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Abstract: We derive a continuummean-curvature flow as a certain hydrodynamic scal-
ing limit of a class of Glauber+Zero-range particle systems. The Zero-range part moves
particles while preserving particle numbers, and the Glauber part governs the creation
and annihilation of particles and is set to favor two levels of particle density. When
the two parts are simultaneously seen in certain different time-scales, the Zero-range
part being diffusively scaled while the Glauber part is speeded up at a lesser rate, a
mean-curvature interface flow emerges, with a homogenized ‘surface tension-mobility’
parameter reflectingmicroscopic rates, between the two levels of particle density.We use
relative entropy methods, along with a suitable ‘Boltzmann–Gibbs’ principle, to show
that the randommicroscopic systemmay be approximated by a ‘discretized’Allen–Cahn
PDE with nonlinear diffusion. In turn, we show the behavior, especially generation and
propagation of interface properties, of this ‘discretized’ PDE.
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1. Introduction

We study the emergence of continuum mean curvature interface flow from a class of
microscopic interacting particle systems. Such a concern in the context of phase sepa-
rating interface evolution is a long standing one in statistical physics; see Spohn [44]
for a discussion. The aim of this paper is to understand the formation of a continuum
mean curvature interface flow, with a homogenized ‘surface tension-mobility’ parameter
reflecting microscopic rates, as a scaling limit in a general class of reaction-diffusion
interacting particle systems. We focus on so-called Glauber+Zero-range processes on
discrete tori Td

N = (Z/NZ)d for dimensions d ≥ 2 and scaling parameter N , where
the Glauber part governs reaction rates favoring two levels of mass density, and the
Zero-range part controls nonlinear rates of exploration.

A ‘two step’ approach to derive the continuum interface flow would consider scaling
the Zero-range part of the dynamics, but not speeding up the Glauber rates. The first step
would be to obtain the space-time mass hydrodynamic limit in terms of an Allen–Cahn
reaction-diffusion PDE. The second step would be to scale the reaction term in this
Allen–Cahn PDE and to obtain mean-curvature interface flow in this limit.

However, in a nutshell, our purpose is to obtain ‘directly’ the mean curvature in-
terface flow, up to the time of singularity, by scaling both the Glauber and Zero-range
parts simultaneously. The Zero-range part is diffusively scaled while the Glauber part is
scaled at a lesser level. By means of a probabilistic relative entropy method, and a new
‘Boltzmann–Gibbs’ principle, we show that the microscopic system may be approxi-
mated by a ‘discretized’ Allen–Cahn equation whose reaction term is being speeded up;
see (1.5).
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1.1. Motion by mean curvature and Allen–Cahn equation with linear diffusion. In the
continuum, motion by mean curvature is a time evolution of (d − 1)-dimensional hy-
persurface �t in T

d := (R/Z)d = [0, 1)d with periodic boundary conditions, or in R
d

defined by

V = κ, (1.1)

where V is a normal velocity and κ is the mean curvature of �t multiplied by d − 1.
Such a flow is of course a well-studied geometric object (cf. book Bellettini [5]).

Mean curvature flow is known to arise from Allen–Cahn equations with linear diffu-
sion, which are reaction-diffusion equations of the form

∂t u = �u +
1

ε2
f (u), t > 0, x ∈ D, (1.2)

in terms of a ‘sharp interface limit’ as ε ↓ 0. Here, D = T
d or a domain in R

d , for
d ≥ 2, with Neumann boundary conditions at ∂ D, ε > 0 is a small parameter and f is a
bistable function with stable points α± and unstable point α∗ ∈ (α−, α+) satisfying the
balance condition: ∫ α+

α−
f (u) du

( = F(α−) − F(α+)
) = 0,

where F is the potential associated with f such that f = −F ′. The sharp interface limit
is as follows: The solution u = uε of the Allen–Cahn equation satisfies

uε(t, x) −→
ε↓0 χ�t (x) :=

{
α+, on one side of �t ,

α−, on the other side of �t ,

where �t moves according to the motion by mean curvature (1.1), and the sides are
determined from �0. This limit has a long history; among other works, see Alfaro et al.
[2], Bellettini [5], Chen et al. [11], Funaki [24], Chapter 4 of Funaki [25] and references
therein. Although we do not consider the case d = 1, we remark the phenomenon in
dimension d = 1 is much different given that the ‘interface’ consists of points; see Carr
et al. [8].

1.2. Glauber+Zero-range process, its scaling limits and main result. Informally, the
Zero-range process follows a collection of continuous time random walks on T

d
N such

that each particle interacts infinitesimally only with the particles at its location: At a site
x , one of the particles there jumpswith rate given by a function of the occupation number
ηx at x , say g(ηx ), and then displaces by y with rate p(y). We will consider the case that
jumps occur only to neighboring sites with equal rate, that is p(y) = 1(|y| = 1). It is
known that, under thediffusive scaling in space and time, namelywhen space squeezedby
N while time speeded up by N 2, in the limit as N → ∞, the evolution of themacroscopic
mass density profile of the microscopic particles, namely the ‘hydrodynamics’, follows
a nonlinear PDE (cf. [36])

∂t u = �ϕ(u),

where ϕ can be seen as a homogenization of the microscopic rate g. We remark when
g(k) ≡ k, and so ϕ(u) ≡ u, the associated Zero-range process is the system of indepen-
dent particles.
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We may add the effect of Glauber dynamics to the Zero-range process. Namely, we
allow now creation and annihilation of particles at a location with rates which depend
on occupation numbers nearby. This mechanism is also speeded up by a factor K =
K (N ) ↗ ∞ as N → ∞. We will impose that K grows much slower than the time scale
N 2 for the Zero-range part, in fact we will take that K = O((log N )σ/2) with a certain
σ ∈ (0, 1) in our main Theorem 2.1; see below for some discussion.

If K were kept constant with respect to N , the associated hydrodynamic mass den-
sity solves a nonlinear reaction-diffusion equation, a type of Allen–Cahn equation with
nonlinear diffusion, in the diffusive scaling limit:

∂t u = �ϕ(u) + K f (u) (1.3)

where f reflects a homogenization of the Glauber creation and annihilation rates; cf.
[39], see also [13,18] in which related Glauber+Kawasaki dynamics was studied.

As mentioned above, with notation 1/ε2 instead of K , in the PDE literature, taking
the limit of solutions u = u(K ), as K ↑ ∞, in these Allen–Cahn equations, when say
ϕ(u) ≡ u and f is bistable, that is f (u) = −F ′(u) with F being a ‘balanced’ double-
well potential, is called the sharp interface limit. This scaling limit leads to a continuum
motion by mean curvature of an interface separating two phases, here say two levels of
mass density.

In our stochastic setting, by properly choosing the rates of creation and annihilation
of particles in Glauber part, we observe, in the microscopic system itself, the whole
domain Td

N separates in a short time into ‘denser’ and ‘sparser’ regions of particles with
an interface region of width O(K−1/2) between (cf. Theorems 6.1 and 6.2). In particular,
our paper derives as a main result, as N ↑ ∞, motion of a continuum interface by mean
curvature directly from these microscopic particle systems as a combination of the ideas
of the hydrodynamic limit (probabilistic part) and the sharp interface limit (PDE part);
cf. Theorem 2.1.

1.3. Probabilistic vs PDE arguments. In the probabilistic part (Sects. 4 and 7), for the
hydrodynamic limit, we apply the so-called relative entropy method originally due to
Yau [45]. As a consequence of the method, we show that the microscopic configurations
are not far from the solution to a deterministic discrete approximation to the nonlinear
Allen–Cahn equation (cf. Theorem 2.2); see Eq. (1.5). To control the errors in this ap-
proximation, wewill need a new ‘quantified’ replacement estimate, which can be seen as
a type of ‘Boltzmann–Gibbs’ principle (cf. Theorem3.4). L∞-bounds on second discrete
derivatives of the solution of discretized Allen–Cahn equation (1.5) (cf. Theorem 3.3),
derived by Nash and Schauder estimates in [27], play important role.

In the continuum/discrete PDE part (Sects. 5 and 6, respectively), we compare the
discretized Allen–Cahn equation (1.5) with its continuous counterpart (1.3) with nonlin-
ear diffusion and, by comparison argument, construct super and sub solutions in terms
of those for the continuum PDE; see Theorem 2.3 for the main result of the PDE part.
We note that a sharp interface limit, with respect to the Allen–Cahn equation, now with
nonlinear diffusion term�ϕ(u) is shown in a companion paper [21], and summarized in
Theorems 5.1 and 5.2. Such a derivation is obtained by keeping a ‘corrector’ term in the
expansion, or second order term in ε = K−1/2, of the solutions u = u(K ) in variables
depending on the distance to a certain level set; see Sect. 5. It seems this sharp interface
limit for the nonlinear Allen–Cahn equation is unknown even in the continuum setting.
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1.4. Comparison to previous works and differences. Previous work on such problems in
particle systemswith creation and annihilation rates concentrates onGlauber +Kawasaki
dynamics (where the Zero-range part is replaced by Kawasaki dynamics) [7,17,28,29,
34]. In these papers, the Kawasaki part is a simple exclusion process. For K fixed with
respect to N , the macroscopic mass hydrodynamic equation is a more standard Allen–
Cahn PDE (1.2) with linear diffusion �u (instead of �ϕ(u)) and K instead of ε−2,

∂t u = �u + K f (u).

See also related work on Glauber dynamics with Kac type long range mean field inter-
action [6,15,16,35], on fast-reaction limit for two-component Kawasaki dynamics [14],
and on spatial coalescent models of population genetics [22].

Phenomenologically, when there is a nonlinear Laplacian, say �ϕ(u), as in our case
of the Glauber+Zero-range process, this nonlinearity affects the limit motion of the
hypersurface interface. When now f satisfies a modified balance condition due to the
nonlinearity [cf. condition (BS)], we obtain in the limit amean curvaturemotion speeded
up by a nontrivial in general ‘surface tension-mobility’ speed λ0 reflecting a homoge-
nization of the Glauber and Zero-range microscopic rates,

V = λ0κ (1.4)

[cf. flow (P0) (2.13)]. We derive two formulas for λ0, one of them below in (1.6), and
the other found in (5.11), fromwhich λ0 is seen as the ‘surface tension’ multiplied by the
‘mobility’ of the interface; see Appendix of El Kettani et al. [21]. We remark, in the case
of Glauber+Kawasaki dynamics, or for independent particles, the speed λ0 = 1 is not
affected by the microscopic rates. See also derivations in [15] with respect to Glauber
dynamics with Kac type long range mean field interactions.

The discretized hydrodynamic equation, or discretized Allen–Cahn PDE,

∂t u
N = �N ϕ(uN ) + K f (uN ), (1.5)

with discrete Laplacian �N [see (2.18)], plays a role to cancel the first order terms in
the occupation numbers in the computation of the time derivative of the relative entropy
of the law of the microscopic configuration at time t with respect to a local equilibrium
measure with average profile given by uN . But, in the present situation, the problem
is more complex than say in the application to Glauber+Kawasaki dynamics since we
need to handle nonlinear functions of occupation numbers, which do not appear in
the Glauber+Kawasaki process, by replacing them by linear ones. Once this is done,
in a quantified way, the relative entropy can be suitably estimated, yielding that the
microscopic configuration on T

d
N is ‘near’ the values uN .

The replacement scheme, a type of ‘quantified’ second-order estimate or ‘Boltzmann–
Gibbs principle, takes on here an important role. This estimate, in comparison with a
related bound for Kawasaki+Glauber systems in [28], seems to hold in more generality,
and its proof is quite different. In particular, the technique used in [28] does not seem to
apply for Glauber+Zero-range processes, relying on the structure of the Kawasaki gener-
ator. Moreover, as a byproduct of the ‘quantified’ second order estimate here, the form of
the discretized hydrodynamic equation found turns out to satisfy a comparison theorem
without any additional assumptions, such as the assumption (A3) for the creation and
annihilation rates in [28]. This is another advantage of our Boltzmann–Gibbs princi-
ple, beyond its more general validity (cf. Remark 2.1). We remark, in passing, different
‘quantitative’ replacement estimates, in other settings, have been recently considered
[19,32]. See also in this context the non-quantitative estimates in [30,31,33].



1178 P. El Kettani, T. Funaki, D. Hilhorst, H. Park, S. Sethuraman

1.5. Outline of the paper. The outline of the paper is as follows: In Sect. 2, we introduce
Glauber+Zero-range process in detail. In particular, we describe a class of invariant
measures νρ [cf. (2.2)], and a spectral gap assumption (SP) for the Zero-range part, and
then specify a proper choice of the creation and annihilation rates for the Glauber part,
favoring two levels of mass density [cf. (2.12) and (2.12)], so that the corresponding
macroscopic reaction function f satisfies a form of balanced bistability, matched to the
nonlinear diffusion term �ϕ(u) obtained from the Zero-range part [cf. condition (BS)].

Our main result on the direct passage from the microscopic system to the continuum
interface flow is formulated in Theorem 2.1. Its proof, given in Sect. 2.3, relies on two
theorems: Theorem 2.2, which is probabilistic, stating that the microscopic system is
close to that of a discretized reaction-diffusion equation, and Theorem 2.3, which is
PDE related, stating that the discrete PDE evolution is close to the continuum interface
flow. Theorem 2.2 follows as a combination of the relative entropy method developed
in Sect. 4 and a Boltzmann–Gibbs principle stated in Sect. 3.4 and proved in Sect. 7. On
the other hand, Theorem 2.3 is shown via PDE arguments for the sharp interface limit
in terms of ‘generation’ and ‘propagation’ of the interface phenomena, in Sect. 6.

In Sect. 3, we develop, in addition to stating the Boltzmann–Gibbs principle, some
preliminary results for the discrete PDE, namely a comparison theorem, a priori energy
estimates, and L∞-bounds on discrete derivatives due to Nash and Schauder estimates
shown in [27].

In Sect. 4, we prove Theorem 2.2, by implementing the method of relative entropy:
We compute the time derivative of the relative entropy of our dynamicsμN

t at time t with
respect to the local equilibrium state νN

t constructed from the solution of the discretized
hydrodynamic Eq. (1.5) or (2.16). As remarked earlier, in the case of Kawasaki dynamics
instead of the Zero-range process, the first order terms appearing in these computations
are all written already in occupation numbers ηx or its normalized variables; see [28]. In
our case, in contrast, nonlinear functions of ηx appear, that is, the jump rate g(ηx ) of the
Zero-range part, as well as reaction rates c±x (η) of the Glauber part. We mention, in [28],
the relative entropymethod of Jara andMenezes [32], a variant of [45], was applied. This
method does not seem to apply for Glauber+Zero-range processes. However, because of
our Boltzmann–Gibbs principle, the original method of Yau [45] turns out to be enough.

The Boltzmann–Gibbs principle with a quantified error is essential in our work to
replace nonlinear functions of ηx , for instance g(ηx ) and those arising from the Glauber
part, by linearizations in terms of the occupation numbers ηx . Its proof is given in Sect. 7.
The argument makes use of time averaging and mixing properties of the Zero-range pro-
cess in the form of a spectral gap condition (SP), verified for a wide variety of rates g.
Nonlinear functions, such as g(ηx ), are estimated by their conditional expectation given
local average densities η�

x = �−d ∑
y:|y−x |≤� ηy . In the standard ‘one-block’ estimate of

Guo-Papanicolaou-Varadhan (cf. [36]), which gives errors of order o(1) without quan-
tification, � is of the order N , and so η�

x is close to the local macroscopic density. Here,
errors multiplied by diverging functions of K need to be controlled, because of the form
of certain terms in the discrete hydrodynamic equation. The idea then is to consider
� = Nα where α > 0 is small, and so η�

x is a type of ‘mesoscopic’ average. The spectral
gap condition (SP) is also an ingredient used to quantify the errors suitably.

The growth of K of order O((log N )σ/2) that we impose is due to the Schauder
estimate [27] for the discrete hydrodynamic equation thatwe formulate in Sect. 3.3. In the
case of theGlauber+Kawasakimodel, a growthorder of O(

√
log N )wasobtained in [28],

afforded by the linear diffusion term in its discrete hydrodynamic equation, as opposed
to the nonlinear one �N ϕ(uN ) which seems not as well behaved. We remark that, in the
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work of Bonaventura [7] and Katsoulakis and Souganidis [34], for Glauber+Kawasaki
processes, K can be of order O(Nβ) for a small β > 0, the difference being that
the method of correlation functions was used instead of relative entropy. This method,
relying on the structure of the Kawasaki model, does not seem to generalize to the
systems considered here.

Finally we explain the PDE part. In Sect. 5.1 we discuss informally our derivation of
the sharp interface limit from Allen–Cahn PDE with nonlinear diffusion. To study the
limit as K ↑ ∞, it is essential to consider the asymptotic expansion of the solution up
to the second order term in K . This plays a role of the corrector in the homogenization
theory and, by the averaging effect for the nonlinear diffusion operator, a constant speed
λ0 arises in the motion by mean curvature,

λ0 =

∫ α+

α−
ϕ′(u)

√
W (u)du

∫ α+

α−

√
W (u)du

(1.6)

and the potential W is defined by

W (u) =
∫ α+

u
f (s)ϕ′(s)ds . (1.7)

We refer also to (5.11) for the other formula for λ0 in terms of surface tension and
mobility of the interface.

Section 5.2 summarizes results obtained in [21] on the ‘generation’ of interface, or
‘initial layer’ property (cf. Theorem 5.1) and the ‘propagation’ of interface, or motion by
mean curvature with a homogenized ‘surface tension-mobility’ speed, for the continuum
Allen–Cahn equation with nonlinear diffusion (cf. Theorem 5.2).

Sections 5.3 and 5.4 give outline of the proof of these two theorems, especially,
recording estimates (cf. Lemmas 5.4 and 5.5) useful to apply for the discrete PDE (1.5).

In Sect. 6, we extend the ‘generation’ and ‘propagation’ of the interface results to
the discrete PDE (1.5) as N ↑ ∞ and K = K (N ) ↑ ∞, in Theorems 6.1 and 6.2, by
employing a comparison argument. Finally, as a consequence, the proof of Theorem 2.3
is completed in Sect. 6.3.

2. Models and Main Results

We now introduce the Glauber+Zero-range model in detail in Sect. 2.1, and state our
main results, Theorems 2.1, 2.2 (probabilistic part) and 2.3 (PDE part), in Sect. 2.2.
Section 2.3 gives a proof of Theorem 2.1 assuming Theorems 2.2 and 2.3.

2.1. Glauber+Zero-range processes. Let Td
N := (Z/NZ)d = {1, 2, . . . , N }d be the

d-dimensional lattice of size N with periodic boundary condition. We consider, on Td
N ,

Glauber+Zero-range processes. The configuration space is XN = {0, 1, 2, . . .}Td
N ≡

Z
T

d
N

+ and its element is denoted by η = {ηx }x∈Td
N
, where ηx represents the number of

particles at the site x . The generator of our process is of the form L N = N 2L Z R +
K LG , where L Z R and LG are Zero-range and Glauber operators, respectively, defined
as follows. Here, K is a parameter, which will later depend on the scaling parameter N .
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Zero-range specification To define the Zero-range part, to avoid degeneracy, let the jump
rate g = {g(k) ≥ 0}k∈Z+ be given such that g(0) = 0 and infk≥1 g(k) > 0. Consider
the symmetric simple Zero-range process with generator, obtained for a function f on
XN ,

L Z R f (η) =
∑

x∈Td
N

∑
e∈Zd :|e|=1

g(ηx ){ f (ηx,x+e) − f (η)}, (2.1)

where η = {ηx }x∈Td
N

∈ XN , |e| = ∑d
i=1 |ei | for e = (ei )

d
i=1 ∈ Z

d and ηx,y ∈ XN for

x, y ∈ T
d
N is defined from η satisfying ηx ≥ 1 by

(ηx,y)z =
⎧⎨
⎩

ηx − 1 when z = x
ηy + 1 when z = y
ηz otherwise,

for z ∈ T
d
N ; η

x,y describes the configuration after one particle at x in η jumps to y.
We remark the case g(k) ≡ k corresponding to the motion of independent particles,

however when g is not linear, the infinitesimal interaction is nontrivial.
The invariant measures of the Zero-range process are translation-invariant product

measures {ν̄ϕ : 0 ≤ ϕ < ϕ∗ := lim infk→∞ g(k)} on XN with one site marginal given
by

ν̄ϕ(k) ≡ ν̄ϕ(ηx = k) = 1

Zϕ

ϕk

g(k)! , Zϕ =
∞∑

k=0

ϕk

g(k)! . (2.2)

Here, g(k)! = g(1) · · · g(k) for k ≥ 1 and g(0)! = 1; see Section 2.3 of [36].

(De) We assume that ρ(ϕ) = ∑∞
k=0 kν̄ϕ(k) diverges as ϕ ↑ ϕ∗, meaning that all

densities 0 ≤ ρ < ∞ are possible in the system.

We denote, for ρ ≥ 0, that

νρ := ν̄ϕ(ρ)

by changing the parameter so that the mean of the marginal is ρ. In fact, ρ and ϕ = ϕ(ρ)

is related by

ρ = ϕ(log Zϕ)′
(
= 1

Zϕ

∞∑
k=0

k
ϕk

g(k)! =: 〈k〉ν̄ϕ

)
.

Also, note that

ϕ = 〈g(k)〉ν̄ϕ

(
:= 1

Zϕ

∞∑
k=1

ϕk

g(k − 1)!

)
.

Moreover, one can compute that ϕ′(ρ) = ϕ(ρ)/Eνρ

[
(η0 − ρ)2

]
> 0, and so ϕ = ϕ(ρ)

is a strictly increasing function.
We observe when g(k) ≡ k that the marginals of νρ are Poisson distributions with

mean ρ. When ak ≤ g(k) ≤ bk for all k ≥ 0 with 0 < a < b < ∞, we have
aρ ≤ ϕ(ρ) ≤ bρ for ρ ≥ 0. When g(k) = 1(k ≥ 1), i.e., g(k) = 1 for k ≥ 1 and 0 for
k = 0, we have ϕ(ρ) = ρ/(1 + ρ) for ρ ≥ 0.

We will need the following condition to use and prove the ‘Boltzmann–Gibbs prin-
ciple’ (cf. proofs of Theorems 2.2 and 3.4).
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(LG) We assume g(k) ≤ Ck for all k ≥ 0 with some C > 0.

Later, we also consider ν̄ϕ and νρ as the product measures on the configuration space

X = Z
Z

d

+ on an infinite lattice Zd instead of Td
N .

Let u : Td
N → [0,∞) be a function.We define the (inhomogeneous) productmeasure

on XN by

νu(·)(η) =
∏

x∈Td
N

νu(x)(ηx ), η = {ηx }x∈Td
N
, (2.3)

with means u(·) = {u(x)}x∈Td
N
over sites in Td

N .
In the sequel, we will assume a certain ‘spectral gap’ bound on the Zero-range op-

erator: let �k = {x ∈ T
d
N : |x | ≤ k} for k ≥ 1 with N large enough. Let L Z R,k be the

restriction of L Z R to �k , that is

L Z R,k f (η) =
∑

|x−y|=1
x,y∈�k

g(ηx )
{

f (ηx,y) − f (η)
}
.

When there are j ≥ 0 particles on �k , the process generated by L Z R,k is an irreducible
continuous-time Markov chain. The operator L Z R,k is self-adjoint with respect to the
unique canonical invariant measure νk, j = νβ

{ · |∑x∈�k
ηx = j

}
; here, νk, j does not

depend on β > 0: Indeed, in terms of a partition function Zk,l ,

νk, j (ηx = k̄x , x ∈ �k) = 1

Zk, j

∏
x∈�k

1

g(k̄x )!

for {k̄x } such that∑x∈�k
k̄x = j . For the operator−L Z R,k , the value 0 is the bottom of

the spectrum. Let gap(k, j) denote the value of the next smallest eigenvalue.

(SP) There exists Cgp > 0 so that gap(k, j)−1 ≤ Cgpk2(1 + j/|�k |)2 for all k ≥ 2
and j ≥ 0.

Such bounds have been shown for Zero-range processes with different jump rates g:

• Suppose there is C , r1 > 0 and r2 ≥ 1 such that g(k) ≤ Ck and g(k +r2) ≥ g(k)+r1
for all k ≥ 0. Then, there is a constant Cgp > 0 such that gap(k, j)−1 ≤ Cgpk2

independent of j [37].
• Suppose g(k) = kγ for 0 < γ < 1. Then, there is aCgp > 0 such that gap(k, j)−1 ≤

Cgpk2(1 + j/|�k |)1−γ [40].
• Suppose g(k) = 1(k ≥ 1). Then, there is a Cgp > 0 such that gap(k, j)−1 ≤

Cgpk2(1 + j/|�k |)2 [38], [37].
We remark that all of these g’s satisfy (De) and (LG).

Glauber specification For Glauber part, we consider the creation and annihilation of a
single particle when a change happens, though it is possible to consider the case that
several particles are created or annihilated at once. Let τx be the shift acting on XN so
that τxη = η·+x for η ∈ XN and τx f (η) = f (τxη) for functions f on XN .

The generator of the Glauber part, obtained for a function f on XN , is given by
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LG f (η) =
∑

x∈Td
N

[
c+x (η){ f (ηx,+) − f (η)} + c−x (η)1(ηx ≥ 1){ f (ηx,−) − f (η)}

]
,

(2.4)

where ηx,± ∈ XN are determined from η ∈ XN by (ηx,±)z = ηx ± 1 when z = x and
(ηx,±)z = ηz when z �= x , note that ηx,− is defined only for η ∈ XN satisfying ηx ≥ 1.
Here, c±x (η) = τx c±(η) and c±(η) are nonnegative local functions on X , that is, those
depending on finitely many {ηx } so that these can be viewed as functions on XN for N
large enough. We assume that c±(η) are written in form

c±(η) = ĉ±(η)ĉ0,±(η0), (2.5)

where ĉ± are functions of {ηy}y �=0 and ĉ0,± are functions of η0 only. Moreover, since the
rate of annihilation at an empty site vanishes, namely c−(η) = c−(η)1(η0 ≥ 1), we may
take ĉ0,−(0) = 0 so that ĉ0,−(η0) = ĉ0,−(η0)1(η0 ≥ 1) and c−(η) = c−(η)1(η0 ≥ 1).
In particular, we may drop 1(ηx ≥ 1) in (2.4), since it is now included in c−x (η) by the
specification that ĉ0,−(0) = 0.

As an example, we may choose

ĉ0,+(η0) = 1

g(η0 + 1)
and ĉ0,−(η0) = 1(η0 ≥ 1) (2.6)

and therefore

c+x (η) = ĉ+x (η)

g(ηx + 1)
and c−x (η) = ĉ−x (η)1(ηx ≥ 1) (2.7)

with ĉ±x (η) = τx ĉ±(η); see (2.12) and (2.12) below with further choices of ĉ±(η).
Glauber+Zero-range specification Let now ηN (t) = {ηx (t)}x∈Td

N
be the Markov

process on XN corresponding to the Glauber+Zero-range generator L N = N 2L Z R +
K LG . The macroscopically scaled empirical measure onTd(= [0, 1)d with the periodic
boundary) associated with η ∈ XN is defined by

αN (dv; η) = 1

N d

∑
x∈Td

N

ηxδ x
N
(dv), v ∈ T

d ,

and we denote

αN (t, dv) = αN (dv; ηN (t)), t ≥ 0.

Define 〈α, φ〉 to be the integral ∫ φdα with respect to test functions φ and measure α on
T

d . Sometimes, when α has a density, α = rdv, we will write 〈r, φ〉 = ∫
φrdv when

the context is clear.
When K is a fixed parameter, one may deduce that a hydrodynamic limit can be

shown: The empirical measure 〈αN (t, dv), φ〉 with φ converges to 〈ρ(t, v)dv, φ〉 as
N → ∞ in probability if initially this limit holds at t = 0, where ρ(t, v) is a unique
weak solution of the reaction-diffusion or ‘nonlinear’ Allen–Cahn equation,

∂tρ = �ϕ(ρ) + K f (ρ), v ∈ T
d , (2.8)
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with an initial value ρ0(x) = ρ(0, x). Here, functions ϕ and f are defined by

ϕ(ρ) ≡ g̃(ρ) = Eνρ [g(η0)], (2.9)

f (ρ) ≡ c̃+(ρ) − c̃−(ρ) = Eνρ [c+(η)] − Eνρ [c−(η)], (2.10)

respectively, where Eνρ is expectation with respect to νρ . As noted earlier, ϕ is an
increasing function since ϕ′(ρ) = ϕ(ρ)/Eνρ [(η0 − ρ)2] > 0.

More generally, we denote the ensemble averages of local functions h = h(η) on X
under νρ by

h̃(ρ) ≡ 〈h〉νρ := Eνρ [h], ρ ≥ 0.

It is known that h̃ is C∞-smooth, and so in particular both ϕ, f ∈ C∞.
Such hydrodynamic limits, and our later results do not depend on knowledge of the

invariant measures of the Glauber+Zero-range process. Indeed, when the process rates
are irreducible, there is a unique invariant measure, but it is not explicit. See [20] for
some discussion in infinite volume about these measures.

We now impose the following assumptions on the rates c±:
(P) c±(η) ≥ 0.
(BR) ‖c+(η)g(η0 + 1)‖L∞ < ∞ and ‖c−(η0,+)g−1(η0 + 1)‖L∞ < ∞.
(BS) f is a ‘bistable’ function with three zeros at α−, α∗, α+ such that 0 < α− <

α∗ < α+, f ′(α−) < 0, f ′(α∗) > 0 and f ′(α+) < 0. Also, the ‘ϕ-balance’ condition∫ α+
α− f (ρ)ϕ′(ρ)dρ = 0 holds.

The first assumption (P) was already mentioned. We mention, under the choice (2.6),
since g(k) ≥ C0 > 0 for k ≥ 1, (BR) is implied by

‖ĉ±(η)‖L∞ < ∞.

Note also that ϕ(ρ) = ρ for the linear Laplacian so that ϕ′(ρ) = 1, in which case the
‘ϕ-balance’ condition is the more familiar ‘balance’ condition

∫ α+
α− f (ρ)dρ = 0.

An example of the rates c±(η) and the corresponding reaction term f (ρ) determined
by (2.10) is the following. Define, with respect to (2.6) and (2.7), that

c+(η) = C

g(η0 + 1)

{
(a− + a∗ + a+)1(ηe1 ≥ 1)1(ηe2 ≥ 1) + a−a∗a+

}
, (2.11)

c−(η) = C

g(ηe3 + 1)

{
1(ηe1 ≥ 1)1(ηe2 ≥ 1) + (a−a∗ + a−a+ + a∗a+)

}
1(η0 ≥ 1),

(2.12)

where C > 0 and a−, a+, a∗ > 0. Here, e1, e2, e3 ∈ Z
d are distinct points not equal to

0 ∈ Z
d . In this case, setting r(ρ) = Eνρ [1(η0 ≥ 1)] and v(ρ) = Eνρ [g(η0 + 1)−1] =

r(ρ)/ϕ(ρ), we have

f (ρ) = −Cv(ρ)(r(ρ) − a−)(r(ρ) − a∗)(r(ρ) − a+),

which has three zeros since r(ρ) is strictly increasing from 0 to 1 as ρ increases from 0
to ∞.

One can find 0 < a− < a∗ < a+ < 1 so that
∫ α+
α− f (ρ)ϕ′(ρ)dρ = 0, where

α± = r−1(a±). Indeed, take 0 < a− < a+ < 1 arbitrarily and observe that this integral
is negative if a∗ ∈ (a−, a+) is close to a+, while it is positive if a∗ is close to a−. Hence,
the rates c± satisfy conditions (P), (BR) and (BS).
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2.2. Main results. Let now μN
0 be the initial distribution of ηN (0) on XN . Let also

{uN (0, x)}x∈Td
N
be a collection of nonnegative values and consider the inhomogeneous

product measure νN
0 := νuN (0,·) defined by (2.3).

We make the following assumptions on {uN (0, x)}x∈Td
N
:

(BIP1) u− ≤ uN (0, x) ≤ u+ for some 0 < u− < u+.
(BIP2) uN (0, x) = u0(

x
N ), x ∈ T

d
N with some u0 ∈ C5(Td). Further, �0 := {v ∈

T
d; u0(v) = α∗} is a (d − 1)-dimensional C5+θ , θ > 0, hypersurface in T

d without
boundary such that ∇u0 is non-degenerate to the normal direction to �0 at every
point v ∈ �0. Also, u0 > α∗ in D+

0 and u0 < α∗ in D−
0 where D±

0 are the regions
separated by �0.

Consider a family of closed smooth C5+θ , θ > 0, hypersurfaces {�t }t∈[0,T ] in T
d ,

without boundary, whose evolution is governed by a ‘homogenized’ mean curvature
motion:

(P 0)

{
V = λ0κ on �t

�t
∣∣
t=0 = �0 ,

(2.13)

where V is the normal velocity of �t from the α−-side to the α+-side defined below, κ is
the mean curvature at each point of �t multiplied by d − 1, the constant λ0 = λ0(ϕ, f )

is given by (1.6).
In the linear case of independent particles, that is when g(k) ≡ k and so ϕ(u) ≡ u,

we recover the value λ0 = 1. Here, T > 0 is the time such that the �t is smooth for
t ≤ T . If �0 is smooth, such a T > 0 always exists; see Sect. 5.1.

We comment that the full C5+θ strength of the smoothness assumption (BIP2) is used
only in Sect. 6.2 with respect to ‘propagation of a discrete interface’.

Denote

χ�t (v) =
{

α− for v on one side of �t
α+ for v on the other side of �t .

(2.14)

These sides are determined by how u0 is arranged with respect to �0, and then continu-
ously kept in time for �t .

We will also denote by Pμ and Eμ the process measure and expectation with respect
to ηN (·) starting from initial measure μ. When μ = μN

0 , we will call PμN
0

= PN and
EμN

0
= EN . Let also Eμ denote expectation with respect to measure μ.

Recall that the relative entropy between two probability measures μ and ν on XN is
given as

H(μ|ν) :=
∫
XN

dμ

dν
log

dμ

dν
dν.

The main result of this article is now formulated as follows.

Theorem 2.1. Suppose d ≥ 2 and the assumptions (De), (LG), (SP), (P), (BR), (BS)
stated in Sect. 2.1 and (BIP1), (BIP2). Suppose also that the relative entropy at t = 0
behaves as

H(μN
0 |νN

0 ) = O(N d−ε)
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as N ↑ ∞, where ε > 0. Suppose further that K = K (N ) ↑ ∞ as N ↑ ∞ and satisfies
1 ≤ K (N ) ≤ δ(log N )σ/2, with respect to small δ = δ(ε, T ), where σ ∈ (0, 1) is the
Hölder exponent determined by a Nash estimate; see Theorem 3.3.

Then, for 0 < t ≤ T , ε > 0 and φ ∈ C∞(Td), we have that

lim
N→∞PN

(∣∣〈αN (t), φ〉 − 〈χ�t , φ〉
∣∣ > ε

)
= 0. (2.15)

As we will see in Theorem 6.2, the macroscopic width of the interface is O(K−1/2).
Our result (2.15) shows that, apart from this area, the local particle density, that is the
local empirical average of particles’ number, is close to either α− or α+. In other words,
the whole domain is separated into sparse or dense regions of particles and the interface
�t separating these two regions move macroscopically according to the motion by mean
curvature (P0).

Remark 2.1. In [7,34], the growth condition for K was K = O(Nβ) for a small power
β > 0, whereas in [28], the growth condition was K ≤ δ0

√
log N . The condition here

on K is worse primarily due to the nonlinearity of the Zero-range rates.

The proof of Theorem 2.1 is given in two main parts. The first part establishes that
the microscopic evolution is close to a discrete PDE motion through use of the relative
entropy method and the Boltzmann–Gibbs principle, Theorem 2.2. The second part
shows that the discrete PDE evolution converges to that of the ‘homogenized’ mean
curvature flow desired, Theorem 2.3.

To state Theorem 2.2, let uN (t, ·) = {uN (t, x)}x∈Td
N
be the nonnegative solution of

the discretized hydrodynamic equation (1.5), that is,

∂t u
N (t, x) =

d∑
i=1

�N
i {ϕ(uN (t, x))} + K f (uN (t, x)), (2.16)

with initial values uN (0, ·) = {uN (0, x)}x∈Td
N
, where

�N
i ϕ(u(x)) := N 2 (ϕ(u(x + ei )) + ϕ(u(x − ei )) − 2ϕ(u(x))) , (2.17)

where u(·) = {u(x)}x∈Td
N
and {ei }d

i=1 are standard unit basis vectors of Zd . Recall also
that ϕ and f are functions given by (2.9) and (2.10), respectively. We will later denote

�N =
d∑

i=1

�N
i . (2.18)

Let νN
t = νuN (t,·) be the inhomogeneous product measure with Zero-range marginals

defined by (2.3) from uN (t, ·) for t ≥ 0.
The next theorem shows that the ‘microscopic motion is close to the discretized

hydrodynamic equation’. We note this result holds in all d ≥ 1.

Theorem 2.2. Suppose d ≥ 1 and let μN
t be the distribution of ηN (t) on XN . Suppose

all conditions in Sect. 2.1 and that (BIP1) holds with respect to uN (0) and the initial
measure μN

0 is such that

H(μN
0 |νN

0 ) = O(N d−ε)
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as N → ∞ for some ε > 0. Then, when K = K (N ) is a sequence as in the statement
of Theorem 2.1, we have, for an 0 < ε1 = ε1(ε, d), that

H(μN
t |νN

t ) = O(N d−ε1)

for t ∈ [0, T ] as N → ∞.

We comment that ε1 can be taken as ε1 = (ε0 ∧ ε)/2 where ε0 = 2d/(9d + 2).
We now capture the behavior of uN (t) as N ↑ ∞ in terms of the motion by mean

curvature (P0) when d ≥ 2. Define the step function

uN (t, v) =
∑

x∈Td
N

uN (t, x)1B( x
N , 1

N )(v), v ∈ T
d , (2.19)

where B( x
N , 1

N ) = ∏d
i=1[ xi

N − 1
2N ,

xi
N + 1

2N ) is a box with center x
N , x = (xi )

d
i=1, and

side length 1
N . The following theorem is shown in Sect. 6.3.

Theorem 2.3. Let d ≥ 2 and assume (BS), (BIP1) and (BIP2). Then, for v �∈ �t and
t ∈ (0, T ], we have that

lim
N→∞ uN (t, v) = χ�t (v).

2.3. Proof of Theorem 2.1. As we mentioned, Theorem 2.1 is shown mainly as a com-
bination of Theorems 2.2 and 2.3. To make this precise, define, for ε > 0 and a test
function φ ∈ C∞(Td), the event

Aε
N ,t = {η ∈ XN ; |〈αN , φ〉 − 〈uN (t, ·), φ〉| > ε}.

Proposition 2.4. There exists C = C(ε) > 0 such that

νN
t (Aε

N ,t ) ≤ e−C N d
.

Proof. Write

〈αN , φ〉 − 〈uN (t, ·), φ〉 = 1

N d

∑
x∈Td

N

(ηx − uN (t, x))φ(x/N ) + o(1).

Under νN
t , the variable ηx has mean uN (t, x) and a variance σ 2

x,t in terms of uN (t, x).
Under the condition (BIP1), by the comparison Lemma 3.1, we have that uN (t, ·), and
so also σ 2

x,t , is uniformly bounded away from 0 and ∞.
The desired bound, sinceφ is uniformly bounded, follows from a standard application

of exponential Markov inequalities. ��
Now note that the entropy inequality, for an event A, gives

μN
t (A) ≤ log 2 + H(μN

t |νN
t )

log{1 + 1/νN
t (A)} .

Combined with Proposition 2.4 and the relative entropy Theorem 2.2, we have that

lim
N→∞μN

t (Aε
N ,t ) = 0.

However, the discrete PDE convergence Theorem 2.3 shows that 〈uN (t, ·), φ〉 →
〈χ�t , φ〉 as N ↑ ∞, finishing the proof of Theorem 2.1.
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3. Comparison, a Priori Estimates, and a ‘Boltzmann–Gibbs’ Principle

Let uN (t, ·) = {uN (t, x)}x∈Td
N
be the nonnegative solution of the discretized hydrody-

namic equation (2.16) or (1.5) with given sequence 1 ≤ K = K (N ). In this section, we
do not impose a growth condition on K = K (N ), stating results in terms of K .

3.1. Comparison theorem. The Eq. (2.16) satisfies a comparison theorem; cf. [27], Sec-
tion 2.5. We will say that profiles u(·) = (ux )x∈Td

N
and v(·) = (vx )x∈Td

N
are ordered

u(·) ≥ v(·) when uy ≥ vy for all y ∈ T
d
N .

We say that u+(t, ·) and u−(t, ·) are super and sub solutions of (2.16), if u+ and u−
satisfy (2.16) with “≥” and “≤” instead of “=” respectively.

Lemma 3.1. Suppose initial conditions u−(0, ·) ≤ u+(0, ·). Then, the corresponding
super and sub solutions u+(t, ·) and u−(t, ·) to the discrete PDE (2.16), for all t ≥ 0,
satisfy

u−(t, ·) ≤ u+(t, ·).

Furthermore, suppose (BIP1) holds: u− ≤ uN (0, x) ≤ u+ for some 0 < u− < u+ <

∞. Then, for t ≥ 0 and x ∈ T
d
N , we have

u− ∧ α− ≤ uN (t, x) ≤ u+ ∨ α+.

Proof. Assume that u+(t, ·) ≥ u−(t, ·) and u−(t, x) = u+(t, x) holds at some space-
time point (t, x). Then, since the reaction term f cancels, and ϕ is an increasing function,
we have

∂t (u
+ − u−)(t, x) ≥ �N {ϕ(u+) − ϕ(u−)}(t, x) + K

(
f (u+(t, x)) − f (u−(t, x))

)
= N 2

∑
±ei

{
(ϕ(u+) − ϕ(u−))(t, x ± ei ) − (ϕ(u+) − ϕ(u−))(t, x)

}

= N 2
∑
±ei

{ϕ(u+) − ϕ(u−)}(t, x ± ei ) ≥ 0.

This implies ∂t (u+ − u−)(t, x) ≥ 0 and shows that u−(t) can not exceed u+(t) for all
t > 0.

In particular, if we take u+(0, x) ≡ u+ ∨ α+, then by the condition (BS), the solution
u+(t, ·) with this initial datum is decreasing in t so that we obtain uN (t, ·) ≤ u+(t, ·) ≤
u+ ∨ α+. We can similarly show uN (t, ·) ≥ u− ∧ α−. ��

3.2. A priori estimates. Define for {ux = u(x)}x∈Td and 1 ≤ i ≤ d,

∇N
i u(x) = N

(
u(x + ei ) − u(x)

)
, and

∇N u(x) = (∇N
i u(x)

)d
i=1.
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Lemma 3.2 (cf. [27], Sect. 4.4). Suppose bounds (BIP1) hold for uN (0, ·). Then, for a
constant C > 0, we have

1

2

∑
x∈Td

N

uN (t, x)2 + c0

∫ T

0

∑
x∈Td

N

|∇N uN (t, x)|2dt ≤ 1

2

∑
x∈Td

N

uN (0, x)2 + C K T N d ,

where c0 := infρ>0 ϕ′(ρ) > 0 (see [36], p. 30), and as a consequence

N 2

�2

1

N d

∫ T

0

∑
x∈Td

N

( 1

(2� + 1)d

∑
|z−x |≤�

uN (t, z) − uN (t, x)
)2

dt ≤ C K T

c0
, (3.1)

where |x | =∑d
i=1 |xi | for x = (xi )

d
i=1 ∈ Z

d .

Proof. Recall uN (t, ·) is the solution of (2.16). By Lemma 3.1, we have that uN (t, ·) is
between u∗− = u− ∧ α− and u∗

+ = u+ ∨ α+ uniformly in time. Since ϕ′(u) ≥ c0 > 0
and f (u) is bounded for u between u∗− and u∗

+, we have by the mean-value theorem that

1
2∂t

∑
x∈Td

N

uN (t, x)2 =
∑

x∈Td
N

uN (t, x)
(
�N ϕ(uN (t, x)) + K f (uN (t, x))

)

= −
∑

x∈Td
N

d∑
i=1

∇N
i uN (t, x)∇N

i ϕ(uN (t, x))

+ K
∑

x∈Td
N

uN (t, x) f (uN (t, x))

≤ −c0
∑

x∈Td
N

d∑
i=1

|∇N
i u(t, x)|2 + C K N d .

Integrating in time gives the first inequality in the lemma. The second inequality now
follows from the first, utilizing Jensen’s inequality and the relation (a1 + · · · + a j )

2 ≤
j (a2

1 + · · · + a2
j ). ��

3.3. L∞-Estimates on discrete derivatives. We next state the L∞-estimates for the
(macroscopic) discrete derivatives of the solution uN (t, x) of (2.16). We define the
norm ‖uN‖Cn

N
for uN = {uN (x)}x∈Td

N
and n = 0, 1, 2, . . . by

‖uN‖Cn
N
=

n∑
k=0

∑
1≤i1,...,ik≤d

max
x∈T d

N

|∇N
ik

· · · ∇N
i1 uN (x)|

where for n = 0 the norm reduces to ‖uN‖L∞(Td
N ). The following Schauder estimate

is shown in [27] for quasilinear discrete PDEs. The constant σ ∈ (0, 1) appears as the
Hölder exponent in Nash estimate; see [27] for details. Note that we described uN (x)

or uN (t, x) as uN ( x
N ) or uN (t, x

N ) in [27] by using macroscopic spatial variables x
N

instead of microscopic ones x , but these two descriptions are equivalent.
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Theorem 3.3. Suppose ‖uN (0)‖C4
N
≤ C0 and condition (BIP1): 0 < u− ≤ uN (0, x) ≤

u+ < ∞ for all x ∈ T
d
N . Then, we have

‖uN (t)‖C2
N
≤ C K 2/σ , (3.2)

for all t ∈ [0, T ] and some C > 0.
In particular, we have

‖�N ϕ(uN (t, ·))‖L∞(Td
N ) ≤ C K 2/σ . (3.3)

We note that ‖uN (0)‖C4
N

≤ C0 holds under the condition (BIP2): uN (0, x) =
u0(x/N ) and u0 ∈ C5(Td).

3.4. A ‘Boltzmann–Gibbs’ principle. For a local function h = h(η), with support in a
finite box denoted �h ⊂ T

d
N , and parameter β ≥ 0, let

h̃(β) = Eνβ [h].
In this section, we suppose that the function h satisfies, in terms of constants C1, C2, the
bound

|h(η)| ≤ C1

∑
y∈�h

ηy + C2. (3.4)

With respect to an evolution {uN (t, x)}x∈Td
N
satisfying the discrete PDE (2.16), let

fx (η) = τx h(η) − h̃(uN (t, x)) − h̃′(uN (t, x))
(
ηx − uN (t, x)

)
. (3.5)

Recall that PN is the underlying process measure governing ηN (·) starting from μN
0

and μN
t is the distribution of ηN (t) for t ≥ 0. Recall K = K (N ) ≥ 1 for N ≥ 1 is

speed of the Glauber jumps in the process ηN (·) with generator L N . We will not impose
a growth condition here on K but state results in terms of K .

Recall νN
t = νuN (t,·), defined below (2.18).

We now state a so-called ‘Boltzmann–Gibbs’ principle, under the relative entropy
assumption H(μN

0 |νN
0 ) = O(N d), weaker than the one assumed for Theorem 2.2. It is

a ‘second-order’ estimate valid in d ≥ 1 with a remainder given in terms of a relative
entropy term and a certain error.

Theorem 3.4. Suppose bounds (BIP1) hold for the initial values {uN (0, x)}x∈Td
N

, and

the initial relative entropy H(μN
0 |νN

0 ) = O(N d). Suppose {at,x : x ∈ T
d
N , t ≥ 0} are

non-random coefficients with uniform bound

sup
x∈Td

N ,t≥0

|at,x | ≤ M. (3.6)

Then, there exist ε0, C > 0 such that

EN

∣∣∣∣∣∣∣
∫ T

0

∑
x∈Td

N

at,x fx dt

∣∣∣∣∣∣∣
≤ O(M K T N d−ε0) + C M

∫ T

0
H(μN

t |νN
t ) dt. (3.7)

Moreover, we may take ε0 = 2d/(9d + 2).
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The proof of Theorem 3.4 is given in Sect. 7.

Remark 3.1. We remark that this proof relies on the form of the discrete PDE (2.16) only
in that uN satisfies the statements in Lemmas 3.1 and 3.2.

4. Microscopic Motion is Close to the ‘Discrete PDE’: Proof of Theorem 2.2

Recall the Glauber+Zero-range process ηN (t) generated by L N = N 2L Z R + K (N )LG ,
where K = K (N ). For a function f on XN and a measure ν on XN , set

DN ( f ; ν) = 2N 2DZ R( f ; ν) + KDG( f ; ν),

where

DZ R( f ; ν) = 1

4

∑
|x−y|=1

x,y∈Td
N

∫
XN

g(ηx ){ f (ηx,y) − f (η)}2dν,

DG( f ; ν) =
∑

x∈Td
N

∫
XN

c+x (η){ f (ηx,+) − f (η)}2 + c−x (η){ f (ηx,−) − f (η)}2dν,

(4.1)

and recall c−x (η) = 0 when ηx = 0.
RecallμN

t is the law of ηN (t) onXN and νN
t = νuN (t,·). Letm be a reference measure

on XN with full support in XN . Define

ψ N
t := dνN

t

dm
.

In general, we denote the adjoint of an operator L on L2(νN
t ) by L∗,νN

t .
We now state an estimate for the derivative of relative entropy. Such estimates go

back to the work of Guo–Papanicolaou–Varadhan (cf. [36]) and Yau [45]. A more recent
bound is the following; see [26,28,32] for a proof.

Proposition 4.1.

d

dt
H(μN

t |νN
t ) ≤ −DN

⎛
⎝
√

dμN
t

dνN
t

; νN
t

⎞
⎠ +

∫
XN

(L
∗,νN

t
N 1− ∂t logψ N

t )dμN
t .

We remark that in our later development we need only the inequality, originally
derived in [45], where the Dirichlet form term is dropped:

d

dt
H(μN

t |νN
t ) ≤

∫
XN

(L
∗,νN

t
N 1− ∂t logψ N

t )dμN
t . (4.2)

To control the relative entropy H(μN
t |νN

t ) we will develop a bound of the right-hand
side of (4.2) in the following subsection. With the aid of these bounds, which use a
‘Boltzmann–Gibbs’ estimate shown in Sect. 7, we later give a proof of Theorem 2.2 in
Sect. 4.2.
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4.1. Computation of L
∗,νN

t
N 1 − ∂t logψ N

t (η). We first formulate a few lemmas in the
abstract. Let {u(x) ≥ 0}x∈Td

N
be given and let ν = νu(·) be the product measure given

as in (2.3). Recall that �N
i and �N are defined in (2.17) and (2.18), respectively.

Lemma 4.2. We have

L∗,ν
Z R1 =

∑
x∈Td

N

N−2(�N ϕ)(u(x))

ϕ(u(x))
g(ηx )

=
∑

x∈Td
N

N−2(�N ϕ)(u(x))

ϕ(u(x))
{g(ηx ) − ϕ(u(x))}.

Proof. Similar computations results are found in [36], pp. 120–121. Take any f = f (η)

on XN as a test function and compute

∫
L∗,ν

Z R1 · f dν =
∫

L Z R f dν

=
∑

x∈Td
N

∑
|e|=1

∑
η∈XN

g(ηx ){ f (ηx,x+e) − f (η)}ν(η).

Then, by fixing x, e and making change of variables ζ = ηx,x+e, we have

∑
η

g(ηx ) f (ηx,x+e)ν(η) =
∑
ζ

g(ζx + 1) f (ζ )ν(ζ x+e,x ).

However, since

ν(ζ x+e,x ) = νu(x+e)(ζx+e − 1)

νu(x+e)(ζx+e)

νu(x)(ζx + 1)

νu(x)(ζx )
ν(ζ )

= g(ζx+e)

ϕ(u(x + e))

ϕ(u(x))

g(ζx + 1)
ν(ζ ),

we obtain

L∗,ν
Z R1 =

∑
x,e

{
ϕ(u(x))

ϕ(u(x + e))
g(ηx+e) − g(ηx )

}

=
∑
x,e

{
ϕ(u(x − e))

ϕ(u(x))
− 1

}
g(ηx ) =

∑
x

N−2(�N ϕ)(u(x))

ϕ(u(x))
g(ηx ).

The last equality follows by noting that
∑

x (�
N ϕ)(u(x)) = 0. ��

Lemma 4.3. We have

L∗,ν
G 1 =

∑
x∈Td

N

{
c+x (ηx,−)

g(ηx )

ϕ(u(x))
+ c−x (ηx,+)

ϕ(u(x))

g(ηx + 1)
− c+x (η) − c−x (η)

}
.
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Proof. Taking any f = f (η) on XN , we have

∫
L∗,ν

G 1 · f dν =
∫

LG f dν

=
∑

x∈Td
N

∑
η∈XN

{
c+x (η){ f (ηx,+) − f (η)} + c−x (η)1(ηx ≥ 1){ f (ηx,−) − f (η)}

}
ν(η)

Then, by making change of variables ζ = ηx,±, we have
∑
η

c+x (η) f (ηx,+)ν(η) =
∑
ζ

c+x (ζ x,−)1(ζx ≥ 1) f (ζ )ν(ζ x,−),

∑
η

c−x (η)1(ηx ≥ 1) f (ηx,−)ν(η) =
∑
ζ

c−x (ζ x,+) f (ζ )ν(ζ x,+).

However, since

ν(ζ x,−)1(ζx ≥ 1) = 1(ζx ≥ 1)
νu(x)(ζx − 1)

νu(x)(ζx )
ν(ζ ) = g(ζx )

ϕ(u(x))
ν(ζ ),

ν(ζ x,+) = νu(x)(ζx + 1)

νu(x)(ζx )
ν(ζ ) = ϕ(u(x))

g(ζx + 1)
ν(ζ ),

we obtain

L∗,ν
G 1 =

∑
x

{
c+x (ηx,−)

g(ηx )

ϕ(u(x))
+ c−x (ηx,+)

ϕ(u(x))

g(ηx + 1)
− c+x (η) − c−x (η)1(ηx ≥ 1)

}
.

Finally, by our convention with respect to c−x , we have that c−x (η)1(ηx ≥ 1) = c−x (η). ��
Example 4.1. If we choose c±x (η) as in (2.7), noting that ĉ±x (η) do not depend on ηx , we
have Lν,∗

G 1 equals

∑
x∈Td

N

ĉ+x (η)

(
1(ηx ≥ 1)

ϕ(u(x))
− 1

g(ηx + 1)

)
+
∑

x∈Td
N

ĉ−x (η)

(
ϕ(u(x))

g(ηx + 1)
− 1(ηx ≥ 1)

)
.

Lemma 4.4. Now we take u(·) = {uN (t, x)}x∈Td
N

. Then, we have

∂t logψ N
t (η) =

∑
x∈Td

N

∂tϕ(uN (t, x))

ϕ(uN (t, x))
(ηx − uN (t, x)).

Proof. Since

ψ N
t (η) = νuN (t,·)(η)

m(η)
=
∏

x νuN (t,x)(ηx )

m(η)
,

we have

∂t logψ N
t (η) =

∑
x∈Td

N

∂tνuN (t,x)(ηx )

νuN (t,x)(ηx )
.
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Here,

∂tνuN (t,x)(k) = ∂t

(
1

Zϕ(uN (t,x))

ϕ(uN (t, x))k

g(k)!

)

= 1

Zϕ(uN (t,x))

kϕ(uN (t, x))k−1

g(k)! ∂tϕ(uN (t, x))

−
Z ′

ϕ(uN (t,x))
∂tϕ(uN (t, x))

Z2
ϕ(uN (t,x))

ϕ(uN (t, x))k

g(k)!

= νuN (t,x)(k)∂tϕ(uN (t, x))
1

ϕ(uN (t, x))
(k − uN (t, x)),

where we have used the formula ∂
∂ϕ

log Zϕ = ρ/ϕ. This shows the conclusion. ��
These three lemmas, combined with the comparison estimates, discrete derivative

bounds, and Boltzmann–Gibbs principle in Sect. 3, are the main ingredients for the
following theorem.

Theorem 4.5. Suppose uN (t, x) satisfies (2.16), with K ≥ 1. Then, there are ε0, C > 0
such that ∫ T

0

∫
XN

{
L
∗,νN

t
N 1− ∂t logψ N

t

}
dμN

t dt

≤ C K 2/σ
∫ T

0
H(μN

t |νN
t )dt + O

(
K 1+2/σ N d−ε0

)
.

Proof. By Lemmas 4.2–4.4, we have L
∗,νN

t
N 1− ∂t logψ N

t equals

∑
x

(�N ϕ)(uN (t, x))

ϕ(uN (t, x))
{g(ηx ) − ϕ(uN (t, x))}

+ K
∑

x∈Td
N

{
c+x (ηx,−)

g(ηx )

ϕ(uN (t, x))
− c+x (η) + c−x (ηx,+)

ϕ(uN (t, x))

g(ηx + 1)
− c−x (η)1(ηx ≥ 1)

}

−
∑

x∈Td
N

∂tϕ(uN (t, x))

ϕ(uN (t, x))
(ηx − uN

x (t)). (4.3)

First, let h0(η) = g(η0) in (3.5). By the assumption (LG), h0 satisfies the bound in
(3.4). Observe that h̃0(β) ≡ Eνβ [h0] = ϕ(β) for β ≥ 0, whence fx (η) = g(ηx ) −
ϕ(uN (t, x)) − ϕ′(uN (t, x))

(
ηx − uN (t, x)

)
.

Let now a0
t,x = �N ϕ(uN (t, x)/ϕ(uN (t, x)). Since uN is bounded between u− ∧ α−

and u+ ∨ α+ according to Lemma 3.1, ϕ(uN (t, x)) is uniformly bounded away from 0.
Also, by Theorem 3.3, we have the estimate ‖�N ϕ(uN (t, ·))‖L∞ = O(K 2/σ ). Then,
we conclude that ‖a0(t, ·)‖L∞ = O(K 2/σ ).

Therefore, by the Boltzmann–Gibbs principle (Theorem 3.4), applied with h0 and
a0

t,x , we obtain that

EN

∣∣∣
∫ T

0

∑
x∈Td

N

(�N ϕ)(uN (t, x))

ϕ(uN (t, x))

(
g(ηx (t)) − ϕ(uN (t, x))

)
dt
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−
∫ T

0

∑
x∈Td

N

(�N ϕ)(uN (t, x))

ϕ(uN (t, x))
ϕ′(uN (t, x))

(
ηx (t) − uN (t, x)

)
dt
∣∣∣

≤ C K 2/σ
∫ T

0
H(μN

t |νN
t )dt + O(K 1+2/σ N d−ε0).

Secondly, let h1(η) = c−(η0,+)/g(η0+1) anda1
t,x = Kϕ(uN (t, x)), and also h2(η) =

c−(η)1(η0 ≥ 1) and a2
t,x = K . Note that h1(η) is bounded by assumption (BR), and

h2(η) = (c−(η)/g(η0)
)
g(η0) is bounded byCη0 by assumptions (BR) and (LG). Hence,

h1 and h2 both satisfy condition (3.4). Also, by Lemma 3.1, ‖a j
t,x‖L∞ = O(K ) for

j = 1, 2.
Observe that

h̃1(β) =
˜( c−(η0,+)

g(η0 + 1)

)
(β) ≡ Eνβ

[
c−(η0,+)

g(η0 + 1)

]

= 1

ϕ(β)
Eνβ [c−(η)1(η0 ≥ 1)] = h̃2(β)

ϕ(β)
. (4.4)

Indeed, recall c−(η) = ĉ−(η)ĉ0,−(η0) where ĉ− does not depend on η0. Then,

Eνβ [c−(η0,+)g(η0 + 1)−1] = Eνβ [ĉ−(η)]Eνβ [ĉ0,−(η0 + 1)g(η0 + 1)−1].

The factor Eνβ [ĉ0,−(η0 + 1)g(η0 + 1)−1] is rewritten as

1

Zϕ

∞∑
k=0

ĉ0,−(k + 1)

g(k + 1)

ϕk

g(k)! = 1

Zϕ

ϕ−1
∞∑

k=0

ϕk+1

g(k + 1)! ĉ
0,−(k + 1)

= ϕ−1 1

Zϕ

∞∑
k=0

ĉ0,−(k)1(k ≥ 1)
ϕk

g(k)! = 1

ϕ
Eνβ [ĉ0,−(η0)1(η0 ≥ 1)],

where ϕ = ϕ(β). This shows (4.4) by noting the independence of ĉ−(η) and functions
of η0 under νβ .

We also have

h̃′
1(β) = d

dβ

( h̃2(β)

ϕ(β)

)
, and h̃′

2(β) = d

dβ

( h̃2(β)

ϕ(β)

)
ϕ(β) +

( h̃2(β)

ϕ(β)

)
ϕ′(β).

We may form the corresponding f ’s in (3.5) with respect to h1 and h2 at β = uN (t, x).
By the Boltzmann–Gibbs principle, Theorem 3.4, applied separately to pairs h1, a1

t,x ,
and h2, a2

t,x , and then subtracting the estimates, we conclude that

EN

∣∣∣K
∫ T

0

∑
x∈Td

N

{
c−x (ηx,+(t))

ϕ(uN (t, x))

g(ηx (t) + 1)
− c−x (η(t))1(ηx (t) ≥ 1)

}
dt

+ K
∫ T

0

∑
x∈Td

N

EνuN (t,x)
[c−(η)]ϕ

′(uN (t, x))

ϕ(uN (t, x))

(
ηx (t) − uN (t, x)

)
dt
∣∣∣
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≤ C K
∫ T

0
H(μN

t |νN
t )dt + O(K 2N d−ε0).

Thirdly, consider h3(η) = c+(η0,−)g(η0) and a3
t,x = K/ϕ(uN (t, x)), and also

h4(η) = c+(η) and a4
t,x = K . Again, by the assumption (BR), h3(η) is bounded,

and h4(η) = (c+(η)g(η0 +1)
)
/g(η0 +1) is bounded by (BR), recalling infk≥1 g(k) > 0;

hence, both h3 and h4 satisfy (3.4). Moreover, ‖a j
t,x‖L∞ = O(K ) for j = 3, 4. Also,

from a calculation similar to (4.4), we see that

h̃3(β) = Eνβ [c+(η)]ϕ(β) = h̃4(β)ϕ(β).

Therefore,

h̃′
3(β) = Eνβ [c+(η)]ϕ′(β) + h̃′

4(β)ϕ(β).

Again, we may write functions f in (3.5) with respect to h3 and h4 at β = uN (t, x).
Once more, by the Boltzmann–Gibbs principle, Theorem 3.4, applied separately to

pairs h3, a3
t,x and h4, a4

t,x , and taking the difference, we have that

EN

∣∣∣K
∫ T

0

∑
x∈Td

N

{
c+x (ηx,−(t))

g(ηx (t))

ϕ(uN (t, x))
− c+x (η(t))

}
dt

− K
∫ T

0

∑
x∈Td

N

EνuN (t,x)
[c+(η)]ϕ

′(uN (t, x))

ϕ(uN (t, x))

(
ηx (t) − uN (t, x)

)
dt
∣∣∣

≤ C K
∫ T

0
H(μN

t |νN
t )dt + O(K 2N d−ε0).

Finally, we note, with respect to the third line of (4.3), that

∂tϕ(uN (t, x)) = ϕ′(uN (t, x))∂t u
N (t, x).

Then, combining these observations,
∫ T
0

(
L
∗,νN

t
N 1− ∂t logψ N

t

)
dt is approximated in

L1(PN ) by

∫ T

0

∑
x

[
(�N ϕ)(uN (t, x))

ϕ(uN (t, x))
ϕ′(uN (t, x)){ηx (t) − uN (t, x)}

+ K
∑

x

ϕ′(uN (t, x))

ϕ(uN (t, x))
EνuN (t,x)

[
c+(η) − c−(η)

]{ηx (t) − uN (t, x)}

−
∑

x∈Td
N

ϕ′(uN (t, x))

ϕ(uN (t, x))
∂t u

N (t, x){ηx (t) − uN (t, x)}
⎤
⎥⎦ dt (4.5)

with errorC K 2/σ
∫ T
0 H(μN

t |νN
t )dt +O(K 1+2/σ N d−ε0). Since uN (t, x) satisfies the dis-

cretized equation (2.16), the display (4.5) vanishes. Hence,
∫ T
0

(
L
∗,νN

t
N 1− ∂t logψ N

t

)
dt

is within the L1 error bound desired. ��
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4.2. Proof of Theorem 2.2. From (4.2) and Theorem 4.5, we have, for t ∈ [0.T ], that

H(μN
t |νN

t ) ≤ H(μN
0 |νN

0 ) + C K 2/σ
∫ t

0
H(μN

s |νN
s )ds + O(K 1+2/σ N d−ε0),

where ε0 = 2d/(9d + 2). Then, by Gronwall’s estimate, we obtain, for t ∈ [0, T ], that
H(μN

t |νN
t ) ≤

{
H(μN

0 |νN
0 ) + O(K 1+2/σ N d−ε0)

}
exp
{
CT K 2/σ }.

Suppose now that

K (N ) ≤ δ(log N )σ/2

for δ > 0 such that CT δ2/σ < (ε0 ∧ ε)/2. Since the initial entropy H(μN
0 |νN

0 ) =
O(N d−ε), we will have for t ≤ T that

H(μN
t |νN

t ) = o(N d−(ε0∧ε)/2).

This finishes the proof. ��

5. Interface Limit for Continuum Allen–Cahn Equations with Nonlinear
Diffusion

We first discuss a formal derivation of the interface motion in the continuous PDE
setting in Sect. 5.1, before stating precise results in Sect. 5.2 found in [21]. Then, we
turn to outline of proofs of Theorems 5.1 and 5.2 on generation and propagation of the
continuous interface motion in Sections 5.3 and 5.4. Especially, we gather necessary
bounds to apply for the discrete PDE in Sect. 6; see Lemmas 5.3–5.5.

5.1. Formal derivation. Wefirst give, through formal asymptotic expansions, the deriva-
tion of the interface motion equation corresponding to Problem

(Pε)

⎧⎨
⎩

∂t u = �ϕ(u) +
1

ε2
f (u) in [0,∞) × T

d

u(0, v) = u0(v) for v ∈ T
d ,

(5.1)

where the unknown function u denotes say ‘mass density’, d ≥ 2, and ε > 0 is a small
parameter. We remark the parameter ε can be viewed in terms of K , which we use to
describe the microscopic Glauber+Zero-range dynamics, as ε = K−1/2 or ε−2 = K .

This equation is determined by the two first terms of the asymptotic expansion. We
refer to Nakamura et al. [41], Alfaro [1], Alfaro e al. [3] for a similar formal analysis for
other equations with a bistable nonlinear reaction term. Let us also mention some other
papers Alikakos et al. [4], Fife [23] and Rubinstein et al. [43] involving the method of
matched asymptotic expansions for related phase transition problems.

Problem (P ε) possesses a unique solution uε. As ε → 0, the qualitative behavior
of this solution is the following. In the very early stage, the nonlinear diffusion term is
negligible comparedwith the reaction term ε−2 f (u). Hence, rescaling time by τ = t/ε2,
the equation is well approximated by the ordinary differential equation uτ = f (u)where
uτ = ∂τ u. In view of the bistable nature of f , uε quickly approaches the values α− or
α+, the stable equilibria of the ordinary differential equation, and an interface is formed
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between the regions {uε ≈ α−} and {uε ≈ α+}. Once such an interface is developed, the
nonlinear diffusion term becomes large near the interface, and comes to balance with
the reaction term so that the interface starts to propagate, on a much slower time scale.

To study such interfacial behavior, it is useful to consider a formal asymptotic limit
of (P ε) as ε → 0. Then, the limit solution will be a step function taking the value α− on
one side of the interface, and α+ on the other side. This sharp interface, which we will
denote by �t , obeys a certain law of motion, which is expressed as (P0) [cf. (2.13)].

It follows from the standard local existence theory for parabolic equations that Prob-
lem (P 0) possesses locally in time a unique smooth solution. In fact, by using an ap-
propriate parametrization, one can express �t as a graph over a N − 1 manifold with-
out boundary and transfer the motion equation (P 0) into a parabolic equation on the
manifold, at least locally in time. Let 0 ≤ t < T max , T max ∈ (0,∞] be the maxi-
mal time interval for the existence of the solution of (P 0) and denote this solution by
� = ∪0≤t<T max ({t} × �t ). Hereafter, we fix T such that 0 < T < T max and work on

[0, T ]. Since �0 is a C5+θ hypersurface, we also see that � is of class C
5+θ
2 ,5+θ . For

more details concerning problems related to (P 0), we refer to Chen [9,10] or Chen and
Reitich [12].

In fact, formal derivation of the interface motion from (Pε) is discussed in a com-
panion paper [21], under the Neumann boundary condition. We repeat the argument on
T

d for readers’ convenience. We set QT := (0, T ) × T
d and, for each t ∈ [0, T ], we

denote by �
(1)
t the region of one side of the hypersurface �t , and by �

(2)
t the region of

the other side of �t . We define a step function ũ(t, v) by

ũ(t, v) =
{

α− in �
(1)
t

α+ in �
(2)
t

for t ∈ [0, T ] , (5.2)

which represents the formal asymptotic limit of uε (or the sharp interface limit) as
ε → 0.

More specifically, we define �ε
t using the solution uε of (Pε). Denote �ε

t as follows;

�ε
t := {v ∈ T

d : uε(t, v) = α∗}.
Assume that, for some T > 0, �ε

t is a smooth hypersurface without boundary for each
t ∈ [0, T ], ε > 0. Define the signed distance function to �ε

t as follows;

d
ε
(t, v) :=

{
dist(v, �ε

t ) for v ∈ Dε,−
t

−dist(v, �ε
t ) for v ∈ Dε,+

t

where Dε,−
t is the region ‘enclosed’ by �ε

t and Dε,+
t := T

d \ {Dε,−
t ∪ �ε

t }. Note that
d

ε = 0 on �ε
t and |∇d

ε| = 1 near �ε
t . Suppose further that d

ε
is expanded in the form

d
ε
(t, v) = d0(t, v) + εd1(t, v) + ε2d2(t, v) + · · · .

Define

�t := {v ∈ T
d : d0(t, v) = 0}, � := ∪0≤t≤T ({t} × �t ),

D−
t := {v ∈ T

d : d0(t, v) > 0}, D+
t := {v ∈ T

d : d0(t, v) < 0}.
As we will see later, the values of uε are close to α± on the domains D±

t , which is
consistent with D±

0 in (BIP2) and (5.18).
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Assume that uε has the expansions

uε(t, v) = α± + εu±
1 (t, v) + ε2u±

2 (t, v) + · · ·
away from the interface � and

uε(t, v) = U0(t, v, ξ) + εU1(t, v, ξ) + ε2U2(t, v, ξ) + · · · (5.3)

near �, where ξ = d0

ε
. Here the variable ξ was given to describe the rapid transition

between the regions {uε � α+} and {uε � α−}. In addition, we normalize U0 and Uk in
a way that

U0(t, v, 0) = α∗, Uk(t, v, 0) = 0. (5.4)

To match the inner and outer expansions, we require that

U0(t, v,±∞) = α∓, Uk(t, v,±∞) = u∓
k (t, v) (5.5)

for all k ≥ 1.
After substituting the expansion (5.3) into (Pε)we consider collecting the ε−2 terms,

which yields the following equation

ϕ(U0)zz + f (U0) = 0.

Since the equation only depends on the variable z, we may assume that U0 is only
a function of the variable z. Thus we may assume U0(t, v, z) = U0(z). In view of the
conditions (5.4) and (5.5), we find thatU0 is the unique solution of the following problem

{
(ϕ(U0))zz + f (U0) = 0,
U0(−∞) = α+, U0(0) = α∗, U0(∞) = α−.

(5.6)

To understand this more clearly, for u ≥ 0, we set

b(u) := f (ϕ−1(u)),

where ϕ−1 is the inverse function of ϕ : R+ → R+ and define V0(z) := ϕ(U0(z)); note
that such transformation is possible by the condition (5.13). The condition (BS) on f
implies that b(u) has exactly three zeros ϕ(α−), ϕ(α∗) and ϕ(α+) where

b′(ϕ(α−)) < 0, b′(ϕ(α∗)) > 0, and b′(ϕ(α+)) < 0.

Substituting V0 into Eq. (5.6) yields
{

V0zz + b(V0) = 0,
V0(−∞) = ϕ(α+), V0(0) = ϕ(α∗), V0(∞) = ϕ(α−).

(5.7)

Condition (5.14) then implies

∫ ϕ(α+)

ϕ(α−)

b(u)du = 0,
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which gives the existence and uniqueness up to translations of the solution of (5.7), and
especially in our case that the speed of the traveling wave solution V0 vanishes.

Next, we consider the collection of ε−1 terms in the asymptotic expansion. In view of
the definition of U0(z) and the condition (5.4), for each (t, v), this yields the following
problem {

(ϕ′(U0)U1)zz + f ′(U0)U1 = U0z∂t d0 − (ϕ(U0))z�d0,

U1(t, v, 0) = 0, ϕ′(U0)U1 ∈ L∞(R).
(5.8)

To see the existence of the solution of (5.8) we perform the change of unknown function
V1 = ϕ′(U0)U1, which yields the problem⎧⎨

⎩
V1zz + b′(V0)V1 = V0z

ϕ′(ϕ−1(V0))
∂t d0 − V0z�d0,

V1(t, v, 0) = 0, V1 ∈ L∞(R).

. (5.9)

Lemma 2.2 of [3] implies the existence of V1 provided that
∫
R

(
1

ϕ′(ϕ−1(V0))
∂t d0 − �d0

)
V 2
0zdz = 0.

Substituting V0 = ϕ(U0) and V0z = ϕ′(U0)U0z in the above equation yields

∂t d0 =
∫
R

V 2
0zdz

∫
R

V 2
0z

ϕ′(ϕ−1(V0)
dz

�d0 =
∫
R
(ϕ′(U0)U0z)

2dz∫
R

ϕ′(U0)U 2
0zdz

�d0. (5.10)

It is well known that ∂t d0 is equal to the normal velocity V of the interface �t , and �d0
is equal to κ where κ is the mean curvature of �t multiplied by d − 1. Thus, we obtain
the interface motion equation on �t :

V = λ0κ,

where

λ0 =
∫
R
(ϕ′(U0)U0z)

2dz∫
R

ϕ′(U0)U 2
0zdz

. (5.11)

This speed λ0 is interpreted as the ‘surface tension’ multiplied by the ‘mobility’ of the
interface; see Appendix of El Kettani et al. [21] and also [44]. The constant λ0 has
another explicit form (1.6). Its derivation is given in the last part of Sect. 2 of [21].

5.2. Results on Allen–Cahn equation with nonlinear diffusion. Here we briefly summa-
rize the results obtained in [21] on generation and propagation of interface properties
for an Allen–Cahn equation (Pε) with nonlinear diffusion, and state estimates on sub
and super solutions necessary to study discrete Allen–Cahn equation in Sect. 6.

The nonlinear functions ϕ and f satisfy the following properties: In line with the
previous specification of the microscopic dynamics, we assume (minimally) that f ∈
C2(R+) has exactly three zeros f (α−) = f (α+) = f (α∗) = 0, where R+ = [0,∞),
0 < α− < α∗ < α+, and

f ′(α−) < 0, f ′(α+) < 0, f ′(α∗) > 0. (5.12)
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Also, f (0) > 0 so that the later evolution starting positive stays positive.
In addition, we assume that ϕ ∈ C4(R+) and, for any 0 < u− < u+,

ϕ′(u) ≥ C(ϕ, u−, u+) for u− ≤ u ≤ u+ (5.13)

for some positive constant C(ϕ, u−, u+). We give one more assumption on f and ϕ,
namely

∫ α+

α−
ϕ′(s) f (s)ds = 0. (5.14)

We note in the particle system context that ϕ, f ∈ C∞(R+) and ϕ′(u) > 0 for u > 0,
and so ϕ′(u) is bounded away from 0 and ∞ for u ∈ [u−, u+].

As for the initial condition u0, following (BIP1) and (BIP2), we assume u0 ∈ C5(Td)

and 0 < u− ≤ u0 ≤ u+. As a consequence, u(t, ·) is also bounded between u− and u+.
We define C0 as follows,

C0 := ‖u0‖C0(Td) + ‖∇u0‖C0(Td) + ‖�u0‖C0(Td). (5.15)

Furthermore we define �0 by

�0 := {v ∈ T
d : u0(v) = α∗}. (5.16)

In addition, recalling assumption (BIP2), we suppose �0 is a C5+θ , 0 < θ < 1, hyper-
surface without boundary such that

∇u0(v) · n(v) �= 0 if v ∈ �0 (5.17)

u0 > α∗ in D+
0 , u0 < α∗ in D−

0 (5.18)

where D±
0 denote the regions separated by �0 and n is the outward normal vector to D+

0 .
It is standard that Problem (Pε) possesses a unique classical solution uε.

The goal is to study the singular limit of uε as ε ↓ 0. We first present the generation
of interface result (cf. [21], Theorem 1.2). We will use below the following notation:

γ = f ′(α∗), tε = γ−1ε2| log ε|, δ0 := min(α∗ − α−, α+ − α∗). (5.19)

Theorem 5.1. Let uε be the solution of the problem (Pε), δ be an arbitrary constant
satisfying 0 < δ < δ0. Then, there exist positive constants ε0 and M0 such that, for all
ε ∈ (0, ε0), we have the following:

(1) For all v ∈ T
d ,

α− − δ ≤ uε(tε, v) ≤ α+ + δ. (5.20)

(2) If u0(v) ≥ α∗ + M0ε, then

uε(tε, v) ≥ α+ − δ. (5.21)

(3) If u0(v) ≤ α∗ − M0ε, then

uε(tε, v) ≤ α− + δ. (5.22)
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To understand more this statement, we remark that the assumption (5.17) implies that
u0(v) is away from α∗ when v is away from �0.

After the interface has been generated, the diffusion term has the same order as the
reaction term. As a result the interface starts to propagate slowly. Later we will prove
that the interface moves according to the motion equation (P0) [cf. (2.13)].

Let D+
t denote the region ‘enclosed’ by the interface �t , continuously determined

from D+
0 , and set D−

t := T
d \ D+

t . Let d(t, v) be the signed distance function to �t
defined by

d(t, v) :=
{
dist(v, �t ) for v ∈ D−

t

−dist(v, �t ) for v ∈ D+
t .

The second is the propagation of the interface (cf. [21], Theorem 1.3).

Theorem 5.2. Under the conditions given in Theorem 5.1 and those mentioned above,
for any given 0 < δ < δ0 there exist ε0 > 0 and C > 0 such that

uε(t, v) ∈

⎧⎪⎨
⎪⎩
[α−−δ, α++δ] for v ∈ T

d

[α+−δ, α++δ] if d(t, v) ≤ −εC
[α−−δ, α− + δ] if d(t, v) ≥ εC

(5.23)

for all ε ∈ (0, ε0) and for all t ∈ (tε, T ].

5.3. Generation of the interface: outline of Proof of Theorem 5.1. The main idea of the
proof is based on the comparison principle. Thus, we need to construct appropriate sub
and super solutions for the problem (Pε). In this first stage, we expect that the solution
behaves as that of the corresponding ordinary differential equation and we construct
sub and super solutions as solutions of the following initial value problem ordinary
differential equation;

{
∂τ Y (τ, ζ ) = f (Y (τ, ζ )), τ > 0,
Y (0, ζ ) = ζ, ζ ∈ R+.

(5.24)

Recall C0 defined in (5.15), γ = f ′(α∗), tε, δ0 defined in (5.19), and set

−γ̄ = min
ζ∈[u−∧α−,u+∨α+]

f ′(ζ );

note thatγ, γ̄ > 0.The followingbounds onY (τ, ζ ) are used for the proofs ofLemma5.4
and also Theorem 6.1 below.

Lemma 5.3. Let δ ∈ (0, δ0) be arbitrary.

(1) There exists a constant C1 = C1(δ) > 0 such that

0 < e−γ̄ τ < Yζ (τ, ζ ) ≤ C1eγ τ

for all ζ ∈ [u−, u+] and τ ≥ 0.
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(2) There exists a constant C2 = C2(δ) > 0 such that, for all τ > 0 and all ζ ∈ (0, 2C0),∣∣∣∣Yζ ζ (τ, ζ )

Yζ (τ, ζ )

∣∣∣∣ ≤ C2(e
γ τ − 1), |Yζ ζ (τ, ζ )| ≤ C2(e

γ τ − 1)eγ τ , and

|Yζ ζ ζ (τ, ζ )| ≤ 2C2(e
2γ τ − 1)eγ τ . (5.25)

(3) There exist constants ε0, C3 > 0 such that for all ε ∈ (0, ε0):
(a) For all ζ ∈ (0, 2C0), in terms of a constant C0 > 0,

α− − δ ≤ Y (γ−1| log ε|, ζ ) ≤ α+ + δ. (5.26)

(b) If ζ ≥ α∗ + C3ε, then

Y (γ−1| log ε|, ζ ) ≥ α+ − δ. (5.27)

(c) If ζ ≤ α∗ − C3ε, then

Y (γ−1| log ε|, ζ ) ≤ α− + δ. (5.28)

Proof. We refer to Alfaro et al. [3] and El Kettani e al. [21], Lemma 2 for the proof
except that of (5.25). To show (5.25), we use

Yζ ζ (τ, ζ ) = A(τ, ζ )Yζ (τ, ζ ), A(τ, ζ ) =
∫ τ

0
f ′′(Y (r, ζ ))Yζ (r, ζ )dr,

|A(τ, ζ )| ≤ CA(eγ τ − 1),

given in Lemmas 3.3 and 3.4 of [3] where CA > 0 is some constant. Indeed, we have

Yζ ζ ζ (τ, ζ ) = Aζ (τ, ζ )Yζ (τ, ζ ) + A(τ, ζ )Yζ ζ (τ, ζ ).

Thus, there exists C ′ > 0 such that Aζ in the first term can be estimated as

|Aζ (τ, ζ )| =
∣∣∣∣
∫ τ

0

{
f ′′′(Y (r, ζ ))Y 2

ζ (r, ζ ) + f ′′(Y (r, ζ ))Yζ ζ (r, ζ )
}

dr

∣∣∣∣
≤ C ′

∫ τ

0
e2γ r dr ≤ C ′(e2γ τ − 1).

Thus, by choosing C2 bigger if necessary, we obtain

|Yζ ζ ζ (τ, ζ )| ≤ C2(e
2γ τ − 1)eγ τ + C2(e

γ τ − 1)2eγ τ ≤ 2C2(e
2γ τ − 1)eγ τ .

��
Define sub and super solutions on T

d for the proof of Theorem 5.1 as follows

w±
ε (t, v) = Y

(
t

ε2
, u0(v) ± P(t)

)
, (5.29)

where

P(t) = ε2C4

(
eγ t/ε2 − 1

)
,
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for some constant C4 > 0. Note that P(t) ≤ ε2C4(ε
−1 − 1) ≤ εC4 for t ≤ tε, where

tε is defined in (5.19). In particular, since u0(v) ≥ u− > 0, we have u0(v) − P(t) > 0
for sufficiently small ε > 0. Given that we work on the torus Td , or on Rd with periodic
u0, the constructed sub and super solutions w±

ε (t, v) are periodic for all t ∈ [0, tε].
Denote also the operator L by

Lu = ∂t u − �ϕ(u) − 1

ε2
f (u).

We set also, noting ϕ(u), ϕ′(u) > 0,

Cϕ := max ϕ(u) + max ϕ′(u) + max |ϕ′′(u)|,
where ‘max’ is maximumover u ∈ [0, (2C0)∨α+]. Then, we have the following bounds;
see [21], Lemma 3.

Lemma 5.4. There exist constants ε0, C4 > 0 such that, for all ε ∈ (0, ε0), w±
ε is a pair

of sub and super solutions of (Pε) in the domain [0, tε] × T
d .

In particular, in terms of a constant C5 > 0, we have

Lw+
ε ≥ C5e−γ̄ τ/ε2 and Lw−

ε ≤ −C5e−γ̄ τ/ε2 , (τ, v) ∈ [0, tε] × T
d . (5.30)

Remark 5.1. It follows from Lw−
ε ≤ 0 ≤ Lw+

ε that w±
ε are sub and super solutions.

However, the stronger estimate (5.30) will be useful in the proof of Theorem 6.1 in the
discrete setting.

5.4. Propagation of the interface: outline of Proof of Theorem 5.2. We now argue the
propagation of the interface given in Theorem 5.2. Again, we will need to construct
appropriate sub and super solutions, but now in terms of functions U0 in (5.6) and a U1
similar to that in (5.8).

We first introduce a cut-off signed distance function d = d(t, v) as follows. Choose
d0 > 0 small enough so that the signed distance function d = d(t, v) from the interface
�t evolving under (P0) is smooth in the set

{(t, v) ∈ [0, T ] × T
d , |d(t, v)| < 3d0}.

Let h(s) be a smooth non-decreasing function on R such that

h(s) =

⎧⎪⎨
⎪⎩

s if |s| ≤ d0
−2d0 if s ≤ −2d0
2d0 if s ≥ 2d0.

We then define the cut-off signed distance function d by

d(t, v) = h(d(t, v)), (t, v) ∈ [0, T ] × T
d .

Note that, as d coincides with d in the region

{(t, v) ∈ [0, T ] × T
d : |d(t, v)| < d0},

we have

∂t d = λ0�d on �t .



1204 P. El Kettani, T. Funaki, D. Hilhorst, H. Park, S. Sethuraman

Moreover, d is constant far away from �t .
In terms of this function d, we now define U1 : [0, T ] ×T

d ×R → R satisfying the
following problem

{
(ϕ′(U0)U1)zz + f ′(U0)U1 = (λ0U0z − (ϕ(U0))z)�d(t, v)

U1(t, v, 0) = 0, ϕ′(U0)U1(t, v) ∈ L∞(R)

where U0 is the solution of (5.6). Since d ∈ C
5+θ
2 ,5+θ ([0, T ] × T

d), we have that �d ∈
C

3+θ
2 ,3+θ ([0, T ] × T

d). As a consequence, we have U1(·, ·, z) ∈ C
3+θ
2 ,3+θ ([0, T ] × T

d)

for each z ∈ R. Moreover,U1(t, v, ·) ∈ C3(R) for each (t, v) ∈ [0, T ]×T
d by a similar

argument given in the proof of Lemma 6 of [21].
We construct the sub and super solutions as follows: Given 0 < ε < 1, we define

u±(t, v) ≡ u±
ε (t, v) = U0

(
d(t, v) ± εp(t)

ε

)

+ εU1

(
t, v,

d(t, v) ± εp(t)

ε

)
± q(t), (5.31)

where

p(t) = e−βt/ε2 − eLt − L̂,

q(t) = σ̃
(
βe−βt/ε2 + ε2LeLt

)
.

Here β, σ̃ , L , L̂ > 0 are constants determined by Lemma 5.5 below. Although we work
on T

d , if we take the viewpoint of working on R
d , we may regard the signed distance

function d as periodic with period 1 so that u±(t, v) are periodic as well for all t ∈ [0, T ].
Then, we have the following bounds; see [21], Lemma 10 and Section 4.4.

Lemma 5.5. One can choose β, σ̃ > 0 such that, for each L̂ > 1 there exist L > 0
large enough and ε0 > 0 small enough such that for a constant C > 0 we have

Lu− ≤ −C < C ≤ Lu+ in [0, T ] × T
d (5.32)

for every ε ∈ (0, ε0), and

u−(0, v) ≤ uε(tε, v) ≤ u+(0, v)

holds. Hence, u±(t − tε, v) are sub and super solutions for Problem (Pε) for t ∈ [tε, T ].
Remark 5.2. To show that u± are sub and super solutions, it would have been enough in
the above proof to show that Lu− ≤ 0 ≤ Lu+. However, the stronger estimate (5.32)
found will be useful in the proof of Theorem 6.2 in the discrete setting.
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6. Generation and Propagation of the Interface for the ‘Discrete PDE’: Proof of
Theorem 2.3

Recall that the initial data {uN (0, x)}x∈Td
N
of the discrete PDE (2.16) satisfy (BIP1) and

(BIP2). Previously, in (5.29) and (5.31), we have constructed super and sub solutions

w±
ε (t, v) ≡ w±

K (t, v) and u±
ε (t, v) ≡ u±

K (t, v), t ≥ 0, v ∈ T
d ,

of the problem (Pε) with ε = K−1/2.
We will show that these functions, w±

K (t, v) and u±
K (t, v), restricted to the discrete

torus 1
N T

d
N actually play the role of super and sub solutions of the discretized hydrody-

namic equation (2.16). As we noted, we abuse notations x
N and x for the discrete spatial

variables. The proof relies on the comparison argument.
More precisely, we show

LN ,K w+
K ≥ 0 ≥ LN ,K w−

K and LN ,K u+
K ≥ 0 ≥ LN ,K u−

K ,

where LN ,K is the operator associated with (2.16). These estimates will follow from
estimates shown in the continuum setting, namely Lw+

ε ≥ C5e−γ̄ τ/ε2 > −C5e−γ̄ τ/ε2 ≥
Lw−

ε [cf. (5.30)], and Lu+
ε ≥ C > −C ≥ Lu−

ε [cf. (5.32)], in combination with the
error estimates on (L− LN ,K )w±

K and (L− LN ,K )u±
K .

6.1. Generation of a discrete interface. Recall Y (τ ) = Y (τ, ζ ) for τ ≥ 0, ζ ∈ R+, is
the solution of the ordinary differential equation (5.24), with the initial value Y (0) = ζ .

Theorem 6.1. Let uN (t, ·) be the solution of the discrete PDE (2.16) with initial value
uN (0, ·). Let also δ ∈ (0, δ0) where δ0 = min{α∗ −α−, α+−α∗}, and t N = 1

2γ K log K .

Suppose that K ≡ K (N ) = o(N 2γ /(3γ+γ̄ )). Then, there exist N0, M0 > 0 such that the
following hold for every N ≥ N0:

(1) For all x ∈ T
d
N ,

α− − δ ≤ uN (t N , x) ≤ α+ + δ.

(2) If u0(
x
N ) ≥ α∗ + M0K−1/2, then

uN (t N , x) ≥ α+ − δ.

(3) If u0(
x
N ) ≤ α∗ − M0K−1/2, then

uN (t N , x) ≤ α− + δ.

Proof. Recalling (5.29), we define sub and super solutions of the continuous system as

w±
K (t, v) = Y (K t, u0(v) ± P(t)), v ∈ T

d ,

where P(t) = C4(eKγ t − 1)/K . Define the operators LK and LN ,K by

LK u = ∂t u − �ϕ(u) − K f (u), v ∈ T
d ,
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with respect to the continuous Laplacian � on T
d and also continuous functions u =

{u(t, v)}v∈Td , and

LN ,K u = ∂t u − �N ϕ(u) − K f (u), x ∈ T
d
N ,

for discrete functions u = {u(t, x)}x∈Td
N
, respectively.

We now make use of an estimate in the proof of Theorem 5.1: in Lemma 5.4, it is
shown that

LK w+
K ≥ C5e−γ̄ K t N = C5K−γ̄ /2γ > 0

holds for some C5 > 0 and large enough K ; note that t N = tε = γ−1ε2| log ε| and
K = ε−2. However,

LN ,K w+
K = LK w+

K + (�ϕ(w+
K ) − �N ϕ(w+

K )),

and, by Taylor’s formula, the second term is bounded by

C2
N sup

v∈Td

∣∣∣D3
v{ϕ(w+

K (t, v))}
∣∣∣ ,

where |D3
v{ · }| means the sum of the absolute values of all third derivatives in v.

Since u0 ∈ C3(Td) and ϕ ∈ C3(R+) (note that w±
K takes only bounded values

so that ϕ ∈ C3
b([0, M])), from (1) to (3) especially (5.25) of Lemma 5.3 and noting

e3γ K t N = K 3/2, we obtain

sup
0≤t≤t N ,x∈Td

N

|�ϕ(w+
K (t, x

N )) − �N ϕ(w+
K (t, x

N ))| ≤ C3
N K 3/2.

Thus, this term is absorbed by C5K−γ̄ /2γ if K = o(N 2γ /(3γ+γ̄ )) and N is large enough.
Therefore, we obtain LN ,K w+

K ≥ 0 for N ≥ N0 with some N0 > 0. By Lemma 3.1,
we see uN (t, x) ≤ w+

K (t, x
N ). Similarly, one can show w−

K (t, x
N ) ≤ uN (t, x). Thus, the

proof of the theorem is concluded similarly to the proof of Theorem 5.1; see [21]. ��

6.2. Propagation of a discrete interface. Recall the interface flow �t , and the two func-
tions u±(t, v) ≡ u±

K (t, v) defined by (5.31), namely

u±(t, v) = U0

(
K 1/2d(t, v) ± p(t)

)
+ K−1/2U1

(
t, v, K 1/2d(t, v) ± p(t)

)
± q(t),

and uN (t, v) defined in (2.19) from the discretized hydrodynamic equation (2.16).

Theorem 6.2. Assume that the following inequality (6.1) holds at t = 0 and K =
o(N 2/3) for K = K (N ) ↑ ∞. Then, taking β, σ̃ , L , L̂ > 0 in p(t) and q(t) as in
Lemma 5.5, there exists N0 ∈ N such that

u−(t, v) ≤ uN (t + t N , v) ≤ u+(t, v), (6.1)

holds for every t ∈ [0, T − t N ], v = x/N , x ∈ T
d
N and N ≥ N0.
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Proof. The upper bound in (6.1) follows from Lemma 3.1, once we can show that

LN ,K u+ = ∂t u
+ − �N ϕ(u+) − K f (u+) ≥ 0, x ∈ T

d
N , (6.2)

for every N ≥ N0 with some N0 ∈ N. As in the proof of Theorem 6.1, we decompose

LN ,K u+ = LK u+ + (�ϕ(u+) − �N ϕ(u+)), (6.3)

where LK u+ = ∂t u+ − �ϕ(u+) − K f (u+).
We nowmake use of an estimate derived in the proof of Theorem 5.2: by Lemma 5.5,

the first term LK u+ in (6.3) is bounded on [0, T ] × T
d as

LK u+ ≥ C > 0, (6.4)

if we choose parameters β, σ̃ , L , L̂ > 0 there properly.

For the second term in (6.3), since u+ ∈ C
3+θ
2 ,3+θ by the regularity of d, U0 and U1

[cf. discussion above (5.31)], and also

sup
t∈[0,T ],v∈Td

∣∣(∇v)
i u+(t, v)

∣∣ ≤ C K i/2, i = 1, 2, 3,

we have ∣∣∣�ϕ(u+(t, x
N )) − �N ϕ(u+(t, x

N ))

∣∣∣ ≤ C1
K 3/2

N .

Indeed, this follows from Taylor expansion for �N ϕ(u+) up to the third order term,
noting that ϕ ∈ C3(R+) and u+(t, v) is bounded. Therefore, if K = o(N 2/3), this term
is absorbed by the positive constant C in (6.4) for LK u+. This proves (6.2).

The lower bound by u−(t, v) is shown similarly. ��

6.3. Proof of Theorem 2.3. The proof of Theorem 2.3 follows from Theorems 6.1
and 6.2. By the assumption (BIP2), ∇u0(v) · n(v) �= 0 for v ∈ �0. Hence, for v �∈ �0,
we have that u0(v) �= α∗. Then, for N large enough, we would have |u0(v) − α∗| ≥
εv > M0K−1/2, where M0 is the constant in Theorem 6.1.

Recall uN (t, v) in (2.19). By Theorem 6.1, at time t N = (2γ K )−1 log K , either
uN (t N , v) ≥ α+ − δ or uN (t, v) ≤ α− + δ for a small δ > 0.

Since for large N , we have u−(0, v) ≤ uN (t N , v) ≤ u+(0, v), thinking of uN (t N , ·)
as an initial condition, by Theorem 6.2, we can ‘propagate’ and obtain u−(t − t N , v) ≤
uN (t, v) ≤ u+(t − t N , v) for t N ≤ t ≤ T . As N ↑ ∞, we obtain, for each 0 < t ≤ T
and v �∈ �t that uN (t, v) → χ�t (v), concluding the proof. ��

7. A ‘Boltzmann–Gibbs’ Principle: Proof of Theorem 3.4

The strategy of the replacement is in roughly two steps: Estimate via the time average
closeness of

∑
x at,x fx to a conditional mean given the particle mass in a block of

mesoscopic width, that is of order N ε0 , and then the time integral of the conditional mean
through careful local central and large deviation bounds. In the first step, in terms of a
translation-invariant reference measure νβ , a Rayleigh spectral bound is quantified using
the spectral gap assumption (SP). In the second step, the local bounds are formulatedwith
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respect to an inhomogeneous product measure νuN (t,·) [cf. (2.3)]. Some pre-processing
in terms of truncation bounds is done before the main estimates.

We give now an outline of the proof of Theorem 3.4, referring to statements proved
in the following subsections. In this section, the constant C > 0 depending on fixed
parameters will change from line to line.

We have, by Lemmas 7.4 and 7.5, bounding |at,x | ≤ M , that

EN

∣∣∣∣∣∣∣
∫ T

0

∑
x∈Td

N

at,x fx dt

∣∣∣∣∣∣∣

≤ EN

∣∣∣∣∣∣∣
∫ T

0

∑
x∈Td

N

at,x fx1(
∑

y∈�h

ηy+x ≤ A)dt

∣∣∣∣∣∣∣
+
∫ T

0
C M H(μN

t |νN
t )dt +

C MT N d

A

≤ EN

∣∣∣∣∣∣∣
∫ T

0

∑
x∈Td

N

at,x fx1(
∑

y∈�h

ηy+x ≤ A)1(η�
x ≤ B)dt

∣∣∣∣∣∣∣
+
∫ T

0
C M

(
1 +

A + 1

B

)
H(μN

t |νN
t )dt +

C MT N d(A + 1)

B
+

C MT N d

A
. (7.1)

The expectation in the right-side of (7.1) is bounded by

EN

∣∣∣∣∣∣∣
∫ T

0

∑
x∈Td

N

at,x mx dt

∣∣∣∣∣∣∣
+ EN

∣∣∣∣∣∣∣
∫ T

0
Eνβ

[ ∑
x∈Td

N

at,x fx1
( ∑

y∈�h

ηy+x ≤ A
)∣∣η�

x

]
1(η�

x ≤ B)dt

∣∣∣∣∣∣∣
(7.2)

where mx is defined in (7.10). The first and second terms in (7.2) are bounded by
Lemma 7.6, and Lemmas 7.9 and 7.10 respectively. Adding these bounds together, with
simple overestimates, we have (7.2) is bounded by

C(T + 1)M K N d

G
+

CT MG�d+2A2B2N d

N 2

+ 2C M
∫ T

0
H(μN

t |νN
t )dt +

2CT M N d

�d
+

CT M K N d�2(B + 1)

N 2 +
CT M N d

A
.

Here, A, B, G, � are in form A = NαA , B = NαB , G = NαG and � = Nα� for
parameters αA, αB , αG , α� > 0. By the assumptions of Lemmas 7.5 and 7.6, we assume
that αB = 2αA and

αA + αG + (d + 2)α� + 2αB − 2 = 5αA + αG + (d + 2)α� − 2 < 0. (7.3)

Combining the estimates, as A/B = 1/A(≤ 1) and K ≥ 1, the left-hand side of
(7.1) is bounded by

C
∫ T

0
M H(μN

t |νN
t ))dt + C(T + 1)M N d

( 1
A
+

K

G
+

G�d+2A2B2

N 2 +
1

�d
+

K B�2

N 2

)
.

(7.4)
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So that the second term on the right-hand side of (7.4) is bounded by CT M K N d−κ

for a κ > 0, we now fix αB = 2αA, αA, αG , dα� so that 2 − [αG + [(d + 2)/d]dα� +
2αA + 2αB] > 0. Then, the constraint (7.3) would also hold. A convenient choice is
ε0 = αA = αG = dα� = 2 − (7 + (d + 2)/d)ε0, or when ε0 = 2d/(9d + 2). Inserting
into (7.4) yields the right-hand side of (3.7) as desired. ��

We now turn to the estimates used in the proof of Theorem 3.4. We will assume
throughout this section condition (BIP1) and that H(μN

0 |νN
0 ) = O(N d).

To simplify notation, we will drop t-dependence in the notation ηx = ηx (t), and
related quantities when the context is clear.

7.1. Preliminary estimates. Recall the ‘entropy inequality’ following from the varia-
tional form of the relative entropy between two probability measures μ and ν:

Eμ[F] ≤ H(μ|ν) + log Eν

[
eF ].

Lemma 7.1. We have, for a small γ > 0, and uniformly over t ∈ [0, T ] that

EμN
t

[ ∑
x∈Td

N

ηx
] ≤ H(μN

t |νN
t )

γ
+ O(N d).

Proof. Write

EμN
t

[ ∑
x∈Td

N

ηx
] ≤ H(μN

t |νN
t )

γ
+
1

γ
log EνN

t
e
γ
∑

x∈Td
N

ηx

≤ H(μN
t |νN

t )

γ
+

N d

γ
max

x
EνN

t
eγ ηx ≤ H(μN

t |νN
t )

γ
+ O(N d),

given maxx∈Td
N

EνN
t

eγ ηx < ∞ for a γ > 0 small (relative to ϕ∗ defined near (2.2) say),
noting the uniform estimate on uN in Lemma 3.1. ��
Lemma 7.2. For β > 0 and the γ in Lemma 7.1, uniformly over t ∈ [0, T ], we have

H(μN
t |νβ) ≤ (1 + C(β, u+)γ

−1)H(μN
t |νN

t ) + O(N d).

In particular, when H(μN
0 |νN

0 ) = O(N d), we have H(μN
0 |νβ) = O(N d).

Proof. Write

H(μN
t |νβ) =

∫
log

dμN
t

dνβ

dμN
t = H(μN

t |νN
t ) +

∫
log

dνN
t

dνβ

dμN
t (7.5)

and dνN
t

dνβ
=∏x

dνN
t

dνβ
(ηx ).

From Lemma 3.1, we have that uN is uniformly bounded between c− = u−∧α− and
c+ = u+ ∨ α+. Since ZuN (t,x) =

∑
ϕ(uN (t, x))k/g(k)! and ϕ is an increasing function,

we also have ZuN (t,x) ≥ Zc− . In addition, ϕ(uN (t, x)) ≤ ϕ(c+). Then,

dνuN (t,x)

dνβ

(k) =
Z−1

uN (t,x)

ϕ(uN (t,x))k

g(k)!
Z−1

β
ϕ(β)k

g(k)!
= Zβ

ZuN (t,x)

ϕ(uN (t, x))k

ϕ(β)k
≤ Zβ

Zc−

(
ϕ(c+)

ϕ(β)

)k

.
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Therefore, the right-hand side of (7.5) is bounded by

H(μN
t |νN

t ) + N d log
Zβ

Zc−
+ log

(
ϕ(c+)
ϕ(β)

)
EμN

t

[ ∑
x∈Td

N

ηx
]
.

Noting that EμN
t

[∑
x∈Td

N
ηx
] ≤ γ−1H(μN

t |νN
t ) + O(N d) by Lemma 7.1, the proof is

complete. ��
We now give an estimate to be used several times in the sequel. Recall �k = {x ∈

T
d
N : |x | ≤ k} is a cube of width 2k + 1. Let q = q(η) be a function supported in

�k . Denote qx = τx q for x ∈ T
d
N . Consider the collection of |�k | regular sublattices

T
d
N ,z,k ⊂ T

d
N , where z ∈ �k and neighboring points in the grid are separated by 2k + 1.

Lemma 7.3. We have, uniformly over t ∈ [0, T ], that

log EνN
t

[
e
∑

x∈Td
N

qx ] ≤ 1

|�k |
∑
z∈�k

log EνN
t

[
e
|�k |∑w∈Td

N ,z,k
qw]

(7.6)

= 1

|�k |
∑

x∈Td
N

log EνN
t

[
e|�k |qx

]
.

Proof. One can write
∑

x∈Td
N

qx = ∑
z∈�k

∑
w∈Td

N ,z,k
qw. The inequality in (7.6) re-

sults from a Hölder’s inequality. The last equality follows since elements {qw : w ∈
T

d
N ,z,k}z∈�k are independent under νN

t . ��

7.2. Truncation estimates. We now develop some truncation estimates, since under the
Glauber+Zero-range dynamics, there is no a priori bound on the number of particles at
a site x ∈ T

d
N .

The first limits the particle numbers in τx�h , where we recall that�h denotes a finite
box containing the support of the function h through which fx is defined in (3.5).

Lemma 7.4. Let A = AN = NαA for αA > 0. Then, uniformly over t ∈ [0, T ], we
have

EμN
t

[ ∑
x∈Td

N

| fx |1(
∑
y∈�h

ηy+x > A)
]
≤ C H(μN

t |νN
t ) +

C N d

A
.

Proof. Write, through the entropy inequality and Lemma 7.3, with respect to a γ1 > 0,
that

EμN
t

[ ∑
x∈Td

N

| fx |1(
∑

y∈�h

ηy+x > A)
]

≤ H(μN
t |νn

t )

γ1
+

1

γ1
log EνN

t

[
e
γ1
∑

x∈Td
N

| fx |1(∑y∈�h
ηy+x >A)]

≤ H(μN
t |νN

t )

γ1
+

1

γ1|�h |
∑

x∈Td
N

log EνN
t

[
eγ1|�h || fx |1(∑y∈�h

ηy+x >A)
]
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= H(μN
t |νN

t )

γ1

+
1

γ1|�h |
∑

x∈Td
N

log
{
1− PνN

t

( ∑
y∈�h

ηy+x > A
)
+ EνN

t

[
1(
∑

y∈�h

ηy+x > A)eγ1|�h || fx |
]}

.

The last line is further estimated with the inequality log(1 + x) ≤ x for x ≥ 0, and then
Markov’s inequality:

H(μN
t |νN

t )

γ1
+

1

γ1|�h |
∑

x∈Td
N

Eνt

[
1(
∑

y∈�h

ηy+x > A)
(
eγ1|�h || fx | − 1

)]

≤ H(μN
t |νN

t )

γ1
+

1

γ1|�h |A
∑

x∈Td
N

EνN
t

[ ∑
y∈�h

ηy+x eγ1|�h || fx |
]
. (7.7)

We note that fx (η) ≤ C1
∑

y∈�h
ηx+y + C2 through the bounds (3.4). Then, by the

uniform estimate Lemma 3.1, we may choose γ1 small enough [relative to ϕ∗ defined
above (2.2)] so that

sup
x∈Td

N

EνN
t

[ ∑
y∈�h

ηy+x eγ1|�h || fx |] < ∞

The display (7.7) is then bounded by C H(μN
t |νN

t ) + C N d/A, as desired. ��
We now truncate the average number of particles in a block of width � around x .

Define

η�
x = 1

(2� + 1)d

∑
z∈��

ηz+x .

Lemma 7.5. Let B = BN = A2
N = N 2αA for αA > 0, and � ≥ 1. Then, for large N,

uniformly over t ∈ [0, T ], we have

EμN
t

⎡
⎢⎣∑

x∈Td
N

| fx |1(
∑

y∈�h

ηy+x ≤ A)1(η�
x > B)

⎤
⎥⎦

≤ C(A + 1)

B
H(μN

t |νN
t ) +

C(A + 1)

B
N d .

Proof. Since fx (η) ≤ C1
∑

y∈�h
ηx+y + C2 by (3.4), and

∑
x∈Td

N
η�

x =∑x∈Td
N

ηx , we
have

EμN
t

[ ∑
x∈Td

N

| fx |1(
∑

y∈�h

ηy+x ≤ A)1(η�
x > B)

]
(7.8)

≤ max(C1, C2)(A + 1)

B
EμN

t

[ ∑
x∈Td

N

η�
x

] = max(C1, C2)(A + 1)

B
EμN

t

[ ∑
x∈Td

N

ηx
]
.

(7.9)
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Now, by Lemma 7.1, EμN
t

[∑
x∈Td

N
ηx
] ≤ C H(μN

t |νN
t ) + O(N d). Then, the display

(7.9) is bounded as desired, for large N , by

C(A + 1)

B
H(μN

t |νN
t ) +

C(A + 1)

B
N d .

We note this bound does not depend on the size of � ≥ 1. ��

7.3. Main estimates. We now estimate the remaining portions of
∑

x∈Td
N

at,x fx . In
Sect. 7.3.1, we show that fx is in a sense close to its conditional mean given the local
density of particles. In Sect. 7.3.2, we estimate this conditional mean.

7.3.1. Bound on ‘concentration’ around conditional mean Fix β > 0 and, for x ∈ T
d
N ,

let

mx =
(

fx1(
∑

y∈�h

ηy+x ≤ A) − Eνβ

[
fx1(

∑
y∈�h

ηy+x ≤ A)|η�
x

])
1(η�

x ≤ B). (7.10)

We remark that the quantified estimate on the spectral gap in (SP) is used now in the
proof of the following Lemma 7.6.

Lemma 7.6. Let � = �N = Nα� and G = G N = NαG for α�, αG > 0. Suppose
αA + αG + (d + 2)α� + 2αB − 2 < 0. Then, we have

EN

∣∣∣
∫ T

0

∑
x∈Td

N

at,x mx dt
∣∣∣ ≤ C(T + 1)M K N d

G
+

CT MG�d+2A2B2N d

N 2 .

Proof. We apply the entropy inequality, with respect to the Zero-range invariant measure
νβ , to obtain

EN

∣∣∣
∫ T

0

∑
x∈Td

N

at,x mx dt
∣∣∣ ≤ H(μN

0 |νβ)

γ
+
1

γ
logEνβ

[
e
γ | ∫ T

0
∑

x∈Td
N

at,x mx dt |]
,

for every γ > 0. The second term, on the right-hand side of the display, noting e|z| ≤
ez +e−z , is bounded by the Feynman–Kac formula in Appendix 1.7 in [36] (whose proof
does not require νβ to be an invariant measure of L N ).

Then, considering γ = G/M , we have

EN

∣∣∣
∫ T

0

∑
x∈Td

N

at,x mx dt
∣∣∣

≤ M H(μN
0 |νβ)

G
+ M sup

±

∫ T

0
sup

h

{
〈M−1

∑
x∈Td

N

±at,x mx , h〉νβ +
1

G
DN (

√
h)
}

dt +
M

G
log 2,

where h is a density with respect to νβ , and DN ( f ) = Eνβ [ f (SN f )] = Eνβ [ f (L N f )]
is the quadratic form given in terms of SN = (L N + L∗

N )/2 and the L2(νβ) adjoint L∗
N .

By Lemma 7.2 and our initial assumption, H(μN
0 |νβ) ≤ O

(
H(μN

0 |νN
0 )
)
+O(N d) =

O(N d). We will drop the sup± as the next estimates exactly hold for−mx replacing mx .
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To estimate the supremum, write DN ( f ) = −2N 2DZ R( f ) + K QG( f ). By (4.1),

DZ R( f ) = Eνβ [ f (−L Z R f )] = DZ R( f ; νβ)

= 1

4

∑
|x−y|=1

x,y∈Td
N

Eνβ

[
g(ηx )

(
f (ηx,y) − f (η)

)2]
.

Also, QG( f ) = Eνβ [(LG f ) f ] is explicit following calculations say in Lemma 4.3 as

QG( f ) = −
∑

x∈Td
N

Eνβ

[
c+x (η)

(
f (ηx,+) − f (η)

)2]

−
∑

x∈Td
N

Eνβ

[
c−x (η)1(ηx ≥ 1)

(
f (ηx,−) − f (η)

)2]

−
∑

x∈Td
N

Eνβ

[
f (η) f (ηx,+)c+x (η) + f (η) f (ηx,−)c−x (η)1(ηx ≥ 1)

]

+
∑

x∈Td
N

Eνβ

[
f 2(η)

(
c+x (ηx,−)

g(ηx )

ϕ(β)
+ c−x (ηx,+)

ϕ(β)

g(ηx + 1)

)]
.

As the rates c± ≥ 0, only the last line in the display for QG( f ) is nonnegative. By
our assumption (BR), however, we have that c+x (ηx,−)g(ηx ) and c−x (ηx,+)/g(ηx + 1) are
bounded. When f is a nonnegative function such that f 2 is a density with respect to νβ ,
that is Eνβ [ f 2(η)] = 1, we have the upper bound

1

G
DN ( f ) = −2N 2

G
DZ R( f ) +

K

G
QG( f ) ≤ − N 2

G
DZ R( f ) +

C K N d

G

and therefore,

EN

∣∣∣∣∣∣∣
∫ T

0

∑
x∈Td

N

at,x mx dt

∣∣∣∣∣∣∣
≤ C M N d

G

+ M
∫ T

0
sup

h

{
M−1〈

∑
x∈Td

N

at,x mx , h〉νβ − N 2

G
DZ R(

√
h)
}

dt +
CT M K N d

G
. (7.11)

To analyze further, define

D�,x ( f ) = Eνβ [ f (−L�,x f )] = 1

4

∑
|w−z|=1

w,z∈��,x

Eνβ

[
g(ηw)

(
f (ηw,z) − f (η)

)2]

where L�,x is the Zero-range generator restricted to sites ��,x = {y + x : |y| ≤ �}.
Define also the associated canonical process on ��,x where the number of particles∑
y∈��,x

ηy = j is fixed for j ≥ 0. Let L�,x, j denote its generator and let ν�,x, j =
νβ(·|∑y∈��,x, j

ηy = j) be its canonical invariant measure on the configuration space
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{{ηz}z∈��,x : ∑y∈��,x, j
ηy = j

}
. By translation-invariance, ν�,x, j does not depend on

x .
Then, counting the overlaps, we have

∑
x∈Td

N

D�,x (
√

h) = (2� + 1)d DZ R(
√

h).

The supremum on the right-hand side of (7.11) is less than

∑
x∈Td

N

sup
h

{
Eνβ [(at,x/M)mx h] − N 2

G�d∗
D�,x (

√
h)
}

(7.12)

where �∗ = 2� + 1.
Recall that G = NαG for a small αG > 0, and mx vanishes unless the density of

particles in the �-block is bounded, η�(x) ≤ B. By conditioning on the number of
particles in ��,x , and dividing and multiplying by Eνβ [h|

∑
z∈��,x

ηz = j], we have for
each x and t that

sup
h

{
Eνβ [(at,x/M)mx h] − N 2

G�d∗
D�,x (

√
h)
}

≤ sup
j≤B�d∗

sup
h

{
Eν�,x, j [(at,x/M)mx h] − N 2

G�d∗
D�,x, j (

√
h)
}

where h is a density with respect to ν�,x, j .
Now, by the Rayleigh estimate in [36] p. 375, Theorem 1.1, in terms of the spectral

gap of the canonical process gap(�, j), which does not depend on x by translation-
invariance, the last display is bounded by

sup
j≤B�d∗

G�d∗
N 2

Eν�,x, j [(at,x/M)mx {(−L�,x, j )
−1(at,x/M)mx }]

1− 2‖(at,x/M)mx‖L∞ G�d∗
N2 gap(�, j)−1

. (7.13)

By the bounds on fx via (3.4) and those on {at,x }, we have ‖(at,x/M)mx‖L∞ =
O(A). Since mx is mean-zero with respect to ν�,x, j , we have

Eν�,x, j

[
(at,x/M)mx {(−L�,x, j )

−1(at,x/M)mx }
] ≤ gap(�, j)−1‖(at,x/M)mx‖2L∞ .

Recall the spectral gap assumption (SP) that gap(�, j)−1 ≤ Cgp�
2( j/�d)2. Since

j/�d ≤ C B, we have that gap(�, j)−1 ≤ Cgp�
2B2. Choosing αA + αG + (d + 2)α� +

2αB − 2 < 0, we have

AG�d gap(�, j)−1/N 2 ≤ Cgp AG�d+2B2N−2 = o(1)

and so the denominator in (7.13) is bounded below.
Hence, summing over x , (7.12) is bounded above by

CG�d

N 2 ‖mx‖2L∞�2N d ≤ CG�d A2�2B2N d

N 2 ,

and the desired estimate follows by inserting back into (7.11). ��
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7.3.2. Bound on conditional mean To treat the conditional expectation

Eνβ

[
at,x fx1(

∑
y∈�h

ηy+x ≤ A)|η�
x

]
1(η�

x ≤ B), (7.14)

we will need two preliminary estimates (Lemmas 7.7 and 7.8).
Note that fx is mean-zero with respect to νuN (t,x) and EνuN (t,x)+κ

[ fx ] = h̃
(
uN (t, x)+

κ
)− h̃

(
uN (t, x)

)− h̃′(uN (t, x)
)
κ from the definition (3.5).

Lemma 7.7. For x ∈ T
d
N , let yx = η�

x − uN (t, x). Fix also δ > 0. We have, uniformly
over t ∈ [0, T ], that
∣∣∣Eνβ

[
(at,x/M) fx1(

∑
y∈�h

ηy+x ≤ A)|η�
x

]∣∣∣1(|yx | ≤ δ) ≤ Cy2x1(|yx | ≤ δ) +
C

�d
+

C

A
.

Proof. The argument makes use of an equivalence of ensembles estimate and properties
of fx . Let bx = (at,x/M) fx1(

∑
y∈�h

ηy+x ≤ A). Recall ‖at,x‖∞/M ≤ 1. By Corollary
1.7 in Appendix 2 of [36], when |yx | ≤ δ, we have that

∣∣∣Eνβ [bx |η�
x ]
∣∣∣ ≤ ∣∣EνuN (t,x)+yx

[bx ]
∣∣ + C

�d
.

We now expand EνuN (t,x)+yx
[bx ] in terms of yx around 0. Choose λ = λ(yx ) so that

EνuN (t,x)
[ηx eλ(ηx−uN (t,x))]

EνuN (t,x)
[eλ(ηx−uN (t,x))] = uN (t, x) + yx . (7.15)

Note from (7.15) that λ(0) = 0 and λ′(0) := d
dyx

λ(0) = EνuN (t,x)
[(ηx − uN (t, x))2]−1.

In terms of this change of measure,

d

dyx
EνuN (t,x)+yx

[bx ]
∣∣
yx=0 = λ′(0)EνuN (t,x)

[
bx
( ∑

y∈�h

(ηy+x − uN (t, x))
)]

.

Since uN is uniformly bounded away from 0 and infinity (Lemma 3.1), λ′(0) is bounded.
Also, from (7.15), one can see that λ′′(a) = d2

dy2x
λ(a), for |a| ≤ δ, is also bounded say

by C(δ) for |a| ≤ δ. Then,

EνuN (t,x)+yx
[bx ] = EνuN (t,x)

[bx ] +
[ d

dyx
EνuN (t,x)+yx

[bx ]
∣∣
yx=0

]
yx + rx (7.16)

where |rx | ≤ (C(δ)/2)y2x .
We now estimate that the first two terms on the right-hand side of (7.16) are of order

A−1 to finish the argument. Indeed,

|EνuN (t,x)
[bx ]| =

∣∣EνuN (t,x)
[(at,x/M) fx ] − EνuN (t,x)

[(at,x/M) fx1(
∑

y∈�h

ηy+x > A)]∣∣

≤ 1

A
EνuN (t,x)

[| fx |
∑
y∈�h

ηy+x
] ≤ C

A
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as fx is mean-zero with respect to νuN (t,x) and EνuN (t,x)
[| fx |∑y∈�h

ηy+x ] is uniformly

bounded as uN (t, ·) is uniformly bounded in Lemma 3.1.
The other term is similar:

∣∣ d

dyx
EνuN (t,x)+yx

[bx ]|yx=0
∣∣

≤ ∣∣ d

dyx
EνuN (t,x)+yx

[(at,x/M) fx ]|yx=0
∣∣

+
∣∣ d

dyx
EνuN (t,x)+yx

[(at,x/M) fx (
∑
y∈�h

ηy+x > A)]|yx=0
∣∣

≤ λ′(0)
A

∣∣∣EνuN (t,x)

[
(at,x/M) fx (

∑
y∈�h

ηy+x )(
∑
y∈�h

(ηy+x − uN (t, x)))
]∣∣∣ ≤ C

A
,

since first at,x is non-random and fx satisfies 0 = d
dyx

EνuN (t,x)+yx
[ fx ]|yx=0 (cf. (3.5)),

and second

EνuN (t,x)

[
(at,x/M) fx

( ∑
y∈�h

ηy+x
)( ∑

y∈�h

(ηy+x − uN (t, x))
)]

is uniformly bounded as uN (t, ·) is uniformly bounded (Lemma 3.1). ��
Recall �∗ = 2� + 1 and let now

ỹx = 1

(2� + 1)d

∑
|z|≤�

(
ηz+x − uN (t, z + x)

)
.

We will need that the following exponential moment is uniformly bounded.

Lemma 7.8. For γ, δ > 0 small, uniformly over t ∈ [0, T ], we have

sup
�

EνN
t

[
eγ �d∗ ỹ2x 1(|ỹx | ≤ δ)

]
< ∞.

To get a feel for this estimate, consider the case that the variables are i.i.d. Poisson
with parameter κ . Then, ỹx has the distribution of �−d∗ times a centered Poisson(�d∗)κ
random variable. In this case, the expectation in this lemma equals

∑
|k−�d∗κ|≤�d∗δ

eγ �−d∗ (k−�d∗κ)2e−�d∗κ

(
�d∗κ
)k

k! .

A typical summand, say with k ∼ (κ + δ)�d∗ is estimated by Stirling’s formula as

eγ �d∗δ2e−�d∗κ

(
�d∗κ
)�d∗(κ+δ)

(
�d∗(κ + δ)

)! ∼ e−c�d∗ ,

with c > 0, when γ δ2 < κ . Since there are only �d∗ order summands, Lemma 7.8 holds
in this setting.

We now give an argument for the general case through use of a local central limit
theorem. Denote now κ = �−d∗

∑
|z|≤� uN (t, x + z).
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Proof of Lemma 7.8. Write the expectation in the display of Lemma 7.8 as

∑
|k−�d∗κ|<�d∗δ

eγ �−d∗ (k−�d∗κ)2νN
t

( ∑
|z|≤�

ηz+x = k
)

=
��d∗(κ+δ) ∑
k="�d∗κ#

eγ �−d∗ (k−�d∗κ)2νN
t

( ∑
|z|≤�

ηz+x = k
)

+
"�d∗κ#−1∑

k="�d∗(κ−δ)#
eγ �−d∗ (k−�d∗κ)2νN

t

( ∑
|z|≤�

ηz+x = k
)
. (7.17)

We now bound uniformly the first sum, and discuss the second sum afterwards.

Write the first sum on the right-hand side of (7.17), in terms of a positive constant a,
as

"�d∗κ#+a"�d/2∗ #∑
k="�d∗κ#

eγ �−d∗ (k−�d∗κ)2νN
t

( ∑
|z|≤�

ηz+x = k
)

+
��d∗(κ+δ) ∑

k="�d∗κ#+a"�d/2∗ #+1
eγ �−d∗ (k−�d∗κ)2νN

t

( ∑
|z|≤�

ηz+x = k
)
. (7.18)

The first term in (7.18), since 0 ≤ k − �d∗κ ≤ a�
d/2∗ , is bounded by ea2γ .

To estimate the second term in (7.18), noting �
d/2∗ ỹx = �

−d/2∗
(∑

|z|≤� ηz+x − �d∗κ
)
,

we write the probability in the sum as a difference of 1 − F(�
−d/2∗ (k − 1 − �d∗κ)) and

1− F(�
−d/2∗ (k − �d∗κ)), where F is the distribution function of �

d/2∗ ỹx . Then, we may
rewrite the second term in (7.18), summing by parts, as

��d∗(κ+δ) −1∑
k="�d∗κ#+a"�d/2∗ #+1

[
eγ �−d∗ (k+1−�d∗κ)2 − eγ �−d∗ (k−�d∗κ)2

][
1− F(�

−d/2∗ (k − �d∗κ))
]

+ eγ �−d∗ (k−�d∗κ)2
[
1− F(�

−d/2∗ (k − 1− �d∗κ))
]|

k="�d∗κ#+a"�d/2∗ #+1
− eγ �−d∗ (k−�d∗κ)2

[
1− F(�

−d/2∗ (k − �d∗κ))
]|k=��d∗(κ+δ) . (7.19)

In Theorem 10 of Chapter 8 in [42] (page 230), subject to assumptions, namely that
Eqs. (2.3)–(2.5) in Chapter 8 [42] hold, a uniform estimate on the tail of the distribu-
tion function is given. These assumptions hold when there is an H > 0 small where
Rz,t (u) = log EνN

t
euηz is uniformly bounded in z and t for |u| ≤ H , and also when

σ 2
z,t = EνN

t
[(ηz − uN (t, z))2] is uniformly bounded away from 0 in z and t . These

specifications follow straightforwardly from the uniform bounds on uN (Lemma 3.1).

Then, v� :=
√

�−d∗
∑

|z|≤� σ 2
z,t is uniformly bounded away from 0 and ∞.



1218 P. El Kettani, T. Funaki, D. Hilhorst, H. Park, S. Sethuraman

Therefore, by Theorem 10 in Chapter 8 [42], there is a constant τ such that for
0 ≤ x ≤ τ�

d/2∗ we have

1− F(x) ≤ C(τ )
(
1− �(x/v�)

)
exp
{ x3

v3��
d/2∗

κ1(x/(v��
d/2∗ ))

}
and

F(−x) ≤ C(τ )�(x/v�) exp
{
− x3

v3��
d/2∗

κ1(−x/(v��
d/2∗ ))

}
, (7.20)

where κ1(·) is uniformly bounded for small arguments, and � is the Normal(0, 1) dis-
tribution function. Note that

exp
{
γ �−d∗ (k + 1− �d∗κ)2

}− exp
{
γ �−d∗ (k − �d∗κ)2

}
= exp

{
γ �−d∗ (k − �d∗κ)2

}(
exp
{
2γ �−d∗ (k − �d∗κ) + γ �−d∗

}− 1
)
.

Also, when x/v� = �
−d/2∗ (k − �d∗κ)/v� ≥ 1, which is the case when k ≥ �d∗κ + a�

d/2∗
and a is fixed large enough, we have that

{
1− �(�

−d/2∗ (k − �d∗κ)/v�)
}
exp
{
κ1(x/(v��

d/2∗ )
)
v−3
� �−2d∗ (k − �d∗κ)3

}

≤ 1√
2π

exp
{− �−d∗ (k − �d∗κ)2/(2v2� )

}
exp
{
κ1(x/(v��

d/2∗ )
)
v−3
� �−2d∗ (k − �d∗κ)3

}
.

With the aid of these observations, we deduce now that (7.19) is uniformly bounded in
�. Indeed, to see that the sum in (7.19) is bounded, observe since a�

d/2∗ ≤ k−�d∗κ ≤ δ�d∗
that

exp
{
2γ �−d∗ (k − �d∗κ) + γ �−d∗

}− 1 ≤ 2
(
2γ �−d∗ (k − �d∗κ) + γ �−d∗

)
,

and κ1(x/(v��
d/2∗ )) ≤ κ̄ where κ̄ is a constant, when γ and δ are small. Then, each

summand in the sum in (7.19) is bounded by

2√
2π

(
2γ �−d∗ (k − �d∗κ) + γ �−d∗

)
exp
{(

�−d∗ (k − �∗κ)2
)[

γ − 1

2v2�
+

δκ̄

v3�

]}
,

which in turn is bounded by a multiple of

γ �−d∗ (k − �d∗κ + 1)e−c(γ,δ)�−d∗ (k−�d∗κ)2

for γ, δ > 0 chosen small, with c(γ, δ) > 0. Hence, the summay be bounded uniformly
in � in terms of the integral C(γ )

∫∞
a ze−c(γ,δ)z2dz, for some constant C(γ ).

The other two terms in (7.19) are bounded using similar ideas.
Finally, the second sum in (7.17) is bounded uniformly in � analogously, using the

left tail estimate in (7.20). ��
With these preliminary bounds in place, we resume the argument and consider the

conditional expectation (7.14) when |yx | ≤ δ.
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Lemma 7.9. For δ > 0 small, we have
∫ T

0
EμN

t

[ ∑
x∈Td

N

Eνβ [at,x fx1(
∑

y∈�h

ηy+x ≤ A)|η�
x ]1(η�

x ≤ B)1(|yx | ≤ δ)
]
dt

≤ C M
∫ T

0
H(μN

t |νN
t )dt +

CT M N d

�d
+

CT M K N d�2

N 2 +
CT M N d

A
.

Proof. Wefirst divide andmultiply the left-hand side of the display by M . ByLemma7.7,
we first bound the term∣∣∣Eνβ [(at,x/M) fx1(

∑
y∈�h

ηy+x ≤ A)|η�
x ]1(η�

x ≤ B)1(|yx | ≤ δ)

∣∣∣

≤ Cy2x1
(|yx | ≤ δ

)
+

C

�d
+

C

A
.

The last two terms when multiplied by M , summed over x ∈ T
d
N , and integrated over

[0, T ], give rise to those terms CT M N d/�d +CT M N d/A present in the right-hand side
of the display of Lemma 7.9.

We now concentrate on the terms y2x1(|yx | ≤ δ). Recall ỹx = �−d∗
∑

|z−x |≤�(ηz −
u(t, z)). Bound

1(|yx | ≤ δ) ≤ 1(|ỹx | ≤ 2δ) + 1(|yx | ≤ δ)1(|yx − ỹx | ≥ δ).

Hence,

M
∫ T

0
EμN

t

[ ∑
x∈Td

N

y2x1(|yx | ≤ δ)
]
dt ≤ M

∫ T

0
EμN

t

[ ∑
x∈Td

N

y2x1(|ỹx | ≤ 2δ)
]
dt

+ M
∫ T

0
EμN

t

[ ∑
x∈Td

N

y2x1(|yx | ≤ δ)1(|yx − ỹx | ≥ δ)
]
dt.

(7.21)

To bound the second term in (7.21), since |yx − ỹx | = ∣∣�−d∗
∑

|z−x |≤� uN (t, z) −
uN (t, x)

∣∣, we have by Markov’s inequality and Lemma 3.2 that

M
∫ T

0
EμN

t

[ ∑
x∈Td

N

y2x1(|yx | ≤ δ)1(|yx − ỹx | ≥ δ)
]
dt ≤ δ2

CT M K N d�2

δ2N 2 . (7.22)

To bound the first term in (7.21), write

y2x ≤ 2 ỹ2x + 2
( 1

�d∗

∑
|z−x |≤�

(uN (t, z) − uN (t, x))
)2

. (7.23)

By Lemma 3.2 again,

M
∫ T

0
EμN

t

[ ∑
x∈Td

N

y2x1(|ỹx | ≤ 2δ)
]
dt
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≤ CT M K N d�2

N 2 + 2M
∫ T

0
EμN

t

[ ∑
x∈Td

N

ỹ2x1(|ỹx | ≤ 2δ)
]
dt. (7.24)

The sum of the first terms on the right-hand sides of (7.22) and (7.24) gives the third
term in Lemma 7.9, writing 2C as C .

To address the remaining second term in (7.24), write

M EμN
t

[ ∑
x∈Td

N

ỹ2x1(|ỹx | ≤ 2δ)
]
≤ M H(μN

t |νN
t )

γ2
+

M

γ2
log EνN

t

[
e
γ2
∑

x∈Td
N

ỹ2x 1(|ỹx |≤2δ)]

≤ M H(μN
t |νN

t )

γ2
+

M

γ2�d∗

∑
x∈Td

N

log EνN
t

[
eγ2�

d∗ ỹ2x 1(|ỹx |≤2δ)
]
,

(7.25)

using Lemma 7.3 where the grid spacing is 2� + 1. By Lemma 7.8, we have that

log EνN
t

[
eγ2�

d∗ ỹ2x 1(|ỹx |≤2δ)
]
≤ log

{
1 + EνN

t

[
eγ2�

d∗ ỹ2x 1(|ỹx | ≤ 2δ)
]}

≤ EνN
t

[
eγ2�

d∗ ỹ2x 1(|ỹx | ≤ 2δ)
]

is uniformly bounded in � for small γ2, δ > 0. Hence, the right-hand side of (7.25) is
bounded by M H(μN

t |νt )/γ2 + C M N d/(γ2�
d), finishing the argument. ��

Finally, our last estimate bounds the conditional expectation in (7.14) when |yx | > δ.

Lemma 7.10. We have, for δ > 0 and small γ3 = γ3(δ) > 0, in terms of a constant
c1 = c1(δ) > 0, that

∫ T

0
EμN

t

[ ∑
x∈Td

N

Eνβ

[|at,x || fx ||yx
]
1(η�

x ≤ B)1(|yx | > δ)
]
dt

≤ M

γ3

∫ T

0
H(μN

t |νN
t )dt +

CT M K B N d�2

δ2N 2 +
CT M N d

γ3�d
e−c1�d

. (7.26)

Proof. First, we have |at,x | ≤ M . Next, by our assumptions on fx [cf. (3.4)], using
exchangeability of the canonical measure and the uniform bounds on uN in Lemma 3.1,
we have that

Eνβ

[| fx ||yx
] ≤ C(|�h |)

{
η�

x + C
}
= C(|�h |)

{
ỹx +

1

�d∗

∑
|z−x |≤�

uN (t, z) + C
}

≤ C ỹx + C.

Hence, we need only bound M EμN
t

[∑
x∈Td

N

(
C ỹx + C

)
1(η�

x ≤ B)1(|yx | > δ)
]
.

Since

1(|yx | > δ) ≤ 1
(∣∣∣ 1

�d∗

∑
|z−x |≤�

(
uN (t, x) − uN (t, z)

)∣∣∣ > δ/2
)
+ 1(|ỹx | > δ/2)
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and |ỹx |1(η�
x ≤ B) ≤ B + supx ‖uN (t, x)‖L∞ ≤ 2B say, by Lemma 3.1, for large N , in

turn, we need only bound

(
1 + δ−1) ∫ T

0
M EμN

t

[ ∑
x∈Td

N

|ỹx |1(|ỹx | > δ/2)
]
dt

+
∫ T

0

8M B

δ2

∑
x∈Td

N

( 1

�d∗

∑
|z−x |≤�

(
uN (t, x) − uN (t, z)

))2
dt. (7.27)

The second term in (7.27) is bounded byCT M K B N d�2/
(
δ2N 2) via Lemma 3.2, giving

one of the terms in (7.26).
However, the integrand of the first expression in (7.27) is bounded, by Lemma 7.3

with grid spacing 2� + 1, by

M H(μN
t |νN

t )

γ3
+

M

γ3�d∗

∑
x∈Td

N

log
(
1− νN

t (|ỹx | > δ/2) + EνN
t

[
eγ3�

d∗ |ỹx |1(|ỹx | > δ/2)
])

.

By Schwarz inequality, we have

EνN
t

[
eγ3�

d∗ |ỹx |1(|ỹx | > δ/2)
]
≤
{

EνN
t

[
e2γ3�

d∗ |ỹx |
]
· νN

t (|ỹx | > δ/2)
}1/2

.

Now, for s > 0,

νN
t (|ỹx | > δ) ≤ EνN

t

[
es ỹx �d∗

]
e−s�d∗δ + EνN

t

[
e−s ỹx �d∗

]
e−s�d∗δ

≤
∏
|z|≤�

EνN
t

[
es(ηx+z−uN (t,x+z))]e−sδ +

∏
|z|≤�

EνN
t

[
e−s(ηx+z−uN (t,x+z))]e−sδ.

Moreover, recalling σ 2
z,t = EνN

t
[(ηz − uN (t, z))2], we have

log EνN
t

[
e±s(ηy−uN (t,y)

] = s2σ 2
y,t/2 + o(s2).

Hence, with s = εδ and ε > 0 small, noting that σ 2
x+z,t is uniformly bounded away from

0 and infinity by Lemma 3.1, we have

νN
t

(|ỹx | > δ
) ≤ 2

∏
|z|≤�

e−δ2(ε−ε2σ 2
x+z,t /2) ≤ e−c�d

for a constant c > 0 depending on δ.
At the same time, for γ3 > 0 small, as the means uN (t, ·) are uniformly bounded via

Lemma 3.1 again, we have, in terms of 0 ≤ γ ′
3 ≤ γ3, that

log EνN
t

[
e2γ3�

d∗ |ỹx |]

≤ log
[ ∏
|z−x |≤�

EνN
t

[
e2γ3(ηz−uN (t,z))] + ∏

|z−x |≤�

EνN
t

[
e−2γ3(ηz−uN (t,z))]]

≤ Cγ 2
3

∑
|z−x |≤�

EνN
t

[
(ηz − uN (t, z))2e2γ

′
3|ηz−uN (t,z)|] = O(γ 2

3 �d).
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Hence, with c1(δ) = c/4, we bound the integrand in the first term in (7.27), taking
γ3 = γ3(δ) > 0 small enough compared to c, by

C M

γ3
H(μN

t |νN
t ) +

C M N d

γ3�d
e−c1(δ)�d

,

which when integrated in time yields the other two terms in (7.26). ��
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