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Abstract: In this paper, first we introduce the notion of quadratic Rota–Baxter Lie
algebras of arbitraryweight, and show that there is a one-to-one correspondence between
factorizable Lie bialgebras and quadratic Rota–Baxter Lie algebras of nonzero weight.
Then we introduce the notions of matched pairs, bialgebras and Manin triples of Rota–
Baxter Lie algebras of arbitrary weight, and show that Rota–Baxter Lie bialgebras,
Manin triples of Rota–Baxter Lie algebras and certain matched pairs of Rota–Baxter
Lie algebras are equivalent. The coadjoint representations and quadratic Rota–Baxter
Lie algebras play important roles in the whole study. Finally we generalize some results
to the Lie group context. In particular, we show that there is a one-to-one correspondence
between factorizable Poisson Lie groups and quadratic Rota–Baxter Lie groups.
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1. Introduction

Poisson Lie groups, as semi-classical counterparts of Hopf algebras, or quantum groups,
are Lie groups with compatible Poisson structures in the sense that the group multipli-
cation is a Poisson map. The infinitesimals of Poisson Lie groups are Lie bialgebras.
A quasitriangular Hopf algebra [11] is a Hopf algebra A with an invertible element
R ∈ A ⊗ A, called a quantum R-matrix, satisfying some conditions. Particularly, R
satisfies the quantum Yang-Baxter equation. The quasiclassical limits of quantum R-
matrices are classical r -matrices ([35]), which give rise to the notion of quasitriangular
Lie bialgebras. Factorizable Lie bialgebras and factorizable Hopf algebras, introduced
in [34], are important classes of quasitriangular Lie bialgebras and quasitriangular Hopf
algebras. For instance, the double of an arbitrary Lie bialgebra is a factorizable Lie
bialgebra. As the name suggests, factorizable Lie bialgebras (Hopf algebras) are used
to establish the relation between classical r -matrices (quantum R-matrices) and certain
factorization problems in Lie algebras (Hopf algebras). A key feature of the factorizable
case is that the symmetric part of a classical r -matrix r ∈ ⊗2g (quantum R-matrix) iden-
tifies the underlying vector space of the Lie algebra g (the Hopf algebra) with its dual
space g∗. Then a Lie bialgebra (g, g∗) gives two compatible Lie algebra structures on
g, which leads to a double Lie algebra. Such double Lie algebras generate Hamiltonian
systems and can be solved by the factorization; see [35,36].

Rota–Baxter associative algebras were introduced in the probability study of G. Bax-
ter. They have important applications in various areas, including the Connes-Kreimer’s
algebraic approach to renormalization of quantum field theory [10], noncommutative
symmetric functions [13,42], splitting of operads [3,32], quantum analogue of Poisson
geometry [39] and double Poisson algebras [1,21,37]. A linear map B : g → g is called
a Rota–Baxter operator of weight λ on a Lie algebra g if

[B(x), B(y)]g = B([B(x), y]g + [x, B(y)]g + λ[x, y]g), ∀x, y ∈ g.

There is a close relationship between Rota–Baxter operators on Lie algebras and solu-
tions of the (modified) classical Yang-Baxter equation. More precisely, a Rota–Baxter
operator of weight 0 on a Lie algebra is naturally the operator form of a classical r -matrix
[35] under certain conditions; Rota–Baxter operators of weight 1 on a Lie algebra one-
to-one correspond to solutions of the modified classical Yang-Baxter equation. To better
understand such connections, the notion of an O-operator (also called a relative Rota–
Baxter operator [32] or a generalized Rota–Baxter operator [40]) on a Lie algebra gwith
respect to a representation (V, ρ) was introduced by Kupershmidt in [28], which can
be traced back to Bordemann’s earlier work [9]. An O-operator on a Lie algebra g with
respect to a representation (V, ρ) is a linear operator T : V → g satisfying

[Tu, T v]g = T (ρ(Tu)v − ρ(T v)u), ∀u, v ∈ V .

A skew-symmetric classical r -matrix naturally gives rise to an O-operator r� : g∗ → g
on g with respect to the coadjoint representation. On the other hand, any O-operator
T : V → g gives rise to a skew-symmetric solution of the classical Yang-Baxter
equation in the semidirect product Lie algebra g �ρ V , see [2]. Rota–Baxter operators
andO-operators also play important roles in the study of integrable systems [5,35]. For
further details on Rota–Baxter operators, see [22].

Even though the operator forms of skew-symmetric solutions of the classical Yang-
Baxter equation are very clear, namely O-operators with respect to the coadjoint rep-
resentation (equivalently Rota–Baxter operators of weight zero [8,35] under certain
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conditions), the operator forms of non-skew-symmetric solutions of the classical Yang-
Baxter equation are still mysterious. Recently, Goncharov established a correspondence
between non-skew-symmetric solutions of the classical Yang-Baxter equation and Rota–
Baxter operators of nonzero weight for certain Lie algebras [17,18]. On the other hand,
Kosmann-Schwarzbach clarified the relation between factorizable Lie bialgebras and
double Lie algebras [26], while the latter are closely related to Rota–Baxter Lie alge-
bras of weight 1. Thus it is natural to expect a direct relation between factorizable Lie
bialgebras and Rota–Baxter Lie algebras. This serves as the first purpose of the paper.
We introduce the notion of a quadratic Rota–Baxter Lie algebra of weight λ, and es-
tablish a one-to-one correspondence between factorizable Lie bialgebras and quadratic
Rota–Baxter Lie algebras of nonzero weight.

It is well known that quadratic Lie algebras play important roles in the theories of
Manin triples of Lie algebras and Lie bialgebras. Since we have defined quadratic Rota–
Baxter Lie algebras of arbitrary weight, it is natural to develop the bialgebra theory, the
Manin triple theory as well as the matched pair theory for Rota–Baxter Lie algebras.
To define matched pairs, we introduce the notion of representations of Rota–Baxter
Lie algebras of weight λ. A Rota–Baxter Lie algebra of weight λ admits the adjoint
representation, as well as the coadjoint representation, while the latter is quite tricky.
For a quadratic Rota–Baxter Lie algebra of weight λ, its adjoint representation and
coadjoint representation are isomorphic. The data in the coadjoint representation also
serves as a guidance on how to define a Rota–Baxter Lie bialgebra of weight λ. We
introduce the notions of matched pairs, bialgebras andManin triples of Rota–Baxter Lie
algebras of weight λ and show that they are equivalent. Recently, the bialgebra theory
for Rota-Baxter Lie algebras are also studied in [4] using a different approach.

Recently, Rota–Baxter operators are defined in the categories of Lie groups [23] and
cocommutative Hopf algebras [19], and have found some applications [6,7]. Taking the
differentiation, a Rota–Baxter operator on a Lie group gives a Rota–Baxter operator
on the corresponding Lie algebra. A Rota–Baxter operator on a cocommutative Hopf
algebra gives rise to a Rota–Baxter operator on the Lie algebra of primitive elements
and a Rota–Baxter operator on the group of group-like elements. We further generalize
some results in the algebraic setting to the Lie group context. In particular, we show that
factorizable Poisson Lie groups are in one-to-one correspondence with quadratic Rota–
Baxter Lie groups, and a Rota–Baxter Lie group gives a matched pair of Lie groups.
It is still mysterious to combine a Rota–Baxter operator and a Poisson structure on a
Lie group to define a Rota–Baxter Poisson Lie group, and we will study it in the future.
Another topic that wewould like to explore in the future is the operator forms of solutions
of the classical dynamical Yang-Baxter equation, which were first considered in [16]
and further studied in [15]. In this paper, we work over an algebraically closed ground
field of characteristic 0, and all the vector spaces are finite dimensional.

The paper is organized as follows. In Sect. 2, we introduce the notion of a quadratic
Rota–Baxter Lie algebra of weight λ, and show that factorizable Lie bialgebras one-
to-one correspond to quadratic Rota–Baxter Lie algebras of nonzero weight (Theorem
2.5 and Theorem 2.10). In Sect. 3, first we show that a Rota–Baxter Lie algebra gives a
matched pair of Lie algebras. Thenwe introduce the notion of a representation of a Rota–
Baxter Lie algebra of weight λ. A Rota–Baxter Lie algebra has the adjoint representation
and the coadjoint representation, and for a quadratic Rota–Baxter Lie algebra they are
isomorphic (Theorem 3.10). Finally we introduce the notion of a matched pair of Rota–
Baxter Lie algebras and show that it gives rise to a descendent matched pair of Lie
algebras (Theorem 3.15). In Sect. 4, first we introduce the notion of a Rota–Baxter Lie
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bialgebra of weight λ, and show that they are equivalent to certain matched pairs of
Rota–Baxter Lie algebras (Theorem 4.3). The double of a Rota–Baxter Lie bialgebra
is still a Rota–Baxter Lie bialgebra (Proposition 4.6). We show that factorizable Lie
bialgebras naturally give Rota–Baxter Lie bialgebras (Theorem 4.7). Then we introduce
the notion ofManin triples of Rota–Baxter Lie algebras and show that they are equivalent
to Rota–Baxter Lie bialgebras. In Sect. 5, we show that factorizable Poisson Lie groups
one-to-one correspond to quadratic Rota–Baxter Lie groups (Theorem 5.4 and Theorem
5.7), and a Rota–Baxter Lie group gives rise to a matched pair of Lie groups (Theorem
5.11).

In this paper, we work over an algebraically closed ground field of characteristic 0,
and all the vector spaces are finite dimensional.

2. Factorizable Lie Bialgebras and Quadratic Rota–Baxter Lie Algebras

In this section, we establish a one-to-one correspondence between factorizable Lie bial-
gebras and quadratic Rota–Baxter Lie algebras of nonzero weight.

2.1. Preliminaries on factorizable Lie bialgebras. We first briefly recall the definitions
of quasitriangular Lie bialgebras and factorizable Lie bialgebras following [11,14,26,
29,30,34,41].

Definition 2.1. A Lie bialgebra is a pair of Lie algebras (g, [·, ·]g) and (g∗, [·, ·]g∗)
such that

�[x, y]g = [�(x), y]g + [x,�(y)]g, ∀x, y ∈ g,

where � : g → ∧2g is defined by 〈�(x), ξ ∧ η〉 := 〈x, [ξ, η]g∗〉, and called the
cobracket.

A Lie bialgebra is denoted by (g, g∗) or (g,�). For such a Lie bialgebra, there is a Lie
algebra structure [·, ·]
� on the double g⊕g∗ such that g and g∗ are Lie subalgebras and

[x, ξ ]
� = −ad∗
ξ x + ad∗

xξ, ∀x ∈ g, ξ ∈ g∗,

where ad∗
ξ x ∈ g and ad∗

xξ ∈ g∗ are given by

〈ad∗
ξ x, η〉 = −〈x, [ξ, η]g∗ 〉, 〈ad∗

xξ, y〉 = −〈ξ, [x, y]g〉.
Denote this Lie algebra by g 
� g∗. We refer the readers to [29,30] for the equivalent
description of Lie bialgebras by using Manin triples of Lie algebras. One important
observation is that if (g, g∗) is a Lie bialgebra, then (g∗, g) is also a Lie bialgebra.

Let (g, [·, ·]g) be a Lie algebra. An element r = ∑
i xi ⊗ yi ∈ g ⊗ g is called a

solution of the classical Yang-Baxter equation if it satisfies

[r12, r13] + [r13, r23] + [r12, r23] = 0,

where r12 = ∑
i xi ⊗ yi ⊗ 1, r23 = ∑

i 1 ⊗ xi ⊗ yi and r13 = ∑
i xi ⊗ 1 ⊗ yi , and the

bracket [r12, r13] is defined by

[r12, r13] = [
∑

i

xi ⊗ yi ⊗ 1,
∑

j

x j ⊗ 1 ⊗ y j ] =
∑

i, j

[xi , x j ]g ⊗ yi ⊗ y j ,

and similarly for [r13, r23] and [r12, r23].
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Any r ∈ g ⊗ g induces a linear operator r+ : g∗ → g defined by r+(ξ) = r(ξ, ·) for
all ξ ∈ g∗. Define r− := −r∗

+. Let us introduce a bracket [·, ·]r on g∗:

[ξ, η]r = ad∗
r+ξ η − ad∗

r−ηξ, ∀ξ, η ∈ g∗.

If r satisfies the ad-invariant condition

[r + σ(r), x]g = 0, ∀x ∈ g, (1)

whereσ is theflip operatorwhich interchanges the components ing⊗g, and it is a solution
of the classical Yang-Baxter equation, then (g∗, [·, ·]r ) is a Lie algebra, which is denoted
by g∗

r . Moreover, (g, g∗
r ) constitutes a Lie bialgebra, which is called a quasitriangular

Lie bialgebra. If r is skew-symmetric, it is called a triangular Lie bialgebra.

Theorem 2.2. ([26,34]) Let r ∈ g ⊗ g satisfy the ad-invariant condition (1). Then r
satisfies the classical Yang-Baxter equation if and only if (g∗, [·, ·]r ) is a Lie algebra and
the linear maps r+, r− : (g∗, [·, ·]r ) → (g, [·, ·]g) are both Lie algebra homomorphisms.

Denote by I the operator

I = r+ − r− : g∗ → g. (2)

Note that I ∗ = I , and the ad-invariant condition (1) is equivalent to

I ◦ ad∗
x = adx ◦ I, ∀x ∈ g. (3)

Actually 1
2 I is the symmetric part of r . If r is skew-symmetric, then I = 0. Factorizable

Lie bialgebras are however concerned with the opposite case that I is nondegenerate;
see [34].

Definition 2.3. A quasitriangular Lie bialgebra (g, g∗
r ) defined by r ∈ g ⊗ g is called

factorizable if the linear map I : g∗ → g defined in (2) is a linear isomorphism of
vector spaces.

2.2. FactorizableLie bialgebras andquadraticRota–BaxterLie algebras. Let (g, [·, ·]g)
be a Lie algebra and B : g → g a Rota–Baxter operator of weight λ on g. Then there
is a new Lie bracket [·, ·]B on g defined by

[x, y]B = [B(x), y]g + [x, B(y)]g + λ[x, y]g.
The Lie algebra (g, [·, ·]B) is called the descendent Lie algebra, and denoted by gB . It
is obvious that B is a Lie algebra homomorphism from gB to g:

B[x, y]B = [B(x), B(y)]g.
Moreover, B is still a Rota-Baxter operator of weight λ on the descendent Lie algebra

gB , so the procedure of getting descendent Lie algebras can be iterated [12]. Recall that
a nondegenerate symmetric bilinear form S ∈ ⊗2g∗ on a Lie algebra g is said to be
invariant if

S([x, y]g, z) + S(y, [x, z]g) = 0, ∀x, y ∈ g. (4)

A quadratic Lie algebra (g, S) is a Lie algebra g equipped with a nondegenerate sym-
metric invariant bilinear form S ∈ ⊗2g∗.
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Definition 2.4. Let (g, [·, ·]g, B) be a Rota–Baxter Lie algebra of weight λ, and S ∈
⊗2g∗ a nondegenerate symmetric bilinear form. The triple (g, B, S) is called aquadratic
Rota–Baxter Lie algebra of weight λ if (g, S) is a quadratic Lie algebra and the
following compatibility condition holds:

S(x, By) + S(Bx, y) + λS(x, y) = 0, ∀x, y ∈ g. (5)

A factorizable Lie bialgebra naturally gives rise to a quadratic Rota–Baxter Lie al-
gebra of nonzero weight.

Theorem 2.5. Let (g, g∗
r ) be a factorizable Lie bialgebra with I = r+ − r−. Then

(g, B, SI ) is a quadratic Rota–Baxter Lie algebra of weight λ, where the linear map
B : g → g and SI ∈ ⊗2g∗ are defined by

B = λr− ◦ I−1, (6)

SI (x, y) = 〈I−1x, y〉, ∀x, y ∈ g. (7)

Proof. Since r+, r− are both Lie algebra homomorphisms, for x, y ∈ g, we have

I ([I−1x, I−1y]r ) = (r+ − r−)[I−1x, I−1y]r
= [(I + r−)I−1x, (I + r−)I−1y]g − [r− I−1x, r− I−1y]g
= [r− I−1x, y]g + [x, r− I−1y]g + [x, y]g. (8)

Therefore, we have

B([Bx, y]g + [x, By]g + λ[x, y]g) = λ2r− I−1([r− I−1x, y]g + [x, r− I−1y]g + [x, y]g
)

= λ2r−[I−1x, I−1y]r
= λ2[r− I−1x, r− I−1y]g
= [Bx, By]g,

which implies that B is a Rota–Baxter operator of weight λ on g.
Then, we show that (g, B, SI ) is a quadratic Rota–Baxter Lie algebra. Since I ∗ = I ,

it is obvious that SI ∈ ⊗2g∗ is symmetric. It suffices to check (4) and (5). In fact, by the
invariant property (3), we have I−1 ◦ adx = ad∗

x ◦ I−1. So

SI ([x, y]g, z) + SI (y, [x, z]g) = 〈I−1[x, y]g, z〉 + 〈I−1y, [x, z]g〉
= 〈I−1 ◦ adx (y) − ad∗

x ◦ I−1(y), z〉
= 0.

Moreover, by using r∗− = −r+ and I = r+ − r−, we have

SI (x, By) + SI (Bx, y) + λSI (x, y)

= λ(〈I−1x, r− ◦ I−1(y)〉 + 〈I−1 ◦ r− ◦ I−1(x), y〉 + 〈I−1x, y〉)
= λ〈(−I−1 ◦ r+ ◦ I−1 + I−1 ◦ r− ◦ I−1 + I−1)(x), y〉
= 0.

Therefore, (g, B, SI ) is a quadratic Rota–Baxter Lie algebra of weight λ. ��
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Remark 2.6. Let (g, B, S) be a quadratic Rota–Baxter Lie algebra of weight λ. Define
a linear operator B∗ : g → g by S(x, By) = S(B∗x, y) for all x, y ∈ g. Then (5) is
equivalent to B + B∗ = −λid. Then by Theorem 2.5, a factorizable Lie bialgebra (g, g∗

r )

gives rise to a Rota–Baxter operator B on g such that B + B∗ = −λid. Similar results
for simple Lie algebras and quadratic Lie algebras were given earlier by Goncharov; see
[17, Theorem 4] and [18, Theorems 1, 3].

It is well-known that if B : g → g is a Rota–Baxter operator of weight λ on a Lie
algebra, then

B̃ := −λid − B (9)

is also a Rota–Baxter operator of weight λ. So as a consequence of Theorem 2.5, we
have the following result.

Corollary 2.7. Let (g, g∗
r ) be a factorizable Lie bialgebra with I = r+ − r−. Then

(g, B̃, SI ) is also a quadratic Rota–Baxter algebra of weight λ, where B̃ = −λid− B =
−λr+ ◦ I−1 and SI ∈ ⊗2g∗ is defined in (7).

Proof. It is obvious that B̃ is a Rota–Baxter operator of weight λ. Since B satisfies the
invariant condition (5), we have

SI (x, B̃ y) + SI (B̃x, y) + λSI (x, y)

= −SI (x, By) − λSI (x, y) − SI (Bx, y) − λSI (x, y) + λSI (x, y)

= −SI (x, By) − SI (Bx, y) − λSI (x, y)

= 0,

which implies that (g, B̃, SI ) is also a quadratic Rota–Baxter algebra of weight λ. ��
Corollary 2.8. Let (g, g∗

r ) be a factorizable Lie bialgebra with I = r+ − r−, and B
the induced Rota–Baxter operator of weight λ on g. Then

(
gB, (g∗, [·, ·]I )

)
is a Lie

bialgebra, where

[ξ, η]I := λI−1([1
λ
I ξ,

1

λ
Iη]g), ∀ξ, η ∈ g∗, λ �= 0.

Moreover, 1
λ
I :g∗ →ggives aLie bialgebra isomorphism from

(
g∗
r , g

)
to

(
gB, (g∗, [·, ·]I )

)
.

Proof. First we check that 1
λ
I : g∗

r → gB is a Lie algebra isomorphism. In fact, for any
ξ, η ∈ g∗, taking x = I ξ ∈ g and y = Iη ∈ g, the Eq. (8) tells us that

1

λ
I [ξ, η]r = 1

λ2

([BI ξ, Iη]g + [I ξ, BIη]g + λ[I ξ, Iη]g
) = [1

λ
I ξ,

1

λ
Iη]B .

So 1
λ
I is a Lie algebra isomorphism.

It is obvious that the map ( 1
λ
I )∗ = 1

λ
I : (g∗, [·, ·]I ) → g is also Lie algebra

isomorphism. Since (g∗
r , g) is a Lie bialgebra, it follows that the pair (gB, (g∗, [·, ·]I ))

is also a Lie bialgebra and 1
λ
I : g∗

r → gB is a Lie bialgebra isomorphism. ��
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Example 2.9. Let (g, g∗) be an arbitrary Lie bialgebra. Its Drinfeld double d = g 
� g∗
with r = ∑

i ξi ⊗ xi ∈ d ⊗ d is a quasitriangular Lie bialgebra ([34]), where {xi } is a
basis of g and {ξi } is its dual basis for g∗. Then r+, r− : d∗ → d are given by

r+(x, ξ) = (x, 0), r−(x, ξ) = (0,−ξ), ∀x ∈ g, ξ ∈ g∗.

Observe that I (x, ξ) = (x, ξ). So (d, d∗
r ) is a factorizable Lie bialgebra. By Theorem

2.5, there associates a quadratic Rota–Baxter Lie algebra (d, B, SI ), where

B(x, ξ) = λr− ◦ I−1(x, ξ) = −λ(0, ξ),

SI (x + ξ, y + η) = 〈I−1(x + ξ), y + η〉 = ξ(y) + η(x).

In this case, direct calculation shows that d∗ = g ⊕ g∗, namely, the direct sum of
the Lie algebra g and the Lie algebra g∗, where g∗ denotes the Lie algebra with the Lie
bracket −[·, ·]g∗ .

At the end of this section, we show that a quadratic Rota–Baxter Lie algebra of
nonzero weight also gives rise to a factorizable Lie bialgebra.

Theorem 2.10. Let (g, B, S) be a quadratic Rota–Baxter Lie algebra of weight λ (λ �=
0), and IS : g∗ → g the induced linear isomorphism given by 〈I−1

S x, y〉 := S(x, y).
Then r ∈ g ⊗ g determined by

r+ := 1

λ
(B + λid) ◦ IS : g∗ → g, r+(ξ) = r(ξ, ·), ∀ξ ∈ g∗

satisfies the classical Yang-Baxter equation, and gives rise to a quasitriangular Lie
bialgebra (g, g∗

r ), which is factorizable.

Proof. Since S is symmetric, it follows that I∗
S = IS . By the fact that S(x, By) +

S(Bx, y) + λS(x, y) = 0, we have

〈I−1
S x, By〉 + 〈I−1

S ◦ B(x), y〉 + λ〈I−1
S x, y〉 = 0,

which implies that B∗ ◦ I−1
S + I−1

S ◦ B + λI−1
S = 0, and then

IS ◦ B∗ + B ◦ IS + λIS = 0.

Hence

r− := −r∗
+ = −1

λ
(IS ◦ B∗ + λIS) = 1

λ
B ◦ IS,

and IS = r+ − r−. Define a bracket operation [·, ·]r on g∗ by

[ξ, η]r = ad∗
r+ξ η − ad∗

r−ηξ, ∀ξ, η ∈ g∗.

We first check that

1

λ
IS[ξ, η]r = [1

λ
ISξ,

1

λ
ISη]B, (10)

which would indicate that [·, ·]r is a Lie bracket and 1
λ
IS is a Lie algebra isomorphism

from (g∗, [·, ·]r ) to (g, [·, ·]B). Actually, following from S([x, y]g, z)+S(y, [x, z]g) = 0,
we have

〈I−1
S ◦ adx (y), z〉 − 〈ad∗

x ◦ I−1
S (y), z〉 = 0,
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which yields the invariance of IS :

IS ◦ ad∗
x = adx ◦ IS .

Then we have

IS[ξ, η]r = IS(ad∗
r+ξ η − ad∗

r−ηξ)

= [r+ξ, ISη]g − [r−η, ISξ ]g
= [r+ξ, r+η − r−η]g − [r−η, r+ξ − r−ξ ]g
= [r+ξ, r+η]g − [r−ξ, r−η]g.

On the other hand, we have

[ISξ, ISη]B = [BISξ, ISη]g + [ISξ, BISη]g + λ[ISξ, ISη]g
= λ[r−ξ, r+η − r−η]g + λ[r+ξ − r−ξ, r−η]g + λ[r+ξ − r−ξ, r+η − r−η]g
= λ

([r+ξ, r+η]g − [r−ξ, r−η]g
)
,

which implies that (10) holds. Finally since B + λid, B : (g, [·, ·]B) → (g, [·, ·]g) are
both Lie algebra homomorphisms, we deduce that

r+ := 1

λ
(B + λid) ◦ IS and r− = 1

λ
B ◦ IS : (g∗, [·, ·]r ) → (g, [·, ·]g)

are both Lie algebra homomorphisms. Therefore, by Theorem 2.2, (g, g∗
r ) is a quasitri-

angular Lie bialgebra. Since IS = r+ − r− is an isomorphism, the Lie bialgebra (g, g∗
r )

is factorizable. ��
Remark 2.11. The relation between factorizable Lie bialgebras and double Lie algebras
([35]) is explained clearly in [26]. Double Lie algebras relate closely with Rota–Baxter
Lie algebras. Let g be a Lie algebra and R : g → g be a linear map. Define [x, y]R =
[Rx, y]g + [x, Ry]g. If the bracket [·, ·]R is also a Lie bracket, the pair (g, R) is called
a double Lie algebra. In particular, if R satisfies the following modified Yang-Baxter
equation:

[Rx, Ry]g − R([Rx, y]g + [x, Ry]g) + [x, y]g = 0,

[·, ·]R satisfies the Jacobi identity and (g, R) is a double Lie algebra. Indeed, B is a Rota–
Baxter operator of weight 1 on g if and only if R = id + 2B : g → g is a solution of
the modified Yang-Baxter equation. Here we relate directly factorizable Lie bialgebras
with Rota–Baxter Lie algebras of nonzero weight.

3. Matched Pairs of Rota–Baxter Lie Algebras

In this section, first we show that a Rota–Baxter Lie algebra gives rise to a matched
pair of Lie algebras. Then we introduce the notion of matched pairs of Rota–Baxter Lie
algebras of weight λ and show that a matched pair of Rota–Baxter Lie algebras induces
a descendent matched pair of Lie algebras.
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3.1. Rota–Baxter Lie algebras and matched pairs of Lie algebras. Matched pairs of Lie
algebras are also known as twilled Lie algebras [27] or double Lie algebras [30].

A matched pair of Lie algebras ([31,38]) consists of a pair of Lie algebras (g, h),
a representation ρ : g → gl(h) of g on h and a representation μ : h → gl(g) of h on g
such that

ρ(x)[ξ, η]h = [ρ(x)ξ, η]h + [ξ, ρ(x)η]h + ρ
(
(μ(η)x

)
ξ − ρ

(
μ(ξ)x

)
η, (11)

μ(ξ)[x, y]g = [μ(ξ)x, y]g + [x, μ(ξ)y]g + μ
(
ρ(y)ξ

)
x − μ

(
ρ(x)ξ

)
y, (12)

for all x, y ∈ g and ξ, η ∈ h. We will denote a matched pair of Lie algebras by
(g, h; ρ,μ), or simply by (g, h).

The following alternative description of matched pairs of Lie algebras is well-known.

Proposition 3.1. Let (g, h; ρ,μ) be a matched pair of Lie algebras. Then there is a Lie
algebra structure on the direct sum space g ⊕ h with the Lie bracket [·, ·]
� given by

[x + ξ, y + η]
� = ([x, y]g + μ(ξ)y − μ(η)x
)
+

([ξ, η]h + ρ(x)η − ρ(y)ξ
)
.

Denote this Lie algebra by g 
� h.
Conversely, if (g⊕h, [·, ·]) is a Lie algebra such that g and h are Lie subalgebras, then

(g, h; ρ,μ) is a matched pair of Lie algebras, where the representations ρ : g → gl(h)
and μ : h → gl(g) are determined by

[x, ξ ] = ρ(x)ξ − μ(ξ)x, ∀x ∈ g, ξ ∈ h.

Let (g, [·, ·]g) be a Lie algebra. We denote by (g ⊕ g, [·, ·]g⊕g) the direct sum Lie
algebra with the bracket given by

[(x1, x2), (y1, y2)]g⊕g = ([x1, y1]g, [x2, y2]g).
Proposition 3.2. Let (g, [·, ·]g, B) be a Rota–Baxter Lie algebra of weight λ (λ �= 0)
with the descendent Lie algebra gB. Then there is a Lie algebra structure [·, ·]D on the
vector space g ⊕ g given by

[(0, x), (0, y)]D = (0, [x, y]g);
[(ξ, 0), (η, 0)]D = ([ξ, η]B, 0);
[(0, x), (ξ, 0)]D = −[(ξ, 0), (0, x)]D = ([x, ξ ]g, [x, Bξ ]g − B[x, ξ ]g).

Moreover, there is a Lie algebra isomorphism from (g⊕ g, [·, ·]D) to the direct sum Lie
algebra g ⊕ g defined by

φ : g ⊕ g → g ⊕ g, (ξ, x) �→ (Bξ + λξ + x, Bξ + x). (13)

Proof. First, it is direct to show that φ is an isomorphism between vector spaces whose
inverse is

φ−1 : g ⊕ g → g ⊕ g, (x, y) �→ 1

λ
(x − y, λy − B(x − y)).

In the sequel, we show that the bracket [·, ·]D is exactly the pull-back of the direct sum
Lie algebra structure on g ⊕ g by φ, i.e.

[e1, e2]D = φ−1[φ(e1), φ(e2)]g⊕g, ∀e1, e2 ∈ g ⊕ g.
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Consequently, (g ⊕ g, [·, ·]D) is a Lie algebra and φ is a Lie algebra isomorphism.
By the fact that B[ξ, η]B = [Bξ, Bη]g, we have

φ−1[φ(ξ, 0), φ(η, 0)]g⊕g = φ−1[(Bξ + λξ, Bξ), (Bη + λη, Bη)]g⊕g

= φ−1([Bξ + λξ, Bη + λη]g, [Bξ, Bη]g)
= φ−1(B[ξ, η]B + λ[ξ, η]B, B[ξ, η]B)

= [(ξ, 0), (η, 0)]D,

and

φ−1[φ(0, x), φ(ξ, 0)]g⊕g

= φ−1[(x, x), (Bξ + λξ, Bξ)]g⊕g

= φ−1([x, Bξ + λξ ]g, [x, Bξ ]g)
= φ−1(B[x, ξ ]g + λ[x, ξ ]g + [x, Bξ ]g−B[x, ξ ]g, B[x, ξ ]g + [x, Bξ ]g−B[x, ξ ]g)
= ([x, ξ ]g, [x, Bξ ]g − B[x, ξ ]g)
= [(0, x), (ξ, 0)]D .

It is obvious that [(0, x), (0, y)]D = φ−1[φ(0, x), φ(0, y)]g⊕g. Therefore the bracket
[·, ·]D is exactly the pull-back of the direct sum Lie bracket [·, ·]g⊕g by φ. ��
Parallel results of Proposition 3.2 for associative algebras can be found in [20].

Theorem 3.3. Let (g, [·, ·]g, B) be a Rota–Baxter Lie algebra of weight λ (λ �= 0) with
the descendent Lie algebra gB. Then (gB, g; ρ,μ) is a matched pair of Lie algebras,
where ρ : gB → gl(g) and μ : g → gl(gB) are given by

ρ(ξ)(x) = B[x, ξ ]g − [x, Bξ ]g, μ(x)(ξ) = [x, ξ ]g, ∀x ∈ g, ξ ∈ gB . (14)

Moreover, the correspondingLie algebragB 
� g is exactly the Lie algebra (g⊕g, [·, ·]D)

given in Proposition 3.2.

Proof. By Proposition 3.2, it is obvious that both gB and g are Lie subalgebras of the
Lie algebra (g ⊕ g, [·, ·]D), and

[(ξ, 0), (0, x)]D = (−μ(x)(ξ), ρ(ξ)(x)).

Thus, (gB, g; ρ,μ) is a matched pair of Lie algebras. The other conclusion is obvious.
��

Since φ is a Lie algebra isomorphism and gB is a Lie subalgebra, it follows that
Im(φ|gB ) ⊂ g⊕ g is a Lie subalgebra, which is isomorphic to gB . It gives an alternative
approach to prove the factorization theorem of Rota–Baxter Lie algebras. We refer to
[23,35] for more details for the factorization theorem of Rota–Baxter Lie algebras of
weight 1.

Corollary 3.4. Let (g, [·, ·]g, B) be a Rota–Baxter Lie algebra of weight λ (λ �= 0).
Then for any x ∈ g, there exists a unique decomposition x = x+ − x− with (x+, x−) ∈
Im(φ|gB ) ⊂ g ⊕ g.

Proof. We have x = 1
λ
(Bx + λx) − 1

λ
Bx = x+ − x−, where (x+, x−) = φ( 1

λ
x, 0). The

decomposition is unique since φ : gB → Im(φ|gB ) is a Lie algebra isomorphism. ��
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Let (g, g∗
r ) be a factorizable Lie bialgebra with I = r+−r−. Then (g, B = λr−◦ I−1)

is a Rota–Baxter Lie algebra of weight λ. By Theorem 3.3, we have the Lie algebra
gB 
� g, which is the double of the matched pair (gB, g; ρ,μ). On the other hand, there
is a Lie algebra g∗

r 
� g, which is the double of the Lie bialgebra (g∗
r , g).

Proposition 3.5. With the above notations, we have a commutative diagram of Lie al-
gebra isomorphisms:

g∗
r 
� g

( 1
λ
I )⊕id

��

ψ
�� g ⊕ g

gB 
� g,

φ

������������

(15)

where φ is defined by (13) and ψ is given by

ψ(ξ, x) = (r+ξ + x, r−ξ + x), ∀x ∈ g, ξ ∈ g∗.

Proof. We first show that Ĩ := ( 1
λ
I ) ⊕ id : g∗

r 
� g → gB 
� g is a Lie algebra
isomorphism. We only need to check the relation

Ĩ ([x, ξ ]
�) = [ Ĩ (x), Ĩ (ξ)]D, ∀x ∈ g, ξ ∈ g∗. (16)

In fact, by the ad-invariant condition (3), we have

Ĩ ([x, ξ ]
�) = (
1

λ
I (ad∗

xξ),−ad∗
ξ x) = (

1

λ
[x, I ξ ]g,−ad∗

ξ x),

and

[ Ĩ (x), Ĩ (ξ)]D = [(0, x), (1
λ
I ξ, 0)]D = (

1

λ
[x, I ξ ]g, 1

λ
[x, BI ξ ]g − 1

λ
B[x, I ξ ]g).

Taking pairing with any η ∈ g∗ and since r− = −r∗
+, one finds

〈−ad∗
ξ x, η〉 = −〈x, ad∗

r+ηξ − ad∗
r−ξ η〉

= 〈[x, r−ξ ]g, η〉 + 〈[r+η, x]g, ξ 〉
= 〈1

λ
[x, BI ξ ]g − r−(ad∗

xξ), η〉

= 〈1
λ

[x, BI ξ ]g − 1

λ
BI (ad∗

xξ), η〉

= 1

λ
〈[x, BI ξ ]g − B[x, I ξ ]g, η〉,

which implies that (16) holds.
Then, for (ξ, x) ∈ g∗

r 
� g, we have

φ ◦ (
1

λ
I ⊕ id)(ξ, x) = φ(

1

λ
I ξ, x) = (

1

λ
BI ξ + I ξ + x,

1

λ
BI ξ + x)

= (r+ξ + x, r−ξ + x) = ψ(ξ, x).

Since both φ and 1
λ
I ⊕ id are Lie algebra isomorphisms, it follows that ψ is also a Lie

algebra isomorphism. ��
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3.2. Matched pairs of Rota–Baxter Lie algebras. In this subsection, we introduce the
notion ofmatched pairs ofRota–BaxterLie algebras ofweightλ, and show that amatched
pair of Rota–Baxter Lie algebras of weight λ gives rise to a descendent matched pair of
Rota–Baxter Lie algebras.

Since in the definition of a matched pair of Lie algebras, we need the concept of
representations of Lie algebras. For the purpose of definingmatched pairs ofRota–Baxter
Lie algebras, we introduce the notion of representations of Rota–Baxter Lie algebras of
weight λ. Note that the concept of representations of Rota–Baxter Lie algebras of weight
0 was already given in [25] in the study of cohomologies of Rota–Baxter Lie algebras,
and the notion of representations of Rota–Baxter associative algebras was introduced in
[24], and further studied in [33].

Definition 3.6. A representation of a Rota–Baxter Lie algebra (g, B) of weight λ on
a vector space W with respect to a linear transformation T ∈ gl(W ) is a representation
ρ of the Lie algebra g on W , satisfying

ρ(Bx)(Tu) = T
(
ρ(Bx)u + ρ(x)(Tu) + λρ(x)u

)
, ∀x ∈ g, u ∈ W.

We will denote a representation by (W, T, ρ).

Let (W, T, ρ) be a representation of a Rota–Baxter Lie algebra (g, B) of weight λ.
Since (W, ρ) is a representation of the Lie algebra g, we have the semidirect product
Lie algebra g � W . Then define the map

B ⊕ T : g � W → g � W, x + u �→ Bx + Tu.

The following conclusion is obvious.

Proposition 3.7. With above notations, (g � W, B ⊕ T ) is a Rota–Baxter Lie algebra
of weight λ, called the semidirect product of (g, B) and the representation (W, T, ρ).

Example 3.8. It is straightforward to see that (g, B, ad) is a representation of a Rota–
Baxter Lie algebra (g, B) of weight λ, which is called the adjoint representation of
(g, B).

Definition 3.9. Let (W, T, ρ) and (W ′, T ′, ρ′) be two representations of a Rota–Baxter
Lie algebra (g, B) of weight λ. A homomorphism from (W, T, ρ) to (W ′, T ′, ρ′) is a
linear map φ : W → W ′ such that

φ ◦ ρ(x) = ρ′(x) ◦ φ, ∀x ∈ g,

φ ◦ T = T ′ ◦ φ.

Rota–Baxter Lie algebras of weight λ not only admit adjoint representations, but also
coadjoint representations. The following result plays an important role in our later study
of Rota–Baxter Lie bialgebras of weight λ (see Theorem 4.3).

Theorem 3.10. Let (g, B) be a Rota–Baxter Lie algebra of weight λ. Then (g∗,−λid−
B∗, ad∗) is a representation, which is called the coadjoint representation of (g, B).

Moreover, if (g, B, S) is a quadratic Rota–Baxter Lie algebra of weight λ, then the
linear map S� : g → g∗ defined by 〈S�(x), y〉 = S(x, y) for all x, y ∈ g, is an
isomorphism from the adjoint representation (g, B, ad) to the coadjoint representation
(g∗,−λid − B∗, ad∗).
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Proof. For all ξ ∈ g∗ and x, y ∈ g, since B is a Rota–Baxter operator of weight λ on g,
we have

〈ad∗
Bx (−λid − B∗)ξ − (−λid − B∗)

(
ad∗

Bxξ + ad∗
x (−λid − B∗)ξ + λad∗

xξ
)
, y〉

= 〈ξ, λ[Bx, y]g + B[Bx, y]g − λ[Bx, y]g − [Bx, By]g + λB[x, y]g + B[x, By]g〉
= 0,

which implies that (g∗,−λid − B∗, ad∗) is a representation.
Let (g, B, S) be a quadratic Rota–Baxter Lie algebra of weight λ. By (4), we have

S� ◦ adx = ad∗
x ◦ S�,

By (5), we have

S� ◦ B = (−λid − B∗) ◦ S�.

Therefore, S� : g → g∗ is a homomorphism from the adjoint representation (g, B, ad)
to the coadjoint representation (g∗,−λid − B∗, ad∗). ��
Remark 3.11. We emphasize that in general (g∗, B∗, ad∗) is not a representation of
(g, B).

Nowwe introduce the notion of matched pairs of Rota–Baxter Lie algebras of weight
λ.

Definition 3.12. A matched pair of Rota–Baxter Lie algebras of weight λ consists
of a pair of Rota–Baxter Lie algebras ((g, B), (h,C)) of weight λ, a representation
ρ : g → gl(h) of the Rota–Baxter Lie algebra (g, B) on (h,C) and a representation
μ : h → gl(g) of the Rota–Baxter Lie algebra (h,C) on (g, B) such that (g, h; ρ,μ) is
a matched pair of Lie algebras.

We will denote a matched pair of Rota–Baxter Lie algebras of weight λ by ((g, B),

(h,C); ρ,μ), or simply by ((g, B), (h,C)).
It is straightforward to obtain the following alternative characterization of matched

pairs of Rota–Baxter Lie algebras.

Proposition 3.13. Let (g, B) and (h,C) be Rota–Baxter Lie algebras of weight λ, ρ :
g → gl(h) a representation of the Lie algebra g on h andμ : h → gl(g) a representation
of the Lie algebra h on g. Then ((g, B), (h,C); ρ,μ) is a matched pair of Rota–Baxter
Lie algebras if and only if (g, h; ρ,μ) is a matched pair of Lie algebras and the following
equalities hold:

C(ρ(Bx)ξ + ρ(x)(Cξ) + λρ(x)ξ) = ρ(Bx)(Cξ); (17)

B(μ(Cξ)x + μ(ξ)(Bx) + λμ(ξ)x) = μ(Cξ)(Bx), (18)

for all x ∈ g and ξ ∈ h.

On the double of a matched pair of Lie algebras, there is a Lie algebra structure.
There is also a Rota–Baxter Lie algebra structure on the double of a matched pair of
Rota–Baxter Lie algebras as expected.
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Proposition 3.14. Let (g, B) and (h,C) be Rota–Baxter Lie algebras of weight λ, ρ :
g → gl(h) and μ : h → gl(g) be linear maps. Then ((g, B), (h,C); ρ,μ) is a matched
pair of Rota–Baxter Lie algebras of weight λ if and only if (g, h; ρ,μ) is a matched pair
of Lie algebras and

B ⊕ C : g ⊕ h → g ⊕ h, x + ξ �→ Bx + Cξ,

is a Rota–Baxter operator of weight λ on the Lie algebra g 
� h.

Proof. Let ((g, B), (h,C); ρ,μ) be a matched pair of Rota–Baxter Lie algebras of
weight λ. By definition, (g, h; ρ,μ) is a matched pair of Lie algebras. By (17) and (18),
we have

[Bx,Cξ ]
� = (B ⊕ C)
([Bx, ξ ]
� + [x,Cξ ]
� + λ[x, ξ ]
�

)
.

Therefore B ⊕ C is a Rota–Baxter operator of weight λ on the Lie algebra g 
� h.
The converse part can be proved similarly. ��
Let ((g, B), (h,C); ρ,μ) be a matched pair of Rota–Baxter Lie algebras of weight

λ. Then there are three descendent Lie algebras gB, hC and (g 
� h)B⊕C coming from
the three Rota–Baxter operators B : g → g,C : h → h and B ⊕ C : g ⊕ h → g ⊕ h
of weight λ, respectively. In the following theorem, their relation is clarified and a
descendent matched pair of Lie algebras is obtained.

Theorem 3.15. Let ((g, B), (h,C); ρ,μ)be amatched pair of Rota–Baxter Lie algebras
of weight λ. Then (gB, hC ; ρ(B,C), μ(B,C)) is a matched pair of Lie algebras, where
ρ(B,C) and μ(B,C) are given by

ρ(B,C)(x)ξ = ρ(Bx)ξ + ρ(x)(Cξ) + λρ(x)ξ, (19)

μ(B,C)(ξ)x = μ(Cξ)x + μ(ξ)(Bx) + λμ(ξ)x . (20)

Moreover, we have

gB 
� hC = (g 
� h)B⊕C

as Lie algebras.

The matched pair (gB, hC ; ρ(B,C), μ(B,C)) is called the descendent matched pair.

Proof. By Proposition 3.14, there is a descendent Lie algebra structure on g⊕h, denoted
by (g 
� h)B⊕C , which contains gB and hC as Lie subalgebras. Let us examine this Lie
bracket on the crossing terms. For x ∈ g and ξ ∈ h, we have

[x, ξ ](g
�h)B⊕C = [Bx, ξ ]
� + [x,Cξ ]
� + λ[x, ξ ]
�
= ρ(Bx)ξ + ρ(x)(Cξ) + λρ(x)ξ − (

μ(Cξ)x + μ(ξ)(Bx) + λμ(ξ)x
)

= ρ(B,C)(x)ξ − μ(B,C)(ξ)x .

Then by Proposition 3.1, (gB, hC ; ρ(B,C), μ(B,C)) forms a matched pair of Lie algebras.
Moreover, the induced Lie algebra on its double gB 
� hC coincides with (g 
� h)B⊕C .

��
Corollary 3.16. Let ((g, B), (h,C); ρ,μ) be a matched pair of Rota–Baxter Lie alge-
bras of weight λ. Then ((gB, B), (hC ,C); ρ(B,C), μ(B,C)) is a matched pair of Rota–
Baxter Lie algebras of weight λ.
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Proof. Using the well-known fact that a Rota–Baxter operator of weight λ on a Lie
algebra is also a Rota–Baxter operator on the descendent Lie algebra, it follows that
B ⊕ C is a Rota–Baxter operator of weight λ on (g 
� h)B⊕C . By Theorem 3.15,
gB 
� hC = (g 
� h)B⊕C . Therefore, B ⊕ C is a Rota–Baxter operator of weight λ on
gB 
� hC . By Proposition 3.14, ((gB, B), (hC ,C); ρ(B,C), μ(B,C)) is a matched pair of
Rota–Baxter Lie algebras of weight λ. ��
Example 3.17. Let (g, [·, ·]g, B) and (h, [·, ·]h,C) be two Rota–Baxter Lie algebras of
weight λ. Then ((g, B), (h,C); ρ = 0, μ = 0) becomes a matched pair of Rota–Baxter
Lie algebras.

Proposition 3.18. Let (g, B) be a Rota–Baxter Lie algebra of weight λ. Then ((gB, B),

(g, B); ρ,μ) is a matched pair of Rota–Baxter Lie algebras of weight λ, where ρ and
μ are given by (14).

Proof. By Theorem 3.3, (gB, g; ρ,μ) is a matched pair of Lie algebras. As B is a Rota–
Baxter operator of weight λ on both g and gB , it suffices to check the Conditions (17)
and (18). In fact, Condition (18) follows directly from the fact that B is a Rota–Baxter
operator of weight λ on the Lie algebra g. In order to show Condition (17), we first note
that

B(ρ(Bξ)x + ρ(ξ)(Bx) + λρ(ξ)x)

= B(B[x, Bξ ]g − [x, B2ξ ]g + B[Bx, ξ ]g − [Bx, Bξ ]g + λB[x, ξ ]g − λ[x, Bξ ]g)
= B(−[x, B2ξ ]g − λ[x, Bξ ]g).

On the other hand, as B is a Rota–Baxter operator on g, we have

ρ(Bξ)(Bx) = B[Bx, Bξ ]g − [Bx, B2ξ ]g
= B([Bx, Bξ ]g − [Bx, Bξ ]g − [x, B2ξ ]g − λ[x, Bξ ]g)
= B(−[x, B2ξ ]g − λ[x, Bξ ]g).

So Condition (17) is obtained. Therefore, ((gB, B), (g, B), ρ, μ) is a matched pair of
Rota–Baxter Lie algebras of weight λ. ��

4. Rota–Baxter Lie Bialgebras

In this section, we introduce the notion of Rota–Baxter Lie bialgebras of weight λ, and
show that Rota–Baxter Lie bialgebras, certainmatched pairs of Rota–Baxter Lie algebras
and Manin triples of Rota–Baxter Lie algebras are equivalent.

4.1. Rota–Baxter Lie bialgebras and matched pairs of Rota–Baxter Lie algebras. We
introduce the following definition of Rota–Baxter operators on a Lie bialgebra and show
that Rota–Baxter Lie bialgebras and certain matched pairs of Rota–Baxter Lie algebras
are equivalent. In particular, we show that the Drinfeld double of a Rota–Baxter Lie
bialgebra is still a Rota–Baxter Lie bialgebra, and factorizable Lie bialgebras also give
rise to Rota–Baxter Lie bialgebras.

Definition 4.1. A Rota–Baxter operator of weight λ on a Lie bialgebra (g, g∗) is a
linear map B : g → g such that
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(i) B is a Rota–Baxter operator of weight λ on g;
(ii) B̃∗ := −λid − B∗ is a Rota–Baxter operator of weight λ on g∗.
A Lie bialgebra with a Rota–Baxter operator of weight λ is called a Rota–Baxter Lie
bialgebra of weight λ.

We denote a Rota–Baxter Lie bialgebra of weight λ by (g, g∗, B).
As a well-known fact of Rota–Baxter operators, B̃∗ = −λid − B∗ : g∗ → g∗ is a

Rota–Baxter operator of weight λ on g∗ if and only if B∗ : g∗ → g∗ is a Rota–Baxter
operator of weight λ. The descendent Lie brackets of B̃∗ and B∗ on g∗ are related by

[ξ, η]B̃∗ = −[B∗ξ, η]g∗ − [ξ, B∗η]g∗ − λ[ξ, η]g∗ = −[ξ, η]B∗ .

The reasonwhyweadopt B̃∗ insteadof B∗ will becomeclear from the followingTheorem
4.3, Remark 4.4 and Proposition 4.6.

The following result is straightforward.

Proposition 4.2. If B is a Rota–Baxter operator of weight λ on the Lie bialgebra (g, g∗).
Then B̃∗ is a Rota–Baxter operator of weight λ on the Lie bialgebra (g∗, g).
A Lie bialgebra (g, g∗) is naturally a matched pair of Lie algebras. In this case, the
representation of g on g∗ is given by the coadjoint representation ad∗ of the Lie algebra
g on g∗ and the representation of g∗ on g is given by the coadjoint representation ad∗ of
the Lie algebra g∗ on g.

Theorem 4.3. With above notations, (g, g∗, B) is a Rota–Baxter Lie bialgebra of weight
λ if and only if ((g, B), (g∗, B̃∗); ad∗, ad∗) is amatched pair of Rota–Baxter Lie algebras
of the same weight.

Proof. By Theorem 3.10, (g∗, B̃∗, ad∗) is a representation of the Rota–Baxter Lie alge-
bra (g, B), and (g, B, ad∗) is a representation of the Rota–Baxter Lie algebra (g∗, B̃∗).
Moreover, it is well-known that (g, g∗) is a Lie bialgebra if and only if (g, g∗; ad∗, ad∗)
is a matched pair of Lie algebras. Therefore, (g, g∗, B) is a Rota–Baxter Lie bialgebra
of weight λ if and only if ((g, B), (g∗, B̃∗); ad∗, ad∗) is a matched pair of Rota–Baxter
Lie algebras of the same weight. ��
Remark 4.4. Let (g, g∗) be a Lie bialgebra, B : g → g and B∗ : g∗ → g∗ Rota–Baxter
operators of weight λ. Then in general ((g, B), (g∗, B∗); ad∗, ad∗) is not a matched pair
of Rota–Baxter Lie algebras of weight λ. In fact, let C = B∗ in (17) and take pairing
with y ∈ g. The left hand side of (17) equals

〈B∗(ad∗
Bxξ + ad∗

x B
∗ξ + λad∗

xξ), y〉 = −〈ξ, [Bx, By]g + B[x, By]g + λ[x, By]g〉,
and the right hand side of (17) amounts to

〈ad∗
Bx B

∗ξ, y〉 = −〈ξ, B[Bx, y]g〉.
So in general, the relation (17) does not hold, and ((g, B), (g∗, B∗); ad∗, ad∗) is not a
matched pair of Rota–Baxter Lie algebras of weight λ.

Remark 4.5. Let (g, g∗, B) be a Rota–Baxter Lie bialgebra of weight λ. By Theorem 4.3
and Theorem 3.15, it induces a descendent matched pair (gB, g∗̃

B∗; ρ(B,B̃∗), μ(B,B̃∗)) of
Lie algebras. By (19) and (20), the representation ρ(B,B̃∗) : gB → gl(g∗) and μ(B,B̃∗) :
g∗̃
B∗ → gl(g) are given by

ρ(B,B̃∗)(x)(ξ) = ad∗
Bxξ − ad∗

x B
∗ξ, μ(B,B̃∗)(ξ)(x) = ad∗

ξ Bx − ad∗
B∗ξ x .



780 H. Lang, Y. Sheng

It is straightforward to check that ρ(B,B̃∗) and μ(B,B̃∗) are not the coadjoint representa-
tions of gB and g∗̃

B∗ . Therefore, the matched pair (gB, g∗̃
B∗; ρ(B,B̃∗), μ(B,B̃∗)) does not

come from a Lie bialgebra.

The following result tells us that the Drinfeld double of a Rota–Baxter Lie bialgebra
is still a Rota–Baxter Lie bialgebra of the same weight.

Proposition 4.6. Let (g, g∗, B) be a Rota–Baxter Lie bialgebra of weight λ. Then
(d, d∗,B) is a Rota–Baxter Lie bialgebra of weight λ, where (d, d∗) is the Lie bial-
gebra given by Example 2.9, and B : g ⊕ g∗ → g ⊕ g∗ is the linear map defined
by

B(x + ξ) = Bx − λξ − B∗ξ, x ∈ g, ξ ∈ g∗. (21)

Proof. First by Theorem 4.3, ((g, B), (g∗, B̃∗); ad∗, ad∗) is a matched pair of Rota–
Baxter Lie algebras. By Proposition 3.14, the linear map B is a Rota–Baxter operator of
weight λ on the Drinfeld double d := g 
� g∗.

Since B̃∗ = −λid − B∗ is a Rota–Baxter operator of weight λ on g∗, it is also a
Rota–Baxter operator on the Lie algebra g∗ = (g∗,−[·, ·]g∗). Since d∗ is a direct sum
Lie algebra, it is obvious that −λid − B∗ = B is a Rota–Baxter operator of weight λ

on the dual Lie algebra d∗ = g ⊕ g∗. Consequently, (d, d∗,B) is a Rota–Baxter Lie
bialgebra of weight λ. ��

Factorizable Lie bialgebras provide a class of examples of Rota–Baxter Lie bialge-
bras.

Theorem 4.7. Let (g, g∗
r ) be a factorizable Lie bialgebra with I = r+ − r−. Then

(g, g∗
r , B) is a Rota–Baxter Lie bialgebra of weight λ, where B := λr− ◦ I−1 is given

by (6).

Proof. It is obvious that B̃∗ = −λid − B∗ = λI−1 ◦ r−. Moreover, by the facts that
1
λ
I : g∗

r → (g, [·, ·]B) is an isomorphism of Lie algebras (see Corollary 2.8) and
r− : g∗

r → g is a Lie algebra homomorphism, we have

λI−1r−([λI−1r−ξ, η]r + [ξ, λI−1r−η]r + λ[ξ, η]r )
= λI−1([λr− I−1r−ξ, r−η]g + [r−ξ, λr− I−1r−η]g + λ[r−ξ, r−η]g)
= λI−1([r−ξ, r−η]B)

= [λI−1r−ξ, λI−1r−η]r ,
which implies that B̃∗ is a Rota–Baxter operator of weight λ on g∗

r . Therefore, (g, g
∗
r , B)

is a Rota–Baxter Lie bialgebra of weight λ. ��
Corollary 4.8. Let (g, g∗

r ) be a factorizable Lie bialgebra with I = r+ − r−. Then we
have the following commutative diagram of Lie algebra homomorphisms:

· · · g∗
B̃∗k

1
λ
I∼=

��

−λid−B∗
��

r−

���
��

��
��

�
· · · �� g∗̃

B∗

1
λ
I∼=

��

−λid−B∗
��

r−

��
��

��
��

��
g∗
r

1
λ
I∼=

��

−λid−B∗
��

r−

��
��

��
��

��
g∗
I

1
λ
I∼=

��· · · gBk+1
B �� · · · �� gB2

B �� gB
B �� g,

where B = λr− ◦ I−1 and B̃∗ = λI−1 ◦ r− and gBk is the descendent Lie algebra of
the Rota–Baxter operator B on gBk−1 .



Factorizable Lie Bialgebras, Quadratic Rota-Baxter Lie Algebras... 781

Proof. We prove that 1
λ
I : g∗

B̃∗k → gBk+1 is a Lie algebra isomorphism by induction on

k (k ≥ 0). First observe that 1
λ
I : g∗

r → gB is a Lie algebra isomorphism, which is the
case of k = 0. Assuming the claim holds for k − 1, then we have

1

λ
I [ξ, η]

B̃∗k = 1

λ
I
([λI−1r−ξ, η]

B̃∗k−1 + [ξ, λI−1r−η]
B̃∗k−1 + λ[ξ, η]

B̃∗k−1

)

= [r−ξ,
1

λ
Iη]Bk + [1

λ
I ξ, r−η]Bk + λ[1

λ
I ξ,

1

λ
Iη]Bk

= [1
λ
I ξ,

1

λ
Iη]Bk+1,

which implies that it holds for k. All the other facts are obvious. ��
Example 4.9. Let (g, g∗) be a Lie bialgebra. Then (g, g∗, B) is a Rota–Baxter Lie bial-
gebra of weight λ, where the linear map B : g → g is defined by B(x) = −λx . Note
that −λid − B∗ = 0.

Example 4.10. Consider the Lie bialgebra (d, d∗) given in Example 2.9, where d = g 
�
g∗. Then the linear map

B : g 
� g∗ �→ g 
� g∗, x + ξ �→ −λξ,

is a Rota–Baxter operator of weight λ on the Lie bialgebra (d, d∗). In fact, it is obvious
that B is a Rota–Baxter operator of weight λ on the Lie algebra d. On the other hand,
we have

(−λid − B∗)(x + ξ) = −λξ,

which implies that −λid − B∗ is also a Rota–Baxter operator of weight λ on the Lie
algebra d∗. Therefore, (d, d∗, B) is a Rota–Baxter Lie bialgebra of weight λ.

4.2. Rota–Baxter Lie Bialgebras and Manin triples of Rota–Baxter Lie algebras. A
well-known result regarding Lie bialgebras is that there is a one-one correspondence
between Lie bialgebras and Manin triples. A Manin triple of Lie algebras is a triple
((d, S), g, h), where (d, S) is a quadratic Lie algebra, g and h are Lie algebras such that

(i) g and h are Lie subalgebras;
(ii) d = g ⊕ h as vector spaces;
(iii) both g and h are isotropic with respect to the nondegenerate invariant symmetric

bilinear form S.

Given a Lie bialgebra (g, g∗), the triple ((g 
� g∗, S), g, g∗) is a Manin triple, where S
is given by

S(x + ξ, y + η) = ξ(y) + η(x). (22)

Conversely, given a Manin triple ((d, S), g, h), identifying h with g∗ by using the non-
degenerate invariant symmetric bilinear form S, we obtain a Lie bialgebra (g, g∗).

Now we introduce the notion of Manin triples of Rota–Baxter Lie algebras of weight
λ using quadratic Rota–Baxter Lie algebras of weight λ given in Definition 2.4.
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Definition 4.11. A Manin triple of Rota–Baxter Lie algebras of weight λ consists
of a triple ((G,B, S), (g, B), (h,C)), where (G,B, S) is a quadratic Rota–Baxter Lie
algebra of weight λ, (g, B) and (h,C) are Rota–Baxter Lie algebras of weight λ such
that

(i) (g, B) and (h,C) are Rota–Baxter Lie subalgebras, i.e. g and h are Lie subalgebras
of G and B|g = B, B|h = C ;

(ii) G = g ⊕ h as vector spaces;
(iii) both g and h are isotropic with respect to the nondegenerate symmetric invariant

bilinear form S.

Similar to the classical case, we have the following result.

Theorem 4.12. There is a one-one correspondence between Manin triples of Rota–
Baxter Lie algebras of weight λ and Rota–Baxter Lie bialgebras of the same weight.

Proof. Let (g, g∗, B) be a Rota–Baxter Lie bialgebra. Then (g, B) and (g∗, B̃∗) are
Rota–Baxter Lie algebras of weight λ. By Proposition 4.6, (g 
� g∗,B) is a Rota–Baxter
Lie algebra of weight λ, where B is defined by (21). Moreover, it is straightforward to
deduce that (g 
� g∗,B, S) is a quadratic Rota–Baxter Lie algebra of weight λ, where
S is given by (22). Consequently, ((g 
� g∗,B, S), (g, B), (g∗,−λid− B∗)) is a Manin
triple of Rota–Baxter Lie algebras of weight λ.

Conversely, let ((G,B, S), (g, B), (h,C)) be a Manin triple of Rota–Baxter Lie al-
gebras of weight λ. Then similar to the classical argument, first we can identify h with
g∗ by the nondegenerate bilinear form S, and we obtain a Lie bialgebra (g, g∗). Then
using the invariant condition (5), we identify C with −λid − B∗. Consequently, both
(g, B) and (g∗,−λid − B∗) are Rota–Baxter Lie algebras of weight λ, i.e. (g, g∗, B) is
a Rota–Baxter Lie bialgebra. ��

For aManin triple ((d, S), g, h) of Lie algebras, defineB : d → d byB(x+ξ) = −λξ ,
where x ∈ g, ξ ∈ h. Then B is a Rota–Baxter operator of weight λ on d. Furthermore, it
is direct to show that

(
(d,B, S), (g, 0), (h,−λid)

)
is a Manin triple of Rota–Baxter Lie

algebras of weight λ. Two explicit examples coming from this construction are given as
follows.

Example 4.13. Let sl(n, C) be the Lie algebra of n × n traceless complex matrices.
Consider its Iwasawa decomposition

sl(n, C) = su(n) ⊕ sb(n, C),

where su(n) := {X ∈ sl(n, C); X + X̄ T = 0} and sb(n, C) is the Lie algebra of all n×n
traceless upper triangular complex matrices with real diagonal entries. With the scalar
product S(X,Y ) = Im(tr(XY )) on the Lie algebra sl(n, C), i.e. the imaginary part of
the trace of XY , the triple ((sl(n, C), S), su(n), sb(n, C)) forms a Manin triple ([30]).

The linear map

B : sl(n, C) → sl(n, C), X = (xi j ) �→ −λA = −λ(ai j ),

where aii = xii+xii
2 , ai j = xi j + x ji , i < j and ai j = 0, i > j , is a Rota–Baxter operator

of weight λ on sl(n, C). In fact, we have

B(X) = −λA,
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if X ∈ sl(n, C) has the decomposition X = C + A for C ∈ su(n) and A ∈ sb(n, C). In
fact, C = (ci j ) is defined by cii = xii−xii

2 , ci j = −x ji , i < j and ci j = xi j , i > j . It is
obviousB|su(n) = 0 andB|sb(n,C) = −λid areRota–Baxter operators ofweightλ. There-
fore, ((sl(n, C),B, S), (su(n), 0), (sb(n, C),−λid)) is a Manin triple of Rota–Baxter
Lie algebras of weight λ. This example can be generalized to the Iwasawa decomposition
of an arbitrary semi-simple Lie algebra.

Example 4.14. Let g = sl(n, C) and consider the direct sum Lie algebra g ⊕ g =
sl(n, C) ⊕ sl(n, C). Define

gdiag = {(X, X); X ∈ sl(n, C)};
g∗
st = {(Y + X+,−Y + X−); Y ∈ h, X+ ∈ n+, X− ∈ n−},

where h, n+, n− are the Lie algebras of diagonal, strictly upper and strictly lower trian-
gular matrices in sl(n, C). With respect to the scalar product

〈(X1,Y1), (X2,Y2)〉g⊕g = Im(tr(X1X2)) − Im(tr(Y1Y2)),

the triple (g ⊕ g, gdiag, g
∗
st ) consists a Manin triple. Moreover, the map

B : sl(n, C) ⊕ sl(n, C) → sl(n, C) ⊕ sl(n, C),

(X,Y ) �→ −λ
(1

2
(X − Y )0 + (X − Y )+,−1

2
(X − Y )0 − (X − Y )−

)
,

is a Rota–Baxter operator of weight λ on this Manin triple, where (X − Y )0, (X − Y )+
and (X − Y )− are the diagonal part, strictly upper triangular part and strictly lower
triangular part of the matrix X −Y , respectively. In fact, taking into consideration of the
decomposition g ⊕ g = gdiag ⊕ g∗

st , the linear map B is actually the projection to the
g∗
st - component multiplied by −λ.

5. Rota–Baxter Lie Groups and Factorizable Poisson Lie Groups

In this section, we show that factorizable Poisson Lie groups are in one-to-one corre-
spondence with quadratic Rota–Baxter Lie groups. Moreover, a Rota–Baxter Lie group
gives rise to a matched pair of Lie groups.

5.1. Factorizable PoissonLie groups and quadratic Rota–Baxter Lie groups. The notion
of Rota–Baxter Lie groups was introduced in [23], whose differentiations are Rota–
Baxter Lie algebras of weight 1.

Definition 5.1. ([23]) A Rota–Baxter operator on a Lie group G is a smooth map
B : G −→ G such that

B(g1)B(g2) = B(g1AdB(g1)g2), ∀g1, g2 ∈ G. (23)

The pair (G,B) is called a Rota–Baxter Lie group.

Let (G,B) be a Rota–Baxter Lie group. Then there is a new group structure � on G
given by

g � h = gAdB(g)h.

The new Lie group (G, �) is called the descendent Lie group, and denoted by GB.
Moreover, B is a Lie group homomorphism:

B(g � h) = B(g)B(h). (24)
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Theorem 5.2. ([23]) Let (G,B) be a Rota–Baxter Lie group, and g the Lie algebra of
the Lie group G. Then (g, B := B∗e) is a Rota–Baxter Lie algebra of weight 1, where
e is the identity of G.

Recall from Theorem 2.10 that given a quadratic Rota–Baxter Lie algebra (g, B, S), one
has a linear isomorphism IS : g∗ → g defined by 〈I−1

S (x), y〉 = S(x, y). Using IS , we
pull-back the Lie algebra structure [·, ·]B on g to define a Lie algebra structure on g∗.
Denote it by g∗

S . Then IS : g∗
S → gB becomes a Lie algebra isomorphism. Let G∗ be

the simply connected Lie group whose Lie algebra is g∗
S . Now we introduce the notion

of quadratic Rota–Baxter Lie groups, which will be used to characterize factorizable
Poisson Lie groups.

Definition 5.3. Aquadratic Rota–Baxter Lie group is a triple (G,B, S),where (G,B)

is a Rota–Baxter Lie group, S ∈ ⊗2g∗ such that (g, B := B∗e, S) is a quadratic Rota–
Baxter Lie algebra and the linear isomorphism IS : g∗

S → g can be lifted to a global
diffeomorphism JS : G∗ → G.

A Poisson Lie group G is called quasitriangular ([41]) if its corresponding Lie
bialgebra (g, g∗) is quasitriangular. Let R+, R− : G∗ → G be the lifted Lie group
homomorphisms of the Lie algebra homomorphisms r+, r− : g∗ → g, where G∗ is the
simply connected dual Poisson Lie group of G. For simplicity, we always suppose G is
connected and simply connected.

Since r∗
+ = −r− is a Lie algebra anti-homomorphism, the map R+ is an anti-Poisson

map. In summary, both R+ and R− are Lie group homomorphisms and anti-Poisson
maps.

Define

J : G∗ → G, u �→ R+(u)R−(u)−1, u ∈ G∗. (25)

A quasitriangular Poisson Lie group G is called factorizable if J is a global diffeomor-
phism. Denote a factorizable Poisson Lie group by (G, J ).

Theorem 5.4. Let (G, J ) be a factorizable Poisson Lie group, (g, g∗
r ) the corresponding

factorizable Lie bialgebrawith I = r+−r−. Then (G,B := R−◦ J−1, SI ) is a quadratic
Rota–Baxter Lie group, where SI ∈ ⊗2g∗ is defined by SI (x, y) := 〈I−1x, y〉 for
x, y ∈ g.

Moreover, J : G∗ → GB is a Lie group isomorphism.

Proof. Since R+, R− : G∗ → G are Lie group homomorphisms, we have

J (J−1gJ−1h) = R+(J
−1gJ−1h)R−(J−1gJ−1h)−1

= R+(J
−1g)R+(J

−1h)R−(J−1h)−1R−(J−1g)−1

= J (J−1g)R−(J−1g)J (J−1h)R−(J−1h)R−(J−1h)−1R−(J−1g)−1

= gR−(J−1g)hR−(J−1g)−1. (26)

Then we have

B(gB(g)hB(g)−1) = R− J−1(gR−(J−1g)hR−(J−1g)−1)

= R−(J−1gJ−1h)

= R−(J−1g)R−(J−1h)

= B(g)B(h).
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Therefore, B is Rota–Baxter operator on G. The fact that (G,B, SI ) is a quadratic
Rota–Baxter Lie group (Definition 5.3) follows from Theorem 2.5.

Moreover, for any u, v ∈ G∗, setting g = Ju and h = Jv, by (26) we get

J (uv) = JuB(Ju)JvB(Ju)−1 = (Ju) � (Jv).

Since J is a global diffeomorphism, it is a Lie group isomorphism from the Lie group
G∗ to the descendent Lie group GB. ��

By [23, Proposition 2.4], ifB : G → G is a Rota–Baxter operator on the Lie group
G, then B̃ : G → G defined by B̃(g) = g−1B(g−1) is also a Rota–Baxter operator on
G.

Corollary 5.5. Let (G, J ) be a factorizable Poisson Lie group. Then the map B̃ : G →
G given by

B̃(g) = R+(J
−1(g−1))

is a Rota–Baxter operator on G.

Proof. We have

B̃(g) = g−1R−(J−1(g−1))

= J (J−1(g−1))R−(J−1(g−1))

= R+(J
−1(g−1))R−(J−1(g−1))−1R−(J−1(g−1))

= R+(J
−1(g−1)).

By Theorem 5.4, B is a Rota–Baxter operator. Therefore B̃ : G → G is also a Rota–
Baxter operator. ��
Corollary 5.6. Let (G, J ) be a factorizable Poisson Lie group, andB the induced Rota–
Baxter operator on G. Then the descendent Lie group GB is a Poisson Lie group with the
Poisson structure πGB = J∗(πG∗). Its infinitesimal Lie bialgebra is

(
gB, (g∗, [·, ·]I )

)

given in Corollary 2.8.

At the end of this section, we show that a quadratic Rota–Baxter Lie group gives rise
to a factorizable Poisson Lie group.

Theorem 5.7. Let (G,B, S) be a quadratic Rota–Baxter Lie group and JS : G∗ → G
the induced diffeomorphism. Then G is a factorizable Poisson Lie group with

R− := B ◦ JS : G∗ → G, R+ := B+ ◦ JS : G∗ → G,

where B+(g) = gB(g).

Proof. By definition, the infinitesimal (g, B := B∗e, S) is a quadratic Rota–Baxter
Lie algebra of weight 1. By Theorem 2.10, we obtain that (g, g∗

r ) is a factorizable Lie
bialgebra. Note that

(R+)∗e = (B + id) ◦ IS = r+,

(R−)∗e = B ◦ IS = r−,

(JS)∗e = IS .
So integrating this factorizable Lie bialgebra ([30]), we get a factorizable Poisson Lie
group structure on G. ��
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As the Lie group level of Example 2.9, we have

Example 5.8. With notations in Example 2.9, let G and G∗ be the simply connected Lie
groups of g and g∗. Suppose that G is complete. Then the Lie group integrating the Lie
algebra d is D = G 
� G∗. Denote by D∗ the simply connected dual Poisson Lie group.
In fact, D∗ = G × G∗, the direct product Lie group of G and G∗, where G∗ is the
manifold G∗ with the group structure being s ·G∗ t = ts for s, t ∈ G∗. Note that r+, r−
lift naturally to R+, R− : D∗ → D, which are given by

R+(g, u) = g, R−(g, u) = u−1, ∀g ∈ G, u ∈ G∗.

So D is a factorizable Poisson Lie group. The induced Rota–Baxter operator B on the
Lie group D is given by

B(g, u) = u−1.

5.2. Rota–Baxter Lie groups and matched pairs of Lie groups. In this subsection, we
obtain a matched pair of Lie groups from a Rota–Baxter Lie group. Matched pairs of
Lie groups, also called double Lie groups, were explored in [30,31]. For matched pairs
of groups, we refer the readers to [38].

A pair of Lie groups (P, Q) is called a matched pair of Lie groups ([31]) if there
is a left action of P on Q and a right action of Q on P:

P × Q → Q, (p, q) �→ p 
 q; P × Q → P (p, q) �→ p � q,

such that

p 
 (q1q2) = (p 
 q1)
(
(p � q1) 
 q2

); (27)

(p1 p2) � q = (
p1 � (p2 
 q)

)
(p2 � q). (28)

Denote a Lie group matched pair by (P, Q; 
, �).
The following equivalent characterization of matched pairs of Lie groups is well-

known.

Proposition 5.9. Let (P, Q; 
, �) be a matched pair of Lie groups. Then there is a Lie
group structure ·
� on Q × P defined by

(q1, p1) ·
� (q2, p2) = (
q1(p1 
 q2), (p1 � q2)p2

)
.

Conversely, if (Q × P, ·) is a Lie group such that Q and P are Lie subgroups, then
(P, Q; 
, �) is a matched pair of Lie groups, where the left action 
 : P × Q → Q of
P on Q and the right action � : P × Q → P of Q on P are determined by

(1, p) · (q, 1) = (p 
 q, p � q).

Denote the Lie group (Q × P, ·
�) by Q 
� P .
Let G be a Lie group. Denote by (G × G, ·G×G) the direct product Lie group with

the group structure given by

(g1, g2) ·G×G (h1, h2) = (g1h1, g2h2).
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Proposition 5.10. Let (G,B) be a Rota–Baxter Lie group. Then there is a Lie group
structure ·D on G × G determined by

(1, g) ·D (1, h) = (1, gh);
(s, 1) ·D (t, 1) = (s � t, 1) = (sB(s)tB(s)−1, 1);
(s, 1) ·D (1, g) = (s, g);
(1, g) ·D (s, 1) = (gsg−1,B(gsg−1)−1gB(s)),

where s, t are elements in the first component, and g, h are elements in the second
component. Moreover, there is a Lie group isomorphism 
 from (G × G, ·D) to the
direct product Lie group (G × G, ·G×G) defined by


(s, g) = (sB(s)g,B(s)g). (29)

Proof. It is simple to see that 
 is a diffeomorphism whose inverse is given by


−1(g, h) = (gh−1,B(gh−1)−1h).

Then we claim that the product ·D on G × G is the pull-back of the direct product Lie
group structure on G × G by 
, i.e.,

e1 ·D e2 = 
−1(
(e1) ·G×G 
(e2)
)
, ∀e1, e2 ∈ G × G.

First, it is obvious that (1, g) ·D (1, h) = 
−1
(

(1, g) ·G×G 
(1, h)

)
. By (24), we have


−1(
(s, 1) ·G×G 
(t, 1)
) = 
−1((sB(s),B(s)) ·G×G (tB(t),B(t))

)

= 
−1(sB(s)tB(s)−1B(s)B(t),B(s)B(t))

= 
−1(s � tB(s � t),B(s � t))

= (s, 1) ·D (t, 1).

Moreover, by definition, we have


−1(
(s, 1) ·G×G 
(1, g)
) = 
−1((sB(s),B(s)) ·G×G (g, g)

)

= 
−1(sB(s)g,B(s)g) = (s, g)

= (s, 1) ·D (1, g),

and


−1(
(1, g) ·G×G 
(s, 1)
) = 
−1(gsB(s), gB(s)) = (gsg−1,B(gsg−1)−1gB(s))

= (1, g) ·D (s, 1).

Therefore, the Lie group structure ·D on G × G is the pull-back of the direct product
Lie group structure on G × G by 
, and 
 is a Lie group isomorphism. ��

By using the associativity, the group structure ·D is given by

(s, g) ·D (t, h) = (s, 1) ·D (1, g) ·D (t, 1) ·D (1, h)

= (s, 1) ·D (gtg−1,B(gtg−1)−1gB(t)) ·D (1, h)

= (s, 1) ·D (gtg−1, 1) ·D (1,B(gtg−1)−1gB(t)) ·D (1, h)

= (s � (gtg−1),B(gtg−1)−1gB(t)h). (30)
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Theorem 5.11. Let (G,B) be a Rota–Baxter Lie group. Then we have a matched pair
of Lie groups (G,GB; 
, �), where the actions are given by

g 
 s = gsg−1, g � s = B(gsg−1)−1gB(s), ∀g ∈ G, s ∈ GB.

Moreover, the corresponding Lie group GB 
� G is exactly the Lie group (G × G, ·D)

given in Proposition 5.10.

Proof. By (30), we get

(s, g) ·D (t, h) = (s � (g 
 t), (g � t)h).

By Proposition 5.9, we deduce that (G,GB; 
, �) is a matched pair of Lie groups.
��

Let (G, J ) be a factorizable Poisson Lie group. Then (G,B = R− ◦ J−1) is a Rota–
Baxter Lie group. By Theorem 5.11, we have a Lie group GB 
� G. On the other hand,
there is a Lie group G∗ 
� G on the double of a Poisson Lie group.

Proposition 5.12. With the notations above, we have a commutative diagram of Lie
group isomorphisms:

G∗ 
� G

J×id

��

� �� G × G

GB 
� G,




������������
(31)

where 
 is defined by (29) and � is given by

�(s, g) = (R+(s)g, R−(s)g), ∀s ∈ G∗, g ∈ G.

Moreover, the differential of this diagram is the diagram (15) in the case of λ = 1.

Proof. It is known that 
 is a Lie group homomorphism that integrates φ. By Theorem
5.4, J : G∗ → GB is the unique Lie group isomorphism integrating I : g∗

r → gB ,
as G∗ is simply connected. So it is direct to see J × id : G∗ 
� G → GB 
� G is
a Lie group isomorphism whose infinitesimal is I ⊕ id : g∗

r 
� g → gB 
� g in (15).
Moreover, by the calculation


 ◦ (J × id)(s, g) = 
(Js, g) = (JsR− J−1(Js)g, R− J−1(Js)g)

= (R+(s)g, R−(s)g) = �(s, g),

we see that
◦(J× id) = �, which is also a Lie group isomorphism such that�∗e = ψ .
Thus we conclude that diagram (31) is the integration of the diagram (15) in the case of
λ = 1. ��

Since 
 is a Lie group isomorphism, it follows that Im(
|GB) ⊂ G × G is a Lie
subgroup,which is isomorphic toGB. It gives an alternative approach to the factorization
of Rota–Baxter Lie groups given in [23].

Corollary 5.13. Let (G,B) be a Rota–Baxter Lie group. Then for any g ∈ G, there
exists a unique decomposition g = g+g

−1− with (g+, g−) ∈ Im(
|GB) ⊂ G × G.
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Proof. We have g = gB(g)B(g)−1, where (gB(g),B(g)) = 
(g, 1) for g ∈ GB and
this decomposition is unique since 
 is a diffeomorphism. ��

At the end of this subsection, we establish the relation between the Lie group GB 
�
G and the Lie algebra gB 
� g, where g is the Lie algebra of G and B = B∗e is the
differentiated Rota–Baxter operator of weight 1 on g.

Proposition 5.14. Let (G,B) be a Rota–Baxter Lie group whose infinitesimal Rota–
Baxter Lie algebra is (g, B = B∗e). Then the Lie algebra of the Lie group GB 
� G
given in Theorem 5.11 is the Lie algebra gB 
� g given in Theorem 3.3 and 
∗e = φ.

Proof. Denote by �·, ·� the induced Lie bracket on g ⊕ g of the Lie group GB 
� G. It
is simple to see that

�(0, x), (0, y)� = (0, [x, y]g), �(ξ, 0), (η, 0)� = ([ξ, η]B, 0).

Then, by (30), we have

�(0, x), (ξ, 0)�

= d

dε

d

dε′ |ε,ε′=0(1, exp
εx ) ·D (expε′ξ , 1) ·D (1, exp−εx )

= d

dε

d

dε′ |ε,ε′=0(1, exp
εx ) ·D (expε′ξ , exp−εx )

= d

dε

d

dε′ |ε,ε′=0(exp
εx expε′ξ exp−εx ,

B(expεx expε′ξ exp−εx )−1 expεx B(expε′ξ ) exp−εx )

= ([x, ξ ]g, d

dε

d

dε′ |ε,ε′=0B(expεx expε′ξ exp−εx )−1

+
d

dε

d

dε′ |ε,ε′=0 exp
εx B(expε′ξ ) exp−εx )

= ([x, ξ ]g,−B[x, ξ ]g + [x, Bξ ]g)
= [(0, x), (ξ, 0)]gB
�g.

So we proved �·, ·� = [·, ·]gB
�g. Namely, the Lie algebra of GB 
� G is gB 
� g. It is
obvious that 
∗e = φ. ��
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