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Abstract: In this paper, we introduce the Harish-Chandra homomorphism for the quan-
tum superalgebra U, (g) associated with a simple basic Lie superalgebra g and give an
explicit description of its image. We use it to prove that the center of U, (g) is isomorphic
to a subring of the ring J (g) of exponential super-invariants in the sense of Sergeev and
Veselov, establishing a Harish-Chandra type theorem for U, (g). As a byproduct, we
obtain a basis of the center of U, (g) with the aid of quasi- R-matrix.
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1. Introduction

Harish-Chandra introduced a homomorphism, known as the Harish-Chandra homomor-
phism, for semisimple Lie algebras in the study of unitary representations of semisimple
Lie groups in 1951 [19]. Later on, the Harish-Chandra homomorphism was developed
for infinite dimensional Lie algebras [28,36], Lie superalgebras [28,40,41] and quantum
groups [3,9,25,38,43].

Knowledge about the invariants and the center of quantum superalgebras is not merely
of mathematical interest but is also physically important. On one hand, the study of the
centralizer of a (quantized) universal enveloping (super)algebra is an indispensable part
of its representation theory. On the other hand, the study of physical theories to a large
extent involves the exploration of the invariants of the symmetry algebras, which usu-
ally correspond to certain physical observables. The Harish-Chandra homomorphism
reveals many connections between the center of the enveloping (super)algebras or their
quantization and the (super)symmetric polynomials as well as the highest weight rep-
resentations of the corresponding algebras, and it has been one of the most inspiring
themes in Lie theory.

Let g be a semisimple Lie algebra (resp., a basic Lie superalgebra) over C with
triangular decomposition g = n~ @ h @ n*, where b is a Cartan subalgebra and n*
(resp., n™) is the positive (resp., negative) part of g corresponding to a positive root
system ®*. Using the PBW Theorem, we have the decomposition U(g) = U(h) &
(n_U(g) + U(g)n*). Let 7: U(g) — U(h) = S(h) be the associated projection. The
restriction of 7 to the center Z(U(g)) of U(g) is an algebra homomorphism, and the
composite y_, o : Z(U(g)) — S(h) of = with a “shift” by the Weyl vector p is called
the Harish-Chandra homomorphism of U(g). The famous Harish-Chandra isomorphism
theorem says that y_, o 7 induces an isomorphism from Z(U(g)) to the algebra of W-
invariant polynomials if g is a semisimple Lie algebra or the algebra of W-invariant
supersymmetric polynomials if g is a classical Lie superalgebra. More details can be
found in [7, Chap. 11] for classical Lie algebras, and [8, Sect. 2.2], [35, Chapt. 13] for
classical Lie superalgebras.

Quantum groups, first appearing in the theory of quantum integrable system, were
formalized independently by Drinfeld and Jimbo as certain special Hopf algebras around
1984 [11,24], including deformations of universal enveloping algebras of semisimple
Lie algebras and coordinate algebras of the corresponding algebraic groups. In 1990, by
the aid of the Universal R-matrix, Rosso [38] defined a significant ad-invariant bilinear
form on Uy (g) at a generic value g of the parameter. The form, often referred to as the
Rosso form or quantum Killing form, could also be obtained by using Drinfeld double
construction. Tanisaki [43,44] described this form by skew-Hopf pairing between the
positive part and the negative part of the quantum algebra and obtained the quantum
analogue of the Harish-Chandra isomorphism between Z(U,(g)) and the subalgebra
of W-invariant Laurent polynomials. As an application, the generators and the defining
relations for Z(Uy (g)) have been obtained in [5,10,33].
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Associated with the generalization of Lie algebras to Lie superalgebras, many re-
searchers have investigated the quantization of universal enveloping superalgebras in re-
cent years. Drinfeld-Jimbo quantum superalgebras [45,51] are a class of quasi-triangular
Hopf superalgebras, depending on the choice of Borel subalgebras, which were intro-
duced in the early 1990s. As a supersymmetric version of quantum groups, quantum
superalgebras have a natural connection with supersymmetric integrable lattice models
and conformal field theories. They have been found applications in various areas, in-
cluding in the study of the solution of quantum Yang-Baxter Eq. [18], construction of
topological invariants of knots and 3-mainfolds [49,50,53] and so on. Quantum super-
algebras have been investigated extensively by many authors in aspects such as Serre
relations, PBW basis, universal R-matrix [45,46], crystal bases [30,31], invariant theory
[32], highest weight representations [15,54,55] and so on.

The following questions for quantum superalgebras are natural and fundamental
comparing to Lie (super)algebras and quantum groups: What is the Harish-Chandra
isomorphism for quantum superalgebras? How to determine the center of quantum su-
peralgebras? The purpose of the present work is to answer these questions.

Let g be a simple basic Lie superalgebra, except for A(1, 1), with root system ® =

@5 U @1, and let U = U, (g) be the associated quantum superalgebra over k = K (q%),
where K is a field of characteristic 0 and ¢ is an indeterminate. The Weyl group and Weyl

MEZ,V(XE@()}

(@)
be the integral weight lattice, where h* is the dual space of the cartan subalgebra §.
The Cartan subalgebra U is the group ring of Z® with basis {K,L u e ZCD} and
multiplication K, K, = K4, for all u,v € Z®. For each A € A, we define an
automorphism y;,: U? — UY by (K = q()"“)K,L forall u € Z®.
Let IT be the simple roots of distinguished borel subalgebra if g = A(n, n) with
n # 1, and let Z® be the free abelian group with Z-basis 1. We set

vector are denoted by W and p, respectively. Let A = {A € h*

_ 7, forg= A, n),
0= 7D, otherwise.
Thus, the root system of A(n, n) is Z® = Z®/Zy for some y. Define the standard
partial order relationon Qby A < u & — A € ;g Zsa;.
There is a triangular decomposition U = U~U%U*, where U™ and U* are the negative
and positive parts of U, respectively. Clearly U, U~ and U* are all Q-graded algebras.
The triangular decomposition implies a direct sum decomposition

Up=U0"e Pu, Uy,

v>0

where Uy is the component of degree 0 of U, and U} (resp., UZ,) is the component
of degree v (resp., —v) of U* (resp., U7) for v > 0. Note that the projection map
7: Uy — U is an algebra homomorphism. From now on, we do not make a distinction
between the element in Z® and Q if no confusion emerges.

We observe that the center Z(Uy (g)) of Uy (g) is contained in Up by Corollary 3.7.
Inspired by the quantum group case, we define the Harish-Chandra homomorphism HC
of Uy (g) to be the composite

HC: Z2(U,(g) — Uy 5> U° 5 10,
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To establish the Harish-Chandra type theorem for quantum superalgebras, we need
to describe the image of HC. Recall that a root « € @ is isotropic if («, &) = 0, and the
set of isotropic roots is denoted by ®js,. Set

Ay = ay, Yw € W;

U = { > @K, el
HE2ANZD

> @, =0, Va € Oig, with (v, @) # 0},

neA

where A§ = {v+na |n € Z} foreach v € A and o € ®jg. The notation is consistent
with the one in quantum groups [23, Sect. 6.6] and the one in classical Lie superalgebras
[8, Sect. 2.2.4]. Then the image of HC is contained in (Ugv):‘ljp, which is essentially
derived from character formulas of Verma modules and simple modules of U (g), certain
automorphisms of U, (g) and nontrivial homomorphisms between Verma modules; see
Lemmas 5.2, 5.3, 5.4.

Now we can state our main theorem.

Theorem A. The Harish-Chandra homomorphism HC for the quantum superalgebra
U, (g) associated to a simple basic Lie superalgebra g induces an isomorphism from
Z(Uy(g) 1o (U,

sup*

The Lie superalgebra g = A(1, 1) is very special. The image of HC is contained in
(Ugv)vap, while whether the HC is surjective is not known to us yet; see Remark 5.8.

We noticed that Batra and Yamane have introduced the generalized quantum group
U (x, m) associated with a bi-character x and established a Harish-Chandra type theorem
for describing its (skew) center in [3]. Furthermore, they conjectured a basis of the skew
center of generalized quantum groups indexed by irreducible highest weight modules

[4]. While the quantum superalgebra U, (s) of a basic classical Lie superalgebra s has

been identified with a subalgebra of U° involving a new generator o, so does the image
of Harish-Chandra homomorphism (see [3]). It is not known whether one can derive the
Harish-Chandra type theorem for quantum superalgebra U (s) from [3].

As an application of Theorem A, we obtain a basis of Z(U,(g)) by using quasi-R-
matrix.

Theorem B. The center Z(U,(g)) has a basis, which is constructed by using quasi-R-

matrix and parametrized by {A e AN %ZCD‘ dimL(A) < oo} where L(\) is an irre-
ducible module of Lie superalgebra g with the highest weight \.

To prove Theorem A, it suffices to prove HC is injective and the image HC is equal
to (UQV)SVKP. For the injectivity, we establish a key Proposition 3.4 by using the character
formula of typical finite-dimensional modules of Uy (g), which is a super version of
Tanisaki’s result for quantum algebras [43, Sect. 3.2].

The difficulty is proving the image of HC is equal to (Ugv)zgp. With the help of the
well-known classical Lie theory of semisimple Lie algebras, one can prove the surjec-
tivity for quantum groups by using induction on the weights. However, the technique
does not apply to quantum superalgebras, where one encounters two main obstacles:

1): There are infinitely many @g-dominant weights less than a given Qg-dominant
weight with respect to the standard partial order if g is of type I.
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2): Besides the condition of the @g—dominant integral, an extra condition for the finite-
ness of the dimension of an irreducible g-module L () is that X satisfies the hook
partition if g is of type II.

We notice that the close connection between K (g), J(g) and K (U (g)) will help us
to overcome the obstacles, where K (g) and K (U, (g)) are the Grothendieck rings of g
and U, (g), respectively, and J(g) is the ring of Laurent supersymmetric polynomials
(also called ring of exponential super-invariants in [42]). Recall Sergeev and Veselov’s

isomorphism [42] Sch: K (g) . (g), where Sch is the supercharater map, and the
injective algebra homomorphism j: K (g) <> K (U,(g)) is induced by taking deforma-
tion, which is implicitly given by Geer in [15]. The main ingredient of our proof can be
illustrated in the following commutative diagram:

k®z KUy (g) Ok ®7 K (9)
k®zKey (Uq (@) <k ®7 Kev (g) k®zJ(g)
N ~ e
‘J/’R\ ~ =" ~ e /L
> HC 0 ; “
ZUg(g) — — — — — — > (U =k @z Jev(9)

First, we identify (U )

to reformulate (U ) as k ®z Jev(g), which embeds into k®z J (g) in a natural way;
see Eq. 3 2 and Proposmon 5.6. One can prove that under the isomorphism k ®z Sch, the
ring (U )gup is isomorphic to k®z K¢y (g), where Koy (g) is a subring of K (g) consisting

with a subring of k®zJ (g) by some ¢, and the key idea is

v/ sup

of modules with all weights contained in A N %Z(b.

Second, j induces an injection k ®z Key(g) — k ®z Key (U, (g)), where Key (U, (g))
is the subring of K (U, (g)) consisting of modules with all weights contained in AN %ZCD.

Third, analogous to quantum groups [23, Chap. 6], [38,44], by using the Rosso
form and the quantum supertrace for quantum superalgebras, we define a linear map
VR k®zKev(Uy(g)) — Z(U,(g)); see Proposition 5.7. This involves lengthy compu-
tations and some subtle constructions. We remark that W is an algebra isomorphism,
but not in an obvious way.

Now the surjectivity of HC follows from the commutative diagram easily. Moreover,
we show that HC o Wy, is injective, and combined with the injectivity of HC, we can prove
that homomorphisms occurring in the bottom left parallelogram are all isomorphisms
of algebras. Consequently, the restriction j: Key(g) — Key(Ugy(g)) is an isomorphism.

By definition, k ®7 Key(g) has a basis {[L(A)]|A € AN %ZCD, dim L(1) < oo}
and k ®z Key(Uy (@) has a basis {[L,(M)]| A € AN 3Z®, dim L, (1) < oo}, where
L(X) and L (&) are the irreducible g-module and the irreducible U, (g)-module with the
highest weight A, respectively. We remark that if A € A N %ZCD, then dim L(}) < oo
if and only if dim L, (1) < oo. Then the desired basis of Z(U,(g)) in Theorem B is
obtained by applying the isomorphism W, and here we rely heavily on an alternating
construction of W by using quasi-R-matrix as in [17].

The paper is organized as follows: In Sect. 2, we review some basic facts related
to contragredient Lie superalgebras and quantum superalgebras. In Sect. 3, we show
several useful results on representations of quantum superalgebras, which seem to be
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well-known among experts. In particular, we give a super version of a Tanisaki’s result
for quantum superalgebras (see Proposition 3.4), which has been used to prove the
injectivity of HC. In Sect. 4, we recall that the quantum superalgebra can be realized
as a Drinfeld double. As a consequence, a non-degenerate ad-invariant bilinear form on
U, (g) (Theorem 4.6) is obtained, which serves for proving the surjectivity of HC. In
Sect. 5, first we define the Harish-Chandra homomorphism for quantum superalgebras
and prove its injectivitity. Then we prove that the image of HC is contained in (Ugv)gﬁp
and then explicitly describe its image Jey(g), which will be used to prove our main
theorem for quantum superalgebras; see Theorem A. In Sect. 6, we construct an explicit
central element Cy; associated with each finite-dimensional U, (g)-module M by using
the quasi-R-matrix of quantum superalgebras. As an application of the Harish-Chandra
theorem, we obtain a basis for the center of quantum superalgebras.

Notations and terminologies:

Throughout this paper, we will use the standard notations Z, Z, and N that repre-
sent the sets of integers, non-negative integers and positive integers, respectively. The
Kronecker delta §;; is equal to 1 if i = j and O otherwise.

We write Z; = {0, 1}. For a homogeneous element x of an associative or Lie super-
algebra, we use |x| to denote the degree of x with respect to the Z;-grading. Throughout
the paper, when we write |x| for an element x, we will always assume that x is a homo-
geneous element and automatically extend the relevant formulas by linearity (whenever
applicable). All modules of Lie superalgebras and quantum superalgebras are assumed
to be Z;-graded. The tensor product of two superalgebras A and B carries a superalgebra
structure by

(a1 ® by) - (a2 @ by) = (—1)2Plgyay @ byby.

2. Lie Superalgebras and Quantum Superalgebras

2.1. Lie superalgebras. Let g = gg @ g7 be a finite-dimensional complex simple Lie
superalgebra of type A-G such that g; # 0, and let [T = {ay, a2, ...}, with r the
rank of g, be the simple roots of g. Also let (A, t) be the corresponding Cartan matrix,
where A = (a;;) isar x r matrix and T isasubset of I = {1, 2, ..., r} determining the
parity of the generators. Kac showed that the Lie superalgebra g(A, 7) is characterized
by its associated Dynkin diagrams (equivalent Cartan matrix A, and a subset 7); see
[26]. These Lie superalgebras are called basic. For convenience (see remark 2.3), we
will restrict our attention to the simplest case and only consider root systems related to
a special Borel sub-superalgebra with at most one odd root, called distinguished root
system, denoted by g(A, {s}) or simply g in no confusion. The explicit description of
root systems can be found in Appendix A. The Cartan matrix A is symmetrizable, that
is, there exist non-zero rational numbers di, da, . . . d, such that d;a;; = d;jaj;. Without
loss of generality, we assume d; = 1, since there exists a unique (up to constant factor)
non-degenerate supersymmetric invariant bilinear form (-, -) on g and the restriction of
this form to Cartan subalgebra f is also non-degenerate. Let @ be the root system of g,
and denote the sets of even and odd roots, respectively, as @5 and ®7. In order to define
quantum superalgebra associated with a Lie superalgebra g(A, {s}), we first review the
generators-relations presentation of Lie superalgebra g(A, {s}) given by Yamane [46]
and Zhang [57].
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Definition 2.1 [57, Theorem 3.4]. Let (A, {s}) be the Cartan matrix of a contragredient
Lie superalgebra in the distinguished root system. Then U(g(A, {s})) (simplify for U(g))
is generated by e;, fi, hi(i = 1,2, ...r) over C, where ¢; and f; are odd and the rest
are even, subject to the quadratic relations:

[hi,hj1=0, [hi,ej]l =ajje;, [hi, fi]l=—aijfj, lei, fil=24ijh;, 2.1)

,
and the additional linear relation y_ J;h; = 0if g = A (5%, 51) for odd r, where J =

T
i=1

2
(J1, J2, - -+, Jr) such that JA = 0 (more explicitly, J = < r+l —%, —%,
—1)), and the standard Serre relations
ef = [ =0, if(a,a)=0,
(ade;)! "ie; = (ad f;)! 7% f; =0, ifi # j, witha; # 0, ora;; =0,
and higher order Serre relations

[657 [65717 [e.Yv eS+]]]] = 07 [fSﬂ [fS*h [fS’ fS+1]]] = 07 (22)

if the Dynkin diagram of A contains a full sub-diagram of the form

O—&—0, o O—Q=0.

s+1
We refer the reader to [57] for undeﬁned termlnology and the presentation for each

simple basic Lie superalgebra in an arbitrary root system.

2.2. Quantum superalgebras. Letk = K (g > ), where K is a field of characteristic 0 and

g is an indeterminate, and we set ¢; = g%, then qiaij = qjji foralli,j =1,2,...,r
Set
m—i+l _ 1 —m—1
wl =
q 1, ifn=m,0.

Definition 2.2 [14,32,45]. Let (A, {s}) be the Cartan matrix of a simple basic Lie super-
algebra g in the distinguished root system. The quantum superalgebra U, (g) is defined

over k in g generated by Kiﬂ, E;,F;,i e I (all generators are even except for E; and
[y, which are odd), subject to the following relations:

KK; = K;K;, KK!'=K'K =1, (2.3)

KE/K ' =¢@E;, KFK ' =q ©9F;, (2.4)
K; — K!

EF; — (—D)EINIFE =6 ———, (2.5)
qi — 4;

AdllEl__“fj (Ej) =0fori # j witha;; # 0ora;; =0, (2.6)

Ady “(F,) = 0 fori # j witha;; # 0 or ai; = 0, 2.7)
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(Es)? = (Fy)? =0, ifag = 0, (2.8)

and higher order quantum Serre relations, and

.
. 1 r—1

[Tx =titg=a (==~ for odd .

LI 2 2

where
Adg, (x) = Ejx — (= DEIFK K E;; (2.9)
Adp, (x) = Fix — (= D)FIMR K. (2.10)

For the distinguished root data [57, Appendix A.2.1], higher order Serre relations appear
if the Dynkin diagram contains a sub-diagram of the following types:

(i) O—@—O the higher order quantum Serre relations are

—1 s+1

EES lss+1+Es 1ss+1E =0, ]F]FS lss+1+]Fs lss+1F =0; (211)

(11) Q—@:@ the higher order quantum Serre relations are

s+1

EEA 13A+1+]EA 135+1]E =0, F]Fs 16A+1+]FA 133+1F =0; (212)

s+1

(iii) Q— , the higher order quantum Serre relations are

-1 s+2

EES 1ss+l'|']Eslss+lIE =0, FFS lss+1+]Fs 1ss+IIF =0,

(2.13)
IEsEs—l;s;s+2 + Es—l;s;s+2Es = Ov IFs]Fs—l;s;s+2 + Fs—l;s;s+2Fs = Os

where

Es-tisij = Boo1 (BEj — 4] EjBs ) — 007" (EE; — 4} E/E, ) By,

s—1
IE‘s—l;s;j =T (FSFj - q;lijst) - 6];13 11 ! (Fst - q/a'jSFst) Fs_1
For the other root data of g, the higher order quantum Serre relations vary considerably
with the choice of the root datum; thus, we will not spell them out explicitly here.

Remark 2.3. The definition of the quantum superalgebra above is dependent on the
choice of the Borel subalgebras. Although the quantum superalgebras defined by non-
conjugacy Borel subalgebras of a Lie superalgebra are not isomorphic as Hopf superal-
gebras, they are isomorphic as superalgebras; see [29] or [47, Proposition 7.4.1].

There is a unique automorphism w of Uy (g) such that w (E;) = (—1) EF;, w(F;) =
E; and o(K;) = ]Kfl fori € I. The quantum superalgebra U, (g) has the structure of a
Z,p-graded Hopf algebra. The co-multiplication

A:Uy(g) — Uy(g) ® Uy(g)
is given by

AB) =K QE+E®1, AF)=10F+F K, AKX =K @K,
(2.14)
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fori € I and the co-unit £: U, (g) — k is defined by
e(E) =e) =0, eK"")=1, fori el
then the corresponding antipode S: U, (g) — U, (g) is given by
S(E) = -K 'K, SE)=-FK;, SK)=KF, foriel, (2.15)

which is a Z,-graded algebra anti-automorphism, i.e., S(xy) = (—D)*I1S(y)S(x).

Denote by U0 (resp., Ugo) the sub-superalgebra of U, (g) generated by all [E;, Kiﬂ
(resp., FF;, Kiﬂ), set UY equal to the sub-superalgebra of Uy, (g) generated by all Kii],
and denote by U (resp., U™) the sub-superalgebra of U, (g) generated by all E; (resp.,
IF;), itis well-known that U* @ U? = U2 (resp., U~ ® U = USY) by the multiplication
map. And the multiplication map U~ ® U’ ® U* — U is an isomorphism as super vector
spaces.

Remark 2.4. Analogous to the quantum group, the quantum Serre relations and the higher
order quantum Serre relations can be explained from the view of skew primitive elements
in the quantum superalgebras. For example,

al-j—l
i

l_i' _ _ _ —
AWl =uf; @ 1+K; “ij@ou;,, Alu;) =u; @K Kj1+1®u[j,

Aup) =uy @1+ K K ®@uly, AWy =1@uy+uy @K, K2,
AuH=utel+ ]Ks_l]Kij Qut, Au ) =10u +u" ® KS__IIKS_ZK;I.

where uljjE (resp. u%) is on the left side of Eqgs. (2.6) and (2.7) for i # j and even «;

(resp., for non-isotropic odd root «;; with a;; # 0 for i # j), and u™ is on the left side
of Egs. (2.11)-(2.13).

r r
Forany u = Y mja; € Z®, set K, = [[ K". Thus, K,K,» = K, for all
i=1 i=1
w, uw' € Z.&. Therefore, {Ku}uezo spans UY as a vector space, and

K,EK, ' =qW R, KK, =g F;.
The quantum superalgebra U, (g) is Z®-graded. And the gradation is given by
deg K, =0, degE; = «;, degIF; = —a;,

forall u € Z® and i € I. We denote that U, is the v € Z®-component if g # A(n, n).

Note that if g = A(n, n), the simple roots for distinguished Borel subalgebra are
2n+1

not linearly independent (that is, y = Y d;Jia; = 0). This causes some technical
i=1

difficulties. However, the quantum superalgebra U, (g) is also Z.®-graded, where Z®

is a free abelian group generated by all simple roots ay, o, - - - , ®2,+1. Obviously,

7D =79/ Ly.
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Denote U|,, (resp. U,) as the p-component (resp. v-component) with respect to Z®-
gradation (resp. Z®-gradation). From now on, we do not make a distinction between

the elements in Z® and Z® if no confusion emerges. Hence, U|,, = @ U4k . Set
keZ

0= ZCID, forg = A(n, n),
T zo, otherwise.

Note that h* = C®. If g # A(n, n), define the standard partial order relation on h*
byA<usu—»xre Zieﬂ Z+a;. This breaks down if g = A(n, n) because y = 0 and
d;J; € Z, for all i € 1. However, we can define a similar partial order on C®. From
now on, we will use the partial order on Co if necessary for g = A(n, n).

Remark 2.5. The Lie superalgebra A(n, n) is rather special, and the restriction of the
Harish-Chandra projection determined by the distinguish triangular decomposition to
the zero weight space (with respect to Z®-gradation) is not an algebra homomorphism;
for more details, see [ 16, Sect. 6.1.4]. For this reason, we do not expect that the projection
from Uy to U is an algebra homomorphism. However, the projection 7 : Uy — U
is an algebra homomorphism. Fortunately, we can prove that Z is contained in Up;
see Corollary 3.7. Therefore, we can establish the Harish-Chandra homomorphism for
g= A(n,n).

3. Representation of Quantum Superalgebras

3.1. Representations. We will recall some basic facts about the representation theory
of the quantum superalgebra U, (g). The bilinear form (-,-) on Z® can be linearly

extended to h*. For any A, u € b* with (u, u) # 0, denote (A, u) = 2(2"5)). Let

A= {A eh*| (M a)€Z, Ya € @6} be the integral weight lattice, and denote by A* =

[A eb*| (M, a)€Zy, Ya € @g} the set of CD(i;—dominant integral weights.

A U, (g)-module M is called a weight module if it admits a weight space decompo-
sition

M=) M, where M, = {u € MIKiu = g™y, Vi € 11] RNERD)
rebh*

In this paper, all module are weight module and type 1. Denote by wt(M) the set of
weights of the finite-dimensional Uy, (g)-module M. A weight module M is called a
highest weight module with the highest weight A if there exists a unique non-zero vector
vy € M, which is called a highest weight vector such that K;v, = q(x'“"), E;vy, =0
foralli eTand M = U (g)v;L.

Let J, = ZU (FE; + ZU (@) (K; — qg*e)) for . € A, and set A (A) =

=1

U, (9)/ . ThlS is a Uy (g)- module generated by the coset of 1; also denote this coset
by v,. Obviously, E;v, = 0 and K;v) = q()‘ @)y, fori € I. We call A g (A) the Verma
module of the highest weight A. It has the following universal property: If MisaU,(g)-
module and v € M, with E;v = 0 for all i € I, then there is a unique homomorphism
of Uy (g)-modules ¢ : Ay (A) — M with ¢(v;) = v. The Verma module A, (A) has a
unique maximal submodule, thus, A, () admits a unique simple quotient U, (g)-module
Ly(0).
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Lemma 3.1. Let 1 € A with (A, a5) = 0. Then there is a homomorphism of U, (g)-
modules ¢ Ag( — a5) — Ay (L) with (vy—q,) = Fsvy.

Proof. We have Fv; € A, (A)r—q,. Therefore, the universal property of A, (A — o)
implies that it is enough to show that E ;F,v; = O forall j € I. This is obvious for j # s
because E; and Fy commute. For j = s, we have EFyv) = [Ey, Fylv;, — FEgv), =
K, —K; !
——v, —0=0. O
qs—9s

The finite-dimensional irreducible representations of U, (g) can be classified into
two types: typical and atypical. The representation theory of U, (g) at generic g is rather
similar to the Lie superalgebra g, as well. Geer proved the theorem that each irreducible
highest weight module of a Lie superalgebra of Type A-G can be deformed to an irre-
ducible highest weight module over the corresponding Drinfeld-Jimbo algebra; see [15,
Theorem 1.2]. We also refer to [54, Proposition 3], [55, Proposition 1] and [30, Theo-
rem 4.2] for quantum superalgebras of type Uy (gl,, ), Uy (05p2,) and Uy (05p,,,),
respectively.

Theorem 3.2. For . € h*, let L()\) be the irreducible highest weight module over g
of highest weight \. Then there exists an irreducible highest weight module Lg()) of
highest weight A which is a deformation of L(X). Moreover, the classical limit of L, ())

is L(A), and their (super)characters are equal .

3.2. Grothendieck ring. Let A-mod be the category of finite-dimensional modules of a
Hopf superalgebra A over k. There is a parity reversing functor on this category. For an
A-module M = My @ Mj, define

(M) = I(M)y ® TI(M);, TI(M); = TI(M),,;, Vi € Z.

i+l
Then I1(M) is also an A-module with the action am = (—1)/m. Let kx be a 1-
dimensional odd vector space with basis {rr }, then k7 can be views as a trivial A-module
and I[T(M) = kr ® M as A-modules. Define the Grothendieck group K (A) of A-mod
to be the abelian group generated by all objects in A-mod subject to the following two
relations: (i) [M] = [L]+[N]; (ii) [TI(M)] = —[M], for all A-modules L, M, N which
satisfying a short exact sequence 0 — L — M — N — 0 with even morphisms.

It is easy to see that the Grothendieck group K (A) is a free Z-module with the basis
corresponding to the classes of the irreducible modules. Furthermore, if A is a Hopf
superalgebra, then for any A-modules M and N, one can define the A-module structure
on M ® N. Using this, we define the product on K (A) by the formula

[M][N] =[M ® N].

Since all modules are finite-dimensional, this multiplication is well-defined on the
Grothendieck group K (A) and introduces the ring structure on it. The corresponding ring
is called the Grothendieck ring of A. The Grothendieck ring of U(g) is denoted by K (g).
Let Key(g) (resp. Key(U,(g))) be the subring of K (g) (resp. K(U,(g))) generated by

all objects in U(g)-mod (resp. U, (g)-mod), whose weights are contained in A N %ZCD.

1 However, the inverse of the theorem is not true in general [2]. For example, there are many finite-
dimensional irreducible modules (spinorial modules) of quantum superalgebras of type Ug (0spy)2) without
classical limit; see [52] for more details.



1494 Y. Luo, Y. Wang, Y. Ye

Let M be a finite-dimensional representation of g or U, (g). We define the character
map and the supercharacter map as:

ch(M) = ZdimeeA, Sch(M) = Z sdimM, e*,
A A

where sdim is the superdimension defined for any Z,-graded vector space W = Wyd W)
as the difference of usual dimensions of graded components: sdimW = dim Wy —dim W;.

Proposition 3.3. There is an injective ring homomorphism j: K(g) — K(U,(g)),
which preserves (super)characters.

Proof. By Theorem 3.2, we can define j ([L(1)]) = [L4(1)] for all finite-dimensional
irreducible g-modules L (). This then induces an abelian group homomorphism from
K (g) to K (U, (g)). The map preserves (super)characters, so j is a ring homomorphism.
Suppose there exist nonzero @; € 7Z and distinct A; € h* fori = 1,2---,n such
that y (37, a;/[L(%)]) = 0. Then Sch(}_;_, a;[L(%;)]) = 0. Choose A ; maximal in
{Ai € b*li =1,2,.--,n} for some j, then a; = 0 since dim(L()»,-))Aj = §;;. This
contradicts a; # 0. Thus, Y7, a;[L(%;)] = 0. ]

Sergeev and Veselov proved that the Grothendieck ring K (g) is isomorphic to the
ring of exponential super-invariants J(g) = { fe Z[PO]W0| D, f € (e* — 1) for any
isotropic rootoc} for g # A(1, 1), where D, (") = (A, a)e*, {e)‘| A€ PO} is a Z-free

basis of Z[ Py], and here Py = A and Wy = W, more details could be found in [42].
Set

Jev<g)={ Y @K, el

Ay = ay, Yw € Way, € Z, Vii; Dy(u) € (K2 — 1), Va € q>iso},
NE2ANZD

3.2)
where Dy (K,) = (1, o) K.
Obviously, there is an injective homomorphism ¢: Jey(g) — J(g) with (K,) =

e~"/2_ This induces an isomorphism from Ky (g) to Jey(g), hence we have the following
commutative diagram:

J =

K (U, (@) K (g) > I (@)
A
j i
~ J

Key(Uy () ~—Key(@) — — — — > Joy(9)

We remark that the above diagram is not true for g = A(1, 1). In Appendix B, we
describe Jey (g) in sense of Sergeev and Veselov [42] and illustrate why Key(g) 2 Jev(9)
ifg=A(,1).
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3.3. Some important propositions. In this subsection, we investigate some important
propositions, which show that the center of U, (A(n, n)) is contained in UY and will be
used to prove the injectivity of HC.

If g is of type 11, there exists a unique § € @g such that (TT\ {«s}) U{§} is a simple root

r
system of @g. By writing § = ) c;j;, we can get ¢; = 2. The following proposition
i=1

is a super version of [43, Sect. 3.2] for quantum superalgebra U, (g) associated with a
simple basic Lie superalgebra.

-

Proposition 3.4. Set 8 = > m;o; € Z.I1, and let L, () be atypical finite-dimensional
i=1

irreducible module. Suppose )\ satisfies

(1) (A, «j) = m; foralli # s;
(1) an extra condition 2(\ + p, 8) > mg + 1 when g is of type II, then U:ﬂ — LyM)j—p
with u +— uvy is bijective.

Proof. In the proof of this proposition, we choose A € C ®z Q since the Verma module
and simple module can be viewed as Q-graded modules. Notice that the partial order is
well-defined on Q.

The canonical map from A, (A) to L, (}) is surjective, which follows that every
finite-dimensional irreducible module is a quotient of a Verma module. So we only
need to prove dimAy(A),—g = dimL, (1), g, since dimU:ﬂ = dimA,(A)—pg. The
dimA, (1), p is the coefficient of e* P in chA,(A), and dimL, (1), g is the coefficient
of *~#inchL,(}).

The following character formulas of a Verma module and a typical finite-dimensional
irreducible U, (g)-module with the highest weight A are given by [27, Theorem 1] and
Theorem 3.2:

HO(ECD?(I + e_a) S

= 1. _5¢
Hﬂecbg(l —eP)

I +(1+e™™
aed? ( ﬂ) Z (= 1)) gut0)=p,
Hﬂe‘l’%(l - ) weW

chA,(\) =

chL, () =

Hence, it is sufficient to show w(A +p) — p — (A — B) ¢ Z, Il forall w # 1. Letus
prove it by induction on /(w).
If g is of type I and /(w) = 1, then we have w = s; for some i # s, and hence

wi+p)—p—A—=B)=—({r a;)+ Do + B ¢ Z,I1.

Assume that [(w) > 2. There exists some j # s and w’ € W such that w = sj w’ with
I(w") = I(w) — 1, and then it is known that w/_l(aj) € CD:-)'. We have

wh+p)—p—A—=B) =w0+p) —p—0—p) —(+p,w (@),

w' (A +p)—p— (A— B) ¢ Z.TI by induction and (A + p, w’_l(aj)) > Osince A + p is
<I>3—dominant, sowh+p)—p—(A—PB) ¢ Z. I forallw # 1.
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If g is of type IT and /(w) = 1, then we have w = s; for some i # s or w = s5. By
the same argument as above, we only need to consider w = s5. Indeed,

wh+p) = p =G p)=—(t+p.8)5+p
=D (et p.8)ci + miai ¢ ZyTl

i=1

since ¢g = 2 and 2(A + p, §) > my + 1. Assume /(w) > 2. There exists some j # s and
w’ € W such that w = s;jw’ or w = ssw’ with [(w’) = I(w) — 1. Then it is known that
w'™! (oej) or w'~1(8) belongs to CDE. The proof is similar to type I when w = s;w’, so
we omit it here. If w = ssw’, then

wh+p)—p—G =B =w0+p) —p—0—p)—(+p,w ()

Once again, w' (A + p) — p — (A — B) ¢ Z,I1 by induction and (A + p, w”l(aj)) >0
since A + p is @g-dominant, sowA+p)—p—(A—p) ¢ Z I forall w # 1. o

Let & € A be a typical weight such that L, (1) is finite-dimensional, then we can
define a twisted action on L, (1) via the automorphism w of U, (g), denoted by Lg’(k).
Set vy by v, when considered as an element of L (%). We then have K, v; = g~ Py
for all u € Z®. Furthermore, we have F; v; =O0foralli €I, and x xv;\ maps each
U} onto LY v

Similarly, if (A, «;) > m;, Vi # s and A satisfies an extra condition 2(A + p, §) >
myg + 1 for g is of type II, then the map U} — L‘qo()\)_;m, with x — xv; is bijective.

Theorem 3.5. Let u € U. Ifu annihilates all finite-dimensional U-modules, then u = 0.

Proof. For any typical weights A, € A such that L,(1) and L‘;()J ) are finite-
dimensional, the tensor product L; (1) ® L;’(A’ ) is also a finite-dimensional U, (g)-
module. Suppose that # € U, (g) annihilates all these tensor products, in particular
u(v;, ® v;,) = 0 for all » and A". We show that this implies u = 0.

Choose bases (x;); of U and (y j)j of U™ consisting of homogeneous weight vectors,
say x; € U;:(i) and y; € U:v,(j) with v(i) and v/(j) in Z,I1. Write

u = Z Z Zaj,u,iYJKuxi
i

with a; , ; € k, which is a finite sum. Suppose that u # 0. Let vo € Z,IT be maximal
among the weights v such that there exist i, i, j witha; , ; # 0and v = v(7).
So we have

Kuxi(vx ® U;J) — q(v(i),)»)+(LL,)L—)J+u(i))v)L ® xivi/-
Each A(y;) isequal to y; ® K\T’ij)

that

plus a sum of terms in U™ ® UOUZO. This implies

W@+ A=A+ (D))= (V' (j), =2 +v(D))

yiKuxi(v, ® ;) =q Vjvn @ xi vy, + (%),

where () is a sum of terms from a certain L, (1) ® LZ)(A/)—)\’W with v £ v(i).
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The maximality of vy implies that y; K, x; (vy ® v;,) has a component in L, (A) ®
L‘(}’()J )—/+1 Only for v(i) = vg. Therefore, the projection of u(vy ® v/’\,) onto Ly (A) ®
LZ’()\/)_NHO is equal to

Z aj,ﬂ,iq(vo’)\)(ﬂ’)\‘_k +v0)—(V'(j),—A +U0)yj V) ® X v;\/’ (3.3)
Jomsisv(i)=vo

since we assume that u (v, ® v},) = 0, this projection is also equal to 0.
We can find an integer N > 0 such that

Vo < Z Na and V' (j) < Z Na

aell aell

for all j. Set

A}'V:{AEA

A is typical, L, () is finite-dimensional, (A, a;) > N foralli # s
and plus an extra condition 2(A + p, §) > N + 1 if g is of type I

By the same argument before the proposition, we know that the map U,fo — L;"()J DA —vp>
x > xvj, is bijective for all A" € A},. Thus, the elements x;v;, with v(i) = v
are linearly independent. Therefore, the vanishing of the sum in (3.3) implies (for all
Ae At)

N

3 ig ORI =0 DRy, (3.4)
Js1

for all i with v(i) = vy.
The statement before this theorem implies that all y;v; with nonzero coefficients
aj i occurring in (3.4) are linearly independent for all A € A;rv. So we get from (3.4)

Z aj’luq(vo,)»)+(u,)»—)L +v0)— (V' (), —A'+v0) _ 0, (3.5)
i

for all i, j with v(i) = vy. We can cancel the (nonzero) factor g2~ ()).=*+v0) jp
(3.5), which does not depend on u, and get

> ajuigh g =0, (3.6)
n

for all i, j with v(i) = vp and all A, 1" € A},. Now, fix 2" and notice that (-, -) on
Z® x A}, is non-degenerate in the first component for all N, thus the coefficients
a;j .iq*"=*) in (3.6) are all equal to 0. This implies that a; , ; = O forall i, j, u with
V(i) = vg, contradicting the choice of vy. Therefore, u = 0. m|

One can check Proposition 3.4 and Theorem 3.5 hold if g = A(n, n) since 7.® has a
partial order. Next, we strengthen Theorem 3.5 for g = A(n, n).

Theorem 3.6. Let u € U, (A(n, n)). If u annihilates all typical finite-dimensional irre-
ducible Uy (A(n, n))-modules, then u = 0.
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Proof. It is known that if a typical irreducible module L, (1) is a composition factor of
a finite-dimensional module M, then L, (2) is a direct summand of M [16, Sect. 3.2].
By the proof of Theorem 3.5, we only need to prove the following claim.

For all N > n, there exists A € A}, such that the set

{)J € AN|Ls) ® L () is completely reducible}

could linearly span h*.
If it is true, then L, (1) ® L‘q‘)()»/ ) is completely reducible if all weights in A +

wt (L‘(; W )) are typical. Because the composition factors of L, (1) ® Lf]" ()) are the
form of L (%) with & € A + wt (Lg;()v)) [39, Corollary 5.2].

- n+l n

Proof of the claim. Letd = ) ((n+ 1 —i)(N+2)+2)8,- — > (G —D((N+2)5; —(nN+

i=1 j=1

An+2)8,41 € A}fv+1.Then)~L+ai € A;fv foralli € I. There exists a positive integer x such

thatitis bigger than £(u, &) and +=(u, 6¢) forany u € wt(LfI”()~\+al~)) withi €I, j, k =
n+l n

1,2,---,n+1.Leta =8k and A = 2(n+ % —i)as; — lea8j — wwnﬂ € A.
1= J=

Then A € A%, and A + p are typical weights for all p € wt(L;"(i +a;)) withi € I. So
L) ® L;’(;\ + ;) are completely reducible for all i € L. Since {A + ;i €I} could
linearly span h*, the claim holds. O

Corollary 3.7. The Center Z(Uy(g)) is contained in Uy.

Proof. If g # A(n, n), note that Z(U,(g)) is Z®P-graded since U, (g) is ZP-graded.
Assuming that Z(U,(g)) N Uy (g)y # O for some v € Z®, we will show that v = 0.
Pick 0 # z € Z(U,(g)) N Uy (g)y. Then z = K;zK; ' = ¢z for all i € I; hence
(v, ;) =0foralli €I, and v = O since (-, -) is non-degenerate.

For g = A(n, n), the quantum superalgebra U, (g) is Z.®-graded. Similar to the

argument above, if Z(U,(g)) N Uy(g)y # 0 with v € Z®, then v is contained in the
radical of (-, -). Thus, v = ky for some k € Z. We need to prove k = 0. Otherwise
assume k 7= 0. Let M be an arbitrary finite-dimensional irreducible module with the
highest weight A and highest weight vector v; and lowest weight A" and lowest weight
vector vy/. Then zv; € M4, = 0if k& > 0 since ky > 0. Furthermore, zvy €
M4k, = 0if k < O since ky < 0. Thus zM = 0 and hence z = 0 by Theorem 3.6,
which contradicts the choice of z. O

Remark 3.8. It is not known to us whether the projection from Ulg to U is an algebra
homomorphism or not, see Remark 2.5. However, the projection 77 from Ug to U is an
algebra homomorphism, then HC is an algebra homomorphism automatically. Moreover,
Corollary 3.7 is also crucial in our proof of the injectivity of HC which relies on the

decomposition Uy = @ UZ, UU?, see Lemma 5.1.
v=>0

4. Drinfeld Double and Ad-Invariant Bilinear Form

4.1. The Drinfeld double. In order to establish the Harish-Chandra homomorphism for
quantum superalgebras, we need to construct the quantum Killing form or Rosso form for
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quantum superalgebras. Our approach to obtaining this takes advantage of the Drinfeld
double for Z;-graded Hopf algebras [18].

Definition 4.1. A bilinear mapping (, ): B x A +> k is called a skew-pairing of the
Z,-graded Hopf algebras A and B over k if for all @, a’ € A and b, b’ € B we have

b, D =e®), (1,a)=z¢(a),
b, a) = (=)0 b ag) (B ag).  (bad) =Y (b, d) (b a). (4.1)

Proposition 4.2. ([18, Proposition4]) Let A and B be Z;-graded Hopf algebras equipped
with a skew-pairing (, ): B x A +> k. Then the vector space A ® BB becomes a super-
algebra with multiplication defined by

@@b)@ @b) =Y (DI PORPOD (§pq) al))(b). aly)aal, @ bayb',
(42)

fora,a’ € Aandb, b’ € B. With the tensor product co-algebra and antipode S(a ®b) =
(=1 lallb] (1®S(b))(S(a)®1) structure of AQ B, this superalgebra is also a Z-graded
Hopf algebra, called the Drinfeld double of A and B and denoted it by D(A, B).

The existence of a dual pairing of UZY and (U<0)°p was observed by Drinfeld [11].
In our exposition, we followed Tanisaki [44, Proposition 2.1.1] for quantum groups and
Lehrer, Zhang, Zhang [32, Sect. 3] for quantum superalgebra U, (gl,,,). We have the
following proposition.

Proposition 4.3. There is a unique non-degenerate skew-pairing between the Zy-graded
Hopf algebras UZ° and USC with

o o 1

K Kj) =q~ @), (F,Ej) = —8j—— and K;, Ej) =0, (F;,K;) =0.
q4i — 4;

4.3)

Proof. The skew-pairing is well-defined follows from [14] or Remark 2.4, and the non-
degeneracy of skew-pairing can be obtained from the following: for u € Z® withu > 0
and u € U_, with [Ei,u] = 0 forall i € I, then u = 0. Similarly, if u € U; with
[Fi,u] = Oforalli € I, then u = 0. The fact can be proven in a similar way to
Lemma 5.1, which we omit here. O

Remark 4.4. Geer [14] extended Lusztig’s [34] results to the Etingof-Kazhdan quantiza-
tion of Lie superalgebras U;Il) 7 (g) and checked directly that the extra quantum Serre-type
relations are in the radical of the bilinear form. Indeed, the radical of the bilinear form
is generated by the extra quantum Serre-type relations and higher order Serre relations.

Corollary 4.5. As a superalgebra, D(U>0, Ugo) is generated by elements E;, K;, K-~ ! ,
F;, ]K;, K;_l. The defining relations are the relations for the generators E;, K;, Ki_l,
(resp. , F;i, K, K;fl) of the superalgebra U= (resp. USC), and the following cross
relations:
KEK ™ =q¢@*E;, KF/K =g @F;, (4.4)
K; — K™
KK, =KK;i, EF; — (—DFIFE = §;———. (4.5)

-1
q4i — 4;



1500 Y. Luo, Y. Wang, Y. Ye

It is known [14,18] that the sub-superalgebras UZ? and USP of the quantum su-
peralgebras U, (g) form a skew-pairing, and U, (g) is a quotient of quantum double
of D(UZY, USY). More precisely, we set Z to be the two-sided ideal generated by the
elements K; — Kfl, which is also a Z;-graded Hopf ideal, and we have canonical iso-
morphism D(UZ’, USY)/Z = U, (g) as Z,-graded Hopf algebras. Recently, Drinfeld
doubles have been studied by various authors as a useful tool to recover the quantum
groups (see, e.g., [6,12,13,20-22]).

4.2. Rosso form. Now we can define an ad-invariant and non-degenerate bilinear form
on quantum superalgebras by using skew-pairing between UZ? and USY.

Theorem 4.6. Define a bilinear form (, ): U, (g) x Uy(g) — k by

, —-,1/2
(VK )Kx, K )Kyx') = (=DM x)(p, x)g@ea 7" 0 e

forx € Ut x' € U;,, yeU”,y € U:U/,A,k/ € 2Z® and p, 1, v,v' € Q. The

bilinear form is ad-invariant, i.e., (ad(u)v, v') = (—=D)"I?1(v, ad(Su))v’).

By the use of the duality pairing, Tanisaki [44] described the Killing form of the
quantum algebra, which is first constructed by Rosso [38], then used it to investigate the
center of quantum algebra. Similar techniques could be applied in the case when g is
a Lie superalgebra of type A-G. Perhaps the proof of this theorem is known by several
specialists, but it seems difficult to find in the existing literature. It is fundamental to
prove the surjectivity of Harish-Chandra homomorphism throughout this paper, so we
write down the details to make the paper more accessible. Here we need some tedious
computations, which are also essential for Sect. 6.

For x € U; and y € UZ ,, we know A(x) € & U;_VK,, ® Ul and A(y) €

(U
P U,® U:(va)]K,jl, thus for each «; € II, we can define elements r; (x), 7/ (x)
oy
inUj_, and r; (y), r{(y) in U”

-

—a) 10 satisfy the following equations:

r r
AX) =x®@1+Y riK @B+ =K, ®x+ ) EK, o ®r/(x)+-, and
i=1 i=1

r r
A =y®@K'+Y rn(M®FK !+ =1@y+Y Fi@rmK,'+: .
i=1 i=1

Then for all x € U;, x' e U;/ and y € U™, we have

riCex) = xry (1) + (= DEIF g 0o oy

ri(xx") = (—l)lxlllE"lq(M’o‘i)xrl-/(x/) +r](x)x’,
iy, x) = (= D)TONEL@E; B (y, (1)),
OF;, x) = (=DFIOUE, B (v, ri(x)).
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Similarly, forall y € UZ, vy € U:u’ and x € U, we have

ri(vy') = gDy (v + (= DE Iy )y,
r(y) = (=DPIFTy (3 4 g e (),
O, Eix) = [, E) (i (), x),
(yv -XEi) = (Fiv Et)(",/()’% .X).

Thus, we have the following lemma.

Lemma 4.7. Forall x € Ul‘: andy € UZ,, we have

[x, Fi] = xF; — (~DMFIRx = (g — g7 )™ (0K — (=DIOIFIR=1 (1),
4.7

[Ei, v = Eiy — (=DPIELYE; = (¢ — g7 H ™ (= DEIOIK 7 (v) — rl (K.
4.8)

Proof. We only prove Egs. (4.8), and (4.7) is similar. For y = 1 and y = F; the formula
follows from definition, so it is enough to show that if Eq. (4.8) holds for y € UZ , and

vy € U:M,, then Eq. (4.8) holds for yy’. This can be derived as follows.

(gi —q; DIE:. yy'T = (qi — q; ) ([, vy + (=)= Py [E;. y1)
= (=DM () = r{ (K
+ (DB (DB ONR () = rf 0K
= (=DEOIIRG (DI )y + g4 yri (1)
= (q" )y + DEIyH GH)K]
= (DEOINKGr (yy') = (K
a

Combining the above lemma, we get the following equations, which are very useful
when proofing Theorem 4.6.

ad(E)) (YKox) = E; yKyx — (—l)lEiKIXHD’”KiyK;\xKi_IIE,-
= [E;, yJKox + (= DPIEYE K x — (—1)EN DR, yK, K E;
=(q; — qi_l)—l((—l)lE"””'(y)lK,-r,-(y)KAx _ ’;(Y)K,-_IKM)
+ (= D)PIEl GOy By — (— 1) Bl (XD g (emvei) y g o R,
= (g —q; ) (= DEITONg a0 5y () x = () K a,3)
+ (—1)|y”Eilq(*’*°‘i)yK,\E,-x _ (_1)HE,'|(|x\+|y|)q(u,7v,a,~)yK)Lin'
Now, we are ready to prove Theorem 4.6.

Proof of Theorem 4.6. 1t is enough to take u to be generators, i.e., E;, F; and K;. Fur-
thermore, we may assume that

v=(K,)Kux and v = (y'K,)Kyx',
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with A, 2" € Z®andx € U, x" € U;,, yeUZ,,y e U_  withweights ju, u', v, V" €
0

It is obvious for u = K;. For u = E;, then

ad(EN () = (g — ¢; )~ ((=DIFIWlg e ()G o, ¥ = 1 () K-, %)
+ (= DPIEl G Ov.—oi) e By
— (DB g (v g R and
ad(S(E)) (v') = —ad(K; ad(E;) (v') = —g 7"~ *Dad (E;) (v))
= (qi — ;") (= (=) B Ol g WDy (VYK
+ g U (VKX )
_ (_l)b’/HEi‘q()L/"'//v/"'ai~_o‘f)y/K)L/+v/]Eix/

+ (_])IEM(\X [+]y I)q(d[»*ﬁti)y/K)L,w,x/Ei'

Now the problem can be split into two cases. First, if © = v’ and u’ + o; = v, then

(@d (@, v') = (=D g — g7 )7 x)g 20,
(=Dl Wlgmen e =1 2020020 1 (y) x') = g7 20H (), ).

and
(v, ad(SENV) = (=PI, x)g ) (= (= 1P Eilg Grenver—a)=1/20:20 (g,
+ (_I)IE:' \(IX/IHy/I)q(Oti,—ai)—l/Z(A,K’)(y’ x/]E,-)).

Therefore, (ad(E;)v, v') = (—1D)/Eilltl(y, ad(S(E;))v').
Second, if u +o; = v' and ' = v, then

(ad(Ej)v, V') = (_1)IYIq(2,0,V)(y7 x) - ((_])|}'HE[|q()\+Ua—01i)—1/2()n,)J)
(' Eax) — (=B g (v =120 (1 1))
and
(v, ad(SENV') = (=DPgi — g7 H 7PV (v, x)

(= (= D)Eillri )] g (' —ei) =1/2G.2"+2ai)

(i (), x) 4+ g e TR (3, ).
Therefore, (ad(E;)v, v') = (—1)EillYl(y, ad(S(E;))v’). Using a similar procedure, we
can check for u = ;. Thus, we proved the ad-invariance of the bilinear form. O
Proposition 4.8. Let u € U, (g). If (v, u) =0 forall v € Uy(g), then u = 0.
Proof. Notice that U, (g) is the direct sum of all UjVUOU; = UZVKVUOU; as vector
space. Therefore, it is sufficient to show that if u € U:UUOU; with (v, u) = 0 for all

v e U, U%U}, thenu = 0.

Since the skew-pairing between U~ and U* is non-degenerate, we can choose an arbitrary
s 2 + T Iz -
basis u|, uy, -+, Up () ofUM and dual basis v{’, v, , - - » Criw) ofU_M forany u € Q
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with respect to skew-pairing, i.e., (v;',u}) = &; forall 1 < i, j < r(n), where
r(pn) = dimU;.

For any u, v € Q, we know that { (v;’K,,)KAu’; forallA €e Z®and 1 <i < r(v),
1<j< r(,u)} is a basis of U:UUOU;. From Eq. (4.6), we have

(KK 0 K)Eoulf) = 838 (= 1) g /)7 020 200 (4.9)

Writeu = ) aijk(v}’KU)Kku’jf. The assumption (v, u) = 0 for all v yields

i,j,\
> (—=DMaij(g" =4 =0, foralli, j, ). (4.10)
AEZD
Thus, each a;j; = 0; hence, u = 0 as well. m]

4.3. Quantum supertrace. In this subsection, in order to construct explicit central ele-
ment, we recall the definition of the quantum supertrace.

Let (A, A, ¢, S) be a Zy-graded Hopf algebra over field k and M, N be two A-
modules. Then M* is an A-module with the action (af)(m) = (— DI/ £(S(a)m) for
allm € M,a € A, f € M*. M ® N is an A-module with the action a(m ® n) =
Y (=Dlaalmlg ym@apyn foralla € A,m € M,n € N where A(a) =Y aq) ®ac).
Homy (M, N) isan A-module with the action (af) (m) = Y_(— D)@/ lag) £ (S(ac))m)
foralla € A,m € M, f € Homy(M, N). Supposing that M is finite-dimensional, we
take {m;} to be a homogeneous basis of M and { f;} to be the dual basis with respect to
{m;}. Then we have |m;| = | f;| for all i and the following isomorphism of A-modules:

dyn: N®M* — Hom(M,N), n® f+ ¢sn, @11

with inverse homomorphism Wy y: g = Y g(m;) ® f;, where Qra(m) = f(m)n
forall f € M*, g € Hom(M, N),m € M,n € N. We also have a homomorphism of
A-modules gy : M* Q@ M — k with ey (f ® m) = f(m) forall f € M*,m € M.

In particular, A is the quantum superalgebra U, (g). Then we have S2(u) = K pl ulKs,
since (p, ;) = 2(¢j, ;) for all i € I. We obtain a homomorphism of A-modules
Yy M — (M*)* with

(Y m)(f) = (=D £ 1 m). (4.12)

Combined with the previous statements, we have the following homomorphisms of A-
modules

Yy,m Y @1+
_

suM: End(M) —"% M ® M* M @ M* ">k, (4.13)

This composition is the so-called quantum supertrace, which was used to construct knot

and 3-manifold invariants in [56] (we simply replace Strf)’[ with Str, if no confusion
appears). More precisely, if g € End(M), then

Stry(g) = enm+ o (Yar ® 1yg=) 0 Wiy w(g) = (=DETIIN " £ (KT g (my))
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= (=D" Y fi(g(Ky)my)).
i

Let A be a Z,-graded Hopf algebra and define the adjoint representation of A as follows:
ad(a)(b) = Y (~1)Plle@lq bS(a@m)). The map ady: A — End(M), which takes
a € A to the action of @ on M, is a homomorphism of A-modules and we have

Strg o ady (u) = (=D i (u(K3,my)). (4.14)

Indeed, this is the supertrace of uK, pl acting on M. In particular, we have

ad(Eu = Bju — (- DMK KR, (4.15)
ad(F)u = (Fu — (—)Vilyr)HK;, (4.16)
ad(Ku = KuK; ' 4.17)

Noticed that ad(E;) = Adg,, but there is a slightly different between ad(IF;) and Adp,;
see (2.9) and (2.10).

4.4. Construct central elements. In this subsection, we construct central elements for
certain finite-dimensional U, (g)-modules following Jantzen’s book [23].

Letg : UZ, x U} — k be a bilinear map and A € Z®. There is a unique element
u € (U:VK,))]KAU; = U:UKW,\U; such that forallx e U}, y e UZ , X € Z®

(VKKsx, u) = o(y, x) (g2 =3, (4.18)

Indeed, u = Z(—l)b"(p(v;‘, u;’)q_(Qp’”)(v;’Kvau?) will work and be unique accord-
ing to Proposition 4.8.

Lemma 4.9. Let M be a finite-dimensional U, (g)-module such that all weights . of
M satisfy 20 € Z®. Then there is for each m € M and f € M* a unique element
u € Uy (g) such that f(vm) = (v, u) for all v € Uy (g).

Proof. The uniqueness follows from Proposition 4.8. To prove the existence of u, we
may assume that f and m are weight vectors, since f(-m) depends linearly on f and m.
Suppose that there are two weights 2 and A" of M withm € M, and f € (M*);/;i.e., with
f(M;») =0forall” # A. We have Ufm € M, forall v. As M has only finitely many

weights, there are only finitely many v with U}m # 0. Since UZ MUOUjm C Mysv—p
for all u and v, we get f(U:MUOU"jm) = Ounless A" = A+v — w. This shows that there

are only finitely many pairs (i, v) with f(U:MUOU:m) #0.Forallx e Uy, y e UZ,
and n € Z9,

FOK K xm) = g0+ f(yKxm) = (g3 P22 £(yK,xm).  (4.19)

For all i and v, the function (y, x) — f(yK,xm) is bilinear. We now use that 2(A+v) €
Z.®. We get an element u,,, € U, UU} with (v, u,,) = f(vm) forallv € UZ, U°U;}.
Then u = ) u,, will satisfy our claim. O
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Remark 4.10. The condition all weights of M are contained in %Z@ is indispensable,
since the construction of u,,, depends on the condition 2(A + v) € Z® according to the
expression of u in Eq. (4.18). Lemma 4.9 still work without this condition if one enlarge
the Cartan subalgebra of quantum superalgebra, also see Remark 6.5.

Lemma 4.11. Let M be a finite-dimensional U, (g)-module such that all weights . of M
satisfy 21 € Z®. Then there is a unique element zpy € Uy (@) such that (u, zp) is equal
to the supertrace of uK, pl acting on M for all u € U, (g). The element zy; is contained
in the center Z(Uy(g)) of Uy (g).

Proof. Let{m, my, --- , m,}beahomogeneous basis of M and { f1, f2,--- , fr} bethe
dual basis of M*, then the supertrace of u]Kz_p1 acting on M is equal to > ;_, (—1)lmil £;

ey /)lmi) = (u, zy). In this way, the existence and uniqueness of zj; follow from
Lemma 4.9. Recall that the map ady, : U, (g) — End(M) is a homomorphism of U, (g)-
modules. We notice that Strg’l o adp (u) is the supertrace of uK, pl acting on M for all

ueUy(g)ie., Strf}’[ oady(u) = (u, z) for all u € U, (g) by (4.14). This means that
forall u, v € Uy(g),

e()(u, 2p) = v - Sty 0 ady () = (ad()u, zpr) = (=1""Nu, ad(SW))zm).
(4.20)

Hence, & (v)zy = (—D)PIPHEMDad(S(v)zy = (—1)Plad(S(v))zp for all v € U, (g)
by Proposition 4.8. We also have (—DPladw)zy = e(v)zm by € o § = &. Therefore,
zpm is central in Uy (g). O

5. Harish-Chandra Homomorphism of Quantum Superalgebras

5.1. The Harish-Chandra homomorphism. In the previous section, we used the Drin-
feld double to construct an ad-invariant bilinear form in Theorem 4.6, which was also
non-degenerate (see Proposition 4.8). By using this form and quantum supertrace, we
can construct the central elements of U, (g), which contributes to establish the Harish-
Chandra isomorphism for quantum superalgebras U, (g). Now we are ready to define
the Harish-Chandra homomorphism.

For each A € A, there is an algebra homomorphism, also denoted by A: U° — C,
AK,) = g™ for all u € Zd. Obviously, (A +1)(h) = A(h)A'(h) for h € UY and
A A €A

The triangular decomposition of quantum superalgebra U, (g) implies a direct sum
decomposition as follows:

Up=U0"e Pu,u'u;.

v>0

Let 7: Uy — U be the projection with respect to this decomposition. One can check
that @ U~,U°U? is a two-sided ideal of Up. Thus, 7 is an algebra homomorphism.
v>0

Denoting the center of U, (g) by Z (U, (g))z, wehave Z (U, (g)) € U by Proposition3.7.

2 n general, the center of the Lie superalgebra and quantum superalgebra is Z;-graded [8, Sect. 2.2].
Similar to the basic Lie superalgebra case, the center of U, (g) consists of only even elements. However, the
center contains odd part is also interesting in some aspects; e.g., the skew center of generalized quantum
groups [3].
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Let z € Z(U,(g)) and write z = ) z, where each z, € U—,UU?, thus 7(z) = 2.
v>0
If we take vy € Ay (A)x, then zvy = zovi = A(zo)vs. Since z is the center element of
Uy (@), this implies zv = A(zo)v, Y v € A4(A), so it acts as scalar A(zp) = A(7(z)) on
Ag(M). We set x50 Z(Ug(g)) — k by x1(2) = A (2)).
For A € A, we define an algebra automorphism
y: U0 > UY by yu(h) =A(h)h, forallh e UY.
Then
Ky =qg*MK,, forallxe A, ueZo.
Obviously, yp is the identity map, and
vooyy =vasw and A (ya(h) = A+ A)(h), forallx, A € A, h e U°,

Inspired by the quantum group case, we define the Harish-Chandra homomorphism HC
of Uy (g) to be the composite

HC: Z2(U,(g)) — Up 5> U0 L5 10,

Assume that h = HC(z) = y—, o m(2), we have x;.(2) = A(w(2)) = A(y,(h) =
(A+ p)(h) forall L € A.
Lemma 5.1. The Harish-Chandra homomorphism HC is injective.
Proof. Suppose z = Y z, € Z(Uy(g)) with HC(z) = y—, o m(z) = 0 where z,, €

n=0
U— MUOU;, then zo = m(z) = 0 since y_, is an algebra automorphism. If we assume
z # 0, then there exists z,, # O for some € Q. Let B € Q be a minimal element
satisfying B > 0 and zg # 0. Let {y;} and {x;} be bases of U_ 8 and UE, respectively,
and write

8 = Zyjhjkxk, hiji € ul.
J.k

Forall x € U;, h e, y € U:y we have [E;, yhx] = [E;, y]hx+(—l)|y”Ei|y[E,~, hx]

with [E;, y]hx € U:(y_a’_)UOU; and y[E;, hx] € U:VUOU;M’_ by Eq. (4.8). Since
[Ei, z]1 = 0,wehave ) [E;, y;1hjrx; = Oby the minimality of 8. Hence ) [E;, y;lhjx =
Jik J

,

0 for any k. Write 8 = > m;«;, and let L, (X) be a finite-dimensional module with the
i=1

highest weight vector v,. Then we have

Ei(ZM%kWﬂx) = Z[Ei, vjlhjrv, =0,
J J
forall i € I. So Zk(hjk)yj v;. generates a proper submodule of L, (X), and we get
J
>_Ahji)yjvs = 0. The linear map U—5 — Lq(2) given by y > yvy is bijective if A
J

satisfies the condition of Proposition 3.4. Hence, Y A(h jK)yj = 0. Therefore, hj =0

J
for any j, k, and zg = 0. This contradicts the choice of 8 with zg # 0. Thus, z = 0 and
‘HC is injective. O
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5.2. Description of the image of the HC. The image of the HC is much more compli-
cated. We split it into the following three lemmas. Recall that the Weyl group W acts nat-
urally on UY as w(K,) =Ky, forallw € Wand u € Z®. We have (wi)(wh) = A(h)
forallw e W, A € A, and h e UY.

Lemma 5.2. The restriction of the image of Harish-Chandra homomorphism on the
center of quantum superalgebra U,(g) is contained in the W-invariant of U e,

HC(Z(Uy(g))) C (UHW.

Proof. The character of the Verma module A, (1) with the highest weight A € A is given
by chA, (L) = —e’“p where D = [] (eﬁ/2 —e P2y T] (e*/* — e=*/?) owing to
ﬁedff ae(b*
[27, Theorem 1] and Theorem 3.2.
Since the character of a module is equal to the sum of the characters of its composition
factors, we have

chA, (1) = Z by uchLy (1)
y

where by, € Z, and b;; = 1. Since A, (A) is a highest weight module, b;, # 0 =
A —p €Y Zya;and also x; = x,. Hence, we have

i

chL, (1) = ZawchAq(u) and DchL,(}) = Zawe’“p
"

where ay,, € Z withay, = 1,and ay, = Ounless A — p € Y Z,a and xp = X

1
Assume for now that L(A) is finite-dimensional. Then L, (1) is a semisimple gg-
module, and chL, () is W-invariant as a result. On the other hand, w(D) = (=!I p
for all w € W, and hence DchL, (1) can be written as

Z i Z (—1)! W wlute)

neX weW

where X consists of <I>g—dominant integral weights such that a;, # 0. Moreover,

Apw(ap)—p = (—1)l(w)aM = (—1)l(w). Hence, we have x5 = Xw(.+p)—p for all
we W, A€ Apq,where Apg = {1 € AldimLy (1) < oo}

For z € Z(U,(g)), we set h = HC(z). Assuming that 1 € A and L, (}) is finite-
dimensional, we get (A + p)(h) = %.(2) = XwOp)—p(2) = (WA +p))(h) = (A +
p)(wh). Hence A(wh — h) = 0 for all w € W. Fix w and write wh — h = Za,LK

Then )\(Zau W) = Za g*®W = 0forall A € Afy. Thus, wh —h = 0 and

h e (UO)W because the b111near form on A 4. x Z® is non-degenerate in the second
component. a

Set

Kyl € 2ANZP and a;, = ayy,, Yw € W}. 5.1

:{Xﬂjau
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Lemma 5.3. The Harish-Chandra homomorphism HC maps Z(U,(g)) to (Ugv)w.
Proof. Take anarbitrary z € Z(U,(g)), we can write HC(z) = Y a, K, withay, = a,

"
forany w € W. We only need to prove (i, @) € 2Zforall u € Z® witha, # 0,a € ®j.

For each group homomorphism o : Z® — {%1}, we can define an automorphism &
of Uy (g) by

cK) =K., ¢E)=E;, &) =o()F;.

Obviously, 6 maps the center Z(U,(g)) to itself. One can check that HC = y_, om
commutes with 6. We already have HC(G (2)) = & (Y a,K,) = Y auo (w)K,,. Since
w w

&(2) is central, the sum is in (U)W so we have a,o(p) = ayuo(wu) = a,o(wi)
for all w € W. This means: if a, # 0, then o (1) = o(wpu) for all w € W. Thus,
o(u — squ) = 1 forall @ € &, u € Z®. For each «, we can choose o such that

o (a) = —1. Therefore, (—1)*® =1 and (u, o) € 27Z. O

Forv € A and o € ®j0, we set AY = {v +na|n € Z)}. Clearly, A = [ A%. Let
veA

Z a, =0, Va € digo with (v, @) # 0}.

neA?

U)o = { > auK, e U)Y
)7
(5.2)

Lemma 5.4. The Harish-Chandra homomorphism HC maps Z(U,(g)) to (Ugv);ﬁp.

Proof. We claim that if « € ®j0 and (A + p, @) = 0, then x) = x)—_ke for any
k € Z. Indeed, if « = a5 and (A, 5) = 0, then we get a non-trivial homomorphism
@: Ay(A—ay) — Ay(A) according to Lemma 3.1. In this way, z € Z(U,(g)) acts by the
same constant on both modules; i.e., x3(z) = (A+p)(h) = (A — s+ p)(h) = Yp—a, (2)
where h = HC(z) = y—p o m(2). Thus, x = Xr—a-

For any o € ®jg, if (A + p, @) = 0, then there exists w € W such that w(a) = «j.
Based on the W-invariance of (-, -), we have (w(i + p), w(@)) = (A +p, @) = 0, s0

X = Xw+p)—p = Xw(r+p)—w(a)—p = Xri—oa-

This implies x; = xa—q, SO We conclude that x, = x)—_kq for all k € Z.
Now suppose h = y_, om(z) = Y a,K, for some z € Z(U,(g)) and @ € Pjs0, by
"

$.(2) = O+ p)( ZaMKM> and x; = x)_g forall (A + p, &) = 0. We know
mn

(A+p+a)<ZaMKM> = (K+p)(ZaMKM>, (5.3)
W I3
for all A such that (A + p, @) = 0, hence

3 gt (qwm _ 1) =0. (5.4)
"
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Notice that (A + p,v) = (A + p,V) and (v, ) = (V', @) if A = A%, For any h =
Y a K, € (Ugv)gﬁp,we setSupp(h) = {u € 2ANZP | a;, # 0}. Suppose the elements

"
of Supp(h) are listed as

mi, pM1tnae, -, W tRg O,
w2, p2tnzia, -, U2 +N2 40,
Kp, WHp+npie, -, WUp+hpg,d,
where Af # AZJ, ifi #j,andg; >0and0 < n;1 <n;o <--- < n;g foreachi.

Hence, AZI_ NSupp(h) = {wi, i +ni 10, -, i +n goay. Let X = {uy, ua, -+ -, wpl,
we can rewrite Eq. (5.4) as

Z ( Z a,L) (q("’“) - 1) g**PV) =0 forall A such that (A + p, &) = 0.

veX " ueAg

Let Ay = {u € A|(u,v) =0} for all v € A. The bilinear form on A induces a bilinear

map on A/Za x Ay which is non-degenerate in both arguments. Set ¥ = {u; —u ;|1 <

i <j< p},hence Ay — Ay # @ forallv € Y and A, — UyAU # & by induction.
ve

Take A +p € Ay — UyAv,this means (A + p,a) =0and (A + p, v) # (A + p, ) for
ve
all v #£ v with v, v € X. We get

P

3 ( 3 aﬂ) (g9 — 1) qUesmm) = o,
i=1 “peAy
forall j =1,2,---, p. Moreover, the Vandermonde matrix (q(j ()»+p)vlli))p><p is invert-

ible since (A + p, ;) # (A + p, ;) forall 1 <i # j < p. Therefore,

( 3 aﬂ> (g ~1) =0, (5.5)

/LeAfji

foralli,and ) a, = 0if (u;, @) # 0. The proof is completed. |
ueA;'ji

Example 5.5. We give some explicit elements in (Ugv):gp when g is of small rank.

(i) Let g = A(1, 0). In such a case, cb“{ ={ap, 01 +ap} and 2A N ZD = Zay + 27Zas.
If A = kja; +2krap is a CI>3-dominant weight, then we have k1 > k» and k1, k> € Z.
Furthermore, WA = {A, A —2(k; —k2)a1}. Thus ky, = Ky — K 20, —Kj—20;—2a, +
Ko2ei—dar + K2tk — Ko2t—kar—200 — Kaootk—ko)ay—201 202
+ K2k —ka)ers —2e1 —day € (UD)Np-

(ii) Let g = C(2). As a result, CD}' = {1, 01 +ap} and 2A N ZO = 27Za; + Zop. If
A =2k + koop is a CDg-dominant weight, then we have k» > kj and ky, ky € Z.
Furthermore, WA = {A, A —2(ky —k1)az}. Thus k), = Ky — K 20, — Ky —20q—2a5 +
Kooy —20, + Ko2to—kper — Ka-20—k)er—200 — Ka—20ka—k)ez—201 —202
+ K- 2(ky—kpyer—darr —2a; € (UQ)p-
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(iii) Let g = B(1, 1). In this case, the positive isotropic roots of g are {o1, o + 22} and
2ANZD =27ay + Zay. If A = X181+ u1e €2ANQisa @g-dominant weight,
then we have Ay # 0, Ay — 2,2u1 € 2Z,. Furthermore, WA = {:I:M(Sl + wier}.

w

Thus k), = D w(Ky — Ky—20; — Ki—2a)—dar + Ko~ —4a,) € (U

ev)sup
weW

5.3. Proof of theorem A. In order to prove the surjectivity of HC, we need to investigate
the Grothendieck rings K (g) of finite-dimensional representations of the basic classical
Lie superalgebras g. In the following proposition, we identify the algebra (U )ng with
k ®7 Jev(g), which plays a crucial role on the surjectivity of HC.

Proposition 5.6. (U2, = k ®z Jev (g).

Proof. Forany o € @iy, let elements of Supp(/) and X be same as proof of Lemma 5.4.

Furthermore, n; ; are even numbers for all possible 7, j since there is an even root f8
such that Z(Eg’;)) = 1. Then

Dy (h) = Zau(u, OK, =YY aviaka (v, Kyioka (5.6)

veX ke,

and

> avzka (v Kok € (K — 1), forallv e X
kel

because Y. dayikq = Oforallv € X with (v, ) #O0and > aysoka (v, ®)Kysokg =0
k€Zy k€l
forall v € X with (v, @) = 0.

On the other hand, take an element h = ) a, K, € k ®z Jev(g), then
"

Dy (h) = Zam,am =Y ) avska(v, Ky € (K5 — 1),

veX ke,

for any o € ®js,. Therefore, > ayiraKpika € (Ki — 1) forany v € X if (v, &) # 0.

keZy
This implies that > a, = Y apske = 01f (v, @) # 0. O
LEAY keZ

Proposition 5.7. There is a linear map W : k @z Key(Uy(9)) — Z(U,(g)) such that
the diagram in the introduction commutes.

Proof. Define amap Vi : k ®z Kev(Uy(g9)) — Z(Uy(g)) by WR(IM]) = zp where
zp isdefined in Lemma 4.11. We need to prove the map is well-defined and toHC (zp1) =
Sch([M]) for all M in U-mod with all weights contained in A N %ZCD.

For every short exact sequences 0 - L — M — N — 0 in U-mod, choose a

homogeneous basis {m1, - -- ,mg, --- ,m;} of M such that {mq, --- , my} is a basis of
L and {my41,---,m} is a basis of N. Let {f1,---, fi} be the dual basis of M, then
{f1,---, fi} and { fis1, - - - , f1} can be viewed as dual bases of L and N, respectively.

Recall [T(M) and 7 definedin Sect. 3.2, s0 {m @m 1, - - - , 7 @m;} (resp. {7 R f1, - , T®
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fi}) is the basis (resp. dual bases) of IT(M), and |7 ® f;| = |7 @ m;| = —|m;| = —| f;|
for all i . Hence,

(u. ) Z( D K, mi)

i=1

k l
= > DM @R m) + Y (=D £ G mi)

i=1 i=k+1

k l

= DM SR ma) + Y (=D fi @i )
i=1 i=k+1

= (u, zp) + (u, zN) = (u, zL + 2N );

1 1
(u, zp) = Y (=D @K mi) = =) (=D (r @ fi) (K, (r @ my))

i=1 i=1

—(u, zrm)-
Therefore, z;, — zy + 2y = 0 and 2y + zr(m) = 0 according to Proposition 4.8.
. . _ —_ 0 + .
Since zps is central, we have zy; = 2>:0ZM’M where zy, € U_MU Uu' Write
wz=

Zm.0 = »_ ayK,. Then we have
v

—(,u)
(2w = Gl = o (47)

for all " € Z®. On the other hand, this is the supertrace of K,/_,, acting on M. This
means it is equal to

‘o / Q1)
Z SdiHlM)L/q()L W =2p) = Z SdimMA/q_2(k ,0) <q1/2) )
X 7

A comparison of these two formulas shows that

M0 = Z sdimMA/q(*W’p)K_Z,v.

IV
We have zp1,0 = 7 (zp), hence
ypom(zy) =Y sdimMyK_ s, (5.7)
IV

and 1 o HC(zpr) = Y. sdimM;e* = Sch([M]). O

7
Proof of Theorem A.

k ®7 Kev(Uqg(9)) ok ®7 Kev(9)
YR : = :

N
Jev(9)

\
Z(Uy(@) X — = W) ——
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w
sup*

Based on Proposition 5.7, the above diagram is commutative, so ImHC = (Ugv);ﬁp. a

The injectivity of HC follows from 5.1, so we only need to prove InHC = (UY,)

By using ¢ o HC o WR([M]) = Sch([M]) for all [M] € Kev(Uy(g)), we get W
is injective. All morphisms in the diagram above are algebra isomorphisms as a re-
sult. Furthermore, for any [M] € K.y (U, (g)), there exists S a;i[L(A)] with a; € k

1
such that j(O_a;[L(A;)]) = [M], and these A; are distinct. Let X = {x;la; ¢ Z}.

1
Supposing that X is nonempty and taking a maximal element X; in X for some ¢, we
get dimM,, = > a;dimL(%;);, € Z and dimL(%;);, = 8;;. Thus @, = dimM,, is

14
an integer, contradicting A, € X. Therefore, X is empty and a; € Z for all i. Thus,
Kev(g) = Key(Uy(g)) is an isomorphism induced by ;.

Remark 5.8. In Appendix B, we describe the J.y(g) in the sense of Sergeev and Veselov
[42] and illustrate why Key(g) 2 Jev(g) if g = A(1, 1) since u — v = K + ]Kl_l —
Ksz — K;l € Jey(g) and u — v ¢ J(A(L, 1)). Therefore, k ®7 J(A(1, 1)) € Im(HC) <
k ®z Jev(g). However, the image of HC for g = A(1, 1) has not yet determined.

6. Center of Quantum Superalgebras

6.1. Quasi-R-matrix. In Sect. 5, we established the HC for quantum superalgebras and
proved that the center Z(U,(g)) is isomorphic to (Ugv)fgp, the subalgebra of the ring
of exponential super-invariants Jey(g). This section studies the structural theorem for
the center. Our approach to obtaining a structural theorem for quantum superalgebras
takes advantage of the quasi-R-matrix, which is inspired by [49,50]. Recently, based
on main results [33], Dai and Zhang [10] used a similar method to investigate explicit
generators and relations for the center of the quantum group. They proved that the center

Z(U,(g)) of quantum group Uy (g) is isomorphic to the subring of Grothendieck algebra
KUy (9))-

Foreach u € Q,wetake u‘f u’;, cee u’r‘(m to be abasis ofU;. Since the skew-pairing
between the U* and U™ is non-degenerate, we can take the dual basis v}, v}, - -, vf( 0
of UZ,,, with respect to !, u’; ) = §;j, for all possible i, j. We have the following
proposition.

()
Proposition 6.1. Set ©, = Y v/ @ u}’ € U® U. Then ©,, does not depend on the
i=1

i
choice of the basis (uf‘)i and
E @D, + (K ®ENOy_o =OuE @D +0,_o K 'QE),  (6.1)
(1®F)O, +([Fi @K, N0y g, = 0, (1 ®F;) + Oy, (F; @ K)), (6.2)
K 9 KO, = 0,(K; @ K;). (6.3)

Proof. Itis easy to check ©®, does not depend on the choice of the basis (uf‘ )i and (6.3).
For (6.1), we have

E: DO, -0,(E 1)
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r(p)
=Y [, vfl1eu!
j=1
(i)
— Z(% _ql ) 1 ( 1)‘E ||rt(U )lK ri (vl/«) —r (UM)K ) l;-

r(u)r(u a;)

— E i l 1
=3 g (DR () o
j=1 k=1
— (1) K ) @)
r(u) r(p—o;)

-y Z (= =0 IR (R ) (e 0, wf Yo
j=l k=

+ (L ED (), ug‘“f)u,i““"Kgl) ® u"

r(u) r(p—ai) s }
=3 Y (- EDEOD R o B0
j=1 k=1
+ (U;L, I/l;:_aiEi)vll:_aiKi_l) [ u/;
r(u—o;) B
= Z _(_1)|EiHri(Uj)\Kivll{l«—ai ®Eiu;:_ai +v];:—a,-Ki_1 ®ufj_a"IE,-
k=1

= —(Ki ®ENOu—o; + Op—o, K ' @ E)).

Thus, (6.1) holds. Because the proof for Eq. (6.2) is similar to that for Eq. (6.1), we omit
it here. m]

There is an algebra automorphism ¢ of U, (g) ® Uy (g) defined by

K=K ®1, ¢E)=EcK "', ¢@:o)=FckK,
P(1®K)=10K;, ¢(1QE)=K'QFE ¢(1®F) =K F,

and ¢ can be extended to Uy (g) @Uq (g), which is a completion of the tensor product

U, (g)®Uy, (g). Then the quasi-R-matrixis Y ©, € U, (9)®U, (g)* anditis invertible.
n=0

Its inverse is denoted by 2R. Then, by Proposition 6.1, we have

RAW) = ¢(AP w))R, and RP AP (u) = ¢(Aw))RP.

The universal R-matrix can be derived from the quasi-R-matrix, which is significant
because it can induce solutions of the quantum Yang-Baxter equation on any of its mod-
ules. This approach is prominent in the study of integrable systems, knot invariants and
so on. The following proposition is essential for us to construct the explicit central ele-
ments, named Casimir invariants, which have been used to construct a family of Casimir
invariants for quantum groups [10], quantum superalgebras Uy (gl,,,|,,) and U, (05p,,,12,,)-

3 More properties about quasi-R-matrix in a super setting can be deduction follows [34, Chap. 4]. For
example, R = R-1 , where the automorphism ~ of U®U is defined in [34, Chap. 4].
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6.2. Constructing central elements using quasi-R-matrix.

Proposition 6.2 [48, Proposition 2]. Given an operator I'yy € End(M) ® Uy (g) satis-
fying

[Ty, Aw)] =0 forallu € Uy(g), (6.4)
the elements
Cyy 1= Stri (¢ ® DKoy ® D(Ta)) (6.5)

are central in Uy (g), where Str1(f ® u) = Str(f)u for f € End(M) and u € Uy(g).

Proof. We only need to prove [C{y), K;] = [C), Ei] = [C\Y),Fi] = O foralli e L.
Assume ([p)F = > A; ® Bj, then
j

0 = Str (K2, K ' @ DI, AK)])
= sty (Ko, © D[ Y4 ® B, K 9K, )
j

= Str(Ky, K ' A;K)BK; — Y Str(Kap A K B,
i i
=[Cly Ky,

where the last equation holds by Str([x, y]) = O for all x, y € End(M). And,
0 = Str; (K2, ® DITa0)*, AF)])
=S (K@ D[ Y 4,0 B, Fi 0K ' +18F])
J

— Sty ((K2p ® 1Y ((~D'BIFIAF; ® BjK ' +A; ® B;F;
j

_ (_1)|Fi\(\A_/|+|Bj|)E.Aj ® K;]Bj _ (_l)lFiIIB_/IAj ® FiBj))
= [}y Fi1,

where the last equation follows from [Z A;®B;,K;® Ki] = 0and Str([x, y]) =0
i

for all x, y € End(M). |

Let M denote a finite-dimensional weight module of U, (g) and let ¢ denote the
representation afforded by M. Let PM: M — M, be the projection from M to M, and
define the following element in End(M) ® U, (g) as

Ku= > PYeKy. (6.6)
newt(M)

Using the definition of ¢, we obtain

Ku(@ @ D(¢*(Aw)) = ¢ ® D(AwW)NKy, Vu € Uy(g). (6.7)
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Define Ry = (¢ ® 1)(R) and RZ; = (¢ ® 1)(R°P), we have

Kud Ry Ry (¢ @ D(AW) = Ky (¢ ® D(¢(RPIRAW))
= Ku (¢ ® 1)(¢°(Aw)$ (RPINR)
= Km (€ ® D(¢*(Aw)))d (R R
= (¢ ® D(AW)Kup(Ry)Ry.  Vu € Uy(g).
If we take
Ty = Kud Ry Ry, (6.8)
then [I"yy, (¢ ® 1)(Au))] =0, forall u € Uy (g).

Example 6.3. This example was known in [48,53]. Let U = U;(A(1,0)) and ¢: U —
End(M) = End(L,(e1)) be the vector representation. Let vy be its highest weight vector
with weight A1, and letvo = Fjvy, v3 = F2Fjv; and A;, A3 be the corresponding weights
associated with vy, v3, respectively. {v1, va, v3} is a basis of M. By using of (4.1) and
(4.3), {—(q; — gi)"'F;} and {E;} are two basis-dual basis pairs of U, and Ugi for
i=1,2and

{(q — ¢ DF1F2, (¢~ — @)F2F1) and {gE By — B2y, BiEs — o)

is a basis-dual basis pair of U—,, _,, and Uj ., with respect to the Drinfeld double. We

have R = ) ©,,, which is a generalization of [34, Corollary 4.1.3]. Then
n=0

2
Ry=@@DU®1+) (gi—q¢ i ®F — (¢~ —g)FF,
i=1
QE1Ey — ¢ 'Eo)) — (¢ — ¢ HFIF2 ® (¢ 'E1Ey — EoEp))  (6.9)

and

PRI = ®DNUA® 1+ (g —)(EIE; — ¢ "B EDKK; ® K, 'K 'FoF
2
+Y (=D (gi — ¢, DEK; @ K, 'Fi+ (g —q ")
i=1

(7 'EiEy — B2EDKIK, ® K 'K 'FIF). (6.10)

because {(UZ)) = 0if v # ay, oz, @1 + 2. Substitute (6.6), (6.9) and (6.10) into (6.8)
and (6.5). As a result,

Cy = Stri (€ ® DKoy @ DK (Ry]) Ry
3 2
_ Z(_l)\vilq(Zp,li)Kz)Li + Z(qi _ qi—l)2(_1)\viIq(af,?»i+1)+(2ps?»i)K2xiKi—lFiEi

i=1 i=1
+(q — g H)}gPe It IR, KK EF, — ¢ FIF) (B E, — ¢ 'EoEy)
=Ky2+¢ 2K 2Ky 2 — ¢ KPR + (g — g7 1)?
(¢7'K{'KY PRI E) + 97 KTPKS PR E)
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+(q — ¢ Y2 KK F2F) — ¢ 7' i) (E(Es — ¢ EREy),

by using
20 =ap —ay — (a1 + o) = —2;
AM =61 =—6+68 = —ay;
M =6 =—€+8 = —a] —oy;
A3 =081 =—& —& +28) = —a; — 207.

There is a k-algebra anti-automorphism 7 of U defined by t(E;) = F;, t(F;) =
E;, ‘L'(K;H) = ]Kiil fori = 1, 2. It is obvious that C/(v}) commutes with K; and K. One
can check directly that Cl(é) commutes with [£; and [E,. Because Cz(v}) is T-invariant, Cz(v})
commutes with F; and IF,. Therefore, C,(\}) € Z(Uy(g)).

6.3. Proof of theorem B. In the previous subsection, we used the quasi-R-matrix to con-
struct an explicit I"js associated with a finite-dimensional U (g)-module M satisfying
Proposition 6.8. Thus, we obtained a family of central elements of U, (g). Now, we are

ready to prove Theorem B. For convenience, we simplify Cr () for Célq)m.

Theorem 6.4. {C1,5) | A € AN %th and L(\) finite-dimensional } is a basis of
Z(Uq(9) ifg # AL, 1).

Proof. Applying the HC to Cp, 1)+ results in
HC (CLq(A)*) = HC(SU‘[ (({(sz) X l)FLq(A)*)>

=Y—>poO JT(Strl ((((KZp) & I)ICL,]()»)*>)

L,(W)*
S R
newt(Ly (M)*)
=" sdimLy (1), Kooy = HC (21,0)) -
m

According to Theorem A (i.e., the HC = y_,om is analgebraisomorphism),z., ) =
CLq(A)*.Furthermore, { [Lqg (A)]| re AN %ZCD and L, (A) is ﬁnite—dimensional} isaba-
sis of Key(U,(g)). Hence, { CLq(;\)* reAN %ZCD and L, (A) is ﬁnite-dimensional} is
a basis of Z(U,(g)). So is { CLq(;L) re AN %Zq) and L(}) is ﬁnite-dimensional}. O

Remark 6.5. One can define a new quantum superalgebra U = qu (g) associated with
a simple Lie superalgebra g, except for A(1, 1), by replacing the cartan subalgebra of
quantum superalgebra U, (g) with the group ring k' if Z& € I' € A, WI' =T and
q"» e kforall y € I',A € A. Using the same procedure, we can establish the
Harish-Chandra isomorphism between Z (U) and (ﬁgv):Kp, where

Ay = ay, Yw € W;

70 \W 0
(Uev)sup = { Z aMKﬂ eU
ne2ANr
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> @, =0, Va € dig, with (v, @) # o}.
HEAT

In particular, K (g) = Kx (fJ), where K (ﬁ) is the subring of K (fJ) generated by all
objects in U-mod whose weights are contained in A if ' = A.

Remark 6.6. Our approach to obtaining the Harish-Chandra type theorem for quantum
superalgebras of type A-G takes advantage of the Rosso form, which cannot be applied
to quantum queer superalgebra U, (q,) [37] or quantum perplectic superalgebra U (p,,)
[1]. One immediate problem is to establish the Harish-Chandra type theorems for these
quantum superalgebras. We hope to return to these questions in future.
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Appendix A. Dynkin Diagrams in Distinguished Root Systems

The Dynkin diagrams in the distinguished root systems of a simple basic Lie superalgebra
of type A-G are listed below, where r is the number of nodes and s is the element of 7.
Note that the form of Dynkin diagrams in the distinguished root systems is quite uniform
in the literature.

Let h* be a vector space spanned by {&; — €41, &ms1 — 61,8 —
3jr1l1 <i <m, 1< j < njsatisfies

(e1+...+ems1) — (61 +...+6,41) = 0.
We equip the dual h* with a bilinear form (-, -) such that
(&i,€j) =8ij, (&i,8;) =(8j,&) =0, (§,06;) =—6;; forallpossiblei, j.
The distinguished fundamental system IT = {1, ..., ®pun+1} 1S given by
{e1 — €2, <.y Ems —Em+ls Em+l —O1, 81 — 82, ..y &y — Su41}-

The Dynkin diagram associated with IT is depicted as follows:

Em+1 — 01

e — & £ — €3 em — Em+l 31 =02 Sn — Sn+1-
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In this case r = m+n+ 1, s = m+ 1. The distinguished positive system ®* = d>3 U CID}r
corresponding to the distinguished Borel subalgebra for A(m, n) is

fei—¢ej,—0ll<i<j<m+1l,1<k<l<n+1}
U{ai—5j|1<i<m+1,1<j<n+l}.

The Weyl group W = G411 X G,41.

Let h* be a vector space with basis {g;, Sill<i<m, 1< j<nh
We equip the dual h* with a bilinear form (-, -) such that

(8,‘, Sj) = 5,']', (8,‘, 5j) = (Sj, 8,‘) = O, (5,‘, 5j) = —5,']' for all possible i ]
The distinguished fundamental system IT = {aq, ..., omn} iS given by
{61 =82, ..., 8u—1 —8n, 8p — €1, 61 — €25 .., Em—1 — Ems Em).

The Dynkin diagram associated with IT is depicted as follows:

Sy — €1
81 =& Sn—1—16n &1 — & Em—1 — Em em.-
In this case r = m +n, s = n + 1. The distinguished positive system ®* = CIDE U CID}r
corresponding to the distinguished Borel subalgebra is
{6; £68;, 28,, ek T &1, e} U{Sp L5y, 8p),

where ] <i < j<nl<k<l<ml<p<n 1< g < m. The Weyl group
W = (6, x Z3) x (&, x Z5').

B(0, n) case: | Let h* be a vector space with basis {§;|1 < i < n}. We equip the
dual b* with a bilinear form (-, -) such that

(6i,8;) = —6;; for all possible i, j.
The distinguished fundamental system IT = {«, ..., «,}is given by
{81 — 82, ooy Sp—1 — 6p, Sn}

The Dynkin diagram associated with IT is depicted as follows:

S1—8 -8 Sp—1—6n dn.
In this case, r = s = n. The distinguished positive system ®* = CD(J; U CD}' corre-
sponding to the distinguished Borel subalgebra is
{6i £6;, 26,11 <i<j<n, 1< p<nfU{§|ll <p<n}

The Weyl group W = (&,, x Z5).
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C(n + 1) case: |Let h* be a vector space with basis {¢, §;|1 < i < n}. We equip the
dual h* with a bilinear form (-, -) such that

(e,e) =1, (&,8)=(8,8)=0, (&,8;)=—48; forallpossiblei, ;.

The distinguished fundamental system I1 = {«q, ..., oy41} is given by
{8 - 615 8] - 825 ] 8}1—1 - 5}17 28}1}‘
The Dynkin diagram associated with IT is depicted as follows:
Sp—1—0n
e—481 81 -8 Sn—2 —Sp—1 285.

In this case » = n + 1, s = 1. The distinguished positive system ®* = ¢>g U ¢>‘iL
corresponding to the distinguished Borel subalgebra is

{6 £6;, 26,1 <i<j<n 1< p<npUleLs,|l <p<nb
The Weyl group W = (&, x Z7).
Let h* be a vector space with basis {e;, §;|1 <i <m,1 < j <n}
We equip the dual h* with a bilinear form (-, -) such that
(&i,€j) =8ij, (&,8)) =(8j,6) =0, (§,06;) =—6; forallpossiblei, j.
The distinguished fundamental system IT = {«g, ..., oy4n} is given by
{81 =82, ..., Sne1 —6n, On —€1,61 — €2, -+, Em—1— Em» Em—1+Em}.

The Dynkin diagram associated with IT is depicted as follows:

Em—1 —€m

Sy — €1 &1 — &

LI) Sp—1—dn Em—2 — Em—1
Em—1*tém.

In this case r = m +n, s = n + 1. The distinguished positive system ®* = QD(T) N <I>JIr
corresponding to the distinguished Borel subalgebra is

{6; =6, 28y, ex &1, }U{Sp £ &4},

where ] <i < j<nl<k<lI<ml1<p<n 1< g < m. The Weyl group
W= (6, x Z8) x (&, x Z5~h.

’ D(2,1; a) case : ‘ Let h* be a vector space with basis {¢1, &2, £€3}. We equip the dual
h* with a bilinear form (-, -) with

(e1,e1) =—(+0a), (&,8)=1, (&,8)=a and
(¢i,€j) =0 forall 1<i#j<3.

The distinguished fundamental system
IM={a; =¢1+& +e&3,ap = =26, a3 = —2¢&3}.

The Dynkin diagram associated with IT is depicted as follows:
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—282
E1+ée+¢€3

—283.

In this case r = 3, s = 1. The distinguished positive system ®* = cbg N @}f
corresponding to the distinguished Borel subalgebra is

<I>g = {21, =23, —2e3}, <I>}r ={e; £ ey + 53}
The Weyl group W = ZS.
Let h* be a vector space with basis {3, €1, €2, £3}.We equip the dual h*
with a bilinear form (-, -) such that
(6,8) =-3, (&,8)=0(,¢&)=0, (s,¢;)=46; foralli.

The distinguished fundamental system
1
I = {Otl =§(5—81 — &) —€3), A =¢€3, 03=¢E)—€3, 04=¢] —82}.

The Dynkin diagram associated with IT is depicted as follows:

%(6*81 — & —¢3)

Q—CO—=0—=0

€3 &) — €3 &1 —&2.

In this case r = 4, s = 1. The distinguished positive system ®* = d:% n ot
corresponding to the distinguished Borel subalgebra is

1
{8, ep, i e[l <i<j<3,1 <p<3}U{5(8i81i82i83)},

The Weyl group W = Z, x (63 X Z%).
Let h* be a vector space with basis {8, 1, &2} and &3 = —g; — &7. We
equip the dual h* with a bilinear form (-, -) such that
(6,8) =—(&i,8) =—2, (£.8)=0(5,6)=0, (g,6)=~1, foralll <i#j<3.
The distinguished fundamental system
[M={a1=06+e&3,0 =¢1,03 =82 — £1}.
The Dynkin diagram associated with IT is depicted as follows:

S+e3

—C=0

€1 &) —€].

In this case r = 3, s = 1. The distinguished positive system ®* = CDE n o7
corresponding to the distinguished Borel subalgebra is
{26, &1, &2, 2 £ &1, &1 — €3, &2 —e3}U{S, St eili =1,2,3},
The Weyl group W = Z; x Dg, where Dg is the dihedral group of order 12.



On the Harish-Chandra Homomorphism for Quantum Superalgebras 1521

Appendix B. Explicit Description of the Rings Jey(g)

Now we give the explicit description of the rings Jey(g) for quantum superalgebras,
which is inspired by Sergeev and Veselov’s description for Lie superalgebras [42, Sects.
7,8]. Letx; = K¢ 2 and y; = K_j, » formally. First we need to review the rings J (g)
for g is of type A. Let

m+1 n+l1

Py = {Zaiai +ij8j

i=1 j=I

aj,bj € Canda; —ajy1,bj —bj1 € Z, Vi, ]}/(CV

be the weights of sl,41jn+1, Where y = e1+ -+ 601 — 81 — -+ — Spy1 and x; =
efl,y; = % for all possible i, j be the elements of the group ring of C[Py]. For
convenience, we set C[x*, y*] = Clxi™', -, x>,y - yEl], ZIx®, y*] =

ZixE - xEL yiE o yEL T and then for (m, n) # (1, 1)

J(Sbps1ne1) = {f e Z[Po]"

af  af
yja_yj TG € (xi —)’j)}

= @ J(5[m+1|n+l)as

aeC/Z
where
xi
J(5[m+l|n+])a =(x1-- ~xm+1)“ 1_[ (1 — _l> Z[xil’ yil](()‘;m+l><6n+1
i,p Yp
ifa ¢ Z;
@ | Of df
J(Shstns)o = § f € ZIxE, y= SOt 1y 2y 20 e (g — y))
0x; dy;

and Z[x*!, yil]?”’“xg”+l is the quotient of the ring Z[xT!, y*1]1Sm+1xGn1 by the
ideal generated by X -« - Xp41 — V1 - - Vn+1-

J(A(n,n)) = é J(A(n,n)); forn # 1, where fori # 0
0

1=l
o on+l X
i j Gpi1 xGpy ;
J(An,n)); = {f = (- x) ™ [ ] (1 - y—’) g‘g € Z* yFgm O deg g = —z}
i p
5P

and J(A(n, n))o is the subring of J (sl,41},+1)0 consisting of elements of degree 0.
1

JAQL D) = e+ —vgle € Z,g € Zu, vy where u = ()7 + (2)*, v =

X1
1

1
)24 (2)?
()7 +(3)"

’ A(m,n), m # n case: ‘Deﬁne

Jm\n — {f c Z[xil, yil]GmHXGnH

af af
xia_x,» +)’jgj € (x; —Yj)}
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and

J]:'lln _ Hf c Jmin

degf:k].

mln
Thus, J™" = e
keZ
m+1 n+l
For any element A € h*, we write A = ) a;&; + ) b;§;, then we have
i=1 j=1

m+1 n+l

aj,bj € Z, Vi, j and Zai +Zb/~ :0},

7d = {A eh*
i=1 j=1

and

ai,bj €Q, a; —ajy1,bj —bj1 €Z, YVi<m,j<n

A:{Aeb*

m+1 n+l

and Zai +ij = 0}.
i=1 j=1

By direct computation, we know that

m+1
2Z©+Z<Z( 1)’+le,+2( 1)/8> ifm=2k,n=2I,
i=1 j=1
n+l .
2.9 + 7 Z(—l)fﬁj, ifm=2k,n=2l+1,
2ANZD = j=l
m+1 .
220+ 7Y (1)t e;, ifm=2k+1,n=2I,
i=1
rln+1 . n+l .
229+ 7 ). (—Di*le; +7Z Yo (=178, ifm=2k+1,n=20+1,
i=1 j=1

for some non-negative integers k, [. Then the algebra

" e ﬂx Hyj T if m =2k, n =2l
’""l@]‘[yj f’(‘f+1), ifm=2kn=20+1,
Jev(g) = | |
J(;”"@]_[xi /e ifm=2k+1,n=2I,
i
1
gl @1 e @ ny] e r[x ]_[y] Ty ifm =2kt L n =2+ 1,
1

for some non-negative integers k, /. So it can be viewed as a subalgebra of J(g) by
12 Jey(g) — J(g) with K; — e~%/2 and its image is coincide with Sch(Key (g)).

A(n,n) (n #1) case: ‘In this case, we set

af

J(n)o = {f € Z[xil’ yi1]6n+|><6n+| X
8)6,'

0
+,Vj8—; € (x; _}’j)}
J
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where Z[x*!, y¥1]j ¢ is the quotient of the ring Z[x*!, y*!] with degree 0 by the ideal

_ <X1'~xn+1

— l>. Then we have
yl"'yn+l

J(n)o if n iseven,

Jev(g) = T(n)o & {?% 1 (1 _ %)g+1 g € Zx*, yFW, degg = _%} ifn is odd,
Jp "

where ¥ = x1x2 -+ xpe1 and W = S,41 x S,41. It can be viewed as a subalgebra by
2 Jey(g) = J(g) with K; — e~%/2 and its image is coincide with Sch(Key(g)).

A(1, 1) case: | We have Joy(A(1,1)) = {c+ @ —v)glg € Z[u, v]} where u =

1 1 1 1
(2)7+(2)" v = () +(2)" Andu—v = K +K; ' K3 K3 € Jeu (A(L 1),

butu — v ¢ J(A(L, 1)).

m n
’ B(m,n), m,n > 0 case: ‘We set A = ) Aje; + ) wj8; € b*, then in this case
i=1 =1

20 ={r€b"[hi,p; €2, Vi, j} and

A:{Aeh*

1
mj €Z, Vjandall A; € Zorall &; eZ+§}.

S02ANZP =2A. Letu; = x; +)cl._1 andv; = y; + yj_1 for all possible i, j, then we
have Jey(g) = J(@)o ® J(9)1/2, where

J(g)o = {fEZ[u1,~~~ Uy V], e vy ]S XSn

af of
Mia—ui+vja—vj € (Mi —vj)},

and

m m n
1/2 —-1/2
J(@)i2 = {H(x/ +x T T —v,-)g‘g €Zluy, . vy, ,un]emxen}.
i=1

i=1j=1

n
B(0, n) case: | Inthis case A = Zb = { 3 ju;8|u; € Z, ¥j}, 5024020 =24
=i

and this algebra Jey (g9) = Z[v1, v2, -, v, 18", where the notation v; are the same as
above.

C(n +1) case: | In this case
n
A= {)LS + Z,uj(Sj

j=1

)LE(C,/LJ'GZ, V]}

and

n
79 = {)»8+Z[,Lj5j

n
Aj €L, Vj andk+zuj iseven}.
j=1

j=1
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n
S02ANZd = [re+ 3 18,
j=1

A, €27, Vj] and the algebra

of  of
yja +Xa € (x—yj)}

Jev(9) = {f e ZIxE yFl o yENY

m n
Dm,n),m > 1,n > Ocase:‘LetA =) A&+ Y mjé; € b*and u;, v; are as
i=1 j=1

above, then
1
A= {Ae h*|uj € Z, Vjand all &; € Zorall }; eZ+§}

and

m n
7o = {A € b A, uj €Z, Vi, j and ZA,- +Zp,j iseven}.
i=I j=1

So

n

ZZq)"'Z(Z 81‘)4‘228;1’ 1fm=2k,
i=1

22.® +2Z¢y, ifm=2k+1,

2ANZP =

for some positive integer k. Thus the algebra J.,(g) is, respectively, equal to J(g)o
J(g)1/2 for m = 2k and J(g)o for m = 2k + 1, where

0 d
Xia—f+y]'—f € (x; —yj)},

J I A U B N )
(9)0 {f ['x] xm y] yn ] xi ayj

and

w
J(@1p= {H(”i — Uj)((xm .. 'xm)l/2Z[)Citl, . 7x$1’ ylil’ .. ,y;_ﬂ]) }
i,J

’ D2, 1, @) case: ‘In this case,

3
A €Z, Vi}, and Z® = { Zm,-

i=1

3
Az{ZAisi A € Zand A; — Aj € 27, Vi,j}.

i=1

So2A NZ® = 2A. Thus the algebra

{c + Ah|lc € Z,h € Z[uy, u», u3]}, if @ is not rational,

J =
@ {{g(wa) +Ahlg € Zlw), h € Zluy, uz, usl},  ifa = p/qwithp eZ,q €N,

where

A:u%+u%+u%—u1u2u3—4, U; =x,'+xf1, fori =1,2,3,



On the Harish-Chandra Homomorphism for Quantum Superalgebras 1525

and

- —q
6 =Py = x5y -
waz(x1+x11—x2xg—x21x31) 2 2_ 3 3 +x§x3q+x2px3q.
(x2 —x; ) (xs — x3 1)

F (4) case: |In this case,
3

A= {M8+ZAI-8,~

i=1

1
all A; € Zorall X; eZ+§, 2,ueZ},

and

3

7P = {M5+Z)‘i£i

i=1

1
all A;, w € Zorall A;, ,LLEZ+§}.

So2A NZ®P = 2A, and the algebra

Ja@={g(@1 00+ Ahh € 2L, 52, 6, (i) Y, g € Zlor, a1,
where
. 3 X1X2X3 xiz
A= (y+y — X1X2X3 — X| x2 x3 )tl]()’*‘y - xi2 - x1xQX3)’
and

1 1
Wi = Z <x2k+x 2k+§ j2k+xj2k+§
1<i<j<3
3

—Z+y2k+y_2k—(yk+y H(x +x; )

withk =1,2,and W = sz(63l><Z)

G(3) case: | In this case, A = Z® = {Aje + Aaga + ud|A1, ko, € Z}. S0 2A N
Z® = 2A, and the algebra

3

Jev(g) = {g(w) +[Jw- ui)h’h € Zv, uy, uz,u3]%, g € Z[w]},
i=1

where
w=v*— v(uy +up +usz+ 1) +ujuy +uiuz + urus.

and the notations u;, v are the same as above.
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