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Abstract: We prove that for any tau-symmetric bihamiltonian deformation of the tau-
cover of the Principal Hierarchy associated with a semisimple Frobenius manifold, the
deformed tau-cover admits an infinite set of Virasoro symmetries.

1. Introduction

This is the second one of the series of papers devoted to the study of deformations of
the Virasoro symmetries of bihamiltonian integrable hierarchies. In the first one [23],
we developed a cohomology theory on the space of differential forms of the infinite jet
space of a super manifold for a given bihamiltonian structure of hydrodynamic type,
and we call such a cohomology theory the variational bihamiltonian cohomology. It can
be viewed as a generalization of the bihamiltonian cohomology introduced in [12], and
it provides a suitable tool for us to study deformations of the Virasoro symmetries of
bihamiltonian integrable hierarchies.
The purpose of the present paper is to prove the following theorem.

Theorem 1 (Main Theorem). For a given tau-symmetric bihamiltonian deformation of
the Principal Hierarchy associated with a semisimple Frobenius manifold, there exists a
unique deformation of the Virasoro symmetries of the tau-cover of the Principal Hierar-
chy such that they are symmetries of the tau-cover of the deformed integrable hierarchy.
Moreover; the action of the Virasoro symmetries on the tau-function Z of the deformed

integrable hierarchy can be represented in the form
1Z
— =Ly Z+0,2, m>—1, (1.1)
0Sm

where Ly, are the Virasoro operators constructed in [11] and O, are some differential
polynomials, and the flows % satisfy the Virasoro commutation relations
m

a 0 B
—, —|=U—-k) , k> —1.
sk 0s; 0Sk+1
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Let us briefly explain the basic idea for proving this theorem. Consider the following
system of evolutionary PDEs with time variable ¢ and spacial variable x:

ou’ . . . . . .
3—”[=A’j(u)ui+e(B;(u)uix+c;k(u)u§u’;)+..., i=1,....n. (12

We assume that this system is bihamiltonian with respect to the bihamiltonian structure
(Py, P1) whose leading term is semisimple. We can associate with it a super extension
by introducing odd unknown functions 6; fori = 1, ..., n, and by adding odd flows
% and % which correspond respectively to the Hamiltonian structure Py and P; (see
[22] and Sect.2.3 given below for details). Thus the super extension of (1.2) consists
of the flows %, 3370 and 3371 for the unknown functions u’ and 6;, and the fact that the
system (1.2) is bihamiltonian with respect to (Py, P;) is equivalent to the following
commutation relations:

a 0 a 0
—_—, — :0’ _—, — :0, l,]:O,l
ot dT; aT; 81']'

Example 1. Consider the following Korteweg-de Vries (KdV) equation:

ou &2
— = Ully + —Uyxx.

Jt 12

It admits a bihamiltonian structure given by the following Poisson brackets:

{u @), u(y)}o =8'(x — y),

2
(W), u(y)h = u@)8 (x — y) + %‘a(x — )+ %8”’@ — ).

We introduce an odd unknown function 6, and construct the following super extension
of the KdV equation:

ou + e 90 O + 829 (1.3)
— = uu SUxxx, ST =U 5 ) :
a1 Ry T

ou ou 1 e?
% zgx, 8_‘[1 =M9x+§lfix6+§9xx)m (14)
00 a6 1

1o ity 2 (-

It is easy to check directly that the flows in the extended system mutually commute.

Remark 1. The flow (1.3) also appeared in [1].
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According to the theory of bihamiltonian cohomology developed in [7], we know that
if there is another system of evolutionary PDEs given by the flow 9 satisfying the

of
commutation relation

a 0 d 0
2272 2] 19
ar 0d71g ar 0Ty

then it gives a symmetry of the system (1.2), i.e.,

3 0
—, = |=0
[az ar}

We note that the above results is for a flow % given by differential polynomials. In order
to use the above results to consider symmetries of more general forms such as Virasoro
symmetries, we introduce the notion of super tau-cover of a bihamiltonian integrable
hierarchy and develop the theory of variational bihamiltonian cohomology [23]. Then
we are able to consider the commutation relation between the Virasoro symmetries %
and the odd flows % and 3671 By applying the results of variational bihamiltonian
cohomology proved in [23], we manage to prove the main theorem. A more detailed
description of the idea for proving this theorem is given at the end of Sect.3.2 and in
Sect.3.3.

We organize this paper as follows. In Sect.2, we construct the super tau-cover of a
given tau-symmetric bihamiltonian deformation of the Principal Hierarchy associated
with a semisimple Frobenius manifold. This construction builds a bridge which relates
Virasoro symmetries to bihamiltonian structures. In Sect. 3, we explain how the problem
of deformations of the Virasoro symmetries can be solved via the theory of the variational
bihamiltonian cohomology. In Sect.4 we give the proof of the main theorem. Finally in

Sect. 5, we make some concluding remarks.

2. Super Tau-Covers of Bihamiltonian Integrable Hierarchies

2.1. Bihamiltonian structures on infinite jet spaces. Let us start by recalling the basic
construction of bihamiltonian structures as local functionals on infinite jet spaces. One
may refer to [20] for a detailed introduction to this topic.

Let M be a smooth manifold of dimension n and M be the super manifold of dimension
(n|n) obtained by reversing the parity of the fibers of the cotangent bundle of M. In
another word, if we choose a local canonical coordinate system @l . . ut0r, ..., 0,
on T*M, then M can be described locally by the same chart while regarding the fiber
coordinates as odd variables:

0;0;+0;0; =0, i,j=1,...,n.

We say that the odd coordinates 6; are dual to u’. The transition functions between two

local trivializations (u', ..., u"; 0y, ...,6,) and (w!, ..., w"; d1, ..., Py) are given by
the same formula as those of the cotangent bundle:
dub
Go = Bwaeﬁ’ a=1,...,n.

Here and henceforth, summation over repeated upper and lower Greek indices is as-
sumed.
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Denote by J*° (M) the infinite jet bundle of M. 1tis a fiber bundle over M with fiber
R®°. If we choose a local chart (ul, o u" 01, ...,0,) of M, a trivialization can be
realized by choosing the fiber coordinates being (u**; 8;) forae =1,...,nand s > 1.
The transition functions between different charts are given by the chain rule

2
wel = W% aa W gy BTWT gy
oub ’ dub dubouv B
uP 2uf  dwv
¢;: “ 6} + “ o u“@,g,....

aw P Jwrow® Jut
Denote by A the ring of differential polynomials, locally it is given by
A=C®wu®*, 65 la=1,...,n;5 > 0]L.
It is graded with respect to the super degree deg, defined by

degyu®® =0, degy6, =1 a=1,...,n, s>0.

0 — 90 = 6,. The set of homogeneous

Here and henceforth we use the notation u
elements with super degree p is denoted by Ap .

Introduce a global vector field d, on J % (M) which is locally described by

d d
_ o,s+1 s+1
8x = Zu —aua’s +90t @

5>0

Then we have u®* = dju® and 6] = 9J6,. Hence we can grade the ring A with respect
to the differential degree deg, defined by

deg,. U =, degaxe(fl =s, a=1,...,n, s>0.

We use the notation A, to denote the set of homogeneous elements with differential
degree d, and Afl) = AP N Ag.

Using the vector field d,, one can construct the space F of local functionals via the
quotient Fi= ~/2\/ Ox A. Since the vector field d, is homogeneous with respect to both the
super degree and the differential degree, the quotient space F admits natural gradations
induced from A and we will use the notation F7 f"d and .7:" ? to denote the corresponding
subspaces of homogeneous elements. For any element f € A, we will use [fe Fto
denote its image of the natural pI‘Q]eCthIl m:A— F.

For a differential polynomial f € A, one may define the variational derivatives by

_ s Of W s
S _Z(_aX) ou%s’ Z( ) ags'

s>0

It is easy to verify that the variational derivatives annihilate the elements in 9, A, hence
they are also well-defined on the quotient space F. For any F' € F, we have

X oF ; of
——Z(— 3 o E=Z£(—ax>

s>0
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with f € A being an arbitrary lift of F such that F = [ f. With the help of the notion
of the variational derivatives, one can define the so-called Schouten-Nijenhuis bracket,
which is a bilinear map [—, —] : F x F — F defined by

B 3P 8§Q 3 p(SP(SQ ~p -
[P’Q]_/<898“ =D u"‘é‘@) PeFP, Qe F1.

This bracket satisfies the graded commutation relation
[P, Q1= (=D"[Q,P], PeF’ QeF,
and the graded Jacobi identity

(=DP[[P, Q1, R1+ (—=DP[[Q, R], P1+ (—D?"[[R, P], O]
=0, PeclFP, Qe]:"q, ReF.

Any local functional P € Fp gives rise to a graded derivation

Z 3P el sP\ 0
N V4 p— 1
P ax (890() au%s ( 1) 8 (8 Ol) 305 < Der(A) (21)

s>0

Here the space Der(fl)” (p € Z) is the space of linear maps
D: AY — AP
satisfying the graded Leibniz rule
D(f§) =D(N)g+(=D"fD(g). feA ged

Denote Der(fl) =@ peZDer(A)p , then it is a graded Lie algebra with the graded com-
mutator

[D1, D2l = Dy o Dy — (=) Dy o Dy, Dy € Der(A), D, € Der(A),
and it is also graded by the differential degree
Der(A)g = {D € Der(A) | D(Ax) € Arrals
and we denote
Der(A)) = Der(A)” N Der(A)g. (2.2)
For P € FP and Qe F 9, we have the following useful identities:

Dip,o1 = (-1’ [Dp, Dg]. (2.3)

i — 59 rq P
Suu[P,Q]—DP<3 a>+( 1)"Dg (5 ) (24)

1) _ §0 SP
_ r=lp (r=Da p
60y [P, 01=(=D F (8%) =D ¢ (89 ) 2.5)
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A Hamiltonian structure is defined as a local functional P € 2 such that [P, P]=
0. We can associate a matrix valued differential operator P = (P*f) with P*f =

D550 PP 9$ to any bivector P € F2, where Py’ # ¢ A are defined by

5P
i Bpys —
890[_2 P 9/;, a=1,...,n.

s>0
If P is a Hamiltonian structure, then we call P the Hamiltonian operator of P.

Theorem 2 ([10]). Let P € ]:"12 Denote the differential operator associated with P by
P = P (), + TSP !, det(g*) # 0,

then P is a Hamiltonian structure if and only if ¢ = (8ap) = (g*")~1 defines a flat
metric on M and the Christoffel symbols of the Levi—Civita connection of g are given

A
by T = —ganly.

A Hamiltonian structure P satisfying the conditions of the above theorem is called of
hydrodynamic type. It follows from the above theorem that there exists a local coordinate

system (v¥; 0,) on M such that

1
P = E/n“ﬂaaaﬁl,

where 7*# is a constant non-degenerate matrix. The coordinates v* and o, are called
flat coordinates of P.

A bihamiltonian structure (Py, Pp) is a pair of Hamiltonian structures which satis-
fies an additional compatibility condition [ Py, P1] = 0. Assume that the bihamiltonian
structure is of hydrodynamic type, then according to Theorem 2, we have two flat con-
travariant metrics ggﬁ and g‘l)”3 . We say that this bihamiltonian structure is semisimple
if the roots of the characteristic equation

det (g‘lw — kggﬁ) =0

are distinct and not constant. In this case, the roots A (x), ..., A" (u) can serve as lo-
cal coordinates of M and they are called the canonical coordinates of the semisimple
bihamiltonian structure. It is proved in [14], in terms of the canonical coordinates, that

Py = %f Z (5,-,,-f"(,\)9,»9} +Aij9i9j),

i,j=1

1 n ' | 3
P = 5/.2 (ai,jg’()\)eiei +B’/9i9j),

i,j=1
where f! are non-vanishing functions, g/ = A’ ' and the functions A"/ and B/ are
given by
U f—l.ﬂxf?l - ﬁixivl Bi =1 g—l.ijﬂ’l — g—%ix“ )
2\ fJ oAl fLor ’ 2\ f7 oA FLoAd

(2.6)
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Here by abusing the notation, we still use 6; to denote the fiber coordinates of M dual
to Al. We also call A’ and 6; the canonical coordinates of (Py, Pp).

From now on, for a semisimple bihamiltonian structure (Pp, P;) of hydrodynamic
type, we will use (v¥; o) to denote flat coordinates of Py such that

1
Py = —/n“ﬂaaaﬁl,
P = - / g“ﬂ(v)oaaé + I‘;‘ﬂ(v)vy’laaoﬁ,

and we will use (u'; ;) to denote the canonical coordinates for (Py, P;) such that

| — : L
Py = E/Z (5,,,f’(u)9,~9,. +A’19,~9,),

i,j=1

1 n o | ..
P [ X (s sl + Bos,). @7

i,j=1

Here and henceforth we do not assume summations over repeated upper and lower Latin
indices.
In terms of the notations introduced above, a system of evolutionary PDEs

ou“

=X Xx%ecA
dt

can be represented by a local functional X = [ X“6,, and it is called a bihamiltonian
system if there exists a bihamiltonian structure (Py, P;) and two Hamiltonians G, H €

F0 such that

X = -G, Py] = —[H, P].

Example 2. The KdV equation

ou g2
m = Uuy + Eu”x (2.8)

2 . - L
can be represented by X = [ (uu, + T3 lxxx)0. Its bihamiltonian structure is given by

1 1 L&t
Po=~ [ 06, Pi== [ubo'+—00°
2 2 8

The two Hamiltonians with respect to the bihamiltonian structure are given by

I/l3 822 M2
X=—| [ S-S p|=—|[ % P
[ -sn]=-[5 7]
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2.2. Frobenius manifolds and super tau-covers of the Principal Hierarchies. In this
subsection, we first recall some basic facts of Frobenius manifolds and the construction
of the associated Principal Hierarchies following the work of [4—6,12]. Then we recall
the construction of the super tau-covers of the Principal Hierarchies given in [22].

The notion of Frobenius manifolds is a geometric description of genus zero 2D
topological field theories. An n-dimensional Frobenius manifold M can be locally
described by a solution F(v', ..., v") of the following Witten—Dijkgraaf—Verlinde—
Verlinde (WDV'V) associativity equations [2,29]:

3000 F19,,0, 85 F = 95058, F™" 8,8, 9o F. (2.9)

Here 9, = # and we require that (14g) := (01040g F) is a constant non-degenerate

matrix with inverse (n®?). The function F(v', ..., v") is called the potential of M and
it defines a Frobenius algebra structure on 7 M:

<8a»3/3) = Nap aa'aﬂ :Cgﬂay’
where the functions cZﬂ are defined by
s =nrt = 030,08 F
ap =" Crap>  Ciap = 0x0adpl.

The potential F is required to be quasi-homogeneous in the sense that there exists a

vector field
- d
E = ag_l ((1 — E — /JLOl) v? +ra> aa,

called the Euler vector field, such that
1
E(F)=Q@—-d)F + EAaﬁv"‘vB + Byv* +C.

Here the diagonal matrix p = diag(uy, ..., i,) is part of the monodromy data of M
which satisfies the identity

(Mo +upg)neg =0, Va,pB. (2.10)

It is also assumed that u; = —d/2 and r; = 0.
An important property of Frobenius manifolds is that the affine connection

VxY =VxY+zX-Y, VX,Ye(TM), zeC

is flat for arbitrary z, here V is the Levi—Civita connection of the flat metric (17¢g). It can
be extended to a flat connection on M x C* by viewing z as the coordinate on C* and
defining

. 1 " -
Vo.X =0 X+E-X—-uX, V0, =Vxd =0.
. :

The connection V is called the deformed flat connection or the Dubrovin connection.
For such a flat connection, one can find a system of flat coordinates of the form

@', 2), ..., 7", 2) = (hi(v,2), ..., ha(v, 2))z"ZR.
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Here R is a constant matrix. The constant matrices 1, 4 and R form the monodromy data
of M at z = (. The matrix R can be decomposed into a finite sum R = Ry +--- + Ry,
and they satisfy the conditions

[1t, Ril = kRi, oy (RO = (=1 gy (ROY. (2.11)

The functions hy(v, z) are analytic at z = 0 and has the expansion hy(v,z) =
> =0 hq,p(v)z?. The coefficients A, , satisfy the recursion relations

ha,O = Nap vﬂ’ 8/3 8yhoz,p+1 = C;}y akha,pa p =0,
the quasi-homogeneous and normalization conditions

p
Epha,p) = (p + it + 1p)dphap + Y _(ROLshy pi.
k=1

(Vhe (v, 2), Vhg(v, —=2)) = nep.

A choice of the functions &g, ), satisfying all the above-mentioned conditions is called a
calibration of M, and a Frobenius manifold M is called calibrated if such a choice is fixed.
In what follows, we assume that the Frobenius manifolds we consider are calibrated.
The Principal Hierarchy associated with a Frobenius manifold M is a bihamiltonian
integrable hierarchy of hydrodynamic type. Denote by o, the odd variables dual to the
flat coordinates v¥, then the Principal Hierarchy can be described by the local functionals

Xop € F1 of the form

Xap = / N7 85 (Byha,ps1)on, @ =1,...,n, p=0, (2.12)
or equivalently, we can represent the integrable hierarchy as follows:
* A
{)tTP =n yax(ayha,pﬂ)-
Define two local functionals
1 1
Py = E/n“’gaaaé, P = E/gaﬁaaaﬂl + %" 6,05, (2.13)

B

where the functions g and F)Of are given by

1
g = B, T = (z - w) ef

with cf,‘ﬁ = n“)‘cfy , then we have the following theorem.

Theorem 3 ([5]). Let M be a Frobenius manifold, then

1. The local functionals Py, Py defined in (2.13) form a bihamiltonian structure which
is exact in the sense that

P():[Z, Pl], ZZ/U].
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2. The Principal Hierarchy X, , associated with M is bihamiltonian with respect to
the bihamiltonian structure (Py, P1) and

X(Zt,p = - [Hot,pv PO] s Hot,p = /hoz,p+l~

3. The following bihamiltonian recursion relation holds true:

1 P
[Ho,p—1, P1] = (P *3 +Ma> [Ha,p, Pol + Z (R [Hy, p—k, Pol, p = 0.
k=1

Another important property satisfied by the Principal Hierarchy is that it is tau-
symmetric. Let us define the functions Qg .54 fora, 8 =1,...,n and p,g > 0 by
the generating function
(Vhg (v, 21), Vhg(v, 22)) — Nap

1+t22 '

P4
Z Qa,p:p.q (V)22 =
p=0,g>0

They have the following properties [5]:

Qoz,p;l,O = ha,pv Qa,p;ﬁ,o = aﬁha,p+l,

0820, pi.g 082, k; 8,9
Qa,p:p.q = Lp.gia.p: PYRN: = ot

It follows from these identities that one can extend the Principal Hierarchy by introducing
another family of unknown functions f, , satisfying the following equations:

0fa, Dt
a;;s T epba Gig T n"*0x23,0:.4- (2.14)

The system (2.14) is called the tau-cover of the Principal Hierarchy.

In order to study the relation between bihamiltonian structures and Virasoro sym-
metries, we introduced the notion of the super tau-cover of the Principal Hierarchy of a
Frobenius manifold in [22]. Let us briefly recall its construction which provides the main
motivation of our work presented in the next subsection. We first introduce a family of
odd unknown functions o‘j,k for s, k > 0 with U;’O = o;. In what follows we will also

use oy k to denote %(l) - We extend the action of 9, to include these new odd variables
as follows: ’

_ o,5+1 0 s+1 0
y = v _3 7 + O'a’k ST
v aa,k

s>0 k,s>0

These odd variables are required to satisfy the following bihamiltonian recursion rela-
tion:

nPog i =8%Pog, +TP v logs, a=1,....n k=0. (2.15)

We also introduce a family of odd flows % for m > 0. The first two odd flows are
determined by the bihamiltonian structure (Py, P;) as follows:
oY _ SP; 00y SP;

ot e Lo,
aT; S0y aT; Sv¥ !
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Note that 3% = Dp, fori =0, 1, where Dp, is defined by (2.1). The actions of 8% can

be extended to all the other odd variables oy  such that the flows f—n are compatible with

the recursion relation (2.15). Furthermore we can define infinitely many odd flows %
for m > 2 which can be viewed as flows corresponding to certain non-local Hamiltonian
structures.

We have the following theorem.

Theorem 4 ([22]). We have the following mutually commuting flows associated with
any given Frobenius manifold M :

ov® 51 00ak |
8tﬂ’p = nay(akayhﬁ,p+l)v ’ 3 W = ﬂys(aaaghﬁ’p_F])Oiy’k,
—k—1
ov? o 004 k 00, "
— =g s A N OpiriO) 0<k=<m
8Tm n ﬁ,mv afm 8Tk o ; ,B,k+l y.m—i—1> = = )
where o, B = 1,...,n, and m, p > 0. These flows are well-defined in the sense that

they are compatible with the recursion relation (2.15).

The system described in Theorem 4 is a super extension of the Principal Hierarchy,
since the reduction obtained by setting all the odd variables to be zero yields the original
Principal Hierarchy. The super extension of the tau-cover (2.14) can be constructed by
introducing another family of odd variables @, , for p, m > 0 and we call it the super
tau-cover of the Principal Hierarchy. It is given in the following theorem.

Theorem 5 ([22]). The mutually commuting flows

Afa,p

91Bd $20,p:B.q>
afa,p _ q)n‘l

at, P

m

8d>ﬁp _ 982, p;,q
atba tn
0P

o,p — A{;'Y;,

ATk !

together with the ones presented in Theorem 4, give the super tau-cover of the Principal
Hierarchy associated with M, where Al&jr;,’ are defined by the formula

1

k—m—
k,m __ mk __ _y\ Sp 1
Aoz,p = _Aot,p =1 a)»haypry ( z : O—l/«,mﬂo—&,k—i—l) , k=m.
i=0

It was shown in [22] that the odd variables Cbg” » satisfy the recursion relation

2p— 1 1 L
— ( p2 + Ma) CDZ"p = (5 + MA) nkg(axha,p)%,m + Z(Rk)iq’?,p—k - q’:f,;lfl
k=1

with the initial condition CI>Z”O = 04,m- S0 when the diagonal matrix p of the Frobenius
manifold M satisfies the condition % ¢ Spec(p) for any k = 1,2,..., all the
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variables @', are linear combinations of o, x with coefficients being smooth functions

of vi, ..., v".

For an arbitrary tau-symmetric bihamiltonian deformation of the Principal Hierarchy
associated with a semisimple Frobenius manifold, we are to construct in the remaining
part of this section its super extension and super tau-cover by generalizing the construc-
tions given in Theorems 4 and 5.

2.3. Super extensions of bihamiltonian integrable hierarchies. In this subsection, we
construct a super extension for a given bihamiltonian integrable hierarchy with hydro-
dynamic limit.

We fix an n-dimensional smooth manifold M and a semisimple bihamiltonian struc-
ture (P(go], Pl[o]) of hydrodynamic type defined on J % (M). Let us choose (w%; ¢g)
as local coordinates on M. Recall that a Miura type transformation is a choice of n
differential polynomials w!, ..., ¥" € Ago such that

o
det(a ﬂ>7é0

where wyg is the differential degree zero component of w®. By defining w** = 0;w?,
it is easy to see that we can represent any differential polynomial in w** by a dif-
ferential polynomial in w®*. Therefore a Miura type transformation can be viewed as
a special type of change of coordinates on J°(M). The extension of the Miura type
transformations on J (M) is given by the following theorem [25].

Theorem 6 ([25]). A Miura type transformation induces a change of coordinates from
(w**; @3) to (W**; @3) given by

ol -
S =9 Z(—ax)f <8$a~’¢ﬁ> .

t>0

Now let (Py, P1) be any given deformation of (P(EO], Pl[o]). Denote by Py and P; the
Hamiltonian operators of Py and P in the coordinates (w**; ¢ ). We introduce another
family of odd variables ¢;, ,, for m > 0 and extend the vector field 9, to the following
one:

ax — Z wa,s+l Z ¢(§1+kl a¢

s>0 k,s>0

In what follows we also use the notations ¢, 0= = ¢) and ¢a m = = ¢a.m. Inspired by
(2.15), we require that these new odd Vanables satisfy the recursion relations

Pgﬁ¢ﬂ,m+l = ,P‘lxﬁ(bﬁ,m, m > 0. (2.16)

We first show that (2.16) is well defined in the sense that it is invariant under Miura type
transformations.
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Proposition 1. The Miura type transformation from (w**; ¢3,) to (W**; (;3;) induces a
transformation for the new odd variables ¢, ,, given by

Gom = 0 ) (= 8)’(3 a,qﬁﬁm), m>1, (2.17)

>0
such that the recursion relation (2.16) is invariant.

Proof. Denote by P; and 75,' the Hamiltonian operator of P; in the coordinates (w®*; ¢;,)
and (w**; q;é) respectively for i = 0, 1. Then it is well known that

,ﬁiaﬁzza — x zpk& Z( 3)

s>0 t>0

Therefore by using the relation (2.16), it is easy to see that:

~ af ~ ow¥
Po Gt = Y 50y 0 PeT o ) (=) o

5s>0 t>0

_Za )\.Ax P0¢sm+l

s>0

_Za xS x P{\8¢E’m

s>0
— /¥
= ¥ gt e Pl e Y- o
s>0 t>0
~ ﬂ ~
=P bpm.
Thus we see that the recursion relations (2.16) are preserved under the change of coor-
dinates (2.17). The proposition is proved. O

By using the theory of bihamiltonian cohomology [7] for (P[O], Pl[o]), we can choose
a coordinate system (v**; o) such that

1
== [ oo},

and the ]}22 component of P; vanishes. From now on, we will always use (v**; o)) to
denote the coordinate system described above. We use the notation A* to denote the

extension of A by including the odd variables o ,, for m > 1 satisfying the recursion
relations

0?0} ar = PP opm, m = 0. (2.18)

As before we use the notation % o = 04 and O' = 04.m- We will still use 9, to denote
the vector field on A* defined by
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For any element f € A*, we say that f is local if it can be represented by an element of
A and we say that f is non-local if it is not local. Note that on the space A*, the super

degree is still well defined by setting the super degree of o, ,,, being 1. We will use AP
to denote the set of homogeneous elements with super degree p.

Example 3. Consider the following bihamiltonian structure of the KdV equation (2.8):
1 g2 3
Pozax, P] =v8x+§vx+§8x.

We introduce odd variables o), for s, m > 0 such that they satisfy the recursion relations

1 1+1 +f3
Ot = VO + 5 VxOm o

g Om’ m > 0.

Then the ring A* is given by the quotient
A" = Cc*ICY, o I m,s = 011/,

where J is the differential ideal generated by

g2

vo,}l + V0, + — ,131 —U,LH, m > 0.
2 8
Then we see that 011 is local but 021 is non-local.

Definition 1. For &,/ > 0, we define the shift operators
T Al > AY', T A2 A2
to be the linear operators given by
Te(fog o) = fos feA,

I—k—1

70

Tii= — Tk, Tei(foy0050) = f Z O ksiOf1—i1» k=<1, feA.
i=0

In particular, 7y x = 0.
The following lemmas are obvious from the above definition.
Lemma 1. The shift operators Ty and Ty commute with Ox.

Lemma 2. The shift operators Ty and Ty are globally defined, i.e. they are invariant
under Miura type transformations.

Example 4. Using the shift operators, the recursion relation (2.18) can be represented
by the following formula

S P, P
0 T 1

=T,—, > 0. 2.19
8605,0 " 50’0,,0 " ( )

Tin+1
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Example 5. The recursion relation (2.18) can also be represented by the following for-
mula:

Tyt (Dpyf) = T (Dp, f), m =0, fe A (2.20)

here Dp, are the derivations defined in (2.1). Indeed, when f = v* we recover the
relation (2.19); for general f € A0, by definition (2.1), we have

S P, SP
Ts1 (Dpy f) = m+128 s X(Sa_o_ ’”Zavas * 5o IO_Tm(DP|f)'
s>0

With the help of the shift operators, we can generalize the construction given in the
previous subsection. We first introduce the following notation.

Definition 2. We define a family of odd derivations % on A* by

ov* S Py 00y k S Py 0
— = , ——=Tem—, |—,0,]=0. 2.21
ATy, " 8040 0Ty, k,m Sv¥ 0Ty, ( )
In particular, for f € A we have
af af
— =Dp f, — =Dp f, 2.22
81’0 P().f 81’1 Py f ( )
and for f € A° we have
a a
—f = Tm—f m > 0. (2.23)
0Ty, 1o

We need to check that that this definition is well-defined, i.e., it is compatible with the
recursion relations (2.19).

Lemma 3. The following identity holds true for any X € Al and m, k> 0:

d
B_T m(X) = T (Dp (X)) = Tiusrk (Dpy (X)) .

Proof. Since all the operators are linear, we may assume X = f crﬂ o for some f € A0
and/ > 0. We first assume that k > m. The case k = m can be easily verified as follows:

(0} ) = T (D) 0} = Tomst (Di(h0).

Here we use the fact that Py = P(go] and Dpyog o = 0. Now we assume k > m + 1, then
by using the definition of the shift operators and the recursion relation (2.19) we obtain
the following identities:

a
5o ) = Te (DR ) ohn + Tk (£ Dpio} o)
=Tr_1 (Dpl f) O’/é’m + Tk (fDPIUé,()>

= Ty ((Dm f) Uéx))
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k—m—2
- Tin+i (DPl f) U/ZS,k—i—l + Tk (fDPl U/é,())

i

Il
o

k—m—2

m—
= Tk <DP1(fU/3,())) Z Tsist (Dpy )U/ls,k—i—l
i=0

= Tk (DP1 (fop, o)) Tns1.k (DPO (fop, o)>

The case k < m is proved in exactly the same way. The lemma is proved. O

Proposition 2. The flows % are compatible with the recursion relation (2.19), i.e.,

] S P d SP
a_ m+1_0=_Tm ! ) m5k20'
0Tk dogo Otk d0u0

/ naﬁ UO( O—é 9
it is easy to obtain the following identities:

a 8Py ad 5Py SPy
T —— = — P} =T, “hy = D :
P m+1 50w arkn 98, m+1 m+1,k <7) x(S B m+1,k Pl S0,

Proof. Using the fact that

py=P" =

N =

Since [Py, P1] = 0, it follows from the identity (2.5) that

ad § Py 3P
T —2 = T, D .
aTk m+1 30’0(’() m+1,k < PO6 O O)

Thus by using [P, P;] = 0 and Lemma 3 we finish the proof of the proposition. |
Proposition 3. The odd flows % mutually commute, i.e.,
ad d
— — | =0, m, k>0.
0T, 0Tk

Proof. By the definition of the flows %, it is easy to see that

S Py

813:0'

N 8P
LT = P T + 0, T,
I:afm 8‘Ek:| =1 km(S B n m,

To show the commutation relation

J 0
U R =07
|:3‘L'1 3_[ki|(7a,m

it suffices to verify the case m = 0 due to the recursion relations (2.18). By using the

trivial relation
0 0 0
7 |000=0,
0ty 07To 0
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the recursion relations (2.18), and by induction on k, we arrive at

9 9 0, k>0
s | O =V, = U.
dtg 07Tp ke

This commutation relation is equivalent to

—,— |0g0=0
_3‘170 a‘l,'k_ ¢

due to the definition of the odd flows. By using induction again we arrive at the identity

0, =0

for any [ > 0. Therefore we have

0 8(705’0 0 3(705’1 _ 0 3(70511

Ty 0T - dTx 9719 - dto 0Tk

It follows from the definition of the odd flows that the right hand side is anti-symmetric
with respect to the indices k, [, hence we prove that

d 9
—, =0.
|:3‘E1 3‘Ck:| .0

The proposition is proved. O

Nowlet X; € F',i e Ibea family of bihamiltonian vector fields with respect to an
index set /, i.e., each X; satisfies the equations [X;, Py] = [X;, P;] = 0. Recall that the
family {X;} corresponds to a bihamiltonian integrable hierarchy given by

vt 8X;
ot - 50,%()’

iel. (2.24)
In what follows we will extend this integrable hierarchy such that it becomes a system
of mutually commuting vector fields on A*.

Definition 3. For a bihamiltonian vector field X € ! we associate it with the following
system of PDEs on A*:

oY 0 0
Dy, M 1 Dyogo, | ——. 8, | =0.
oty oty ’ aty

It is called the super extended flow associated with X.

Proposition 4. The super extended flow % associated with a bihamiltonian vector field
X is compatible with the recursion relation (2.19), i.e.,
] S Py 0 S8 Py

— —=—Ty—. 2.25
dty m+150a’0 dtx m(SGa,O ( )
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Proof. From Definition 3 of the flow %, it is easy to see that

0 8Py _ S Py 0 § P _TD § P
oty " 8og0 " Y S000 Btx M80a0 " X 80a0

’

On the other hand from the fact that [X, Pgp] = [X, P;] = 0 and the identity (2.5), we
see that (2.25) is equivalent to the following identity:

T...D 5X D 85X
m+1 L7 Py 50’0(,() = ImlJp 80'0(’0 s
which holds true due to (2.20). The proposition is proved. O

Proposition 5. Let X and Y be two bihamiltonian vector fields, then their associated
super extended flows commute.

Proof. From the theory of the bihamiltonian cohomology [7] we know that [X, Y] = 0,
hence it follows from (2.3) that

3 97, 3 9
—, — | 0¥ =0, —, — |00 =0.
dty Oty dtx Oty '

By using Definition 3 we also have

d d T d d 0
—\, — | O = —, — | O, = V.
dtxy Oty m " dtxy OJty 0

The proposition is proved. O

Now let us prove that the super extended flow associated with a bihamiltonian vector

field commutes with the odd flows %

Lemma 4. For any D € Der(/i)o satisfying the condition [D, d,] = 0, we extend its
action to A* by setting

Doym = TnDoyp, m > 0.
Then the following identities hold true:
Tio (Dl 41) = (Dl jen) o Tts Tra © (Dl jo) = (Dl ju) © Tias ki1 > 0.
Proof. The first identity is obvious from the definition Doy = Tx Doy 0. The second

one can also be verified by using the definition of the shift operator 7y ;. The lemma is
proved. O

Proposition 6. The odd flows % commute with the super extended flow associated with
a bihamiltonian vector field X.
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Proof. Using Lemma 4 and the definition of the odd flows, it is easy to see that

9 v 9 8P 8 Po 9 9? d?
———=—1T,— =T, Dy s ——:TmDPO — .
dtx 0Ty, dty 50‘0,() 50’05,() a1, Oty dty

Therefore it follows from [X, Pp] = 0 and the identity (2.5) that

d a
—, — ¥ =0.
a1, Oty

Similarly, by using Lemma 4 again we have

d 300171{_ 0 T S P 7. D 5P
drx 9T Bty Mepe | kmTX '

On the other hand, by using Lemma 3 and the fact that [Py, X] = 0 and gvifj =0, we

obtain
0 dowk __ 0 (o (XN _ . [, (3X
0t 9ty 0y N\ X\ G ) ) T TR A TP e ) )

Thus by using (2.4) and [X, P;] = 0, we can conclude that

SR
2 2 oas =0.
[arm BIX] ek

The proposition is proved. O

Let us summarize the constructions given in this subsection in the following theorem.

Theorem 7. Let (Py, P1) be a bihamiltonian structure with semisimple hydrodynamic
leading terms and {X;} be a family of bihamiltonian vector fields, then we have the
following super extended integrable hierarchy:

v 00y m

_— = D .Ua, . = T D .0, .
Bti X; 81‘,‘ mtX;0u,0
ov¥ 8Py 00y k S P
~ =IdmT—> = Tk,m_-
0Ty, 8040 0Ty, Sv¥

The flows in this hierarchy mutually commute.

2.4. Deformations of the super tau-covers. In this subsection, we construct super tau-
covers for tau-symmetric bihamiltonian deformations of the Principal Hierarchy asso-
ciated with a semisimple Frobenius manifold. Let us first recall how to construct the
deformations of the tau-cover (2.14) of the Principal Hierarchy following [9].

We fix a semisimple Frobenius manifold M and use (P[O], Pl[o]) to denote the bi-

hamiltonian structure (2.13). We denote the two-point functions in the tau-cover (2.14)
by Qg)]p, B.q and denote the Hamiltonian densities of P(go] by h([xo],,, which are equal to

Q([JtO]p] o- Let (P, Pp) be a deformation of (P[O], PI[O]), then it determines a unique de-
formation of the Principal Hierarchy according to [7,26]. By using the results proved
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in [13], we know that a bihamiltonian deformation of the Principal Hierarchy is tau-
symmetric if and only if the central invariants of the deformation of the bihamiltonian
structure are constants. In such a case, after an appropriate Miura type transformation
the Hamiltonian structure Py can be represented in the form

1
0
Py = P(g I _ 3 / n“ﬂaaoé,

and P; has no .7:"22 components. Moreover, we can also require that the condition of
exactness of the bihamiltonian structure is preserved [9, 13]:

Py =12, P1], Z=/01.

In what follows, we will always assume that Py and Z take the above forms. We still
use the same notation X, , € F1, as we have already used in (2.12) for the flows of
the Principal Hierarchy, to denote the unique deformed flows of the Principal Hierarchy,
and we will also use ar% to denote the vector field D X p- LetH, p, € FO be the unique
deformations of the Hamiltonians of the Principal Hierarchy such that

Xap = —[Hap. Po], a=1,....n, p=>0, (2.26)
and
Hy 1= f eV’ (2.27)
Let us define
hep=DzHyp, a=1,...,n, p=>0. (2.28)

Note that we use an index convention that is different from the one used in [9].

Proposition 7 ([9]). We have the following results:

1. Dx, , = 0.
2. The functionals Hy, , definedin (2.26), (2.27) and the differential polynomials defined
in (2.28) satisfy the relations

Hy,p = /ha,pﬂ, p=>-—1

We also have the following proposition and theorem on properties of the Hamiltonians
and two-point functions of the deformed Principal Hierarchy.

Proposition 8. The following bihamiltonian recursion relation holds true:

1 p
[(Ha,p-1, P1] = (P o Ma) [Ha,p, Pol + Z (R)y [Hy p—k, Pol, p=0.
k=1
(2.29)
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Proof. Denote

1 P
Yo.p = [Hyp1. P11 = (p Ak m) [Ha.p» Pol = Y (ROY [Hy p—k, Pol, p =0,
k=1

then from Theorem 3 we know that Y, , € }22 Since the flows Xy, , = —[Hy, p, Pol
are bihamiltonian, we conclude that Yy, p is also a bihamiltonian vector field. Therefore
by using the theory of bihamiltonian cohomology developed in [7] we arrive at Yy, ,, = 0.

O

Theorem 8 ([9]). There exist differential polynomials Q0 p.p.q such that they are de-
[0]
a.piB.q’

oh
1. 0,Qu.pipg = 508

Qo,p:pg = Lp.qgia,p and Qo p;1,0 = ha,p.

3 0. pipg _ Ikipy
9k T T grap

To construct the tau-cover of the deformed Principal Hierarchy, we introduce the
following normal coordinates as in [12]:

formations of Q and satisfy the following properties:

Wy = heo, w* =n"Pwg, (2.30)

then we see that the differential polynomials w* and v* are related by a Miura type
transformation. In particular, it follows from Proposition 7 that

H, i =/wa =/naﬂvﬂ. (2.31)

In terms of the normal coordinates, the tau-cover of the deformed Principal Hierarchy
can be represented in the form (cf. (2.14))

8fa,p aw"‘

A
3tﬂ,q = Qa,p;ﬁ,ép 3;7,11 — na 8XQ)»,0;/3,£]' (232)

Let us proceed to construct its super tau-cover. To this end we introduce odd variables

@y, ,, as we do for the super tau-cover of the Principal Hierarchy, such that
ha,p

AT

Bl = m > 0. (2.33)

Here the odd flows % are defined by (2.21). By using Theorem 8 we obtain the following
identity:

3 hgp _, Q. pip.g
arBa 9z, .

Therefore we conclude that the following definitions of the evolutions of the odd variables

®;, , along the flows 31% are compatible with (2.33):

acpgf‘p _ 024, p; B.g
atba Atm

To define the evolutions of @7, along the odd flows Birk, we need the following lemma.
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Lemma 5. There exist differential polynomials Fy, , € A2 such that

0 dhg,p
0Ty 0Ty,

=Tni0xFop, a=1,...,n; p,mk=>0.

Proof. By using the definition (2.1) of Dp, and the fact that the vector fields X , are
bihamiltonian, it is easy to see that

/DplDPohotp—[Pla[P& a,p— 111=0.

Therefore from (2.22) it follows that there exists Fy , € A2 such that

iah“”’ F
= Oxla,p-

31’1 3‘170

Now from Lemma 3 and (2.23) it follows that

o 0h d oh
_ % T, %P k0 Fo. p.
atx 0Ty aTy k)

The lemma is proved. O

Now we are ready to construct the super tau-cover of the deformed Principal Hierar-
chy.

Theorem 9. Let M be a semisimple Frobenius manifold and (Py, P1) be a deformation

of the bihamiltonian structure (2.13) with constant central invariants, then the following
. . . P)

flows together with the super extended flows associated with —+ form the super tau-

cover of the deformed Principal Hierarchy:

afﬂt,P _ . afo[,p _ q>m

91Bd o, p;B.q> 3T, a,p’
acl>g},p _ 00, p:p.q aq)gl,p _ F
dtha 0tw O e

Recall that when the diagonal matrix p of a Frobenius manifold M satisfies the
condition 152K 21‘ ¢ Spec(u) forany k = 1,2, ..., the odd variables g , for the super
tau-cover of the Principal Hierarchy are redundant since they can be represented by

elements in A*. Proposition 9 that we are to give below shows that the deformed super
tau-cover has the same property, which will play an important role in our consideration
of the deformation of the Virasoro symmetries.

We start with the definition of generalized shift operators.

Definition 4. We define the shift operators T} for k > 0 to be the linear operators from
A1 to A1 such that

Te(fol, )—fo,m+k, feA m=>o0.
The following lemma is easy to verify.

Lemma 6. The operators Ty commute with 3, and are compatible with the recursion
relation (2.18).
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Lemma 7. If @2’ p can be represented by an element in A+ then so does oy p- In this
case dD(’;’,p = Tmcbgypform > 1.
Proof. By using the relations (2.33) and (2.23), it is easy to see that

. . oh oh
0, T, @ =T,—2L = —%P _ 5
mTap " 37 AT *

The lemma is proved. O
We will use the notation ®g, , € A* to mean that ®;, , can be represented by an element
in A*.

Proposition 9. We have @7 | € A* and

P
(]‘[ (k - % +Ma>> or e At p=>1. (2.34)

k=1

Proof. 1t follows from Lemma 7 that we only need to prove this lemma for m = 0. For

@2’0, it is easy to see from (2.31) that there exist differential polynomials g, € ftgl
such that

ha,0 = Napv? + 8, 8a- (2.35)
Therefore we arrive at
a ~
@0 ) = 0g0+ % ¢ A. (2.36)
0 8‘[0

We proceed to consider <I>2, p for p = 1. By using Proposition 7 we can rewrite (2.29)
as follows:

[/ha,p,Pl]=<p+%+ua> U apH,Po} Z(R@ [/ yp_k+1,Po].

(2.37)
By taking p = 0in(2.37) we get
1+ /8ha,1 _/8ha,0
2 Ha d7o o aty

so there exists a differential polynomial py 1 € AU such that

1 N 0hy. 1 . 0hy 0 + 5
) Mo 970 = 91, x Do, 1+

Therefore we have
1 N
(5 + Ha> @2’1 = q’i,o +pa1 € A"

For general p > 1, we can prove (2.34) by using (2.37) and induction on p. The
proposition is proved. o
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3. Deformations of Virasoro Symmetries: Formulation

In this section, we first recall the theory of variational bihamiltonian cohomology de-
veloped in [23] and then explain how to use it to study Virasoro symmetries of the
deformed Principal Hierarchies. We also use the example of the deformation of the
Riemann hierarchy to illustrate our approach to the study of Virasoro symmetries.

3.1. Variational bihamiltonian cohomologies. In [23], we established a cohomology

theory on the space Der? (fi) consisting of derivations on A that commute with . This
theory provides us suitable tools to study Virasoro symmetries of deformations of the
Principal Hierarchies. We recall the basic definitions and results in this subsection.

Let us define the space Der? (A) by
Der?(A) = {X € Der(A) | [X, 3] = 0},

it admits a gradation induced from Der(fl) and we denote Der? (.,Zl)é7 = Der? (fi) N
Der(.fl)g.

Lemma 8. Der? (,Zl)fi7 =0forp <—-2o0rd <0.

Proof. Let us choose a local coordinate system (w?, ¢) on M. Assume X € Der? (fl)
with super degree p < —2 or d < 0. Then by definition this means

X(w") = X(¢a) = 0.

Since [X, 0] = 0, we immediately see that X (w**) = 0 and X (¢;) = 0 for s > 0.
Hence X = 0 and the lemma is proved. O

Let P19 be a Hamiltonian structure of hydrodynamic type and (P[O], Pl[o]) be a
semisimple bihamiltonian structure of hydrodynamic type. Then by using (2.3) we have

a complex (Der? (fl), D pio) and a double complex (Der? (fl), D plol, D P[O]). We define
0 1
the following cohomology groups:

Der? (.,Zl)fi7 Nker Dpio
Der? (./21)5 N Im D po

Der? (./Al)f]7 Nker D po) Nker D po)
0 ., p.d=>0.

HY (Der’ (A), PI) = . p,d=0, 3.1

d, 1 0 0
BH} (Der’(A), P}, P["") =

Der? (A)s N Im DP(EO] DP][O]
(3.2)

A -1
Note that the spaces Der?(A) 4 7 0ford > 0 and they must be taken into account
while computing the cohomology groups. For example, the space Hfi)(Dera(fl), PIOTy

is given by
8 A0 oAl
_ ker(Dpo : Der?(A),; — Der?(A),,,)

HC?(Dera(A), P[O]) ] ~ 0"
Im(D po; : Der?(A),_,; — Der?(A),)
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By using the canonical symplectic structure on M, we can identify the space Der? (A)
with the space €2 of local functionals of variational 1-forms, and the vector fields D poj,
D plol and D plol induce differentials on 2 via Lie derivatives. This is the reason why

we 0call the above cohomology groups the variational cohomology groups. In [23], the
cohomology groups (3.1) and (3.2) are computed by converting them to the cohomology
groups on the space 2. The details of the computation of these cohomology groups are
not used in the present paper, so we omit them and refer the readers to [23]. The following
result plays an essential role in the present paper.

Theorem 10 ([23]). We have the following results on the cohomology groups (3.1) and
(3.2):

1. H? (Der? (A), P11 = 0 for p > 0,d > 0.
2. BHY, (Der’ (A), )", P[”) = 0.
3. BHL, (Der’(A), By, i) =0,
4. BHJ (Der’ (A), p[o,p[ol) ' CO(R).

. . Al . .
Moreover, if we denote the action of a cocycle X € Der? (A)z on the i-th canonical
coordinate u' by

X' = ZZX?,@,* £ooxk e A

Jj=1k=0
then the cohomology class [ X] is determined by the following functions:
0 0
Xia o= X322 o = X
(fH2’ oFH2 T Um?

Here each function c; depends only on the i-th canonical coordinate u', and f' is the

function defined in (2.7).

] =

3.2. Virasoro symmetries of the Principal Hierarchies. Virasoro symmetries as well
as Virasoro constraints are central conceptions in the study of modern mathematical
physics, see, e.g. [11,16,17,30]. In this subsection, we recall the construction of Virasoro
symmetries of the super tau-cover of the Principal Hierarchy following [22]. In [11], a
family of infinitely many symmetries 5 zer r‘h“"” for m > —1 of the tau-cover of the Principal

Hierarchy associated with a Frobenius manifold M was constructed. This family of
symmetries are called the Virasoro symmetries due to the property

L e S P
as;‘ven asl(,ven a Iiilen

These symmetries can be represented by a family of quadratic differential operators
L¢P of the form )2
even __ o, p;B.q B.q o,p d o,p.B.q
L, Zoa 8t°‘1’8t/3(1+b’";“'1’[ atﬂq+cm“p’3qt t
p.qz

+18 t ! 2
f— r —_—— .
4 m,0 4 1%
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where a2 PP bﬂ . Cmia.p:p.q are some constants determined by the monodromy

data of M and one may refer to [11] for details. These operators satisfy the Virasoro
commutation relation

[L]ecl)el’l’ L;zven] — (k _ l)Lﬁ_)]fn.

In this paper, we only need the explicit expressions for L*f" and L§*" which are given
by

1
L& = Ua,st 0+ ‘“’atw T (3.3)
pzl
2 2
Leven — of d baﬁ 0 reven tot,ptﬂ,q 3.4
2 =a at“’latﬂ’o + ata,Oatﬂ,O + 2 +C2;Dt,p;ﬂ,q ’ ( N )

where the constants have the expressions

1 1 3
o — <§ R Mﬂ) (5 . m) (5 . ua> , (3.5)
1 1
b = S (R ( +3up — 3u§> , (3.6)

and the operator £5"¢" is given by

1 3 5 9
cgven — Z <p+ 5 +Ho¢> (p+ 5 +Ma) <P+ E +Ma> t"‘s!’ata,p+2

p=0

fY Y (<p+ +ua>2+6<p+%+ua)+2>

p=01<r<p+2

a
Bpp_ 7
< Ra 1 S
B o a
+y > <3p+ +3Mo(>( rz)atap—atﬁ’p_HQ

p=02=<r<p+2

d
+ Z Z (Rr’3)§ [a’pW. (37)

p=13<r<p+2

The explicit expressions for the matrices Ry ; and constants ¢, ., are not used in
this paper, so we omit them.

We have the following theorem for the Virasoro symmetries of the tau-cover of the
Principal Hierarchy.

Theorem 11 ([11]). Let us define the following time-dependent flows for m > —1:

0.k 0 a,p;B.q B.q
ggeven = gtrok (Z dm Japfpa+t me a,p a,pfﬁ,q + Zcm;aspiﬂﬂqta’ptﬂ’q) ’
m

v _ 0o
asre;lven 8t1,0 asre;lven'
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Then the following commutation relation holds true:
[as,gven’ atw} =0 [as;_ven’ W} (m = k)= cven cven” k,m > —1.

We also have the following theorem for the Virasoro symmetries of the super tau-
cover of the Principal Hierarchy.

Theorem 12 ([22]). Let us define

a
Bs"dd Z(P"‘CO)TPB m 2 _17
= p+m
where cq is an arbitrary constant, and let us define 5—— to be zero, then the following

flows are symmetries of the super tau-cover of the Prlnczpal Hierarchy associated with
a Frobenius manifold:

o _ ap , Wy Pap _ 3 <afa,p>

dsy  dseven  gsodd’ jg, 9T, \ dsp,
v N av® dog,p 0 (3fa0
dsm  dseven  Jsodd’ s, 9T, \ dsy )

Moreover, these flows satisfy the commutation relation

d d 0
— — | =m =k , k,m>—1.
sk OSm 0Sk+m

Remark 2. Let us explain why there is an arbitrary constant involved in the Virasoro
symmitries of the super tau-cover of the Principal Hierarchy. If we assign the odd time
variables 7; a degree ¢k, then we can modify the zeroth Virasoro symmetry of the tau-
cover of the Principal Hierarchy, which is a homogeneous condition, to the following
symmetry of the super tau-cover:

a 0 0

— + E CRTh—
even
3S() s =0 0Tk

By requiring that the above flow is a symmetry of the super tau-cover of the Principal
Hierarchy we arrive at cx = cg + k, here cq is an arbitrary constant.

Let us explain the motivation to introduce the non-local odd variables oy, x for k > 1
and the super extension of the tau-cover of the deformed Principal Hierarchy. For a given
tau-symmetric bihamiltonian deformation of the Principal Hierarchy of a semisimple
Frobenius manifold, we want to deform the Virasoro symmetries given in Theorem 11,
i.e., to construct the flows 355,% as deformations of Bsﬁﬂ%’ such that

I o 9 d
[—ag,iven’_afa,p}zo’ [8—8%} 1 = K)o ko > =1,

k+m

here we denote by

8;2, - the flows of the deformed Principal Hierarchy. Due to the

Virasoro commutation relation, we only need to find the flows ﬁ, 855%, and use
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them to generate all other flows # Itis proved in [9] that the symmetry %Ulgn always

exists and therefore it remains to construct the flow # which satisfies the following
2
equations:

d d
agsven’apr =0, a=1,...,n, p>0.

Since there are infinitely many equations, it is not easy to solve them. From the study
of the theory of variational bihamiltonian cohomologies, it follows that the problem of
solving the above equations can be converted to solve the following two equations:

o a7_[_ 8 a7_,
958" 9to | [ 955" 9T ]

Since the odd flows % and 3371 are not contained in the original tau-cover, we need a
super extension of it. However, the above equations do not hold true at the dispersionless
level. In [22], we prove that one can remedy this problem by adding infinitely many odd
time variables 7, and odd flows % for m > 0 to the Virasoro operator Lz“e", as
described in Theorem 12.
The introduction of the odd flows % is motivated by the following simple observa-
tion. Let M be an n-dimensional Frobenius manifold, then we have
o o
L =Ral, R="PioP,",
aT| a1y
here Py and P; are the Hamiltonian operators of the bihamiltonian structure (2.13). The
non-local operator R is called the recursion operator and we can define the odd flows
recursively as follows:
o o
av R av Coms 1
il Tim+1 d Tm

Due to the non-local nature of the recursion operator, we see that generally the action

of the flow 32_,71 on v¥ can not be represented by elements of A for m > 2. To overcome

this non-locality problem we introduce, as it is typically done in the theory of integrable

system, the odd variables o, x for k > 1 to describe the actions of the odd flows %m
ad

The constructions of o, x are given by (2.18) and the flows 7, are defined in (2.21).

Remark 3. The idea of introducing non-local odd variables oy x to study the non-local
Hamiltonian structures is presented and illustrated via some examples in [18], see also
[27].

3.3. Formulation of the deformation problem. In this subsection, we first state the main
problem of this paper, then explain the motivation and strategy of our proof of the Main
Theorem 1.

From now on, we fix a semisimple Frobenius manifold M of dimension » and let
(Py, Py) be a deformation of the bihamiltonian structure (2.13) with constant central
invariants. Then (Py, P;) determines a unique deformation of the Principal Hierarchy
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associated with M. After a suitable Miura type transformation we may assume, as we
do in Sect. 2.4, that

1
Py = E/U“ﬂaaaé =[Z. P, Z=/al,

and P; has no ﬁzz components. We also introduce odd variables oy ,, for m > 0 as we
explained in Sect. 2.3.

Let us denote by A** the following A*-module
A= A [ wp M= 1] .

From Proposition 9 it follows that A*+ = A* if the Frobeius manifold M satisfies the
condition

1
k=S+pa #0. Vk=1 Va=1...n

Let AV/" be the following .A**-module:
AV = A fa pITEP, Tl

here the time variables t,, are odd. We will consider the space Der? (,éAlVi’), which
consists of derivations of the space .A"/" that commute with d,. Here we extend the
action of 9, to the space A" in the following natural way:

_ dha,,

0, P" =
Trap AT

o Ofup =hap, u1*P =58%1670" §.7, =0.

Our problem can be stated as follows: to find a unique derivation X € Der? (fl)go
such that the flow % € Der? (ftv"’ ) defined by

81))L B avx 81))L
a—szzaa <fﬂ0 l‘“l falaﬂo) <f/30 tao faoaﬁ())

+ Xv,\ + EzU)L, (3.8)
907.,0 p 907,0 005.,0 007.,0 007.,0
0, Jp0 Gt * It g ) ¥ Tp0 50 * fe0 55y
+ X030+ M, og 2+ Niop 1 + L2030, (3.9)

satisfies the conditions

a 0 a 0
— Y — | =|—,—= =0, (3.10)
dsy 971 dsy 9Ty

and we require that the leading term of X is determined by the Virasoro symmetry =— of
the super tau-cover of the Principal Hierarchy given in Theorem 12. The actions of the
flow Bd_iz on fy p and O p are omitted here for simplicity. These actions can be derived
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from (3.20) and the details will be given later at the end of this subsection. We also
define that

ore-p 0Ty,

RY) - BRY)

Moreover, the operator £; is given by

£2 = ,Ceue" + Z(p +C())‘L'p
p=0

T

and M f , Ny ‘e AO are some differential polynomials whose definitions will be given
later. The flows d— and i are also extended to the space AVir naturally by using the
super tau-cover of the deformed Principal Hierarchy and by defining

arerP 0T,

=0, — =6im, =01
aT; aT; by L

If we find such a derivation X, then we can prove that the flow % is a symmetry of
the super tau-cover of the deformed Principal Hierarchy, i.e.,

0 0
—, =0, a=1,...,n, p=>0.
dsy 0t%P

The above commutator should be understood as the natural commutator defined in the
space Der? (AV") and the actions of the flows m%,, are naturally extended to AY".
Therefore a priori we have

d d
eD AVtr
|:8sz o pi| er’( )-

However, if we can show that
0 0
|:a— Y p:| € Der(A)>2, (3.11)

i.e., the actions of the above commutator can be restricted to the space /i, then we
conclude the vanishing of (3.11) from the property that

BH?,(Der’ (A), P)", P”)) =0,

and the fact that the commutator (3.11) is a cocycle. Here we use the definition (3.2)
and Lemma 8 to arrive at the fact that

BHY, (Der’ (A), P)", P”) = Der” (D)L, Nker D o1 Nker D 0
- - 0 1

By using the definition (3.8) and (3.9) of aisz and after a simple computation, we
arrive at

d 0 A el el -
FRr I R Fat CYE



Variational Bihamiltonian Cohomologies 489

so the condition (3.11) is actually a locality condition, i.e., it is equivalent to

a9 [ 9 )
—, ceA | — — e A, 3.12
[asz aﬂw}v* [Bsz attw]%o (3.12)

which is the condition we actually need to check.

Let us explain how to find a unique X € Der? (ft) such that the conditions in (3.10)
hold true. To this end, we first rewrite the conditions in (3.10) into the equations for X

as follows:
0 0
_7X :I()s _’X 2117 (3'13)
3‘[0 3‘(1

where Iy and 1 are some derivations that will be given later. The uniqueness of X is a

consequence of the equations (3.13) and the fact that BH?, (Dera(fl), Pl Pl[o]) =0,
since the leading term of X is fixed. We will prove the existence of X by taking the
following steps.

Step 1. To check the locality condition (3.12) and to prove that

Iy, I € Der’(A), (3.14)

which is also a locality condition.
Step 2. To check the closedness condition

|:i, IO] =0. (3.15)
R

After we finish Step 2, we can find a derivation X° € Der? (A) by using the property
HiO(Der3 (A), P(EO]) = 0 such that

Iy = 9 X°
0= 8‘[07 ’

and the leading term of X° is determined by the Virasoro symmetry of the super tau-cover

of the Principal Hierarchy. We define C = X — X° € Der? (A)%, then the equations
(3.13) for X are transformed to the following equations for C:

[ a 0 il
—.,C|=0, |—.C|=L—-|—.X"°|. (3.16)
| 970 aT| Ty
Step 3. To check the closedness conditions
] ad d
—, L - |—,X°||=0, |—,Li|=0. (3.17)
| 070 07| a7

Step 4. To check that the differential degree 3 component of the derivation I; —
[% X °] vanishes in the cohomology group B HJ (Der? (A), r Pl[o]).

We call the above fact the vanishing of the genus one obstruction for the following
reason. By using the first equation in (3.16) and the vanishing of ng (Dera (A), P(EO]),

we see that there exists a unique 7 € Der? (A);{ such that

0
=|—,7].
¢ [370’ }
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The derivation 7 must also satisfy the second equation in (3.16)

[i, [iTH =1 - [i x°} . (3.18)
aty | 01 Ty

If the differential degree 3 component of the derivation /1 — °] does not vanish

[5v
in the cohomology group B Hy (Derd (.A) pl° P ) then such 7" does not exist.

However if the genus one obstructlon vanlshes there exists a derivation 7, whose
differential degree 1 partis unique, such that the Eq. (3.18) is valid at the approximation of
differential degree 3. Then by using B H.! 4 (Dera (A, P, [0], Pl[o]) = 0 and the closedness
conditions (3.17), we can solve 7 from (3.18) degree by degree. In this way, we can find
a derivation X such that the equations in (3.10) hold true.

Step S. To lift the symmetry 3 M to a symmetry of the tau-cover of the deformed
Principal Hierarchy, and to define all the other flows 7— a of the Virasoro symmetries for

m > 0. Note that the symmetry 35— is constructed in [9] We remark that we can also

lift the symmetry (3.8) and (3.9) to a symmetry of the super tau-cover of the deformed
Principal Hierarchy, but it is not necessary for the consideration of our problem.

In the remaining part of this subsection, we explain how the equations (3.8) and
(3.9) are derived from the Eq. (1.1) of the main theorem. Let Z be a tau-function of the
tau-cover (2.32) of the deformed Principal Hierarchy, i.e.,

_dlogz g 0%logZ
Jar = Trap s W =T 505,80
give a solution of the tau-cover (2.32). Our goal is to find a symmetry of the following
form

(3.19)

0Z

=LP"Z+ 0,2, (3.20)
8sz

where L57" is the operator (3.4) and O; is a differential polynomial. If we assume that
this is indeed a symmetry, then by using (3.19) we obtain the flow

0fa.k
= d
057

0Q24.1;8,0
o (fa,lQﬁ,O;k,k + [0, 152k + E;T’f>

aQ ’O’ !O
+ b (fa,OQ/S,O;A,k + /5.0820,00.k + ;t—,\,f)

B.q B, B, 30 even
+ Z (bz;x,kfﬁ,q +eaakipql’ T+ g gkt ) + Py L5 frk
=0

31,())L Bwk of 31,())L Bwk
a_szz (fﬁo lal f(x]aﬂ0>+b fﬁ() tao faOatﬂO
+ "V)L + ﬁ;vmwk,

here W) are some differential polynomials. Now recall that v; and w; are related by a
Miura type transformation, hence by using the equation

av;, . Z vy ng

Bsy <s> O 5o

s>0 dw
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we know that there exist differential polynomials X 2 e A° such that
av;, of ov;, ov;, av;,
a_sz_a fﬂ,oata’l-’-fa,latﬁ’o fﬂoatao fot()atﬁo
+ X9+ L5V, (3.21)

As we have discussed at the end of Sect.3.2, we also need to write down the actions
of the flow ai on the odd variables o . To this end we must replace £5"" by L to

include the odd time variables 7, and odd flows -~ —. By using (2.36) it is easy to see
that
0
o _ 4o oo,
810
where fo = (fi,0,-.., fn,o)T, o0 = (01,0, - an‘o)T and A is a matrix of differential

operator of the form

2g
A=) 0 Agkdy. Agi e My(A3, ).

g>0 k=0

Note that Ay, is the identity matrix, therefore A is invertible as a differential operator,

i.e., there exists B = Z >0 Zig o Bg, x9% such that AB = BA = I, and in particular
By, is the identity matrlx Thus we can represent the odd variables o, ¢ in the form

df,
ZZ g,k A )]C( a.io

g>1k=0

or0 =

This identity leads us to the following definition of the evolutions of the odd variables
03,0 along the flow %

2g
dor0 0 9fio ) o % 0Jz.0 W) ok 9 8fco
s, 010 92 21; ek % Z:ZO K o

By using Proposition 9 and Lemma 7, it follows from the explicit expressions (3.5),

(3.6) and (3.7) that the odd variables ®g/ , appearing in % 8.0 can be represented by

ds2
elements of A*. So there exist differential polynomials Mf , Nf € A% and X ){ e Al
such that

30’10 90,0 007.,0 901.,0 9010
A0 <f,30 fa18ﬁ0)+baﬁ(ff308tao faoatﬁ())

BRY) aro1
+ Xi + Mfo*;,z + Nfa;,l + L07.0.
Finally we define a derivation X € Der? (A)0 such that Xv, = Xg, where Xf\) is the

differential polynomial introduced in (3.21), and Xo; 0 = X 1 Therefore our problem
of finding such a derivation X is a necessary condition of the main theorem.
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3.4. Example: one-dimensional Frobenius manifold. In this subsection we present an
example to illustrate how the general framework described in the previous subsection
works. We consider the one-dimensional Frobenius manifold M, it has the following
potential and Euler vector field:

13
F=-v’, E=v0,.
6

Due to the dimension reason, we will omit the Greek indices, for example, we will use
v® and o instead of v!** and oy ,,- The Principal Hierarchy associated with M is the
Riemann hierarchy

ov v? >0
T = 7 VUx, — Y,
otp p P

whose bihamiltonian structure is given by

1 1
P(EO]=§/. 000 » P1[O]=§/vl70001~

It is proved in [7,24] that every deformation (Pp, P;) of (P(EO], Pl[o]) with a constant
central invariant is equivalent to the bihamiltonian structure given by

P _l 1 P _l 1 2 3
0= ) 000y » 1= ) vopo +£7co00

via a certain Miura type transformation. Here the dispersion parameter ¢ is added for
clearness, and the central invariant of (P, P;) is % In particular, when ¢ = % the
corresponding deformed Riemann hierarchy is the KdV hierarchy that controls the 2D
topological gravity [19,30].

We have the following flows for the super tau-cover of the deformed Riemann hier-
archy:

9 2 9 2
il = VU, + —ezcv(3), 2% = vaol + —szcog;
an 3 on 3
9 1 4 2 4
2 = —vzvx +e%c — Uy Uyy + Zov® )+ —84021)(5),
ot 2 3 3 15
dop 1 2 2 2 4
E = 51)20'01 +8ZC <§vxx001 + gUxO'g' + gUO’S) + EEACZO'S;
afo of1 45 5
- = ’ -~ = 2 - - 5 ;
sato oo 83t0 o] — Voy £°co
E—— = —09) — —V0O|] — =V°00) — E°C| —VUy00+ —V,0, + —V0, — —& C O0p.
dg 3 2 3 1T 0 3 00T 300 T30 ) TS 0

Here the odd variables o, satisfy the recursion relation
ol =vol+ 5 VxOm +e’ca’, m=>0,
We also have the following Hamiltonian densities for the deformed Riemann hierarchy:

2 3
ve 2 v 1 2 4
hy = 5+ gezcv“, hy = 3 +e%c <§vf + gvvxx> + E84C21j(4).
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Note that

3, 9 - TG+p) 0
Lz_gs 8t1810+£2’ Ez_zmtpatp *(p+c)ty

p=0 7 p+2

Then the equations (3.8) and (3.9) for this example have the form

av 3 d
— = —¢luwfi +—vf() + Xv+ Lov,
aSQ 8
a 3 5
8;:;) = ge (Gol fi+ — fo) ( +Co> oy — gal + Xog + Lo0y.
We are to find the derivation X € Der (A)0 such that the flow 3 commutes with am
and 57-. These conditions yield the following equations for X:
ad a
X [ 0 P X|= Il’
3‘[() a‘L'l
where the derivations Iy and I; are given by
72 1 3 13 | 2 3 5
Ipv = vvyop + zv 0y +ec (v oy + 71)”00 + 8v, 0y + 6v0O +3&%c%a, ,
(3.22)
1
Iyoy = vooo(} —&%c (5001 002 — O‘()O‘S) , (3.23)
5 5 7 45 31
Lv= szvxao + zvza& +&%¢ <§vxvxxao +2v0¥oq + vaaol + ?vv”a(})
19 17 45
+ &% 26vvx002 + —vzag +e*c? (5)00 + — (4) v(3)a§
2 2 2
59 43
+ &*c? <7vxxog + ?vxo(‘)‘ +9vog) + 36 07, (3.24)
5 5 5 1
Loy = —vzaoaol +ec —vxxaoo(} + —vxcrocro2 — —vaol ag +2vcroa§
4 2 2 2
1
g*c? <§aolag — 0@75) . (3.25)

It follows from (3.22) and (3.23) that we can choose X° € Der? (fl) such that
[a o X°] = Iy, whose actions on v and oy are given by

5
X°v = v + &% (—vf + 3vvxx> +etct®,
4

X° 1 2 2 5 1 2 4
oy = —Ev o9 — e°c | vxx00 + 2vxao +3voy — 247 0y -
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Then according to the general discussions given in the previous subsection, the derivation
C = X — X° satisfies the equations

0 a 0
—.C|=0, |—.C|=h- , X°
R 0T] oty 7]
Finally we can solve the above equations and obtain the unique derivation C that is
defined by

Cv = &2¢ (31}5 + 3vvxx> +2e%c2 @,

Cop = &2¢ (3vx00 +v00) +2¢*Pay.

By forgetting all the odd variables we obtain the following symmetry for the deformed
Riemann hierarchy:

ad 3 17
v = —¢ vxfl + fO + v +82C _v)ZC +6vvyy | + 3846‘21}(4) + £§venv.
EY) 8 4

It is easy to check that the action of this symmetry on the tau function Z of the deformed
Riemann hierarchy can be represented by

Iz 3\ (v 2
Free L§Y"Z + <3c - §> (7 + 5szcvm) Z. (3.26)

In particular, when ¢ = %, this symmetry is given by a linear action on Z.

4. Deformation of Virasoro Symmetries: Existence and Uniqueness

In this section, we present details of the proof of the main theorem following the frame-
work described in Sect. 3.3.

4.1. Locality conditions. We start by verifying the locality condition (3.14).

Let us first find the differential polynomials M f: and N f in (3.9) to ensure that Iy is
local. By using the relation (2.36) and the equations (3.8) and (3.9), we arrive at

9 9 0fw,1 OV
[810 asz]vx_coakz+a“/3 8:0 5,50 — 0y <M§o§,2+NfJ;,1>+loc. 4.1)

Here and henceforth we will use /oc to denote the local terms, i.e., terms belonging to
A. We need to find M )f and Nf such that the right hand side of (4.1) is local.

Lemma 9. The following identities hold true:

0 8P _ (1, av* 0 8P _ (L, 3070
90500050 " \2 M) 500 Gogesr T \2THe) a0
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Proof. By using the identity (2.29) we obtain the identity

1
[PrHoer] = (5 00 ) [P0 Hua].

By taking the variational derivatives of both sides of the above identity and by using
(2.4), (2.5) and (2.31), we arrive at the result of the lemma. |

Lemma 10. We have the following relation:

1 d 1%
1 _ (2 Le
Oy = <2 + ug) n 5720 o1 +loc. 4.2)
Proof. Let us denote by P; the Hamiltonian operator of P; and represent it in the form

P N
Pi=)_Pixds. Pix € My(A).
k>0
Then from the recursion relation
Al yA YA _k
n""o, , =P 051 = Zpl,ko'x,l’
k>0

it is easy to see that
O')}’z = myPKgG;J +loc.
Now it follows from the definition of the Hamiltonian operator that

_ Jd &P
"~ 907.080y.0

at
Therefore by using Lemma 9 we arrive at the identity (4.2) and the lemma is proved. O

Proposition 10. There exist unique differential polynomials M f: and N f such that (4.1)
is local. More explicitly, we have

5 1 BUA
M = (§+m+60> 85, 9Ny = <§+Ma> N (ne —pa — 1) S0

here c is the arbitrary constant appearing in the operator L.

Proof. To ensure the vanishing of the coefficients of o; > in the right hand side of (4.1),
M f should be a constant, so it is determined by the leading terms of the right hand sides

of (3.8) and (3.9), which are fixed by the Virasoro symmetry % of the super tau-cover
of the Principal Hierarchy. Hence we obtain

Mg = <§+MA +C0> 54'
A 2 A

By using Proposition 9 we have

1 0
— + [y E = 0y.1 +loc. 4.3)
2 dTo ’
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Then by using this equation, the recursion relations (2.18) and the identity (4.2), we see
that the vanishing of the coefficients of o, 1 in the right hand side of (4.1) gives the
equation

1 vy,
NS = (5 + Ma) 1 (we — o — 1) Pl (4.4)

Both sides of (4.4) are total x-derivatives, so we can integrate (4.4) to obtain N f upto
a constant, which is uniquely determined from the Virasoro symmetry of the super
tau-cover of the Principal Hierarchy. The proposition is proved. O

Now by a direct computation of the condition

a 9
—.,— | =0,
[810 Bsz:|

we obtain the following explicit expressions for I, a derivation which is defined by
(3.13):

903.,0 903.,0 op (0SB0 Vi Ofa1 Oux
fovy = a” <fﬂ° arat tlarggn )~ o aed * Torg 9080

90,0 9070 0fg,0 dvx  Ofy0 Oy
B / , / aof > ,
b (fﬂ’o pre0 T a0 ) TP oo 91%0 | azy 91P0
5
+ (5 + ;L,\) 0)3’2 + Woy o+ 0x (Nf:a;,l) , (4.5)
looso = —a®® 0fp.0 9030  0fa1 8930\ _  ap (/g0 8010  3fa0 3050
’ Tty 0r%! dtg 0th0 dtg 0r*0 dtg 9th0
5 80’)\ 0 d I's
2 : N ) 4.6
+<2+’“> 002 81’0< 191 (4.6)
Ofap

here and henceforth we will use f;, p to denote the differential polynomlal 0 £ and use
W to denote the coefficient of 70 of the operator £,. More explicitly, we have

1 3 5 3
v (T‘“) (5+m) Grm) e
2 9
+ E ( < +/L1> +6( +m>+2)(Rk)1 3P %

9 5 9
—+3 R —. 4.7
+ <2+ Ml)( 2.2)] 5760 4.7

Proposition 11. The derivation Iy given by (4.5), (4.6) is local.

Proof. The locality of (4.5) follows from the definition of N £ sowe only need to check
the locality of (4.6). By using the definition of the odd flows we know that

aO')L)() aU)L 0 Z 3 30’)“0
= ﬁ 1

9ty 311 Bagyo aty

s>0
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therefore it follows from Lemma 9 that

801,0_0 ap l+ m+loc
or, P THe ) a0 TG

Then we arrive at the locality of (4.6) by using (4.3) and the following obvious fact:
aNf _ (1, o ) 7% (e — 5 — 1) 270
970 (2 "‘) n (s = =1) 507

The proposition is proved. O

Let us proceed to prove the locality of /7. Similar to the expression (4.5) and (4.6), we
can write down the explicit expression for /1, which can be found in the next subsection.
However the locality of I; can not be derived from this expression directly, so we turn
to prove the following equivalent conditions:

a 0 A a 0 X
—_ — c A’ _— c A. 4.8
[371 3S2}vk [3T1 8S2}GA’O 9
By a direct computation we have

d d
— — v
at; 982 ~

_ P <3fﬂ,0 v a1 B0n )

oty orw! oty 0tB0

L pep (2780 Bvi  0fa0 i
oty 00 atry 9tB0

5 e 3 o,
-y S0t )oly+ ) (Nzam) 2 oe. (49)

s
=0 3090 aT|

31))L
+(1+co)—
8T3

Lemma 11. There exists a unique differential polynomial fo , for each pair of indices
1 <a, B <n, such that

1 0fa
<§+Ma> 3:1 =Ga’2+ZgGﬁ’1+ZOC,

where Zg satisfies the following equation

1 av,
3,28 = — (E + m) nPe atsf”o. (4.10)

Proof. The existence and uniqueness of 25 can be obtained from Proposition 9, hence
we only need to derive (4.10), which can be obtained by using the identity (4.2) and the

fact that 0, (omz + Zf 0,3,1> is local. The lemma is proved. O
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From the definition of the odd flows and the recursion relation (2.18) we have the
equation,

P
913 0 62 804‘3’0 ot

which, together with Lemma 11 and the identity (4.2), enables us to rewrite (4.9) in the
form

—a _8 - Ut +V¥E +1/
s v g g oc,
87.'] 852 A 2 90¢.2 2 9¢.1

where the differential polynomials U f and Vf are given by

U{_ {ﬂ l+ §+ ﬂ_ §+ a aﬂ
AT\ T ) 5080 T\ T ) o 0y

ov ov 3 Jd dv
¢ _ oz OV ¢y ptay 2V c_ (2 ¢ e
Vi = a® ot 1 +(0% +b a)atot,O Za; (Ny <2 +p‘)’) Z)/) aaso oty
s>0 Vs

Lemma 12. We have U = V{ = 0.

Proof. The vanishing of U f follows directly from Lemma 9. To prove the vanishing of
Vf , let us consider the functional

1 1
Fé=n* (z‘*‘lf‘ot) <§+MC> /ha,l-

By using (4.4) and (4.10) we can check that there exists a constant Ci such that

¢ (3 ¢ _SFC
N)\._ E+pl,y ZA:E-FC)‘.
Thus from (2.5) it follows that
3 d 811)L 1) d av,\
(NS — =+ z8 = F¢, P]+C¢ ——
2 X( v <2 “V) V) 803 o 11 aow[ 1] Y 90,0 911

5>0

By using the bihamiltonian recursion relation (2.29) and Lemma 9 we see that the right
hand side of the above equation is a linear combination of the flows M% acting on vy,

hence so is Vf . On the other hand, the Virasoro symmetry % of the super tau-cover of
the Principal Hierarchy implies that Vf € Agz’ so by using the theory of bihamiltonian

cohomology [7], we know that Vf must vanish. The lemma is proved. O
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We have verified the first relation in (4.8), now let us proceed to prove the second
one. We have

9 9 op ((0Sp.0 0000 | 0fa1 d0a0
0,,0= da +
a‘L'l 3S2 ary otw! oty 9tph0

L pab (1808900 | 3fa0 3030
at; 9r%0 dt; 0th0

+ 5+ + ao&2+8N +(1+ ) 0
— +C —O’ C
2 T ) T T T 7! 0 8r3

0 0030
— +c0+,ug)a 5+ 0} (NSO'{J)) —— " +loc
g(( - ‘ dor o 9T

By using the equations

90,0 905,0 0051  dop1 0 Shg, p+i
- Y S S e
013 Bayo 7] bEo) ar%-r aty v

00,1 1 et d She
=01 |z +Me ) — +loc
1

3‘[2 2
we obtain that
o0 U + Vf +1
0),0=0 o oc,
a"-'l 352 A0 = 0¢2 ¢,1
where the differential polynomials U f , Vf are given by
- 1 3 doy 0 3 d doy 0
Ui =nP =+ -+ —= — =+ —_—,
2 E TR )N T ) 5iB0 T\ 2T ) oo oy
~ do ao a 3
c 02,0 A,0 14 14
Vx—aaﬁaal"‘(baé"‘b{a) t“o_a_rl(NA <2+My)Z>

3 9
- Sy )z 940
14 BU;’O a1y

s>0

These differential polynomials actually vanish, the reason is similar to the one for the

vanishing of U f and Vf given in the proof of Lemma 12. Hence the locality condition
(3.14) is verified.

Finally let us consider the locality condition (3.12). The first condition

39
[a:é»f asJ med

follows from the definition (3.8). To verify the second locality condition, we consider
the equation
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a9
915 3y | 0

do52  ONS

z“ow)W*am %!

5 ad 30')L0
-8 <N§o;,1+<§+co+,u,,> )8 g o

5>0
Proposition 12. The right hand side of the Eq. (4.11) is local.
Proof. By using the identity
a 4 5§ 6
80,31() W - W@

that is proved in [25], we obtain
d dopo 0 6Xap

= =0,
dog,p 0t*P 30@0 Svt
Aoy,
ard
30’)“2 80’)L 0 0 8UA 0 ¢
S = 815 7 Z oy, 23 8t5 7= = B; o1 +loc,

@.11)

where Bg are certain differential polynomials. From the identity (4.2) we know that

¢
¢ _ 9%
» FIADA
and we can represent the right hand side of (4.11) in the form

¢
V(;’j;;ﬁ;,l +loc,

where Vi i is a differential polynomial given as follows:

vi = (v (2 z;
5. = g\ T g Tty )4

s>0

Define the following functional
Fé=p* (l +Ma> (E +c<>+u;> /ha I
2 2 '
then by applying (2.4) we obtain the following identity:

8
V(SC]A—S A[F XEJ]

5 a doxo
— s ¢ _ 9 I J
E 0y <N ( +co +/Ly) Zy> 8(7;’0 Nk

here X ; is the vector field defined in (2.26). Since the functional F ¢ is a conserved
quantity of the deformed Principal hierarchy, we have [F ¢ 5,.,'] = 0. The proposition

is proved.

O
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4.2. Closedness conditions. In this subsection we prove the closedness condition (3.15)
and (3.17). The verification of (3.15) is straightforward by using the explicit expressions
(4.5) and (4.6), so we omit the details here.

Let us prove the closedness condition (3.17). We fix a choice of X° € Der? (A) such
that X° satisfies the condition

9 X% =1
Fr = I,

and that the differential degree zero part of X° is given by the Virasoro symmetry ad_sz

of the super tau-cover of the Principal Hierarchy.
We first write down the explicit expression for /1 defined in (3.13). Define a derivation

f1 € Der(.,fl)0 by the formulae fl vy = fl oy,0=0and

Lol = nd! 'W(vy) +a®] (fﬁo fw%>
+bP " <fﬂ0 a0 faoai;%)
(fﬁ()axa ol falaxa /30)
i (f‘8 agaazao f"(’xaargyo)

A do 0 do 0
Loy = ndy “'W(oy.,0) +a*P ] (fﬁ() tgl falatgo)

d0y.0 00y 0
B v

+ b 8)rcl<fﬂ08a0+fa08tﬁo>
do a0y0
_aaﬂ (fﬁoaxaotl fala;a;’())
00y.0

B Vs
_ba (fﬂ xaao fanaﬁ())

§ n 3 _ anpje
+ 2+,uy y2+8 A y0e,1 + 0, Nyog,l 8xNVog,1,

here n > 1 and W is the derivation defined in (4.7). Note that this derivation does NOT
commute with d,. It is easy to see that /; is indeed local. By a careful computation, we
obtain the following expression for /;:

9 3 3
Ilvx_h( U‘>+A“ Y, pe 2%

aT| are1 91«0’

0030 do; 0 203, 0
Loy o= 1 + A® - « :
1920 = 1( Ity ) gl 9100

+ 3 + 30)L 1 of 1 + 8(&,1
—_— —_— O" — s
) 1298 8‘[2 B, 1M 2 Mo ata’o
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where A“ and B* are local differential polynomials given by

5
A — aﬂ( /5.0 _UﬁJ)’
1

1 3 1 3fs.1
B =—n*f =+ —+ —+ — — - 75
T <2 “) (2 “ﬂ> <<2 “ﬂ> or, 7 ﬁ"‘“‘)
(b“ﬂ+bﬂ“)< 9/.0 aﬂ,l).
7]

We start by proving the first identity given in (3.17), which can also be written as

0 0 0
—, L |+|—,|—,X°||=0.
aty at; | dTto

The following lemmas can be proved by a lengthy but straightforward computation.

Lemma 13. Let Q € A be any local differential polynomial, then we have

. , 90 ., 90 90 00
[11,3x]Q=W(Q)+aaﬂ<.fﬂ,ow+fa,1m> aﬂ<fﬂ03tao faOatﬁ0>

3 ad
g (on) ) e

n>0

3 . K]
+ 5 + iy | Ox (UV,Z + nyfs,l) 80,0 0
Lemma 14. The following identities hold true:
0 0 9 - 0AY dvy,  0BY Ouy
o= | —, | =—. Ii||v+ + ,
10 70 daty | dto Ty orel aty 0«0

d d 0 ~ 0AY BG)L() 0B“* 8010
—h|owo=|—, |z Li||oro+ -+ X
1o ’ dty | dto ’ dtg 0! dtg 0«0

+ 3 + 30111 ap 1 + 3U)L’1
2 198 87.'2 B, 1M ) Mo ata,o .

Lemma 15. We have the following decomposition:

Jd - o d
—, 1 +X° =D+ —,
aTto )’

where D is a derivation A — A* whose actions are given by the formulae
D™ — _ 0P 3fp.0 o dvy + 9fe1 P dvy
% X oia,l X 58,0
dTo at dtg ~ Ot

_ pab (3f,3,0 gn 0 a0, 02 )

dtg * ore0 dtg * 9th0

1 1 v
+ 010 <5 +ua> (5 + Mﬁ) 0 as
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Do, = _aaﬁ afﬁ’o on 80%0 + 8fa,l gn aO’y’o
r arg *arel 9y * arh0

_ peb /8.0 gn 2970 a0 2 90y.0
atg T orx0 9y T 9rh0

1 1 do ,0 30‘/3’0 3
+ op1n™? (5 +Ma> (5 +Mﬂ> oy Mz,o e oy (Nf - (5 +Hy) Zf)

3 9 .
_ 8,1’0 z + /J,V a_-[o <O’y,2 + Zy68,1) .

Proposition 13. The first identity of the closedness condition (3.17) holds true, i.e.,
a a a
—h|+|—. | X°||=0.
a1g Jdt; | d71o
Proof. Tt follows from Lemma 14 that
9 1 + 9 9 X°
a0 v PN Y v
8‘[0 ! » 37,'1 3‘[0 -

ad 1 N o 0A% dv,  IBY duy
=|—,|—, 0 +X v+ + .
dty | dto a1 ol a1y 00

To prove the vanishing of the right hand side of the above equation, we need to verify
the following identity due to Lemma 15:

|: a } dA® dv,  9BY Ju,
—, D +
8‘[1

+ - ’
dto orel dtg 010

which can be checked directly by using the definition of D. Similarly we can prove that

9 1 + 9 9 X° =0
—_—, o} —_—, —_—, o3 — .
81’() ! A0 81’1 31’0 »,0

The proposition is proved. O
It remains to prove the second identity of (3.17).
Lemma 16. The following identities hold true:

d 0 8UA 0 8vx
[11,—}“:2&? O TR it
07| dvy aT| 80%0 07|

5>0

e d v, @ du 9B ow
aty ! aty 9t*0 9ty 9re0’
P Yo 8 990y 9 390
o |70 T o) 9t ¥ 903, Ot
! 50 dvy7 o0 .0 o0
o0 900 o @ on0 9B oy
at ot aty 9tx0 9ty 9re0’

where GY and F are differential polynomials defined by

a d -
Gl = |:3_‘L'1’ 11i| v)(f) + 05 (I]UV), F/ = I:B_‘L'l’ Ili|0;’0+8; (110'%0) .



504 S.-Q. Liu, Z. Wang, Y. Zhang

Lemma 17. The differential polynomials G and F! defined in Lemma 16 have the
following expressions:

av av

Y _ oqs )4 aas )4
GY = A%0y T+ B9y .
00,0 00,0

YV _ A0Aqs Y oS Vs
F{ = A%9; ol + B%0, 570

3 do 1 1 do 1
+ 85,0 (5 +My> ( 8:2 —opn™” (5 +,bba> a;io) .

Proof. By using the definition of G we can obtain the identity

(s)
0 o A7 0V
Gl,) — Gl = 8—n([ll,ax] o) + [0 1] i

Therefore it follows from Lemma 13 that

v Jv
—3,G! = —9,A%* —L — 5, B*9S —L

14
“ T ol T 0’

s+1

Hence G can be solved recursively starting from the initial condition

Aav),_ o Uy N o Uy
Ty gre a0

The expressions of the differential polynomials F;” can be obtained similarly. The lemma
is proved. O

Proposition 14. The second identity of the closedness condition (3.17) holds true, i.e.,

d
[—, 11i| =0.
aT|

Proof. The proof of the proposition is straightforward by combining the results of
Lemmas 16 and 17. |

4.3. Vanishing of the genus one obstruction. In this subsection, we will work with the
canonical coordinates of the Frobenius manifold. Let us start by recalling some useful
formulae related to the canonical coordinates. For the details one may refer to the work
[5,12].

We denote by u L., u" the local canonical coordinates of a semisimple Frobenius
manifold M and denote by (u; 6;) the corresponding coordinates of M. Under this
system of local coordinates, the bihamiltonian structure (2.13) takes the form (2.7), i.e.,

1 [ < : -
0
P = 5/ > (3,-,jf19,-9,.‘ +Al/9,-9j),

i,j=1

1 n o .
Pl = 5/ > (bl 106} + BI6i6;)

i,j=1
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Introduce functions

Yil=——, i=1,....n, 4.12)

where the sign of the square root can be arbitrarily chosen, and define

1w 1 ayn

Vie = %W’ Yij = W_]l 3l i#j.
Then it is proved in [5] that
8va ' Yig
Il , — =2 4.13
1pzl Wza 90 wil ( )
81/f . 31!/
Sk = ViV D Ek == Vi (4.14)
k#£i
Let V;j = tan®?Yiq ¥ jg, then we have the identity
viju! —u'y = V. (4.15)

Now we are going to describe the deformation problem given in Sect. 3.3 in terms
of the canonical coordinates. Introduce the odd variables 6; ,, by the recursion relations
(2.16), then it follows from the the relation (2.17) that the equations (3.8) and (3.9) can
be represented in the form

du'’ du' du' op du' du'’
s <fﬁ08t‘“ fala ﬁ0>+b <fﬁ,0W+fa,0W)
+ Xu' + Lou', (4.16)
a6; o 20, o 36; ¢ 26, o 26; o
@ (foat(i] falago)m“f‘(foat;o faoat;0>
+X9,~,0+ZA{9]-,2+ B/6; 1+ L26; 0. (4.17)

J
In the canonical coordinates, the Hamiltonian operator P of P; has the form
P = ul 15,0, + %ax (' £7) 83 + B + Q707 +
where B/ is defined in (2.6), Q'/ is given by the formula (cf., e.g., [13])
0 =3¢ (1) s+ 5 (u =) (Fopfiei — o fles), @1y
and c; is the i-th central invariant. Here and henceforth we omit the terms that do not

contribute to the relevant computations given later. Let us also represent the evolutions
of 6; along the flows m% as follows:

90; 1 10 10
S =T} 0!+ +ZK”” o Tape Ay, K, € A
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Note that the coefficients of 6 ]1 of the leading term of G?Sfp are zero for j # i, this is

due to the fact that the leading term of the flow at% is diagonal, one may refer to [9]
for details.

Let us turn to the proof of the vanishing of the genus one obstruction. Due to the
closedness condition (3.15), we can choose a derivation X° such that when we take
X = X°in (4.16) and (4.17) we have

ad ad
2. Z]=o.
[310 332]

We require that the leading term of X° is given by the Virasoro symmetry % of the
super tau-cover of the Principal Hierarchy, hence it follows from the result of [11] that
the actions of X° on u' and 6; take the form

Xou' = )+ Liul? e Lhe A,
j
X0, =Y Mloj+Y s+ ... M e A
j j
Lemma 18. We have the following identity:

J

2 o Al B/ .
J—Li= Zc@)?Q" =Y L@ +ul)Q" - Zf—’leJ
j

i J
f —f
_ pPa ki _qrPiba I Ki +(f Ki
2;1,07 B.q;i 2 B.q 0 a,p;i ap )y B.gii )’
B.q a,p;B.q . ,
where b, » and a, are the constants that appear in the operator Lo, and | f, ),

denotes the differential degree zero component of f,, I

Proof. We can prove this lemma by looking at the differential degree 3 component of
the left hand side of the equation

g 0 ;
U ul = 05
3‘[0 3S2

and by computing the coefficient of 9:'3 . The lemma is proved. O

Remark 4. Note that ¢ is the arbitrary constant that appears in the operator £,, which
is different from central invariants cq, ..., ¢;.

According to the discussion given in Sect. 3.3, we need to show the triviality of the

cohomology class of the differential degree 3 component of the derivation [3371, C] =

I — [i X O]. Due to Theorem 10, it suffices to prove that in the differential degree 3

ary’
i d o i
hu — | —, X" |u',
aT|

component of
the coefficient of 91'3 vanishes. By using Lemma 18 and a straightforward computation,
we obtain the following lemma.
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Lemma 19. In the differential degree 3 component of Iyu' — [%, X O] u', the coefficient
of 9:'3 reads

> QU (M) + ALY + Biul) + E2 Q7 — 6+ co) ) Q"
j

#3001 15, 430705 ((fy) Tap+ (fip), Tha) - 19)

here E3 is the cubic power of the Euler vector field which is given by
i3 0
_ in3_Y
B Z(u o
1
Lemma 20. We have the identities

M+ Al + Biu' = (3+co)u')? — FE3f —oht T,

=3 (g T (i), Tha)
and M + Al u))? + Blul = 0 fori # j.

Proof. We can prove this lemma by considering the differential degree 1 component of
the left hand side of the equation

a 0 ;
P I’tl = O»
dtg 052

and by computing the coefficient of 911.. The lemma is proved. O

In order to prove the vanishing of the expression (4.19), we need to check, due to
Lemma 20 and the expression (4.18) for O, the following identity:

B3 f w2 (5 oThy + a5 ((£5), T+ (Fi), Tha)) = 3OS,

Proposition 15. For m > —1, we have
Em 2 T (b0 0T,
+ ap " ((f,g,,) (foz p> T,é,,,)) = (1+m)")" f*,

here E™*! s the (m + 1)-th power of the Euler vector field E which is given by

; 0
Em+l — i m+1_”
2w

i



508 S.-Q. Liu, Z. Wang, Y. Zhang

Proof. Let us consider the following generating functions:

Lt i 1 af 1 im i)
2 WE 1=l 2 " = G

m>—1 Jj m>—1

3 (b8 oThy + @™ ((£h), Tap + (Fin) Tha))
)Lm+2 m;1,0" B,q m B.q )y ep ap)o B4

m>—1

_r Yio Vi
T 20 —u)? +§ Vit O —u) o —ud)’

where the last generating function is computed in [12], one may refer to Lemma 3.10.18
and the proof of Theorem 3.10.29 of [12] for details. Then the proposition is proved by
using (4.12), (4.14) and (4.15). |

Finally we have the following theorem.

Theorem 13. For a given semisimple Frobenius manifold and a tau-symmetric bihamil-
tonian deformation of its Principal Hierarchy, there exists a unique deformation % €
Der? (AV") of the Virasoro symmetry of the super tau-cover of the Principal Hierarchy
such that it is a symmetry of the deformed super tau-cover. Moreover, the actions of %
on the local variables are given by

av;, av av;L Bv;\
+ X, +£2v;” (4.20)
3UA,0 _ ap 301 0 3U)L,0 30)L 0 3(7)L 0
o5 @ \IPOGr T e g0 ) (S0 * fa0 50
5
+ Xo 0+ <E+CO+M}L) O')L)2+N)€O';’] + L2030, “4.21)

where X € Dera(./éi)O and Nf € ./2@0 is the differential polynomial described in
Lemma 10. -

4.4. Lifting to the tau-covers. In order to lift the symmetry (4.20) to the tau-cover of
the deformed Principal Hierarchy, we first need to rewrite (4.20) in terms of the normal
coordinates w!, ..., w" of M. We start by proving the following lemmas.

Lemma 21. Let g) € flg] be the differential polynomials given in (2.35) which satisfy
the identities -

h)hyozv)\+axg)h, )\.21,...,1’1

Then we have:

1.g1=0.
2. Foranya =1,...,nand p > 0,

8ha,p+l 3gx
+ .
Svt ore-p

Qa,p;/\,o =
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Proof. Due to Proposition 7, we have Dy, , = 9y and X 0 = —[H],0, Po], from which
it follows that

dHi o
Vg = e
By taking o = 1, we obtain the first property by using the definition (2.28). The second
one is obvious due to Theorem 8. The lemma is proved. O

Lemma 22. There exists a derivation X° € Der? (fl) such that its leading term is given
by the Virasoro symmetry % of the Principal Hierarchy, and it satisfies the equations

[Bro X°] = Iy and

o : 0%Qa.1:4.0
X°hp0+ Iihyo= a*f (fé,] Q26.0..0 + 5.0 1:0.0 + m

3%Q0,0:4,0
+ b*P (fo/[,oﬂﬁ,o;x,o + fé,oQa,O;A,O + 309,10

+ D5 0 g0 + D5 1R gi1.0 + 22:.0:1.0- (4.22)

Proof. We first find a particular solution X° of the equation [aim, X ] = Iy, then we

modify it by a solution C of the homogeneous equation [ e C] = 0 such that X° :=

X° +C satisfies (4.22).
Let us define X° € Der?(A) as follows:

=5 Shﬁ,l Shy o 8
X°v) = aOlﬂ (folt,l = fﬁO o, > bc{ﬂ (fa() sv )L fﬁO Sv A >

Ba Ohparl  pq Shﬂml .
+ byl S0 +05.3.0 S0l +2¢2:3,0:1,05

0fa,1 8hp 1 3f,3,0 Shy2 L peB 0fa,0 8hp 1 N 0fp,0 8ha,1
atg Sv* 810 Svt atg Sv* atg Sv*

af 5
+b2‘3;f0 8;‘] —(2+/JL;\)GA2—N o¢,1-

O’)L()— a

Firstly, from the definition of Nf it follows that X° is indeed local. We also note
that the leading terms of X °v; and X °0y.0 coincide with the local terms of the Virasoro
symmetry 3 aﬂ and 30—“) of the Principal Hierarchy. By a direct computation, it is easy

to check that [ XO] = Iy.
Next we want to determine C € Der? (A) such that X° = X° +C satisfies (4.22). By

using the definition of X °vy, Lemmas 13 and 21, it is straightforward to show that

- 02Q0.1:8.0 02Q4.0:5.0 . -
Clhs.0) = a*f oo 05 4+ b — () — . X°(0), (4.23)

which uniquely determines the actions of C on vy.
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dato’
know that it suffices to show that f Cv; = 0, which is obvious from (4.23) and (2.35).
The lemma is proved. O

Finally we need to check such C satisfies [i é] = 0. By using the next lemma we

Lemma 23. Let Uy, ..., U, be differential polynomials with U, € flgz. Then there
exists C € Dera(./éi)oZl such that [3370, C] = 0 and Cvy, = U, if and only lff U, =0.

Proof. Let C € Der? (A)° be a derivation such that [%, C] = 0. Then by using the
triviality of the variational Hamiltonian cohomology H2,(Der” (A), P(gol), we know
the existence of a certain K € Der? (.,éi)_1 such that [3370, IC] = (. Let us denote

Koyo=V, € A°. Then it is easy to see that
9 1
CU)LZ —,}C UAIICGAOZE)XV)L.
R ’
Therefore we have [ U, = [ 9,V; =0.

Conversely, if U, = 9,V, for some V) € flo, we can define a unique derivation
C € Der? (A)" by

V.
Cvy =0 Vy, Cojppo= s
31’0
then it is easy to check that [%, C] = 0 and the lemma is proved. o

Now let us denote C = X — X°, where the derivation X is describe;d in Theorem 13
and X° satisfies (4.22). Then we can rewrite the Virasoro symmetry 33—?2 in terms of the
normal coordinates as follows:

Bw;L of Bw,\ Bw,\ of aw,\ 8w;\
o a fﬁ,OW"‘fa,lW +b fﬂ,oW"‘fa,OW

Q. 1:8.0
+a*? (fo/(,l £26,0:2,0 + f;;,oQa,l;x,o + 90910

32Q4.0.8.0
+ b*P (fé,oﬂﬁ,o;x,o + fé,oQa,O;A,o + 309,50

B.q B.q
+ 0371 0928,4:2,0 + D55 0€28,4:1,0 + 2¢2:3,0;1,0 + C(hy0) + Lowy.

According to Lemma 23, there exist differential polynomials Q; € flgl such that
C(hy.0) = 9y Oy From the fact that -

Jd Jwy 0 Jdw,y,

9t7:0 95y tr0 sy’

we have the equation

00, 00y
970 = g0 (424
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forall A = 1,

We want to find a differential polynomial Q € Azo such that 90, = a;TQO To this end
we need the following lemma.

which means that [ Q) is a conserved quantity of the flow TS 0

Lemma 24 (Lemma 4.12 and Theorem A.2 of [9]). If the Frobenius manifold with
dimension n > 2 is irreducible, then there exist constants c¢* fora = 1, ..., n such that
the leading term of the derivation

D =c“

0, 2
5700 € Der’(A)

is non-degenerate, i.e., in terms of the canonical coordinates u', its leading term D' €
Der? (.A)(l) can be represented by

DO = Al i=1,...,n

such that the condmon ;é 0 holds true foralli = 1, ..., n. Moreover, any conserved

quantity H € ]'_(3)1 of D is trivial.

The irreducibility of a Frobenius manifold is a mild condition and without loss of
generality, we may always assume that a Frobenius manifold is irreducible (see [5] for
details). Therefore it follows from the above lemma that if the dimension of the Frobenius
manifold dim M > 2, there exists O € .A >0 such that Q1 = 9, Q. By setting y = l in
the identity (4.24), we obtain that

9001 Y
8xQA = 81‘)"0 = 8 a )\0 A>27

from which we conclude that Q; = ()BITQO

Remark 5. The existence of O can be also obtained by proving a Poincaré lemma for
general semi-Hamiltonian systems [28] using the idea given in Appendix of [9], whose
proof is a little bit complicated, so we use the method presented above.

Theorem 14. Let Z be a tau-function of the tau-cover (2. 32) of the deformed Principal

Hierarchy. Then there exists a differential polynomial O, € A0 >0 Which yields a symmetry
of the tau-cover given by

02

=LPY"Z+ 0,2,
3S2
where the evolutions of fu,p and w) along the flow 9372 are given by

fep 0 dlogZ dwp 3 dfro
dsy Ot dsy  dsy  9rl0 sy

Proof. Whendim M > 2 we take O, = Q which is just given above. Whendim M = 1,
03 is given in (3.26). The theorem is proved. O



512 S.-Q. Liu, Z. Wang, Y. Zhang

Now let us proceed to determine all other Virasoro symmetries % of the tau-cover

of the deformed Principal Hierarchy. In what follows we will denote F = log Z and
denote

2
_a,piByg 0F oF I°F a,pB.g.
G = <8t“’l’ ot grepgpa ) T Cmiepibal T
0
even B.q Ol,p _
L bmap 5P m > —1.
It is proved in [9] that
aF
=G+ LY F
3S_1

induces a symmetry of the tau-cover of the deformed Principal Hierarchy. On the other
hand, by using Theorem 14 we know that

oF
—_— = gz + 02 + Egvenf
EY)

also induces a symmetry of the tau-cover of the deformed Principal Hierarchy. From the
commutation relation

[Livlen’ Leéven] — _3L(i‘l)€n’
it follows that
d 02

0 a
— — | F=3(G1 + LS F) + — L 0.
|: ds—1 0s2 i| (91 ! ) S_1
Since g AO — L™ 0y is a differential polynomial, we can define
oF 1] 0 d 1 (30,
— =z F=G+01+L"™F, O — L0,y ).
as1 3 [as | 8S2} 91+ Or =3 <3S—1 ~1 2)

Then it is obvious that m ~ induces a symmetry of the tau-cover of the deformed Principal
Hierarchy. Similarly we define the symmetry

af_l[a 9

1 /00
F=Go+ Op + ,Cemnf O = o Le_“f"OI .
05_1 8s1

3s0 2\ 9s_,

Now let us define % for m > 3 recursively in the following way. Assume we have
defined

oF

— =G+ Oy + L"F

S

such that it induces a symmetry of the tau-cover of the deformed Principal Hierarchy
for m > 2, then we have

0o oF _ G, E)Om
051 08, - 8s1 8s1

+ L (Gr + 01 + L5 F)
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It follows from the definition of G,, that

3G 0 [ appq( OF OF 3F o
— = —\ax"" + + Cma i pogt @ PP
as1 081 ( & arep geba T grepyrba ) T meriba

. a 0
ag P <fa,p_8tﬂ’q G1+ 01+ LY"F) + fpy 3797 (Gi+ 01+ E‘fve"f))
2

a,p;B.q even
+ ay Sarahd (G1+ 01+ LT F)

_aa,p;ﬁ,q< 90, 90, 3201)
- m

Jap diba " Tpa 1P 91%poiha

here ... stands for remaining terms that are independent of Oj. In a similar way we can
compute ai 9

7 %. By using the commutation relation
[Lei’ven’ Lfnven] — (1 _ m)L'er:)fil
we obtain the following result:

8 a even
[E,m}f— (m—l)(gm+1+£ )

m+1
90y o, p;B.q 00, 00, 920, wven
98] —a fa’patﬂsq *+ g 9r%p + arergPa | L7 O
90, a,p;B.q 2001 001 8201 oven
s dm Jap 9iha T b4 9r0r T prapgiha + L, " 0.

Therefore we obtain the symmetry B?Zi | by defining

oF 1 ad ad ,
=—— | —, — | F=Gms1 + Ops1 + Loy
051 0spy,

Osma1  m— 1 mEl <

where O,,41 is the differential polynomial given by

Om+l
I (00m  appag 90 00w , 9°On
m—1 ( asi @ Jap atha Jp.q arer T arergiba ) T L™ O
1 a01 o, p;B.q 301 801 8201 oven
Cm—1 <3sm —m fap ath.a * b ore.r * areryrha ) Ly 01).

Thus we obtain recursively an infinite set of symmetries of the tau-cover of the deformed
Principal Hierarchy. Their actions on F can be represented by

oF

™ =G+ Op+ L))" F.

Next we show that we can further adjust O, by adding certain constants such that
these symmetries satisfy the Virasoro commutation relation

|:i ii| =(1—k
dsy 0sy -

, k> —1.
0Sk+1
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Lemma 25. There is a unique choice of constants k, for m > —1 such that the flows
oF
P Gm + O + ki + L F
m

satisfy the Virasoro commutation relation

a 0 a
—, — | =U-k) , k1> —1. (4.25)
asi 05 0Sk+
Proof. Let us first fix an arbitrary choice of O, and denote
oF
— =G+ O+ L))" F.
Sy,

Then we obtain the differential polynomials 6k+l such that

i i ]::(l—k)<g1 + Opgx + LSV )

5" 95 ’ Tk
But both ();1’7 and [%, d%l] are symmetries of the tau-cover of the deformed Principal
Hierarchy, so we conclude that

oF oF 1 a 0 ~
— = —— | =, = | F= Ok — O
as | 5w I —k [a&k as,] ol Pkl
is also a symmetry of the tau-cover of the deformed Principal Hierarchy. The action of
this symmetry on the normal coordinates has the expression

Jw, 9

as  9r~09s1.0
Thus aa% € Azz, and therefore such a symmetry must vanish due to the result of the
bihamiltonian cohomology [7]. Hence we conclude that

(0k+l - 5k+1) .

Okst — Oy = cpy

for some constant ¢ ;, and this means that

0 0 0
| ==k —-U=kcks, k1=>-1. (4.26)
sy 05y 0Sk41 ’

Let us denote by 2U; the Lie algebra of formal vector fields on a line, which is an
infinite dimensional Lie algebra with a basis

e, = Zm+1 i
m dz

Then the relation (4.26) implies that the Lie algebra {%} defines a central extension

, m>—1.

of 207. It is computed in [15] that H?(207, R) = 0 and hence every central extension
is trivial. Therefore we can modify each O,, by adding an appropriate constant «, such
that the modified flows

oF

=Gm+ Oy +kpy + L) F
S

satisfy the commutation relations (4.25). Moreover, the choice of k,, is unique since
H'qy,, R) = 0 (see [15]). The lemma is proved. |
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Thus we have proved the following theorem.

Theorem 15. For every tau-symmetric bihamiltonian deformation of the Principal Hi-
erarchy associated with a semisimple Frobenius manifold, the deformed integrable hier-
archy possesses an infinite set of Virasoro symmetries. The actions of these symmetries
on the tau function Z are represented by

0Z
Fr = L,enwnZ+ OnZ, m=>-—1,
Sm

2 . . . . 9 .
where Oy, € A are certain differential polynomials, and the flows From satisfy the com-
mutation relations

a 0 d
—,—|=U-k) , k> —1.
8Sk 8S1 8sk+1

Example 6. Let M be the 2-dimensional Frobenius manifold defined on the orbit space
of the Weyl group of type B,. Its potential and Euler vector field are given by

1, 4 5 1
F=—-vu+—u’, E:v8v+§u8u.

2 15

Here v = v! and u = v? are the flat coordinates of M. We denote by oy and o, the dual

coordinates of the fiber of M , then the bihamiltonian structure (P[O], Pl[O]) associated
with M is given by

1 1 1 1
P(EO] = - / o1 021 +02011, PI[O] = - / 81430] 011 + —u02021 + 21)(71021 — —V,01073.
2 2 2 2
Let us first write down the Virasoro symmetry % of the tau-cover of the Principal

Hierarchy associated with M. Here we choose the symmetry aaTl instead of aaTz just for
simplicity. The Virasoro operator L{"" has the expression

3 92

even even
e ——
16 91109720 * 1

where

1 5 0 3 7 0
even __ - ) .Lp = ) 2.0
L] —Z<p+4> (p+4>t oI +(p+4> <p+4)t PN

p=0

Then the action of % on the genus zero free energy F1°! of the tau-cover of the Principal
Hierarchy is given by

dFvr 3
3S1 _E

fi.ofr0+ L5V FIOL,

Consider the bihamiltonian structure (Py, Py) of the Drinfel’d-Sokolov hierarchy
[3] associated with the untwisted affine Kac—Moody algebra Bél). After performing a
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suitable Miura type transformation we have Py = P[O] and the Hamiltonian operator
‘P1 of P; has the expression

8u38x + 12u2ux vdy + }tvx 2 (D1 Dy 4
= + + 0(g"),
P ( V0 + %vx %uax + }Tux € D3 Dy (")

where the differential operators D; are given by Dy = u83 + 3 uxaz Dy = 8 and
243 2 2 1
Dy = 14u”9] + 42uu, 0y + | 20uy + 16uu,, + vax Oy

1
+ 12Uty + 6uu® + Zv(3),

9 3 1
3 2 3
D3 = uo; + Zuxax + Eu”ax + Zu( ).
The bihamiltonian structure (P, P;p) is a deformation of (P[O], PI[O]) with central in-
variants ¢y = (1), = 112 (see [8,24]), and it determines a unique deformation of the
Principal Hierarchy associated with M. We can find the Virasoro symmetry +=- of the
tau-cover of the deformed Principal Hierarchy by using the results developed in the
present paper. It turns out that the action of aa_sl on the tau-function Z can be represented
by
0Z
3S1

1 11
= L§V"Z + (Euz i Zszuxx> Z. 4.27)

A similar result is also given in the Example 5.5 of [31] by using the Kac—Moody—
Virasoro algebra.

5. Conclusion

In the present paper, we prove the existence of an infinite set of Virasoro symmetries for
a given tau-symmetric bihamiltonian deformation of the Principal Hierarchy associated
with a semisimple Frobenius manifold. These symmetries can be represented in terms
of the tau-function Z of the integrable hierarchy in the form

3z
=LyZ+0p2, m>—1. (5.1)

8sm
Note that the differential polynomials O,, depend on the choice of the representa-
tive, in the equivalence class of Miura type transformations, of the deformations of the
bihamiltonian structure of hydrodynamic type (P(gO], Pl[O]). It is proved in [9] that, for

two different choices of representatives (P, P;) and (130, f~’1 ), the corresponding normal
coordinates

wp 0210g Z op 02 log Z
at1.09¢8.0° ar1.09¢8.0°

of the deformed Principal Hierarchy are related by a Miura type transformation

wC{=n ~ o

=1 a=1,...,n

392G

~0q A off
YT 10,0
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where G € A is a differential polynomial, and the tau-functions are related by the
equation

Z =exp(G)Z. (5.2)

Conversely, any differential polynomial G € A defines a Miura type transformation
for the deformed bihamiltonian structure and the integrable hierarchy in the manner
described above.

After a Miura type transformation induced from (5.2), the Virasoro symmetries (5.1)
are transformed to the form

)2 s <
— =LpZ+0,2, m=>—1,

S,
where the differential polynomials O, can be computed from O,, and G.

We are going to study the problem of linearization of Virasoro symmetries in subse-
quent work, i.e., to study whether it is possible to find a suitable differential polynomial
G such that all the functions 6m vanish.

Let us exam the possibility of linearizing the Virasoro symmetries given in the exam-
ple of Sect. 3.4 for the one-dimensional Frobenius manifold. We want to find a certain
Miura type transformation given by (5.2) which linearizes the Virasoro symmetry (3.26)
and leaves the expression of the Virasoro symmetry

0Z
0s5_1

— LiUl(fnZ

unchanged. It follows from these requirements that the differential degree zero compo-
nent Go of G must satisfy the equations

G 2
_Oz()’ lﬁ@:_ 3c—§ v_’
ov ov 8) 2

which do not possess any solution unless ¢ = % When ¢ = %, the linearized Vira-
soro symmetries for this example are well known [30], and the central invariant of the
corresponding deformed bihamiltonian structure is %c = 21—4.

We can do a similar computation for Example 6. We want to find a Miura type
transformation given by (5.2) to linearize the Virasoro symmetry (4.27) and to preserve
the expression of the Virasoro symmetry

0Z
05—

— L Z.

Then the differential degree zero component G of G must satisfy the equations

Gy Gy I, 1
— =0, uwwv—=—|-u"+-v|,
ov ou 2 4

which have no solution. Therefore the Virasoro symmetries given by the bihamiltonian
structure (Py, Pp) in this example cannot be linearized.

In general we have the following theorem, whose proof will be given in the paper
[21].
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Theorem 16. The Virasoro symmetries for a given tau-symmetric bihamiltonian defor-
mation of the Principal Hierarchy associated with a semisimple Frobenius manifold is
linearizable if and only if the central invariants of the corresponding deformed bihamil-
tonian structure are all equal to ;.
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