetimes, we identify a particular sub-
category DC which we propose as a suitable domain for AQFT functors. To define
DC, we introduce a structure on C called a disjointness relation—a generalisation
of the orthogonality relations of [BSW21]—which relates conterminous morphisms
f1 : M1 → N ← M2 : f2 in C. Denoting the disjointness relation on C by symbol
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��C, we say that f1 and f2 are disjoint if they are related under the disjointness relation
( f1 ��C f2) and that f1 and f2 overlap if they are not related ( f1 ���C f2).

The physical role of the disjointness relation is to specify limitations on signal propa-
gation in spacetimes. For instance onC = GlobHypSpTmd+1, the relevant disjointness
relation records that f1 ��C f2 if their images fi (Mi ) are causally disjoint (spacelike
separated) in their shared codomain N . Via the causality axiom on AQFTs, the dis-
jointness relation specifies when the degrees of freedom supported on some spacetime
regions are necessarily independent.

With a disjointness relation ��C on C, the identified subcategory DC is the wide
subcategory of overlap-monic morphisms. Roughly, a morphism is overlap-monic with
respect to a disjointness relation if it ‘respects disjointness’. Notably, the disjointness
relation onC reduces to an orthogonality relation on the subcategoryDC upon restriction.

In the case ofC = GlobHypSpTmd+1 with the described causal disjointness relation,
we show that a morphism is overlap-monic if and only if it is injective with causally con-
vex image. We begin by characterising overlap-monics without assuming global hyper-
bolicity of spacetimes, i.e. by considering the causal disjointness relation on a category
SpTmd+1 of all spacetimes of dimension d + 1 and all local isometries. We can then
specialise the characterisation of overlap-monics to subcategories of spacetimes with
particular causal properties such as global hyperbolicity. A key simplification occurs
when all spacetimes are at least causally simple; causal simplicity is a slightly weaker
causal property than global hyperbolicity. Specialising further to globally hyperbolic
spacetimes delivers the advertised result and thereby verifies that our proposed subcat-
egory of overlap-monics in GlobHypSpTmd+1 coincides with the often-used domain
Locd+1 of relativistic AQFTs.

The benefits of this general characterisation of AQFT-domain subcategory DC in
spacetimes category C are twofold: first, C often has more appealing properties as a
category than DC. For instance, in the case C = GlobHypSpTmd+1, disjoint unions
of spacetimes are coproducts in GlobHypSpTmd+1 but fail to satisfy the universal
property of coproducts inDC = Locd+1. Our proposal allows us access to any such good
categorical properties of C, while still giving a clear definition of AQFTs as functors
DC → Obs.

Second, our proposal gives a well-defined mathematical procedure to replace the ad
hoc discovery ofmorphism-constraints analogous to those ofLocd+1 (i.e. thatmorphisms
must be injective maps with causally convex image). This procedure can be used to
construct appropriate domains for AQFTs in contexts where the notions of ‘spacetime’
or disjointness differ from the standard relativistic setting. The inputs needed for this
procedure—a categoryC of ‘spacetimes’ and a disjointness relation on it—can be arrived
at by a series of physical modelling decisions:

• The objects of C are decided by the relevant notion of ‘spacetime’ in the context of
interest. For relativistic theories of either the generic or conformal type, spacetimes
are time-oriented Lorentzianmanifolds of a particular dimension, possibly with addi-
tional ‘niceness’ properties (usually global hyperbolicity). Euclidean theories may
use Riemannian manifolds as ‘spacetimes’ instead.
• Assuming C is to be concrete, the morphisms of C are structure-preserving maps
for some appropriate choice of structure existing on the objects—this is the struc-
ture to which QFTs under consideration are sensitive. For instance, the choice
C = GlobHypSpTmd+1 describesQFTs sensitive to the full Lorentzianmetric, since
morphisms of GlobHypSpTmd+1 are local isometries. On the other hand, CFTs are
sensitive only to conformal structure; in this case the appropriate morphisms are
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merely conformal maps rather than local isometries. One may also choose a non-
concrete category C; for instance, by taking C to be a poset (a thin category) one can
recover traditional net-based formulations of AQFT.
• The disjointness relation on C is decided by limitations on signal propagation in
the theories under consideration. For instance, signals in standard relativistic theories
may only propagate along causal curves; therefore regions of spacetime which are
spacelike separated should be recorded as disjoint by the disjointness relation. In
chiral CFTs, signals in the right- or left-moving half of the theory propagate only
along right- or left-moving null curves respectively; each of these defines a different
disjointness relation on the appropriate category.

Benini, Schenkel and Woike [BSW21] have formalised the structures on a category
D needed to define an AQFT as a functor D → Obs. The required structures enable
statement of the causality and time-slice axioms.

To state the causality axiom, D must be equipped with an orthogonality relation.
A functor A : D → Obs satisfies the causality axiom if for any conterminous pair
f1 : M1 → N ← M2 : f2 in D related under the orthogonality relation, A f1(a1) and
A f2(a2) commute in algebra AN for any observables a1 ∈ AM1 and a2 ∈ AM2:

[A f1(a1),A f2(a2)]AN = 0.

In the terminology of [BSW21], such A is called ⊥-commutative. In the case of D =
Locd+1, the relevant orthogonality relation is that of causal disjointness, so f1 and f2 are
related if the images fi (Mi ) are spacelike separated in the shared target spacetime N .
Here, the causality axiom expresses that observables supported on spacelike-separated
regions of spacetime N must commute.

To state the time-slice axiom, there must be a specified class W of morphisms in D.
A functor A : D → Obs satisfies the time-slice axiom with respect to W if A f is an
isomorphism inObs for every f ∈ W . In the terminology of [BSW21], suchA is called
W -constant. In the case ofD = Locd+1, the specified classW consists of all morphisms
f : M → N such that the image f (M) contains a Cauchy surface of N ; such maps are
called Cauchy maps.

With these statements of the causality and time-slice axioms in hand, our proposed
procedure to construct an AQFT domain may be summarised as follows: take as input
data (C, ��C,WC) consisting of a category C, a disjointness relation ��C on C, and a
class of morphisms WC in C. From this, produce data (DC, ��DC ,WDC) consisting of
the wide subcategory DC of overlap-monics in C with respect to ��C, along with the
restrictions ��DC andWDC to this subcategory of ��C andWC respectively. The restricted
disjointness relation ��DC is an orthogonality relation onDC. This data suffices to define
an AQFT onDC as a functorA : DC → Obs satisfying the causality axiomwith respect
to ��DC , and the time-slice axiom with respect to WDC .
Applications: To illustrate our proposed procedure, we apply it to chiral CFTs. We
begin by defining appropriate right- and left-chiral disjointness relations on a category
CSpTmo,to

1+1 of two-dimensional (2D) oriented spacetimes and conformal maps which
preserve orientation and time-orientation. These disjointness relations reflect that in the
right- and left-moving halves of a chiral CFT, signals can only propagate along right- and
left-moving null curves respectively.We then characterise overlap-monicswith respect to
these chiral disjointness relations; thismirrors the standard relativistic case. In particular,
to simplify the characterisations we restrict to spacetimes with good chiral properties,
analogous to the causal properties of causal simplicity and global hyperbolicity used in
the standard relativistic case. Formulating the needed chiral properties requires that we



Spacetimes Categories and Disjointness 577

first develop some technical tools, namely chiral frames and chiral flows on 2D oriented
spacetimes.

The characterisation of overlap-monics with respect to the right-chiral disjointness
relation simplifies when we restrict to spacetimes satisfying a right-chiral analogue of
global hyperbolicity. Specifically, in the full subcategory of CSpTmo,to

1+1 on spacetimes
containing an appropriate right-chiral analogue of a Cauchy surface, a morphism is
overlap-monic with respect to the right-chiral disjointness relation if and only if it is
injective and its image satisfies an appropriate right-chiral analogue of causal convexity
in its codomain. We denote the resulting subcategory of overlap-monics between such
spacetimes as χLoc, in analogy with Locd+1. Similar observations apply for the left-
chiral disjointness relation.

Our proposal then suggests that the right-moving half of a chiral CFT is a functor
χLoc → Obs obeying causality and time-slice axioms. This differs from established
AQFT formulations of chiral CFTs. In traditional, net-based AQFT, a chiral CFT is
defined on a net of open subsets of the circle S

1. A locally covariant version of this
defines a chiral CFT as a functor Emb1 → Obs where Emb1 is a category of one-
dimensional manifolds and embeddings; see [BGS21]1. The key difference from our
proposal is that the established formulations of chiral CFT build in the time-slice axiom
preemptively.

To compare, we explicitly express the time-slice axiom onχLoc by describing a class
W of morphisms serving as an appropriate chiral analogue of Cauchy maps. We exhibit
a functor Q : χLoc → Emb1 which sends all morphisms in W to isomorphisms. Con-
sequently any functor A : Emb1 → Obs representing a chiral CFT in the established
formulation induces by pre-composition a functor A ◦ Q : χLoc → Obs representing
a chiral CFT satisfying the time-slice axiom with respect to W in our formulation.

We leave as an open question whether the converse is also true: does any functor
χLoc → Obs representing a chiral CFT satisfying the time-slice axiom also induce a
functor Emb1 → Obs representing a chiral CFT in the established formulation?

Future applications of our proposal to determine domain DC from spacetimes cate-
gory (C, ��C) may proceed beyond chiral CFTs. A minor generalisation of the standard
relativistic type of AQFT loosens the assumption of global hyperbolicity on spacetimes;
in fact, this generalisation is treated already in our verification that overlap-monics in
GlobHypSpTmd+1 coincide with Locd+1. For theories on spacetimes with extra struc-
ture (e.g. spin structure, background gauge fields) one may choose C to be an appropri-
ately fibred category, similar to [BS17]. Further removed from the relativistic context, for
Euclidean field theories C is expected to be a category of Riemannian manifolds. More
speculative possibilities may include lattice field theories (if an appropriate category C
of lattice representations of spacetimes is identified), or smooth AQFTs as in [BPS20]
(if disjointness relations admit an adequate generalisation to stacks of categories).
Outline of the paper: In Sect. 2, we present a categorical description of disjoint-
ness, including the definitions of disjointness relations (Sect. 2.1) and overlap-monics
(Sect. 2.2). Section 3 verifies that Locd+1 is the subcategory in GlobHypSpTmd+1 of
overlap-monics with respect to the causal disjointness relation. This is done by first
studying overlap-monics in the category SpTmd+1 of spacetimes without assuming any
causal properties, and then specialising to spacetimes with causal properties of increas-
ing strength until global hyperbolicity is reached. In Sect. 4, we apply our proposed
construction to chiral CFTs by defining left- and right-chiral disjointness relations a
category of 2D oriented spacetimes and conformal maps. The result is a category χLoc

1 In [BGS21], the category we refer to here as Emb1 is denoted as Man1.
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which we propose as domain of functors χLoc → Obs representing a chiral CFTs. In
Sect. 4.4, we compare this proposed χLoc to established AQFT formulations of chiral
CFTs by implementing the time-slice axiom.

2. A Categorical Description of Disjointness

In this section, we introduce disjointness relations on categories; these are structures
capable of describing various intuitive notions of disjointness in a formal categorical
setting. They are a direct generalisation of the orthogonality relations introduced by
Benini, Schenkel and Woike [BSW21] to formalise causal disjointness (spacelike sepa-
rateness) in spacetimes, as necessary to describe the causality axiom in algebraic QFT.

Our disjointness relations facilitate a formal description of those morphisms in a cat-
egory which ‘respect disjointness’; this description is presented in Sect. 2.2. In partic-
ular, we may recover a category with orthogonality relation—as needed for AQFT—by
considering the ‘disjointness-respecting’ morphisms in any category equipped with a
disjointness relation.

2.1. Disjointness relations on categories

Definition 2.1. A disjointness relation (or ��-relation) ��C on a category C is a binary
relation on conterminous morphisms of C, denoted as f1 ��C f2 or

c

b1 b2

f1 f2��C

when f1 and f2 are related under ��C, which satisfies the following properties: for any
conterminous pair f1 : b1 → c ← b2 : f2 in C,

1. symmetry: f1 ��C f2 implies f2 ��C f1,
2. stability under pre-composition: f1 ��C f2 implies f1 ◦ g1 ��C f2 ◦ g2 for any

composable morphisms g1 and g2. Diagramatically:

c

b1 b2

f1 f2��C implies

c

b1 b2

a1 a2

f1

��C
f2

g1 g2

,

3. stability under post-composition by isomorphisms: f1 ��C f2 implies that h ◦ f1 ��C
h ◦ f2 for any composable isomorphism h. Diagramatically:

c

b1 b2

f1 f2��C implies

d

c

b1 b2

h ∼

f1 f2��C
.



Spacetimes Categories and Disjointness 579

The pair (C, ��C) consisting of a category C and a disjointness relation ��C on C is
called a ��-category.
Remark 2.2. The property of stability under post-composition by isomorphisms is the
minimal property needed to ensure that ��-relations respect isomorphisms of the cate-
gory. Property 3 of Definition 2.1 is equivalent to:

3′. For isomorphism h : c → d and conterminous pair f1 : b1 → c ← b2 : f2 in C,
f1 ��C f2 if and only if h ◦ f1 ��C h ◦ f2.

This is because stability under post-composition by isomorphisms gives that for isomor-
phism h, h ◦ f1 ��C h ◦ f2 implies h−1 ◦ h ◦ f1 ��C h−1 ◦ h ◦ f2.

Example 2.3. Consider the category Set of sets and functions. Define a ��-relation ��set
of setwise-disjointness on Set by:

Y

X1 X2

f1 f2��set if
∅ X2

X1 Y
f1

f2
� is a pullback.

Equivalently, f1 ��set f2 if the intersection f1(X1) ∩ f2(X2) of their images in Y is
empty. It is straightforward to check that this satisfies symmetry and stability under
post-composition by isomorphisms as per Definition 2.1. To show stability under pre-
composition, note first that the initial object ∅ in Set is stable under pullback, i.e. the
(apex of the) pullback of g : W → X1 ← ∅ for any g is again ∅. It follows by
the pasting law for pullbacks that if the rightmost square of the following diagram is a
pullback, then so too is the outermost square:

∅ ∅ X2

W X1 Y

f2

g f1

�
.

Hence if f1 ��set f2 then f1 ◦ g ��set f2.
We note that it is not true that f1 ��set f2 implies h ◦ f1 ��set h ◦ f2 for arbitrary h:

any non-injective function h sends some disjoint subsets of its domain to intersecting
subsets of its codomain.

This example generalises to any category C with an initial object that is stable under
pullback; for instance, this includes C = Cat the category of small categories, with
initial object the empty category.

Disjointness relations of Definition 2.1 generalise the orthogonality relations or ⊥-
relations introduced in [BSW21]. Specifically, an orthogonality relation⊥C on C satis-
fies Definition 2.1 (everywhere replacing ��C by⊥C), except with property 3 substituted
for:

3⊥. stability under post-composition: f1 ⊥C f2 implies h ◦ f1 ⊥C h ◦ f2 for any
composable morphism h (isomorphism or otherwise).

The generalisation from ⊥-relation to ��-relation allows us to describe notions of dis-
jointness that would not meet the definition of an orthogonality relation, as illustrated
by Example 2.3 above.
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When we wish to denote that conterminous morphisms f1 and f2 of a ��-category
(C, ��C) are not related under ��C, we write f1 ���C f2; the complement ���C of ��C is
also a binary relation on conterminous morphisms of C. f1 ���C f2 may be read as ‘ f1
and f2 are not disjoint’ or ‘ f1 and f2 overlap’.

Proposition 2.4. A binary relation ��C on conterminous morphisms of category C is a
valid ��-relation if and only if its complement ���C satisfies the following properties for
any conterminous pair f1 : b1 → c ← b2 : f2 in C:

1. symmetry: f1 ���C f2 implies f2 ���C f1
2. stability under pre-cancellation: for any morphisms gi : ai → bi ,

c

b1 b2

a1 a2

f1

���C
f2

g1 g2

implies
c

b1 b2

f1 f2���C

3. stability under post-composition by isomorphisms: for isomorphism h : c ∼−→ d,

c

b1 b2

f1 f2���C implies

d

c

b1 b2

h ∼
f1 f2���C

Proof. As in Remark 2.2, stability of ���C under post-composition by isomorphisms
is equivalent to the condition that f1 ���C f2 if and only if h ◦ f1 ���C h ◦ f2 for any
isomorphism h. By contraposition, this gives that f1 ��C f2 if and only if h◦ f1 ��C h◦ f2
for isomorphism h. Symmetry and stability under pre-cancellation of ���C are respective
contrapositives of symmetry and stability under pre-composition of ��C. ��
Example 2.5. Consider the category sBin of sets equipped with symmetric binary rela-
tions defined as follows. Objects (X, RX ) of sBin consist of a set X and a symmetric
homogeneous binary relation RX ⊆ X × X ; recall that RX is symmetric if (a, b) ∈ RX
implies (b, a) ∈ RX for any a, b ∈ X . Morphisms f : (X, RX ) → (Y, RY ) of sBin
are relation-preserving maps, i.e. maps f : X → Y such that (a, b) ∈ RX implies
( f (a), f (b)) ∈ RY for any a, b ∈ X .

Define ��-relation ��bin on sBin by:

(Y, RY )

(X1, RX1) (X2, RX2)

f1 f2��bin if RY ∩ [ f1(X1) × f2(X2)] = ∅.

Equivalently, f1 ��bin f2 if there does not exist a1 ∈ X1 and a2 ∈ X2 such that
( f1(a1), f2(a2)) ∈ RY .

That this ��bin is a valid ��-relation can be shown using Proposition 2.4. Symmetry of
���bin follows from symmetry of the binary relations RX in objects (X, RX ) of sBin. Sta-
bility of ���bin under pre-cancellation and post-composition are shown straightforwardly;
in particular, ���bin is stable under post-composition by arbitrary morphisms rather than
only isomorphisms.
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Functors may respect ��-relations on categories in different ways:

Definition 2.6. Let (C, ��C) and (D, ��D) be ��-categories, and let F : C → D be a
functor. We say:

• F preserves ��-relations, or F : (C, ��C) → (D, ��D) is ��-preserving, if
c

b1 b2

f1 f2��C implies
Fc

Fb1 Fb2

F f1 F f2��D ,

for any conterminous pair b1
f1−→ c

f2←− b2 in C.
• F reflects ��-relations, or F : (C, ��C) → (D, ��D) is ��-reflecting, if

Fc

Fb1 Fb2

F f1 F f2��D implies
c

b1 b2

f1 f2��C ,

for any conterminous pair b1
f1−→ c

f2←− b2 in C.

In this work, many functors of interest will both preserve and reflect ��-relations.
One source of such functors is as follows:

Definition 2.7. Given a ��-category (D, ��D) and a functor F : C → D, the pullback
of ��D along F is the ��-relation ��F on C defined by f1 ��F f2 if F f1 ��D F f2, for
conterminous pair f1 : b1 → c ← b2 : f2 in C.

With respect to ��F , the functor F : (C, ��F ) → (D, ��D) both preserves and reflects
��-relations.
Example 2.8. For any concrete categoryCwith forgetful functorU : C → Set, we may
equip C with the pullback ��U of the setwise-disjointness relation ��set of Example 2.3.

For clarity where the forgetful functor is not explicitly named, we may also denote
the pullback relation ��U on C as ��set.
Example 2.9. Consider the functor � : Set → sBin which sends sets X to (X,�X ),
for diagonal relation �X := {(x, x) ∈ X × X}. By definition, any map f : X → Y
preserves the diagonal relations.

Then ��set on Set coincides with the pullback ��� of ��bin along �: for any con-
terminous pair f1 : X1 → Y ← X2 : f2, we have f1 ��set f2 if and only if
f1(X1) ∩ f2(X2) = ∅ if and only if �Y ∩ [ f1(X1) × f2(X2)] = ∅ if and only if
f1 ��� f2. See also Examples 2.3 and 2.5.

Example 2.10. Consider the functorC : Top → sBinwhich sends any topological space
X to its underlying set equippedwith the equivalence relationCX defined by (a, b) ∈ CX
if a, b ∈ X lie in the same connected component of X . Continuous maps preserve the
relations C because the image of a connected set under a continuous map is connected.

The pullback��C of��bin alongC gives a��-relation onTop. Explicitly, conterminous
pair f1 : X1 → Y ← X2 : f2 in Top has f1 ��C f2 if no points a1 ∈ X1, a2 ∈ X2
have fi (ai ) lying in the same connected component of Y , i.e. f1 ��C f2 if either of Xi
is empty or there exists a separation {U1,U2} of Y with fi (Xi ) ⊆ Ui .
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Similarly, consider the functor P : Top → sBin which sends any topological space
X to its underlying set equippedwith the equivalence relation PX defined by (a, b) ∈ PX
if a, b ∈ X lie in the same path-component of X .

The pullback ��P of ��bin gives another ��-relation on Top: conterminous pair f1 :
X1 → Y ← X2 : f2 in Top has f1 ��P f2 if no points a1 ∈ X1, a2 ∈ X2 have fi (ai )
lying in the same path-component of Y , i.e. f1 ��P f2 if there is no continuous path in
Y beginning in image f1(X1) and ending in f2(X2).

Because path-components are always contained in connected components but the
converse does not hold, the identity functor idTop : (Top, ��C ) → (Top, ��P ) preserves
but does not reflect ��-relations.
Remark 2.11. Any ��-relation on a category can induce a notion of disjointness of subob-
jects in that category. In many familiar categories, the reverse holds: familiar notions of
subobject-disjointness produce ��-relations (but not necessarily orthogonality relations).
Besides the minimal selection of examples presented above for illustration, and those
of physical interest in Sects. 3 and 4, other ��-relations addressed in [Gra22, Chapter 2]
include: linear independence of subspaces in categories of vector spaces; orthogonality
(in the sense of inner products) of subspaces in categories of Hilbert spaces; mutual
commutativity of submonoids in the category of monoids in any symmetric monoidal
category.

Given a ��-category (C, ��C) with subcategory inclusion i : B ↪→ C, we refer to
(B, ��i ) as a ��-subcategory of (C, ��C). Where the inclusion functor is not explicitly
named, we may also denote the pullback of ��C to B along the inclusion as ��C again2.

For brevity, wemay refer to a ��-category (C, ��C)merely by its underlying category
C when the ��-relation ��C is unambiguously implied. Similarly, we may refer to a ��-
subcategory (B, ��C) of (C, ��C) as simply a ��-subcategory B of C.

2.2. Morphisms which respect disjointness. In any ��-category, there is a special class
of morphisms which ‘respect disjointness’:

Definition 2.12. Let (C, ��C)be a��-category, and leth : c → d be amorphism inC.We
say h is overlap-monic (or ���-monic) if for any conterminous pair f1 : b1 → c ← b2 : f2
in C,

f1 ��C f2 implies h ◦ f1 ��C h ◦ f2,

or equivalently,

h ◦ f1 ���C h ◦ f2 implies f1 ���C f2. (1)

We avoid calling such morphisms ‘disjointness-preserving’ to prevent conflation with
��-preserving functors. Instead, we name them ���-monic after the following analogy: in
standard terminology, a morphism is monic if it satisfies a property similar to (1), but
with the relation ���C replaced by the relation of equality of morphisms.

Remark 2.13. Wemay rephrase property 3 of the definition of a disjointness relation ��C
on category C as:

3′′. All isomorphisms in C are ���-monic.

2 Compare to Example 2.8 of concrete categories and ��set .
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Example 2.14. In (Set, ��set) of Example 2.3, a morphism h : Y → Z is ���-monic if
and only if it is injective (equivalently, monic in Set):

Say h is injective, and let maps fi : Xi → Y have f1(X1) ∩ f2(X2) = ∅ so that
f1 ��set f2. If either Xi is the empty set, then trivially h ◦ f1(X1) ∩ h ◦ f2(X2) =
∅. Otherwise take any xi ∈ Xi ; since f1(x1) �= f2(x2) and h is injective, we have
h ◦ f1(x1) �= h ◦ f2(x2). Hence again h ◦ f1(X1)∩h ◦ f2(X2) = ∅ in Z , i.e. h ◦ f1 ��set
h ◦ f2, so h is ���-monic.

On the other hand, say h is not injective, so that there exist distinct y1, y2 ∈ Y with
h(y1) = h(y2). Take fi : {∗} → Y the constant maps to yi . Then f1 ��set f2 since
{y1} ∩ {y2} = ∅, but h ◦ f1 ���set h ◦ f2 since {h(y1)} ∩ {h(y2)} �= ∅; hence h is not
���-monic.

Example 2.15. In (sBin, ��bin) of Example 2.5, a morphism h : (Y, RY ) → (Z , RZ ) is
���-monic if and only if it reflects relations, i.e. (h(y1), h(y2)) ∈ RZ implies (y1, y2) ∈
RY for any y1, y2 ∈ Y :

Say h reflects relations; take relation-preserving maps fi : (Xi , RXi ) → (Y, RY )

with h ◦ f1 ���bin h ◦ f2, so there exists xi ∈ Xi with (h ◦ f1(x1), h ◦ f2(x2)) ∈ RZ .
Since h reflects relations, this gives ( f1(x1), f2(x2)) ∈ RY so f1 ���bin f2; hence h is
���-monic.

Conversely, say h is ���-monic; consider y1, y2 ∈ Y such that (h(y1), h(y2)) ∈ RZ .
Take fi : ({∗}, ∅) → (Y, RY ) the constant maps to yi ; these trivially preserve relations
since the domain {∗} is equipped with the empty relation ∅. Then h ◦ f1 ���bin h ◦ f2 and
thus f1 ���bin f2 since h is ���-monic. This means (y1, y2) ∈ RY , so h reflects relations.

Proposition 2.16. Say F : (C, ��C) → (D, ��D) preserves and reflects ��-relations.
Then F reflects ���-monics, i.e. for any morphism h : c → d in C, if Fh is ���-monic in
D then h is ���-monic in C.

If F is moreover full and essentially surjective on objects then it also preserves
���-monics, i.e. if h is ���-monic, then Fh is ���-monic.
Proof. Say h : c → d is amorphism inC such that Fh is ���-monic inD, and consider any
morphisms fi : bi → c in C. If f1 ��C f2 then F f1 ��D F f2 since F is ��-preserving.
Then Fh ◦ F f1 ��D Fh ◦ F f2 since Fh is ���-monic in D. But then h ◦ f1 ��C h ◦ f2 in
C since F is ��-reflecting; hence h is ���-monic in C.

Say that F is not only ��-preserving and ��-reflecting, but also full and essentially
surjective on objects. Let h : c → d be ���-monic in C, and take any morphisms
fi : ai → Fc in D with f1 ��D f2. Since F is essentially surjective, there exist objects
bi of C and isomorphisms gi : Fbi → ai in D. Since F is full, there exist morphisms
ki : bi → c in C such that Fki coincide in D with the composites

Fbi
gi−→ ai

fi−→ Fc.

By stability under pre-composition, f1 ��D f2 implies f1 ◦ g1 ��D f2 ◦ g2, so Fk1 ��D
Fk2. Then k1 ��C k2 since F reflects ��-relations, so h◦k1 ��C h◦k2 since h is ���-monic
in C. Because F preserves ��-relations, this gives

Fh ◦ f1 ◦ g1 ��D Fh ◦ f2 ◦ g2.
Then we may pre-compose with g−1

1 on the left and g−1
2 on the right to find Fh ◦ f1 ��D

Fh ◦ f2, showing that Fh is ���-monic in D. ��
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Example 2.17. For any F : (B, ��F ) → (C, ��C)where ��F is the pullback of ��C along
F , a morphism h : c → d in B is ���-monic in B if Fh is ���-monic in C by Proposition
2.16.

In particular, morphisms in a ��-subcategory B of C are necessarily ���-monic in B
if they are ���-monic in C. Similarly, in any concrete category equipped with ��set as in
Example 2.8, if a morphism f is an injective map (and so ���-monic in Set by Example
2.14) then it is ���-monic.

Example 2.18. Consider (Top, ��P ) as in Example 2.10. By definition of the pullback
relation ��P , Example 2.15 and Proposition 2.16 apply to give that a continuous map
f : X → Y is ���-monic with respect to ��P if f reflects the relations P , i.e. for any
x, x ′ ∈ X if there exists a path in Y from f (x) to f (x ′) then there exists a path in X
from x to x ′. Equivalently, f : X → Y is ���-monic with respect to ��P if the induced
map π0( f ) : π0(X) → π0(Y ) is injective.

In this example, the converse is also true: if π0( f ) is injective, then f is ���-monic
with respect to ��P . For, consider gi : Wi → X such that f ◦ g1 ���P f ◦ g2; then there
exist wi ∈ Wi such that there is a path in Y from f ◦ g1(w1) to f ◦ g2(w2). Since π0( f )
is injective, there is a path in X from g1(w1) to g2(w2); thus g1 ���P g2.

The generalisation from⊥-relations to ��-relations on categories allows the relations
to describe a variety of intuitive notions of disjointness on familiar categories. Nonethe-
less, for AQFT it remains necessary to work with categories of spacetimes equipped
with ⊥-relations [BSW21].

Observe that ⊥-relations are precisely ��-relations with respect to which all mor-
phisms are ���-monic. Using this, we can produce from any ��-category a wide ��-
subcategory on which the ��-relation is moreover a ⊥-relation:

Definition 2.19. Let (C, ��C) be a ��-category. Define ���-Monics (C, ��C) to be the ��-
subcategory consisting of all objects of C, and only those morphisms in C which are
���-monic with respect to ��C.
All isomorphisms, and in particular all identities, in C are ���-monic. It follows from (1)
that a composition of ���-monics is also ���-monic. Hence ���-Monics(C, ��C) is indeed
a subcategory of C. As per Example 2.17, all morphisms in ���-Monics (C, ��C) are
���-monic because they are ���-monic in the ambient ��-category (C, ��C) by definition;
so, ���-Monics (C, ��C) is an orthogonal category.

Example 2.20. From Example 2.14 of (Set, ��set), we have orthogonal category
���-Monics(Set, ��set) consisting of sets and injective maps.

From Example 2.15, we have orthogonal category ���-Monics(sBin, ��bin) consisting
of sets equippedwith symmetric binary relations, andmorphisms that preserve and reflect
the relations.

From Example 2.18, we have orthogonal category ���-Monics(Top, ��P ) consisting
of topological spaces X and continuous maps f : X → Y such that the induced map
π0( f ) : π0(X) → π0(Y ) is injective.

3. Causal Disjointness and Spacetimes Categories for Relativistic QFT

We now turn our toolkit of disjointness relations to the study of categories of spacetimes
suitable for algebraic quantum field theory, in the categorical formulation sometimes
called locally covariant QFT [BFV03,FV15].
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By spacetime (M, g) we mean a smooth, time-oriented, Lorentzian manifold M
(Hausdorff, paracompact) of dimension at least 2, where g is the metric tensor of sig-
nature (− + . . .+). Where explicit notation for the metric is not needed, we refer to
spacetime (M, g) merely by M . We do not assume M to be connected, in contrast to
several standard references [BEE96,HE73,ONe83].

A map f : M → N between spacetimes (M, g) and (N , h) is conformal if it
is smooth and there is some ω f ∈ C∞(M) such that f ∗h = eω f g. Further, f is a
local isometry if it is conformal with ω f = 0. Any conformal map f : M → N is
a smooth immersion, i.e. its tangent map d f p : TpM → T f (p)N is injective for all
points p ∈ M . For, if v ∈ TpM has d f p(v) = 0 then for any other u ∈ TpM we have
eω f (p)gp(u, v) = ( f ∗h)p(u, v) = h f (p)(d f p(u), d f p(v)) = 0; then v = 0 since g is
non-degenerate. If f : M → N is both a conformal map and a diffeomorphism, then its
inverse f −1 : N → M is also conformal with ω f −1 = −ω f ◦ f −1.

Definition 3.1. For any integer d ≥ 1, denote by SpTmd+1 the category whose objects
are spacetimes of dimension d+1, andwhosemorphisms are local isometries, composing
as functions.

Remark 3.2. The morphisms of SpTmd+1 are smooth immersions. Since all objects of
SpTmd+1 share the same fixed dimension d + 1, smooth immersions between them are
local diffeomorphisms; see for example [Lee13, Proposition 4.8]. Hence all morphisms
of SpTmd+1 are local diffeomorphisms, and in particular open maps.

If a morphism g : M → N of SpTmd+1 is injective, it is therefore a smooth
embedding [Lee13, Proposition 4.22] and so a diffeomorphism onto its image g(M) ⊆
N .

The category of spacetimes most often used as domain for relativistic AQFTs is not
SpTmd+1, but rather a subcategory of it:

Definition 3.3. Denote by Locd+1 the category whose objects are globally hyperbolic
spacetimes of dimension d + 1, and whose morphisms f : M → N are injective local
isometries such that f (M) is a causally convex subset of N .

We recall the definitions of causal convexity and global hyperbolicity in Sects. 3.1 and
3.3 below. Since it is unlikely to cause ambiguity, we leave the dimension d + 1 implicit
and write only SpTm, Loc etc. In this work we only consider categories of spacetimes
wherein all spacetimes share the same fixed dimension.

In comparison toSpTm, themorphisms ofLoc are notably constrained to be injective
and have causally convex image. From a purely categorical viewpoint, these constraints
seem unappealing: they go further than merely asking that morphisms ‘preserve struc-
ture’. As a consequence, some basic constructions do not possess their usual universal
properties in Loc; for instance, the disjoint union of spacetimes is a coproduct in SpTm
but not in Loc.

Originally in [BFV03], these constraints on the morphisms of Loc were arrived at
by ad hoc physical reasoning specific to relativistic QFTs. In this section, we relate Loc
to (a subcategory of) SpTm systematically via the machinery of disjointness relations
described in Sect. 2. In particular, we show that the constraints imposed onmorphisms in
Loc amount precisely to the requirement that they be ���-monic, as per Definition 2.12.

Remark 3.4. In fact, the category of spacetimes more usually used for relativistic AQFT
is the subcategory Loco,to of Loc whose objects are oriented and whose morphisms are
orientation- and time-orientation preserving. The relationship we show below between
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Loc and SpTm has an analogue between Loco,to and the subcategory SpTmo,to of
SpTm similarly restricted to oriented spacetimes and orientation- and time-orientation-
preserving morphisms. For generality, we work with Loc and SpTm.

3.1. Causal relations on a spacetime. Before defining onSpTm a��-relation to describe
causal disjointness, we recall some standard notions in the causality theory of spacetimes
to fix notation.

Causal properties of a spacetime are frequently encoded in binary relations on that
spacetime. For any homogeneous binary relation R ⊆ X × X on a set X , we may
always take its symmetric closure—the smallest symmetric relation on X containing
R—which we denote as s(R) or sR. Denoting the transpose of relation R as RT :=
{ (y, x) ∈ X × X | (x, y) ∈ R }, it is a standard result that s(R) = R ∪ RT .

If X is a topological space then, for any binary relation R ⊆ X× X , we may consider
also its topological closure R—namely, the smallest closed subset of topological space
X × X (equipped with the product topology) containing R.

Lemma 3.5. Let R be a binary relation on a topological space X, and let x, y ∈ X.
Then (x, y) ∈ R if and only if for any open neighbourhoods U of x and V of y in X,
there exist x ′ ∈ U and y′ ∈ V with (x ′, y′) ∈ R.

Proof. The product topology on X × X has a basis consisting of sets U × V for U, V
open sets in X . It is a standard characterisation of topological closures that (x, y) ∈ R
if and only if every basis set U × V containing (x, y) intersects R. ��

The operations of taking symmetric and topological closures of a relation commute:

Lemma 3.6. s(R) = s
(
R
)
for any binary relation R on topological space X.

Proof.

s(R) = R ∪ RT = R ∪ RT = R ∪ R
T = s

(
R
)
,

where the third equality follows from the fact that RT is the image of R under the
homeomorphism X × X → X × X which rearranges (x, y) �→ (y, x). ��

If sets X and Y are equipped with binary relations RX and RY respectively, recall that
a map f : X → Y preserves the relations if (x, y) ∈ RX implies ( f (x), f (y)) ∈ RY
for all x, y ∈ X . In cases where the relations RX and RY are reflexive, we say f :
X → Y strictly preserves the relations if f preserves the relations and (x, y) ∈ RX has
f (x) = f (y) only if x = y. The map f reflects relations if ( f (x), f (y)) ∈ RY implies
(x, y) ∈ RX .Amappreserves (reflects) given relations if andonly if it preserves (reflects)
their transposes. From s(R) = R ∪ RT it then follows that any map which preserves
(reflects) some given relations also preserves (reflects) their symmetric closures.

The binary relations on spacetimes that are relevant for our purposes are defined in
terms of causal curves. Recall that for (M, g) a spacetime and I ⊆ R an open interval,
a smooth curve γ : I → M is timelike, causal or null if at every t ∈ I its tangent vector
γ̇t is respectively timelike, causal or null, i.e. has γ̇t �= 0 with respectively g(γ̇t , γ̇t ) < 0,
g(γ̇t , γ̇t ) ≤ 0 or g(γ̇t , γ̇t ) = 0. Timelike and null curves are both special cases of
causal curves. Causal curve γ is future-directed if γ̇t lies in the future lightcone, and
past-directed if γ̇t lies in the past lightcone. Smooth causal curves are regular by our
definition; no smooth causal curve is future-directed for some values of its parameter t



Spacetimes Categories and Disjointness 587

and past-directed for others. For J ⊆ R a not-necessarily-open interval, a continuous and
piecewise-smooth curve γ : J → M is causal if either each smooth piece of γ defined
on an open sub-interval of J is future-directed causal, or each such smooth piece is
past-directed causal. In the former case, γ is future-directed causal; in the latter case, γ
is past-directed causal.We adopt the convention that if a curve γ is merely called (future-
or past-directed) causal then this means it is piecewise-smooth and (respectively future-
or past-directed) causal; when smoothness of γ is required this is stated explicitly.

Let γ : I → M be a future-directed causal curve. If it exists, the limit from above
limt→inf I+ γ (t) is the past-endpoint of γ . (We take inf I := −∞ if I ⊆ R is unbounded
below; similarly sup I := +∞ if I is unbounded above.) If γ has no past-endpoint,
then we say γ is past-inextendable. Similarly, the future-endpoint of γ is the limit
from below limt→sup I− γ (t) if it exists; if no future-endpoint exists then we say γ is
future-inextendable. γ is called inextendable if it is both past-inextendable and future-
inextendable.

Any spacetime (M, g) has a causal relation:

JM :=
{

(p, q) ∈ M × M

∣∣
∣∣

p = q, or there exists a future-directed causal
curve γ : [0, 1] → M with γ (0) = p and γ (1) = q.

}
.

Where unambiguous, we may write only J and leave the spacetime M implicit. The
relation J is reflexive by definition. J is also transitive by concatenation of causal
curves, so that J is a preorder on M .

Standard notations for the causal future and past of p ∈ M are respectively

J+(p) := { q ∈ M | (p, q) ∈ J } and J−(p) := { q ∈ M | (q, p) ∈ J } .
Causal diamonds in M are sets of the form J+(p) ∩ J−(q) for some p, q ∈ M .

The symmetric closure s J = J ∪ J T of J may be explicitly characterised as:

s JM :=
{

(p, q) ∈ M × M

∣
∣∣∣

p = q, or there exists any causal curve
γ : [0, 1] → M with γ (0) = p and γ (1) = q.

}
.

Remark 3.7. It is possible to generalise from piecewise-smooth to merely continuous
causal curves; see [HE73, pg. 184] and [MS08, Proposition 3.16] for equivalent defini-
tions. However, this generalisation leaves the causal relations J unchanged: as explained
in [Min19, Remark 2.14], if there is a future-directed continuous causal curve from point
p to point q in a spacetime (M, g), then there is also a future-directed piecewise-smooth
causal curve from p to q in (M, g). For this reason, all causal curves in this work are
taken to be at least piecewise-smooth.

For any open subset U ⊆ M understood as a submanifold with the induced metric
and time-orientation, it is automatically true that

JU ⊆ JM ∩ [U ×U ].
The converse JM ∩ [U ×U ] ⊆ JU is not true for general U .

A subset U ⊆ M of spacetime M is called causally convex if any causal curve
γ : [0, 1] → M with endpoints γ (0), γ (1) lying inU has γ ([0, 1]) ⊆ U , i.e. γ remains
always in U . If U ⊆ M is open and causally convex, then JU = JM ∩ [U × U ]. We
may interpret this as saying that the ‘internal’ causal relation JU on U coincides with
the causal relation JM ∩ [U × U ] ‘induced’ by restriction of JM . We note that open,
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causally convex subsets are not the only subsets that possess this property: take for
instance the open but not causally convex strip U := {

(t, x) ∈ R
1,1

∣∣ −1 < x < 1
}
in

two-dimensional Minkowski space R
1,1 with its usual coordinates.

Given a conformal map f : (M, g) → (N , h) between spacetimes, any causal curve
γ : I → M maps to a causal curve f ◦ γ : I → N , since

h
(
d fγ (t)(γ̇t ), d fγ (t)(γ̇t )

) = ( f ∗h)(γ̇t , γ̇t ) = eω f g(γ̇t , γ̇t )

has the same sign as g(γ̇t , γ̇t ) for all t ∈ I . For γ future-directed, the curve f ◦ γ

will be future- or past-directed if f preserves or reverses time-orientation respectively
on the path-component of M which contains γ . Consequently, any conformal map f :
M → N preserves J up time-orientation reversal: for any (p, q) ∈ JM , it follows
that ( f (p), f (q)) ∈ JN when f preserves time-orientation on the path-component of
M containing p and q, and ( f (q), f (p)) ∈ JN when f reverses time-orientation on
that path-component. Regardless of time-orientation reversals, any conformal map also
preserves the symmetric closures s J of causal relations.

A conformal map f : M → N strictly preserves J up to time-orientation reversal
if it preserves J up to time-orientation reversal and for any (p, q) ∈ JM , we have
f (p) = f (q) only if p = q. Not all conformal maps strictly preserve J up to time-
orientation reversal. Consider, for instance, the quotient map from two-dimensional
Minkowski spacetime R

1,1 which identifies (t, x) ∼ (t + 1, x) in standard coordinates.
The points p = (0, 0) and q = (1, 0) in R

1,1 have (p, q) ∈ JR1,1 as exhibited by
the future-directed causal curve γ : [0, 1] → R

1,1, γ (τ ) = (τ, 0). While p and q are
distinct in R

1,1, their images under the quotient coincide; note that γ becomes a closed
causal curve in the quotient.

While all conformal maps preserve J up to time-orientation reversal, some may also
reflect it. Again, we must account for time-orientation reversal:

Definition 3.8. For spacetimes M and N , a conformal map f : M → N reflects J up
to time-orientation reversal if for any p, q ∈ M , when ( f (p), f (q)) ∈ JN it follows
that p and q lie in the same path-component M̃ of M , and:

• (p, q) ∈ JM if f preserves time-orientation on M̃ , and
• (q, p) ∈ JM if f reverses time-orientation on M̃ .

If f : M → N is a conformal embedding, i.e. a conformal map which is also
a smooth embedding, then any future-directed causal curve γ : I → N with image
γ (I ) contained in f (M) has unique curve δ : I → M such that γ = f ◦ δ. Since
f (and hence the inverse of its codomain-restriction) is conformal, this δ is timelike,
causal or null when γ is timelike, causal or null respectively; it is future-directed if f
preserves time-orientation on the path-component of M containing δ, and past-directed
if f reverses time-orientation on that path-component. Using this, we can immediately
identify examples of maps which reflect J up to time-orientation reversal:

Proposition 3.9. Let M, N be spacetimes and f : M → N a conformal map. If f is a
smooth embedding whose image f (M) is a causally convex subset of N , then f reflects
J up to time-orientation reversal.

Proof. Take p, q ∈ M such that ( f (p), f (q)) ∈ JN . Since f is injective, if f (p) =
f (q) then p = q so that both (p, q) and (q, p) lie in JM . So assume f (p) �= f (q);
then there is a future-directed causal curve γ : [0, 1] → N with γ (0) = f (p) and
γ (1) = f (q). By causal convexity of f (M) in N , this implies that γ ([0, 1]) ∈ f (M);
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so, there is a unique causal curve δ : [0, 1] → M with γ = f ◦ δ and in partic-
ular δ(0) = p, δ(1) = q. If f preserves time-orientation on the path-component
of M containing δ, then δ is future-directed, exhibiting (p, q) ∈ JM . Likewise if f
reverses time-orientation on that component then δ is past-directed and so exhibits
(q, p) ∈ JM . ��
Remark 3.10. The preceding proposition shows that all morphisms of Loc reflect J
up to time-orientation reversal. Indeed, the original motivation3 stated in [BFV03] for
choosing to impose that any morphism f : M → N of Loc have causally convex image
was that the ‘intrinsic’ and ‘induced’ causal structures on f (M) should coincide. In the
language of causal relations, this stipulates that J f (M) = JN ∩ [ f (M) × f (M)], which
for locally isometric embedding f is equivalent to f reflecting J up to time-orientation
reversal.

It is not true that any conformal f : M → N which reflects J up to time-orientation
reversal is necessarily an embedding with causally convex image. For instance, the
inclusion of the stripU := {

(t, x) ∈ R
1,1

∣
∣ −1 < x < 1

}
into R

1,1 has image which is
not causally convex in R

1,1; nonetheless, because JU = JR1,1 ∩ [U ×U ] the inclusion
reflects J .

However, we show in Proposition 3.23 below that a converse of Proposition 3.9 does
hold when f : M → N is conformal map between globally hyperbolic spacetimes.

For any subsetsU and V of a topological space X , and continuous curve γ : I → X ,
we say that γ connects U and V if there are a, b ∈ I such that γ (a) ∈ U and γ (b) ∈ V .
For points p, q ∈ X , curve γ : I → X connects p and q if γ connects {p} and {q}.
If a causal curve γ connects subsets U and V of a spacetime M , then γ exhibits that
s J ∩ [U × V ] is non-empty.

Note that this terminology agnostic as to whether γ is future- or past-directed. When
we need to specify direction, we instead say that γ is future-directed causal from U to
V or γ is past-directed causal from U to V . The former case exhibits that J ∩ [U × V ]
is non-empty, and the latter that J ∩ [V × U ] is non-empty. If γ : [0, 1] → M is
future-directed causal from U to V then the reparameterised curve γ ′ : [0, 1] → M
with γ ′(t) := γ (1− t) is past-directed causal from V to U .

For open subsets U and V in spacetime M , we have the following equivalent char-
acterisations of the notion that U and V are spacelike-separated:

Proposition 3.11. For open subsets U and V of spacetime M, the following are equiv-
alent:

(i) s JM does not intersect U × V ,
(ii) JM intersects neither U × V nor V ×U,
(iii) There exists no causal curve in M connecting U and V .

Proof. (i) and (ii) are equivalent since s J = J ∪ J T . (ii) implies (iii) trivially. Say (i)
does not hold, so there is some p ∈ U and q ∈ V with (p, q) ∈ s JM . Then either there
is a causal curve in M connecting p and q, showing immediately that (iii) does not hold,
or p = q. In the latter case, since U and V are open, their intersection U ∩ V is also
open and hence a subspacetime of M . So, there exists a causal curve in U ∩ V through
the point p = q (take for instance any timelike geodesic in U ∩ V through p = q),
exhibiting also that (iii) does not hold. ��

3 In [BFV03], the category now commonly called Loc is denoted Man.
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3.2. Causal disjointness on the category of spacetimes. From the causal relations J
available on any spacetime, we can produce a disjointness relation4 on the category
SpTm to encode the notion of causal disjointness (i.e. spacelike-separateness) of sub-
spacetimes:

Definition 3.12. Define a��-relation��J onSpTm as follows: for any conterminous pair
f1 : M1 → N ← M2 : f2, say that f1 ��J f2 if s JN does not intersect f1(M1)× f2(M2).

We call ��J the causal disjointness relation on SpTm.

By Proposition 3.11 and since the morphisms of SpTm are open maps, we can
equivalently say that f1 ��J f2 if there is no causal curve in N connecting f1(M1) and
f2(M2). That ��J is a valid ��-relation follows since it is the pullback of the ��-relation
��bin of Example 2.5 along the functor SpTm → sBin which sends spacetimes M
to their underlying sets equipped with binary relation s JM ; morphisms f : M → N
preserve s J because they are conformal maps.

From Example 2.15 and Proposition 2.16, it follows that if a morphism of SpTm
reflects s J then it is ���-monic. However, a full characterisation of ���-monics in SpTm
is as follows:

Theorem 3.13. A morphism f : M → N in (SpTm, ��J ) is ���-monic if and only if it
reflects s J , i.e. for any p, q ∈ M:

( f (p), f (q)) ∈ s JN implies (p, q) ∈ s JM .

Proof. (⇐) Say f : M → N reflects s J , and consider any conterminous pair g1 :
O1 → M ← O2 : g2 with f ◦ g1 ���J f ◦ g2. Then there exist p ∈ O1 and q ∈ O2 with

( f ◦ g1(p), f ◦ g2(q)) ∈ s JN ⊆ s JN .

Since f reflects s J , it follows that (g1(p), g2(q)) ∈ s JM . Recalling that morphisms of
SpTm are necessarily open maps as per Remark 3.2, we have open set g1(O1)×g2(O2)

in M × M which intersects s JM . By definition of topological closure, this implies that
g1(O1) × g2(O2) intersects s JM and hence g1 ���J g2.

(⇒) Say that f : M → N is ���-monic; take any p, q ∈ M with ( f (p), f (q)) ∈ s JN .
Choose arbitrary open neighbourhoodsU of p and V of q inM , and denote the inclusion
maps ιU : U ↪→ M and ιV : V ↪→ M . ThenU and V are subspacetimes of M equipped
with the induced metrics and time-orientations, so the inclusions ιU and ιV are valid
SpTmmorphisms. Using that f is an open map, f (U )× f (V ) is an open set in N × N
intersecting s JN at least at ( f (p), f (q)). Thus also f (U ) × f (V ) intersects s JN by
definition of topological closure, which demonstrates that f ◦ ιU ���J f ◦ ιV . Since f
is ���-monic, this implies ιU ���J ιV , and hence that U × V intersects s JM , i.e. there
exist p′ ∈ U and q ′ ∈ V such that (p′, q ′) ∈ s JM . Because this holds for arbitrary open
neighbourhoods U of p and V of q, it shows that (p, q) ∈ s JM . ��

In general, the property that a map f reflects s J does not straightforwardly simplify:

Example 3.14. We exhibit a conformal map which reflects J and hence s J , but not
J or s J . Let R

1,1 be two-dimensional Minkowski spacetime, and define open subset
U := R

1,1 \ {r} for some point r = (t0, x0) ∈ R
1,1. U becomes a spacetime when

equipped with the induced metric and time-orientation from R
1,1; then the inclusion

U ↪→ R
1,1 is a local isometry and so a conformal map.

4 Compare to Example 2.10.
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x

t

p
r

q

Fig. 1. Minkowski spacetime R
1,1 with a point r removed. Points p and q have (p, q) ∈ J but cannot be

connected by a causal curve

Consider the points p := (t0−�, x0−�) and q := (t0 +�, x0 +�), for any� > 0,
as illustrated in Fig. 1. Then (p, q) ∈ JR1,1 as exhibited by the null curve in R

1,1 given
by τ �→ (t0 + τ, x0 + τ) for τ ∈ [−�,�].

However, due to the removal of r , there is no causal curve in U connecting p and q.
Hence (p, q) �∈ s JU , so the inclusion U ↪→ R

1,1 does not reflect J or s J .
Nonetheless, it follows from Lemma 3.5 that (p, q) ∈ JU . For, consider any open

neighbourhoods Vp, Vq ⊆ U of p and q respectively; then there exists some ε > 0 such
that p′ := (t0 + ε −�, x0 −�) is in Vp and q ′ := (t0 + ε +�, x0 +�) is in Vq . It holds
that (p′, q ′) ∈ JU , as exhibited by the null curve in U given by τ �→ (t0 + ε + τ, x0 + τ)

for τ ∈ [−�,�]; notice that this curve avoids the point r = (t0, x0) which is missing
from U .

Similar considerations for points p̃ := (t0 − �, x0 + �) and q̃ := (t0 + �, x0 − �)

show that the inclusion U ↪→ R
1,1 does reflect J .

Examples such as this make the characterisation of ���-monics in SpTm given by
Theorem 3.13 difficult to handle, both conceptually and technically. However, the char-
acterisation simplifies greatly when we restrict to spacetimes with suitable causal prop-
erties.

Before demonstrating this, we observe that unions of subspacetimes respect causal
disjointness:

Lemma 3.15. Let M1
f1−→ N

f2←− M2 be any conterminous pair in SpTm, and let
{iα : Uα ↪→ M1}α∈I be a family (not necessarily countable) of subspacetime inclusions
in SpTm such that M1 = ⋃

α∈I Uα .

If

N

M1 M2

Uα

f1

��J

f2

iα

for each α ∈ I, then
N

M1 M2

f1 f2��J
.

Proof. Assume f1 ���J f2, so there exist p ∈ M1, q ∈ M2 with ( f1(p), f2(q)) ∈ s JN .
Since M1 = ⋃

α∈I Uα , there is an α ∈ I with p ∈ Uα . Then ( f1 ◦ iα(p), f2(q)) ∈ s JN ,
showing that f1 ◦ iα ���J f2. ��
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The same property passes to any ��-subcategory of SpTm:

Corollary 3.16. LetC be any��-subcategory of (SpTm, ��J ). Then Lemma3.15 applies
with C in place of SpTm.

Proof. Say {iα : Uα ↪→ M1}α∈I are the given subspacetime inclusions inC, and say for
each α ∈ I that f1 ◦ iα �� f2 in C. Since the ��-subcategory inclusion C ↪→ SpTm
preserves ��-relations, this means that f1 ◦ iα ��J f2 in SpTm. Then f1 ��J f2 in
SpTm by Lemma 3.15, so f1 ��J f2 in C since C ↪→ SpTm reflects ��-relations. ��
Another immediate corollary of Lemma 3.15 is that, since coproducts in SpTm are
disjoint unions, coproducts preserve the causal disjointness relation ��J .

3.3. Spacetimes with good causal properties. In the definition of Loc, objects are
restricted to be only those spacetimes which are globally hyperbolic. Global hyper-
bolicity is the strongest of a hierarchy of causal properties that a spacetime may possess.
As we restrict from SpTm to full subcategories of spacetimes obeying specified causal
properties, the characterisation in Theorem 3.13 of ���-monics with respect to ��J sim-
plifies.

The most significant simplification occurs when we restrict our spacetimes to a level
of the causal hierarchy called causal simplicity. After demonstrating such simplification,
we relate ���-monics to the definition of Loc.

We begin by recalling those causal properties in the hierarchy that will be relevant;
we refer the reader toMinguzzi [Min19] for an extensivemodern review of the hierarchy.
Along theway, we also note some consequences for conformalmapswhen their domains
or codomains have given causal properties.

A spacetime (M, g) is causal if it contains no closed causal curves. Equivalently,
the causal relation J is anti-symmetric: if (p, q) ∈ J and (q, p) ∈ J then p = q. This
property lies near the bottom of the hierarchy, but already leads to several useful facts
about conformal maps that take causal spacetimes as domain or codomain.

Proposition 3.17. Let M, N be spacetimes with N causal, and let f : M → N be a
conformal map. Then f strictly preserves J up to time-orientation reversal.

Proof. Since it is conformal, f preserves J up to time-orientation reversal. Take (p, q) ∈
JM such that f (p) = f (q), and assume that there is a future-directed causal curve
γ : [0, 1] → M from p = γ (0) to q = γ (1). Then f ◦ γ : [0, 1] → N has f ◦ γ (0) =
f (p) = f (q) = f ◦ γ (1), and so is a closed causal curve. (Since f is a smooth
immersion, f ◦ γ is not constant.) This is in contradiction with N a causal spacetime,
so we must have p = q. ��
Corollary 3.18. Let M, N be spacetimes with N causal, and let f : M → N be a
conformal map. Then f reflects J up to time-orientation reversal if and only if f reflects
the symmetric closure s J .

Proof. (⇒): Trivial using s J = J ∪ J T .
(⇐): Take any p, q ∈ M such that ( f (p), f (q)) ∈ JN . Since f reflects s J and

JN ⊆ s JN , it follows that (p, q) ∈ s JM so either (p, q) ∈ JM or (q, p) ∈ JM . In either
case, p and q lie in the same path-component M̃ of M .

Say f preserves time-orientation on M̃ ; we show that the first case (p, q) ∈ JM
necessarily holds by showing that the second case (q, p) ∈ JM implies p = q. Assume
that (q, p) ∈ JM ; conformal f preserves J on M̃ , from which it results that both
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( f (q), f (p)) and ( f (p), f (q)) lie in JN . Hence f (p) = f (q) because N is causal. But
also because N is causal, f strictly preserves J by the preceding proposition; therefore
p = q.

Similarly if f reverses time-orientation on M̃ , then the first case (p, q) ∈ JM implies
that p = q, so that the second case (q, p) ∈ JM necessarily holds. ��
Proposition 3.19. Let M, N be spacetimes with M causal, and let f : M → N be a
conformal map. If f reflects J up to time-orientation reversal then f is injective.

Proof. Take p, q ∈ M with f (p) = f (q). Then both ( f (p), f (q)) and ( f (q), f (p))
lie in JN , so that both (p, q) and (q, p) lie in JM for f which reflects J up to time
orientation reversal. But then p = q since JM is antisymmetric. ��

Proceeding further up the hierarchy of causal properties, a spacetime (M, g) is
non-imprisoning (also called non-totally-imprisoning) if no future-inextendable causal
curve is contained in a compact set. Equivalently, (M, g) is non-imprisoning if no past-
inextendable causal curve is contained in a compact set. Any non-imprisoning spacetime
is causal, since any closed causal curve has compact image and may be made inextend-
able by winding over its image.

A spacetime (M, g) is causally simple if it is causal and its causal relation J is
topologically closed (J = J ). Topological closedness of J has several equivalent char-
acterisations [Min19, Theorem 4.12]:

Proposition 3.20. For any spacetime (M, g), the following are equivalent:

(i) the causal relation J is a closed subset of M × M,
(ii) causal futures J+(p) and pasts J−(p) are closed subsets of M for all p ∈ M,
(iii) causal diamonds J+(p) ∩ J−(q) are closed subsets of M for all p, q ∈ M.

If spacetime (M, g) is causally simple, then it is non-imprisoning; this is shown via
several intermediate levels of the causal hierarchy in [Min19, Section 4].

A spacetime (M, g) is globally hyperbolic if it is causal and its causal diamonds
J+(p)∩ J−(q) are compact for all p, q ∈ M . Compactness of causal diamonds implies
their closedness, so any globally hyperbolic spacetime is causally simple. There are sev-
eral equivalent characterisations of global hyperbolicity; one important characterisation
is that the spacetime (M, g) have a Cauchy surface.

Remark 3.21. Cauchy surfaces may defined merely to be subsets S ⊆ M met exactly
once by every inextendable timelike curve [BS03,ONe83], from which it follows that
they are achronal, topologically embedded continuous submanifolds of codimension 1,
and met by any inextendable causal curve (possibly at more than one point, in case of
null segments of causal curves).

However, Bernal and Sánchez [BS03] show that in any globally hyperbolic spacetime
there exists a Cauchy surface which is not merely topologically embedded and achronal
but also smoothly embedded and spacelike (so acausal). So without loss of generality,
we take Cauchy surfaces to be smoothly embedded and spacelike.

Remark 3.22. Classical definitions of global hyperbolicity and causal simplicity appear
more restrictive than those we have given. For instance, Hawking and Ellis [HE73] use
strong causality in place of causality in the definition of global hyperbolicity. Bernal
and Sánchez [BS07] show that the definitions given above are equivalent to the classical
ones.
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We note here that arbitrarily small globally hyperbolic neighbourhoods can be found
around any point p in an any spacetime M : there is a neighbourhood base at p of M
consisting of open, globally hyperbolic sets. See [Min14, Corollary 2] and [Min19,
Theorem 1.35], though these discuss such neighbourhood bases with many more good
topological and pseudo-Riemannian properties than are needed here.

When a conformal map has domain a globally hyperbolic spacetime and codomain
any spacetime of the same dimension, we obtain a converse to Proposition 3.9:

Proposition 3.23. Let M, N be spacetimes of the same dimension dim M = dim N with
M globally hyperbolic, and let f : M → N be a conformal map. If f reflects J up to
time-orientation then f is a smooth embedding with image f (M) causally convex in N.

Proof. Since f is conformal and dim M = dim N , it follows that f is a local diffeo-
morphism as in Remark 3.2. By Proposition 3.19, f is injective because M is globally
hyperbolic and hence causal. Thus f : M → N is a smooth embedding.

Pick any distinct p, q ∈ M with future-directed causal curve γ : [0, 1] → N from
γ (0) = f (p) to γ (1) = f (q). To show that f (M) is causally convex in N , assume
for the sake of contradiction that γ leaves f (M). Then γ−1 (N \ f (M)) is a non-empty
subset of (0, 1); define

t0 := inf γ−1 (N \ f (M)) .

Since f is a local diffeomorphism, it is an open map; hence N \ f (M) is closed and
γ−1(N \ f (M)) is closed. So, t0 lies in γ−1 (N \ f (M)).

Consider the restriction γ |[0,t0) : [0, t0) → f (M). Because f : M → N is a
conformal embedding, there is a unique causal curve δ : [0, t0) → M with γ |[0,t0) =
f ◦ δ. Since f reflects J up to time-orientation, p, q and curve δ lie in the same path-
component M̃ of M . If f preserves time-orientation on M̃ then δ is future-directed.
Moreover, δ is future-inextendable: for, say limt→t−0

δ(t) ∈ M exists; then

γ (t0) = lim
t→t−0

γ (t) = lim
t→t−0

f ◦ δ(t) = f

(

lim
t→t−0

δ(t)

)

∈ f (M),

in contradiction with t0 ∈ γ−1 (N \ f (M)). Likewise if f reverses time-orientation on
M̃ then δ is past-directed and past-inextendable.

For any t ∈ [0, t0), the future-directed causal curve γ exhibits that ( f (p), f ◦ δ(t))
and ( f ◦ δ(t), f (q)) lie in JN . Say f preserves time-orientation on M̃ . Then because f
reflects J up to time-orientation reversal, it follows that (p, δ(t)) and (δ(t), q) lie in JM
for all t ∈ [0, t0), so that the curve δ is contained in the causal diamond J+M (p)∩ J−M (q).
Since M is globally hyperbolic, its causal diamonds are compact. But then we have a
future-inextendable causal curve δ in M contained in a compact set, which contradicts
the non-imprisoning property of M . Similarly, when f reverses time-orientation on M̃ ,
we find that the past-inextendable causal curve δ is contained in compact causal diamond
J+M (q) ∩ J−M (p) which again contradicts the non-imprisoning property of M . ��

Formally, we may realise the hierarchy of causal properties as a nested sequence of
full ��-subcategories of SpTm:

Definition 3.24. Let κ denote any causal property in the hierarchy; we define κSpTm to
be the full ��-subcategory of (SpTm, ��J ) consisting of those spacetimes which satisfy
κ .
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If κ and λ are any two causal properties in the hierarchy with κ stronger than λ, then the
inclusion κSpTm ↪→ λSpTm is also a full ��-subcategory inclusion.

This notation also works if we regard the null causal property (i.e. having no specified
causal property) as the lowest level of the hierarchy; then SpTm is κSpTm for κ the
null property. In particular, we have full ��-subcategory inclusions

GlobHypSpTm ↪→ CausSimSpTm ↪→ SpTm,

for prefixesGlobHyp and CausSim denoting globally hyperbolic and causally simple,
respectively.

3.4. Overlap-monics in categories of spacetimes with good causal properties. To make
use of the general characterisation of ���-monics in SpTm given in Theorem 3.13 to
characterise ���-monics in a subcategory κSpTm, we must first ensure that moving
between such subcategories does not change which morphisms are ���-monic.

Since κSpTm ↪→ λSpTm are ��-subcategory inclusions, they reflect ���-monics by
Proposition 2.16. It is also true that they preserve ���-monics, essentially because we can
cover any spacetime with open globally hyperbolic neighbourhoods and the ��-relation
��J respects such coverings as per Lemma 3.15:

Proposition 3.25. The inclusion functors (κSpTm, ��J ) ↪→ (λSpTm, ��J ) preserve
���-monics.
Proof. Let N

g−→ P be ���-monic in κSpTm, and consider any conterminous pair f1 :
M1 → N ← M2 : f2 in λSpTm. Since λ is a weaker causal property than κ , M1 and
M2 are not necessarily objects of κSpTm.

However, each point p ∈ M1 has an open globally hyperbolic neighbourhood
Up ⊆ M1; denote by i p : Up ↪→ M1 the inclusion. Then since global hyperbolic-
ity is the strongest causal property, the neighbourhood Up is an object of κSpTm, and
the inclusion i p is a morphism of λSpTm. Similarly, for each q ∈ M2 there is an open
globally hyperbolic neighbourhood Vq in κSpTm with inclusion jq : Vq ↪→ M2 in
λSpTm.

Say f1 ��J f2 in λSpTm. Then by stability of ��J under pre-composition,

N

M1 M2

Up Vq

f1

��J

f2

i p jq

in λSpTm for all p ∈ M1 and q ∈ M2.

Since κSpTm ↪→ λSpTm is a full subcategory, f1◦i p : Up → N and f2◦ jq : Vq → N
are morphisms in κSpTm. The inclusion functor also reflects ��-relations, so

N

Up Vq

f1◦i p f2◦ jq��J
in κSpTm for all p ∈ M1 and q ∈ M2.
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Since g : N → P is ���-monic in κSpTm, this gives g ◦ f1 ◦ i p ��J g ◦ f2 ◦ jq in
κSpTm. But since the inclusion functor preserves ��-relations,

P

N

M1 M2

Up Vq

g

f1

��J

f2

i p jq

in λSpTm for all p ∈ M1 and q ∈ M2.

By Corollary 3.16, and since clearly
⋃

p∈M1
Up = M1 and

⋃
q∈M2

Vq = M2, we
conclude that g ◦ f1 ��J g ◦ f2 in λSpTm so g is ���-monic in λSpTm. ��

Each inclusion κSpTm ↪→ λSpTm both preserves and reflects ���-monics: for any
morphism f in κSpTm, f is ���-monic in κSpTm if and only if it is ���-monic in λSpTm
for any weaker causal property λ. In particular, f is ���-monic in κSpTm if and only if
it satisfies the general characterisation given by Theorem 3.13 of ���-monics in SpTm.
Using this, we can find greatly simplified characterisations of ���-monicswhenwe restrict
to spacetimes with strong causal properties:

Theorem 3.26. A morphism f : M → N in (CausSimSpTm, ��J ) is ���-monic if and
only if it reflects causal relations J up to time-orientation reversal.

Proof. f : M → N is ���-monic in CausSimSpTm if and only if it is ���-monic
in SpTm, hence if and only if it reflects s J by Theorem 3.13. Each object of
CausSimSpTm has s J = s

(
J
) = s J , where the first equality holds because tak-

ing topological and symmetric closures of relations commutes (Lemma 3.6). Hence f
is ���-monic if and only if it reflects s J . But since N is also causal, f reflects s J if and
only if it reflects J up to time-orientation reversal by Corollary 3.18. ��
Theorem 3.27. A morphism f : M → N in (GlobHypSpTm, ��J ) is ���-monic if and
only if the following equivalent conditions hold:

(i) f reflects J up to time-orientation reversal,
(ii) f is injective and has causally convex image f (M) in N.

Proof. f : M → N is ���-monic in GlobHypSpTm if and only if it is ���-monic in
CausSimSpTm, hence if and only if it reflects J up to time-orientation reversal by
Theorem 3.26.

By Proposition 3.23, if f reflects J up to time-orientation reversal then f is injec-
tive with causally convex image. Conversely, if f is injective then (since f is a local
diffeomorphism as per Remark 3.2) it is an embedding; so if f is injective with causally
convex image then f reflects J up to time-orientation reversal by Proposition 3.9. ��

This characterisation of ���-monics inGlobHypSpTm exactly matches with the extra
constraints imposed on morphisms in the definition of Loc. Moreover, the orthogonality
relation⊥ of spacelike separateness on Loc [BSW21, Example 3.21] coincides with the
restriction of ��J :

(Loc,⊥) = ���-Monics(GlobHypSpTm, ��J ).
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We conclude that the category Loc often used as domain for relativistic AQFT func-
tors may be arrived at systematically by the procedure proposed in Sect. 1: first formu-
late the category GlobHypSpTm of globally hyperbolic spacetimes and all structure-
preserving maps between them. Also formulate an appropriate disjointness relation ��J
on GlobHypSpTm to encode physical limitations on signal propagation to be imposed
by the causality axiom. Finally, restrict to thewide subcategory of ���-monicswith respect
to ��J ; this is Loc. The disjointness relation becomes an orthogonality relation on the
subcategory, so we may formulate an AQFT as a functor,

A : ���-Monics(GlobHypSpTm, ��J ) → Obs,

obeying the causality axiom.
The time-slice axiom seems to play no significant role in this procedure to construct

Loc. We can define an appropriate class W̃ of Cauchy maps (morphisms f : M →
N where f (M) contains a Cauchy surface of N ) in the original spacetimes category
GlobHypSpTm. Then the time-slice axiom is simply implemented with respect to the
intersection W := W̃ ∩ mor Loc of W̃ with the class of morphisms in the subcategory
Loc: the functor A above satisfies the time-slice axiom if A f is an isomorphism for
every f ∈ W .

Remark 3.28. The same procedure applies when the structure to be preserved by mor-
phisms is not the full Lorentzian metric structure, but merely the conformal structure.
Formulating a category CSpTm of spacetimes and conformal maps in place of the cat-
egory SpTm of spacetimes and local isometries, the characterisations presented above
still apply. Namely, after equipping CSpTm with ��-relation ��J defined similarly to
Definition 3.12 and restricting to globally hyperbolic spacetimes, we obtain full ��-
subcategory (GlobHypCSpTm, ��J ). Then the orthogonal subcategory of ���-monics
is

(CLoc,⊥) = ���-Monics(GlobHypCSpTm, ��J ),

consisting of globally hyperbolic spacetimes and conformal maps which are injective
with causally convex image;CLoc is the appropriate category of spacetimes for defining
(non-chiral) CFTs [Pin09].

4. Chiral Disjointness and Spacetimes Categories for Chiral CFT

As shown in the previous section, the category Loc may be constructed as the subcate-
gory of ���-monics in a category of globally hyperbolic spacetimes and all appropriate
structure-preserving maps. In this section, we apply the same construction in the con-
text of chiral CFTs on two-dimensional (2D) spacetimes. After developing some useful
technical tools in Sect. 4.1 and using them to produce a hierarchy of chiral properties
of 2D oriented spacetimes in Sect. 4.2, the construction leads to a proposal in Sect. 4.3
of a category χLoc to be used as the domain of chiral CFT functors. In Sect. 4.4, we
compare this proposal to established approaches to chiral CFTs in the AQFT literature.

Let us begin by recalling an elementary example of a chiral CFT on a fixed spacetime:

Example 4.1. A free fermion field theory on 2D Minkowski space R
1,1 is described by

the Lagrangian

L = i�γ μ∂μ�,
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where � is a two-component spinor field, � = �†γ 0 is its Dirac conjugate, and we use
the following representation of the 2D Dirac algebra:

γ 0 =
(

0 1
−1 0

)
and γ 1 =

(
0 1
1 0

)
.

With (t, x) the standard coordinates on R
1,1, the Dirac operator is then:

iγ μ∂μ =
(

0 i(∂t + ∂x )

−i(∂t − ∂x ) 0

)
.

Denoting components of � by � t = (
ψ, ψ̃

)
, the Lagrangian may be written as

L = −i
[
ψ∗(∂t − ∂x )ψ + ψ̃∗(∂t + ∂x )ψ̃

]
.

The classical equations of motion are then simply first-order wave equations,

(∂t − ∂x )ψ = 0 and (∂t + ∂x )ψ̃ = 0,

so that ψ is a function ψ(t, x) = f1(t + x) of the combination t + x only, and ψ̃ is a
function ψ̃(t, x) = f2(t − x) of t − x only.

Because there is no coupling between ψ and ψ̃ in the Lagrangian, the theory splits
into two independent halves: one describing the left-moving degree of freedom ψ , and
the other describing the right-moving degree of freedom ψ̃ . This split into left- and
right-moving halves means that the free fermion theory is chiral.

The left-moving component ψ is constant on curves of constant t + x (the character-
istics of the equation of motion). In R

1,1, these are the left-moving null curves; that ψ is
constant on them means that, in a particularly trivial way, ψ ‘propagates signals’ along
the left-moving null curves.

On the other hand, the equations ofmotion specify no influence of the valueψ(t, x) =
f1(t + x) on ψ(t ′, x ′) = f1(t ′ + x ′) for points (t, x) and (t ′, x ′) on distinct such curves
t + x �= t ′ + x ′: the function f1 is arbitrary (determined only by initial conditions).
Hence there is no ‘signal propagation’ between distinct left-moving null curves in the
left-moving half of the free fermion theory.

Similar observations hold for the right-moving half of the theory: the component ψ̃

is constant on curves of constant t − x , which are the right-moving null curves of R
1,1,

and there is no ‘signal propagation’ between distinct such curves.

Remark 4.2. Chiral CFTs are commonly studied in Euclidean rather than Lorentzian
signature. Roughly, the Euclidean signature version of the preceding example replaces
time t with an imaginary counterpart iτ . Denote z := x + iτ and z̄ := x − iτ . Then in
place of left- and right-moving halves in the Lorentzian signature of Example 4.1, one
finds holomorphic and anti-holomorphic halves in the Euclidean signature: the equations
of motion reduce to ∂z̄ψ = 0 and ∂zψ̃ = 0 respectively.

Generally, Euclidean CFTs which split into holomorphic and anti-holomorphic parts
(free bosons, bc-ghost systems,WZWmodels, etc.) have Lorentzian counterparts which
split analogously into left- and right-moving parts. In this work, we restrict our attention
to Lorentzian signature.
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As illustrated by the free fermion of Example 4.1, a chiral CFT splits into a left-
moving half and a right-moving half. Signals propagate only along left-moving null
curves in the left-moving half, and dually, only along right-moving null curves in the
right-moving half. This is in contrast to standard relativistic QFTs as defined on Loc or
CFTs as defined on CLoc5, wherein signals may propagate from a point to anywhere in
its causal future.

To formulate a description of chiral CFTs on general 2D spacetimes, as per locally
covariant AQFT, we begin with an appropriate category of 2D spacetimes and structure-
preserving maps. Since we are to describe conformal field theories, the maps are chosen
to preserve only conformal structure on spacetimes rather than the full Lorentzianmetric:

Definition 4.3. Let CSpTmo,to
1+1 be the category whose objects are 2D oriented space-

times, and whose morphisms are orientation- and time-orientation-preserving smooth
conformal maps, composing as functions.

We restrict to oriented 2D spacetimes in order to facilitate a consistent definition of left-
moving and right-moving null curves. As inSpTmd+1, themorphisms ofCSpTmo,to

1+1 are
necessarily local diffeomorphisms since they are smooth immersions betweenmanifolds
of the same dimension; see also Remark 3.2.

For each half (left- or right-moving) of a chiral theory, we equip CSpTmo,to
1+1 with

a disjointness relation describing the relevant limitation on signal propagation. First,
we recall coordinate-independent definitions of left- and right-moving null curves on
oriented 2D spacetimes.

Take (M, g) a 2D oriented spacetime. Let � be a smooth nowhere-vanishing 2-form
on M representing the orientation. Similarly, let T be a smooth everywhere-timelike
vector field on M representing the time-orientation. At any point p ∈ M , any non-
zero, non-spacelike tangent vector v ∈ TpM lies in one of two familiar classes: either
v is future-directed in case gp(T, v) < 0, or v is past-directed in case gp(T, v) > 0.
Moreover, for two different timelike vector fields T and T ′ representing the same time-
orientation on M so g(T, T ′) < 0, the signs of gp(T, v) and gp(T ′, v) coincide for non-
spacelike v. Thus the future and past lightcones are determined by the time-orientation
on M rather than merely its representative T .

Similarly, when M is two-dimensional and oriented, any non-zero non-timelike tan-
gent vector v ∈ TpM lies in one of two classes: either v is right-pointing in case
�p(T, v) > 0, or v is left-pointing in case�p(T, v) < 0. These classes are independent
of the representatives � and T of the orientation and time-orientation on M :

Proposition 4.4. Let M be a 2D oriented spacetime, and v ∈ TpM a non-zero non-
timelike tangent vector at p ∈ M. Say � and �′ are both nowhere-vanishing 2-forms
representing the orientation on M, and say T and T ′ are both everywhere-timelike vector
fields representing the time-orientation on M. Then �p(T, v) and �′

p(T
′, v) have the

same sign.

Proof. Since � and �′ represent the same orientation, there is some ω ∈ C∞(M) such
that�′ = eω�. So, we need only show that�p(T, v) and�p(T ′, v) have the same sign.
For the sake of contradiction, and without loss of generality, assume

λ := �p(T, v) > 0 and λ′ := �p(T
′, v) < 0.

5 See Remark 3.28.
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Since the (interior of the) future lightcone is a convex cone,

T ′′ := 1

λ
T +

(
− 1

λ′

)
T ′

is also a future-directed timelike vector field. But �p
(
T ′′, v

) = 0, which implies that
v and T ′′ are collinear since �p is a non-zero skew-symmetric bilinear form on two-
dimensional vector space TpM . This is a contradiction because T ′′ is timelike and v is
non-timelike. ��

We shall call a curve γ : I → M right-chiral if it is smooth and (its restriction to the
interior of I is) causal with γ̇t either everywhere null, future-directed and right-pointing,
or everywhere null, past-directed and left-pointing. Similarly, γ is left-chiral if it is
smooth and causal with γ̇t either everywhere null, future-directed and left-pointing, or
everywhere null, past-directed and right-pointing. A future-directed right- or left-chiral
curve is called right- or left-moving respectively. Since a chiral curve γ : I → M has
non-zero derivative γ̇t everywhere, it is either future-directed everywhere or past-directed
everywhere. In particular, any right-chiral γ : [0, 1] → M is either right-moving or has
γ ′ : [0, 1] → M defined by γ ′(t) = γ (1−t) right-moving; similar for left-chiral curves.

Example 4.5. Consider 2D Minkowski spacetime R
1,1 with metric g = −dt2 + dx2

in its standard coordinates (t, x). The standard time-orientation can be represented by
future-directed timelike vector field ∂t , and the standard orientation by 2-form dt ∧ dx .

Define lightcone coordinates x+ := t +x and x− := t−x . The coordinate vector field
∂+ = 1

2 (∂t + ∂x ) is null, future-directed and right-pointing; similarly, ∂− = 1
2 (∂t − ∂x )

is null, future-directed and left-pointing.
Consequently, any regular curve in R

1,1 at constant x− = t − x is right-chiral, and
any regular curve at constant x+ = t +x is left-chiral.With appropriate parameterisation,
these are the right- and left-moving null curves of Example 4.1.

Analogous to the causal relation JM on an arbitrary spacetime, we define the right-
chiral relation on any 2D oriented spacetime by:

χ+
M :=

{
(p, q) ∈ M × M

∣
∣∣∣
p = q, or there exists a right-moving null curve
γ : [0, 1] → M with γ (0) = p and γ (1) = q.

}
.

By definition, χ+ is reflexive. Since we have restricted our definition of chiral curves to
be smooth for convenience elsewhere, it is not immediately clear that χ+ is transitive—
generally the concatenation of smooth curves is not smooth. After developing the nec-
essary tools, we show in Sect. 4.1 that indeed χ+ is transitive. Its symmetric closure
is

sχ+
M =

{
(p, q) ∈ M × M

∣∣∣∣
p = q, or there exists a right-chiral curve

γ : [0, 1] → M with γ (0) = p and γ (1) = q.

}
.

The left-chiral relation χ−
M on M is defined dually, with right-moving curves replaced

by left-moving curves. All definitions and statements below involving the right-chiral
relation χ+ have duals with the left-chiral relation χ− in its place.

For 2D oriented spacetimes M and N , any conformal map f : M → N sends null
curves to null curves; if, moreover, f preserves time-orientation and orientation, then f
sends right-moving null curves to right-moving null curves and left-moving null curves
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to left-moving null curves. Consequently, conformal maps f which preserve orientation
and time-orientation necessarily preserve both chiral relations χ+ and χ−.

For open subsets U and V in spacetime M , the right-chiral relation χ+
M describes

when U and V cannot be connected by right-chiral curves in M as follows:

Proposition 4.6. For open subsets U and V of 2D oriented spacetime M, the following
are equivalent:

(i) sχ+
M does not intersect U × V ,

(ii) χ+
M intersects neither U × V nor V ×U,

(iii) There exists no right-chiral curve in M connecting U and V .

Proof. Exactly as Proposition 3.11. ��
As done with SpTmd+1 and causal relations J , we may produce a ��-relation on

CSpTmo,to
1+1 using right-chiral relations χ+:

Definition 4.7. Define a ��-relation ��χ+ on CSpTmo,to
1+1 as follows: for any contermi-

nous pair f1 : M1 → N ← M2 : f2, say that f1 ��χ+ f2 if sχ+
N does not intersect

f1(M1) × f2(M2).
We call ��χ+ the right-chiral disjointness relation on CSpTmo,to

1+1.

Equivalently, f1 ��χ+ f2 if there is no right-chiral curve in N connecting f1(M1) and
f2(M2). Since all morphisms of CSpTmo,to

1+1 are conformal and preserve orientations
and time-orientations, they preserve χ+ and hence also sχ+. Then ��χ+ is easily seen to
be the pullback of relation ��bin of Example 2.5 along the functor CSpTmo,to

1+1 → sBin
which sends each spacetime M to its underlying set equipped with binary relation sχ+

M .
A similar left-chiral disjointness relation ��χ− on CSpTmo,to

1+1 may be defined using
the left-chiral relation χ−. In the context of chiral disjointness relations ��χ+ or ��χ− , the
relevant spacetimes are always two-dimensional and oriented so that χ± can be defined,
and the relevant maps between spacetimes always preserve both orientation and time-
orientation so that they preserve sχ±. Consequently, we may unambiguously omit the
super- and subscripts from CSpTmo,to

1+1 and write only CSpTm when discussing chiral
disjointness.

At the level of the ��-relation, (SpTmd+1, ��J
)
and

(
CSpTm, ��χ+

)
are very similar.

Indeed, Theorem 3.13, Lemma 3.15, and Corollary 3.16 and their proofs all carry over
verbatim, with SpTmd+1 and J replaced by CSpTm and χ+ respectively:

Theorem 4.8. A morphism f : M → N in
(
CSpTm, ��χ+

)
is ���-monic if and only if it

reflects sχ+, i.e. for any p, q ∈ M:

( f (p), f (q)) ∈ sχ+
N implies (p, q) ∈ sχ+

M .

Lemma 4.9. Let M1
f1−→ N

f2←− M2 be any conterminous pair in CSpTm, and let
{iα : Uα ↪→ M1}α∈I be a family (not necessarily countable) of subspacetime inclusions
in CSpTm such that M1 = ⋃

α∈I Uα .

If

N

M1 M2

Uα

f1

��χ+

f2

iα

for each α ∈ I, then
N

M1 M2

f1 f2��χ+ .
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Corollary 4.10. Let C be any ��-subcategory of (CSpTm, ��χ+). Then Lemma 4.9
applies with C in place of CSpTm.

Just as for the case of (SpTmd+1, ��J ), the general characterisation of ���-monics in(
CSpTm, ��χ+

)
is technically and conceptually difficult to handle. To simplify it, we

can again restrict to spacetimes with good ‘chiral properties’ analogous to the causal
properties of Sect. 3.3.

4.1. Chiral frames and chiral flows. Before developing chiral analogues of the causal
properties in Sect. 3.3, we introduce some technical tools.

Definition 4.11. Let (M, g) be a 2D oriented spacetime.
A right-chiral vector field n+ on M is a smooth, nowhere-vanishing vector field such

that n+(p) is null, future-directed and right-pointing for all p ∈ M . Dually, a left-chiral
vector field n− on M is a smooth, nowhere-vanishing vector field that is everywhere
null, future-directed and left-pointing.

A chiral frame (n−, n+) on M is a smooth global frame on M , i.e. a frame for the
tangent bundle T M → M , where n− and n+ are respectively left- and right-chiral vector
fields.

A right-chiral 1-form η+ on M is a 1-form such that the vector field (η+)� is right-
chiral. Similarly, a left-chiral 1-form η− is one such that (η−)� is a left-chiral vector
field. The musical isomorphism is with respect to the metric g on M , so (η±)� is defined
such that η± = g

(
(η±)�, ·).

A chiral coframe is a smooth global coframe (−η+,−η−) on M , i.e. a frame for the
cotangent bundle T ∗M → M , where η− and η+ are respectively left- and right-chiral
1-forms.

The right-chiral vector fields onM formaconvex cone in theC∞(M)-module�(T M)

of vector fields on M . In other words, if n+, n′+ ∈ �(T M) are both right-chiral vector
fields, and f1, f2 ∈ C∞(M) are both smooth functions with fi (p) > 0 for all p ∈ M ,
then f1n+ + f2n′+ is also a right-chiral vector field. The same is true of left-chiral vector
fields, and similar is true for right- and left-chiral 1-forms in �(T ∗M).

The arbitrary choice of signs and ordering in Definition 4.11 of a chiral frames
(n−, n+) and chiral coframes (−η+,−η−) is arranged such that the following holds:

Lemma 4.12. Let (M, g) be a 2D oriented spacetime, and let (E1, E2) be smooth global
frame on M with dual coframe (ε1, ε2). Then (E1, E2) is a chiral frame if and only if
(ε1, ε2) is a chiral coframe.

Proof. (⇒): The dual coframe (ε1, ε2) is defined such that εi (E j ) = δij . Using this, it
is straightforward to show that if E1 and E2 are respectively left- and right-chiral vector
fields then

(−ε1)� = E2

−g(E1, E2)
and (−ε2)� = E1

−g(E1, E2)
.

This shows that (−ε1)� and (−ε2)� are respectively right- and left-chiral vector fields,
since E1 and E2 are both future-directed causal (and not collinear) so that g(E1, E2) < 0.
Hence (ε1, ε2) is a chiral coframe.
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(⇐): Similarly, if (ε1, ε2) is a chiral coframe then its dual frame may be written as

E1 = (−ε2)�

−g
(
(−ε1)�, (−ε2)�

) and E2 = (−ε1)�

−g
(
(−ε1)�, (−ε2)�

) .

So E1 and E2 are respectively left- and right-chiral, using g
(
(−ε1)�, (−ε2)�

)
< 0.

Hence (E1, E2) is a chiral frame. ��
Example 4.13. Consider 2D Minkowski spacetime R

1,1, with lightcone coordinates
(x−, x+) as per Example 4.5. Since the coordinate vector field ∂+ is everywhere null,
future-directed and right-pointing, it is a right-chiral vector field on R

1,1. Similarly, the
coordinate vector field ∂− is a left-chiral vector field, so that (∂−, ∂+) is a chiral frame
on R

1,1.
Written in lightcone coordinates, themetric is g = − 1

2 (dx
−⊗dx++dx+⊗dx−).Using

this, it is easy to show that the dual coframe (dx−, dx+) to (∂−, ∂+) has (dx±)� = −2∂∓
so that−dx+ is a left-chiral 1-form and−dx− is a right-chiral 1-form. Thus (dx−, dx+)
is a chiral coframe on R

1,1 as per Definition 4.11.

Proposition 4.14. Let M be any 2D oriented spacetime. There exists a chiral frame
(n−, n+) on M.

Proof. Locally-defined chiral vector fields may be constructed directly in coordinate
charts. LetU ⊆ M be an open subset with chart φ : U → R

2, p �→ (t (p), x(p)) that is
compatible with orientation and with time-orientation. Compatibility of the chart with
orientation means that dt∧dx represents the orientation onU ⊆ M , while compatibility
with time-orientationmeans that the coordinate vector field ∂t is future-directed timelike.
Then by direct computation, the smooth local vector fields

nU± :=
[√− det g ± gtx

]
∂t ∓ gtt∂x

are null and future-directed, with nU+ right-pointing and nU− left-pointing. Here gi j =
g(∂i , ∂ j ) are the components of the metric and det g is the determinant of the matrix of
metric components.

Given an atlas {Uα, φα : Uα → R
2} of such charts, take a smooth partition of unity

{ fα : M → [0, 1]} subordinate to it. Set
n± :=

∑

α

fαn
Uα± .

Since the collection of right-chiral vector fields is a convex cone in �(T M), it follows
that n+ is right-chiral. Similarly n− is left-chiral. ��
Remark 4.15. Since Proposition 4.14 demonstrates the existence of a smooth global
frame on any 2D oriented spacetime, it shows in particular that every 2D oriented space-
time is parallelisable.

Alternatively, we see that any 2D oriented spacetime (M, g) is parallelisable because
(T,�(T, ·)�) is a smooth global frame, where T is a future-directed timelike vector field
representing the time-orientation on M , � is a nowhere-vanishing 2-form representing
the orientation on M , and the musical isomorphism is taken with respect to metric g.

Chiral frames on a two-dimensional Lorentzianmanifold encode essentially the same
information as orientations and time-orientations:
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Proposition 4.16. Let (M, g) be any Lorentzian manifold with dim M = 2, and let
(n1, n2) be a smooth global frame on M where the ni are null g(ni , ni ) = 0 and have
g(n1, n2) < 0 everywhere.

Then there is a unique choice of orientation and time-orientation on M such that
(n1, n2) is a chiral frame.

Proof. From the null frame (n1, n2) and its dual coframe (ε1, ε2), construct vector field
T := n1 + n2 and 2-form � := ε1 ∧ ε2 on M . T is everywhere timelike since

g(T, T ) = g(n1 + n2, n1 + n2) = 2g(n1, n2) < 0,

and � is nowhere-vanishing by linear independence of (n1, n2).
The time-orientation in which T is future-directed is the unique time-orientation on

M for which n1 and n2 are everywhere future-directed, since

g(T, ni ) = g(n1, n2) < 0.

With this time-orientation fixed, the orientation on M specified by volume form � is the
unique orientation for which n1 is left-pointing and n2 is right-pointing: �(T, n1) =
ε1 ∧ ε2(n2, n1) = −1 < 0, and �(T, n2) = ε1 ∧ ε2(n1, n2) = 1 > 0. ��
Example 4.17. Lightcone coordinates x± = t±x on two-dimensionalMinkowski space-
time R

1,1 have coordinate frame (∂−, ∂+) with both ∂+ and ∂− everywhere null; see also
Examples 4.5 and 4.13.

From the dual coframe (dx−, dx+), the orientation onR
1,1 specified as per the propo-

sition above is given by 2-form dx− ∧ dx+ = (dt − dx) ∧ (dt + dx) = 2dt ∧ dx . This
coincides with the standard orientation on R

1,1 given by dt ∧ dx .
Similarly, the time-orientation specified above is given by timelike vector field ∂− +

∂+ = 1
2 (∂t − ∂x ) + 1

2 (∂t + ∂x ) = ∂t ; this coincides with the standard time-orientation
on R

1,1.

Any null frame (n1, n2) has, on any given path-component, either g(n1, n2) < 0 or
g(n1, n2) > 0 everywhere by linear independence. So, up to swapping n1 �→ −n1 on
some path-components of M , the hypothesis g(n1, n2) < 0 of Proposition 4.16 may be
satisfied by any null frame:

Corollary 4.18. Let (M, g)be anyLorentzianmanifoldwithdim M = 2, and let (n1, n2)
be a smooth global frame on M where the ni are null everywhere. Then (M, g) is
orientable and time-orientable.

Any (right- or left-) chiral vector field is nowhere-vanishing, and remains a chiral
vector field after scaling by an everywhere-strictly-positive function. Consequently, we
may always rescale a chiral vector field to a complete chiral vector field, i.e. such that
the domain of any maximal integral curve is the whole of R [Suá17]:

Lemma 4.19. Let X be a smooth manifold, and V be a smooth, nowhere-vanishing
vector field on X. There exists a smooth function f ∈ C∞(X) which is everywhere-
strictly-positive f > 0 such that f V is a complete vector field.

Proof. Choose any complete Riemannian metric h on X—existence of such is proved
in [NO61]. Set

f = 1√
h(V, V )

,
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so that f V is normalised to unit h-length everywhere; this is possible since V is nowhere-
vanishing.

Let γ : (a, b) → M be the maximal integral curve of f V from γ (0) = p ∈ X .
By the choice of normalisation of f V , γ is parameterised by h-arc-length. Assume
for the sake of contradiction that b < ∞; then by the Escape Lemma [Lee13, Lemma
9.19], γ ([0, b)) is not contained in any compact subset of M . In particular, γ leaves the
closed h-ball Bh(p, r) of radius r > b centred at p, which is compact by the Hopf-
Rinow theorem since h is complete. So there exists t ∈ (0, b) with γ (t) �∈ Bh(p, r);
but then γ : [0, t] → M is a path from p of h-length t < r which ends outside the ball
Bh(p, r)—a contradiction.

A similar contradiction can be shown for a > −∞, so γ has domain R. ��
Definition 4.20. A right-chiral flow θ+ : R × M → M , (τ, p) �→ θ+τ (p) on a 2D
oriented spacetime M is the global flow of a complete right-chiral vector field n+ on M .
Similarly, a left-chiral flow θ− : R×M → M is the global flow of a complete left-chiral
vector field n−.

Chiral flows θ± are actions of the Lie group R on the spacetime. Since any 2D oriented
spacetime has a chiral frame, and any chiral vector field may be rescaled to a complete
chiral vector field, it follows that left- and right-chiral flows exist on any 2D oriented
spacetime. Note that the chiral flows on a spacetime are not unique.

Lemma 4.21. Let M be a 2D oriented spacetime with right-chiral vector field n+. Fix
interval I ⊆ R and t0 ∈ I . A smooth curve γ : I → M is right-chiral if and only if there
is an interval J ⊆ R containing 0 ∈ J and a diffeomorphism φ : J → I with φ(0) = t0
such that the reparameterised curve γ ◦ φ|int J restricted to the interior int J of J is an
integral curve of n+. The reparameterisation φ is increasing if γ is future-directed and
decreasing if γ is past-directed. Moreover, γ is inextendable if and only if γ ◦ φ|int J is
a maximal integral curve.

Proof. By definition, any smooth γ : I → M is right-chiral if and only if there is some
smooth, nowhere-zero α : int I → R such that for all t ∈ int I ,

γ̇t = α(t) · n+|γ (t). (2)

γ is future-directed and right-moving exactly when α is positive everywhere; dually, γ
is past-directed and left-moving exactly when α is negative everywhere. Say γ ◦ φ|int J
is an integral curve of n+; then (2) holds with

α(t) = 1

φ̇
(
φ−1(t)

) .

γ is future-directed and right-moving when φ is increasing, and past-directed and left-
moving when φ is decreasing.

Conversely, say γ is right-chiral so that (2) holds. Define ψ : I → R by

ψ(t) =
∫ t

t0
α(t ′)dt ′.

Since α is smooth and nowhere-zero,ψ is smooth and strictly monotonic (increasing if α
is everywhere positive, decreasing if α is everywhere negative) and so a diffeomorphism
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onto its image in R. Take reparameterisation φ : J → I to be the inverse of the
codomain-restriction of ψ . Then for any s ∈ int J ,

˙(γ ◦ φ)s = φ̇(s) · γ̇φ(s) = 1

ψ̇(φ(s))
· α(φ(s)) · n+|γ ◦φ(s) = n+|γ ◦φ(s),

so γ ◦ φ|int J is an integral curve of n+.
It remains to show that the right-chiral curve γ is inextendable if and only if the

integral curve γ ◦ φ|int J of n+ is maximal. Denote int I = (i1, i2) and int J = ( j1, j2),
with some of these values possibly infinite. Then it holds that

lim
t→i+1

γ (t) = lim
τ→ j+1

γ ◦ φ(τ) and lim
t→i−2

γ (t) = lim
τ→ j−2

γ ◦ φ(τ)

for φ increasing, and vice versa for φ decreasing; in particular, the limits of γ exist
exactly when the corresponding limits of γ ◦ φ exist. So γ is inextendable if and only if
the limits limτ→ j+1

γ ◦ φ(τ) and limτ→ j−2
γ ◦ φ(τ) do not exist.

Say q := limτ→ j−2
γ ◦ φ(τ) exists, i.e. for any neighbourhood U ⊆ M of q there is

τ0 ∈ int J such that γ ◦ φ ([τ0, j2)) ⊆ U . Since manifold M is locally compact, there is
a compact neighbourhoodU of q. Then the Escape Lemma [Lee13, Lemma 9.19] gives
that either the integral curve γ ◦ φ|int J is not maximal or j2 = ∞. Assume for the sake
of contradiction that j2 = ∞. Then for any τ ′ ∈ R such that (τ ′, q) is in the domain of
the maximal flow θ+ of vector field n+, it follows that

θ+τ ′(q) = θ+τ ′
(
lim

τ→∞ γ ◦ φ(τ)
)
= lim

τ→∞ θ+τ ′ (γ ◦ φ(τ)) = lim
τ→∞ γ ◦ φ(τ + τ ′) = q,

so q is a fixed point of the flow. But then n+|q = 0, which contradicts that n+ is right-
chiral. We conclude that γ ◦ φ|int J is not maximal. A similar argument shows that if
limτ→ j+1

γ ◦ φ(τ) exists then γ ◦ φ|int J is not maximal.
Conversely, say γ ◦ φ|int J is not maximal. Then there exists an open interval K =

(k1, k2) with int J ⊂ K strictly and an integral curve δ : K → M of n+ with δ|int J =
γ ◦ φ|int J . Because int J ⊂ K strictly, either k1 < j1 or k2 > j2. In the former case,
limτ→ j+1

γ ◦φ(τ) = limτ→ j+1
δ(τ ) = δ( j1) exists,while in the latter limτ→ j−2

γ ◦φ(τ) =
limτ→ j−2

δ(τ ) = δ( j2) exists. ��
The lemma above gives directly that any right-chiral curve γ : I → M defined on an

open interval I is, up to reparameterisation, an integral curve of a right-chiral vector field
n+. In case γ is defined on a non-open interval, it gives that after reparameterisation,
γ extends to an integral curve of n+. For if I is not open, then γ : I → M is not
inextendable; consequently, the reparameterisation γ ◦φ|int J : int J → M given by the
lemma is not maximal and so has extension to an integral curve δ : K → M of n+ with
( j1, j2) := int J ⊂ K . Say j2 ∈ J ; then so long as j2 �∈ K , the extension δ constitutes
a non-inextendable right-chiral curve in its own right since γ ◦ φ( j2) = limτ→ j−2

δ(τ )

exists. Similar if j1 ∈ J . Consequently, we may always find an extension δ : K → M
of the integral curve γ ◦ φ|int J such that J ⊂ K entirely, rather than merely int J ⊂ K .
It follows that δ|J = γ ◦ φ, so δ extends not merely the restriction γ ◦ φ|int J but the
whole reparameterisation γ ◦ φ of γ .

For instance, the lemma gives that any right-chiral curve γ : [0, 1] → M has repa-
rameterisation diffeomorphism φ : [0, τ ] → [0, 1] with φ(0) = 0 such that γ ◦ φ|(0,τ )

is an integral curve of n+. By the above argument, there is some open interval K with
[0, τ ] ⊆ K and integral curve δ : K → M of n+ with δ|[0,τ ] = γ ◦ φ.
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From this we immediately obtain characterisations of the chiral relation χ+ and its
symmetric closure in terms of the integral curves of a chiral vector field n+:

Proposition 4.22. Let M be a 2D oriented spacetime with right-chiral vector field n+,
and denote by θ+ the maximal flow of n+. Let p, q be points in M. The following are
equivalent:

(i) (p, q) ∈ χ+
M,

(ii) There is an integral curve γ : I → M of n+ from γ (0) = p, with γ (τ) = q for some
τ ∈ I with τ ≥ 0,

(iii) There is τ ≥ 0 such that q = θ+τ (p).

Likewise, the following are equivalent:

(i) (p, q) ∈ sχ+
M,

(ii) There is an integral curve γ : I → M of n+ from γ (0) = p, with γ (τ) = q for some
τ ∈ I ,

(iii) There is τ ∈ R such that q = θ+τ (p).

Using the group law of flows, this gives:

Corollary 4.23. Let M be a 2D oriented spacetime. The right-chiral relation χ+
M and

its symmetric closure sχ+
M are both transitive.

Proof. Choose right-chiral vector field n+ on M , as is always possible by Proposition
4.14. Denote its maximal flow by θ+. If (p, q) ∈ sχ+

M and (q, r) ∈ sχ+
M then by the

preceding proposition there exist τ, τ ′ ∈ R such that q = θ+τ (p) and r = θ+
τ ′(q). Then

by the group law of the flow,

r = θ+τ ′(θ
+
τ (p)) = θ+τ+τ ′(p),

so that (p, r) ∈ sχ+
M . Similar holds if (p, q) ∈ χ+

M and (q, r) ∈ χ+
M , but with the

restriction that τ, τ ′ ≥ 0. Then (p, r) ∈ χ+
M since τ + τ ′ ≥ 0. ��

By definition, the symmetric closure sχ+ of a right-chiral relation is symmetric and
reflexive; the preceding proposition and corollary lead to:

Corollary 4.24. Let M be a 2D oriented spacetime. The relation sχ+
M is an equivalence

relation on M.
For subset S ⊆ M, the following are equivalent:

(i) S is an equivalence class of sχ+
M,

(ii) S is an orbit of a right-chiral flow θ+ : R × M → M,
(iii) S is the image γ (I ) of an inextendable right-chiral curve γ : I → M.

In addition to their use in describing chiral relations χ+, chiral (co)frames may be
used to characterise conformal maps which preserve orientation and time-orientation.

Lemma 4.25. Let X,Y be parallelisable smooth manifolds with dim X = dim Y = n
and smooth global frames (EX

i ) and (EY
i ) on X and Y respectively. Let (εiX ) and (εiY )

be the respective dual coframes.
If f : X → Y is any smooth map and fi ∈ C∞(X) for i ∈ {1, . . . , n}, the following

are equivalent:

(i) f ∗εiY = e fi εiX for all i ∈ {1, . . . , n},
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(ii) d f ◦ EX
i = e fi · (EY

i ◦ f ) as sections of the pullback bundle f ∗TY → X for all
i ∈ {1, . . . , n}.

Proof. Fix some i ∈ {1, . . . , n}. By definition εiX (EX
j ) = δij = εiY (EY

j ), from which it
is straightforward to verify that (i) implies that

(
εkY

)

f (p)

(
d f pE

X
i |p

)
=

(
f ∗εkY

)

p

(
EX
i |p

)
=

(
εkY

)

f (p)

(
e fi (p)EY

i | f (p)
)

for all k ∈ {1, . . . , n} and p ∈ X , which gives (ii). Similarly, (ii) implies that
(
f ∗εiY

)

p

(
EX

j |p
)
=

(
εiY

)

f (p)

(
d f pE

X
j |p

)
=

(
e fi εiX

)

p

(
EX

j |p
)

for all j ∈ {1, . . . , n} and p ∈ X , which gives (i). ��
Proposition 4.26. Let M, N be 2D oriented spacetimes, and (nM− , nM+ ), (nN− , nN+ ) chiral
frames on M and N respectively. Denote by (−η+M ,−η−M ), (−η+N ,−η−N ) the respective
dual chiral coframes on M and N.

A smooth map f : M → N is conformal and orientation- and time-orientation-
preserving if and only if there exist F+, F− ∈ C∞(M) such that the following equivalent
conditions hold:

(i) f ∗η±N = eF∓η±M,
(ii) d f ◦ nM± = eF± · (nN± ◦ f ) as sections of the pullback bundle f ∗T N → M.

Proof. Equivalence of (i) and (ii) follows from the preceding lemma.
(⇒): Since f is conformal and orientation- and time-orientation-preserving, it sends

future-directed left/right-pointing null vectors to future-directed left/right-pointing null
vectors; hence at each p ∈ M there are unique F−(p), F+(p) ∈ R such that

d f pn
M± |p = eF±(p)nN±| f (p).

Smoothness of the functions F± : M → R so defined follows by recognising eF± as
components of the smooth map

M
nM±−→ T M

d f−→ T N
ψN−−→ N × R

2,

where ψN is the global trivialisation of the tangent bundle T N → N given by the frame
(nN− , nN+ ). It follows that (ii) holds.

(⇐): We show that (i) implies f is conformal and orientation- and time-orientation-
preserving. Because nM± are null, the metric gM on M may be expressed in terms of the
chiral coframe as

gM = −eGM
(
η+M ⊗ η−M + η−M ⊗ η+M

)
,

where GM ∈ C∞(M) is defined by eGM = −g(nM− , nM+ ) which is strictly positive since
nM+ and nM− lie in the same half of the lightcone. Similar is true for the metric gN on N .
Then from (i) it follows that

f ∗gN = −eGN ◦ f (
f ∗η+N ⊗ f ∗η−N + f ∗η−N ⊗ f ∗η+N

)

= −eF++F−+GN ◦ f (
η+M ⊗ η−M + η−M ⊗ η+M

)
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= eF++F−−GM+GN ◦ f · gM ,

so f is conformal.
As in Proposition 4.16, the orientation and time-orientation on M may be represented

by 2-form �M = η+M ∧ η−M and future-directed timelike vector field T M = nM− + nM+
on M respectively; similar for N . Then from (i) it follows that f preserves orientation
since

f ∗�N = f ∗(η+N ∧ η−N ) = eF++F− · η+M ∧ η−M = eF++F− · �M .

Because (−η+M ,−η−M ) is dual to (nM− , nM+ ), we have η±M (nM± ) = 0 and η±M (nM∓ ) = −1,
and hence η±M (T M ) = η±M (nM− + nM+ ) = −1; similar for N . Then at every p ∈ M , it
follows from (i) that

gN | f (p)
(
d f p(T

M
p ), T N

f (p)

)
= −eGN ◦ f (p)

[
η+N ⊗ η−N + η−N ⊗ η+N

]
f (p)

(
d f p(T

M
p ), T N

f (p)

)

= −eGN ◦ f (p)
[
−( f ∗η+N )p(T

M
p ) − ( f ∗η−N )p(T

M
p )

]

= −eGN ◦ f (p)
[
eF−(p) + eF+(p)

]
< 0,

so d f p(T M
p ) and T N

f (p) lie in the same half of the lightcone. Hence f preserves time-
orientation. ��
Example 4.27. Consider open subsets U, V ⊆ R

1,1 of two-dimensional Minkowski
spacetime and smooth map f : U → V . It can be shown by direct computation that f is
conformal and orientation- and time-orientation-preserving if and only if, in lightcone
coordinates (x−, x+) as described in Example 4.5, we have

f (x−, x+) = ( f−(x−), f+(x
+))

for some smooth functions f± : pr±(U ) → pr±(V ) which are strictly increasing,
i.e. f ′± > 0 everywhere. Here pr± : R

1,1 → R are projections onto the lightcone
coordinates.

Then with respect to chiral frames (∂−, ∂+) on U and V , the smooth functions F± ∈
C∞(U ) of Proposition 4.26 above are given by eF± = f ′± ◦ pr± since

d f(x−,x+)∂−|(x−,x+) = ∂ f−
∂x−

∂−| f (x−,x+) +
∂ f−
∂x+

∂+| f (x−,x+) = ( f ′− ◦ pr−)∂−| f (x−,x+),

and similarly d f(x−,x+)∂+|(x−,x+) = ( f ′+ ◦ pr+)∂+| f (x−,x+).

4.2. Spacetimes with good chiral properties. In analogy with the hierarchy of causal
properties discussed in Sect. 3.3, we now introduce a hierarchy of chiral properties
that a two-dimensional oriented spacetime may possess. Each chiral property has a
left-chiral and a right-chiral version. We present the right-chiral properties below; their
left-chiral duals are obtained by changing all right-chiral curves to left-chiral curves, i.e.
swapping χ+ with χ−. Upon restriction to spacetimes with particular chiral properties,
the characterisation in Theorem 4.8 of ���-monics will simplify.
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Let M be a 2D oriented spacetime. We call the spacetime χ+-causal if it contains
no closed right-chiral curves, or equivalently if the right-chiral relation χ+

M is antisym-
metric. This is a chiral analogue of causal spacetimes, wherein the causal relation J is
antisymmetric6.

Trivially, ifM contains no closed causal curves then in particular it contains no closed
right-chiral curves; hence if 2D oriented spacetime M is causal then it is also χ+-causal.
The converse is not true; for instance, consider the spacetime given by the quotient of
Minkowski R

1,1 under identification (x−, x+) ∼ (x− + 1, x+) in lightcone coordinates.
This spacetime contains no closed right-chiral curves (i.e. curves of constant x−) and
so is χ+-causal; however, it clearly contains closed left-chiral curves and so is neither
χ−-causal nor causal.

Let M and N be 2D oriented spacetimes, and let f : M → N be a conformal map
which preserves orientation and time-orientation. We obtain several useful facts about
f when either its domain M or its codomain N is χ+-causal, analogous to Propositions
3.17 and 3.18 and Corollary 3.19 for causal spacetimes. The proofs carry over verbatim,
replacing causal curves with right-chiral curves and J with χ+:

Proposition 4.28. Say codomain N of f is χ+-causal. Then f strictly preserves χ+.

Corollary 4.29. Say codomain N of f is χ+-causal. Then f reflects χ+ if and only if f
reflects sχ+.

Proposition 4.30. Say domain M of f is χ+-causal. If f reflects χ+ then f is injective.

A subsetU ⊆ M of 2D oriented spacetime M is called χ+-convex if any right-chiral
curve γ : [0, 1] → M with endpoints γ (0), γ (1) lying in U has γ ([0, 1]) ⊆ U , i.e. γ
remains always in U . Clearly any causally convex U ⊆ M is also χ+-convex. There is
a chiral analogue of the observation on J -reflecting maps in Proposition 3.9:

Proposition 4.31. Let M and N be 2D oriented spacetimes, and let f : M → N be a
conformal map which preserves orientation and time-orientation. If f is injective with
image f (M) χ+-convex in N, then f reflects χ+.

Proof. Similar to Proposition 3.9, noting that f is a local diffeomorphism (it is a smooth
immersion whose domain and codomain have the same dimension) so f is injective if
and only if it is a smooth embedding. ��

Whenboth the domain and codomainof f possess theχ+-causal property, Proposition
4.30 can be significantly strengthened into a converse of Proposition 4.31:

Proposition 4.32. Let M and N be χ+-causal 2D oriented spacetimes, and let f : M →
N be a conformal map which preserves orientation and time-orientation. If f reflects
χ+ then f is injective with image f (M) χ+-convex in N.

Proof. Injectivity is givenbyProposition 4.30.Letγ : [0, 1] → N be a right-chiral curve
with p, q ∈ M such that γ (0) = f (p) and γ (1) = f (q). Without loss of generality,
take γ future-directed so ( f (p), f (q)) ∈ χ+

N ; then (p, q) ∈ χ+
M since f reflects χ+. We

have f (p) �= f (q) since N is χ+-causal; then also p �= q since f is injective. So there
must exist right-moving null curve δ : [0, 1] → M with δ(0) = p and δ(1) = q.

Now both γ and f ◦ δ are right-moving null curves in N starting at point p. Choose
any right-chiral vector field n+ on M . By Lemma 4.21, we have reparameterisation
diffeomorphisms φ : [0, τ ] → [0, 1] and φ′ : [0, τ ′] → [0, 1] such that γ ◦φ : [0, τ ] →

6 It may be clarifying to call causal spacetimes J -causal, to compare with χ+-causal spacetimes.
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N and f ◦ δ ◦ φ′ : [0, τ ′] → N may be extended to integral curves of n+ starting at
f (p) = γ ◦φ(0) = f ◦δ◦φ′(0) and containing the point f (q) = γ ◦φ(τ) = f ◦δ◦φ′(τ ′).
Assume for the sake of contradiction that τ < τ ′. Then since integral curves starting at
the same point coincide on shared domain, f ◦ δ ◦ φ′|[0,τ ] = γ ◦ φ and in particular
f ◦ δ ◦ φ′(τ ) = γ ◦ φ(τ) = f (q). But then f ◦ δ ◦ φ′ is not injective, in contradiction
with the χ+-causal property of N . A similar contradiction arises if τ ′ < τ . Hence we
must have τ = τ ′, so that γ ◦ φ = f ◦ δ ◦ φ′ : [0, τ ] → N by uniqueness of integral
curves. Then γ = f ◦ δ ◦ (φ′ ◦ φ−1), showing in particular that γ ([0, 1]) ⊆ f (M). ��

The condition that M is χ+-causal may be expressed in terms of chiral flows (Defi-
nition 4.20):

Lemma 4.33. Let M be a 2D oriented spacetime, and let θ+ : R × M → M be a
right-chiral flow on M. Then M is χ+-causal if and only if θ+ is a free R-action.

Proof. The R-action θ+ is not free if and only if there exists p ∈ M and τ ∈ R with
τ �= 0, such that θ+τ (p) = p. This is true if and only if there is non-injective integral
curve γ : R → M of the complete right-chiral vector field n+ generating θ+. If such
γ exists, then γ is a closed right-chiral curve. Conversely, any closed right-chiral curve
γ ′ : I → M may be reparameterised to an integral curve of n+ by Lemma 4.21; this
integral curve is necessarily not injective since γ ′ is closed. ��

A 2D oriented spacetime M is χ+-simple if its right-chiral relation χ+ is antisymmet-
ric and topologically closed. This is a chiral analogue of causally simple spacetimes7.

Clearly if M is χ+-simple then it is χ+-causal. An example of a spacetime that is
χ+-causal but not χ+-simple is given by R

1,1 \ {r}, for arbitrary point r in Minkowski
R
1,1; see also Example 3.14.
Global hyperbolicity, which is the strongest condition in the hierarchy of causal

properties in Sect. 3.3, can be phrased in terms of the existence of Cauchy surfaces.
To find an appropriate chiral analogue of global hyperbolicity, we begin with a chiral
analogue of Cauchy surfaces:

Definition 4.34. Let M be a 2D oriented spacetime. A χ+-Cauchy surface in M is a
smoothly embedded one-dimensional submanifold S ⊆ M such that for every inextend-
able right-chiral curve γ : I → M , there is a unique t ∈ I such that γ (t) ∈ S.

This is analogous to (smooth, spacelike) Cauchy surfaces, which are intersected
exactly once by any inextendable causal curve.Where a Cauchy surface is an appropriate
surface on which to define initial conditions for relativistic equations of motion, a χ+-
Cauchy surface is similarly an appropriate surface on which to define initial conditions
for right-chiral equations of motion.

Example 4.35. Recall the right-moving component ψ̃ of the free fermion field theory
in Example 4.1. In standard coordinates (t, x) on R

1,1, the equation of motion for ψ̃ is
(∂t + ∂x )ψ̃ = 0; its general solution is that ψ̃ is an arbitrary function of x− = t − x
only:

ψ̃(t, x) = f (t − x).

Consider the 1-dimensional submanifold given by the line at constant x = 0. This is
a χ+-Cauchy surface of R

1,1: as noted in Example 4.5, right-chiral curves in R
1,1 are

7 Just as we may call causal spacetimes J -causal to compare with the χ+-causal property, we may also call
causally simple spacetimes J -simple to compare with the χ+-simple property.
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lines of constant c = t − x , and every such line intersects the line x = 0, specifically at
t = c.

It suffices to specify initial conditions for ψ̃ on the line x = 0: for, say initial condition
ψ̃(t, 0) = ψ̃0(t) is given for some function ψ̃0. Then for arbitrary (t ′, x ′), we have

ψ̃(t ′, x ′) = f (t ′ − x ′) = ψ̃(t ′ − x ′, 0) = ψ̃0(t
′ − x ′).

Any smooth, spacelike Cauchy surface in a 2D oriented spacetime is also a χ+-
Cauchy since any inextendable causal curve intersects it exactly once and right-chiral
curves are causal. The converse is not true; take for example the timelike surface x = 0
in Minkowski R

1,1. This is a χ+-Cauchy surface as observed in the preceding example;
however, it is clearly not a Cauchy surface since it is not achronal.

Since images of inextendable right-chiral curves coincide with equivalence classes
of sχ+ (Corollary 4.24), χ+-Cauchy surfaces in M are related to the quotient space
M/sχ+:

Lemma 4.36. Let M be a χ+-causal 2D oriented spacetime, with quotient M/sχ+ a
smooth manifold. The image of any smooth section σ : M/sχ+ → M of the quotient
map πM : M → M/sχ+ is a χ+-Cauchy surface of M.

Proof. A section σ : M/sχ+ → M of πM intersects each equivalence class of sχ+ in
M exactly once by definition. The image γ (I ) of any inextendable right-chiral curve
γ : I → M is an equivalence class of sχ+, by Corollary 4.24; thus σ(M/sχ+) intersects
γ (I ) at exactly one point. Since M is χ+-causal, γ is injective; it follows that there is a
unique t ∈ I such that γ (t) ∈ σ(M/sχ+).

It remains to show that if section σ is smooth then it is an embedding. That σ is an
injective immersion follows immediately from πM ◦σ = idM/sχ+ . Any section σ is also
a proper map. For, if K ⊆ M is compact, then by continuity so is πM (K ) ⊆ M/sχ+.
Compact K in Hausdorff M is closed so σ−1(K ) is also closed. But σ−1(K ) ⊆ πM (K ):
if [p] ∈ M/sχ+ has σ [p] ∈ K , then [p] = πM ◦ σ [p] ∈ πM (K ). Since σ−1(K ) is a
closed subset contained in πM (K ) a compact subset, it follows that σ−1(K ) is compact
in M/sχ+. Thus σ is a proper injective immersion, and so a smooth embedding [Lee13,
Proposition 4.22]. ��

We say that a 2D oriented spacetime M is χ+-initial if it contains a χ+-Cauchy
surface. There are at least two other useful characterisations of this chiral property, one
in terms of the quotient space M/sχ+ and the other in terms of chiral flows:

Lemma 4.37. Let M be any χ+-initial 2D oriented spacetime. Take any S ⊆ M a
χ+-Cauchy surface and n+ a complete right-chiral vector field on M.

The flowout φ+ : R × S → M from S along n+ is an R-equivariant diffeomorphism
with respect to the R-actions given on R× S by translation in the first factor, and on M
by the flow of n+.

Proof. Denote by i : S ↪→ M the inclusion, and θ+ : R× M → M the flow of n+. The
flowout φ+ : R × S → M from S along n+ is given by the composite

R × S
idR×i

↪−−−→ R × M
θ+−→ M.

By definition of χ+-Cauchy surfaces and Lemma 4.21, for every p ∈ M there is a unique
τp ∈ R such that θ+−τp

(p) ∈ S. Then the map

M → R × S,
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p �→ (τp, θ
+−τp

(p)),

is the inverse of flowout map φ+ since for p ∈ M ,

φ+(τp, θ
+−τp

(p)) = θ+τp ◦ θ+−τp
(p) = p,

and for (τ, q) ∈ R × S, it is clear that τθ+τ (q) = τ so

(
τφ+(τ,q), θ

+−τφ+(τ,q)

(
φ+(τ, q)

)) = (
τ, θ+−τ ◦ θ+τ (q)

) = (τ, q).

Since φ+ is bijective, it follows that φ+ is a diffeomorphism by the Flowout Theorem
[Lee13, Theorem 9.20].

By the group law of θ+, for any (τ, p) ∈ R × S and group element t ∈ R,

θ+t (φ+(τ, p)) = θ+t (θ+τ (p)) = θ+t+τ (p) = φ+(t + τ, p),

so that φ+ : R × S → M is R-equivariant. ��
Theorem 4.38. Let M be a 2D oriented spacetime. The following are equivalent:

(i) M contains a χ+-Cauchy surface,
(ii) Any right-chiral flow θ+ : R × M → M on M is a free and proper R-action.
(iii) M is χ+-causal and the quotient space M/sχ+ is a smooth 1-manifold such that the

quotient map πM : M → M/sχ+ is a smooth submersion,

Proof. (i)⇒ (ii): Pick χ+-Cauchy surface S ⊆ M ; the flowout φ+ : R × S → M from
S along any complete right-chiral vector field n+ is an R-equivariant diffeomorphism by
the preceding lemma. The action of R on itself by translation is free and proper. Hence
so is the R-action on R× S by translation in the first factor. Since φ+ is an R-equivariant
diffeomorphism intertwining this R-action with the flow θ+ : R × M → M of n+, it
follows that θ+ is also free and proper.

(ii) ⇒ (iii): Say flow θ+ : R × M → M of a complete right-chiral vector field n+
is a free and proper R-action. Then M is χ+-causal by Lemma 4.33. By the Quotient
Manifold Theorem [Lee13, Theorem 21.10] the quotient M/R of M by θ+ is a manifold
of dimension dim M − dimR = 1, with unique smooth structure such that the quotient
map πM : M → M/R is a smooth submersion. But by Corollary 4.24 the orbits of θ+

are exactly the equivalence classes of sχ+, so M/R ≡ M/sχ+.
(iii) ⇒ (i): Pick any right-chiral flow θ+ : R × M → M . By Lemma 4.33, θ+

is a free R-action since M is χ+-causal. By Corollary 4.24, the orbits of θ+ are the
equivalence classes of sχ+, and so the fibres of the quotient map πM : M → M/sχ+.
Thus πM : M → M/sχ+ together with R-action θ+ constitutes a principal R-bundle
[KMS93, Lemma 10.3].

For any contractible Lie group G, any principal G-bundle p : E → B is trivial: for
then the principal G-bundle G → {∗} is a universal principal G-bundle, and there is
only one homotopy class of maps B → {∗} and hence only one isomorphism class of
principal G-bundles over base B.

So since R is contractible, the principal R-bundle πM : M → M/sχ+ is trivial and
thus has a smooth global section σ : M/sχ+ → M . By Lemma 4.36, σ is a χ+-Cauchy
surface of M . ��

The proof above also demonstrates the following:
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Corollary 4.39. Let M be a χ+-initial 2D oriented spacetime. Then the quotient map
πM : M → M/sχ+ has a smooth global section whose image is a χ+-Cauchy surface
in M.

Remark 4.40. Not all χ+-Cauchy surfaces S ⊆ M may be realised as images of smooth
sections of πM : M → M/sχ+. For example, take Minkowski R

1,1 and surface S
defined in lightcone coordinates by x− = (x+)3. Since right-chiral curves in R

1,1 are
simply curves of constant x−, this surface isχ+-Cauchy—every curve at constant x− = c
intersects the surface exactly once, at (c, c1/3). Also, S is the image of mapR

1,1/sχ+ →
R
1,1, [(x−, x+)] �→ (

x−, (x−)1/3
)
. While this map is indeed a section of the quotient

map πR1,1 : R
1,1 → R

1,1/sχ+, it is not smooth at [(0, x+)].
We may therefore compare Corollary 4.39 to a causal analogue: not all Cauchy

surfaces are smoothly embedded and spacelike, but every globally hyperbolic spacetime
nonetheless contains a smoothly embedded spacelike Cauchy surface. See also Remark
3.21.

We have related antisymmetry of the relation χ+ to chiral flows in Lemma 4.33. We
may do similar for topological closedness of χ+:

Lemma 4.41. Let M be a 2D oriented spacetime, and take θ+ : R × M → M any
right-chiral flow. If the R-action θ+ is proper, then the right-chiral relation χ+

M on M is
topologically closed.

Proof. If θ+ : R × M → M is a proper action, then its shear map

�+ : R × M → M × M,

(τ, p) �→ (p, θ+τ (p)),

is a proper map. Since �+ is continuous and its codomain is locally compact, it follows
that �+ is a closed map [Lee13, Theorem A.57]. Since [0,∞) ⊆ R is a closed subset,
so is [0,∞) × M ⊆ R × M ; hence using the characterisation in Proposition 4.22,

χ+
M = {

(p, q) ∈ M × M
∣∣ ∃τ ≥ 0 such that q = θ+τ (p)

} = �+ ([0,∞) × M)

is a closed subset of M × M . ��
We conclude that any χ+-initial spacetime M is χ+-simple: for by Theorem 4.38,

any right-chiral flow θ+ on M is free and proper, so χ+
M is antisymmetric by Lemma

4.33 and topologically closed by Lemma 4.41.
The author’s lack of examples of χ+-simple spacetimes which are not χ+-initial leads

to:

Open Question 4.42. If M is a χ+-simple 2D oriented spacetime, does it follow that
M is χ+-initial? In light of Lemma 4.33 and Theorem 4.38, this may be rephrased as
follows: if M is χ+-simple, does it follow that any right-chiral flow θ+ : R × M → M
on M is a proper R-action?

In case the answer is affirmative, then χ+-initial and χ+-simple are two formulations
of the same chiral property.

It is straightforward to observe that topological closedness of the relation χ+ does
not by itself imply that a right-chiral flow θ+ : R × M → M is proper. Recall that
by one characterisation, R-action θ+ is proper if and only if for any compact K ⊆ M
the set RK := {

τ ∈ R
∣∣ θ+τ (K ) ∩ K �= ∅

}
is compact. Any 2D oriented spacetime
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M with topologically closed but not antisymmetric χ+
M has any right-chiral flow θ+ not

proper: for then M contains a closed right-chiral curve and so a periodic integral curve of
complete right-chiral vector field n+ generating θ+. Say this periodic integral curve starts
at p ∈ M and has period �τ ; then R{p} =

{
τ ∈ R

∣∣ θ+τ (p) = p
} = { n�τ | n ∈ Z }

is not compact in R. An example of such a spacetime is the quotient of R
1,1 under

identification (x−, x+ + 1) ∼ (x−, x+) in lightcone coordinates.
On the other hand, if right-chiral flow θ+ is a free and proper R-action then the orbits

of θ+ are closed embedded submanifolds [Lee13, Proposition 21.7]. It is suggestive that
χ+-simple spacetimes satisfy the following necessary but not sufficient condition for the
χ+-initial property8:

Proposition 4.43. Let M be a χ+-simple 2D oriented spacetime. Then inextendable
right-chiral curves in M are closed embedded submanifolds.

Proof. Pick a right-chiral flow θ+ : R× M → M . By Lemma 4.21, inextendable right-
chiral curves are diffeomorphic reparameterisations of the orbit maps θ(p) : R → M
defined as θ(p)(τ ) := θ+τ (p). We show that for each p ∈ M , θ(p) is a closed embedding.

By definition of the flow θ+, θ(p) is a smooth immersion. M is χ+-causal since it is
χ+-simple; then θ+ is free by Lemma 4.33 so that θ(p) is injective. It remains to show
that θ(p) : R → M is a closed map. Recall that R has a basis of closed sets C(a, b) :=
(−∞, a] ∪ [b,∞) for a, b ∈ R. (The complements R \ C(a, b) = (a, b) form a basis
of open sets.) Then any closed subset A ⊆ R is an arbitrary intersection of closed basis
elements, A = ∩αC(aα, bα). Since θ(p) is injective, θ(p)(A) = θ(p) (∩αC (aα, bα)) =
∩αθ(p) (C(aα, bα)). So to show that θ(p) is a closed map, it suffices to show that

θ(p) (C(a, b)) = θ(p) ((−∞, a]) ∪ θ(p) ([b,∞))

is a closed set inM for any a, b ∈ R. But since the relation χ+ ⊆ M×M is topologically
closed, so is

χ+ ∩
(
{θ(p)(b)} × M

)
=

{ (
θ(p)(b), q

)
∈ M × M

∣∣
∣ q = θ+τ (p) for τ ≥ b

}

= {θ(p)(b)} × θ(p) ([b,∞)) ,

where we have used the characterisation of χ+ given in Proposition 4.22. It follows
that θ(p) ([b,∞)) ⊆ M is closed. Similarly, θ(p) ((−∞, a]) ⊆ M is closed since χ+ ∩(
M × {θ(p)(a)}) = θ(p) ((−∞, a]) × {θ(p)(a)} is closed. ��
Though its obvious use is as a causal property, global hyperbolicity may also serve

as a chiral property of 2D oriented spacetimes. As observed under Definition 4.34,
any smooth, spacelike Cauchy surface is also a χ+-Cauchy surface. Consequently, if 2D
oriented spacetime M is globally hyperbolic then it is also χ+-initial. The converse is not
true: for instance, take the open stripU := {

(t, x) ∈ R
1,1

∣∣ x ∈ (−1, 1)
}
inMinkowski

R
1,1 defined using its standard coordinates. Then U has χ+-Cauchy surface x = 0, but

is not globally hyperbolic.
Similar to the hierarchy of causal properties, we may realise the hierarchy of chiral

properties as a nested sequence of full ��-subcategories of CSpTm:

Definition 4.44. Let κ+ denote any right-chiral property in the hierarchy above; we
define κ+CSpTm to be the full ��-subcategory of (CSpTm, ��χ+) consisting of those
spacetimes which satisfy κ+.

8 Recall Corollary 4.24: inextendable right-chiral curves coincide with orbits of θ+.
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In particular, we have full ��-subcategory inclusions:

GlobHypCSpTm ↪→ χ+InitCSpTm ↪→ χ+SimCSpTm ↪→ χ+CausCSpTm ↪→ CSpTm.

If Open Question 4.42 has affirmative answer, then χ+InitCSpTm ↪→ χ+SimCSpTm
is the identity functor.

Remark 4.45. There is a dual hierarchy of full ��-subcategories of (CSpTm, ��χ−)

defined with left-chiral properties κ− dual to right-chiral properties κ+. Any left-chiral
property κ− is obtained by swapping right-chiral curves for left-chiral curves every-
where in the definition of right-chiral property κ+. For any such pair κ+ and κ−, there
is an isomorphism of ��-categories (κ+CSpTm, ��χ+) → (κ−CSpTm, ��χ−) which
reverses orientation (but not time-orientation) on spacetimes. That this functor is an
isomorphism of ��-categories means the functor is invertible and preserves and reflects
��-relations.

4.3. Overlap-monics in categories of spacetimes with good chiral properties. Analo-
gous to the causal case of Sect. 3.4, we use the general characterisation of ���-monics in
(CSpTm, ��χ+) given by Theorem 4.8 to produce simplified such characterisations in
��-subcategories κ+CSpTm.

The ��-subcategory inclusions κ+CSpTm ↪→ λ+CSpTm reflect ���-monics by
Proposition 2.16. They also preserve ���-monics; the proof is verbatim the same as the
causal analogue Proposition 3.25, up to replacing κSpTm and ��J with κ+CSpTm and
��χ+ respectively:

Proposition 4.46. The inclusion functors (κ+CSpTm, ��χ+) ↪→ (λ+CSpTm, ��χ+)

preserve ���-monics.
Remark 4.47. Note that Propositions 3.25 and 4.46 are proven using that any spacetime
admits a covering by open globally hyperbolic neighbourhoods. It is relevant that global
hyperbolicity is the strongest condition in both the causal and chiral hierarchies.

Theorem 4.48. A morphism f : M → N in (χ+SimCSpTm, ��χ+) is ���-monic if and
only if the following equivalent conditions hold:

(i) f reflects χ+,
(ii) f is injective and has χ+-convex image f (M) in N.

Proof. The inclusion χ+SimCSpTm ↪→ CSpTm preserves and reflects ���-monics
with respect to ��χ+ ; hence f is ���-monic in χ+SimCSpTm if and only if it is ���-
monic in CSpTm, so if and only if it reflects sχ+ by Theorem 4.8. All spacetimes in
χ+SimCSpTm have sχ+ = s(χ+) = sχ+, where the first equality uses Lemma 3.6.
Thus f is ���-monic if and only if it reflects sχ+.

Since M and N are necessarily χ+-causal, this is equivalent to (i) by Corollary 4.29,
which in turn is equivalent to (ii) by Propositions 4.31 and 4.32. ��

Restriction to χ+-initial or globally hyperbolic spacetimes is trivial, and the resulting
characterisation parallels the causal case of Theorem 3.27:

Corollary 4.49. A morphism f : M → N in either (χ+InitCSpTm, ��χ+) or
(GlobHypCSpTm, ��χ+) is ���-monic in that ��-category if and only if the following
equivalent conditions hold:
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(i) f reflects χ+,
(ii) f is injective and has χ+-convex image f (M) in N.

In analogy with the nomenclature for the standard category Loc of spacetimes for
relativistic AQFTs:

Definition 4.50. Denote by χLoc the wide ��-subcategory in χ+InitCSpTm of ���-
monics with respect to ��χ+ :

χLoc := ���-Monics(χ+InitCSpTm, ��χ+).

Then χLoc has as objects all two-dimensional oriented spacetimes M containing χ+-
Cauchy surfaces, and as morphisms all orientation- and time-orientation-preserving
injective conformal maps f : M → N with χ+-convex image f (M) in N . It is equipped
with ��-relation ��χ+ , which is in particular an orthogonality relation in the sense of
[BSW21].

As per our proposal described in Sect. 1, we therefore expect that the right-moving
half of a chiral CFT may be formulated as a functor

A : χLoc → Obs,

satisfying the causality axiom with respect to ��χ+ . It remains to describe a time slice
axiom on such functors.

Definition 4.51. For 2D oriented spacetimes M and N , an orientation- and time-
orientation-preserving conformal map f : M → N is called a χ+-Cauchy map if
its image f (M) contains a χ+-Cauchy surface of N .

Evidently, the codomain of any χ+-Cauchy map is necessarily χ+-initial.
A functor A : χLoc → Obs obeys the chiral time-slice axiom9 if A f is an isomor-

phism inObs for every morphism f in χLoc which is a χ+-Cauchy map. Equivalently,
in the terminology of [BSW21], A : χLoc → Obs obeys the chiral time-slice axiom
if it is W -constant, for W the collection of morphisms in χLoc which are χ+-Cauchy
maps.

Remark 4.52. Following from Remark 4.45, there is an isomorphism of orthogonal cat-
egories ���-Monics(χ−InitCSpTm, ��χ−) → ���-Monics(χ+InitCSpTm, ��χ+) which
reverses orientations on spacetimes. Given this isomorphism, we do not retain any nota-
tional distinction between the category χLoc = ���-Monics(χ+InitCSpTm, ��χ+) pro-
posed for right-moving halves of chiral CFTs, and its counterpart for left-moving halves.

It follows that the left-moving half of a chiral CFT is also a functor χLoc → Obs
satisfying causality and time-slice axioms just as the right-moving half. Only upon
combining the two halves into a full CFT does a distinction need to be made between
left- and right-moving halves.

Remark 4.53. We define χLoc using χ+-initial spacetimes rather than globally hyper-
bolic spacetimes because, in their own right, (right-)chiral theories require well-
posedness of (right-)chiral initial value problems and hence the existence of χ+-Cauchy
surfaces rather than standard Cauchy surfaces. But for chiral theories arising as chi-
ral halves of full CFTs, it may be more appropriate to restrict to globally hyperbolic
spacetimes in the definition of χLoc. For the discussion in the next section at least, this
distinction is unimportant: the weaker χ+-initial property is enough.

9 Since χ+-Cauchy surfaces need not be achronal, ‘time-slice’ axiom is a misnomer; we use it for compat-
ibility with standard terminology.
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Remark 4.54. Non-chiral 2D CFTs may be formulated as functors CLoco,to1+1 → Obs.
The domain CLoco,to1+1 consists of globally hyperbolic 2D oriented spacetimes and
orientation- and time-orientation-preserving conformal maps which are injective with
causally convex image [Pin09]. It can be equipped with a causal ��-relation ��J defined
similarly toDefinition 3.12. Compare toCLocd+1 discussed in Remark 3.28: inCLoco,to1+1
we have restricted to oriented spacetimes and orientation- and time-orientation preserv-
ing maps, but the settings are otherwise similar.

There is an evident inclusion functor

ι : (CLoco,to1+1, ��J ) ↪→ (χLoc, ��χ+),

using that any globally hyperbolic 2D oriented spacetime is necessarily χ+-initial,
and any causally convex subset is necessarily χ+-convex. This functor ι preserves ��-
relations: if there is no causal curve in codomain N connecting images fi (Mi ) of con-
terminous pair f1 : M1 → N ← M2 : f2 in CLoco,to1+1, then necessarily also there is no
right-chiral curve in N connecting them.

Because any (smooth, spacelike) Cauchy surface in a 2D oriented spacetime is also
a χ+-Cauchy surface, it follows that Cauchy maps between 2D oriented spacetimes are
also χ+-Cauchy maps. Consequently, the inclusion ι sends Cauchy maps in CLoco,to1+1 to
χ+-Cauchy maps in χLoc.

As a result, any chiral CFT formulated as a functor A : χLoc → Obs may be
pre-composed with ι to describe a general CFT A ◦ ι : CLoco,to1+1 → Obs. If A satisfies
the causality axiom with respect to ��χ+ then A ◦ ι satisfies the causality axiom with
respect to ��J because ι preserves ��-relations. IfA satisfies the chiral time-slice axiom
(with respect to χ+-Cauchy maps) thenA ◦ ι satisfies the time-slice axiom (with respect
to Cauchy maps) because ι sends Cauchy maps to χ+-Cauchy maps.

4.4. Comparison with established approaches to chiral CFT. Our proposed formulation
of chiral CFTs as functors χLoc → Obs differs from established AQFT formulations
of chiral CFTs. Commonly, in the older net-based formulations of AQFT, a chiral CFT is
definedon anet of open subsets of the circleS

1.Ananalogous categorical formulation, for
instance as in [BGS21], uses a category Emb1 of one-dimensional oriented manifolds
and smooth orientation-preserving embeddings. (The net of open subsets of S

1 may
be recovered from the categorical formulation as the skeleton of the slice category
Emb1/S

1.)
The key difference between these established formulations and our proposal is that

the established formulations use one-dimensional manifolds as representatives of space-
times. This builds a time-slice axiom into the formulation preemptively; a functor
Emb1 → Obs may be understood as a chiral CFT without imposing that it obey any
time-slice axiom (so long as it obeys an appropriate causality property).

We construct below a functor χLoc → Emb1 which sends any morphisms f in
χLoc which are χ+-Cauchy maps to isomorphisms in Emb1. It then follows that any
functor Emb1 → Obs representing a chiral CFT in the established formulation may be
pre-composed with the functor χLoc → Emb1 to give a chiral CFT obeying the chiral
time-slice axiom in our proposed formulation.

To begin, let us consider in more detail the established formulation. Denote byMan1
the category whose objects are smooth, oriented, one-dimensional manifolds, and whose
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morphisms are orientation-preserving local diffeomorphisms. Since this is a concrete cat-
egory, we may equip it with the ��-relation ��set of setwise-disjointness, as per Example
2.8.

Proposition 4.55. A morphism f : X → Y of (Man1, ��set) is ���-monic if and only if
it is injective.

Proof. From Examples 2.8 and 2.9, ��set on Man1 is the pullback of ��bin along

Man1
U−→ Set

�−→ sBin,

where U is the forgetful functor to Set and � equips sets with the diagonal relation. So
morphisms gi : Wi → X inMan1 have g1 ��set g2 if and only if g1(W1)× g2(W2) does
not intersect the diagonal relation �X := { (x, x) ∈ X × X } on X .

Since all morphisms in Man1 are local diffeomorphisms and hence open maps, f :
X → Y is ���-monic with respect to ��set if and only if f reflects s�; the proof is
verbatim the same as Theorem 3.13, withSpTmd+1, spacetimes and relations J replaced
by everywhere by Man1, oriented 1-manifolds and relations �.

But diagonal relations � here are symmetric by definition and topologically closed
since manifolds are Hausdorff, so s� = �. Hence f is ���-monic with respect to ��set
if and only if f reflects �, i.e. is injective. ��
Remark 4.56. Compare (Man1, ��set) to (Set, ��set): in both cases, morphisms are ���-
monic if and only if they are injective. However, the methods of proof of this fact differ.
For (Set, ��set), the argument in Example 2.14 uses the pointlike generalised elements
{∗} → X of any object X . Since (Man1, ��set) lacks such pointlike generalised elements,
���-monicsmust be characterised via the topological closures s� of the underlying binary
relations.

Then the orthogonal category Emb1 used in the established formulation of chiral
CFTs is the ��-subcategory of ���-monics, Emb1 := ���-Monics(Man1, ��set). Since its
morphisms are injective local diffeomorphisms, they are smooth embeddings.

On any two-dimensional oriented spacetime M , we have sχ+ an equivalence relation
by Corollary 4.24. We claim that the assignment of the quotient M/sχ+ to spacetime M
gives a functor from χ+InitCSpTm to Man1:

Theorem 4.57. There is a functor Q : χ+InitCSpTm → Man1 acting on objects M by
QM = M/sχ+, and on morphisms f : M → N by

Q f : M�sχ+ → N�sχ+,

[p] �→ [ f (p)]. (3)

Proof. We show that the spaces and maps so prescribed are well-defined objects and
morphisms of Man1; it is trivial after this to see that Q is functorial.

Theorem 4.38 shows that the quotient space M/sχ+ of χ+-initial M is a smooth
1-manifold such that the quotient map πM : M → M/sχ+ is a smooth submersion. To
define anorientation onM/sχ+, observe that there exists onM/sχ+ a nowhere-vanishing
1-formω such that π∗

Mω is a right-chiral 1-form on M . Choosing a chiral frame (n−, n+)
on M with dual coframe (−η+,−η−), this means there is some κ ∈ C∞(M) such that
π∗
Mω = eκ · η+.
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Specifically, since M/sχ+ is a smooth 1-manifold, it is orientable; pick an arbitrary
nowhere-vanishing 1-form ω̃ on it. By expanding in coframe (−η+,−η−), we have

π∗
M ω̃ = λ−η− + λ+η

+,

for some coefficient functions λ± ∈ C∞(M). Because n+ is tangent to the fibres of πM
(Corollary 4.24), so dπM |p(n+) = 0 at all p ∈ M , it follows that

−λ−(p) = λ−(p)η−p (n+) + λ+(p)η
+
p(n+) = (π∗

M ω̃)p(n+) = ω̃[p](dπM |p(n+)) = 0,

for all p ∈ M ; hence π∗
M ω̃ = λ+η

+.
Since πM is a submersion and ω̃ is nowhere-vanishing, it follows that λ+ is also

nowhere-vanishing. So on each path-component of M , λ+ has fixed sign, i.e. sgn λ+ :
M → {−1, 1} ⊆ R is locally constant. Since the orbits of θ+ are path-connected, this
means sgn λ+ is constant on those orbits and so descends to the quotient, i.e. there is
ρ : M/sχ+ → R such that the following diagram is commutative:

M R

M/sχ+

sgn λ+

πM ρ

In particular, ρ is also locally constant; for if sgn λ+ is constant on a neighbourhood U
of p, then ρ is constant on πM (U ) which is a neighbourhood of [p] = πM (p) since the
submersion πM is an open map.

With this, set ω := ρ · ω̃. Then π∗
Mω = (ρ ◦ πM ) · π∗

M ω̃ = (sgn λ+) · λ+η−, and the
coefficient function (sgn λ+) · λ+ =: eκ is everywhere-strictly-positive by construction.

Equip 1-manifold M/sχ+ with the orientation represented by this 1-form ω. This
orientation is well-defined, i.e. any nowhere-vanishing 1-forms ω and ω′ on M/sχ+

which both have π∗
Mω and π∗

Mω′ right-chiral on M define the same orientation. For,
say ω and ω′ represent distinct orientations of M/sχ+, so that there exists some path-
component X of M/sχ+ on which the restrictions have ω′|X = −eμω|X for some μ ∈
C∞(X). Then π∗

M (ω′|X ) = −eμ◦πMπ∗
M (ω|X ), so that π∗

Mω′|
π−1
M (X)

and π∗
Mω|

π−1
M (X)

differ by a sign; in particular, they cannot both be right-chiral.
This defines smooth, oriented 1-manifold QM = M/sχ+ an object ofMan1 for any

object M of χ+InitCSpTm. Next we show that, for f : M → N a smooth conformal
map which preserves orientation and time-orientation, the induced map (3) on quotients
is a well-defined local diffeomorphism which preserves orientation.

Well-definedness of (3) follows because morphisms f : M → N of χ+InitCSpTm
preserve the relation χ+. By definition of Q f , the following diagram is commutative:

M N

M/sχ+ N/sχ+

f

πNπM

Q f

Then Q f is smooth since Q f ◦πM = πN ◦ f is smooth and πM is a smooth submersion
[Lee13, Theorem 4.29].



Spacetimes Categories and Disjointness 621

Take chiral frames (nM− , nM+ ) on M and (nN− , nN+ ) on N , with dual coframes
(−η+M ,−η−M ) and (−η+N , η−N ) respectively. Since f is conformal, orientation- and time-
orientation-preserving, there exist F± ∈ C∞(M) such that d f ◦ nM± = eF± · nN± ◦ f or
equivalently f ∗η±N = eF∓η±M by Proposition 4.26.

To show that Q f is a local diffeomorphism, it suffices to show that its tangent map
d(Q f )[p] is not the zero map for any [p] ∈ M/sχ+ since both the domain and codomain
of Q f are one-dimensional. For q ∈ N , the left-chiral vector nN−(q) on N is not in
ker dπN |q = span{nN+ (q)}. Then for any p ∈ M ,

d(Q f )[p] ◦ dπM |p(nM− |p) = dπN | f (p) ◦ d f p(nM− |p) = eF−(p) · dπN | f (p)(nN−| f (p)) �= 0,

so d(Q f )[p] is not the zero map.
Denote by ωN a nowhere-vanishing 1-form representing the orientation on QN =

N/sχ+. This means π∗
NωN is right-chiral and so there exists κ ∈ C∞(N ) such that

π∗
NωN = eκη+N . Then

π∗
M (Q f ∗ωN ) = (Q f ◦ πM )∗ωN = (πN ◦ f )∗ωN = f ∗(eκη+N ) = eκ◦ f +F−η+M ,

which demonstrates that the nowhere-vanishing 1-form Q f ∗ωN on M/sχ+ has
π∗
M (Q f ∗ωN ) right-chiral on M . Hence Q f ∗ωN agrees with the orientation on M/sχ+,

and consequently Q f preserves orientation. ��
Taking quotients M/sχ+ of spacetimes M moreover relates the right-chiral disjoint-

ness relation on spacetimes to the setwise-disjointness relation on their quotients:

Proposition 4.58. The functor Q : (χ+InitCSpTm, ��χ+) → (Man1, ��set) both pre-
serves and reflects ��-relations.
Proof. Take any conterminous pair M1

f1−→ N
f2←− M2 in χ+InitCSpTm. Then

Q f1 ���set Q f2 holds if and only if there exist arbitrary representatives pi ∈ Mi of
[pi ] ∈ Mi/sχ+ with Q f1[p1] = Q f2[p2], which holds if and only if there exist pi ∈ Mi
with ( f1(p1), f2(p2)) ∈ sχ+

N , i. e. f1 ���χ+ f2. ��
Consequently by Proposition 2.16, Q reflects ���-monics. Further, using the characteri-
sations of ���-monics established above in its domain and codomain, Q also preserves
���-monics:

Proposition 4.59. The functor Q : (χ+InitCSpTm, ��χ+) → (Man1, ��set) preserves
���-monics.
Proof. Let morphism f : M → N of (χ+InitCSpTm, ��χ+) be ���-monic, so f reflects
the chiral relationχ+ by Corollary 4.49. The inducedmap Q f on quotients is injective: if
[p], [p′] ∈ M/sχ+ have Q f [p] = [ f (p)] = [ f (p′)] = Q f [p′], then ( f (p), f (p′)) ∈
sχ+

N so (p, p′) ∈ sχ+
M since f reflects sχ+; then [p] = [p′]. Hence by Proposition 4.55,

Q f is ���-monic in (Man1, ��set). ��
Then Q restricts to a functor χLoc → Emb1 on the subcategories of ���-monics,

which we denote by the same name. The morphisms made invertible by this functor are
exactly the χ+-Cauchy maps contained in χLoc:

Proposition 4.60. A morphism f : M → N in χLoc is a χ+-Cauchy map if and only if
Q f : M/sχ+ → N/sχ+ is an isomorphism in Emb1.
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Proof. (⇒): Let S ⊆ f (M) ⊆ N be a χ+-Cauchy surface of N . To show that Q f is a
diffeomorphism, and so an isomorphism inEmb1, it suffices to show that it is surjective.
Take any [q] ∈ N/sχ+ with arbitrarily chosen representative q ∈ N , and let γ : I → N
be an inextendable right-chiral curve through q = γ (0). By definition of χ+-Cauchy
surfaces, there exists a unique t ∈ I such that γ (t) ∈ S. Since S ⊆ f (M) there exists
p ∈ M with f (p) = γ (t), and hence

Q f [p] = [ f (p)] = [γ (t)] = [γ (0)] = [q].
(⇐): Say Q f has inverse Q f −1. By Corollary 4.39, there is a smooth section σ of

the quotient map πM : M → M/sχ+. Then the composite

N�sχ+
Q f −1

−−−→ M�sχ+
σ−→ M

f−→ N

of smooth maps satisfies

πN ◦ ( f ◦ σ ◦ Q f −1) = Q f ◦ (πM ◦ σ) ◦ Q f −1 = Q f ◦ idM/sχ+ ◦ Q f −1 = idN/sχ+ .

So f ◦ σ ◦ Q f −1 is a smooth section of πN : N → N/sχ+. Then by Lemma 4.36,
the image of f ◦ σ ◦ Q f −1 is a χ+-Cauchy surface in N and is evidently contained in
f (M). ��

As an aside, from this it follows that compositions of χ+-Cauchy maps in χLoc are
also χ+-Cauchy maps: for if f : M → N and g : N → P are χ+-Cauchy in χLoc, then
Q f , Qg are isomorphisms in Emb1; then so too is Q(g f ), so that g f is χ+-Cauchy. As
a consequence, the collectionW of morphisms in χLocwhich are χ+-Cauchy constitute
a wide subcategory W. Moreover, this subcategory possesses the 2-of-6 property:

Corollary 4.61. The wide subcategory W of χ+-Cauchy maps in χLoc satisfies the
following 2-of-6 property: for composable triple f, g, h of morphisms in χLoc, if g f
and hg are inW then so are f , g, h, and hg f .

Proof. This follows from the 2-of-6 property of isomorphisms via the preceding propo-
sition: say composable triple f, g, h in χLoc has Q(g f ) and Q(hg) isomorphisms in
Emb1. Then Qg has left-inverse Q f ◦ Q(g f )−1; also since Q(hg) = Qh ◦ Qg is an
isomorphism, Qg is monic so left-inverse Q f ◦ Q(g f )−1 of Qg is also a right-inverse:

Qg ◦
{[

Q f ◦ Q(g f )−1
]
◦ Qg

}
= id ◦ Qg = Qg ◦ id.

It then follows since Qg is invertible that Q f has inverse Q(g f )−1 ◦Qg, Qh has inverse
Qg ◦ Q(hg)−1, and Q(hg f ) has inverse Q(g f )−1 ◦ Qg ◦ Q(hg)−1. ��
Consequently, the data (χLoc,W) may be understood as a homotopical category, with
χ+-Cauchy morphisms W its weak equivalences; see for instance [Rie14, Definition
2.1.1].

The functor Q : χLoc → Emb1 allows us to produce from any chiral CFT in the
established formalism a chiral CFT in our proposed formalism:

Proposition 4.62. Consider any functorA : Emb1 → Obs. Then the compositeA◦Q :
χLoc → Obs obeys the chiral time-slice axiom.

Moreover, ifA obeys the causality axiom with respect to orthogonality relation ��set
on domain Emb1, then A ◦ Q obeys the causality axiom with respect to orthogonality
relation ��χ+ on χLoc.
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Proof. The former statement follows because any χ+-Cauchy map f in χLoc has Q f
and hence necessarily AQ f an isomorphism (Proposition 4.60).

The latter statement follows since Q preserves ��-relations (Proposition 4.58): if
conterminous pair f1 : M1 → N ← M2 : f2 in χLoc has f1 ��χ+ f2, then necessarily
Q f1 ��set Q f2 in Emb1. Then if A : Emb1 → Obs obeys the causality axiom, it
follows that

[AQ f1(a1),AQ f2(a2)]AQN = 0,

for any observables a1 ∈ AQM1 and a2 ∈ AQM2. ��
It is not clear to us yet whether a converse to the above holds:

Open Question 4.63. Say a functor B : χLoc → Obs satisfies both the causality
axiom with respect to ��χ+ and the chiral time-slice axiom. Does there exist a functor
B̃ : Emb1 → Obs satisfying the causality axiom with respect to ��set such that B ∼=
B̃ ◦ Q?

One possibility is that the functor Q : χLoc → Emb1 is a localisation of χLoc
on the χ+-Cauchy morphisms W, so Emb1 ! χLoc[W−1]; see [GZ67, Chapter I]
and [KS06, Chapter 7] for general information about localisations of categories, and
[BSW21, Lemma 3.20] for their interaction with orthogonality relations. In this case,
our formulation of chiral CFTs in terms of χLoc would be equivalent to the established
formulation in terms of Emb1.

If Q is not such a localisation, then our proposed formulation of chiral CFTs may be
meaningfully new; it would remain to determine whether it is of any greater physical
interest than the established formulation.
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