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Abstract: This paper develops a concept of relative Cauchy evolution for the class
of homotopy algebraic quantum field theories (AQFTs) that are obtained by canonical
commutation relation quantization of Poisson chain complexes. The key element of the
construction is a rectification theoremproving that the homotopy time-slice axiom,which
is a higher categorical relaxation of the time-slice axiom of AQFT, can be strictified for
theories in this class. The general concept is illustrated through a detailed study of the
relative Cauchy evolution for the homotopy AQFT associated with linear Yang-Mills
theory, for which the usual stress-energy tensor is recovered.
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1. Introduction and Summary

An algebraic quantum field theory (AQFT) on Lorentzian manifolds can be described
by a functor from a category of spacetimes to a category of algebras, so thatA(M) is the
algebra of observables assigned to the spacetimeM by the theory.1 An important concept

1 It is also possible for A(M) to be the field algebra of possibly unobservable fields but for brevity we
suppress this point.
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in this framework is the relative Cauchy evolution (RCE) [BFV03,FV15] that allows
one to study the response of a theory A to perturbations of the spacetime geometry.
It is described by a coherent family of automorphisms RCE(M,h) : A(M) → A(M)

of the algebras of quantum observables that is labeled by pairs (M, h) consisting of a
spacetime M and a sufficiently small compactly supported metric perturbation h on M .
The first derivatives d

dε
RCE(M,εh)

∣
∣
ε=0 of the family of RCE automorphisms along the

metric perturbation h determine the quantum stress-energy tensor of the theory A.

In the usual construction of the RCE automorphisms, see e.g. [BFV03,FV15], it is
crucial that the theoryA satisfies the time-slice axiom. This axiom requires thatA assigns
to every Cauchy morphism f : M → N (a morphism of spacetimes whose image
f (M) ⊆ N contains a Cauchy surface of N ) an isomorphism A( f ) : A(M) → A(N )

of algebras. These isomorphisms introduce a concept of time evolution for the quantum
observables, which is the key ingredient to define the RCE automorphisms. See Sect. 2
for more details and a concise review of this construction.

The main goal of this paper is to develop a generalization of the concept of relative
Cauchy evolution to homotopy AQFTs [BSW19], which are higher categorical refine-
ments of AQFTs that are relevant to describe quantum gauge theories. Examples of
homotopy AQFTs arise from the BRST/BV formalism [FR12,FR13] and its mathemat-
ical incarnation in terms of derived geometry [BBS19]. See also [CG17] for similar
developments in the context of factorization algebras. The key difference between ho-
motopy AQFTs and ordinary ones is that they assign differential graded algebras (in
short, dg-algebras) of quantum observables which, in the terminology of the BRST/BV
formalism, contain also observables for the ghost fields and the antifields of a gauge
theory. As evidenced by the concrete examples studied in [FR12,FR13] and [BBS19],
physically relevant models of homotopy AQFT usually satisfy only a higher categorical
relaxation of the time-slice axiom, which was called the homotopy time-slice axiom.
This axiom demands that the homotopy AQFT A assigns to every Cauchy morphism
f : M → N aweak equivalenceA( f ) : A(M) → A(N ) of dg-algebras, i.e. amorphism
of dg-algebras whose underlying chain map is a quasi-isomorphism (an isomorphism at
the level of homologies). In contrast to the isomorphisms in ordinary AQFT, such weak
equivalences do not admit (strict) inverses and hence the usual construction of the RCE
can not be applied directly to homotopy AQFTs.

Our proposal to remedy this issue is to seek a rectification theorem for the homotopy
time-slice axiom of homotopy AQFTs. Loosely speaking, this consists of a replace-
ment of a given homotopy AQFT A that satisfies the homotopy time-slice axiom by
a weakly equivalent homotopy AQFT Ast that satisfies the strict time-slice axiom and
hence admits the usual RCE automorphisms. The technical details of this proposal are
explained in Sect. 3. The main result is Theorem 5.4 which proves that, when restricted
to a category that is relevant for the relative Cauchy evolution associated with a fixed but
arbitrary pair (M, h), every linear homotopy AQFT satisfying the homotopy time-slice
axiom admits such a strictification. Let us recall that a linear homotopy AQFT is a theory
A = CCR(L, τ ) that is obtained through canonical commutation relation (CCR) quan-
tization of Poisson chain complexes. In physics terminology, these are non-interacting
(i.e. “free”) quantum gauge theories, such as e.g. the linear Yang-Mills model studied in
[BBS19]. Our construction of the weakly equivalent strictified theory Ast is rather ex-
plicit as it is determined by CCR-quantization of (a functor of) Poisson chain complexes
(LL !(L), τL) that we describe in detail in Sects. 4 and 5. The relative Cauchy evolution
for the weakly equivalent strictified theoryAst takes a very simple form, given explicitly
in (5.20) and (4.23).



Relative Cauchy Evolution for Linear Homotopy AQFTs 623

Even thoughour concept of relativeCauchy evolution that is obtainedby theRectifica-
tion Theorem 5.4 is mathematically sound and relatively simple to describe, its physical
interpretation is a priori less clear. We shall address this issue in Sect. 6 by studying as a
concrete example the linear Yang-Mills model from [BBS19]. The key result is Propo-
sition 6.1 which proves that, at the level of linear quantum fields, our abstract concept of
relative Cauchy evolution through rectification admits an equivalent, but physicallymore
transparent and familiar, description in terms of a generalization of the usual RCE auto-
morphism construction obtained by choosing quasi-inverses for the quasi-isomorphisms
assigned to Cauchy morphisms. This equivalent model can be worked out in detail, see
in particular Proposition 6.6 and Remark 6.7, leading to explicit formulas for the relative
Cauchy evolution of linear Yang-Mills theory that generalize earlier non-homotopical
results in [FL16]. We shall further compute the associated stress-energy tensor and find
that, up to exact terms that can be removed by a homotopy, it only receives contribu-
tions from the gauge field and not from the ghosts and antifields. More precisely, the
stress-energy tensor that is obtained via our homotopical concept of relative Cauchy
evolution agrees with the one of the standard Maxwell action S = − ∫

M
1
2 F ∧ ∗F . This

is a very pleasing result because it substantiates mathematically the physical expectation
that ghosts and antifields do not contribute to the energy content of a theory.

The outline of the remainder of this paper is as follows: In Sect. 2 we shall briefly
recall the concept of relative Cauchy evolution in ordinary AQFT [BFV03,FV15] and
provide a reformulation in terms of localization of categories that will be useful for
generalizing to homotopy AQFT. Section 3 outlines our proposal for how to obtain a
well-defined concept of relative Cauchy evolution for homotopy AQFTs satisfying the
homotopy time-slice axiom. The key idea of our approach is to seek a rectification
theorem that allows us to strictify the homotopy time-slice axiom and thereby make
available the usual RCE automorphism construction in the context of homotopy AQFT.
Restricting to linear homotopy AQFTs [BBS19] and the category (2.7) that is relevant
for the relative Cauchy evolution associatedwith a fixed but arbitrary pair (M, h), we can
successfully prove such a rectification theorem, see Theorem 5.4. The formulation and
proof of this theorem is slightly abstract as it requires techniques from model category
theory [Hov99,DHKS04,Rie14], in particular derived functors and their concretemodels
obtained via bar resolutions [Fre09]. These more technical aspects are discussed and
worked out in detail in Sects. 4 and 5. In Sect. 6 we apply our novel concept of relative
Cauchy evolution for homotopy AQFTs to the linear Yang-Mills model from [BBS19].
We obtain explicit formulas involving Green operators, see in particular Proposition 6.6
and Remark 6.7, which generalize the earlier non-homotopical results in [FL16]. We
also compute explicitly the stress-energy tensor for this example. This paper contains
three appendices: Appendix A summarizes our conventions for bicomplexes, Appendix
B recalls the bar construction, and Appendix C lists explicitly the homotopy coherence
data that is needed to construct the Poisson structure in Sect. 5.

2. Relative Cauchy Evolution and Localization of Categories

In this section we shall briefly review the concept of relative Cauchy evolution (RCE) for
ordinaryAQFTs [BFV03,FV15] froma perspective thatwill be useful for our generaliza-
tion to homotopy AQFTs.We adopt the operadic formulation of AQFT [BSW21,BS19a]
that automatically incorporates Einstein causality as an intrinsic part of the structure.
Let us recall that an orthogonal category is a pair C := (C,⊥) consisting of a cate-
gory C and a subset ⊥⊆ Mor(C) t×t Mor(C) expressing which pairs of morphisms
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to a common target are considered to be orthogonal. A central example for AQFT is
Loc := (Loc,⊥Loc), where Loc is the usual category of all oriented and time-oriented
globally hyperbolic Lorentzian manifolds M and morphisms f : M → N given by ori-
entation and time-orientation preserving isometric embeddings with open and causally
convex image. The orthogonality relation⊥Loc is determined by causal disjointness, i.e.
( f1 : M1 → N ) ⊥Loc ( f2 : M2 → N ) if and only if the images f1(M1) and f2(M2)

are causally disjoint open subsets of N . Associated to every orthogonal category C is
a category AQFT(C) of AQFTs on C with values in the symmetric monoidal category
VecK of vector spaces over a (fixed) field K of characteristic 0. More precisely, the
objects of AQFT(C) are given by VecK-valued algebras over the AQFT operad OC
associated with the orthogonal categoryC = (C,⊥). By [BSW21, Theorem 3.16], each
such object admits an equivalent description as a functor A : C → AlgK to the cate-
gory of associative and unital K-algebras satisfying an abstract version of the Einstein
causality axiom encoded by the orthogonality relation ⊥ on C. For Loc, the category
AQFT(Loc) describes AQFTs on Loc in the sense of [BFV03], which satisfy the usual
Einstein causality axiom but not necessarily the time-slice axiom.

Turning to the time-slice axiom, let us recall that a Loc-morphism f : M → N
is called a Cauchy morphism if its image f (M) ⊆ N contains a Cauchy surface of
N . We denote by W ⊆ Mor(Loc) the subset of all Cauchy morphisms in Loc. There
are two equivalent ways to implement the time-slice axiom. On the one hand, one can
consider the full subcategory AQFT(Loc)W ⊆ AQFT(Loc) consisting of all AQFTs
A ∈ AQFT(Loc) that assign to every Cauchy morphism ( f : M → N ) ∈ W an iso-
morphism A( f ) : A(M) → A(N ). On the other hand, one can proceed by localization.
Informally speaking, the localizationLoc[W−1] ofLoc atW is a universally constructed
category in which every Cauchymorphism f ∈ W possesses an inverse. More precisely,
the localization is characterized by a functor L : Loc → Loc[W−1] that satisfies the
universal property stated in e.g. [KS06, Section 7.1]. The localization functor deter-
mines a localization of orthogonal categories Loc[W−1] := (Loc[W−1], L∗(⊥Loc)),
where L∗(⊥Loc) is the minimal orthogonality relation on Loc[W−1] containing every
{(L( f1), L( f2)) : f1 ⊥Loc f2}. By construction, the localization functor L defines
an orthogonal functor L : Loc → Loc[W−1], i.e. a functor that preserves the orthog-
onality relations. With this notation established, the time-slice axiom is automatically
implemented in every theory belonging to the category AQFT(Loc[W−1]). These two
perspectives are equivalent due to the following result, which was proven in [BSW21,
Proposition 4.4] and [BS19a, Proposition 2.21].

Proposition 2.1. The orthogonal localization functor L : Loc → Loc[W−1] deter-
mines an adjunction

L ! : AQFT(Loc)
��
AQFT(Loc[W−1]) : L∗

�� (2.1)

that exhibits AQFT(Loc[W−1]) as a full reflective subcategory of AQFT(Loc), i.e. the
counit ε : L !L∗ → id is a natural isomorphism. This adjunction restricts to an adjoint
equivalence

L ! : AQFT(Loc)W ∼ ��
AQFT(Loc[W−1]) : L∗

�� (2.2)

between the two categories AQFT(Loc)W and AQFT(Loc[W−1]), i.e. the restriction
of the unit η : id → L∗L ! to AQFT(Loc)W ⊆ AQFT(Loc) is a natural isomorphism.
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The concept of relative Cauchy evolution is defined for eachAQFTA that satisfies the
time-slice axiom. It records the response ofA to perturbations of the spacetimemetric and
thereby encodes information about the stress-energy tensor of the theory [BFV03,FV15].
In more detail, given a spacetime M ∈ Loc with metric denoted by g and a sufficiently
small compactly supported metric perturbation h such that the spacetime Mh with the
perturbed metric g + h is also an object in Loc, one obtains a diagram

M+i+
�����
� j+

���
���

M Mh

M−
i−

������
j−

������

(2.3)

in the category Loc. In this diagram M± := M \ J∓
M (supp h) ∈ Loc is the spacetime

M with the causal past/future of the support of the perturbation h removed and i±, j±
are the canonical inclusion morphisms. It is important to observe that all morphisms
in the diagram (2.3) are Cauchy morphisms, but (except in the trivial case h = 0) not
isomorphisms. Given now anyA ∈ AQFT(Loc)W that satisfies the time-slice axiom, its
application to the morphisms in the diagram (2.3) gives isomorphisms and one defines
the relative Cauchy evolution associated with the pair (M, h) as the automorphism

RCE(M,h) := A(i−)A( j−)−1 A( j+)A(i+)
−1 : A(M) −→ A(M) (2.4)

of associative and unital K-algebras. The family {RCE(M,h)} of automorphisms for
all admissible pairs (M, h) satisfies by construction various compatibility conditions
among its members and also with respect to Loc-morphisms f : M → N , see e.g.
[FV12, Section 3.4].

Let us now reformulate the concept of relative Cauchy evolution from the equiva-
lent point of view given by AQFTs on the localized orthogonal category Loc[W−1], cf.
Proposition 2.1. Because the orthogonal localization functor L : Loc → Loc[W−1]
maps each morphism in the diagram (2.3) to an isomorphism, we may define the auto-
morphism

r(M,h) := L(i−) L( j−)−1 L( j+) L(i+)
−1 : L(M) −→ L(M) (2.5)

in Loc[W−1]. Given now any B ∈ AQFT(Loc[W−1]), the relative Cauchy evolution
is defined by applying B to the automorphism (2.5), i.e.

RCE(M,h) := B(r(M,h)) : B(L(M)) −→ B(L(M)). (2.6)

It is clear that the two formulations of the relative Cauchy evolution given in (2.4) and
(2.6) agree when A ∈ AQFT(Loc)W and B ∈ AQFT(Loc[W−1]) define the same
theory, i.e. A = L∗B with L∗ the right adjoint in Proposition 2.1.

Summing up, for theories defined on the localized orthogonal category Loc[W−1],
the relative Cauchy evolution is simply given by the application of a theory B ∈
AQFT(Loc[W−1]) to certain automorphisms (2.5) in Loc[W−1]. The compatibility
conditions between RCE automorphisms and Loc-morphisms listed in [FV12] are then
directly encoded in the localized orthogonal category Loc[W−1].
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We may pursue the reformulation a bit further by considering the left adjoint L ! to
the pullback L∗ in more detail. Instead of working on all of Loc, we consider only the
subcategory

C :=

⎛

⎜
⎜
⎜
⎜
⎝

M+i+
�����
� j+

���
���

M Mh

M−
i−

������
j−

������

⎞

⎟
⎟
⎟
⎟
⎠

⊆ Loc (2.7)

that is relevant for determining the relative Cauchy evolution induced by a pair (M, h).
Because C does not contain any causally disjoint pairs of morphisms, i.e. the restriction
of ⊥Loc to C is empty, the category AQFT(C) 
 Fun(C,AlgK) of AQFTs on C is
simply the category of all functors from C to the category of associative and unital
K-algebras AlgK. Furthermore, because all morphisms in C are Cauchy morphisms,
the analog of the orthogonal localization Loc[W−1] in the present context is given by
the localization C[All−1] at all C-morphisms, which also has an empty orthogonality
relation.

The localization C[All−1] can be described very explicitly. Let us denote by BZ

the category with a single object ∗ and morphisms given by the group Z of integers.
It is useful to note that any functor B : BZ → D to any category D can be described
equivalently as an objectB(∗) ∈ D, which we shall often denote simply asB = B(∗),
equipped with a Z-action Z � k �→ B(k) ∈ Aut(B(∗)). Now consider the functor

L : C −→ BZ,

M, M−, Mh, M+ �−→ ∗,

i− �−→ 1,

j−, j+, i+ �−→ 0. (2.8)

Lemma 2.2. The functor (2.8) is a localization of the category C given in (2.7) at all
morphisms.

Proof. We have to confirm that the functor L : C → BZ satisfies the properties of
a localization functor, see e.g. [KS06, Section 7.1]. Because BZ is a groupoid, it is
clear that L sends every C-morphism to an isomorphism. Let now F : C → D be
any functor to a category D that sends every C-morphism to an isomorphism in D. We
have to construct a functor F̃ : BZ → D and a natural isomorphism F̃ L ∼= F . Let us
define F̃ : BZ → D by F̃(∗) := F(M) and, for n ∈ Z, F̃(n) := F̃(1)n with F̃(1) :=
F(i−) F( j−)−1 F( j+) F(i+)−1 : F(M) → F(M). Then a natural isomorphism η :
F → F̃ L can be defined by the components

ηM := idF(M) : F(M) −→ F(M),

ηM+ := F(i+) : F(M+) −→ F(M),

ηMh := F(i+) F( j+)
−1 : F(Mh) −→ F(M),

ηM− := F(i+) F( j+)
−1 F( j−) : F(M−) −→ F(M). (2.9)

It remains to prove that the pullback functor

L∗ : Fun(BZ,D) −→ Fun(C,D),

(G : BZ → D) �−→ (GL : C → D),

(ζ : G → H) �−→ (ζ L : GL → HL) (2.10)
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is fully faithful. Faithfulness is a consequence of L being surjective on objects. Con-
cerning fullness, let κ : GL → HL be any natural transformation. Naturality with
respect to the three morphisms i+, j− and j+ implies that all components coincide, i.e.
κM = κM− = κMh = κM+ : G(∗) → H(∗), and naturality with respect to i− implies
that ζ∗ := κM : G(∗) → H(∗) defines a natural transformation ζ : G → H between
functors from BZ to D such that ζ L = κ . �

In the present context, the adjunction from Proposition 2.1 reduces to the adjunction

L ! : Fun(C,AlgK)
��
Fun(BZ,AlgK) : L∗

�� , (2.11)

where the right adjoint L∗ is the pullback functor along L : C → BZ and the left adjoint
L ! is the left Kan extension along L : C → BZ. This adjunction restricts to an ad-
joint equivalence between Fun(BZ,AlgK) and the full subcategory Fun(C,AlgK)All ⊆
Fun(C,AlgK) of all functors that assign to everyC-morphism an isomorphism. The left
Kan extension L !(A) : BZ → AlgK of any functor A : C → AlgK can be computed as
the colimit

L !(A) := colim
(

L/∗ π �� C A �� AlgK
)

, (2.12)

where L/∗ denotes the comma category of L : C → BZ over the single object ∗ ∈ BZ

and π : L/∗ → C is the forgetful functor. More explicitly, the objects of the category
L/∗ are pairs (n, N ) ∈ Z×C consisting of an object N ∈ C and amorphism n : L(N ) =
∗ → ∗ in BZ, and the morphisms (n, N ) → (n′, N ′) are C-morphisms f : N → N ′
such that n = L( f )+n′. Furthermore, the forgetful functorπ : L/∗ → C , (n, N ) �→ N
forgets the integers. Observe that the functor π : L/∗ → Cmay be visualized as a kind
of “universal cover” over the category C given in (2.7), which takes the form of a spiral
of zig-zags lying over C. Straightening this spiral to a line, L/∗ may be displayed as

· · · (n − 1, M) (n, M−)
i−
��

j−
�� (n, Mh) (n, M+)

j+��
i+ �� (n, M) (n + 1, M−) · · ·i−

�� .

(2.13)

The Z-action on L !(A) (2.12) is defined through the universal property of colimits by

L !(A)
L !(A)(k)

�� L !(A)

A(N )

ι(n,N )

��

ι(n+k,N )

		����������

(2.14)

for all k ∈ Z and (n, N ) ∈ L/∗, where the ι’s denote the canonical morphisms into
the colimit. Note that this may be visualized by moving k ∈ Z levels up in the spiral
(2.13). This completes the description of L ! on objects. If ζ : A → A′ is a morphism
in Fun(C,AlgK) (i.e., a natural transformation) then L !(ζ ) : L !(A) → L !(A′) is a
natural transformation with the single component L !(ζ )∗ determined by functoriality of
the colimit (2.12). Concretely, L !(ζ )∗ ι(n,N ) = ι′(n,N ) ζN , for all (n, N ) ∈ L/∗, where
ι′(n,N ) : A′(N ) → L !(A′) are the canonical morphisms for A′.

Given now any A ∈ Fun(C,AlgK)All that satisfies the time-slice axiom, we know
that (2.12) provides an equivalent description of this theory because restricting (2.11) to
Fun(C,AlgK)All is an adjoint equivalence. From this perspective, the relative Cauchy
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evolution is given (applying the analogs of (2.6) and (2.5) to B = L !(A) and using the
definition (2.8)) as the action of the generator 1 ∈ Z, i.e.

L !(A)(1) : L !(A) −→ L !(A), (2.15)

which may be visualized by moving 1 level up in the spiral (2.13). The concept of
relative Cauchy evolution for homotopy AQFTs that we develop in this paper is based
on a higher categorical generalization of this particular perspective.

To conclude, let us briefly note that (2.15) can also be related more directly to the
ordinary relativeCauchy evolution in (2.4). Take any object of L/∗, for instance (0, M) ∈
L/∗ at level 0. Then the canonical morphism ι(0,M) : A(M) → L !(A) is an isomorphism
which intertwines the two descriptions of the relative Cauchy evolution given in (2.4)
and (2.15), i.e. the diagram

L !(A)
L !(A)(1)

�� L !(A)

A(M)

ι(0,M)

��

RCE(M,h)

�� A(M)

ι(0,M)

��
(2.16)

commutes.

3. Relative Cauchy Evolution for Homotopy AQFTs

The aim of this section is to propose a general strategy for how the relative Cauchy
evolution may be defined for homotopy AQFTs in the sense of [BSW19]. The latter
are higher categorical refinements of traditional AQFTs that are designed to capture the
higher categorical structures of gauge theories. Models constructed via the BRST/BV
formalism [FR12,FR13] define examples of homotopy AQFTs on Loc. A very special
class of such examples, the linear quantum gauge theories, admit a particularly elegant
and rigorous construction as homotopy AQFTs using suitable techniques from homo-
topical algebra and derived geometry, see [BBS19] and also [BS19b]. Let us also refer
the reader to [BS19a] for a less technical introduction to this subject.

We start by considering the relative Cauchy evolution induced by a single pair (M, h)

which, as we have explained in the previous section, is controlled by the subcategory
C ⊆ Loc displayed in (2.7). Because this particular C has an empty orthogonality
relation, the category of homotopy AQFTs on C = (C,∅) admits a simple description

AQFT∞(C) 
 Fun(C,dgAlgK) (3.1)

in terms of functors from C to the category dgAlgK of associative and unital dg-
algebras over K. Under this equivalence, the model category structure on AQFT∞(C)

from [BSW19] gets identified with the projective model structure on the functor cat-
egory. More explicitly, a morphism ζ : A → A′ in Fun(C,dgAlgK), i.e. a natural
transformation, is a weak equivalence (respectively, a fibration) iff each component
ζN : A(N ) → A′(N ), for N ∈ C, is a quasi-isomorphism between the underlying chain
complexes (respectively, a degree-wise surjection). The cofibrations are determined by
the lifting properties in model categories, see e.g. [Hov99]; they are the morphisms with
the left lifting property against all weak equivalences that are also fibrations.
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As evidenced by the concrete examples constructed in [BBS19] and also in [FR12,
FR13], homotopyAQFTs satisfy a priori only a higher categorical relaxation of the time-
slice axiom,whichwas called the homotopy time-slice axiom. In the present context (3.1),
this means that the functorA : C → dgAlgK assigns to every (necessarily Cauchy) mor-
phism f : N → N ′ in the categoryC given in (2.7) aweak equivalenceA( f ) : A(N ) →
A(N ′) in themodel categorydgAlgK, i.e. a dg-algebramorphismwhoseunderlying chain
map is a quasi-isomorphism. We denote by Fun(C,dgAlgK)hoAll ⊆ Fun(C,dgAlgK)

the full subcategory of such functors. (One could also introduce as in [Car21] a Bous-
field localized model structure on Fun(C,dgAlgK) in order to capture the homotopy
time-slice axiom. This provides in general a more refined structure, which however
is not necessary for the purpose of the present paper.) Given any homotopy AQFT
A ∈ Fun(C,dgAlgK)hoAll satisfying the homotopy time-slice axiom, the traditional
construction of the RCE automorphism in (2.4) is obstructed by the fact that weak
equivalencesA( f ) : A(N ) → A(N ′) between dg-algebras do not in general admit strict
inverses. While they do admit quasi-inverses in the form of A∞-quasi-isomorphisms
[LV12], these have the disadvantage of being difficult to work with.

Our strategy is therefore to adapt the third of the equivalent perspectives on the
ordinary relative Cauchy evolution from Sect. 2 to the setting of homotopy AQFTs.
The analog of the adjunction (2.11) for homotopy AQFTs on C is given by the Quillen
adjunction

L ! : Fun(C,dgAlgK)
��
Fun(BZ,dgAlgK) : L∗

�� , (3.2)

where L∗ is the pullback functor and L ! the left Kan extension along the localization
functor L : C → BZ. Suppose for the moment that we could prove that the restriction of
the derived unit to Fun(C,dgAlgK)hoAll ⊆ Fun(C,dgAlgK) is a natural weak equiva-
lence. Then each homotopy AQFT A ∈ Fun(C,dgAlgK)hoAll satisfying the homotopy
time-slice axiom is weakly equivalent to the object L∗

LL !(A) ∈ Fun(C,dgAlgK),
where LL ! denotes the left derived functor. Observe that the theory L∗

LL !(A) satis-
fies the strict time-slice axiom because it lies in the image of the pullback functor L∗,
and hence its relative Cauchy evolution is simply given in complete analogy to (2.15)
by the action LL !(A)(1) : LL !(A) → LL !(A) of the generator 1 ∈ Z. In particu-
lar, this is a strict Z-action in terms of strict dg-algebra automorphisms, in contrast
to the homotopy coherent Z-action in terms of A∞-quasi-automorphisms that would
arise by generalizing directly the traditional construction (2.4) to homotopy AQFTs. In
other words, proving that the derived unit of the Quillen adjunction (3.2) restricts on
Fun(C,dgAlgK)hoAll ⊆ Fun(C,dgAlgK) to a natural weak equivalence would provide
a rectification theorem that allows us to strictify the homotopy time-slice axiom.

Proving such a result, and thereby obtaining the simple description of the relative
Cauchy evolution for homotopy AQFTs outlined above, is a highly technical task that
we currently do not know how to complete in full generality. In this work we present a
concrete solution for a simplified version of the problem that allows us to discuss the
relative Cauchy evolution in the context of linear homotopy AQFTs [BBS19]. The latter
are functors A : C → dgAlgK that are given by a composition

A : C
(L,τ )

�� PoChK
CCR �� dgAlgK (3.3)

of the canonical commutation relation (CCR) quantization functor CCR (in the context
of chain complexes [BBS19]) and a functor (L, τ ) that assigns chain complexes of linear
observables together with their Poisson structure. More precisely, the category PoChK
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of Poisson chain complexes is defined as follows: Objects are pairs (V, τ ) consisting of
a chain complex V ∈ ChK and a chain map τ : V ∧ V → K from the antisymmetrized
tensor product, whilemorphisms f : (V, τ ) → (W, σ ) are chainmaps f : V → W such
thatσ ◦( f ∧ f ) = τ . Our strategy is to prove an analog of the desired rectification theorem
for linear observables, which leads to a very explicit and strict model for the relative
Cauchy evolution forL. This will be achieved in Sect. 4. Then, in Sect. 5, we will endow
this strictified model with a suitable Poisson structure and lift our construction along
the CCR-functor to obtain a relative Cauchy evolution for the linear homotopy AQFT
A = CCR(L, τ ). We emphasize that this relative Cauchy evolution can be computed
explicitly as we will do in Sect. 6 for linear Yang-Mills theories.

To conclude this section, we would like to mention briefly that the main idea behind
our approach admits a potential generalization to describe the whole coherent family
{RCE(M,h)} of RCE automorphisms in the context of homotopy AQFT, in contrast to
only a single RCE automorphism RCE(M,h). For this we consider the Quillen adjunction

L ! : AQFT∞(Loc)
��
AQFT∞(Loc[W−1]) : L∗

�� (3.4)

introduced in [BSW19,BS19b], which relates homotopy AQFTs on Loc to homotopy
AQFTs on the orthogonal localization Loc[W−1] at all Cauchy morphisms. If one could
prove that the derived unit of (3.4) restricts onAQFT∞(Loc)hoW ⊆ AQFT∞(Loc) to a
naturalweak equivalence, then L∗

LL !(A)would provide a strictifiedmodel for thewhole
coherent family {RCE(M,h)}ofRCEautomorphisms for a theoryA ∈ AQFT∞(Loc)hoW .

4. Rectification Theorem for Linear Observables

In this section we shall prove a rectification theorem for linear observables. The latter
are modeled by functors L : C → ChK from the category C (2.7) to the model category
of (possibly unbounded) chain complexes of vector spaces over K. In analogy to (3.2),
the localization functor (2.8) defines a Quillen adjunction

L ! : Fun(C,ChK)
��
Fun(BZ,ChK) : L∗

�� , (4.1)

where both sides are endowed with the projective model structure. Again, L∗ is simply
the pullback functor and L ! the left Kan extension along the localization functor L :
C → BZ. The analog of the homotopy time-slice axiom for functors L : C → ChK
assigning chain complexes of linear observables is given by the property that L assigns
to every morphism in C a weak equivalence (i.e. a quasi-isomorphism) in ChK. We
denote by Fun(C,ChK)hoAll ⊆ Fun(C,ChK) the full subcategory of such functors.
The rectification problem for linear observables on C is then given by the question of
whether the derived unit of (4.1) restricts on Fun(C,ChK)hoAll ⊆ Fun(C,ChK) to a
natural weak equivalence.

In order to prove our rectification theorem, we require explicit models for the derived
functors associated with the Quillen adjunction (4.1) and also for their derived unit
and counit. Recall that the left and right derived functors, in the context of a Quillen
adjunction between model categories, are compositions LL ! = L !Q, RL∗ = L∗R
where Q and R are cofibrant and fibrant replacement functors on Fun(C,ChK) and
Fun(BZ,ChK) respectively. Because each object in Fun(BZ,ChK) is fibrant in the
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projective model structure, we may take R = id, so the right derived functor is the
ordinary right adjoint, RL∗ := L∗. Concerning the left derived functor

LL ! : Fun(C,ChK) −→ Fun(BZ,ChK), (4.2)

we shall use the bar resolution techniques developed by Fresse in [Fre09, Theorem
17.2.7 and Section 13.3]. Following the general construction outlined in Appendix B,
we obtain that the action of the left derived functor on an object X ∈ Fun(C,ChK) is
given by

LL !(X) := Tot⊕(X̃) := Tot⊕
(

B
(BZ,C, X)
) ∈ Fun(BZ,ChK), (4.3)

where we abbreviate by X̃ := B
(BZ,C, X) ∈ Fun(BZ,bChK) the bicomplex-valued
functor described in (B.3) and Tot⊕ denotes the

⊕
-totalization of bicomplexes (see

also Appendix A). In the present case, the functor X̃ admits the following very explicit
description as a bicomplex with a Z-action: The underlying bicomplex

X̃ =
(

X̃0,• X̃1,•δ��

)

∈ bChK (4.4a)

is concentrated only in vertical degrees 0 and 1 because, due to the specific form of the
category C in (2.7), there exist no composable m-tuples ( f1, . . . , fm) ∈ Morm(C) of
C-morphisms with each fi �= id in the case of m > 1. It is concretely given by direct
sums of chain complexes

X̃0,• =
⊕

n∈Z

⊕

N∈C
X (N )•, X̃1,• =

⊕

n∈Z

⊕

f ∈Mor(C)
f �=id

X (s f )•, (4.4b)

where s f, t f ∈ C denote the source/target of the morphism ( f : s f → t f ) ∈ Mor(C).
(Here, we have simplified the triple direct sum appearing in (B.3b) in an obvious way.)
Note that the direct sum in X̃0,• is over the objects of the spiral (2.13) and that the direct
sum in X̃1,• is over its non-identity morphisms. We shall use the notation (n, N , x) ∈
X̃0,• to denote the element x ∈ X (N ) in the summand indexed by (n, N ), and similarly
(n, f, x) ∈ X̃1,•. The vertical differential δ is given by

δ
(

n, f, x
) = (−1)|x |

((

n + L( f ), s f, x
) − (

n, t f, X ( f )x
))

, (4.4c)

for all (n, f, x) ∈ X̃1,•, where |x | denotes the degree of x ∈ X (s f ), and the Z-action on
the bicomplex X̃ is given by addition, i.e. X̃(k) : X̃ → X̃ , for k ∈ Z, maps (n, N , x) �→
(k + n, N , x) and (n, f, x) �→ (k + n, f, x).

We still have to provide explicit models for the derived unit and counit of the Quillen
adjunction (4.1). The component at Y ∈ Fun(BZ,ChK) of the derived counit is given
by (see Appendix B2)

εY : LL !(L∗Y ) −→ Y,

(n, N , y) �−→ Y (n)y,

(n, f, y) �−→ 0, (4.5)

2 To obtain (4.5) and (4.8) from Appendix B one should keep in mind the way that the various multiple
direct sums have been simplified to obtain (4.4b) and (4.7b).
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which clearly is Z-equivariant, i.e. a natural transformation between functors from BZ

to ChK. (Note that every complex L∗Y (N ) is a copy of Y (∗).)
The component at X ∈ Fun(C,ChK) of the derived unit, ηX : Q(X) → L∗

LL !(X),
is a morphism whose source

Q(X) := Tot⊕(X
) := Tot⊕
(

B
(C,C, X)
) ∈ Fun(C,ChK) (4.6)

is a resolution of X that is determined by the bar construction for id : C → C. Following
again the general construction outlined inAppendixB, the object X
 := B
(C,C, X) ∈
Fun(C,bChK) is given explicitly by, for all N ∈ C,

X
(N ) =
(

X
(N )0,• X
(N )1,•δ��

)

∈ bChK, (4.7a)

with (simplifying the appropriate double and triple direct sums from (B.3))

X
(N )0,• =
⊕

g∈Mor(C)
tg=N

X (sg)•, X
(N )1,• =
⊕

(g, f )∈Mor2(C)

tg=N , f �=id

X (s f )•, (4.7b)

where Mor2(C) denotes the set of composable pairs of morphisms, and vertical differ-
ential

δ
(

g, f, x
) = (−1)|x |

((

g f, x
) − (

g, X ( f )x
))

, (4.7c)

for all (g, f, x) ∈ X
(N )1,•. (Note that since the nerve ofC is degenerate in degrees≥ 2,
it follows that each element (g, f, x) ∈ X
(N )1,• is necessarily of the form (g, f, x) =
(idN , f, x).) The functor structure on X
 is given by post-composition, i.e. for every
morphism h : N → N ′ in C, the bChK-morphism X
(h) : X
(N ) → X
(N ′) maps
(g, x) �→ (hg, x) and (g, f, x) �→ (hg, f, x). The component at X ∈ Fun(C,ChK) of
the derived unit is then given by the components

ηX,N : Q(X)(N ) −→ LL !(X),

(g, x) �−→ (

L(g), sg, x
)

, ,

(g, f, x) �−→ (

L(g), f, x
)

, (4.8)

for all N ∈ C, which determine a natural transformation between functors from C to
ChK.

Remark 4.1. We would like to emphasize that Q(X) = Tot⊕(X
) is indeed naturally
weakly equivalent to X ∈ Fun(C,ChK) via the natural weak equivalence qX : Q(X) →
X determined by the components

qX,N : Q(X)(N ) −→ X (N ),

(g, x) �−→ X (g)x,

(g, f, x) �−→ 0, (4.9)

for all N ∈ C. See the standard argument in [Fre09, Lemma 13.3.3]. An explicit quasi-
inverse for the component qX,N : Q(X)(N ) → X (N ) is given by the chain map

sX,N : X (N ) −→ Q(X)(N ) , x �−→ (idN , x), (4.10)

which is of course a quasi-isomorphism too.

With these preparations, we can now prove the main result of this section.
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Theorem 4.2. The derived counit of theQuillen adjunction (4.1) is a natural weak equiv-
alence. The restriction of the derived unit to the full subcategory Fun(C,ChK)hoAll ⊆
Fun(C,ChK) of functors that send every C-morphism to a quasi-isomorphism is a
natural weak equivalence too.

Proof. Wefirst prove that, for everyY ∈ Fun(BZ,ChK), the component εY : LL !(L∗Y )

→ Y of the derived counit (4.5) is a weak equivalence. Our strategy is to construct an
explicit quasi-inverse of its underlying chain map. We define the chain map

κ : Y −→ LL !(L∗Y ) , y �−→ (0, M, y), (4.11)

where M denotes the left object in the category C in (2.7) (i.e., the unperturbed space-
time), which satisfies εY κ = id. The other composition κ εY is homotopic to the identity,
i.e.

κ εY − id = ∂ρ, (4.12)

via a chain homotopy ρ ∈ hom
(

LL !(L∗Y ), LL !(L∗Y )
)

1 that we shall now describe.

Given any element (n, N , y) ∈ LL !(L∗Y ) = Tot⊕(L̃∗Y ) of vertical degree 0, let us
denote the shortest zig-zag in (2.13) from (0, M) to (n, N ) by

(0, M) = (n−1, N−1) (n0, N0)
f0��

f1 �� (n1, N1) (n2, N2)
f2��

f3 �� · · · (nm, Nm) = (n, N )��
fm��

(4.13a)

and write

fi : (nsi , N
s
i ) −→ (nti , N

t
i ) (4.13b)

for the i-th morphism. We define the chain homotopy ρ by

ρ(n, N , y) = −(−1)|y|
m

∑

i=0

(−1)i
(

nti , fi ,Y (n − nsi )y
)

, ρ(n, f, y) = 0,

(4.14)

for all (n, N , y) ∈ LL !(L∗Y ) of vertical degree 0 and (n, f, y) ∈ LL !(L∗Y ) of vertical
degree 1. It is straightforward to check that (4.12) holds true. For elements (n, N , y) ∈
LL !(L∗Y ) of vertical degree 0, we find that

∂ρ(n, N , y) = (δ + d)ρ(n, N , y) + ρ(δ + d)(n, N , y) = δρ(n, N , y)

= −
m

∑

i=0

(−1)i
((

nsi , N
s
i ,Y (n − nsi )y

) − (

nti , N
t
i ,Y (n − nti )y

))

= (

0, M,Y (n)y
) − (

n, N , y
)

, (4.15)

where the second equality holds because Y (k) is a chain map, and the last step follows
from the observation that the terms associated with the inner nodes in (4.13) cancel out,
leaving only the two boundary terms associated with the ends of (4.13). By a similar
calculation, one checks that

∂ρ(n, f, y) = ρδ(n, f, y) = −(n, f, y), (4.16)
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for all elements (n, f, y) ∈ LL !(L∗Y ) of vertical degree 1. This completes the proof
that all components εY of the derived counit are weak equivalences.

Let us now prove that, for all X ∈ Fun(C,ChK)hoAll, the component ηX : Q(X) →
L∗

LL !(X) of the derived unit (4.8) is aweak equivalence inFun(C,ChK). This amounts
to proving that the underlying component chain maps ηX,N : Q(X)(N ) → LL !(X) are
quasi-isomorphisms, for all objects N ∈ C. Because the categoryC in (2.7) is connected
and Q(X)( f ) is a quasi-isomorphism for each C-morphism f , naturality of ηX and the
2-out-of-3 property of weak equivalences implies that it suffices to prove that one of the
components of ηX is a quasi-isomorphism.We consider the left object M in the category
C in (2.7) and shall prove the equivalent condition that the chain map

φ := ηX,M sX,M : X (M) −→ LL !(X) , x �−→ (0, M, x) (4.17)

obtained by pre-composing with the quasi-isomorphism (4.10) is a quasi-isomorphism.
Because φ is injective, we obtain a short exact sequence

0 �� X (M)
φ
�� LL !(X) �� coker(φ) �� 0 (4.18)

in ChK. Our strategy is to prove, via a spectral sequence argument, that the homology
of coker(φ) is trivial, which implies via the long exact homology sequence associated
to (4.18) that φ is a quasi-isomorphism. The cokernel of (4.17) admits a direct sum
decomposition coker(φ) = FL⊕FR, where FL ∈ ChK is the chain complex associated
with the objects and morphisms in (2.13) that are to the left of (0, M) and FR ∈ ChK
is associated with the objects and morphisms in (2.13) that are to the right of (0, M).
Explicitly, using the following convenient notation

(

(M, 0) N R
0

f R0��
f R1 �� N R

1 · · ·
)

:=
(

(M, 0)
f R2�� (1, M−)

i−
��

j−
�� (1, Mh) · · ·

)j+��

(4.19)

for the objects and morphisms to the right of (0, M), we can write

FR = Tot⊕
( ∞⊕

k=0
X (NR

k )
∞⊕
k=0

X (s f Rk )
δR��

)

. (4.20a)

The vertical differential δR on (k, x) ∈ ⊕∞
k=0 X (s f Rk ) is given by

δR(k, x) =

⎧

⎪⎨

⎪⎩

(−1)|x | (0, x), for k = 0,
(−1)|x |

((

k, x
) − (

k − 1, X ( f Rk )x
))

, for k ≥ 2 even,
(−1)|x |

((

k − 1, x
) − (

k, X ( f Rk )x
))

, for k odd,
(4.20b)

where the difference to (4.4) for k = 0 is due to the fact that the object associated with
(0, M) is divided out in the cokernel. The chain complex FL is defined analogously
by considering objects and morphisms that are to the left of (0, M). To prove that the
homology of FR is trivial, we consider the (bounded below and exhaustive) filtration
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0 ⊆ FR
0 ⊆ FR

1 ⊆ · · · ⊆ FR
p ⊆ · · · ⊆ FR given by restricting the direct sums in (4.20)

to k ≤ p. Observe that the quotients

FR
p

/

FR
p−1 =

⎧

⎨

⎩

cone
(

id : X (NR
p ) → X (NR

p )
)

, for p ≥ 0 even ,

cone
(

−X ( f Rp ) : X (NR
p−1) → X (NR

p )
)

, for p ≥ 0 odd,

(4.21)

are mapping cone complexes associated with quasi-isomorphisms. (It is in this step
where we use that X ∈ Fun(C,ChK)hoAll satisfies the homotopy time-slice axiom.)
Using [Wei94, Corollary 1.5.4], we obtain that H•

(

FR
p /FR

p−1

) = 0, for all p, and the
convergence theorem for spectral sequences in [Wei94, Theorem 5.5.1] then implies that
H•(FR) = 0. Repeating the same argument for FL we obtain H•(FL) = 0, from which
we conclude that H•(coker(φ)) = 0. This completes the proof. �

It is worthwhile to recall and explain in more detail the precise sense in which the
results of this section provide a strictification of the homotopy time-slice axiom for
linear observables and how they are useful for defining a concept of relative Cauchy
evolution. Suppose that L : C → ChK is a functor that assigns the chain complexes
of linear observables of a linear homotopy AQFT. (Recall that the Poisson structure
τ : L ∧ L → K is neglected in the present section and will be considered later in Sect.
5.) By definition, such L satisfies the homotopy time-slice axiom if and only if it defines
an object L ∈ Fun(C,ChK)hoAll. Combining Remark 4.1 and Theorem 4.2, we obtain
a zig-zag of weak equivalences

L Q(L)∼
qL�� ∼

ηL �� L∗
LL !(L) (4.22)

in the model category Fun(C,ChK). With this zig-zag we can replace our original
L, which satisfies the homotopy time-slice axiom, by the equivalent object L∗

LL !(L),
which satisfies the strict time-slice axiom because it arises via the pullback functor
L∗. From this equivalent perspective, the relative Cauchy evolution takes an extremely
simple form because it is implemented by theZ-action of the generator 1 ∈ Z. Explicitly,
we obtain the RCE automorphism for linear observables

rce(M,h) := LL !(L)(1) : LL !(L) −→ LL !(L),

(n, N , x) �−→ (n + 1, N , x),

(n, f, x) �−→ (n + 1, f, x), (4.23)

which we denote by small letters to distinguish it from the induced RCE automorphism
on CCR-algebras that we shall study in the next section. Observe that, similarly to the
reformulation in (2.15) of the traditional RCE, this RCE automorphism is given simply
by adding +1 to the level n ∈ Z in the spiral (2.13) which enters our model for the left
derived functor in (4.3) and (4.4).

5. Poisson Structure and Lift Along the CCR-functor

Our constructions and results in Sect. 4 neglected the Poisson structure τ : L∧L → K

on the functor L : C → ChK that describes the assignment of the chain complexes of
linear observables of a linear homotopy AQFT. The aim of this section is to introduce
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a suitable Poisson structure τL : LL !(L) ∧ LL !(L) → K on our model LL !(L) =
Tot⊕(L̃) : BZ → ChK for the left derived functor given in (4.3) and (4.4) that is
compatible with the original Poisson structure in the following sense: Using pullbacks
along the zig-zag of weak equivalences in (4.22), we can induce two Poisson structures
on Q(L) : C → ChK, namely

q∗
L(τ ) :=τ ◦ (qL ∧ qL) : Q(L) ∧ Q(L) −→ K, (5.1a)

η∗
L(L∗τL) :=(L∗τL) ◦ (ηL ∧ ηL) : Q(L) ∧ Q(L) −→ K, (5.1b)

where τ denotes the original Poisson structure on L : C → ChK and L∗τL the Poisson
structure induced by τL on the pullback L∗

LL !(L) := LL !(L) ◦ L : C → ChK .
Our compatibility condition on τL demands the existence of a natural chain homotopy
ρ ∈ hom(Q(L) ∧ Q(L), K)1 such that

η∗
L(L∗τL) − q∗

L(τ ) = ∂ρ, (5.1c)

where ∂ denotes the differential on mapping complexes. (Here, we recall that if κ ∈
hom(V,W )n , representing a collection of maps κm : Vm → Wm+n for all m ∈ Z,
then ∂κ ∈ hom(V,W )n−1 is given by (∂κ)m = dW ◦ κm − (−1)n κm−1 ◦ dV .) Using
previous results on homotopical properties of the CCR-functor from [BS19b,BBS19],
it then follows that there exists a zig-zag of weak equivalences between CCR(L, τ ) and
CCR(L∗

LL !(L), L∗τL), which provides an explicit strictification construction of the
homotopy time-slice axiom of linear homotopy AQFTs and hence allows us to study
their relative Cauchy evolution.

In order to introduce a Poisson structure τL on LL !(L), we make use of the picto-
rial interpretation from (2.13). Let us also choose, for each quasi-isomorphism L( f ) :
L(N ) → L(N ′), a quasi-inverse chain map L( f )−1 : L(N ′) → L(N ), two chain
homotopies λ f ∈ hom(L(N ′),L(N ′))1 and γ f ∈ hom(L(N ),L(N ))1, and a chain
2-homotopy ξ f ∈ hom(L(N ),L(N ′))2, such that

L( f )L( f )−1 − id = ∂λ f , (5.2a)

L( f )−1 L( f ) − id = ∂γ f , (5.2b)

L( f ) γ f − λ f L( f ) = ∂ξ f . (5.2c)

For the case of f = idN being an identity morphism, we choose L(idN )−1 = idL(N )

the identity, together with λidN = 0, γidN = 0 and ξidN = 0.

Remark 5.1. The homotopy coherence data in (5.2) always exists by the following ar-
gument: The category ChK may be enriched to a strict 2-category whose 2-morphisms
are homotopy classes of chain homotopies, i.e. equivalence classes [θ ] of elements
θ ∈ hom(V,W )1 modulo elements of the form ∂� for all � ∈ hom(V,W )2. Because K

has characteristic 0, quasi-isomorphisms of chain complexes are precisely the equiva-
lences in this 2-category. Using the standard result in 2-category theory that each equiva-
lence in a 2-category can be improved to an adjoint equivalence, see e.g. [Lac10, Exercise
2.2], we obtain for each quasi-isomorphism L( f ) : L(N ) → L(N ′) the data in (5.2),
where L( f )−1 plays the role of the right adjoint, γ f the role of the adjunction unit and
−λ f the role of the adjunction counit. The last identity (5.2c) states one of the two
triangle identities for this adjunction, while the other one reads as

γ f L( f )−1 − L( f )−1λ f = ∂ξ̃ f , (5.3)
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for somechain 2-homotopy ξ̃ f ∈ hom(L(N ′),L(N ))2.Wedidnot include this additional
coherence condition (5.3) in the main text because it is not needed for our construction.
We already would like to emphasize at this point that for concrete examples, such as
the linear Yang-Mills model [BBS19], the homotopy coherence data in (5.2) may be
constructed from Green operators and a partition of unity. See Sect. 6 for the details. In
general, the 2-categorical argument automates the explicit but tedious linear algebra that
constructs quasi-inverses and homotopies, based on choices of linear projections onto
ker di within Xi and onto Hi (X) within ker di .

Now consider the diagram formed by applying L to the spiral in (2.13). Given any
two (n, N ), (n′, N ′) ∈ Z × C, we note that there exists a unique chain of zig-zags
of minimal length between them. Using the chosen quasi-inverses L( f )−1 to reverse
arrows as needed, we obtain zig-zagging chain maps

Z (n,N )

(n′,N ′) : L(N ′) −→ L(N ) (5.4)

through the shortest zig-zag from (n′, N ′) to (n, N ). For example, the zig-zagging chain
map from (n, M−) to (n, M) is given by

Z (n,M)
(n,M−) = L(i+)L( j+)

−1 L( j−) : L(M−) −→ L(M) (5.5a)

and the one from (n + 1, M−) to (n, Mh) is given by

Z (n,Mh)
(n+1,M−) = L( j+)L(i+)

−1 L(i−) : L(M−) −→ L(Mh). (5.5b)

By definition, the zig-zagging chain maps (5.4) are invariant under the Z-action, i.e.

Z (n+k,N )

(n′+k,N ′) = Z (n,N )

(n′,N ′), (5.6)

for all k ∈ Z and (n, N ), (n′, N ′) ∈ Z × C.
In Appendix C, we construct, for every (n, f ) ∈ Z ×Mor(C) and (n′, N ′) ∈ Z ×C,

from the chain homotopy λ f a zig-zagging homotopy (for left composition)

�
(n, f )
(n′,N ′) ∈ hom

(

L(N ′),L(t f )
)

1 (5.7a)

such that

L( f ) Z (n+L( f ),s f )
(n′,N ′) − Z (n,t f )

(n′,N ′) = ∂�
(n, f )
(n′,N ′). (5.7b)

Similarly, we construct, for every (n, N ) ∈ Z ×C and (n′, f ′) ∈ Z ×Mor(C), from the
chain homotopy γ f a zig-zagging homotopy (for right composition)

�
(n,N )

(n′, f ′) ∈ hom
(

L(s f ′),L(N )
)

1 (5.8a)

such that

Z (n,N )

(n′,t f ′) L( f ′) − Z (n,N )

(n′+L( f ′),s f ′) = ∂�
(n,N )

(n′, f ′). (5.8b)

Finally, using also the chain 2-homotopies ξ f , the construction in Appendix C defines,
for every (n, f ), (n′, f ′) ∈ Z × Mor(C), a zig-zagging 2-homotopy

�
(n, f )
(n′, f ′) ∈ hom

(

L(s f ′),L(t f )
)

2 (5.9a)
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such that

L( f ) �
(n+L( f ),s f )
(n′, f ′) − �

(n,t f )
(n′, f ′) + �

(n, f )
(n′+L( f ′),s f ′) − �

(n, f )
(n′,t f ′) L( f ′) = ∂�

(n, f )
(n′, f ′). (5.9b)

The role of this homotopy coherence data is to relate the shortest zig-zags in (2.13) to
longer zig-zags that are obtained by additional compositions with morphisms and their
quasi-inverses. Note that this is just part of a higher tower of homotopy coherence data
for relating arbitrary zig-zags to the shortest ones, which however will not be required
in our work.

With these preparations, we can now define a Poisson structure τL : LL !(L) ∧
LL !(L) → K on LL !(L) = Tot⊕(L̃). Recall that τL should be a chain map, therefore
obeying τL ◦ dTot

⊕(L̃∧L̃) = dK ◦ τL = 0. Using a direct sum decomposition into the
vertical degrees of L̃, such a Poisson structure is given by a family of n-chains

{

τL,n ∈ hom
(

(L̃ ∧ L̃)n,•, K
)

n

}

n∈Z (5.10a)

that are invariant under the Z-action on L̃ and (as dTot
⊕(L̃∧L̃) = δL̃∧L̃ + dL̃∧L̃) satisfy

the conditions

τL,n ◦ δL̃∧L̃ + τL,n+1 ◦ dL̃∧L̃ = 0, (5.10b)

for all n ∈ Z. Because L̃ ∈ bChK is concentrated in vertical degrees 0 and 1 (see (4.4))
and hence L̃ ∧ L̃ is concentrated in degrees 0, 1 and 2, it follows that

τL,n = 0 , for all n �∈ {0, 1, 2}. (5.11a)

We define the degree 0 component by

τL,0

(

(n, N , x) ⊗ (n′, N ′, x ′)
)

= 1
2

(

τN

(

x ⊗ Z (n,N )

(n′,N ′)x
′) + τN ′

(

Z (n′,N ′)
(n,N ) x ⊗ x ′))

,

(5.11b)

for all (n, N , x), (n′, N ′, x ′) ∈ L̃0,•, where τN and τN ′ denote the components of the
given Poisson structure τ : L ⊗ L → K. The degree 1 component is defined by

τL,1

(

(n, f, x)⊗(n′, N ′, x ′)
)

= 1
2

(

τt f

(

L( f )x ⊗ �
(n, f )
(n′,N ′)x

′) + (−1)|x ′| τN ′
(

�
(n′,N ′)
(n, f ) x ⊗ x ′))

,

(5.11c)

for all (n, f, x) ∈ L̃1,• and (n′, N ′, x ′) ∈ L̃0,•, and

τL,1

(

(n, N , x)⊗(n′, f ′, x ′)
)

= (−1)|x |
2

(

τN

(

x ⊗ �
(n,N )

(n′, f ′)x
′) + (−1)|x ′| τt f ′

(

�
(n′, f ′)
(n,N ) x ⊗ L( f ′)x ′))

,

(5.11d)

for all (n, N , x) ∈ L̃0,• and (n′, f ′, x ′) ∈ L̃1,•. Finally, the degree 2 component is
defined by

τL,2

(

(n, f, x) ⊗ (n′, f ′, x ′)
)

= (−1)|x |+1
2

(

τt f

(

L( f )x ⊗ �
(n, f )
(n′, f ′)x

′) − τt f ′
(

�
(n′, f ′)
(n, f ) x ⊗ L( f ′)x ′))

, (5.11e)

for all (n, f, x), (n′, f ′, x ′) ∈ L̃1,•.
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Proposition 5.2. The family {τL,n ∈ hom((L̃ ∧ L̃)n,•, K)n}n∈Z given by (5.11) defines
a Poisson structure on LL !(L) = Tot⊕(L̃) : BZ → ChK.

Proof. Invariance under the Z-action follows directly from (5.6) and the explicit formu-
las for the �, � and � given in (C.4), (C.5) and (C.6). The tower of conditions (5.10)
reduces in the present case to

τL,0 ◦ dL̃∧L̃ = 0, τL,0 ◦ δL̃∧L̃ + τL,1 ◦ dL̃∧L̃ = 0, τL,1 ◦ δL̃∧L̃ + τL,2 ◦ dL̃∧L̃ = 0.
(5.12)

The first condition is immediate because τL,0 given in (5.11) is clearly a chain map.
By slightly lengthy but straightforward calculations, the second condition follows from
(5.7) and (5.8), and the third condition follows from (5.9). (Note: Because the τL,n
are obtained by antisymmetrization with respect to the total degrees and the conditions
(5.12) are invariant under the symmetric braiding in bChK, it is sufficient to consider in
these calculations only the first of the two terms in (5.11).) �

We shall now construct the components ρN ∈ hom(Q(L)(N ) ∧ Q(L)(N ), K)1
of the natural chain homotopy ρ from (5.1), for all N ∈ C. Using that Q(L)(N ) =
Tot⊕(L
(N )) is the

⊕
-totalization of the bicomplex (4.7), we can use again a direct

sum decomposition into the vertical degrees of L
(N ) to define ρN by a family of
n + 1-chains

{

ρN ,n ∈ hom
(

(L
(N ) ∧ L
(N ))n,•, K
)

n+1

}

n∈Z (5.13a)

that satisfy

τL,n ◦ (ηL ∧ ηL) − τN ,n ◦ (qL ∧ qL)

= ρN ,n−1 ◦ δL

(N )∧L
(N ) + ρN ,n ◦ dL


(N )∧L
(N ), (5.13b)

where τN ,n denotes the decomposition of the original Poisson structure τN : L(N ) ∧
L(N ) → K into vertical degrees, i.e. τN ,0 = τN and τN ,n = 0 for all n �= 0. Here, we
have used the formula ∂ρN = dK ◦ρN +ρN ◦dQ(L)(N ) = ρN ◦dTot⊕(L
(N )). We define

ρN ,n = 0, for all n �∈ {0, 1}. (5.14a)

The degree 0 component is defined by

ρN ,0

(

(g, x) ⊗ (g′, x ′)
)

= 1
2

(

(−1)|x | τN
(

L(g)x ⊗ �
(0,g)
(L(g′),sg′)x

′) + τN

(

�
(0,g′)
(L(g),sg)x ⊗ L(g′)x ′))

, (5.14b)

for all (g, x), (g′, x ′) ∈ L
(N )0,•, and the degree 1 component is defined by

ρN ,1

(

(g, f, x) ⊗ (g′, x ′)
)

= − (−1)|x ′ |
2 τN

(

�
(0,g′)
(0, f ) x ⊗ L(g′)x ′), (5.14c)

for all (g, f, x) ∈ L
(N )1,• and (g′, x ′) ∈ L
(N )0,•, and

ρN ,1

(

(g, x) ⊗ (g′, f ′, x ′)
)

= − 1
2 τN

(

L(g)x ⊗ �
(0,g)
(0, f ′)x

′), (5.14d)

for all (g, x) ∈ L
(N )0,• and (g′, f ′, x ′) ∈ L
(N )1,•. (Recall that, due to the fact
that the nerve of C is degenerate in degrees ≥ 2, we necessarily have that (g, f, x) =
(idN , f, x) and (g′, f ′, x ′) = (idN , f ′, x ′) in these expressions.)
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Proposition 5.3. The components (5.14)defineanatural chainhomotopyρ ∈ hom(Q(L)∧
Q(L), K)1 satisfying (5.1).

Proof. This is a straightforward check using the properties (5.7), (5.8) and (5.9) of the
zig-zagging homotopies and naturality of the original Poisson structure τ : L∧L → K.

Let us recall from [BBS19, Section 5] the functor

CCR : PoChK −→ dgAlgK (5.15)

that assigns to a Poisson chain complex (V, τ ) ∈ PoChK its associated differential
graded CCR-algebra CCR(V, τ ) ∈ dgAlgK. Composing this functor with our given
functor (L, τ ) : C → PoChK that models the Poisson chain complexes of linear ob-
servables of a linear homotopy AQFT, we obtain a homotopy AQFT

A := CCR(L, τ ) : C −→ dgAlgK (5.16)

on the category C given in (2.7). Furthermore, composing CCR with the pullback of
the functor (LL !(L), τL) : BZ → PoChK along the localization functor L : C → BZ

defines another homotopy AQFT

Ast := CCR
(

L∗
LL !(L), L∗τL

) = L∗(CCR
(

LL !(L), τL
)) : C −→ dgAlgK (5.17)

onCwhich, due to the fact that it is obtained as a pullback along the localization functor,
satisfies the strict time-slice axiom. The following rectification theorem is themain result
of this paper.

Theorem 5.4. Let (L, τ ) : C → PoChK be any functor on the category C in (2.7) that
satisfies the homotopy time-slice axiom, i.e. L ∈ Fun(C,ChK)hoAll. Then its associated
homotopy AQFT (5.16), which satisfies the homotopy time-slice axiom, is equivalent via
a zig-zag of weak equivalences in the model category Fun(C,dgAlgK) to the homotopy
AQFT (5.17) that satisfies the strict time-slice axiom.

Proof. From the zig-zagofweakequivalences in (4.22) and [BBS19,Proposition5.3.(a)],
we obtain the following two weak equivalences

CCR(qL) : CCR
(

Q(L), q∗
L(τ )

) ∼ �� A , CCR(ηL) : CCR
(

Q(L), η∗
L(L∗τL)

) ∼ �� Ast

(5.18)

in Fun(C,dgAlgK). Using that q∗
L(τ ) and η∗

L(L∗τL) = q∗
L(τ ) + ∂ρ are homotopic

by Proposition 5.3, we obtain from [BBS19, Proposition 5.3. (b)] a zig-zag of weak
equivalences

CCR
(

Q(L), q∗
L(τ )

)

A(Q(L),q∗
L(τ ),ρ)

∼�� ∼ �� CCR
(

Q(L), η∗
L(L∗τL)

)

(5.19)

in Fun(C,dgAlgK), where the interpolating object A(Q(L),q∗
L(τ ),ρ) ∈ Fun(C,dgAlgK)

was constructed explicitly in [BBS19]. Combining (5.18) and (5.19) completes the proof.
�
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We conclude by emphasizing that the relative Cauchy evolution for the strictified
homotopyAQFT (5.17) is given by applying theCCR-functor on theRCEautomorphism
for linear observables from (4.23), i.e.

RCE(M,h) := CCR(rce(M,h)) : CCR
(

LL !(L), τL
) −→ CCR

(

LL !(L), τL
)

. (5.20)

In particular, the relative Cauchy evolution of the strictified model is given by a strict
automorphism of dg-algebras, in contrast to an A∞-quasi-automorphism.

Remark 5.5. Throughout the bulk of this paper we have neglected ∗-involutions on the
homotopy AQFTs in order to streamline our presentation. However, we would like to
emphasize that our main result in Theorem 5.4 also holds true for homotopy AQFTswith
∗-involutions. The proof is obtained by choosing up to Proposition 5.3 the ground field
K = R and recalling that the homotopical properties of the CCR-functor entering the
proof of Theorem 5.4 were shown in [BBS19, Proposition 5.3] also for the complexified
CCR-functor with ∗-involutions over C.

6. Example: Linear Quantum Yang-Mills Theory

The aim of this section is to illustrate our construction of the relative Cauchy evolution
for linear homotopy AQFTs through a simple example, the linear Yang-Mills model
presented in [BBS19]. This example is based on the solution complexes

Sol(M) :=
( (−2)

�0(M)
(−1)

�1(M)
δM��

(0)

�1(M)
δMdM��

(1)

�0(M)
dM��

)

∈ ChR, (6.1)

for each spacetimeM ∈ Loc,where the roundbrackets indicate homological degrees, dM
is the de Rham differential and δM the codifferential. To be explicit, we work in arbitrary
spacetime dimension and our convention for the metric signature is (+ − − · · · −). The
Hodge operator ∗M is defined so that

ω ∧ ∗Mη = 1

p!ωa1···apηa1···apvolM , (6.2)

for p-forms ω, η ∈ �p(M), where volM = ∗M (1) is the metric-induced volume form
and we have used abstract index notation when regarding p-forms as anti-symmetric
tensors. The codifferential δM is the adjoint of dM with respect to the pairing

〈ω, η〉M =
∫

M
ω ∧ ∗Mη, (6.3)

which is defined when the supports of ω and η have compact intersection. These con-
ventions coincide with those of [FL16] and were implicit in [BBS19].

Elements A ∈ Sol(M)0 = �1(M) in degree 0 are interpreted as gauge fields,
elements c ∈ Sol(M)1 = �0(M) in degree 1 as ghost fields, and elements A‡ ∈
Sol(M)−1 = �1(M) and c‡ ∈ Sol(M)−2 = �0(M) in negative degrees as the an-
tifields of the theory. Note that the zeroth homology of the chain complex (6.1) is
the vector space of gauge equivalence classes of solutions to Maxwell’s equations, i.e.
H0(Sol(M)) = {A ∈ �1(M) : δMdM A = 0}/dM�0(M). The homologies ofSol(M)

in non-zero degrees carry refined information about the gauge symmetries and dynamics
of linear Yang-Mills theory, see [BBS19, Example 3.9] for a discussion.
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The chain complex of linear observables3 on M ∈ Loc for this theory is given by the
smooth dual of the solution complex (6.1), i.e.

L(M) :=
( (−1)

�0
c(M)

(0)

�1
c(M)

−δM��

(1)

�1
c(M)

δMdM��

(2)

�0
c(M)

−dM��

)

∈ ChR, (6.4)

where the subscript c denotes differential forms of compact support. Elements ϕ ∈
L(M)0 = �1

c(M) in degree 0 are interpreted as linear gauge field observables, elements
χ ∈ L(M)−1 = �0

c(M) in degree−1 as linear ghost field observables, and elements α ∈
L(M)1 = �1

c(M) and β ∈ L(M)2 = �0
c(M) in positive degrees as linear observables

for the antifields. The evaluation pairing

〈−,−〉M : L(M) ⊗ Sol(M) −→ R (6.5a)

between linear observables and the fields in (6.1) is the chain map defined by

〈ϕ, A〉M =
∫

M
ϕ ∧ ∗M A, 〈χ, c〉M =

∫

M
χ c volM , (6.5b)

〈α, A‡〉M =
∫

M
α ∧ ∗M A‡, 〈β, c‡〉M =

∫

M
β c‡ volM . (6.5c)

The Poisson structure τM : L(M)∧L(M) → R on (6.4) is constructed by chain com-
plex analogs of retarded/advancedGreenoperators,whichwere called retarded/advanced
trivializations in [BBS19] and were shown to be unique up to contractible choices. These
structures provide chain homotopies trivializing the inclusion chain map

L(M)

jM




Sol(M)[1]
:=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

�0
c(M)

−⊆




�1
c(M)

−⊆




−δM�� �1
c(M)

⊆




δMdM�� �0
c(M)

⊆




−dM��

�0(M) �1(M)−δM

�� �1(M)−δMdM
�� �0(M)−dM

��

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(6.6)

from the chain complex of linear observables to the shifted solution complex. (In (6.6)
we have chosen sign conventions for the vertical inclusion maps that are opposite to the
ones in [BBS19]. Our present choice is convenient to fix aminor sign error in Eqn. (4.26)
of the latter paper.) A concrete model for such retarded/advanced Green homotopies

G±
M ∈ hom

(

L(M),Sol(M)[1])1 (6.7a)

satisfying

jM = ∂MG±
M = dSol(M)[1] G±

M + G±
M dL(M) (6.7b)

can be given in terms of the retarded/advanced Green operators G±
M of the d’Alembert

operator �M := δMdM + dMδM on differential forms,4 reading explicitly as

G±
M (χ) := G±

M (dMχ), G±
M (ϕ) := G±

M (ϕ) , G±
M (α) := −G±

M (δMα) ,

G±
M (β) := 0, (6.7c)

3 The terminology is chosen for simplicity and consistency with [BBS19]; in other contexts some elements
would be described as smearings of unobservable fields.

4 This convention for �M follows [BBS19] but is opposite in sign to that adopted in [FL16]; accordingly,
the Green operators in these two references differ by an overall sign.
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for all χ ∈ L(M)−1, ϕ ∈ L(M)0, α ∈ L(M)1 and β ∈ L(M)2. Taking the difference

GM := G+
M − G−

M : L(M) −→ Sol(M) (6.8)

between the retarded and advanced Green homotopy defines a chainmap to the unshifted
solution complex, which plays a similar role to the causal propagator in ordinary AQFT.
Explicitly, this chain map reads as

L(M)

GM





Sol(M)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0

0




�0
c(M)

0��

GMdM




�1
c(M)

GM





−δM�� �1
c(M)

−GM δM





δMdM�� �0
c(M)

0




−dM��

�0(M) �1(M)
δM

�� �1(M)
δMdM
�� �0(M)

dM
�� 0

0
��

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

(6.9)

where GM := G+
M −G−

M denotes the causal propagator for the d’Alembert operator on
differential forms. The Poisson structure is then defined by the chain map

τM := 〈−,GM (−)〉M : L(M) ∧ L(M) −→ R, (6.10a)

whose non-zero components explicitly read as

τM (ϕ1 ⊗ ϕ2) =
∫

M
ϕ1 ∧ ∗MGM (ϕ2) = −τM (ϕ2 ⊗ ϕ1), (6.10b)

τM (α ⊗ χ) =
∫

M
α ∧ ∗MGM (dMχ) = τM (χ ⊗ α), (6.10c)

for all χ ∈ L(M)−1, ϕ1, ϕ2 ∈ L(M)0 and α ∈ L(M)1. (As already mentioned above,
there is aminor sign error in the corresponding equation (4.26) in [BBS19]. Our opposite
sign convention for the vertical maps in (6.6) implies that our Poisson structure (6.10)
has a positive sign for linear observables in degree 0, in contrast to the negative sign in
the corrected version of Eqn. (4.26a) in [BBS19].)

Naturality of (6.9) and (6.5) implies that the assignment M �→ (L(M), τM ) can be
promoted to a functor (L, τ ) : Loc → PoChR. To a Loc-morphism f : M → N , this
functor assigns the chain map L( f ) := f∗ : (L(M), τM ) → (L(N ), τN ) of Poisson
chain complexes given by pushforward (i.e. extension by zero) of compactly supported
differential forms. By [BBS19, Theorem 6.19], the composition of this functor with the
CCR-functor CCR : PoChR → dg∗AlgC (in the context of chain complexes and with
∗-involutions) defines a homotopy AQFT A := CCR(L, τ ) ∈ ∗AQFT∞(Loc)hoW with
∗-involution that satisfies the homotopy time-slice axiom. With an abuse of notation, we
denote by the same symbolA : C → dg∗AlgC the restriction of this homotopy AQFT to
the categoryC in (2.7) that is relevant for the discussion of the relative Cauchy evolution
induced by the pair (M, h) consisting of a spacetime M and a compactly supported
metric perturbation h.

Our main Theorem 5.4, see also Remark 5.5, provides us with a concept of relative
Cauchy evolution for this homotopy AQFT. Let us recall that our construction is slightly
abstract as it involves a replacement of the theory A by a weakly equivalent theory
Ast : C → dg∗AlgC (see (5.17)) that satisfies the strict time-slice axiom and hence
admits anRCEautomorphism in the ordinary sense (5.20). In order to physically interpret
the resulting concept of relative Cauchy evolution, and to compute its associated stress-
energy tensor, we make use of a concept similar to the quantum fields in the sense
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of [BFV03,FV15], where they are understood as natural transformations between the
functors assigning test function spaces and field algebras to spacetimes. We shall use the
chain complex L(M) of linear observables on the object M in (2.7) for labeling these
quantum fields and consider the chain map

ι : L(M) −→ LL !(L), ω �−→ (0, M, ω) (6.11)

to the chain complex of linear observables for the strictified theory given in (4.3) and
(4.4). In words, we embed the linear observables on M at the level n = 0 in the spiral
(2.13) controlling our strictification construction. (Due to Z-invariance of LL !(L) and
its Poisson structure τL, it does not matter at which level n ∈ Z we embed L(M).) Using
further the chain map LL !(L) → CCR(LL !(L), τL) that assigns to linear observables
their corresponding generators in theCCR-algebra,we can composewith (6.11) to obtain
a chain map from L(M) to CCR(LL !(L), τL) that plays a similar role as the quantum
fields in [BFV03,FV15]. We can now introduce a concept of relative Cauchy evolution
for this particular quantum field, which can be interpreted as a combination of the gauge
field, ghost and antifields into a single multicomponent field.

Proposition 6.1. The diagram

L(M)

Z (0,M)
(1,M)





ι �� LL !(L)

rce
(M,h)





��
��

θ

���
���

���

���
���

���
CCR(LL !(L), τL)

RCE
(M,h)





L(M)
ι

�� LL !(L) �� CCR(LL !(L), τL)

(6.12)

in ChR is homotopy commutative, where

Z (0,M)
(1,M) = L(i−)L( j−)−1 L( j+)L(i+)

−1 : L(M) −→ L(M) (6.13)

denotes the zig-zagging chain map from (5.4) and the chain homotopy θ ∈ hom(L(M),

LL !(L))1 is constructed in the proof.

Proof. The right square commutes (strictly) by the definition of the RCE automorphism
onCCR-algebras, see (5.20).Homotopy commutativity of the left squaremeans that there
exists θ ∈ hom(L(M), LL !(L))1 such that rce(M,h) ι − ι Z (0,M)

(1,M) = ∂θ = (δL̃ + dL̃)θ +

θ dL(M), where we recall that LL !(L) = Tot⊕(L̃) is obtained as the
⊕

-totalization of
a bicomplex (4.4) whose horizontal and vertical differentials are denoted here by dL̃

and δL̃. Evaluating on any x ∈ L(M) and recalling the RCE automorphism on linear
observables (4.23), the relevant homotopy relation is given by

(

1, M, x
) − (

0, M, Z (0,M)
(1,M)x

) = (δL̃ + dL̃)θ(x) + θ(dL(M)x). (6.14)

We construct the chain homotopy θ by transporting the element (1, M, x) ∈ LL !(L)

step by step from right to left along the relevant part

(0, M) (1, M−)
i−

��
j−

�� (1, Mh) (1, M+)
j+��

i+ �� (1, M) (6.15)

of the zig-zags in (2.13).
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To describe the chain homotopies for the individual steps, let f : (n + L( f ), s f ) →
(n, t f ) be any of the morphisms in (6.15). If f points from right to left in (6.15), we
define the homotopy θ←−

f
∈ hom(L(s f ), LL !(L))1 by

θ←−
f
(x) := (−1)|x |

(

n, f, x
)

, (6.16a)

which satisfies

∂θ←−
f
(x) = (

n + L( f ), s f, x
) − (

n, t f,L( f )x
)

, (6.16b)

for all x ∈ L(s f ). (Observe that this homotopy moves the element (n + L( f ), s f, x)
from right to left in (6.15).) If f points from left to right in (6.15), we define the homotopy
θ−→
f

∈ hom(L(t f ), LL !(L))1 by

θ−→
f
(x) := −(−1)|x |

(

n, f,L( f )−1x
) − (

n, t f, λ f x
)

, (6.17a)

where L( f )−1 is a quasi-inverse of L( f ) and λ f its associated homotopy coherence
data from (5.2), which satisfies

∂θ−→
f
(x) = (

n, t f, x
) − (

n + L( f ), s f,L( f )−1x
)

, (6.17b)

for all x ∈ L(t f ). (Observe that this homotopymoves the element (n, t f, x) from right to
left in (6.15).) Composing these basic homotopies defines the required chain homotopy
in (6.14). �
Remark 6.2. Because ι : L(M) → LL !(L) is a quasi-isomorphism, our model given in
Proposition 6.1 for the relativeCauchy evolution for this linear quantumfield is unique up
to homotopy. Note further that this model agrees with the “naive approach” consisting
of quasi-inverting the quasi-isomorphisms associated with the Cauchy morphisms in
(2.7) since the relevant zig-zagging chain map (6.13) is of the same form as the usual
relative Cauchy evolution formula in (2.4). It is important to stress that this “naive
approach” works only at the level of linear quantum fields because the chain map (6.13)
does in general not preserve the Poisson structure τM : L(M) ∧ L(M) → R and, as
a consequence, it does not lift to the CCR-algebra CCR(L(M), τM ). Hence, the role
of our rectification Theorem 5.4 is to establish existence of a well-behaved concept of
relative Cauchy evolution for linear homotopy AQFTs, while the role of Proposition 6.1
is to provide explicit computational tools to study the relative Cauchy evolution at the
level of linear quantum fields.

In order to obtain an explicit formula for the relative Cauchy evolution for linear
quantum fields determined by Proposition 6.1, we have to construct explicitly the nec-
essary quasi-inverses in (6.13) and their corresponding homotopy coherence data (5.2).
Without much extra effort, we will perform this construction for a general Cauchy mor-
phism f : N → N ′ in Loc. Let us choose any two Cauchy surfaces �± ⊆ N in the
source spacetime N such that �+ lies in the future of �−, i.e. �+ ⊆ I +N (�−). We de-
note by �′± := f (�±) ⊆ N ′ their images under f , which are Cauchy surfaces in N ′
because f is by hypothesis a Cauchy morphism. We then pick any partition of unity ρ′±
subordinate to the open cover {I +N ′(�′−), I−

N ′(�′
+)} of N ′ and denote by ρ± := f ∗(ρ′±)

its pullback along f , which defines a partition of unity subordinate to the open cover
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{I +N (�−), I−
N (�+)} of N . From this data and the retarded/advanced Green homotopies

in (6.7), we define the following two chain homotopies

λ̃ f := −ρ′
+ G−

N ′ − ρ′− G+
N ′ ∈ hom

(

L(N ′),Sol(N ′)[1])1, (6.18a)

γ̃ f := −ρ+ G−
N − ρ− G+

N ∈ hom
(

L(N ),Sol(N )[1])1. (6.18b)

Lemma 6.3. The chain homotopy λ̃ f ∈ hom(L(N ′),Sol(N ′)[1])1 factors uniquely
through the chain map jN ′ : L(N ′) → Sol(N ′)[1] given in (6.6), i.e. there exists a
unique chain homotopy λ f ∈ hom(L(N ′),L(N ′))1 such that

λ̃ f = jN ′ λ f . (6.19)

In complete analogy, the chainhomotopy γ̃ f ∈ hom(L(N ),Sol(N )[1])1 factors uniquely
through jN : L(N ) → Sol(N )[1], defining a unique chain homotopy γ f ∈ hom(L(N ),

L(N ))1 such that

γ̃ f = jN γ f . (6.20)

Proof. The two proofs are identical, hence we shall write out only the one for γ̃ f . First,
let us note that uniqueness of γ f follows from the fact that the chain map jN in (6.6) is
degree-wise injective. Concerning existence, we have to show that the image

γ̃ f (ω) = −ρ+ G−
N (ω) − ρ− G+

N (ω) ∈ Sol(N )[1] (6.21)

of every elementω ∈ L(N ) is a compactly supported differential form. Recalling (6.7c),
the support of G±

N (ω) is strictly past/future compact, i.e. supp(G±
N (ω)) ⊆ J±

N (K ) for
a compact subset K ⊆ N , because G±

N is a composition of a retarded/advanced Green
operator and a differential operator. Furthermore, the support of ρ± is by construction
past/future compact. It then follows from [Bär15, Lemma 1.9] that both terms in (6.21)
are compactly supported differential forms, hence so is γ̃ f (ω).

Remark 6.4. For later reference, we record explicit expressions for the two chain homo-
topies constructed in Lemma 6.3. The chain homotopy λ f ∈ hom(L(N ′),L(N ′))1 is
given by

λ f = −ρ′
+ G

−
N ′ QN ′ − ρ′− G+

N ′ QN ′, (6.22a)

where G±
N ′ denotes the retarded/advanced Green operator for the d’Alembert operator

on differential forms and

QN ′(χ ′) = −dN ′χ ′, QN ′(ϕ′) = ϕ′, QN ′(α′) = −δN ′α′, QN ′(β ′) = 0, (6.22b)

for all χ ′ ∈ L(N ′)−1, ϕ′ ∈ L(N ′)0, α′ ∈ L(N ′)1 and β ′ ∈ L(N ′)2. The chain homotopy
γ f ∈ hom(L(N ),L(N ))1 is given by

γ f = −ρ+ G
−
N QN − ρ− G+

N QN , (6.23)

with QN defined analogously to QN ′ in (6.22b).
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Consider now the chain map jN ′ + ∂N ′ λ̃ f : L(N ′) → Sol(N ′)[1]. It is easy to see
that the image jN ′(ω) + ∂N ′ λ̃ f (ω) ∈ Sol(N ′)[1] of every element ω ∈ L(N ′) is a
differential form supported in the closed time-slab J−

N ′(�′
+) ∩ J+N ′(�′−) ⊆ f (N ) ⊆ N ′

that is contained in the image of f . Indeed, restricting this differential form to the open
subset U+ := I +N ′(�′

+) ⊆ N ′, we obtain
(

jN ′(ω) + ∂N ′ λ̃ f (ω)
)∣
∣
U+

= jN ′(ω)
∣
∣
U+

− ∂N ′G−
N ′(ω)

∣
∣
U+

= 0, (6.24)

where in the first equality we have used that ρ′
+|U+ = 1 and ρ′−|U+ = 0, and in the

second equality we have used (6.7b). A similar argument shows that the restriction to
U− := I−

N ′(�′−) ⊆ N ′ is zero too. In terms of the untilded chain homotopies from
Lemma 6.3, this determines a chain map

id + ∂N ′λ f : L(N ′) −→ L( f (N )) (6.25)

that takes values in the sub-chain complex L( f (N )) ⊆ L(N ′) of linear observables on
the image of f : N → N ′. Post-composing with the pullback f ∗ : L( f (N )) → L(N )

of differential forms along the isomorphism f : N → f (N ), we obtain a chain map

L( f )−1 := f ∗ (

id + ∂N ′λ f
) : L(N ′) −→ L(N ). (6.26)

We will now prove that (6.26) is indeed a quasi-inverse of L( f ) : L(N ) → L(N ′) and
that the chain homotopies from Lemma 6.3 provide the necessary homotopy coherence
data in (5.2) with trivial 2-homotopy ξ f = 0.

Proposition 6.5. For every Cauchy morphism f : N → N ′ in Loc, the following three
identities hold true

L( f )L( f )−1 − id = ∂N ′λ f , (6.27a)

L( f )−1 L( f ) − id = ∂Nγ f , (6.27b)

L( f ) γ f − λ f L( f ) = 0, (6.27c)

where the chain map L( f )−1 is defined in (6.26) and the chain homotopies λ f and γ f
are defined in Lemma 6.3.

Proof. The first identity is a simple check

L( f )L( f )−1 − id = f∗ f ∗ (

id + ∂N ′λ f
) − id = ∂N ′λ f , (6.28)

where in the second step we have used that f∗ f ∗ = id on L( f (N )). Because the chain
map jN is degree-wise injective, the second identity is equivalent to jN L( f )−1 L( f )−
jN = ∂N γ̃ f . Using (6.20) and the fact that jN is a chain map, one checks the latter
identity as follows

jN L( f )−1 L( f ) − jN = jN f ∗ (

id + ∂N ′λ f
)

f∗ − jN = ∂N
(

f ∗ λ̃ f f∗
) = ∂N γ̃ f ,

(6.29)

where in the second step we have also used that f ∗ f∗ = id on L(N ) and naturality of
jN and ∂N . The last step follows from (6.18) and naturality of the Green homotopies.
Explicitly,

f ∗ λ̃ f f∗ = − f ∗ (

ρ′
+ G−

N ′ + ρ′− G+
N ′

)

f∗ = −ρ+ f ∗ G−
N ′ f∗ − ρ− f ∗ G+

N ′ f∗ = γ̃ f ,

(6.30)
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where we recall that, by definition, f ∗(ρ′±) = ρ±.
To prove the third identity, we use the explicit expressions in (6.22) and (6.23) for

the untilded chain homotopies. Because both terms in L( f )γ f − λ f L( f ) take values
in differential forms supported in the image f (N ) ⊆ N ′ of f , we may prove the third
identity by post-composing with f ∗. The relevant calculation is then given by

f ∗ λ f L( f ) = − f ∗ ρ′
+ G

−
N ′ QN ′ f∗ − f ∗ ρ′− G+

N ′ QN ′ f∗
= −ρ+ G

−
N QN − ρ− G+

N QN = γ f = f ∗ L( f ) γ f . (6.31)

In the second step we have used f ∗(ρ′±) = ρ± and naturality of QN and G±
N . The last

step follows from the fact that f ∗ f∗ = id on L(N ). �
With these preparations, we can now write down an explicit formula for the zig-

zagging chain map (6.13) that models the relative Cauchy evolution at the level of linear
quantum fields. Because each of the morphisms f in the category C in (2.7) is a subset
inclusion, we can suppress all occurrences of pullbacks f ∗ and pushforwards f∗ of
differential forms as these are simply restrictions and extensions by zero. The explicit
formula is then given by

Z (0,M)
(1,M) = (

id + ∂Mhλ j−
) (

id + ∂Mλi+
)

= id +
(

∂Mhλ j−
) (

id + ∂Mλi+
)

+ ∂Mλi+

= id +
(

(∂Mh − ∂M )λ j−
) (

id + ∂Mλi+
)

+ ∂M

(

λi+ + λ j−
(

id + ∂Mλi+
))

. (6.32)

Because homotopy commutativity of the diagram in Proposition 6.1 determines the chain
map Z (0,M)

(1,M) : L(M) → L(M) only up to homotopy, we can drop the last term in (6.32)
and consider the chain map

rcelin(M,h) := id +
(

(∂Mh − ∂M )λ j−
) (

id + ∂Mλi+
) : L(M) −→ L(M) (6.33)

as an equivalent model for the relative Cauchy evolution for the linear quantum field.

Proposition 6.6. The chain map (6.33) can be simplified as

rcelin(M,h) = id +
(

dL(Mh) − dL(M)
)

GMh QMh

(

id + ∂Mλi+
)

, (6.34)

where GMh is the causal propagator for the d’Alembert operator on differential forms
and QMh is the differential operator defined in (6.22b) on the perturbed spacetime
Mh ∈ Loc.

Proof. This is a straightforward argument considering the supports of the differential
forms involved. By (6.25), we have that id + ∂Mλi+ : L(M) → L(M+) takes values in
the sub-chain complex of linear observables supported in M+ ⊆ M . We then compute
using (6.22)

(∂Mh − ∂M )λ j−

∣
∣
∣
L(M+)

= (

dL(Mh) − dL(M)
)

λ j−

∣
∣
∣
L(M+)

+ λ j−
(

dL(Mh) − dL(M)
)
∣
∣
∣
L(M+)

= (

dL(Mh) − dL(M)
) ( − ρ+ G

−
Mh

QMh − ρ− G+
Mh

QMh

)
∣
∣
∣
L(M+)

= −(

dL(Mh) − dL(M)
)

G−
Mh

QMh

∣
∣
∣
L(M+)

= (

dL(Mh) − dL(M)
) (

G+
Mh

− G−
Mh

)

QMh

∣
∣
∣
L(M+)

= (

dL(Mh) − dL(M)
)

GMh QMh

∣
∣
∣
L(M+)

, (6.35)
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where ρ± denotes the partition of unity arising from the choice of Cauchy surfaces in
M−. In the first step we have written out the mapping complex differentials ∂Mh and
∂M . In the second step we have used that

(

dL(Mh) − dL(M)
)∣
∣
L(M+)

= 0 because the

differentials dL(Mh) and dL(M) given in (6.4) agree on the complement of the support of
the metric perturbation. The third step uses that ρ+ = 1 and ρ− = 0 on supp(h) and that
the differentials agree elsewhere. In step four we have used that supp(h)∩ J+Mh

(M+) = ∅
and the last step follows from the definition of the causal propagator. �
Remark 6.7. Using (6.4) and (6.22b), we can spell out explicitly the components of the
chain map (6.34). For a linear ghost field observable χ ∈ L(M)−1 = �0

c(M), we obtain

rcelin(M,h)(χ) = χ +
(

δMh − δM
)

GMh dMh

(

id + ∂Mλi+
)

(χ)

= χ +
(

�Mh − �M
)

GMh

(

id + ∂Mλi+
)

(χ), (6.36a)

where �M(h)
denotes the d’Alembert operator on 0-forms on the spacetime M(h). In the

second step we have used that GMh dMh = dMh GMh and dMh = dM for the de Rham
differential. For a linear gauge field observable ϕ ∈ L(M)0 = �1

c(M), we obtain

rcelin(M,h)(ϕ) = ϕ +
(

δMhdMh − δMdM
)

GMh

(

id + ∂Mλi+
)

(ϕ). (6.36b)

Finally, for linear antifield observables α ∈ L(M)1 = �1
c(M) and β ∈ L(M)2 =

�0
c(M), we obtain

rcelin(M,h)(α) = α +
(

dMh − dM
)

GMh δMh

(

id + ∂Mλi+
)

(α) = α, (6.36c)

because dMh = dM , and

rcelin(M,h)(β) = β, (6.36d)

because QMh (β) = 0 by (6.22b). Note that our model for the relative Cauchy evolution
is trivial for all linear antifield observables α ∈ L(M)1 and β ∈ L(M)2, and it is also
trivial in homology for all linear ghost field observables χ ∈ L(M)−1, i.e.

[

rcelin(M,h)(χ)
] = [χ ] − [

�M GMh

(

id + ∂Mλi+
)

(χ)
] = [χ ], (6.37)

where in the first step we have used that �MhGMh = 0. The second step follows from

�M GMh = ∗MdM ∗M dM GMh = ∗MdM (∗M − ∗Mh )dM GMh

= δM (id − ∗−1
M ∗Mh )dM GMh , (6.38)

which implies that �M GMh

(

id + ∂Mλi+
)

(χ) is exact in the chain complex (6.4). Fur-
thermore, when passing to homology and considering linear gauge field observables of
the form ϕ = δMω ∈ L(M)0 with ω ∈ �2

c(M+), our expression in (6.36b) agrees with
the relative Cauchy evolution for the field strength tensor of Maxwell’s theory computed
in [FL16, Section 6.3]. Here, one must take into account the difference in convention
regarding the signs of �M and GM .



650 S. Bruinsma, C. J. Fewster, A. Schenkel

We conclude this section by computing the stress-energy tensor of the linear Yang-
Millsmodel. To simplify the resulting expressions, we pre-compose the chainmap (6.34)
with the quasi-isomorphism L(i+) : L(M+) → L(M) and observe that the resulting
chain map is homotopic to

rcelin,+(M,h) := id +
(

dL(Mh) − dL(M)
)

GMh QMh : L(M+) −→ L(M). (6.39)

In terms of the components displayed in Remark 6.7, this means that we restrict to
differential forms with compact support in M+ and drop the chain map id + ∂Mλi+ . We
then compute the first derivative

t(M,h) := d

dε
rcelin,+(M,εh)

∣
∣
ε=0 : L(M+) −→ L(M), (6.40a)

which is a chain map whose components read as

t(M,h)(χ) = ∇Ma
(

hab (dMGMχ)b
) − 1

2

(∇Mbh
a
a

)

(dMGMχ)b,

t(M,h)(ϕ)c = ∇Ma
(

hab (dMGMϕ)bc
) − 1

2

(∇Mbh
a
a

)

(dMGMϕ)bc

+
(∇Mahbc

)

(dMGMϕ)ab,

t(M,h)(α)c = 0,

t(M,h)(β) = 0, (6.40b)

for all χ ∈ L(M+)−1, ϕ ∈ L(M+)0, α ∈ L(M+)1 and β ∈ L(M+)2. Here we have
used as in [FL16] an index notation for tensor fields and differential forms on M . The
Levi-Civita connection ∇M on the spacetime M ∈ Loc enters these expressions through
the following identity

(δMεhω − δMω)a1···ak = ε

(

∇Ma
(

hab ωba1···ak
) − 1

2

(∇Mbh
a
a

)

ωb
a1···ak

+
k

∑

j=1

(−1) j−1 (∇Mahba j

)

ωab
a1···â j ···ak

)

+O(ε2), (6.41)

for all k + 1-forms ω = ωa0a1···ak dxa0 ∧ dxa1 ∧ · · · ∧ dxak ∈ �k+1(M).
In contrast to the situation in ordinary AQFT, the chain map t(M,h) : L(M+) →

L(M) does not extend to a derivation A(M+) = CCR(L(M+), τM+) → A(M) =
CCR(L(M), τM ) relative to A(i+) : A(M+) → A(M) at the level of the observable
dg-algebras. This is a remnant of the fact that rcelin,+(M,h) does not preserve the Poisson
structures, which at the infinitesimal level (i.e. to first order in ε) amounts to

τM ◦ (t(M,h) ∧ L(i+)) + τM ◦ (L(i+) ∧ t(M,h)) �= 0 (6.42)

as a chain map L(M+) ∧ L(M+) → R. This issue can be rectified by considering the
homotopic model for t(M,h) given by the chain map

t̃(M,h) := t(M,h) + ∂ψ : L(M+) −→ L(M) (6.43a)

and the chain homotopy ψ ∈ hom(L(M+),L(M))1 defined by the components

ψ(χ)b = 1
2h

a
a (dMGMχ)b − hab (dMGMχ)a, (6.43b)

ψ(ϕ)b = 0, ψ(α) = 0, ψ(β) = 0. (6.43c)
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By a straightforward calculation using integration by parts, one proves that

τM ◦ (̃t(M,h) ∧ L(i+)) + τM ◦ (L(i+) ∧ t̃(M,h)) = 0, (6.44)

which implies that t̃(M,h) extends to derivation t̃(M,h) : A(M+) → A(M) relative to
A(i+) : A(M+) → A(M). Following the arguments in [FL16] (and again adjusting
for a difference in sign conventions for GM and therefore the Poisson structure), this
derivation determines a polarized form of the stress-energy tensor through

τM
(

t̃(M,h)(ω1) ⊗ L(i+)(ω2)
) =:

∫

M
hab T

ab
M (ω1, ω2) volM , (6.45)

for all ω1, ω2 ∈ L(M+). By another straightforward calculation using integration by
parts, we find the explicit formula

T ab
M (ω1, ω2) = 1

4g
ab (Fϕ1)

cd (Fϕ2)cd − (Fϕ1)
ac (Fϕ2)

b
c, (6.46)

where ϕi := pr0(ωi ) ∈ L(M+)0 denotes the degree 0 component of ωi and Fϕi :=
dMGMϕi ∈ �2(M) denotes its associated field strength 2-form. Observe that our po-
larized stress-energy tensor does not receive contributions from the ghosts and the an-
tifields, and that in degree 0 it agrees with the usual Maxwell stress-energy tensor (in
our (+ − · · · −) signature) on setting ω2 = ω1. This result shows how these physically
expected results can be provided with a first-principles justification on quite abstract
grounds.
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A. Conventions for Bicomplexes

A bicomplex V is a bigraded family of K-vector spaces {Vp,q}p,q∈Z equipped with a
vertical differential δ : Vp,q → Vp−1,q and a horizontal differential d : Vp,q → Vp,q−1
satisfying

δ2 = 0, d2 = 0, δ d + d δ = 0. (A.1)

http://creativecommons.org/licenses/by/4.0/
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Observe that the vertical and horizontal differentials are required to anti-commute, which
is more convenient for discussing the symmetric monoidal structure and totalization of
bicomplexes than the alternative convention of commuting differentials. We refer to e.g.
[MR19] for more details and the relevant argument that both conventions are equivalent.
A morphism of bicomplexes f : V → W is a family of linear maps { f p,q : Vp,q →
Wp,q}p,q∈Z that commutes with both the vertical and the horizontal differential. We
denote by bChK the category of bicomplexes of K-vector spaces.
The category bChK is symmetric monoidal with respect to the tensor product defined
by

(V ⊗ W )p,q =
⊕

i+k=p
j+l=q

Vi, j ⊗ Wk,l (A.2a)

together with the differentials

δ(v ⊗ w) = δ(v) ⊗ w + (−1)|v|tot v ⊗ δ(w), (A.2b)

d(v ⊗ w) = d(v) ⊗ w + (−1)|v|tot v ⊗ d(w), (A.2c)

where |v|tot = i + j denotes the total degree of v ∈ Vi, j . The monoidal unit is K

concentrated in degree (0, 0) and the symmetric braiding is given by the Koszul sign
rule with respect to the total degrees, i.e.

V ⊗ W −→ W ⊗ V, v ⊗ w �−→ (−1)|v|tot |w|tot w ⊗ v. (A.3)

The
⊕

-totalization of bicomplexes is given by the functor

Tot⊕ : bChK −→ ChK (A.4)

that assigns to a bicomplex V ∈ bChK the chain complex defined by

Tot⊕(V )m :=
⊕

i+ j=m

Vi, j (A.5a)

together with the differential

dtot := δ + d. (A.5b)

It is easy to check that Tot⊕ is a strong symmetric monoidal functor with respect to the
obvious structure maps.

B. Bar Construction

The bar construction is a powerful and efficient tool to obtain derived functors. In this
appendix we shall spell out some computational details that will help the reader to
understand better our explicit formulas in Sect. 4. We refer to [Fre09] and also [Rie14]
for a more detailed presentation of the bar construction.
Let F : C → D be a functor between any two categoriesC andD. (The case of interest in
the bulk of the paper is the localization functor L : C → BZ from (2.8).) The associated
bar construction is then a functor

B
(D,C,−) : Fun(C,ChK) −→ Fun(D, sChK) (B.1)
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that assigns to each chain complex-valued functor X : C → ChK on C a functor
B
(D,C, X) : D → sChK on D with values in simplicial chain complexes. In order
to avoid simplicial technology, which may be unfamiliar to some readers, we prefer to
present this construction in the more familiar language of bicomplexes, see Appendix
A for our conventions. (Technically, this uses the Dold-Kan correspondence between
simplicial chain complexes and bicomplexes.) From this perspective the bar construction
is a functor

B
(D,C,−) : Fun(C,ChK) −→ Fun(D,bChK) (B.2)

assigning functors onDwithvalues in bicomplexes.The applicationof this functor on any
X ∈ Fun(C,ChK) admits the following explicit description: The functor B
(D,C, X) :
D → bChK assigns to an object d ∈ D the bicomplex concentrated in vertical degrees
m ≥ 0 given at vertical degree m = 0 by

B
(D,C, X)(d)0,• =
⊕

c∈C

⊕

g∈D(Fc,d)

X (c)• (B.3a)

and for vertical degrees m ≥ 1 by

B
(D,C, X)(d)m,• =
⊕

c∈C

⊕

g∈D(Fc,d)

⊕

( f1,..., fm )∈Morm (C)

t f1=c , fi �=id

X (s fm)•, (B.3b)

where Morm(C) denotes the set of composable m-tuples t f1
f1←− s f1 = t f2

f2←−
· · · fm←− s fm of morphisms in C and s/t denotes the source/target of a morphism. (Note
that g : Fc → d is a D-morphism, while the fi are morphisms in C.) The vertical
differential is given by the alternating sum

δ
(

c, g, f1, . . . , fm, x
) = (−1)|x |

((

s f1, g ◦ F f1, f2, . . . , fm, x
)

+
m−1
∑

j=1

(−1) j
(

c, g, f1, . . . , f j ◦ f j+1, . . . , fm, x
)

+ (−1)m
(

c, g, f1, . . . , fm−1, X ( fm)x
))

, (B.3c)

for all (c, g, f1, . . . , fm, x) ∈ B
(D,C, X)(d)m,•, where |x | denotes the degree of x ∈
X (s fm). To any D-morphism k : d → d ′, the functor assigns the map of bicomplexes

B
(D,C, X)(k) : B
(D,C, X)(d) −→ B
(D,C, X)(d ′),
(

c, g, f1, . . . , fm, x
) �−→ (

c, k ◦ g, f1, . . . , fm, x
)

(B.4)

determined by post-composition with k.
Roughly speaking, the role of the bar construction is to ‘fatten up’ the ordinary left Kan
extension F! = LanF : Fun(C,ChK) → Fun(D,ChK) to provide a homotopically
meaningful construction, i.e. one that is compatible with weak equivalences. (Note that
the 0-th vertical homology of B
(D,C, X) is a model for F!X .) This is done by intro-
ducing many redundant copies via the direct sums over composable tuples of arrows in
(B.3). This allows us to define a model for the derived left Kan extension

LF! := Tot⊕
(

B
(D,C,−)
) : Fun(C,ChK) −→ Fun(D,ChK) (B.5)



654 S. Bruinsma, C. J. Fewster, A. Schenkel

by applying the totalization functor Tot⊕ fromAppendix A. For a proof of this statement
(and its generalization to operad algebras) we refer to e.g. [Fre09, Theorem 17.2.7 and
Section 13.3].
We shall also need concrete models for the derived counit and unit associated with
the derived left Kan extension. Denoting by F∗ : Fun(D,ChK) → Fun(C,ChK)

the pullback functor, which we recall does not have to be derived because each object
in Fun(D,ChK) is fibrant in the projective model structure, the component at Y ∈
Fun(D,ChK) of the derived counit is the natural transformation

εY : LF!F∗(Y ) −→ Y (B.6a)

defined by the following components: For each d ∈ D,

εY,d : LF!F∗(Y )(d) −→ Y (d),

(c, g, y) �−→ Y (g)y,

(c, g, f1, . . . , fm, y) �−→ 0, (B.6b)

for all vertical degrees m ≥ 1.
The derived unit is slightly more involved to describe. Let us denote by

Q := Tot⊕
(

B
(C,C,−)
) : Fun(C,ChK) −→ Fun(C,ChK) (B.7)

the resolution that is obtain by totalizing the bar construction for the identity functor
id : C → C. The component at X ∈ Fun(C,ChK) of the derived unit is the natural
transformation

ηX : Q(X) −→ F∗
LF!(X) (B.8a)

defined by the following components: For each c̃ ∈ C,

ηX,c̃ : Q(X)(c̃) −→ LF!(X)(Fc̃),

(c, f0, f1, . . . , fm, x) �−→ (c, F f0, f1, . . . , fm, x), (B.8b)

for all m ≥ 0, where we note that f0 : c → c̃ corresponds to g : Fc → d in (B.3)
because Q(X) is obtained from the bar construction associated with the identity functor
id : C → C.

C. Zig-Zagging Homotopy Coherence Data

The zig-zagging homotopies and 2-homotopies postulated in (5.7), (5.8) and (5.9) can
be constructed explicitly from the homotopy data (5.2) associated to our choice of quasi-
inversesL( f )−1. This construction requires somecase distinctions, forwhichweexclude
for the moment the case of identity morphisms. (We shall see below that the homotopy
coherence data for identity morphisms can be set consistently to 0.)
Given (n′, N ′) ∈ Z × C and (n, f ) ∈ Z × Mor(C), the arrow f can point either along
the direction of the shortest zig-zag in (2.13) from (n′, N ′) to (n + L( f ), s f ), i.e.

(n′, N ′) ��
zig-zag

�� (n + L( f ), s f )
f

�� (n, t f ) , (C.1a)
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or it can point against the shortest zig-zag from (n′, N ′) to (n, t f ), i.e.

(n′, N ′) ��
zig-zag

�� (n, t f ) (n + L( f ), s f )
f

�� . (C.1b)

Note that the orientation in these pictures is given by the direction of the zig-zag and
hence it does not have to coincide with the orientation of (2.13). We also note that the
situation (n′, N ′) = (n+ L( f ), s f ) is covered by the first case, while (n′, N ′) = (n, t f )
is covered by the second one.
Similarly, given (n′, f ′) ∈ Z × Mor(C) and (n, N ) ∈ Z × C, the arrow f ′ can point
either along the direction of the shortest zig-zag in (2.13) to (n, N ), i.e.

(n′ + L( f ′), s f ′) f ′
�� (n′, t f ′) ��

zig-zag
�� (n, N ) , (C.2a)

or it can point against it, i.e.

(n′, t f ′) (n′ + L( f ′), s f ′)f ′
�� ��

zig-zag
�� (n, N ) . (C.2b)

Given two arrows (n, f ), (n′, f ′) ∈ Z × Mor(C), there exist 5 different cases for their
alignment relative to the zig-zag from (n′, f ′) to (n, f ), namely

(n′ + L( f ′), s f ′) f ′
�� (n′, t f ′) ��

zig-zag
�� (n, t f ) (n + L( f ), s f )

f
�� ,

(C.3a)

(n′, t f ′) (n′ + L( f ′), s f ′)f ′
�� ��

zig-zag
�� (n + L( f ), s f )

f
�� (n, t f ) ,

(C.3b)

(n′ + L( f ′), s f ′) f ′
�� (n′, t f ′) ��

zig-zag
�� (n + L( f ), s f )

f
�� (n, t f ) , (C.3c)

(n′, t f ′) (n′ + L( f ′), s f ′)f ′
�� ��

zig-zag
�� (n, t f ) (n + L( f ), s f )

f
�� ,

(C.3d)

(n, f ) = (n′, f ′). (C.3e)

Using these case distinctions, we define the zig-zagging homotopy (for left composition)
in (5.7) by

�
(n, f )
(n′,N ′) =

{

0, for case (C.1a),

λ f Z
(n,t f )
(n′,N )

, for case (C.1b).
(C.4)

The zig-zagging homotopy (for right composition) in (5.8) is given by

�
(n,N )

(n′, f ′) =
{

0, for case (C.2a),

Z (n,N )

(n′+L( f ′),s f ′) γ f ′ , for case (C.2b),
(C.5)
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and the zig-zagging 2-homotopy in (5.9) is given by

�
(n, f )
(n′, f ′) =

⎧

⎪⎨

⎪⎩

0, for cases (C.3a), (C.3b)and(C.3c),

λ f Z
(n,t f )
(n′+L( f ′),s f ′)γ f ′ , for case (C.3d),

ξ f , for case (C.3e).

(C.6)

Observe that the case distinctions in these expressions all collapse to 0 in the case where
f or f ′ is an identity morphism since we have chosen λid = 0, γid = 0 and ξid = 0.
Hence, we can set consistently the zig-zagging homotopies associated with an identity
morphism and also the zig-zagging 2-homotopies associated with at least one identity
morphism to zero.
It is easy to confirm that (C.4), (C.5) and (C.6) provides the required homotopy coherence
data in (5.7), (5.8) and (5.9). As an illustration, consider for example (5.7) for the case
(C.1b). Then we compute

L( f ) Z (n+L( f ),s f )
(n′,N ′) − Z (n,t f )

(n′,N ′) = (

L( f )L( f )−1 − id
)

Z (n,t f )
(n′,N ′) = ∂

(

λ f Z
(n,t f )
(n′,N ′)

)

= ∂�
(n, f )
(n′,N ′). (C.7)

The other cases follow similarly.
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