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Abstract: We prove that for any tau-symmetric bihamiltonian deformation of the tau-
cover of the Principal Hierarchy associated with a semisimple Frobenius manifold, the
deformed tau-cover admits an infinite set of Virasoro symmetries.

1. Introduction

This is the second one of the series of papers devoted to the study of deformations of
the Virasoro symmetries of bihamiltonian integrable hierarchies. In the first one [23],
we developed a cohomology theory on the space of differential forms of the infinite jet
space of a super manifold for a given bihamiltonian structure of hydrodynamic type,
and we call such a cohomology theory the variational bihamiltonian cohomology. It can
be viewed as a generalization of the bihamiltonian cohomology introduced in [12], and
it provides a suitable tool for us to study deformations of the Virasoro symmetries of
bihamiltonian integrable hierarchies.

The purpose of the present paper is to prove the following theorem.

Theorem 1 (Main Theorem). For a given tau-symmetric bihamiltonian deformation of
the Principal Hierarchy associated with a semisimple Frobenius manifold, there exists a
unique deformation of the Virasoro symmetries of the tau-cover of the Principal Hierar-
chy such that they are symmetries of the tau-cover of the deformed integrable hierarchy.
Moreover, the action of the Virasoro symmetries on the tau-function Z of the deformed
integrable hierarchy can be represented in the form

∂Z
∂sm

= LmZ + OmZ, m ≥ −1, (1.1)

where Lm are the Virasoro operators constructed in [11] and Om are some differential
polynomials, and the flows ∂

∂sm
satisfy the Virasoro commutation relations[

∂

∂sk
,

∂

∂sl

]
= (l − k)

∂

∂sk+l
, k, l ≥ −1.
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Let us briefly explain the basic idea for proving this theorem. Consider the following
system of evolutionary PDEs with time variable t and spacial variable x :

∂ui

∂t
= Ai

j (u)u j
x + ε

(
Bi
j (u)u j

xx + Ci
jk(u)u j

xu
k
x

)
+ . . . , i = 1, . . . , n. (1.2)

We assume that this system is bihamiltonian with respect to the bihamiltonian structure
(P0, P1) whose leading term is semisimple. We can associate with it a super extension
by introducing odd unknown functions θi for i = 1, . . . , n, and by adding odd flows
∂

∂τ0
and ∂

∂τ1
which correspond respectively to the Hamiltonian structure P0 and P1 (see

[22] and Sect. 2.3 given below for details). Thus the super extension of (1.2) consists
of the flows ∂

∂t ,
∂

∂τ0
and ∂

∂τ1
for the unknown functions ui and θi , and the fact that the

system (1.2) is bihamiltonian with respect to (P0, P1) is equivalent to the following
commutation relations:

[
∂

∂t
,

∂

∂τi

]
= 0,

[
∂

∂τi
,

∂

∂τ j

]
= 0, i, j = 0, 1.

Example 1. Consider the following Korteweg-de Vries (KdV) equation:

∂u

∂t
= uux +

ε2

12
uxxx .

It admits a bihamiltonian structure given by the following Poisson brackets:

{u(x), u(y)}0 = δ′(x − y),

{u(x), u(y)}1 = u(x)δ′(x − y) +
ux
2

δ(x − y) +
ε2

8
δ′′′(x − y).

We introduce an odd unknown function θ , and construct the following super extension
of the KdV equation:

∂u

∂t
= uux +

ε2

12
uxxx ,

∂θ

∂t
= uθx +

ε2

12
θxxx , (1.3)

∂u

∂τ0
= θx ,

∂u

∂τ1
= uθx +

1

2
uxθ +

ε2

8
θxxx , (1.4)

∂θ

∂τ0
= 0,

∂θ

∂τ1
= 1

2
θθx . (1.5)

It is easy to check directly that the flows in the extended system mutually commute.

Remark 1. The flow (1.3) also appeared in [1].
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According to the theory of bihamiltonian cohomology developed in [7], we know that
if there is another system of evolutionary PDEs given by the flow ∂

∂ t̂
satisfying the

commutation relation [
∂

∂ t̂
,

∂

∂τ0

]
=

[
∂

∂ t̂
,

∂

∂τ1

]
= 0, (1.6)

then it gives a symmetry of the system (1.2), i.e.,[
∂

∂t
,

∂

∂ t̂

]
= 0.

We note that the above results is for a flow ∂

∂ t̂
given by differential polynomials. In order

to use the above results to consider symmetries of more general forms such as Virasoro
symmetries, we introduce the notion of super tau-cover of a bihamiltonian integrable
hierarchy and develop the theory of variational bihamiltonian cohomology [23]. Then
we are able to consider the commutation relation between the Virasoro symmetries ∂

∂sm
and the odd flows ∂

∂τ0
and ∂

∂τ1
. By applying the results of variational bihamiltonian

cohomology proved in [23], we manage to prove the main theorem. A more detailed
description of the idea for proving this theorem is given at the end of Sect. 3.2 and in
Sect. 3.3.

We organize this paper as follows. In Sect. 2, we construct the super tau-cover of a
given tau-symmetric bihamiltonian deformation of the Principal Hierarchy associated
with a semisimple Frobenius manifold. This construction builds a bridge which relates
Virasoro symmetries to bihamiltonian structures. In Sect. 3, we explain how the problem
of deformations of theVirasoro symmetries can be solved via the theory of the variational
bihamiltonian cohomology. In Sect. 4 we give the proof of the main theorem. Finally in
Sect. 5, we make some concluding remarks.

2. Super Tau-Covers of Bihamiltonian Integrable Hierarchies

2.1. Bihamiltonian structures on infinite jet spaces. Let us start by recalling the basic
construction of bihamiltonian structures as local functionals on infinite jet spaces. One
may refer to [20] for a detailed introduction to this topic.

LetM be a smoothmanifold of dimensionn and M̂ be the supermanifold of dimension
(n|n) obtained by reversing the parity of the fibers of the cotangent bundle of M . In
another word, if we choose a local canonical coordinate system (u1, . . . , un; θ1, . . . , θn)

on T ∗M , then M̂ can be described locally by the same chart while regarding the fiber
coordinates as odd variables:

θiθ j + θ jθi = 0, i, j = 1, . . . , n.

We say that the odd coordinates θi are dual to ui . The transition functions between two
local trivializations (u1, . . . , un; θ1, . . . , θn) and (w1, . . . , wn;φ1, . . . , φn) are given by
the same formula as those of the cotangent bundle:

φα = ∂uβ

∂wα
θβ, α = 1, . . . , n.

Here and henceforth, summation over repeated upper and lower Greek indices is as-
sumed.
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Denote by J∞(M̂) the infinite jet bundle of M̂ . It is a fiber bundle over M̂ with fiber
R

∞. If we choose a local chart (u1, . . . , un; θ1, . . . , θn) of M̂ , a trivialization can be
realized by choosing the fiber coordinates being (uα,s; θ sα) for α = 1, . . . , n and s ≥ 1.
The transition functions between different charts are given by the chain rule

wα,1 = ∂wα

∂uβ
uβ,1, wα,2 = ∂wα

∂uβ
uβ,2 +

∂2wα

∂uβ∂uγ
uβ,1uγ,1, . . . ,

φ1
α = ∂uβ

∂wα
θ1β +

∂2uβ

∂wγ ∂wα

∂wγ

∂uλ
uλ,1θβ, . . . .

Denote by Â the ring of differential polynomials, locally it is given by

Â = C∞(u)[[uα,s+1, θ sα | α = 1, . . . , n; s ≥ 0]].
It is graded with respect to the super degree degθ defined by

degθ u
α,s = 0, degθ θ sα = 1, α = 1, . . . , n, s ≥ 0.

Here and henceforth we use the notation uα,0 = uα , θ0α = θα . The set of homogeneous
elements with super degree p is denoted by Âp.

Introduce a global vector field ∂x on J∞(M̂) which is locally described by

∂x =
∑
s≥0

uα,s+1 ∂

∂uα,s
+ θ s+1α

∂

∂θ sα
.

Then we have uα,s = ∂sxu
α and θ sα = ∂sxθα . Hence we can grade the ring Â with respect

to the differential degree deg∂x
defined by

deg∂x
uα,s = s, deg∂x

θ sα = s, α = 1, . . . , n, s ≥ 0.

We use the notation Âd to denote the set of homogeneous elements with differential
degree d, and Âp

d = Âp ∩ Âd .

Using the vector field ∂x , one can construct the space F̂ of local functionals via the
quotient F̂ := Â/∂xÂ. Since the vector field ∂x is homogeneous with respect to both the
super degree and the differential degree, the quotient space F̂ admits natural gradations
induced from Â andwewill use the notation F̂ p, F̂d and F̂ p

d to denote the corresponding

subspaces of homogeneous elements. For any element f ∈ Â, we will use
∫

f ∈ F̂ to
denote its image of the natural projection π : Â → F̂ .

For a differential polynomial f ∈ Â, one may define the variational derivatives by

δ f

δuα
=

∑
s≥0

(−∂x )
s ∂ f

∂uα,s
,

δ f

δθα

=
∑
s≥0

(−∂x )
s ∂ f

∂θ sα
.

It is easy to verify that the variational derivatives annihilate the elements in ∂xÂ, hence
they are also well-defined on the quotient space F̂ . For any F ∈ F̂ , we have

δF

δuα
=

∑
s≥0

(−∂x )
s ∂ f

∂uα,s
,

δF

δθα

=
∑
s≥0

(−∂x )
s ∂ f

∂θ sα
,
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with f ∈ Â being an arbitrary lift of F such that F = ∫
f . With the help of the notion

of the variational derivatives, one can define the so-called Schouten-Nijenhuis bracket,
which is a bilinear map [−,−] : F̂ × F̂ → F̂ defined by

[P, Q] =
∫ (

δP

δθα

δQ

δuα
+ (−1)p

δP

δuα

δQ

δθα

)
, P ∈ F̂ p, Q ∈ F̂q .

This bracket satisfies the graded commutation relation

[P, Q] = (−1)pq [Q, P] , P ∈ F̂ p, Q ∈ F̂q ,

and the graded Jacobi identity

(−1)rp[[P, Q], R] + (−1)pq [[Q, R], P] + (−1)qr [[R, P], Q]
= 0, P ∈ F̂ p, Q ∈ F̂q , R ∈ F̂r .

Any local functional P ∈ F̂ p gives rise to a graded derivation

DP =
∑
s≥0

∂sx

(
δP

δθα

)
∂

∂uα,s
+ (−1)p∂sx

(
δP

δuα

)
∂

∂θ sα
∈ Der(Â)p−1. (2.1)

Here the space Der(Â)p (p ∈ Z) is the space of linear maps

D : Âq → Âq+p

satisfying the graded Leibniz rule

D( f g) = D( f ) g + (−1)kp f D(g), f ∈ Âk, g ∈ Â.

Denote Der(Â) = ⊕p∈ZDer(Â)p, then it is a graded Lie algebra with the graded com-
mutator

[D1, D2] = D1 
 D2 − (−1)kl D2 
 D1, D1 ∈ Der(Â)k, D2 ∈ Der(Â)l ,

and it is also graded by the differential degree

Der(Â)d = {D ∈ Der(Â) | D(Âk) ⊆ Âk+d},
and we denote

Der(Â)
p
d = Der(Â)p ∩ Der(Â)d . (2.2)

For P ∈ F̂ p and Q ∈ F̂q , we have the following useful identities:

D[P,Q] = (−1)p−1 [
DP , DQ

]
, (2.3)

δ

δuα
[P, Q] = DP

(
δQ

δuα

)
+ (−1)pq DQ

(
δP

δuα

)
, (2.4)

δ

δθα

[P, Q] = (−1)p−1DP

(
δQ

δθα

)
− (−1)(p−1)q DQ

(
δP

δθα

)
. (2.5)
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A Hamiltonian structure is defined as a local functional P ∈ F̂2 such that [P, P] =
0. We can associate a matrix valued differential operator P = (Pαβ) with Pαβ =∑

s≥0 P
αβ
s ∂sx to any bivector P ∈ F̂2, where Pαβ

s ∈ Â are defined by

δP

δθα

=
∑
s≥0

Pαβ
s θ sβ, α = 1, . . . , n.

If P is a Hamiltonian structure, then we call P the Hamiltonian operator of P .

Theorem 2 ([10]). Let P ∈ F̂2
1 . Denote the differential operator associated with P by

Pαβ = gαβ(u)∂x + αβ
γ (u)uγ,1, det(gαβ) �= 0,

then P is a Hamiltonian structure if and only if g = (gαβ) = (gαβ)−1 defines a flat
metric on M and the Christoffel symbols of the Levi–Civita connection of g are given
by 

γ
αβ = −gαλ

λγ
β .

AHamiltonian structure P satisfying the conditions of the above theorem is called of
hydrodynamic type. It follows from the above theorem that there exists a local coordinate
system (vα; σα) on M̂ such that

P = 1

2

∫
ηαβσασ 1

β ,

where ηαβ is a constant non-degenerate matrix. The coordinates vα and σα are called
flat coordinates of P .

A bihamiltonian structure (P0, P1) is a pair of Hamiltonian structures which satis-
fies an additional compatibility condition [P0, P1] = 0. Assume that the bihamiltonian
structure is of hydrodynamic type, then according to Theorem 2, we have two flat con-
travariant metrics gαβ

0 and gαβ
1 . We say that this bihamiltonian structure is semisimple

if the roots of the characteristic equation

det
(
gαβ
1 − λgαβ

0

)
= 0

are distinct and not constant. In this case, the roots λ1(u), . . . , λn(u) can serve as lo-
cal coordinates of M and they are called the canonical coordinates of the semisimple
bihamiltonian structure. It is proved in [14], in terms of the canonical coordinates, that

P0 = 1

2

∫ n∑
i, j=1

(
δi, j f

i (λ)θiθ
1
i + Ai jθiθ j

)
,

P1 = 1

2

∫ n∑
i, j=1

(
δi, j g

i (λ)θiθ
1
i + Bi jθiθ j

)
,

where f i are non-vanishing functions, gi = λi f i and the functions Ai j and Bi j are
given by

Ai j = 1

2

(
f i

f j

∂ f j

∂λi
λ j,1 − f j

f i
∂ f i

∂λ j
λi,1

)
, Bi j = 1

2

(
gi

f j

∂ f j

∂λi
λ j,1 − g j

f i
∂ f i

∂λ j
λi,1

)
.

(2.6)
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Here by abusing the notation, we still use θi to denote the fiber coordinates of M̂ dual
to λi . We also call λi and θi the canonical coordinates of (P0, P1).

From now on, for a semisimple bihamiltonian structure (P0, P1) of hydrodynamic
type, we will use (vα; σα) to denote flat coordinates of P0 such that

P0 = 1

2

∫
ηαβσασ 1

β ,

P1 = 1

2

∫
gαβ(v)σασ 1

β + αβ
γ (v)vγ,1σασβ,

and we will use (ui ; θi ) to denote the canonical coordinates for (P0, P1) such that

P0 = 1

2

∫ n∑
i, j=1

(
δi, j f

i (u)θiθ
1
i + Ai jθiθ j

)
,

P1 = 1

2

∫ n∑
i, j=1

(
δi, j u

i f i (u)θiθ
1
i + Bi jθiθ j

)
. (2.7)

Here and henceforth we do not assume summations over repeated upper and lower Latin
indices.

In terms of the notations introduced above, a system of evolutionary PDEs

∂uα

∂t
= Xα, Xα ∈ Â0

can be represented by a local functional X = ∫
Xαθα , and it is called a bihamiltonian

system if there exists a bihamiltonian structure (P0, P1) and two Hamiltonians G, H ∈
F̂0 such that

X = −[G, P0] = −[H, P1].

Example 2. The KdV equation

∂u

∂t
= uux +

ε2

12
uxxx (2.8)

can be represented by X = ∫
(uux + ε2

12uxxx )θ . Its bihamiltonian structure is given by

P0 = 1

2

∫
θθx , P1 = 1

2

∫
uθθ1 +

ε2

8
θθ3.

The two Hamiltonians with respect to the bihamiltonian structure are given by

X = −
[∫

u3

6
− ε2

24
u2x , P0

]
= −

[∫
u2

3
, P1

]
.
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2.2. Frobenius manifolds and super tau-covers of the Principal Hierarchies. In this
subsection, we first recall some basic facts of Frobenius manifolds and the construction
of the associated Principal Hierarchies following the work of [4–6,12]. Then we recall
the construction of the super tau-covers of the Principal Hierarchies given in [22].

The notion of Frobenius manifolds is a geometric description of genus zero 2D
topological field theories. An n-dimensional Frobenius manifold M can be locally
described by a solution F(v1, . . . , vn) of the following Witten–Dijkgraaf–Verlinde–
Verlinde (WDVV) associativity equations [2,29]:

∂α∂β∂λFηλμ∂μ∂γ ∂δF = ∂δ∂β∂λFηλμ∂μ∂γ ∂αF. (2.9)

Here ∂α = ∂
∂vα and we require that (ηαβ) := (∂1∂α∂βF) is a constant non-degenerate

matrix with inverse (ηαβ). The function F(v1, . . . , vn) is called the potential of M and
it defines a Frobenius algebra structure on T M :

〈∂α, ∂β〉 = ηαβ, ∂α · ∂β = cγ
αβ∂γ ,

where the functions cγ
αβ are defined by

cγ
αβ = ηγλcλαβ, cλαβ = ∂λ∂α∂βF.

The potential F is required to be quasi-homogeneous in the sense that there exists a
vector field

E =
n∑

α=1

((
1 − d

2
− μα

)
vα + rα

)
∂α,

called the Euler vector field, such that

E(F) = (3 − d)F +
1

2
Aαβvαvβ + Bαvα + C.

Here the diagonal matrix μ = diag(μ1, . . . , μn) is part of the monodromy data of M
which satisfies the identity

(μα + μβ)ηαβ = 0, ∀α, β. (2.10)

It is also assumed that μ1 = −d/2 and r1 = 0.
An important property of Frobenius manifolds is that the affine connection

∇̃XY = ∇XY + zX · Y, ∀ X,Y ∈ (T M), z ∈ C

is flat for arbitrary z, here ∇ is the Levi–Civita connection of the flat metric (ηαβ). It can
be extended to a flat connection on M × C

∗ by viewing z as the coordinate on C
∗ and

defining

∇̃∂z X = ∂z X + E · X − 1

z
μX, ∇̃∂z∂z = ∇̃X∂z = 0.

The connection ∇̃ is called the deformed flat connection or the Dubrovin connection.
For such a flat connection, one can find a system of flat coordinates of the form

(ṽ1(v, z), . . . , ṽn(v, z)) = (h1(v, z), . . . , hn(v, z))zμzR .
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Here R is a constant matrix. The constant matrices η,μ and R form the monodromy data
of M at z = 0. The matrix R can be decomposed into a finite sum R = R1 + · · · + Rm ,
and they satisfy the conditions

[μ, Rk] = kRk, ηαγ (Rk)
γ
β = (−1)k+1ηβγ (Rk)

γ
α . (2.11)

The functions hα(v, z) are analytic at z = 0 and has the expansion hα(v, z) =∑
p≥0 hα,p(v)z p. The coefficients hα,p satisfy the recursion relations

hα,0 = ηαβvβ, ∂β∂γ hα,p+1 = cλ
βγ ∂λhα,p, p ≥ 0,

the quasi-homogeneous and normalization conditions

E(∂βhα,p) = (p + μα + μβ)∂βhα,p +
p∑

k=1

(Rk)
γ
α∂βhγ,p−k,

〈∇hα(v, z),∇hβ(v,−z)〉 = ηαβ.

A choice of the functions hα,p satisfying all the above-mentioned conditions is called a
calibration ofM , and a FrobeniusmanifoldM is called calibrated if such a choice is fixed.
In what follows, we assume that the Frobenius manifolds we consider are calibrated.

The Principal Hierarchy associated with a Frobenius manifold M is a bihamiltonian
integrable hierarchy of hydrodynamic type. Denote by σα the odd variables dual to the
flat coordinates vα , then the Principal Hierarchy can be described by the local functionals
Xα,p ∈ F̂1 of the form

Xα,p =
∫

ηλγ ∂x (∂γ hα,p+1)σλ, α = 1, . . . , n, p ≥ 0, (2.12)

or equivalently, we can represent the integrable hierarchy as follows:

∂vλ

∂tα,p
= ηλγ ∂x (∂γ hα,p+1).

Define two local functionals

P0 = 1

2

∫
ηαβσασ 1

β , P1 = 1

2

∫
gαβσασ 1

β + αβ
γ vγ,1σασβ, (2.13)

where the functions gαβ and 
αβ
γ are given by

gαβ = Eεcαβ
ε , αβ

γ =
(
1

2
− μβ

)
cαβ
γ

with cαβ
γ = ηαλcβ

λγ , then we have the following theorem.

Theorem 3 ([5]). Let M be a Frobenius manifold, then

1. The local functionals P0, P1 defined in (2.13) form a bihamiltonian structure which
is exact in the sense that

P0 = [Z , P1], Z =
∫

σ1.
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2. The Principal Hierarchy Xα,p associated with M is bihamiltonian with respect to
the bihamiltonian structure (P0, P1) and

Xα,p = − [
Hα,p, P0

]
, Hα,p =

∫
hα,p+1.

3. The following bihamiltonian recursion relation holds true:

[Hα,p−1, P1] =
(
p +

1

2
+ μα

)
[Hα,p, P0] +

p∑
k=1

(Rk)
γ
α [Hγ,p−k, P0], p ≥ 0.

Another important property satisfied by the Principal Hierarchy is that it is tau-
symmetric. Let us define the functions �α,p;β,q for α, β = 1, . . . , n and p, q ≥ 0 by
the generating function

∑
p≥0,q≥0

�α,p;β,q(v)z p1 z
q
2 = 〈∇hα(v, z1),∇hβ(v, z2)〉 − ηαβ

z1 + z2
.

They have the following properties [5]:

�α,p;1,0 = hα,p, �α,p;β,0 = ∂βhα,p+1,

�α,p;β,q = �β,q;α,p,
∂�α,p;β,q

∂tλ,k
= ∂�λ,k;β,q

∂tα,p
.

It follows from these identities that one can extend the PrincipalHierarchy by introducing
another family of unknown functions fα,p satisfying the following equations:

∂ fα,p

∂tβ,q
= �α,p;β,q ,

∂vα

∂tβ,q
= ηαλ∂x�λ,0;β,q . (2.14)

The system (2.14) is called the tau-cover of the Principal Hierarchy.
In order to study the relation between bihamiltonian structures and Virasoro sym-

metries, we introduced the notion of the super tau-cover of the Principal Hierarchy of a
Frobenius manifold in [22]. Let us briefly recall its construction which provides themain
motivation of our work presented in the next subsection. We first introduce a family of
odd unknown functions σ s

α,k for s, k ≥ 0 with σ s
α,0 = σ s

α . In what follows we will also

use σα,k to denote σ 0
α,k . We extend the action of ∂x to include these new odd variables

as follows:

∂x =
∑
s≥0

vα,s+1 ∂

∂vα,s
+

∑
k,s≥0

σ s+1
α,k

∂

∂σ s
α,k

.

These odd variables are required to satisfy the following bihamiltonian recursion rela-
tion:

ηαβσ 1
β,k+1 = gαβσ 1

β,k + αβ
γ vγ,1σβ,k, α = 1, . . . , n; k ≥ 0. (2.15)

We also introduce a family of odd flows ∂
∂τm

for m ≥ 0. The first two odd flows are
determined by the bihamiltonian structure (P0, P1) as follows:

∂vα

∂τi
= δPi

δσα

,
∂σα

∂τi
= δPi

δvα
, i = 0, 1.
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Note that ∂
∂τi

= DPi for i = 0, 1, where DPi is defined by (2.1). The actions of ∂
∂τi

can

be extended to all the other odd variables σα,k such that the flows ∂
∂τi

are compatible with

the recursion relation (2.15). Furthermore we can define infinitely many odd flows ∂
∂τm

form ≥ 2 which can be viewed as flows corresponding to certain non-local Hamiltonian
structures.

We have the following theorem.

Theorem 4 ([22]). We have the following mutually commuting flows associated with
any given Frobenius manifold M:

∂vα

∂tβ,p
= ηαγ (∂λ∂γ hβ,p+1)v

λ,1,
∂σα,k

∂tβ,p
= ηγ ε(∂α∂εhβ,p+1)σ

1
γ,k,

∂vα

∂τm
= ηαβσ 1

β,m,
∂σα,k

∂τm
= −∂σα,m

∂τk
= γβ

α

m−k−1∑
i=0

σβ,k+iσ
1
γ,m−i−1, 0 ≤ k ≤ m,

where α, β = 1, . . . , n, and m, p ≥ 0. These flows are well-defined in the sense that
they are compatible with the recursion relation (2.15).

The system described in Theorem 4 is a super extension of the Principal Hierarchy,
since the reduction obtained by setting all the odd variables to be zero yields the original
Principal Hierarchy. The super extension of the tau-cover (2.14) can be constructed by
introducing another family of odd variables �m

α,p for p,m ≥ 0 and we call it the super
tau-cover of the Principal Hierarchy. It is given in the following theorem.

Theorem 5 ([22]). The mutually commuting flows

∂ fα,p

∂tβ,q
= �α,p;β,q ,

∂ fα,p

∂τm
= �m

α,p,

∂�m
α,p

∂tβ,q
= ∂�α,p;β,q

∂τm
,

∂�m
α,p

∂τk
= �k,m

α,p ,

together with the ones presented in Theorem 4, give the super tau-cover of the Principal
Hierarchy associated with M, where �

k,m
α,p are defined by the formula

�k,m
α,p = −�m,k

α,p = ηγλ∂λhα,p
δμ
γ

(
k−m−1∑
i=0

σμ,m+iσ
1
δ,k−i−1

)
, k ≥ m.

It was shown in [22] that the odd variables �m
α,p satisfy the recursion relation

−
(
2p − 1

2
+ μα

)
�m

α,p =
(
1

2
+ μλ

)
ηλε(∂λhα,p)σε,m +

p∑
k=1

(Rk)
ξ
α�m

ξ,p−k − �m+1
α,p−1

with the initial condition �m
α,0 = σα,m . So when the diagonal matrix μ of the Frobenius

manifold M satisfies the condition 1−2k
2 /∈ Spec(μ) for any k = 1, 2, . . . , all the
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variables �m
α,p are linear combinations of σε,k with coefficients being smooth functions

of v1, . . . , vn .
For an arbitrary tau-symmetric bihamiltonian deformation of the Principal Hierarchy

associated with a semisimple Frobenius manifold, we are to construct in the remaining
part of this section its super extension and super tau-cover by generalizing the construc-
tions given in Theorems 4 and 5.

2.3. Super extensions of bihamiltonian integrable hierarchies. In this subsection, we
construct a super extension for a given bihamiltonian integrable hierarchy with hydro-
dynamic limit.

We fix an n-dimensional smooth manifold M and a semisimple bihamiltonian struc-
ture (P [0]

0 , P [0]
1 ) of hydrodynamic type defined on J∞(M̂). Let us choose (wα;φα)

as local coordinates on M̂ . Recall that a Miura type transformation is a choice of n
differential polynomials w̃1, . . . , w̃n ∈ Â0≥0 such that

det

(
∂w̃α

0

∂wβ

)
�= 0,

where w̃α
0 is the differential degree zero component of w̃α . By defining w̃α,s = ∂sx w̃

α ,
it is easy to see that we can represent any differential polynomial in wα,s by a dif-
ferential polynomial in w̃α,s . Therefore a Miura type transformation can be viewed as
a special type of change of coordinates on J∞(M). The extension of the Miura type
transformations on J∞(M̂) is given by the following theorem [25].

Theorem 6 ([25]). A Miura type transformation induces a change of coordinates from
(wα,s;φs

α) to (w̃α,s; φ̃s
α) given by

φs
α = ∂sx

∑
t≥0

(−∂x )
t
(

∂w̃β

∂wα,t
φ̃β

)
.

Now let (P0, P1) be any given deformation of (P [0]
0 , P [0]

1 ). Denote by P0 and P1 the
Hamiltonian operators of P0 and P1 in the coordinates (wα,s;φs

α). We introduce another
family of odd variables φs

α,m for m ≥ 0 and extend the vector field ∂x to the following
one:

∂x =
∑
s≥0

wα,s+1 ∂

∂wα,s
+

∑
k,s≥0

φs+1
α,k

∂

∂φs
α,k

.

In what follows we also use the notations φs
α,0 = φs

α and φ0
α,m = φα,m . Inspired by

(2.15), we require that these new odd variables satisfy the recursion relations

Pαβ
0 φβ,m+1 = Pαβ

1 φβ,m, m ≥ 0. (2.16)

We first show that (2.16) is well defined in the sense that it is invariant under Miura type
transformations.
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Proposition 1. The Miura type transformation from (wα,s;φs
α) to (w̃α,s; φ̃s

α) induces a
transformation for the new odd variables φs

α,m given by

φs
α,m = ∂sx

∑
t≥0

(−∂x )
t
(

∂w̃β

∂wα,t
φ̃β,m

)
, m ≥ 1, (2.17)

such that the recursion relation (2.16) is invariant.

Proof. Denote byPi and P̃i theHamiltonian operator of Pi in the coordinates (wα,s;φs
α)

and (w̃α,s; φ̃s
α) respectively for i = 0, 1. Then it is well known that

P̃i
αβ =

∑
s≥0

∂w̃α

∂wλ,s
∂sx 
 Pλε

i 

∑
t≥0

(−∂x )
t 
 ∂w̃β

∂wε,t
.

Therefore by using the relation (2.16), it is easy to see that:

P̃0
αβ

φ̃β,m+1 =
∑
s≥0

∂w̃α

∂wλ,s
∂sx 
 Pλε

0 

∑
t≥0

(−∂x )
t 
 ∂w̃β

∂wε,t
(φ̃β,m+1)

=
∑
s≥0

∂w̃α

∂wλ,s
∂sx 
 Pλε

0 φε,m+1

=
∑
s≥0

∂w̃α

∂wλ,s
∂sx 
 Pλε

1 φε,m

=
∑
s≥0

∂w̃α

∂wλ,s
∂sx 
 Pλε

1 

∑
t≥0

(−∂x )
t 
 ∂w̃β

∂wε,t
(φ̃β,m)

= P̃1
αβ

φ̃β,m .

Thus we see that the recursion relations (2.16) are preserved under the change of coor-
dinates (2.17). The proposition is proved. ��

By using the theory of bihamiltonian cohomology [7] for (P [0]
0 , P [0]

1 ), we can choose
a coordinate system (vα,s; σ s

α) such that

P0 = P [0]
0 = 1

2

∫
ηαβσασ 1

β ,

and the F̂2
2 component of P1 vanishes. From now on, we will always use (vα,s; σ s

α) to
denote the coordinate system described above. We use the notation Â+ to denote the
extension of Â by including the odd variables σ s

α,m for m ≥ 1 satisfying the recursion
relations

ηαβσ 1
β,m+1 = Pαβ

1 σβ,m, m ≥ 0. (2.18)

As before we use the notation σ s
α,0 = σ s

α and σ 0
α,m = σα,m . We will still use ∂x to denote

the vector field on Â+ defined by

∂x =
∑
s≥0

vα,s+1 ∂

∂vα,s
+

∑
s,m≥0

σ s+1
α,m

∂

∂σ s
α,m

.



472 S.-Q. Liu, Z. Wang, Y. Zhang

For any element f ∈ Â+, we say that f is local if it can be represented by an element of
Â and we say that f is non-local if it is not local. Note that on the space Â+, the super
degree is still well defined by setting the super degree of σ s

α,m being 1. We will use Â+,p

to denote the set of homogeneous elements with super degree p.

Example 3. Consider the following bihamiltonian structure of the KdV equation (2.8):

P0 = ∂x , P1 = v∂x +
1

2
vx +

ε2

8
∂3x .

We introduce odd variables σ s
m for s,m ≥ 0 such that they satisfy the recursion relations

σ 1
m+1 = vσ 1

m +
1

2
vxσm +

ε2

8
σ 3
m, m ≥ 0.

Then the ring Â+ is given by the quotient

Â+ = C∞(v)[[v(s+1), σ s
m | m, s ≥ 0]]/J,

where J is the differential ideal generated by

vσ 1
m +

1

2
vxσm +

ε2

8
σ 3
m − σ 1

m+1, m ≥ 0.

Then we see that σ 1
1 is local but σ 1

2 is non-local.

Definition 1. For k, l ≥ 0, we define the shift operators

Tk : Â1 → Â+,1, Tk,l : Â2 → Â+,2

to be the linear operators given by

Tk( f σ
s
α,0) = f σ s

α,k, f ∈ Â0,

Tk,l = − Tl,k, Tk,l( f σ
t
α,0σ

s
β,0) = f

l−k−1∑
i=0

σ t
α,k+iσ

s
β,l−i−1, k ≤ l, f ∈ Â0.

In particular, Tk,k = 0.

The following lemmas are obvious from the above definition.

Lemma 1. The shift operators Tk and Tk,l commute with ∂x .

Lemma 2. The shift operators Tk and Tk,l are globally defined, i.e. they are invariant
under Miura type transformations.

Example 4. Using the shift operators, the recursion relation (2.18) can be represented
by the following formula

Tm+1
δP0
δσα,0

= Tm
δP1
δσα,0

, m ≥ 0. (2.19)
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Example 5. The recursion relation (2.18) can also be represented by the following for-
mula:

Tm+1
(
DP0 f

) = Tm
(
DP1 f

)
, m ≥ 0, f ∈ Â0, (2.20)

here DPi are the derivations defined in (2.1). Indeed, when f = vα we recover the
relation (2.19); for general f ∈ Â0, by definition (2.1), we have

Tm+1
(
DP0 f

) = Tm+1

∑
s≥0

∂ f

∂vα,s
∂sx

δP0
δσα,0

= Tm
∑
s≥0

∂ f

∂vα,s
∂sx

δP1
δσα,0

= Tm
(
DP1 f

)
.

With the help of the shift operators, we can generalize the construction given in the
previous subsection. We first introduce the following notation.

Definition 2. We define a family of odd derivations ∂
∂τm

on Â+ by

∂vα

∂τm
= Tm

δP0
δσα,0

,
∂σα,k

∂τm
= Tk,m

δP1
δvα

,

[
∂

∂τm
, ∂x

]
= 0. (2.21)

In particular, for f ∈ Â we have

∂ f

∂τ0
= DP0 f,

∂ f

∂τ1
= DP1 f, (2.22)

and for f ∈ Â0 we have

∂ f

∂τm
= Tm

∂ f

∂τ0
, m ≥ 0. (2.23)

We need to check that that this definition is well-defined, i.e., it is compatible with the
recursion relations (2.19).

Lemma 3. The following identity holds true for any X ∈ Â1 and m, k ≥ 0:

∂

∂τk
Tm(X) = Tm,k

(
DP1(X)

) − Tm+1,k
(
DP0(X)

)
.

Proof. Since all the operators are linear, we may assume X = f σ l
β,0 for some f ∈ Â0

and l ≥ 0.We first assume that k ≥ m. The case k = m can be easily verified as follows:

∂

∂τm
( f σ l

β,m) = Tm
(
DP0 f

)
σ l

β,m = Tm,m+1

(
DP0( f σ

l
β,0)

)
.

Here we use the fact that P0 = P [0]
0 and DP0σβ,0 = 0. Now we assume k ≥ m + 1, then

by using the definition of the shift operators and the recursion relation (2.19) we obtain
the following identities:

∂

∂τk
( f σ l

β,m) = Tk
(
DP0 f

)
σ l

β,m + Tm,k

(
f DP1σ

l
β,0

)

= Tk−1
(
DP1 f

)
σ l

β,m + Tm,k

(
f DP1σ

l
β,0

)

= Tm,k

((
DP1 f

)
σ l

β,0

)
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−
k−m−2∑
i=0

Tm+i
(
DP1 f

)
σ l

β,k−i−1 + Tm,k

(
f DP1σ

l
β,0

)

= Tm,k

(
DP1( f σ

l
β,0)

)
−

k−m−2∑
i=0

Tm+i+1
(
DP0 f

)
σ l

β,k−i−1

= Tm,k

(
DP1( f σ

l
β,0)

)
− Tm+1,k

(
DP0( f σ

l
β,0)

)
.

The case k < m is proved in exactly the same way. The lemma is proved. ��
Proposition 2. The flows ∂

∂τk
are compatible with the recursion relation (2.19), i.e.,

∂

∂τk
Tm+1

δP0
δσα,0

= ∂

∂τk
Tm

δP1
δσα,0

, m, k ≥ 0.

Proof. Using the fact that

P0 = P [0]
0 = 1

2

∫
ηαβσασ 1

β ,

it is easy to obtain the following identities:

∂

∂τk
Tm+1

δP0
δσα,0

= ∂

∂τk
ηαβσ 1

β,m+1 = Tm+1,k

(
ηαβ∂x

δP1
δvβ

)
= Tm+1,k

(
DP1

δP0
δσα,0

)
.

Since [P0, P1] = 0, it follows from the identity (2.5) that

∂

∂τk
Tm+1

δP0
δσα,0

= −Tm+1,k

(
DP0

δP1
δσα,0

)
.

Thus by using [P1, P1] = 0 and Lemma 3 we finish the proof of the proposition. ��
Proposition 3. The odd flows ∂

∂τm
mutually commute, i.e.,

[
∂

∂τm
,

∂

∂τk

]
= 0, m, k ≥ 0.

Proof. By the definition of the flows ∂
∂τm

, it is easy to see that

[
∂

∂τm
,

∂

∂τk

]
vα = ηαβ∂x Tk,m

δP1
δvβ

+ ηαβ∂x Tm,k
δP1
δvβ

= 0.

To show the commutation relation[
∂

∂τl
,

∂

∂τk

]
σα,m = 0,

it suffices to verify the case m = 0 due to the recursion relations (2.18). By using the
trivial relation [

∂

∂τ0
,

∂

∂τ0

]
σα,0 = 0,



Variational Bihamiltonian Cohomologies 475

the recursion relations (2.18), and by induction on k, we arrive at
[

∂

∂τ0
,

∂

∂τ0

]
σα,k = 0, k ≥ 0.

This commutation relation is equivalent to
[

∂

∂τ0
,

∂

∂τk

]
σα,0 = 0

due to the definition of the odd flows. By using induction again we arrive at the identity
[

∂

∂τ0
,

∂

∂τk

]
σα,l = 0

for any l ≥ 0. Therefore we have

∂

∂τk

∂σα,0

∂τl
= − ∂

∂τk

∂σα,l

∂τ0
= ∂

∂τ0

∂σα,l

∂τk
.

It follows from the definition of the odd flows that the right hand side is anti-symmetric
with respect to the indices k, l, hence we prove that

[
∂

∂τl
,

∂

∂τk

]
σα,0 = 0.

The proposition is proved. ��
Now let Xi ∈ F̂1, i ∈ I be a family of bihamiltonian vector fields with respect to an

index set I , i.e., each Xi satisfies the equations [Xi , P0] = [Xi , P1] = 0. Recall that the
family {Xi } corresponds to a bihamiltonian integrable hierarchy given by

∂vα

∂ti
= δXi

δσα,0
, i ∈ I. (2.24)

In what follows we will extend this integrable hierarchy such that it becomes a system
of mutually commuting vector fields on Â+.

Definition 3. For a bihamiltonian vector field X ∈ F̂1 we associate it with the following
system of PDEs on Â+:

∂vα

∂tX
= DXvα,

∂σα,m

∂tX
= TmDXσα,0,

[
∂

∂tX
, ∂x

]
= 0.

It is called the super extended flow associated with X .

Proposition 4. The super extended flow ∂
∂tX

associated with a bihamiltonian vector field
X is compatible with the recursion relation (2.19), i.e.,

∂

∂tX
Tm+1

δP0
δσα,0

= ∂

∂tX
Tm

δP1
δσα,0

. (2.25)
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Proof. From Definition 3 of the flow ∂
∂tX

, it is easy to see that

∂

∂tX
Tm+1

δP0
δσα,0

= Tm+1DX
δP0
δσα,0

,
∂

∂tX
Tm

δP1
δσα,0

= TmDX
δP1
δσα,0

.

On the other hand from the fact that [X, P0] = [X, P1] = 0 and the identity (2.5), we
see that (2.25) is equivalent to the following identity:

Tm+1DP0
δX

δσα,0
= TmDP1

δX

δσα,0
,

which holds true due to (2.20). The proposition is proved. ��
Proposition 5. Let X and Y be two bihamiltonian vector fields, then their associated
super extended flows commute.

Proof. From the theory of the bihamiltonian cohomology [7] we know that [X,Y ] = 0,
hence it follows from (2.3) that

[
∂

∂tX
,

∂

∂tY

]
vα = 0,

[
∂

∂tX
,

∂

∂tY

]
σα,0 = 0.

By using Definition 3 we also have

[
∂

∂tX
,

∂

∂tY

]
σα,m = Tm

[
∂

∂tX
,

∂

∂tY

]
σα,0 = 0.

The proposition is proved. ��
Now let us prove that the super extended flow associated with a bihamiltonian vector

field commutes with the odd flows ∂
∂τm

.

Lemma 4. For any D ∈ Der(Â)0 satisfying the condition [D, ∂x ] = 0, we extend its
action to Â+ by setting

Dσα,m = TmDσα,0, m ≥ 0.

Then the following identities hold true:

Tk 
 (
D|Â1

) = (
D|Â+,1

) 
 Tk; Tk,l 
 (
D|Â2

) = (
D|Â+,2

) 
 Tk,l , k, l ≥ 0.

Proof. The first identity is obvious from the definition Dσα,k = TkDσα,0. The second
one can also be verified by using the definition of the shift operator Tk,l . The lemma is
proved. ��
Proposition 6. The odd flows ∂

∂τm
commute with the super extended flow associated with

a bihamiltonian vector field X.
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Proof. Using Lemma 4 and the definition of the odd flows, it is easy to see that

∂

∂tX

∂vα

∂τm
= ∂

∂tX
Tm

δP0
δσα,0

= TmDX

(
δP0
δσα,0

)
,

∂

∂τm

∂vα

∂tX
= TmDP0

(
∂vα

∂tX

)
.

Therefore it follows from [X, P0] = 0 and the identity (2.5) that[
∂

∂τm
,

∂

∂tX

]
vα = 0.

Similarly, by using Lemma 4 again we have

∂

∂tX

∂σα,k

∂τm
= ∂

∂tX
Tk,m

δP1
δvα

= Tk,mDX

(
δP1
δvα

)
.

On the other hand, by using Lemma 3 and the fact that [P0, X ] = 0 and δP0
δvα = 0, we

obtain

∂

∂τm

∂σα,k

∂tX
= − ∂

∂τm
Tk

(
DX

(
δX

δvα

))
= −Tk,m

(
DP1

(
δX

δvα

))
.

Thus by using (2.4) and [X, P1] = 0, we can conclude that[
∂

∂τm
,

∂

∂tX

]
σα,k = 0.

The proposition is proved. ��
Let us summarize the constructions given in this subsection in the following theorem.

Theorem 7. Let (P0, P1) be a bihamiltonian structure with semisimple hydrodynamic
leading terms and {Xi } be a family of bihamiltonian vector fields, then we have the
following super extended integrable hierarchy:

∂vα

∂ti
= DXi v

α,
∂σα,m

∂ti
= TmDXi σα,0,

∂vα

∂τm
= Tm

δP0
δσα,0

,
∂σα,k

∂τm
= Tk,m

δP1
δvα

.

The flows in this hierarchy mutually commute.

2.4. Deformations of the super tau-covers. In this subsection, we construct super tau-
covers for tau-symmetric bihamiltonian deformations of the Principal Hierarchy asso-
ciated with a semisimple Frobenius manifold. Let us first recall how to construct the
deformations of the tau-cover (2.14) of the Principal Hierarchy following [9].

We fix a semisimple Frobenius manifold M and use (P [0]
0 , P [0]

1 ) to denote the bi-
hamiltonian structure (2.13). We denote the two-point functions in the tau-cover (2.14)
by �

[0]
α,p;β,q and denote the Hamiltonian densities of P [0]

0 by h[0]
α,p, which are equal to

�
[0]
α,p;1,0. Let (P0, P1) be a deformation of (P [0]

0 , P [0]
1 ), then it determines a unique de-

formation of the Principal Hierarchy according to [7,26]. By using the results proved
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in [13], we know that a bihamiltonian deformation of the Principal Hierarchy is tau-
symmetric if and only if the central invariants of the deformation of the bihamiltonian
structure are constants. In such a case, after an appropriate Miura type transformation
the Hamiltonian structure P0 can be represented in the form

P0 = P [0]
0 = 1

2

∫
ηαβσασ 1

β ,

and P1 has no F̂2
2 components. Moreover, we can also require that the condition of

exactness of the bihamiltonian structure is preserved [9,13]:

P0 = [Z , P1], Z =
∫

σ1.

In what follows, we will always assume that P0 and Z take the above forms. We still
use the same notation Xα,p ∈ F̂1, as we have already used in (2.12) for the flows of
the Principal Hierarchy, to denote the unique deformed flows of the Principal Hierarchy,
and we will also use ∂

∂tα,p to denote the vector field DXα,p . Let Hα,p ∈ F̂0 be the unique
deformations of the Hamiltonians of the Principal Hierarchy such that

Xα,p = − [
Hα,p, P0

]
, α = 1, . . . , n, p ≥ 0, (2.26)

and

Hα,−1 :=
∫

ηαβvβ. (2.27)

Let us define

hα,p = DZ Hα,p, α = 1, . . . , n, p ≥ 0. (2.28)

Note that we use an index convention that is different from the one used in [9].

Proposition 7 ([9]). We have the following results:

1. DX1,0 = ∂x .
2. The functionals Hα,p defined in (2.26), (2.27) and the differential polynomials defined

in (2.28) satisfy the relations

Hα,p =
∫

hα,p+1, p ≥ −1.

Wealso have the following proposition and theoremonproperties of theHamiltonians
and two-point functions of the deformed Principal Hierarchy.

Proposition 8. The following bihamiltonian recursion relation holds true:

[Hα,p−1, P1] =
(
p +

1

2
+ μα

)
[Hα,p, P0] +

p∑
k=1

(Rk)
γ
α [Hγ,p−k, P0], p ≥ 0.

(2.29)
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Proof. Denote

Yα,p = [Hα,p−1, P1] −
(
p +

1

2
+ μα

)
[Hα,p, P0] −

p∑
k=1

(Rk)
γ
α [Hγ,p−k, P0], p ≥ 0,

then from Theorem 3 we know that Yα,p ∈ F̂1≥2. Since the flows Xα,p = −[Hα,p, P0]
are bihamiltonian, we conclude that Yα,p is also a bihamiltonian vector field. Therefore
by using the theory of bihamiltonian cohomology developed in [7] we arrive at Yα,p = 0.

��
Theorem 8 ([9]). There exist differential polynomials �α,p;β,q such that they are de-

formations of �[0]
α,p;β,q , and satisfy the following properties:

1. ∂x�α,p;β,q = ∂hβ,q
∂tα,p .

2. �α,p;β,q = �β,q;α,p and �α,p;1,0 = hα,p.

3.
∂�α,p;β,q

∂tλ,k = ∂�λ,k;β,q
∂tα,p .

To construct the tau-cover of the deformed Principal Hierarchy, we introduce the
following normal coordinates as in [12]:

wα = hα,0, wα = ηαβwβ, (2.30)

then we see that the differential polynomials wα and vα are related by a Miura type
transformation. In particular, it follows from Proposition 7 that

Hα,−1 =
∫

wα =
∫

ηαβvβ. (2.31)

In terms of the normal coordinates, the tau-cover of the deformed Principal Hierarchy
can be represented in the form (cf. (2.14))

∂ fα,p

∂tβ,q
= �α,p;β,q ,

∂wα

∂tβ,q
= ηαλ∂x�λ,0;β,q . (2.32)

Let us proceed to construct its super tau-cover. To this end we introduce odd variables
�m

α,p, as we do for the super tau-cover of the Principal Hierarchy, such that

∂x�
m
α,p = ∂hα,p

∂τm
, m ≥ 0. (2.33)

Here the oddflows ∂
∂τm

are definedby (2.21).ByusingTheorem8weobtain the following
identity:

∂

∂tβ,q

∂hα,p

∂τm
= ∂x

∂�α,p;β,q

∂τm
.

Thereforeweconclude that the followingdefinitions of the evolutions of the oddvariables
�m

α,p along the flows ∂
∂tβ,q are compatible with (2.33):

∂�m
α,p

∂tβ,q
= ∂�α,p;β,q

∂τm
.

To define the evolutions of �m
α,p along the odd flows

∂
∂τk

, we need the following lemma.
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Lemma 5. There exist differential polynomials Fα,p ∈ Â2 such that

∂

∂τk

∂hα,p

∂τm
= Tm,k∂x Fα,p, α = 1, . . . , n; p,m, k ≥ 0.

Proof. By using the definition (2.1) of DPi and the fact that the vector fields Xα,p are
bihamiltonian, it is easy to see that∫

DP1DP0hα,p = [P1, [P0, Hα,p−1]] = 0.

Therefore from (2.22) it follows that there exists Fα,p ∈ Â2 such that

∂

∂τ1

∂hα,p

∂τ0
= ∂x Fα,p.

Now from Lemma 3 and (2.23) it follows that

∂

∂τk

∂hα,p

∂τm
= ∂

∂τk
Tm

∂hα,p

∂τ0
= Tm,k∂x Fα,p.

The lemma is proved. ��
Now we are ready to construct the super tau-cover of the deformed Principal Hierar-

chy.

Theorem 9. Let M be a semisimple Frobenius manifold and (P0, P1) be a deformation
of the bihamiltonian structure (2.13)with constant central invariants, then the following
flows together with the super extended flows associated with ∂

∂tα,p form the super tau-
cover of the deformed Principal Hierarchy:

∂ fα,p

∂tβ,q
= �α,p;β,q ,

∂ fα,p

∂τm
= �m

α,p,

∂�m
α,p

∂tβ,q
= ∂�α,p;β,q

∂τm
,

∂�m
α,p

∂τk
= Tm,k Fα,p.

Recall that when the diagonal matrix μ of a Frobenius manifold M satisfies the
condition 1−2k

2 /∈ Spec(μ) for any k = 1, 2, . . . , the odd variables �m
α,p for the super

tau-cover of the Principal Hierarchy are redundant since they can be represented by
elements in Â+. Proposition 9 that we are to give below shows that the deformed super
tau-cover has the same property, which will play an important role in our consideration
of the deformation of the Virasoro symmetries.

We start with the definition of generalized shift operators.

Definition 4. We define the shift operators T̂k for k ≥ 0 to be the linear operators from
Â+,1 to Â+,1 such that

T̂k( f σ
l
α,m) = f σ l

α,m+k, f ∈ Â0, m ≥ 0.

The following lemma is easy to verify.

Lemma 6. The operators T̂k commute with ∂x and are compatible with the recursion
relation (2.18).
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Lemma 7. If �0
α,p can be represented by an element in Â+,1, then so does �m

α,p. In this

case �m
α,p = T̂m�0

α,p for m ≥ 1.

Proof. By using the relations (2.33) and (2.23), it is easy to see that

∂x T̂m�0
α,p = T̂m

∂hα,p

∂τ0
= ∂hα,p

∂τm
= ∂x�

m
α,p.

The lemma is proved. ��
Wewill use the notation�m

α,p ∈ Â+ to mean that�m
α,p can be represented by an element

in Â+.

Proposition 9. We have �m
α,0 ∈ Â+ and

( p∏
k=1

(
k − 1

2
+ μα

))
�m

α,p ∈ Â+, p ≥ 1. (2.34)

Proof. It follows from Lemma 7 that we only need to prove this lemma for m = 0. For
�0

α,0, it is easy to see from (2.31) that there exist differential polynomials gα ∈ Â0≥1
such that

hα,0 = ηαβvβ + ∂x gα. (2.35)

Therefore we arrive at

�0
α,0 = σα,0 +

∂gα

∂τ0
∈ Â. (2.36)

We proceed to consider �0
α,p for p ≥ 1. By using Proposition 7 we can rewrite (2.29)

as follows:
[∫

hα,p, P1

]
=

(
p +

1

2
+ μα

) [∫
hα,p+1, P0

]
+

p∑
k=1

(Rk)
γ
α

[∫
hγ,p−k+1, P0

]
.

(2.37)

By taking p = 0 in(2.37) we get(
1

2
+ μα

) ∫
∂hα,1

∂τ0
=

∫
∂hα,0

∂τ1
,

so there exists a differential polynomial pα,1 ∈ Â1 such that(
1

2
+ μα

)
∂hα,1

∂τ0
= ∂hα,0

∂τ1
+ ∂x pα,1.

Therefore we have (
1

2
+ μα

)
�0

α,1 = �1
α,0 + pα,1 ∈ Â+.

For general p ≥ 1, we can prove (2.34) by using (2.37) and induction on p. The
proposition is proved. ��
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3. Deformations of Virasoro Symmetries: Formulation

In this section, we first recall the theory of variational bihamiltonian cohomology de-
veloped in [23] and then explain how to use it to study Virasoro symmetries of the
deformed Principal Hierarchies. We also use the example of the deformation of the
Riemann hierarchy to illustrate our approach to the study of Virasoro symmetries.

3.1. Variational bihamiltonian cohomologies. In [23], we established a cohomology
theory on the space Der∂ (Â) consisting of derivations on Â that commute with ∂x . This
theory provides us suitable tools to study Virasoro symmetries of deformations of the
Principal Hierarchies. We recall the basic definitions and results in this subsection.

Let us define the space Der∂ (Â) by

Der∂ (Â) = {X ∈ Der(Â) | [X, ∂x ] = 0},
it admits a gradation induced from Der(Â) and we denote Der∂ (Â)

p
d = Der∂ (Â) ∩

Der(Â)
p
d .

Lemma 8. Der∂ (Â)
p
d = 0 for p ≤ −2 or d < 0.

Proof. Let us choose a local coordinate system (wα, φα) on M̂ . Assume X ∈ Der∂ (Â)

with super degree p ≤ −2 or d < 0. Then by definition this means

X (wα) = X (φα) = 0.

Since [X, ∂x ] = 0, we immediately see that X (wα,s) = 0 and X (φs
α) = 0 for s ≥ 0.

Hence X = 0 and the lemma is proved. ��
Let P [0] be a Hamiltonian structure of hydrodynamic type and (P [0]

0 , P [0]
1 ) be a

semisimple bihamiltonian structure of hydrodynamic type. Then by using (2.3) we have
a complex (Der∂ (Â), DP [0]) and a double complex (Der∂ (Â), DP [0]

0
, DP [0]

1
). We define

the following cohomology groups:

H p
d

(
Der∂ (Â), P [0]) = Der∂ (Â)

p
d ∩ ker DP [0]

Der∂ (Â)
p
d ∩ Im DP [0]

, p, d ≥ 0, (3.1)

BH p
d

(
Der∂ (Â), P [0]

0 , P [0]
1

) =
Der∂ (Â)

p
d ∩ ker DP [0]

0
∩ ker DP [0]

1

Der∂ (Â)
p
d ∩ Im DP [0]

0
DP [0]

1

, p, d ≥ 0.

(3.2)

Note that the spaces Der∂ (Â)
−1
d �= 0 for d ≥ 0 and they must be taken into account

while computing the cohomology groups. For example, the space H0
d (Der∂ (Â), P [0])

is given by

H0
d

(
Der∂ (Â), P [0]) = ker(DP [0] : Der∂ (Â)

0
d → Der∂ (Â)

1
d+1)

Im(DP [0] : Der∂ (Â)
−1
d−1 → Der∂ (Â)

0
d)

.
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By using the canonical symplectic structure on M̂ , we can identify the space Der∂ (Â)

with the space �̄ of local functionals of variational 1-forms, and the vector fields DP [0] ,
DP [0]

0
and DP [0]

1
induce differentials on �̄ via Lie derivatives. This is the reason why

we call the above cohomology groups the variational cohomology groups. In [23], the
cohomology groups (3.1) and (3.2) are computed by converting them to the cohomology
groups on the space �̄. The details of the computation of these cohomology groups are
not used in the present paper, sowe omit them and refer the readers to [23]. The following
result plays an essential role in the present paper.

Theorem 10 ([23]). We have the following results on the cohomology groups (3.1) and
(3.2):

1. H p
d

(
Der∂ (Â), P [0]) = 0 for p ≥ 0, d > 0.

2. BH0≥2

(
Der∂ (Â), P [0]

0 , P [0]
1

) = 0.

3. BH1≥4

(
Der∂ (Â), P [0]

0 , P [0]
1

) = 0.

4. BH1
3

(
Der∂ (Â), P [0]

0 , P [0]
1

) ∼= ⊕n
i=1C

∞(R).

Moreover, if we denote the action of a cocycle X ∈ Der∂ (Â)
1
3 on the i-th canonical

coordinate ui by

X (ui ) =
n∑
j=1

3∑
k=0

Xk
i, jθ

3−k
j , Xk

i, j ∈ Â0
k,

then the cohomology class [X ] is determined by the following functions:

c1 = X0
1,1

( f 1)2
, c2 = X0

2,2

( f 2)2
, . . . , cn = X0

n,n

( f n)2
.

Here each function ci depends only on the i-th canonical coordinate ui , and f i is the
function defined in (2.7).

3.2. Virasoro symmetries of the Principal Hierarchies. Virasoro symmetries as well
as Virasoro constraints are central conceptions in the study of modern mathematical
physics, see, e.g. [11,16,17,30]. In this subsection, we recall the construction ofVirasoro
symmetries of the super tau-cover of the Principal Hierarchy following [22]. In [11], a
family of infinitely many symmetries ∂

∂sevenm
form ≥ −1 of the tau-cover of the Principal

Hierarchy associated with a Frobenius manifold M was constructed. This family of
symmetries are called the Virasoro symmetries due to the property[

∂

∂sevenk
,

∂

∂sevenl

]
= (l − k)

∂

∂sevenk+l
, k, l ≥ −1.

These symmetries can be represented by a family of quadratic differential operators
Leven
m of the form

Leven
m =

∑
p,q≥0

aα,p;β,q
m

∂2

∂tα,p∂tβ,q
+ bβ,q

m;α,pt
α,p ∂

∂tβ,q
+ cm;α,p;β,q t

α,ptβ,q

+
1

4
δm,0tr

(
1

4
− μ2

)
,
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where aα,p;β,q
m , bβ,q

m;α,p , cm;α,p;β,q are some constants determined by the monodromy
data of M and one may refer to [11] for details. These operators satisfy the Virasoro
commutation relation

[Leven
k , Leven

l ] = (k − l)Leven
l+k .

In this paper, we only need the explicit expressions for Leven−1 and Leven
2 which are given

by

Leven−1 = 1

2
ηαβ t

α,0tβ,0 +
∑
p≥1

tα,p ∂

∂tα,p−1 , (3.3)

Leven
2 = aαβ ∂2

∂tα,1∂tβ,0 + bαβ ∂2

∂tα,0∂tβ,0 + Leven
2 + c2;α,p;β,q t

α,ptβ,q , (3.4)

where the constants have the expressions

aαβ = ηαβ

(
1

2
+ μβ

) (
1

2
+ μα

)(
3

2
+ μα

)
, (3.5)

bαβ = 1

2
ηβγ (R1)

α
γ

(
1

4
+ 3μβ − 3μ2

β

)
, (3.6)

and the operator Leven
2 is given by

Leven
2 =

∑
p≥0

(
p +

1

2
+ μα

) (
p +

3

2
+ μα

) (
p +

5

2
+ μα

)
tα,p ∂

∂tα,p+2

+
∑
p≥0

∑
1≤r≤p+2

(
3

(
p +

1

2
+ μα

)2

+ 6

(
p +

1

2
+ μα

)
+ 2

)

× (Rr )
β
α tα,p ∂

∂tβ,p−r+2

+
∑
p≥0

∑
2≤r≤p+2

(
3p +

9

2
+ 3μα

) (
Rr,2

)β

α
tα,p ∂

∂tβ,p−r+2

+
∑
p≥1

∑
3≤r≤p+2

(
Rr,3

)β

α
tα,p ∂

∂tβ,p−r+2 . (3.7)

The explicit expressions for the matrices Rk,l and constants c2;α,p;β,q are not used in
this paper, so we omit them.

We have the following theorem for the Virasoro symmetries of the tau-cover of the
Principal Hierarchy.

Theorem 11 ([11]). Let us define the following time-dependent flows for m ≥ −1:

∂ fλ,k

∂sevenm
= ∂

∂tλ,k

(∑
aα,p;β,q
m fα,p fβ,q +

∑
bβ,q
m;α,pt

α,p fβ,q +
∑

cm;α,p;β,q t
α,ptβ,q

)
,

∂vλ

∂sevenm
= ηλγ ∂

∂t1,0
∂ fγ,0

∂sevenm
.
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Then the following commutation relation holds true:[
∂

∂sevenk
,

∂

∂tα,p

]
= 0,

[
∂

∂sevenk
,

∂

∂sevenm

]
= (m − k)

∂

∂sevenk+m
, k,m ≥ −1.

We also have the following theorem for the Virasoro symmetries of the super tau-
cover of the Principal Hierarchy.

Theorem 12 ([22]). Let us define

∂

∂soddm
=

∑
p≥0

(p + c0)τp
∂

∂τp+m
, m ≥ −1,

where c0 is an arbitrary constant, and let us define ∂
∂τ−1

to be zero, then the following
flows are symmetries of the super tau-cover of the Principal Hierarchy associated with
a Frobenius manifold:

∂ fα,p

∂sm
= ∂ fα,p

∂sevenm
+

∂ fα,p

∂soddm
,

∂�n
α,p

∂sm
= ∂

∂τn

(
∂ fα,p

∂sm

)
,

∂vα

∂sm
= ∂vα

∂sevenm
+

∂vα

∂soddm
,

∂σα,p

∂sm
= ∂

∂τp

(
∂ fα,0

∂sm

)
.

Moreover, these flows satisfy the commutation relation[
∂

∂sk
,

∂

∂sm

]
= (m − k)

∂

∂sk+m
, k,m ≥ −1.

Remark 2. Let us explain why there is an arbitrary constant involved in the Virasoro
symmtries of the super tau-cover of the Principal Hierarchy. If we assign the odd time
variables τk a degree ck , then we can modify the zeroth Virasoro symmetry of the tau-
cover of the Principal Hierarchy, which is a homogeneous condition, to the following
symmetry of the super tau-cover:

∂

∂s0
= ∂

∂seven0
+

∑
k≥0

ckτk
∂

∂τk
.

By requiring that the above flow is a symmetry of the super tau-cover of the Principal
Hierarchy we arrive at ck = c0 + k, here c0 is an arbitrary constant.

Let us explain the motivation to introduce the non-local odd variables σα,k for k ≥ 1
and the super extension of the tau-cover of the deformed Principal Hierarchy. For a given
tau-symmetric bihamiltonian deformation of the Principal Hierarchy of a semisimple
Frobenius manifold, we want to deform the Virasoro symmetries given in Theorem 11,
i.e., to construct the flows ∂

∂ s̃evenm
as deformations of ∂

∂sevenm
, such that

[
∂

∂ s̃evenk
,

∂

∂ t̃α,p

]
= 0,

[
∂

∂ s̃evenk
,

∂

∂ s̃evenm

]
= (m − k)

∂

∂ s̃evenk+m
, k,m ≥ −1,

here we denote by ∂
∂ t̃α,p the flows of the deformed Principal Hierarchy. Due to the

Virasoro commutation relation, we only need to find the flows ∂
∂ s̃even−1

, ∂
∂ s̃even2

, and use
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them to generate all other flows ∂
∂ s̃evenm

. It is proved in [9] that the symmetry ∂
∂ s̃even−1

always

exists and therefore it remains to construct the flow ∂
∂ s̃even2

which satisfies the following

equations:
[

∂

∂ s̃even2
,

∂

∂ t̃α,p

]
= 0, α = 1, . . . , n, p ≥ 0.

Since there are infinitely many equations, it is not easy to solve them. From the study
of the theory of variational bihamiltonian cohomologies, it follows that the problem of
solving the above equations can be converted to solve the following two equations:

[
∂

∂ s̃even2
,

∂

∂τ0

]
=

[
∂

∂ s̃even2
,

∂

∂τ1

]
= 0.

Since the odd flows ∂
∂τ0

and ∂
∂τ1

are not contained in the original tau-cover, we need a
super extension of it. However, the above equations do not hold true at the dispersionless
level. In [22], we prove that one can remedy this problem by adding infinitely many odd
time variables τm and odd flows ∂

∂τm
for m ≥ 0 to the Virasoro operator Leven

k , as
described in Theorem 12.

The introduction of the odd flows ∂
∂τm

is motivated by the following simple observa-
tion. Let M be an n-dimensional Frobenius manifold, then we have

∂vα

∂τ1
= R∂vα

∂τ0
, R = P1 
 P−1

0 ,

here P0 and P1 are the Hamiltonian operators of the bihamiltonian structure (2.13). The
non-local operator R is called the recursion operator and we can define the odd flows
recursively as follows:

∂vα

∂τm+1
= R∂vα

∂τm
, m ≥ 1.

Due to the non-local nature of the recursion operator, we see that generally the action
of the flow ∂

∂τm
on vα can not be represented by elements of Â for m ≥ 2. To overcome

this non-locality problem we introduce, as it is typically done in the theory of integrable
system, the odd variables σα,k for k ≥ 1 to describe the actions of the odd flows ∂

∂τm
.

The constructions of σα,k are given by (2.18) and the flows ∂
∂τm

are defined in (2.21).

Remark 3. The idea of introducing non-local odd variables σα,k to study the non-local
Hamiltonian structures is presented and illustrated via some examples in [18], see also
[27].

3.3. Formulation of the deformation problem. In this subsection, we first state the main
problem of this paper, then explain the motivation and strategy of our proof of the Main
Theorem 1.

From now on, we fix a semisimple Frobenius manifold M of dimension n and let
(P0, P1) be a deformation of the bihamiltonian structure (2.13) with constant central
invariants. Then (P0, P1) determines a unique deformation of the Principal Hierarchy
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associated with M . After a suitable Miura type transformation we may assume, as we
do in Sect. 2.4, that

P0 = 1

2

∫
ηαβσασ 1

β = [Z , P1], Z =
∫

σ1,

and P1 has no F̂2
2 components. We also introduce odd variables σα,m for m ≥ 0 as we

explained in Sect. 2.3.
Let us denote by Â++ the following Â+-module

Â++ := Â+
[
�m

α,p, m ≥ 1
]
.

From Proposition 9 it follows that Â++ = Â+ if the Frobeius manifold M satisfies the
condition

k − 1

2
+ μα �= 0, ∀k ≥ 1, ∀α = 1, . . . , n.

Let ÂV ir be the following Â++-module:

ÂV ir = Â++[ fα,p][[ tα,p, τm]],

here the time variables τm are odd. We will consider the space Der∂ (ÂV ir ), which
consists of derivations of the space ÂV ir that commute with ∂x . Here we extend the
action of ∂x to the space ÂV ir in the following natural way:

∂x�
m
α,p = ∂hα,p

∂τm
, ∂x fα,p = hα,p, ∂x t

α,p = δα,1δ p,0, ∂xτm = 0.

Our problem can be stated as follows: to find a unique derivation X ∈ Der∂ (Â)0≥0

such that the flow ∂
∂s2

∈ Der∂ (ÂV ir ) defined by

∂vλ

∂s2
= aαβ

(
fβ,0

∂vλ

∂tα,1 + fα,1
∂vλ

∂tβ,0

)
+ bαβ

(
fβ,0

∂vλ

∂tα,0 + fα,0
∂vλ

∂tβ,0

)

+ Xvλ + L2vλ, (3.8)

∂σλ,0

∂s2
= aαβ

(
fβ,0

∂σλ,0

∂tα,1 + fα,1
∂σλ,0

∂tβ,0

)
+ bαβ

(
fβ,0

∂σλ,0

∂tα,0 + fα,0
∂σλ,0

∂tβ,0

)

+ Xσλ,0 + Mζ
λ σζ,2 + N ζ

λ σζ,1 + L2σλ,0, (3.9)

satisfies the conditions [
∂

∂s2
,

∂

∂τ0

]
=

[
∂

∂s2
,

∂

∂τ1

]
= 0, (3.10)

and we require that the leading term of X is determined by the Virasoro symmetry ∂
∂s2

of
the super tau-cover of the Principal Hierarchy given in Theorem 12. The actions of the
flow ∂

∂s2
on fα,p and �m

α,p are omitted here for simplicity. These actions can be derived
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from (3.20) and the details will be given later at the end of this subsection. We also
define that

∂tα,p

∂s2
= ∂τm

∂s2
= 0.

Moreover, the operator L2 is given by

L2 = Leven
2 +

∑
p≥0

(p + c0)τp
∂

∂τp+2
,

and Mζ
λ , N ζ

λ ∈ Â0 are some differential polynomials whose definitions will be given
later. The flows ∂

∂τ0
and ∂

∂τ1
are also extended to the space ÂV ir naturally by using the

super tau-cover of the deformed Principal Hierarchy and by defining

∂tα,p

∂τi
= 0,

∂τm

∂τi
= δi,m, i = 0, 1.

If we find such a derivation X , then we can prove that the flow ∂
∂s2

is a symmetry of
the super tau-cover of the deformed Principal Hierarchy, i.e.,

[
∂

∂s2
,

∂

∂tα,p

]
= 0, α = 1, . . . , n, p ≥ 0.

The above commutator should be understood as the natural commutator defined in the
space Der∂ (ÂV ir ) and the actions of the flows ∂

∂tα,p are naturally extended to ÂV ir .
Therefore a priori we have

[
∂

∂s2
,

∂

∂tα,p

]
∈ Der∂ (ÂV ir ).

However, if we can show that[
∂

∂s2
,

∂

∂tα,p

]
∈ Der(Â)0≥2, (3.11)

i.e., the actions of the above commutator can be restricted to the space Â, then we
conclude the vanishing of (3.11) from the property that

BH0≥2

(
Der∂ (Â), P [0]

0 , P [0]
1

) = 0,

and the fact that the commutator (3.11) is a cocycle. Here we use the definition (3.2)
and Lemma 8 to arrive at the fact that

BH0≥2

(
Der∂ (Â), P [0]

0 , P [0]
1

) = Der∂ (Â)0≥2 ∩ ker DP [0]
0

∩ ker DP [0]
1

.

By using the definition (3.8) and (3.9) of ∂
∂s2

and after a simple computation, we
arrive at [

∂

∂s2
,

∂

∂tα,p

]
vλ ∈ Â,

[
∂

∂s2
,

∂

∂tα,p

]
σλ,0 ∈ Â+,
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so the condition (3.11) is actually a locality condition, i.e., it is equivalent to[
∂

∂s2
,

∂

∂tα,p

]
vλ ∈ Â,

[
∂

∂s2
,

∂

∂tα,p

]
σλ,0 ∈ Â, (3.12)

which is the condition we actually need to check.
Let us explain how to find a unique X ∈ Der∂ (Â) such that the conditions in (3.10)

hold true. To this end, we first rewrite the conditions in (3.10) into the equations for X
as follows: [

∂

∂τ0
, X

]
= I0,

[
∂

∂τ1
, X

]
= I1, (3.13)

where I0 and I1 are some derivations that will be given later. The uniqueness of X is a
consequence of the equations (3.13) and the fact that BH0≥2

(
Der∂ (Â), P [0]

0 , P [0]
1

) = 0,
since the leading term of X is fixed. We will prove the existence of X by taking the
following steps.

Step 1. To check the locality condition (3.12) and to prove that

I0, I1 ∈ Der∂ (Â), (3.14)

which is also a locality condition.
Step 2. To check the closedness condition[

∂

∂τ0
, I0

]
= 0. (3.15)

After we finish Step 2, we can find a derivation X◦ ∈ Der∂ (Â) by using the property
H1

>0

(
Der∂ (Â), P [0]

0

) = 0 such that

I0 =
[

∂

∂τ0
, X◦

]
,

and the leading termof X◦ is determined by theVirasoro symmetry of the super tau-cover
of the Principal Hierarchy. We define C = X − X◦ ∈ Der∂ (Â)0≥2, then the equations
(3.13) for X are transformed to the following equations for C:[

∂

∂τ0
, C

]
= 0,

[
∂

∂τ1
, C

]
= I1 −

[
∂

∂τ1
, X◦

]
. (3.16)

Step 3. To check the closedness conditions[
∂

∂τ0
, I1 −

[
∂

∂τ1
, X◦

]]
= 0,

[
∂

∂τ1
, I1

]
= 0. (3.17)

Step 4. To check that the differential degree 3 component of the derivation I1 −[
∂

∂τ1
, X◦

]
vanishes in the cohomology group BH1

3

(
Der∂ (Â), P [0]

0 , P [0]
1

)
.

We call the above fact the vanishing of the genus one obstruction for the following
reason. By using the first equation in (3.16) and the vanishing of H0≥2

(
Der∂ (Â), P [0]

0

)
,

we see that there exists a unique T ∈ Der∂ (Â)−1
≥1 such that

C =
[

∂

∂τ0
, T

]
.
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The derivation T must also satisfy the second equation in (3.16)[
∂

∂τ1
,

[
∂

∂τ0
, T

]]
= I1 −

[
∂

∂τ1
, X◦

]
. (3.18)

If the differential degree 3 component of the derivation I1 −
[

∂
∂τ1

, X◦
]
does not vanish

in the cohomology group BH1
3

(
Der∂ (Â), P [0]

0 , P [0]
1

)
, then such T does not exist.

However if the genus one obstruction vanishes, there exists a derivation T , whose
differential degree 1 part is unique, such that theEq. (3.18) is valid at the approximation of
differential degree 3. Then by using BH1≥4

(
Der∂ (Â), P [0]

0 , P [0]
1

) = 0 and the closedness
conditions (3.17), we can solve T from (3.18) degree by degree. In this way, we can find
a derivation X such that the equations in (3.10) hold true.

Step 5. To lift the symmetry ∂vλ

∂s2
to a symmetry of the tau-cover of the deformed

Principal Hierarchy, and to define all the other flows ∂
∂sm

of the Virasoro symmetries for

m ≥ 0. Note that the symmetry ∂
∂s−1

is constructed in [9]. We remark that we can also
lift the symmetry (3.8) and (3.9) to a symmetry of the super tau-cover of the deformed
Principal Hierarchy, but it is not necessary for the consideration of our problem.

In the remaining part of this subsection, we explain how the equations (3.8) and
(3.9) are derived from the Eq. (1.1) of the main theorem. Let Z be a tau-function of the
tau-cover (2.32) of the deformed Principal Hierarchy, i.e.,

fα,p = ∂ logZ
∂tα,p

, wα = ηαβ ∂2 logZ
∂t1,0∂tβ,0 (3.19)

give a solution of the tau-cover (2.32). Our goal is to find a symmetry of the following
form

∂Z
∂s2

= Leven
2 Z + O2Z, (3.20)

where Leven
2 is the operator (3.4) and O2 is a differential polynomial. If we assume that

this is indeed a symmetry, then by using (3.19) we obtain the flow

∂ fλ,k

∂s2
= aαβ

(
fα,1�β,0;λ,k + fβ,0�α,1;λ,k +

∂�α,1;β,0

∂tλ,k

)

+ bαβ

(
fα,0�β,0;λ,k + fβ,0�α,0;λ,k +

∂�α,0;β,0

∂tλ,k

)

+
∑
q≥0

(
bβ,q
2;λ,k fβ,q + c2;λ,k;β,q t

β,q + c2;β,q;λ,k t
β,q

)
+

∂O2

∂tλ,k
+ Leven

2 fλ,k

∂wλ

∂s2
= aαβ

(
fβ,0

∂wλ

∂tα,1 + fα,1
∂wλ

∂tβ,0

)
+ bαβ

(
fβ,0

∂wλ

∂tα,0 + fα,0
∂wλ

∂tβ,0

)

+Wλ + Leven
2 wλ,

here Wλ are some differential polynomials. Now recall that vλ and wζ are related by a
Miura type transformation, hence by using the equation

∂vλ

∂s2
=

∑
s≥0

∂vλ

∂w
(s)
ζ

∂sx
∂wζ

∂s2
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we know that there exist differential polynomials X0
λ ∈ Â0 such that

∂vλ

∂s2
= aαβ

(
fβ,0

∂vλ

∂tα,1 + fα,1
∂vλ

∂tβ,0

)
+ bαβ

(
fβ,0

∂vλ

∂tα,0 + fα,0
∂vλ

∂tβ,0

)

+ X0
λ + Leven

2 vλ. (3.21)

As we have discussed at the end of Sect. 3.2, we also need to write down the actions
of the flow ∂

∂s2
on the odd variables σλ,0. To this end, we must replace Leven

2 by L2 to

include the odd time variables τm and odd flows ∂
∂τm

. By using (2.36) it is easy to see
that

∂ f0
∂τ0

= Aσ0,

where f0 = ( f1,0, . . . , fn,0)
T , σ0 = (σ1,0, . . . , σn,0)

T and A is a matrix of differential
operator of the form

A =
∑
g≥0

2g∑
k=0

Ag,k∂
k
x , Ag,k ∈ Mn(Â0

2g−k).

Note that A0,0 is the identity matrix, therefore A is invertible as a differential operator,

i.e., there exists B = ∑
g≥0

∑2g
k=0 Bg,k∂

k
x such that AB = BA = I , and in particular

B0,0 is the identity matrix. Thus we can represent the odd variables σλ,0 in the form

σλ,0 = ∂ fλ,0

∂τ0
+

∑
g≥1

2g∑
k=0

(
Bg,k

)ζ

λ
∂kx

∂ fζ,0

∂τ0
.

This identity leads us to the following definition of the evolutions of the odd variables
σλ,0 along the flow ∂

∂s2
:

∂σλ,0

∂s2
= ∂

∂τ0

∂ fλ,0

∂s2
+

∑
g≥1

2g∑
k=0

∂

∂s2

(
Bg,k

)ζ

λ
∂kx

∂ fζ,0

∂τ0
+

∑
g≥1

2g∑
k=0

(
Bg,k

)ζ

λ
∂kx

∂

∂τ0

∂ fζ,0

∂s2
.

By using Proposition 9 and Lemma 7, it follows from the explicit expressions (3.5),
(3.6) and (3.7) that the odd variables �m

α,p appearing in ∂
∂τ0

∂ fλ,0
∂s2

can be represented by

elements of Â+. So there exist differential polynomials Mζ
λ , N

ζ
λ ∈ Â0 and X1

λ ∈ Â1

such that

∂σλ,0

∂s2
= aαβ

(
fβ,0

∂σλ,0

∂tα,1 + fα,1
∂σλ,0

∂tβ,0

)
+ bαβ

(
fβ,0

∂σλ,0

∂tα,0 + fα,0
∂σλ,0

∂tβ,0

)

+ X1
λ + Mζ

λ σζ,2 + N ζ
λ σζ,1 + L2σλ,0.

Finally we define a derivation X ∈ Der∂ (Â)0 such that Xvλ = X0
λ, where X0

λ is the
differential polynomial introduced in (3.21), and Xσλ,0 = X1

λ. Therefore our problem
of finding such a derivation X is a necessary condition of the main theorem.
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3.4. Example: one-dimensional Frobenius manifold. In this subsection we present an
example to illustrate how the general framework described in the previous subsection
works. We consider the one-dimensional Frobenius manifold M , it has the following
potential and Euler vector field:

F = 1

6
v3, E = v∂v.

Due to the dimension reason, we will omit the Greek indices, for example, we will use
v(s) and σ s

m instead of v1,s and σ s
1,m . The Principal Hierarchy associated with M is the

Riemann hierarchy

∂v

∂tp
= v p

p! vx , p ≥ 0,

whose bihamiltonian structure is given by

P [0]
0 = 1

2

∫
σ0σ

1
0 , P [0]

1 = 1

2

∫
vσ0σ

1
0 .

It is proved in [7,24] that every deformation (P0, P1) of (P [0]
0 , P [0]

1 ) with a constant
central invariant is equivalent to the bihamiltonian structure given by

P0 = 1

2

∫
σ0σ

1
0 , P1 = 1

2

∫
vσ0σ

1
0 + ε2cσ0σ

3
0

via a certain Miura type transformation. Here the dispersion parameter ε is added for
clearness, and the central invariant of (P0, P1) is c

3 . In particular, when c = 1
8 the

corresponding deformed Riemann hierarchy is the KdV hierarchy that controls the 2D
topological gravity [19,30].

We have the following flows for the super tau-cover of the deformed Riemann hier-
archy:

∂v

∂t1
= vvx +

2

3
ε2cv(3),

∂σ0

∂t1
= vσ 1

0 +
2

3
ε2cσ 3

0 ;
∂v

∂t2
= 1

2
v2vx + ε2c

(
4

3
vxvxx +

2

3
vv(3)

)
+

4

15
ε4c2v(5),

∂σ0

∂t2
= 1

2
v2σ 1

0 + ε2c

(
2

3
vxxσ

1
0 +

2

3
vxσ

2
0 +

2

3
vσ 3

0

)
+

4

15
ε4c2σ 5

0 ;

ε
∂ f0
∂τ0

= σ0, ε
∂ f1
∂τ0

= 2σ1 − vσ0 − 4

3
ε2cσ 2

0 ;

ε
∂ f2
∂τ0

= 4

3
σ2 − 2

3
vσ1 − 1

6
v2σ0 − ε2c

(
2

3
vxxσ0 +

4

3
vxσ

2
0 +

4

3
vσ 2

0

)
− 16

15
ε4c2σ 4

0 .

Here the odd variables σm satisfy the recursion relation

σ 1
m+1 = vσ 1

m +
1

2
vxσm + ε2cσ 3

m, m ≥ 0.

We also have the following Hamiltonian densities for the deformed Riemann hierarchy:

h1 = v2

2
+
2

3
ε2cvxx , h2 = v3

6
+ ε2c

(
1

3
v2x +

2

3
vvxx

)
+

4

15
ε4c2v(4).
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Note that

L2 = 3

8
ε2

∂2

∂t1∂t0
+ L2, L2 =

∑
p≥0


( 7
2 + p

)


( 1
2 + p

) tp ∂

∂tp+2
+ (p + c0)τp

∂

∂τp+2
.

Then the equations (3.8) and (3.9) for this example have the form

∂v

∂s2
= 3

8
ε

(
vx f1 +

∂v

∂t1
f0

)
+ Xv + L2v,

∂σ0

∂s2
= 3

8
ε

(
σ 1
0 f1 +

∂σ0

∂t1
f0

)
+

(
5

2
+ c0

)
σ2 − v

2
σ1 + Xσ0 + L2σ0.

We are to find the derivation X ∈ Der∂ (Â)0 such that the flow ∂
∂s2

commutes with ∂
∂τ0

and ∂
∂τ1

. These conditions yield the following equations for X :

[
∂

∂τ0
, X

]
= I0,

[
∂

∂τ1
, X

]
= I1,

where the derivations I0 and I1 are given by

I0v = vvxσ0 +
7

2
v2σ 1

0 + ε2c

(
v(3)σ0 +

13

2
vxxσ

1
0 + 8vxσ

2
0 + 6vσ 3

0

)
+ 3ε4c2σ 5

0 ,

(3.22)

I0σ0 = vσ0σ
1
0 − ε2c

(
1

2
σ 1
0 σ 2

0 − σ0σ
3
0

)
, (3.23)

I1v = 5

4
v2vxσ0 +

5

2
v3σ 1

0 + ε2c

(
7

2
vxvxxσ0 + 2vv(3)σ0 +

45

4
v2xσ

1
0 +

31

2
vvxxσ

1
0

)

+ ε2c

(
26vvxσ

2
0 +

19

2
v2σ 3

0

)
+ ε4c2

(
v(5)σ0 +

17

2
v(4)σ 1

0 +
45

2
v(3)σ 2

0

)

+ ε4c2
(
59

2
vxxσ

3
0 +

43

2
vxσ

4
0 + 9vσ 5

0

)
+ 3ε6c3σ 7

0 , (3.24)

I1σ0 = 5

4
v2σ0σ

1
0 + ε2c

(
5

2
vxxσ0σ

1
0 +

5

2
vxσ0σ

2
0 − 1

2
vσ 1

0 σ 2
0 + 2vσ0σ

3
0

)

− ε4c2
(
1

2
σ 1
0 σ 4

0 − σ0σ
5
0

)
. (3.25)

It follows from (3.22) and (3.23) that we can choose X◦ ∈ Der∂ (Â) such that
[ ∂
∂τ0

, X◦] = I0, whose actions on v and σ0 are given by

X◦v = v3 + ε2c

(
5

4
v2x + 3vvxx

)
+ ε4c2v(4),

X◦σ0 = −1

2
v2σ0 − ε2c

(
vxxσ0 +

5

2
vxσ

1
0 + 3vσ 2

0

)
− 2ε4c2σ 4

0 .
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Then according to the general discussions given in the previous subsection, the derivation
C = X − X◦ satisfies the equations

[
∂

∂τ0
, C

]
= 0,

[
∂

∂τ1
, C

]
= I1 −

[
∂

∂τ1
, X◦

]
.

Finally we can solve the above equations and obtain the unique derivation C that is
defined by

Cv = ε2c
(
3v2x + 3vvxx

)
+ 2ε4c2v(4),

Cσ0 = ε2c
(
3vxσ

1
0 + vσ 2

0

)
+ 2ε4c2σ 4

0 .

By forgetting all the odd variables we obtain the following symmetry for the deformed
Riemann hierarchy:

∂v

∂s2
= 3

8
ε

(
vx f1 +

∂v

∂t1
f0

)
+ v3 + ε2c

(
17

4
v2x + 6vvxx

)
+ 3ε4c2v(4) + Leven

2 v.

It is easy to check that the action of this symmetry on the tau functionZ of the deformed
Riemann hierarchy can be represented by

∂Z
∂s2

= Leven
2 Z +

(
3c − 3

8

) (
v2

2
+
2

3
ε2cvxx

)
Z. (3.26)

In particular, when c = 1
8 , this symmetry is given by a linear action on Z .

4. Deformation of Virasoro Symmetries: Existence and Uniqueness

In this section, we present details of the proof of the main theorem following the frame-
work described in Sect. 3.3.

4.1. Locality conditions. We start by verifying the locality condition (3.14).
Let us first find the differential polynomials Mζ

λ and N ζ
λ in (3.9) to ensure that I0 is

local. By using the relation (2.36) and the equations (3.8) and (3.9), we arrive at

[
∂

∂τ0
,

∂

∂s2

]
vλ = c0σ

1
λ,2 + aαβ ∂ fα,1

∂τ0

∂vλ

∂tβ,0 − ∂x

(
Mζ

λ σζ,2 + N ζ
λ σζ,1

)
+ loc. (4.1)

Here and henceforth we will use loc to denote the local terms, i.e., terms belonging to
Â. We need to find Mζ

λ and N ζ
λ such that the right hand side of (4.1) is local.

Lemma 9. The following identities hold true:

∂

∂σβ,0

δP1
δσλ,0

= ηαβ

(
1

2
+ μα

)
∂vλ

∂tα,0 ,
∂

∂σβ,0

δP1
δvλ

= ηαβ

(
1

2
+ μα

)
∂σλ,0

∂tα,0 .
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Proof. By using the identity (2.29) we obtain the identity

[
P1, Hα,−1

] =
(
1

2
+ μα

) [
P0, Hα,0

]
.

By taking the variational derivatives of both sides of the above identity and by using
(2.4), (2.5) and (2.31), we arrive at the result of the lemma. ��
Lemma 10. We have the following relation:

σ 1
λ,2 =

(
1

2
+ με

)
ηζε ∂vλ

∂tε,0
σζ,1 + loc. (4.2)

Proof. Let us denote by P1 the Hamiltonian operator of P1 and represent it in the form

P1 =
∑
k≥0

P1,k∂
k
x , P1,k ∈ Mn(Â).

Then from the recursion relation

ηγλσ 1
λ,2 = Pγ λ

1 σλ,1 =
∑
k≥0

Pγ λ

1,kσ
k
λ,1,

it is easy to see that

σ 1
λ,2 = ηλγPγ ζ

1,0σζ,1 + loc.

Now it follows from the definition of the Hamiltonian operator that

Pγ ζ
1,0 = ∂

∂σζ,0

δP1
δσγ,0

.

Therefore by using Lemma 9 we arrive at the identity (4.2) and the lemma is proved. ��
Proposition 10. There exist unique differential polynomials Mζ

λ and N ζ
λ such that (4.1)

is local. More explicitly, we have

Mζ
λ =

(
5

2
+ μλ + c0

)
δ
ζ
λ, ∂x N

ζ
λ =

(
1

2
+ μα

)
ηαζ

(
μζ − μλ − 1

) ∂vλ

∂tα,0 ,

here c0 is the arbitrary constant appearing in the operator L2.

Proof. To ensure the vanishing of the coefficients of σζ,2 in the right hand side of (4.1),

Mζ
λ should be a constant, so it is determined by the leading terms of the right hand sides

of (3.8) and (3.9), which are fixed by the Virasoro symmetry ∂
∂s2

of the super tau-cover
of the Principal Hierarchy. Hence we obtain

Mζ
λ =

(
5

2
+ μλ + c0

)
δ
ζ
λ.

By using Proposition 9 we have(
1

2
+ μα

)
∂ fα,1

∂τ0
= σα,1 + loc. (4.3)
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Then by using this equation, the recursion relations (2.18) and the identity (4.2), we see
that the vanishing of the coefficients of σζ,1 in the right hand side of (4.1) gives the
equation

∂x N
ζ
λ =

(
1

2
+ μα

)
ηαζ

(
μζ − μλ − 1

) ∂vλ

∂tα,0 . (4.4)

Both sides of (4.4) are total x-derivatives, so we can integrate (4.4) to obtain N ζ
λ upto

a constant, which is uniquely determined from the Virasoro symmetry of the super
tau-cover of the Principal Hierarchy. The proposition is proved. ��

Now by a direct computation of the condition[
∂

∂τ0
,

∂

∂s2

]
= 0,

we obtain the following explicit expressions for I0, a derivation which is defined by
(3.13):

I0vλ = aαβ

(
f ′
β,0

∂σλ,0

∂tα,1 + f ′
α,1

∂σλ,0

∂tβ,0

)
− aαβ

(
∂ fβ,0

∂τ0

∂vλ

∂tα,1 +
∂ fα,1

∂τ0

∂vλ

∂tβ,0

)

+ bαβ

(
f ′
β,0

∂σλ,0

∂tα,0 + f ′
α,0

∂σλ,0

∂tβ,0

)
− bαβ

(
∂ fβ,0

∂τ0

∂vλ

∂tα,0 +
∂ fα,0

∂τ0

∂vλ

∂tβ,0

)

+

(
5

2
+ μλ

)
σ 1

λ,2 +Wσλ,0 + ∂x

(
N ζ

λ σζ,1

)
, (4.5)

I0σλ,0 = −aαβ

(
∂ fβ,0

∂τ0

∂σλ,0

∂tα,1 +
∂ fα,1

∂τ0

∂σλ,0

∂tβ,0

)
− bαβ

(
∂ fβ,0

∂τ0

∂σλ,0

∂tα,0 +
∂ fα,0

∂τ0

∂σλ,0

∂tβ,0

)

+

(
5

2
+ μλ

)
∂σλ,0

∂τ2
− ∂

∂τ0

(
N ζ

λ σζ,1

)
, (4.6)

here and henceforth we will use f ′
α,p to denote the differential polynomial ∂ fα,p

∂t1,0
and use

W to denote the coefficient of t1,0 of the operator L2. More explicitly, we have

W =
(
1

2
+ μ1

)(
3

2
+ μ1

) (
5

2
+ μ1

)
∂

∂t1,2

+
2∑

k=1

(
3

(
1

2
+ μ1

)2

+ 6

(
1

2
+ μ1

)
+ 2

)
(Rk)

β
1

∂

∂tβ,2−k

+

(
9

2
+ 3μ1

) (
R2,2

)β

1

∂

∂tβ,0 . (4.7)

Proposition 11. The derivation I0 given by (4.5), (4.6) is local.

Proof. The locality of (4.5) follows from the definition of N ζ
λ , so we only need to check

the locality of (4.6). By using the definition of the odd flows we know that

∂σλ,0

∂τ2
= T0,2

∂σλ,0

∂τ1
=

∑
s≥0

σ s
β,1

∂

∂σ s
β,0

∂σλ,0

∂τ1
,
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therefore it follows from Lemma 9 that

∂σλ,0

∂τ2
= σβ,1η

αβ

(
1

2
+ μα

)
∂σλ,0

∂tα,0 + loc.

Then we arrive at the locality of (4.6) by using (4.3) and the following obvious fact:

∂N ζ
λ

∂τ0
=

(
1

2
+ μα

)
ηαζ

(
μζ − μλ − 1

) ∂σλ,0

∂tα,0 .

The proposition is proved. ��
Let us proceed to prove the locality of I1. Similar to the expression (4.5) and (4.6), we

can write down the explicit expression for I1, which can be found in the next subsection.
However the locality of I1 can not be derived from this expression directly, so we turn
to prove the following equivalent conditions:

[
∂

∂τ1
,

∂

∂s2

]
vλ ∈ Â,

[
∂

∂τ1
,

∂

∂s2

]
σλ,0 ∈ Â. (4.8)

By a direct computation we have

[
∂

∂τ1
,

∂

∂s2

]
vλ

= aαβ

(
∂ fβ,0

∂τ1

∂vλ

∂tα,1 +
∂ fα,1

∂τ1

∂vλ

∂tβ,0

)

+ bαβ

(
∂ fβ,0

∂τ1

∂vλ

∂tα,0 +
∂ fα,0

∂τ1

∂vλ

∂tβ,0

)
+ (1 + c0)

∂vλ

∂τ3

−
∑
s≥0

((
5

2
+ c0 + μζ

)
σ s

ζ,2 + ∂sx

(
N ε

ζ σζ,1

))
∂

∂σ s
ζ,0

∂vλ

∂τ1
+ loc. (4.9)

Lemma 11. There exists a unique differential polynomial Zβ
α , for each pair of indices

1 ≤ α, β ≤ n, such that

(
1

2
+ μα

)
∂ fα,1

∂τ1
= σα,2 + Zβ

ασβ,1 + loc,

where Zβ
α satisfies the following equation

∂x Z
β
α = −

(
1

2
+ με

)
ηβε ∂vα

∂tε,0
. (4.10)

Proof. The existence and uniqueness of Zβ
α can be obtained from Proposition 9, hence

we only need to derive (4.10), which can be obtained by using the identity (4.2) and the

fact that ∂x
(
σα,2 + Zβ

ασβ,1

)
is local. The lemma is proved. ��
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From the definition of the odd flows and the recursion relation (2.18) we have the
equation,

∂vλ

∂τ3
=

∑
s≥0

σ s
ζ,2

∂

∂σ s
ζ,0

∂vλ

∂τ1
,

which, together with Lemma 11 and the identity (4.2), enables us to rewrite (4.9) in the
form

[
∂

∂τ1
,

∂

∂s2

]
vλ = U ζ

λ σζ,2 + V ζ
λ σζ,1 + loc,

where the differential polynomials U ζ
λ and V ζ

λ are given by

U ζ
λ = ηζβ

(
1

2
+ μβ

) (
3

2
+ μζ

)
∂vλ

∂tβ,0 −
(
3

2
+ μζ

)
∂

∂σζ,0

∂vλ

∂τ1
,

V ζ
λ = aαζ ∂vλ

∂tα,1 + (bαζ + bζα)
∂vλ

∂tα,0 −
∑
s≥0

∂sx

(
N ζ

γ −
(
3

2
+ μγ

)
Z ζ

γ

)
∂

∂σ s
γ,0

∂vλ

∂τ1
.

Lemma 12. We have U ζ
λ = V ζ

λ = 0.

Proof. The vanishing of U ζ
λ follows directly from Lemma 9. To prove the vanishing of

V ζ
λ , let us consider the functional

Fζ = ηαζ

(
1

2
+ μα

) (
1

2
+ μζ

) ∫
hα,1.

By using (4.4) and (4.10) we can check that there exists a constant Cζ
λ such that

N ζ
λ −

(
3

2
+ μγ

)
Z ζ

λ = δFζ

δvλ

+ Cζ
λ .

Thus from (2.5) it follows that

∑
s≥0

∂sx

(
N ζ

γ −
(
3

2
+ μγ

)
Z ζ

γ

)
∂

∂σ s
γ,0

∂vλ

∂τ1
= − δ

δσλ,0

[
Fζ , P1

]
+ Cζ

γ

∂

∂σγ,0

∂vλ

∂τ1
.

By using the bihamiltonian recursion relation (2.29) and Lemma 9 we see that the right
hand side of the above equation is a linear combination of the flows ∂

∂tα,p acting on vλ,

hence so is V ζ
λ . On the other hand, the Virasoro symmetry ∂

∂s2
of the super tau-cover of

the Principal Hierarchy implies that V ζ
λ ∈ Â0≥2, so by using the theory of bihamiltonian

cohomology [7], we know that V ζ
λ must vanish. The lemma is proved. ��
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We have verified the first relation in (4.8), now let us proceed to prove the second
one. We have[

∂

∂τ1
,

∂

∂s2

]
σλ,0 = aαβ

(
∂ fβ,0

∂τ1

∂σλ,0

∂tα,1 +
∂ fα,1

∂τ1

∂σλ,0

∂tβ,0

)

+ bαβ

(
∂ fβ,0

∂τ1

∂σλ,0

∂tα,0 +
∂ fα,0

∂τ1

∂σλ,0

∂tβ,0

)

+

(
5

2
+ c0 + μλ

)
∂σλ,2

∂τ1
+

∂N ζ
λ

∂τ1
σζ,1 + (1 + c0)

∂σλ,0

∂τ3

−
∑
s≥0

((
5

2
+ c0 + μζ

)
σ s

ζ,2 + ∂sx

(
N ε

ζ σζ,1

))
∂

∂σ s
ζ,0

∂σλ,0

∂τ1
+ loc.

By using the equations

∂σλ,0

∂τ3
=

∑
s≥0

σ s
γ,2

∂

∂σ s
γ,0

∂σλ,0

∂τ1
+

∂σλ,1

∂τ2
,

∂σλ,1

∂tα,p
= ∂

∂τ1

δhα,p+1

δvλ
,

∂σλ,1

∂τ2
= σζ,1

(
1

2
+ με

)
ηεζ ∂

∂τ1

δhε,1

δvλ
+ loc,

we obtain that [
∂

∂τ1
,

∂

∂s2

]
σλ,0 = σζ,2Ũ

ζ
λ + σζ,1Ṽ

ζ
λ + loc,

where the differential polynomials Ũ ζ
λ , Ṽ

ζ
λ are given by

Ũ ζ
λ = ηζβ

(
1

2
+ μβ

) (
3

2
+ μζ

)
∂σλ,0

∂tβ,0 −
(
3

2
+ μζ

)
∂

∂σζ,0

∂σλ,0

∂τ1
,

Ṽ ζ
λ = aαζ

∂σλ,0

∂tα,1 + (bαζ + bζα)
∂σλ,0

∂tα,0 − ∂

∂τ1

(
N ζ

λ −
(
3

2
+ μγ

)
Z ζ

λ

)

−
∑
s≥0

∂sx

(
N ζ

γ −
(
3

2
+ μγ

)
Z ζ

γ

)
∂

∂σ s
γ,0

∂σλ,0

∂τ1
.

These differential polynomials actually vanish, the reason is similar to the one for the
vanishing of U ζ

λ and V ζ
λ given in the proof of Lemma 12. Hence the locality condition

(3.14) is verified.
Finally let us consider the locality condition (3.12). The first condition

[
∂

∂tδ, j
,

∂

∂s2

]
vλ ∈ Â

follows from the definition (3.8). To verify the second locality condition, we consider
the equation
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[
∂

∂tδ, j
,

∂

∂s2

]
σλ,0

=
(
5

2
+ c0 + μλ

)
∂σλ,2

∂tδ, j
+

∂N ζ
λ

∂tδ, j
σζ,1

−
∑
s≥0

∂sx

(
N ζ

γ σζ,1 +

(
5

2
+ c0 + μγ

)
σγ,2

)
∂

∂σ s
γ,0

∂σλ,0

∂tδ, j
+ loc. (4.11)

Proposition 12. The right hand side of the Eq. (4.11) is local.

Proof. By using the identity

∂

∂σβ,0

δ

δvα
= δ

δvα

δ

δσβ,0

that is proved in [25], we obtain

∂

∂σβ,0

∂σλ,0

∂tα,p
= ∂

∂σβ,0

δXα,p

δvλ
= 0,

from which it follows that the flows ∂σλ,2

∂tδ, j
can be written as

∂σλ,2

∂tδ, j
= T2

∂σλ,0

∂tδ, j
=

∑
s≥0

σ s
β,2

∂

∂σ s
β,0

∂σλ,0

∂tδ, j
= Bζ

λσζ,1 + loc,

where Bζ
λ are certain differential polynomials. From the identity (4.2) we know that

Bζ
λ = − ∂Z ζ

λ

∂tδ, j
,

and we can represent the right hand side of (4.11) in the form

V ζ

δ, j;λσζ,1 + loc,

where V ζ

δ, j;λ is a differential polynomial given as follows:

V ζ

δ, j;λ = ∂

∂tδ, j

(
N ζ

λ −
(
5

2
+ c0 + μγ

)
Z ζ

λ

)

−
∑
s≥0

∂sx

(
N ζ

γ −
(
5

2
+ c0 + μγ

)
Z ζ

γ

)
∂

∂σ s
γ,0

∂σλ,0

∂tδ, j
.

Define the following functional

Fζ = ηαζ

(
1

2
+ μα

) (
3

2
+ c0 + μζ

) ∫
hα,1,

then by applying (2.4) we obtain the following identity:

V ζ

δ, j;λ = δ

δvλ

[
Fζ , Xδ, j

]
,

here Xδ, j is the vector field defined in (2.26). Since the functional Fζ is a conserved
quantity of the deformed Principal hierarchy, we have

[
Fζ , Xδ, j

] = 0. The proposition
is proved. ��
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4.2. Closedness conditions. In this subsection we prove the closedness condition (3.15)
and (3.17). The verification of (3.15) is straightforward by using the explicit expressions
(4.5) and (4.6), so we omit the details here.

Let us prove the closedness condition (3.17). We fix a choice of X◦ ∈ Der∂ (Â) such
that X◦ satisfies the condition

[
∂

∂τ0
, X◦

]
= I0,

and that the differential degree zero part of X◦ is given by the Virasoro symmetry ∂
∂s2

of the super tau-cover of the Principal Hierarchy.
Wefirst write down the explicit expression for I1 defined in (3.13). Define a derivation

Î1 ∈ Der(Â)0 by the formulae Î1vγ = Î1σγ,0 = 0 and

Î1v
(n)
γ = n∂n−1

x W (vγ ) + aαβ∂nx

(
fβ,0

∂vγ

∂tα,1 + fα,1
∂vγ

∂tβ,0

)

+ bαβ∂nx

(
fβ,0

∂vγ

∂tα,0 + fα,0
∂vγ

∂tβ,0

)

− aαβ

(
fβ,0∂

n
x

∂vγ

∂tα,1 + fα,1∂
n
x

∂vγ

∂tβ,0

)

− bαβ

(
fβ,0∂

n
x

∂vγ

∂tα,0 + fα,0∂
n
x

∂vγ

∂tβ,0

)
,

Î1σ
n
γ,0 = n∂n−1

x W (σγ,0) + aαβ∂nx

(
fβ,0

∂σγ,0

∂tα,1 + fα,1
∂σγ,0

∂tβ,0

)

+ bαβ∂nx

(
fβ,0

∂σγ,0

∂tα,0 + fα,0
∂σγ,0

∂tβ,0

)

− aαβ

(
fβ,0∂

n
x
∂σγ,0

∂tα,1 + fα,1∂
n
x
∂σγ,0

∂tβ,0

)

− bαβ

(
fβ,0∂

n
x
∂σγ,0

∂tα,0 + fα,0∂
n
x
∂σγ,0

∂tβ,0

)

+

(
3

2
+ μγ

) (
σ n

γ,2 + ∂nx Z
ε
γ σε,1

)
+ ∂nx

(
N ε

γ σε,1

)
− ∂nx N

ε
γ σε,1,

here n ≥ 1 and W is the derivation defined in (4.7). Note that this derivation does NOT
commute with ∂x . It is easy to see that Î1 is indeed local. By a careful computation, we
obtain the following expression for I1:

I1vλ = Î1

(
∂vλ

∂τ1

)
+ Aα ∂vλ

∂tα,1 + Bα ∂vλ

∂tα,0 ,

I1σλ,0 = Î1

(
∂σλ,0

∂τ1

)
+ Aα ∂σλ,0

∂tα,1 + Bα ∂σλ,0

∂tα,0

+

(
3

2
+ μλ

)(
∂σλ,1

∂τ2
− σβ,1η

αβ

(
1

2
+ μα

)
∂σλ,1

∂tα,0

)
,
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where Aα and Bα are local differential polynomials given by

Aα = −aαβ

(
∂ fβ,0

∂τ1
− σβ,1

)
,

Bα = −ηαβ

(
1

2
+ μα

) (
3

2
+ μβ

) ((
1

2
+ μβ

)
∂ fβ,1

∂τ1
− σβ,2 − Z ε

βσε,1

)

− (bαβ + bβα)

(
∂ fβ,0

∂τ1
− σβ,1

)
.

We start by proving the first identity given in (3.17), which can also be written as
[

∂

∂τ0
, I1

]
+

[
∂

∂τ1
,

[
∂

∂τ0
, X◦

]]
= 0.

The following lemmas can be proved by a lengthy but straightforward computation.

Lemma 13. Let Q ∈ Â be any local differential polynomial, then we have

[
Î1, ∂x

]
Q = W (Q) + aαβ

(
f ′
β,0

∂Q

∂tα,1 + f ′
α,1

∂Q

∂tβ,0

)
+ bαβ

(
f ′
β,0

∂Q

∂tα,0 + f ′
α,0

∂Q

∂tβ,0

)

+
∑
n≥0

σ 1
ζ,1∂

n
x

(
Y ζ

γ −
(
3

2
+ μγ

)
Z ζ

γ

)
∂

∂σ n
γ,0

Q

+

(
3

2
+ μγ

)
∂x

(
σγ,2 + Z ε

γ σε,1

) ∂

∂σγ,0
Q.

Lemma 14. The following identities hold true:
[

∂

∂τ0
, I1

]
vλ =

[
∂

∂τ1
,

[
∂

∂τ0
, Î1

]]
vλ +

∂Aα

∂τ0

∂vλ

∂tα,1 +
∂Bα

∂τ0

∂vλ

∂tα,0 ,

[
∂

∂τ0
, I1

]
σλ,0 =

[
∂

∂τ1
,

[
∂

∂τ0
, Î1

]]
σλ,0 +

∂Aα

∂τ0

∂σλ,0

∂tα,1 +
∂Bα

∂τ0

∂σλ,0

∂tα,0

+

(
3

2
+ μλ

)(
∂σλ,1

∂τ2
− σβ,1η

αβ

(
1

2
+ μα

)
∂σλ,1

∂tα,0

)
.

Lemma 15. We have the following decomposition:
[

∂

∂τ0
, Î1 + X◦

]
= D +

∂

∂τ2
,

where D is a derivation Â → Â+ whose actions are given by the formulae

Dv(n)
γ = −aαβ

(
∂ fβ,0

∂τ0
∂nx

∂vγ

∂tα,1 +
∂ fα,1

∂τ0
∂nx

∂vγ

∂tβ,0

)

− bαβ

(
∂ fβ,0

∂τ0
∂nx

∂vλ

∂tα,0 +
∂ fα,0

∂τ0
∂nx

∂vλ

∂tβ,0

)

+ σβ,1η
αβ

(
1

2
+ μα

)(
1

2
+ μβ

)
∂nx

∂vγ

∂tα,0 ,
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Dσ n
γ,0 = −aαβ

(
∂ fβ,0

∂τ0
∂nx

∂σγ,0

∂tα,1 +
∂ fα,1

∂τ0
∂nx

∂σγ,0

∂tβ,0

)

− bαβ

(
∂ fβ,0

∂τ0
∂nx

∂σγ,0

∂tα,0 +
∂ fα,0

∂τ0
∂nx

∂σγ,0

∂tβ,0

)

+ σβ,1η
αβ

(
1

2
+ μα

)(
1

2
+ μβ

)
∂nx

∂σγ,0

∂tα,0 +
∂σβ,0

∂τ1
∂nx

(
Nβ

γ −
(
3

2
+ μγ

)
Zβ

γ

)

− δn,0

(
3

2
+ μγ

)
∂

∂τ0

(
σγ,2 + Z ε

γ σε,1

)
.

Proposition 13. The first identity of the closedness condition (3.17) holds true, i.e.,[
∂

∂τ0
, I1

]
+

[
∂

∂τ1
,

[
∂

∂τ0
, X◦

]]
= 0.

Proof. It follows from Lemma 14 that[
∂

∂τ0
, I1

]
vλ +

[
∂

∂τ1
,

[
∂

∂τ0
, X◦

]]
vλ

=
[

∂

∂τ1
,

[
∂

∂τ0
, Î1 + X◦

]]
vλ +

∂Aα

∂τ0

∂vλ

∂tα,1 +
∂Bα

∂τ0

∂vλ

∂tα,0 .

To prove the vanishing of the right hand side of the above equation, we need to verify
the following identity due to Lemma 15:[

∂

∂τ1
, D

]
vλ +

∂Aα

∂τ0

∂vλ

∂tα,1 +
∂Bα

∂τ0

∂vλ

∂tα,0 = 0,

which can be checked directly by using the definition of D. Similarly we can prove that[
∂

∂τ0
, I1

]
σλ,0 +

[
∂

∂τ1
,

[
∂

∂τ0
, X◦

]]
σλ,0 = 0.

The proposition is proved. ��
It remains to prove the second identity of (3.17).

Lemma 16. The following identities hold true:[
I1,

∂

∂τ1

]
vλ =

∑
s≥0

Gγ
s

∂

∂v
(s)
γ

∂vλ

∂τ1
+ Fγ

s
∂

∂σ s
γ,0

∂vλ

∂τ1

− Aα ∂

∂τ1

∂vλ

∂tα,1 − Bα ∂

∂τ1

∂vλ

∂tα,0 +
∂Bα

∂τ1

∂vλ

∂tα,0 ,

[
I1,

∂

∂τ1

]
σλ,0 =

∑
s≥0

Gγ
s

∂

∂v
(s)
γ

∂σλ,0

∂τ1
+ Fγ

s
∂

∂σ s
γ,0

∂σλ,0

∂τ1

− Aα ∂

∂τ1

∂σλ,0

∂tα,1 − Bα ∂

∂τ1

∂σλ,0

∂tα,0 +
∂Bα

∂τ1

∂σλ,0

∂tα,0 ,

where Gγ
s and Fγ

s are differential polynomials defined by

Gγ
s =

[
∂

∂τ1
, Î1

]
v(s)
γ + ∂sx

(
I1vγ

)
, Fγ

s =
[

∂

∂τ1
, Î1

]
σ s

γ,0 + ∂sx
(
I1σγ,0

)
.
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Lemma 17. The differential polynomials Gγ
s and Fγ

s defined in Lemma 16 have the
following expressions:

Gγ
s = Aα∂sx

∂vγ

∂tα,1 + Bα∂sx
∂vγ

∂tα,0 ,

Fγ
s = Aα∂sx

∂σγ,0

∂tα,1 + Bα∂sx
∂σγ,0

∂tα,0

+ δs,0

(
3

2
+ μγ

) (
∂σγ,1

∂τ2
− σβ,1η

αβ

(
1

2
+ μα

)
∂σγ,1

∂tα,0

)
.

Proof. By using the definition of Gγ
s we can obtain the identity

Gγ
s+1 − ∂xG

γ
s = ∂

∂τ1

([
Î1, ∂x

]
v(s)
γ

)
+

[
∂x , Î1

] ∂v
(s)
γ

∂τ1
.

Therefore it follows from Lemma 13 that

Gγ
s+1 − ∂xG

γ
s = −∂x A

α∂sx
∂vγ

∂tα,1 − ∂x B
α∂sx

∂vγ

∂tα,0 .

Hence Gγ
s can be solved recursively starting from the initial condition

Gγ
0 = I1vγ − Î1

∂vγ

∂τ1
= Aα ∂vγ

∂tα,1 + Bα ∂vγ

∂tα,0 .

The expressions of the differential polynomials Fγ
s can be obtained similarly. The lemma

is proved. ��
Proposition 14. The second identity of the closedness condition (3.17) holds true, i.e.,

[
∂

∂τ1
, I1

]
= 0.

Proof. The proof of the proposition is straightforward by combining the results of
Lemmas 16 and 17. ��

4.3. Vanishing of the genus one obstruction. In this subsection, we will work with the
canonical coordinates of the Frobenius manifold. Let us start by recalling some useful
formulae related to the canonical coordinates. For the details one may refer to the work
[5,12].

We denote by u1, . . . , un the local canonical coordinates of a semisimple Frobenius
manifold M and denote by (ui ; θi ) the corresponding coordinates of M̂ . Under this
system of local coordinates, the bihamiltonian structure (2.13) takes the form (2.7), i.e.,

P [0]
0 = 1

2

∫ n∑
i, j=1

(
δi, j f

iθiθ
1
i + Ai jθiθ j

)
,

P [0]
1 = 1

2

∫ n∑
i, j=1

(
δi, j u

i f iθiθ
1
i + Bi jθiθ j

)
.
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Introduce functions

ψi1 = 1√
f i

, i = 1, . . . , n, (4.12)

where the sign of the square root can be arbitrarily chosen, and define

ψiα = 1

ψi1

∂vα

∂ui
, γi j = 1

ψ j1

∂ψi1

∂u j
, i �= j.

Then it is proved in [5] that

∂vα

∂ui
= ψi1ψiα,

∂ui

∂vα
= ψiα

ψi1
, (4.13)

∂ψiα

∂uk
= γikψkα, i �= k,

∂ψiα

∂ui
= −

∑
k �=i

γikψkα. (4.14)

Let Vi j = μαηαβψiαψ jβ, then we have the identity

γi j (u
j − ui ) = Vi j . (4.15)

Now we are going to describe the deformation problem given in Sect. 3.3 in terms
of the canonical coordinates. Introduce the odd variables θi,m by the recursion relations
(2.16), then it follows from the the relation (2.17) that the equations (3.8) and (3.9) can
be represented in the form

∂ui

∂s2
= aαβ

(
fβ,0

∂ui

∂tα,1 + fα,1
∂ui

∂tβ,0

)
+ bαβ

(
fβ,0

∂ui

∂tα,0 + fα,0
∂ui

∂tβ,0

)

+ Xui + L2u
i , (4.16)

∂θi,0

∂s2
= aαβ

(
fβ,0

∂θi,0

∂tα,1 + fα,1
∂θi,0

∂tβ,0

)
+ bαβ

(
fβ,0

∂θi,0

∂tα,0 + fα,0
∂θi,0

∂tβ,0

)

+ Xθi,0 +
∑
j

A j
i θ j,2 + B j

i θ j,1 + L2θi,0. (4.17)

In the canonical coordinates, the Hamiltonian operator P1 of P1 has the form

P i j
1 = ui f iδi j∂x +

1

2
∂x

(
ui f i

)
δi j + Bi j + Qi j∂3x + . . . ,

where Bi j is defined in (2.6), Qi j is given by the formula (cf., e.g., [13])

Qi j = 3ci
(
f i

)2
δi j +

1

2

(
ui − u j

) (
f j∂ j f

i ci − f i∂i f
j c j

)
, (4.18)

and ci is the i-th central invariant. Here and henceforth we omit the terms that do not
contribute to the relevant computations given later. Let us also represent the evolutions
of θi along the flows ∂

∂tα,p as follows:

∂θi

∂tα,p
= T i

α,pθ
1
i + · · · +

∑
j

K i
α,p; jθ

3
j + . . . , Tα,p ∈ Â0

0, Ki
α,p; j ∈ Â0

3.
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Note that the coefficients of θ1j of the leading term of ∂θi
∂tα,p are zero for j �= i , this is

due to the fact that the leading term of the flow ∂
∂tα,p is diagonal, one may refer to [9]

for details.
Let us turn to the proof of the vanishing of the genus one obstruction. Due to the

closedness condition (3.15), we can choose a derivation X◦ such that when we take
X = X◦ in (4.16) and (4.17) we have[

∂

∂τ0
,

∂

∂s2

]
= 0.

We require that the leading term of X◦ is given by the Virasoro symmetry ∂
∂s2

of the
super tau-cover of the Principal Hierarchy, hence it follows from the result of [11] that
the actions of X◦ on ui and θi take the form

X◦ui = (ui )3 +
∑
j

Li
j u

j,2 + . . . , Li
j ∈ Â0

0,

X◦θi =
∑
j

M j
i θ j +

∑
j

J j
i θ2j + . . . , M j

i , J j
i ∈ Â0

0.

Lemma 18. We have the following identity:

J ii − Li
i = 2

f i
c0(u

i )2Qii −
∑
j

A j
i

f j
(ui + u j )Qi j −

∑
j

B j
i

f j
Qi j

− bβ,q
2;1,0K

i
β,q;i − aα,p;β,q

2

((
f ′
β,q

)
0
Ki

α,p;i +
(
f ′
α,p

)
0
Ki

β,q;i
)

,

where bβ,q
2;α,p and a

α,p;β,q
2 are the constants that appear in the operator L2, and

(
f ′
α,p

)
0

denotes the differential degree zero component of f ′
α,p.

Proof. We can prove this lemma by looking at the differential degree 3 component of
the left hand side of the equation[

∂

∂τ0
,

∂

∂s2

]
ui = 0,

and by computing the coefficient of θ3i . The lemma is proved. ��
Remark 4. Note that c0 is the arbitrary constant that appears in the operator L2, which
is different from central invariants c1, . . . , cn .

According to the discussion given in Sect. 3.3, we need to show the triviality of the

cohomology class of the differential degree 3 component of the derivation
[

∂
∂τ1

, C
]

=
I1 −

[
∂

∂τ1
, X◦

]
. Due to Theorem 10, it suffices to prove that in the differential degree 3

component of

I1u
i −

[
∂

∂τ1
, X◦

]
ui ,

the coefficient of θ3i vanishes. By using Lemma 18 and a straightforward computation,
we obtain the following lemma.
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Lemma 19. In the differential degree 3 component of I1ui −
[

∂
∂τ1

, X◦
]
ui , the coefficient

of θ3i reads

∑
j

Qi j
(
Mi

j + Ai
j (u

i )2 + Bi
j u

i
)
+ E3Qii − (6 + c0)(u

i )2Qii

+ 3Qiibβ,q
2;1,0T

i
β,q + 3Qiiaα,p;β,q

2

((
f ′
β,q

)
0
T i

α,p +
(
f ′
α,p

)
0
T i

β,q

)
, (4.19)

here E3 is the cubic power of the Euler vector field which is given by

E3 =
∑
i

(ui )3
∂

∂ui
.

Lemma 20. We have the identities

Mi
i + Ai

i (u
i )2 + Bi

i u
i = (3 + c0)(u

i )2 − 1

f i
E3 f i − bβ,q

2;1,0T
i
β,q

− aα,p;β,q
2

((
f ′
β,q

)
0
T i

α,p +
(
f ′
α,p

)
0
T i

β,q

)
,

and M j
i + A j

i (u
j )2 + B j

i u
j = 0 for i �= j .

Proof. We can prove this lemma by considering the differential degree 1 component of
the left hand side of the equation

[
∂

∂τ0
,

∂

∂s2

]
ui = 0,

and by computing the coefficient of θ1j . The lemma is proved. ��
In order to prove the vanishing of the expression (4.19), we need to check, due to

Lemma 20 and the expression (4.18) for Qii , the following identity:

E3 f i + 2 f i
(
bβ,q
2;1,0T

i
β,q + aα,p;β,q

2

((
f ′
β,q

)
0
T i

α,p +
(
f ′
α,p

)
0
T i

β,q

))
= 3(ui )2 f i .

Proposition 15. For m ≥ −1, we have

Em+1 f i + 2 f i
(
bβ,q
m;1,0T

i
β,q

+ aα,p;β,q
m

((
f ′
β,q

)
0
T i

α,p +
(
f ′
α,p

)
0
T i

β,q

))
= (1 + m)(ui )m f i ,

here Em+1 is the (m + 1)-th power of the Euler vector field E which is given by

Em+1 =
∑
i

(ui )m+1 ∂

∂ui
.
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Proof. Let us consider the following generating functions:

∑
m≥−1

1

λm+2 E
m+1 f i =

∑
j

1

λ − u j

∂ f i

∂u j
,

∑
m≥−1

1

λm+2 (1 + m)(ui )m f i = f i

(λ − ui )2
,

∑
m≥−1

1

λm+2

(
bβ,q
m;1,0T

i
β,q + aα,p;β,q

m

((
f ′
β,q

)
0
T i

α,p +
(
f ′
α,p

)
0
T i

β,q

))

= 1

2

1

(λ − ui )2
+

∑
j �=i

ψ j1

ψi1

Vi j
(λ − ui )(λ − u j )

,

where the last generating function is computed in [12], one may refer to Lemma 3.10.18
and the proof of Theorem 3.10.29 of [12] for details. Then the proposition is proved by
using (4.12), (4.14) and (4.15). ��

Finally we have the following theorem.

Theorem 13. For a given semisimple Frobenius manifold and a tau-symmetric bihamil-
tonian deformation of its Principal Hierarchy, there exists a unique deformation ∂

∂s2
∈

Der∂ (ÂV ir ) of the Virasoro symmetry of the super tau-cover of the Principal Hierarchy
such that it is a symmetry of the deformed super tau-cover. Moreover, the actions of ∂

∂s2
on the local variables are given by

∂vλ

∂s2
= aαβ

(
fβ,0

∂vλ

∂tα,1 + fα,1
∂vλ

∂tβ,0

)
+ bαβ

(
fβ,0

∂vλ

∂tα,0 + fα,0
∂vλ

∂tβ,0

)

+ Xvλ + L2vλ, (4.20)

∂σλ,0

∂s2
= aαβ

(
fβ,0

∂σλ,0

∂tα,1 + fα,1
∂σλ,0

∂tβ,0

)
+ bαβ

(
fβ,0

∂σλ,0

∂tα,0 + fα,0
∂σλ,0

∂tβ,0

)

+ Xσλ,0 +

(
5

2
+ c0 + μλ

)
σλ,2 + N ζ

λ σζ,1 + L2σλ,0, (4.21)

where X ∈ Der∂ (Â)0 and N ζ
λ ∈ Â0≥0 is the differential polynomial described in

Lemma 10.

4.4. Lifting to the tau-covers. In order to lift the symmetry (4.20) to the tau-cover of
the deformed Principal Hierarchy, we first need to rewrite (4.20) in terms of the normal
coordinates w1, . . . , wn of M . We start by proving the following lemmas.

Lemma 21. Let gλ ∈ Â0≥1 be the differential polynomials given in (2.35) which satisfy
the identities

hλ,0 = vλ + ∂x gλ, λ = 1, . . . , n.

Then we have:

1. g1 = 0.
2. For any α = 1, . . . , n and p ≥ 0,

�α,p;λ,0 = δhα,p+1

δvλ
+

∂gλ

∂tα,p
.
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Proof. Due to Proposition 7, we have DX1,0 = ∂x and X1,0 = −[H1,0, P0], from which
it follows that

vα = δH1,0

δvα
.

By taking α = 1, we obtain the first property by using the definition (2.28). The second
one is obvious due to Theorem 8. The lemma is proved. ��
Lemma 22. There exists a derivation X◦ ∈ Der∂ (Â) such that its leading term is given
by the Virasoro symmetry ∂

∂s2
of the Principal Hierarchy, and it satisfies the equations[

∂
∂τ0

, X◦
]

= I0 and

X◦hλ,0 + Î1hλ,0 = aαβ

(
f ′
α,1�β,0;λ,0 + f ′

β,0�α,1;λ,0 +
∂2�α,1;β,0

∂tλ,0∂t1,0

)

+ bαβ

(
f ′
α,0�β,0;λ,0 + f ′

β,0�α,0;λ,0 +
∂2�α,0;β,0

∂tλ,0∂t1,0

)

+ bβ,q
2;1,0�β,q;λ,0 + bβ,q

2;λ,0�β,q;1,0 + 2c2;λ,0;1,0. (4.22)

Proof. We first find a particular solution X̃◦ of the equation
[

∂
∂τ0

, X
]

= I0, then we

modify it by a solution C̃ of the homogeneous equation
[

∂
∂τ0

, C
]

= 0 such that X◦ :=
X̃◦ + C̃ satisfies (4.22).

Let us define X̃◦ ∈ Der∂ (Â) as follows:

X̃◦vλ = aαβ

(
f ′
α,1

δhβ,1

δvλ
+ f ′

β,0
δhα,2

δvλ

)
+ bαβ

(
f ′
α,0

δhβ,1

δvλ
+ f ′

β,0
δhα,1

δvλ

)

+ bβ,q
2;1,0

δhβ,q+1

δvλ
+ bβ,q

2;λ,0
δhβ,q+1

δv1
+ 2c2;λ,0;1,0;

X̃◦σλ,0 = aαβ

(
∂ fα,1

∂τ0

δhβ,1

δvλ
+

∂ fβ,0

∂τ0

δhα,2

δvλ

)
+ bαβ

(
∂ fα,0

∂τ0

δhβ,1

δvλ
+

∂ fβ,0

∂τ0

δhα,1

δvλ

)

+ bβ,q
2;λ,0

∂ fβ,q

∂τ0
−

(
5

2
+ μλ

)
σλ,2 − N ζ

λ σζ,1.

Firstly, from the definition of N ζ
λ it follows that X̃◦ is indeed local. We also note

that the leading terms of X̃◦vλ and X̃◦σλ,0 coincide with the local terms of the Virasoro
symmetry ∂vλ

∂s2
and ∂σλ,0

∂s2
of the Principal Hierarchy. By a direct computation, it is easy

to check that
[

∂
∂τ0

, X̃◦
]

= I0.

Next we want to determine C̃ ∈ Der∂ (Â) such that X◦ = X̃◦ + C̃ satisfies (4.22). By
using the definition of X̃◦vλ, Lemmas 13 and 21, it is straightforward to show that

C̃(hλ,0) = aαβ ∂2�α,1;β,0

∂tλ,0∂t1,0
+ bαβ ∂2�α,0;β,0

∂tλ,0∂t1,0
− ∂x Î1(gλ) − ∂x X̃

◦(gλ), (4.23)

which uniquely determines the actions of C̃ on vλ.
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Finally we need to check such C̃ satisfies
[

∂
∂τ0

, C̃
]

= 0. By using the next lemma we

know that it suffices to show that
∫
C̃vλ = 0, which is obvious from (4.23) and (2.35).

The lemma is proved. ��
Lemma 23. Let U1, . . . ,Un be differential polynomials with Uλ ∈ Â0≥2. Then there

exists C ∈ Der∂ (Â)0≥1 such that
[

∂
∂τ0

, C
]

= 0 and Cvλ = Uλ if and only if
∫
Uλ = 0.

Proof. Let C ∈ Der∂ (Â)0 be a derivation such that
[

∂
∂τ0

, C
]

= 0. Then by using the

triviality of the variational Hamiltonian cohomology H0≥1

(
Der∂ (Â), P [0]

0

)
, we know

the existence of a certain K ∈ Der∂ (Â)−1 such that
[

∂
∂τ0

,K
]

= C. Let us denote

Kσλ,0 = Vλ ∈ Â0. Then it is easy to see that

Cvλ =
[

∂

∂τ0
,K

]
vλ = Kσ 1

λ,0 = ∂x Vλ.

Therefore we have
∫
Uλ = ∫

∂x Vλ = 0.
Conversely, if Uλ = ∂x Vλ for some Vλ ∈ Â0, we can define a unique derivation

C ∈ Der∂ (Â)0 by

Cvλ = ∂x Vλ, Cσλ,0 = ∂Vλ

∂τ0
,

then it is easy to check that
[

∂
∂τ0

, C
]

= 0 and the lemma is proved. ��
Now let us denote C = X − X◦, where the derivation X is described in Theorem 13

and X◦ satisfies (4.22). Then we can rewrite the Virasoro symmetry ∂
∂s2

in terms of the
normal coordinates as follows:

∂wλ

∂s2
= aαβ

(
fβ,0

∂wλ

∂tα,1 + fα,1
∂wλ

∂tβ,0

)
+ bαβ

(
fβ,0

∂wλ

∂tα,0 + fα,0
∂wλ

∂tβ,0

)

+ aαβ

(
f ′
α,1�β,0;λ,0 + f ′

β,0�α,1;λ,0 +
∂2�α,1;β,0

∂tλ,0∂t1,0

)

+ bαβ

(
f ′
α,0�β,0;λ,0 + f ′

β,0�α,0;λ,0 +
∂2�α,0;β,0

∂tλ,0∂t1,0

)

+ bβ,q
2;1,0�β,q;λ,0 + bβ,q

2;λ,0�β,q;1,0 + 2c2;λ,0;1,0 + C(hλ,0) + L2wλ.

According to Lemma 23, there exist differential polynomials Qλ ∈ Â0≥1 such that
C(hλ,0) = ∂x Qλ. From the fact that

∂

∂tγ,0

∂wλ

∂s2
= ∂

∂tλ,0

∂wγ

∂s2
,

we have the equation

∂Qλ

∂tγ,0 = ∂Qγ

∂tλ,0 , (4.24)
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which means that
∫
Q1 is a conserved quantity of the flow ∂

∂tλ,0 for all λ = 1, . . . , n.

We want to find a differential polynomial Q ∈ Â≥0 such that Qλ = ∂Q
∂tλ,0 . To this end

we need the following lemma.

Lemma 24 (Lemma 4.12 and Theorem A.2 of [9]). If the Frobenius manifold with
dimension n ≥ 2 is irreducible, then there exist constants cα for α = 1, . . . , n such that
the leading term of the derivation

D = cα ∂

∂tα,0 ∈ Der∂ (Â)

is non-degenerate, i.e., in terms of the canonical coordinates ui , its leading term D[0] ∈
Der∂ (Â)01 can be represented by

D[0]ui = Ai (u)ui,1, i = 1, . . . , n

such that the condition ∂Ai

∂ui
�= 0 holds true for all i = 1, . . . , n.Moreover, any conserved

quantity H ∈ F̂0≥1 of D is trivial.

The irreducibility of a Frobenius manifold is a mild condition and without loss of
generality, we may always assume that a Frobenius manifold is irreducible (see [5] for
details). Therefore it follows from the above lemma that if the dimension of the Frobenius
manifold dim M ≥ 2, there exists Q ∈ Â0≥0 such that Q1 = ∂x Q. By setting γ = 1 in
the identity (4.24), we obtain that

∂x Qλ = ∂Q1

∂tλ,0 = ∂x
∂Q

∂tλ,0 ∈ Â0≥2,

from which we conclude that Qλ = ∂Q
∂tλ,0 .

Remark 5. The existence of Q can be also obtained by proving a Poincaré lemma for
general semi-Hamiltonian systems [28] using the idea given in Appendix of [9], whose
proof is a little bit complicated, so we use the method presented above.

Theorem 14. Let Z be a tau-function of the tau-cover (2.32) of the deformed Principal
Hierarchy. Then there exists a differential polynomial O2 ∈ Â0≥0which yields a symmetry
of the tau-cover given by

∂Z
∂s2

= Leven
2 Z + O2Z,

where the evolutions of fα,p and wλ along the flow ∂
∂s2

are given by

∂ fα,p

∂s2
= ∂

∂tα,p

∂ logZ
∂s2

,
∂wλ

∂s2
= ∂

∂t1,0
∂ fλ,0

∂s2
.

Proof. When dim M ≥ 2 we take O2 = Q which is just given above.When dim M = 1,
O2 is given in (3.26). The theorem is proved. ��
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Now let us proceed to determine all other Virasoro symmetries ∂
∂sm

of the tau-cover
of the deformed Principal Hierarchy. In what follows we will denote F = logZ and
denote

Gm = aα,p;β,q
m

(
∂F

∂tα,p

∂F
∂tβ,q

+
∂2F

∂tα,p∂tβ,q

)
+ cm;α,p;β,q t

α,ptβ,q;

Leven
m = bβ,q

m;α,pt
α,p ∂

∂tβ,q
, m ≥ −1.

It is proved in [9] that

∂F
∂s−1

= G−1 + Leven−1 F

induces a symmetry of the tau-cover of the deformed Principal Hierarchy. On the other
hand, by using Theorem 14 we know that

∂F
∂s2

= G2 + O2 + Leven
2 F

also induces a symmetry of the tau-cover of the deformed Principal Hierarchy. From the
commutation relation

[Leven−1 , Leven
2 ] = −3Leven

1 ,

it follows that [
∂

∂s−1
,

∂

∂s2

]
F = 3

(
G1 + Leven

1 F
)
+

∂O2

∂s−1
− Leven−1 O2.

Since ∂O2
∂s−1

− Leven−1 O2 is a differential polynomial, we can define

∂F
∂s1

= 1

3

[
∂

∂s−1
,

∂

∂s2

]
F = G1 + O1 + Leven

1 F , O1 = 1

3

(
∂O2

∂s−1
− Leven−1 O2

)
.

Then it is obvious that ∂F
∂s1

induces a symmetry of the tau-cover of the deformed Principal
Hierarchy. Similarly we define the symmetry

∂F
∂s0

= 1

2

[
∂

∂s−1
,

∂

∂s1

]
F = G0 + O0 + Leven

0 F , O0 = 1

2

(
∂O1

∂s−1
− Leven−1 O1

)
.

Now let us define ∂F
∂sm

for m ≥ 3 recursively in the following way. Assume we have
defined

∂F
∂sm

= Gm + Om + Leven
m F

such that it induces a symmetry of the tau-cover of the deformed Principal Hierarchy
for m ≥ 2, then we have

∂

∂s1

∂F
∂sm

= ∂Gm
∂s1

+
∂Om

∂s1
+ Leven

m

(
G1 + O1 + Leven

1 F
)
.
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It follows from the definition of Gm that

∂Gm
∂s1

= ∂

∂s1

(
aα,p;β,q
m

(
∂F

∂tα,p

∂F
∂tβ,q

+
∂2F

∂tα,p∂tβ,q

)
+ cm;α,p;β,q t

α,ptβ,q
)

= aα,p;β,q
m

(
fα,p

∂

∂tβ,q
(G1 + O1 + Leven

1 F) + fβ,q
∂

∂tα,p
(G1 + O1 + Leven

1 F)

)

+ aα,p;β,q
m

∂2

∂tα,p∂tβ,q
(G1 + O1 + Leven

1 F)

= aα,p;β,q
m

(
fα,p

∂O1

∂tβ,q
+ fβ,q

∂O1

∂tα,p
+

∂2O1

∂tα,p∂tβ,q

)
+ . . . ,

here . . . stands for remaining terms that are independent of O1. In a similar way we can
compute ∂

∂sm
∂F
∂s1

. By using the commutation relation

[Leven
1 , Leven

m ] = (1 − m)Leven
m+1

we obtain the following result:[
∂

∂s1
,

∂

∂sm

]
F = (m − 1)

(
Gm+1 + Leven

m+1F
)

+
∂Om

∂s1
− aα,p;β,q

1

(
fα,p

∂Om

∂tβ,q
+ fβ,q

∂Om

∂tα,p
+

∂2Om

∂tα,p∂tβ,q

)
− Leven

1 Om

− ∂O1

∂sm
+ aα,p;β,q

m

(
fα,p

∂O1

∂tβ,q
+ fβ,q

∂O1

∂tα,p
+

∂2O1

∂tα,p∂tβ,q

)
+ Leven

m O1.

Therefore we obtain the symmetry ∂F
∂sm+1

by defining

∂F
∂sm+1

= 1

m − 1

[
∂

∂s1
,

∂

∂sm

]
F = Gm+1 + Om+1 + Leven

m+1F ,

where Om+1 is the differential polynomial given by

Om+1

= 1

m − 1

(
∂Om

∂s1
− aα,p;β,q

1

(
fα,p

∂Om

∂tβ,q
+ fβ,q

∂Om

∂tα,p
+

∂2Om

∂tα,p∂tβ,q

)
− Leven

1 Om

)

− 1

m − 1

(
∂O1

∂sm
− aα,p;β,q

m

(
fα,p

∂O1

∂tβ,q
+ fβ,q

∂O1

∂tα,p
+

∂2O1

∂tα,p∂tβ,q

)
− Leven

m O1

)
.

Thus we obtain recursively an infinite set of symmetries of the tau-cover of the deformed
Principal Hierarchy. Their actions on F can be represented by

∂F
∂sm

= Gm + Om + Leven
m F .

Next we show that we can further adjust Om by adding certain constants such that
these symmetries satisfy the Virasoro commutation relation[

∂

∂sk
,

∂

∂sl

]
= (l − k)

∂

∂sk+l
, k, l ≥ −1.
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Lemma 25. There is a unique choice of constants κm for m ≥ −1 such that the flows

∂F
∂sm

= Gm + Om + κm + Leven
m F

satisfy the Virasoro commutation relation[
∂

∂sk
,

∂

∂sl

]
= (l − k)

∂

∂sk+l
, k, l ≥ −1. (4.25)

Proof. Let us first fix an arbitrary choice of Om and denote

∂F
∂ ŝm

= Gm + Om + Leven
m F .

Then we obtain the differential polynomials Õk+l such that[
∂

∂ ŝk
,

∂

∂ ŝl

]
F = (l − k)

(
Gl+k + Õl+k + Leven

l+k F
)

.

But both ∂
∂ ŝl+k

and
[

∂
∂ ŝk

, ∂
∂ ŝl

]
are symmetries of the tau-cover of the deformed Principal

Hierarchy, so we conclude that

∂F
∂s

:= ∂F
∂ ŝk+l

− 1

l − k

[
∂

∂ ŝk
,

∂

∂ ŝl

]
F = Ok+l − Õk+l

is also a symmetry of the tau-cover of the deformed Principal Hierarchy. The action of
this symmetry on the normal coordinates has the expression

∂wλ

∂s
= ∂2

∂tλ,0∂t1,0

(
Ok+l − Õk+l

)
.

Thus ∂wλ

∂s ∈ Â≥2, and therefore such a symmetry must vanish due to the result of the
bihamiltonian cohomology [7]. Hence we conclude that

Ok+l − Õk+l = ck,l

for some constant ck,l , and this means that[
∂

∂ ŝk
,

∂

∂ ŝl

]
= (l − k)

∂

∂ ŝk+l
− (l − k)ck,l , k, l ≥ −1. (4.26)

Let us denote by W1 the Lie algebra of formal vector fields on a line, which is an
infinite dimensional Lie algebra with a basis

em = zm+1 d

dz
, m ≥ −1.

Then the relation (4.26) implies that the Lie algebra { ∂
∂ ŝm

} defines a central extension
of W1. It is computed in [15] that H2(W1,R) = 0 and hence every central extension
is trivial. Therefore we can modify each Om by adding an appropriate constant κm such
that the modified flows

∂F
∂sm

= Gm + Om + κm + Leven
m F

satisfy the commutation relations (4.25). Moreover, the choice of κm is unique since
H1(W1,R) = 0 (see [15]). The lemma is proved. ��
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Thus we have proved the following theorem.

Theorem 15. For every tau-symmetric bihamiltonian deformation of the Principal Hi-
erarchy associated with a semisimple Frobenius manifold, the deformed integrable hier-
archy possesses an infinite set of Virasoro symmetries. The actions of these symmetries
on the tau function Z are represented by

∂Z
∂sm

= Leven
m Z + OmZ, m ≥ −1,

where Om ∈ Â are certain differential polynomials, and the flows ∂
∂sm

satisfy the com-
mutation relations [

∂

∂sk
,

∂

∂sl

]
= (l − k)

∂

∂sk+l
, k, l ≥ −1.

Example 6. Let M be the 2-dimensional Frobenius manifold defined on the orbit space
of the Weyl group of type B2. Its potential and Euler vector field are given by

F = 1

2
v2u +

4

15
u5, E = v∂v +

1

2
u∂u .

Here v = v1 and u = v2 are the flat coordinates of M . We denote by σ1 and σ2 the dual
coordinates of the fiber of M̂ , then the bihamiltonian structure (P [0]

0 , P [0]
1 ) associated

with M is given by

P [0]
0 = 1

2

∫
σ1σ

1
2 + σ2σ

1
1 , P [0]

1 = 1

2

∫
8u3σ1σ

1
1 +

1

2
uσ2σ

1
2 + 2vσ1σ

1
2 − 1

2
vxσ1σ2.

Let us first write down the Virasoro symmetry ∂
∂s1

of the tau-cover of the Principal

Hierarchy associated with M . Here we choose the symmetry ∂
∂s1

instead of ∂
∂s2

just for
simplicity. The Virasoro operator Leven

1 has the expression

Leven
1 = 3

16

∂2

∂t1,0∂t2,0
+ Leven

1 ,

where

Leven
1 =

∑
p≥0

(
p +

1

4

) (
p +

5

4

)
t1,p

∂

∂t1,p+1
+

(
p +

3

4

)(
p +

7

4

)
t2,p

∂

∂t2,p+1
.

Then the action of ∂
∂s1

on the genus zero free energyF [0] of the tau-cover of the Principal
Hierarchy is given by

∂F [0]

∂s1
= 3

16
f1,0 f2,0 + Leven

1 F [0].

Consider the bihamiltonian structure (P0, P1) of the Drinfel’d–Sokolov hierarchy
[3] associated with the untwisted affine Kac–Moody algebra B(1)

2 . After performing a
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suitable Miura type transformation we have P0 = P [0]
0 , and the Hamiltonian operator

P1 of P1 has the expression

P1 =
(
8u3∂x + 12u2ux v∂x + 1

4vx
v∂x + 3

4vx
1
2u∂x + 1

4ux

)
+ ε2

(
D1 D2
D3 D4

)
+ O(ε4),

where the differential operators Di are given by D2 = u∂3x +
3
4ux∂

2
x , D4 = 5

8∂
3
x and

D1 = 14u2∂3x + 42uux∂
2
x +

(
20u2x + 16uuxx +

1

2
vxx

)
∂x

+ 12uxuxx + 6uu(3) +
1

4
v(3),

D3 = u∂3x +
9

4
ux∂

2
x +

3

2
uxx∂x +

1

4
u(3).

The bihamiltonian structure (P0, P1) is a deformation of (P [0]
0 , P [0]

1 ) with central in-
variants c1 = 1

6 , c2 = 1
12 (see [8,24]), and it determines a unique deformation of the

Principal Hierarchy associated with M . We can find the Virasoro symmetry ∂
∂s1

of the
tau-cover of the deformed Principal Hierarchy by using the results developed in the
present paper. It turns out that the action of ∂

∂s1
on the tau-functionZ can be represented

by

∂Z
∂s1

= Leven
1 Z +

(
1

2
u2 +

1

4
v +

1

4
ε2uxx

)
Z. (4.27)

A similar result is also given in the Example 5.5 of [31] by using the Kac–Moody–
Virasoro algebra.

5. Conclusion

In the present paper, we prove the existence of an infinite set of Virasoro symmetries for
a given tau-symmetric bihamiltonian deformation of the Principal Hierarchy associated
with a semisimple Frobenius manifold. These symmetries can be represented in terms
of the tau-function Z of the integrable hierarchy in the form

∂Z
∂sm

= LmZ + OmZ, m ≥ −1. (5.1)

Note that the differential polynomials Om depend on the choice of the representa-
tive, in the equivalence class of Miura type transformations, of the deformations of the
bihamiltonian structure of hydrodynamic type (P [0]

0 , P [0]
1 ). It is proved in [9] that, for

two different choices of representatives (P0, P1) and (P̃0, P̃1), the corresponding normal
coordinates

wα = ηαβ ∂2 logZ
∂t1,0∂tβ,0 , w̃α = ηαβ ∂2 log Z̃

∂t1,0∂tβ,0 , α = 1, . . . , n

of the deformed Principal Hierarchy are related by a Miura type transformation

w̃α = wα + ηαβ ∂2G

∂t1,0∂tβ,0 ,
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where G ∈ Â is a differential polynomial, and the tau-functions are related by the
equation

Z̃ = exp(G)Z. (5.2)

Conversely, any differential polynomial G ∈ Â defines a Miura type transformation
for the deformed bihamiltonian structure and the integrable hierarchy in the manner
described above.

After a Miura type transformation induced from (5.2), the Virasoro symmetries (5.1)
are transformed to the form

∂Z̃
∂sm

= LmZ̃ + ÕmZ̃, m ≥ −1,

where the differential polynomials Õm can be computed from Om and G.
We are going to study the problem of linearization of Virasoro symmetries in subse-

quent work, i.e., to study whether it is possible to find a suitable differential polynomial
G such that all the functions Õm vanish.

Let us exam the possibility of linearizing the Virasoro symmetries given in the exam-
ple of Sect. 3.4 for the one-dimensional Frobenius manifold. We want to find a certain
Miura type transformation given by (5.2) which linearizes the Virasoro symmetry (3.26)
and leaves the expression of the Virasoro symmetry

∂Z
∂s−1

= Leven−1 Z

unchanged. It follows from these requirements that the differential degree zero compo-
nent G0 of G must satisfy the equations

∂G0

∂v
= 0, v3

∂G0

∂v
= −

(
3c − 3

8

)
v2

2
,

which do not possess any solution unless c = 1
8 . When c = 1

8 , the linearized Vira-
soro symmetries for this example are well known [30], and the central invariant of the
corresponding deformed bihamiltonian structure is 1

3c = 1
24 .

We can do a similar computation for Example 6. We want to find a Miura type
transformation given by (5.2) to linearize the Virasoro symmetry (4.27) and to preserve
the expression of the Virasoro symmetry

∂Z
∂s−1

= Leven−1 Z.

Then the differential degree zero component G0 of G must satisfy the equations

∂G0

∂v
= 0, uv

∂G0

∂u
= −

(
1

2
u2 +

1

4
v

)
,

which have no solution. Therefore the Virasoro symmetries given by the bihamiltonian
structure (P0, P1) in this example cannot be linearized.

In general we have the following theorem, whose proof will be given in the paper
[21].
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Theorem 16. The Virasoro symmetries for a given tau-symmetric bihamiltonian defor-
mation of the Principal Hierarchy associated with a semisimple Frobenius manifold is
linearizable if and only if the central invariants of the corresponding deformed bihamil-
tonian structure are all equal to 1

24 .
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