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Abstract: In this paper we extensively study the notion of Hamiltonian structure for
nonabelian differential-difference systems, exploring the link between the different al-
gebraic (in terms of double Poisson algebras and vertex algebras) and geometric (in
terms of nonabelian Poisson bivectors) definitions. We introduce multiplicative double
Poisson vertex algebras (PVAs) as the suitable noncommutative counterpart to multi-
plicative PVAs, used to describe Hamiltonian differential-difference equations in the
commutative setting, and prove that these algebras are in one-to-one correspondence
with the Poisson structures defined by difference operators, providing a sufficient condi-
tion for the fulfilment of the Jacobi identity. Moreover, we define nonabelian polyvector
fields and their Schouten brackets, for both finitely generated noncommutative algebras
and infinitely generated difference ones: this allows us to provide a unified characteri-
sation of Poisson bivectors and double quasi-Poisson algebra structures. Finally, as an
application we obtain some results towards the classification of local scalar Hamiltonian
difference structures and construct the Hamiltonian structures for the nonabelian Kaup,
Ablowitz–Ladik and Chen–Lee–Liu integrable lattices.

Contents

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
2. Hamiltonian Structures and Poisson Bivectors . . . . . . . . . . . . . . . 221
3. Double Poisson Algebras and Hamiltonian Operators . . . . . . . . . . . . 226

3.1 Double derivations and brackets . . . . . . . . . . . . . . . . . . . . 226
3.2 Double Poisson algebras and ultralocal Poisson brackets . . . . . . . 229
3.3 Difference operators, multiplicative double Poisson vertex algebras and

Poisson bivectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
4. A Path to Noncommutative Poisson Geometry . . . . . . . . . . . . . . . 237

4.1 θ Formalism and functional polyvector fields . . . . . . . . . . . . . 238
4.2 Schouten brackets for nonabelian ODEs . . . . . . . . . . . . . . . . 240

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-022-04348-3&domain=pdf
http://orcid.org/0000-0002-2207-4807
http://orcid.org/0000-0002-6874-5629


220 M. Casati, J. P. Wang

4.3 Schouten (lambda) brackets for the local case . . . . . . . . . . . . . 244
4.4 Poisson bracket revisited . . . . . . . . . . . . . . . . . . . . . . . . 247

4.4.1 Poisson bivectors . . . . . . . . . . . . . . . . . . . . . . . . . . 250
4.4.2 The Poisson cohomology . . . . . . . . . . . . . . . . . . . . . . 252

5. Quasi-Poisson structures and Hamiltonian structures . . . . . . . . . . . . 253
5.1 Double quasi-Poisson algebras . . . . . . . . . . . . . . . . . . . . . 255
5.2 Hamiltonian operators and quasi-Poisson bivectors . . . . . . . . . . 256

6. Nonabelian Hamiltonian Operators for Difference Systems . . . . . . . . . 258
6.1 Scalar ultralocal and local Hamiltonian operators . . . . . . . . . . . 258
6.2 Nonlocal Hamiltonian operators . . . . . . . . . . . . . . . . . . . . 261

6.2.1 “Null” Hamiltonian operators . . . . . . . . . . . . . . . . . . . 262
6.3 Hamiltonian structures for integrable nonabelian difference systems . 266

6.3.1 Nonabelian Kaup Lattice . . . . . . . . . . . . . . . . . . . . . . 266
6.3.2 Nonabelian Ablowitz–Ladik Lattice . . . . . . . . . . . . . . . . 266
6.3.3 Nonabelian Chen–Lee–Liu lattice . . . . . . . . . . . . . . . . . 267

7. Discussion and Further Work . . . . . . . . . . . . . . . . . . . . . . . . 267
A. Equivalence Between Schouten Property and Jacobi Identity for Double Mul-

tiplicative PVAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
B. Graded Jacobi Identity for the Schouten Bracket . . . . . . . . . . . . . . 271

1. Introduction

Nonabelian systems of ordinary and partial differential equations have been previously
studied, for example in [23,25,27,28,30]. In our recent paper [10] we have studied
nonabelian differential-difference integrable system and described a number of exam-
ples lifting, by means of their Lax representation, well-known Abelian systems to their
nonabelian counterparts. While we provided recursion operators for all those examples,
hence establishing a way to produce their higher symmetries (or, equivalently, integrable
hierarchies), at the time we could not construct the appropriate Hamiltonian description
for some of them despite the very simple structure they possess in the Abelian case. In
this paper, we answer this open question by thoroughly investigating noncommutative
Hamiltonian structures.

In Sect. 2, we review the language and the notion of Hamiltonian structure widely
adopted among the Integrable Systems community. Here, the focus is the notion of
Poisson bracket: an operator is called Hamiltonian if it can be used to define a Poisson
bracket; the same operator defines a functional bivector whose prolongation along its
flow vanishes. The latter is equivalent to the Poisson property.

In Sect. 3 we present a more recent viewpoint: a suitable algebraic description of
the Hamiltonian structures of nonabelian ordinary differential equations can be given in
terms of double Poisson algebras [36]. While this theory is reasonably well-established,
the use of a similar formalism to go beyond ordinary differential equations and describe
partial differential equations is much more recent [14] and encoded in the theory of
double Poisson vertex algebras (double PVAs). The main object of these theories is
the so-called double (lambda) bracket, defined on associative (differential) algebras,
essentially replacing the action of the Hamiltonian operators. In this paper, we focus
on differential-difference equations (D�Es), a class of systems where the time is a
continuous variable, while the spatial one takes values on a lattice.We follow the lines of
multiplicative PVAs [15] to define the analogue algebraic structures for noncommutative
difference algebras, and hence to apply it to differential-difference nonabelian systems.
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We call such a structure double multiplicative Poisson vertex algebra and we define it
in Sect. 3.3, see Definition 13, and prove that it is equivalent to the “usual” notion of
Hamiltonian (rectius Poisson) operator.

In Sect. 4 we follow the spirit of classical Poisson geometry, which has been suc-
cessfully adopted in the study of (Abelian) Hamiltonian PDEs and D�Es, to find a
counterpart of these algebraic structures as suitably defined functional bivector fields;
this allows us to define the whole Poisson–Lichnerowicz complex and its cohomology,
and to provide a new interpretation of the double quasi-Poisson structure.

To do so, we first need a notion of Schouten bracket for nonabelian systems and
an operational way of computing it. We define it in Sect. 4.2 for systems of ODEs
and Sect. 4.3 for D�Es, and prove that it satisfies the graded skewsymmetry and Jacobi
properties that characterise aGerstenhaber algebra. In Sect. 4.4we showhow the Poisson
bracket and its properties, as well as all the standard objects in the theory of Poisson
manifolds, can be defined in terms of a Poisson bivector.

In Sect. 5 we present, starting from the Kontsevich system [38], the notion of quasi-
Poisson algebras, introduced by Van Den Bergh [36], from which one can define a
Poisson bracket even if the corresponding bivector is not Poisson. We investigate the
equations that a bivector must satisfy in order to be called “Hamiltonian” and find a
simple interpretation for this property.

Finally, in Sect. 6 we provide several examples of scalar ultralocal (which coincides
with those for ordinary differential equations, or with some double Poisson algebras)
and local nonabelian Hamiltonian operators. However, many local (and even ultralocal)
Hamiltonian operators that produce Abelian integrable systems do not have a local
counterpart in the nonabelian case, but correspond to nonlocal difference operators. The
“missing” structures of our recent work fall within this category; we describe for the
first time the two-component Hamiltonian structure for the nonabelian Kaup, Ablowitz–
Ladik and Chen–Lee–Liu lattices (see [10] for their recursion operators and [20] for the
Abelian case).

2. Hamiltonian Structures and Poisson Bivectors

In this section, we review the formalism of nonabelian Hamiltonian equations we used
in our previous work [10]. It is the straightforward generalisation of the language that
P. Olver and V. Sokolov developed to describe Hamiltonian partial differential equa-
tions on an associative (but not commutative) algebra [30] and, subsequently, adapted
(actually, simplified) by Mikhailov and Sokolov to noncommutative ODEs [27]. Ku-
perschmidt, in his vast book [23], discusses partial differential, differential-difference
and difference-difference noncommutative systems, including a similar formalism for
Hamiltonian operators. His approach and what we present here, extending Olver and
Sokolov’s notation, are equivalent when applied to local Hamiltonian operators. The
extension to nonlocal ones is, at the best of our knowledge, a new feature introduced in
[10].

In particular, we want to stress the distinction between Hamiltonian operators (char-
acterised by their ability to define a Poisson bracket between local functionals) and
Poisson bivectors (identified by the vanishing of their Schouten torsion).

While we refer to our previous work for the precise definitions, we summarize here-
inafter the main objects necessary to state our results. The main feature of this language
is the introduction of functional 0-, 1-, and 2-vector fields to describe, respectively,
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observables, evolutionary equations and brackets, closely following the treatment that
Olver systematised for partial differential equations [29].

Definition 1 (Difference Laurent polynomials). The spaceA of noncommutative differ-
ence (Laurent) polynomials is a linear associative algebra with unit

A =
R

〈
uin,

(
uin

)−1
〉

〈
uin

(
uin

)−1− 1,
(
uin

)−1
uin − 1

〉 , i = 1, . . . , �, n ∈ Z,

endowed with an automorphism S : A → A given by Suin = uin+1.

Note that taking the quotient with respect to the two-sided ideal allows us to have

that, inA, uin
(
uin

)−1 = (
uin

)−1
uin = 1 so that these variables are multiplicative inverses

of each other. In the spirit of the formal calculus of variations, the variables ui := ui0
generate the algebra A and represent the � components of the dependent variable of
the differential-difference equations. Note that the product in A is, in general, non-
commutative. Let us denote by [−,−] the commutator on A, i.e. [a, b] = ab − ba.

Definition 2 (Local functionals). The elements of the quotient space

F = A
(S − 1)A + [A,A]

are called local functionals. We denote the projection from A to F as
∫
Tr−, which

satisfies ∫
TrS f =

∫
Tr f,

∫
Tr f g =

∫
Tr g f

for all f, g ∈ A.

In our notation, the integral sign denotes the quotient operationwith respect to (S−1)
and Tr (“trace”, since in the standard example the generators of A are elements of glN
with the canonical matrix product) is the quotient with respect to the commutator.

A derivation ofA, denoted by D(a), is a linear map satisfying the Leibniz’s property
D(ab) = D(a)b + aD(b). Note that, because of the noncommutativity of the product,
for a monomial abc the property becomes

D(abc) = D(a)bc + aD(b)c + abD(c),

and so on, until D acts on the single generators of A. For the inverse generators, we
have D(a−1) = −a−1D(a)a−1; this follows from D(1) = 0.

Definition 3. An evolutionary difference vector field X is a derivation of A that com-
mutes with the shift operator S.

The necessary and sufficient condition for X to be an evolutionary vector field is
that it satisfies the property X (uin) = Sn Xi where (X1, . . . , X�) ∈ A� is called the
characteristics of the vector field.

Note that, exactly as in the commutative case, a differential-difference system

uit = Xi (. . . ,S−1u,u,Su, . . .) i = 1, . . . , �, u = {u j }�j=1 (2.1)

can be identified with an evolutionary vector field of characteristic {Xi }�i=1.
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Definition 4. A local scalar difference operator is a linear map K : A → A that can be
written as a finite linear combination of terms of the form r f lgSp for p ∈ Z, f, g inA,
where r and l denote, respectively, the multiplication on the right and the multiplication
on the left. Namely, we have

Kh =
M∑

p=N

∑
αp

r f (αp ) lg(αp )Sph =
M∑

p=N

∑
αp

g(αp)
(Sph

)
f (αp). (2.2)

We call (N , M), with N � M , respectively, the minimal and maximal power of S ap-
pearing in the expansion, the order of the difference operator. With the notation adopted
in (2.2) wewant to stress that in the linear combination there are, in general, several terms
with the same number of shifts. In the rest of this paper, where there is no ambiguity,
we drop the indices and the double sum to represent the difference operators.

Definition 5. We call a difference operator ultralocal if its order is (0, 0), namely if it
does not contains shift operators.

The multiplication operators have the properties

l f lg = l f g r f rg = rg f r f lg = lgr f .

Moreover, we define the commutator c f := l f − r f , that is, [ f, g] = c f g, and the
anticommutator a f = l f + r f . Note that c f is a derivation.

The formal adjoint of the scalar difference operator K = ∑
l f rgSp is

K † :=
∑

S−pr f lg.

In the multi-component case, namely when � > 1, we consider � × � matrices (K )i j
whose entries are scalar difference operators. To avoidmaking the notation too heavy, we
denote the entry (K )i j as Ki j . The formal adjoint of (multi-component) K is (K †)i j =
(K ji )†. We say that a difference operator in skewsymmetric if K † = −K .

We define the variational derivative of a local functional F = ∫
Tr f using a generic

evolutionary vector field X of characteristic {Xi }�i=1. We have

∫
Tr

�∑
i=1

δF

δui
Xi :=

∫
Tr X ( f ). (2.3)

Providing a closed formula for the variational derivative of a local functional (or
density) needs some more work, because of the way in which an evolutionary vector
fields acts on the single generators of the algebra A, “splitting” the density f around
them. This is the crux of the matter when dealing with derivations on a noncommutative
space; a possible solution is “doubling” the space: the theory of double Poisson algebras
[14,36] stems from it, and we will discuss it at large in Sect. 3.

The operation described in (2.3) can be regarded as a pairing between (evolutionary)
vector fields and (variational) 1-forms; we use as a shorthand notation for such a paring
〈δF, X〉.

The definition of local p-vector fields (see [9] for the difference Abelian case) must
be postponed to Sect. 3; however, it is possible to adopt a tailored version of the so-called
θ formalism following Olver and Sokolov’s treatment [30].
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We introduce the basic uni-vectors θi,n , where θi,n = Snθi ; these objects (contrasting
with the commutative case, where they are Grassmann variables) do not have any special
parity with respect to the product. However, they are oddwith respect to the permutations
under the trace operation.

Definition 6. The elements of the space

Â := A〈{θi,n}�i=1,n∈Z〉

are called densities of (functional) polyvector fields. The space Â is a graded algebra
where degθ θi,n = 1, degθ u

i
n = 0. Homogeneous elements of Â of degree p in θ are

densities of p-vector fields.

Definition 7. A local functional polyvector field is an element of the quotient space

F̂ = Â
(S − 1)Â + [Â, Â] ,

where the commutator [−,−] is [a, b] = ab−(−1)|a||b|ba and we denote |a| := degθ a
and |b| := degθ b. This commutator coincides with the standard commutator onA, since
degθ A = 0.

The trace form (and as a consequence the quotient operation Â � F̂ ) is then graded
commutative, namely

Tr (a b) = (−1)|a||b| Tr (b a) .

We denote as Âp (respectively, F̂ p) the homogeneous component of degree p in Â
(resp., F̂ ).

Take notice of the abuse of language in Definitions 6 and 7: the original definition
of functional polyvector field does not require the θ formalism, and one must normally
prove that this formalism induces an isomorphism between densities of (classically
defined) polyvector fields and polynomials in θ . We leave it to Sect. 3 and exploit the
formalism for our computations, following Olver and Sokolov’s lead.

For simplicity, we denote θi = θi,0 in the multi-component case, and – in the scalar
� = 1 case – θn = θ1,n , θ = θ1,0. To avoid confusion, in the following sections we will
introduce different Latin (u, v, . . . ) and Greek (θ, ζ, . . . ) letters denoting, respectively,
different ui ’s and θ j ’s.

The formal evolutionary vector field of characteristics K� = (
∑

j K
i jθ j )

�
i=1, where

K is a difference operator with entries Ki j , is denoted prK� and it is a graded derivation
of degree 1. We have

prK�(ui ) =
∑
j

K i jθ j , prK�(θi ) = 0,

and

prK�(ab) = prK�(a)b + (−1)|a|a prK�(b).
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Moreover, we can associate to any difference operator (in particular, skewsymmetric)
K the functional bivector

P = 1

2

∫
Tr

⎛
⎝

�∑
i, j=1

θi K
i jθ j

⎞
⎠ . (2.4)

Similarly, for K a difference operator we can define a bracket between local functionals

{F,G} := 〈δF, K δG〉 =
∫

Tr

⎛
⎝

�∑
i, j=1

δF

δui
K i j δG

δu j

⎞
⎠ . (2.5)

Definition 8. A skewsymmetric difference operator K is Hamiltonian if and only if the
bracket (2.5) endows the space of local functionals with the structure of a Lie algebra,
namely if and only if the bracket is skewsymmetric and satisfies the Jacobi identity

{A, {B,C}} + {B, {C, A}} + {C, {A, B}} = 0, ∀A, B,C ∈ F .

Definition 9. We say that a bivector P , associated to the skewsymmetric operator K ,
defined as in (2.4) is a Poisson bivector if and only if

prK�P = 1

2

∫
Tr

⎛
⎝

�∑
i, j=1

prK�(θi K
i jθ j )

⎞
⎠ = 0. (2.6)

We also call an operator whose associated bivector is Poisson a Poisson operator, or
Poisson structure.

Example 1. The skewsymmetric operators K = S−S−1 and H = ru − lu are Poisson.
For K , we have that

P = 1

2

∫
Tr

(
θ

(
S − S−1

)
θ
)

=
∫

Tr θθ1.

The bivector does not depend on any generators u, and hence prK�P = 0. For H we
have Hθ = θu − uθ and P = ∫

Tr uθθ . Then condition (2.6) is
∫

Tr
(
prθu (uθθ) − pruθ (uθθ)

) =
∫

Tr (θuθθ − uθθθ) = 0.

The relation between Poisson geometry (the geometry of manifolds endowed with
a Poisson bivector) and Hamiltonian systems is well known; Poisson bivectors always
defineHamiltonian structures: for ODEs, PDEs and differential-difference systems, both
Abelian and nonabelian (see for instance [29,33] and references therein).

However, a remarkable difference between (standard) Abelian operators and the non-
abelian ones is that, while in the former case the notion of Hamiltonian operator and of
Poisson bivector are equivalent (namely, identity (2.6) holds for all Hamiltonian oper-
ators and all the Poisson bivectors are defined by Hamiltonian operators, see [17] for
reference), in the noncommutative setting the Poisson property (2.6) is a sufficient but
not necessary condition for an operator to be Hamiltonian: such is the case for operators
defined in terms of double quasi-Poisson algebras (see Sect. 5). This is why we argue
that the terms “Hamiltonian” and “Poisson” should cease to be used interchangeably.
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The identity (2.6) is essentially due toOlver (it is used for theAbelian differential case
in [29] and for the nonabelian differential case in [30]);we call bivectors forwhich it holds
true “Poisson” because the left hand side of the identity is equivalent to the Schouten
torsion of P , in analogy to the finite dimensional and commutative frameworks. We will
show the equivalence of the notions in Theorem 2.

Finally, we say that an evolutionary system (2.1) is a Hamiltonian system if and only
if

uit = Xi =
�∑

j=1

Hi j δ

δu j

(∫
Tr h

)
(2.7)

with H a Hamiltonian operator and for a local functional
∫
Tr h which is called “the

Hamiltonian” of the system.

3. Double Poisson Algebras and Hamiltonian Operators

VanDenBergh gave an axiomatization of noncommutative Poisson geometry in terms of
doublePoisson algebras [36]; in analogywith the connection between (classical) Poisson
geometry and (commutative) Hamiltonian ODEs, they provide an effective framework
to study noncommutative ODEs.

The theory of double Poisson vertex algebras is a formalism for noncommutative
PDEs developed by De Sole, Kac and Valeri [14] that closely follows Van De Bergh’s
approach; the same formalism for noncommutative differential-difference system has
not been discussed yet, at the best of our knowledge; we extend it along the lines of
multiplicative PVAs [15] and present its axioms in Sect. 3.3.

In this section, without claiming to be exhaustive, we illustrate how the formalism
we use, and in particular the defining property for Poisson operators (2.6), is equivalent
to the notion of double Poisson (vertex) algebras.

For simplicity, we start with the ultralocal case, which coincides with the original
Van Den Bergh’s notion of double Poisson algebras. For our short exposition of double
Poisson algebras we broadly follow [36]; since it is easier to generalise it to the vertex
case using some of the notation of [14], we take some definition from that paper. In our
expositionwe omit proofs and technical lemmas, that can be found in the aforementioned
[14,36].

3.1. Double derivations and brackets. Let us consider the linear associative algebraA,
obtained as the quotient of the free algebras R〈uin, (uin)−1〉, i = 1, . . . �, n ∈ Z by the
two-sided ideals 〈uin(uin)−1 − 1〉 and 〈(uin)−1uin − 1〉. This is tantamount to considering
the symbol (uin)

−1 as left and right inverse of the symbol uin . We regard elements ofA as
noncommutative Laurent polynomials. The product, associative but not commutative,
in A is denoted by simple juxtaposition. We endow A⊗n with the structure of outer
bimodule

b(a1 ⊗ · · · ⊗ an)c = ba1 ⊗ · · · ⊗ anc

and (n − 1) left and right module structures

b 	i (a1 ⊗ a2 ⊗ · · · ⊗ an) = a1 ⊗ · · · ⊗ ai ⊗ bai+1 ⊗ · · · ⊗ an,
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(a1 ⊗ a2 ⊗ · · · ⊗ an) 	i c = a1 ⊗ · · · ⊗ an−i c ⊗ · · · ⊗ an .

Note in particular that forA⊗2 we have a 	1 (b⊗c) = b⊗ac and (a⊗b) 	1 c = ac⊗b,
so that 	1 = 	 endowsA⊗A with the structure of inner bimodule. Choosing a similar
notation for the product A × A⊗n → A⊗(n+1) we have

b ⊗ (a1 ⊗ · · · ⊗ an) = b ⊗ a1 ⊗ · · · ⊗ an,

(a1 ⊗ · · · ⊗ an) ⊗ c = a1 ⊗ · · · ⊗ an ⊗ c,

b ⊗i (a1 ⊗ a2 ⊗ · · · ⊗ an) = a1 ⊗ · · · ⊗ ai ⊗ b ⊗ ai+1 ⊗ · · · ⊗ an,

(a1 ⊗ a2 ⊗ · · · ⊗ an) ⊗i c = a1 ⊗ · · · ⊗ an−i ⊗ c ⊗ · · · ⊗ an .

An element ofA ⊗ A, in general, is of the form B = ∑
i B

′
(i) ⊗ B ′′

(i), for B
′,′′
(i) ∈ A.

We adopt the so-called Sweedler’s notation (see for instance [35, pag. 35]), which keeps
the summation implicit, and write B = B ′ ⊗ B ′′. This allows us to define an associative
product • inA ⊗ A given by

B • C = B ′C ′ ⊗ C ′′B ′′. (3.1)

We then introduce the multiplication map m : A ⊗ A → A, m(a ⊗ b): = ab. We also
denote by ◦ the application (or composition) of operators from the left in A ⊗ A, by
(A ⊗ B) ◦ (C ⊗ D) = A(C) ⊗ B(D).

Moreover, let us denote the permutation of the factors in A ⊗ A by σ , namely
(B ′ ⊗ B ′′)σ = B ′′ ⊗ B ′; it is an antiautomorphism of the bullet product:

(B • C)σ = Cσ • Bσ .

Similarly, we denote the cyclic permutations of the factors of an element of A⊗n with
τ :

τ(a1 ⊗ a2 ⊗ · · · ⊗ an) = an ⊗ a1 ⊗ · · · ⊗ an−1.

A n-fold (double, triple, …) derivation is a linear mapA → A⊗n fulfilling the Leibniz
property D(ab) = D(a)b + aD(b). In particular, we define a noncommutative version
of the partial derivative that is a double derivation:

∂

∂ul

(
ui1ui2 · · · uip

)
=

p∑
k=1

δik ,lu
i1 · · · uik−1 ⊗ uik+1 · · · uip ,

∂

∂ul
(ul)−1 = −(ul)−1 ⊗ (ul)−1. (3.2)

Using the Sweedler’s notation, we denote the (sum of the) two factors produced by the
double derivative as

∂ f

∂ul
=

(
∂ f

∂ul

)′
⊗

(
∂ f

∂ul

)′′
.

Note that m ◦ ∂u is a derivation onA. Indeed, we can read the action of an evolution-
ary vector field using a formula involving this double partial derivative, which closely
resembles the standard formulae in the theory of evolutionary equations.
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Let {Xi }�i=1 be the characteristics of an evolutionary vector field. Then its action on
a difference polynomial f is given by

X ( f ) =
∑
i,n

m

((
Sn Xi

)
	

∂ f

∂uin

)
. (3.3)

The validity of the formula can be easily checked; it is more interesting comparing
equation (3.3) with formula (2.3), holding true in F . We have

∫
Tr X ( f ) =

∫
Tr

∑
i,n

m

((
Sn Xi

)
	

∂ f

∂uin

)
=

∫
Tr

∑
i,n

m

(
Xi 	 S−n ∂ f

∂uin

)

=
∫

Tr
∑
i,n

(
S−n ∂ f

∂uin

)′
Xi

(
S−n ∂ f

∂uin

)′′

=
∫

Tr
∑
i,n

(
S−n ∂ f

∂uin

)′′ (
S−n ∂ f

∂uin

)′
Xi ,

(3.4)

from which one can read an explicit formula for the variational derivative, namely

δ f

δui
=

∑
n

S−nm

(
∂ f

∂uin

)σ

. (3.5)

We simply wrote δ f / δu to denote the RHS of (3.5), without direct reference to the local
functional

∫
Tr f , because, both explicitly and as a consequence of the well-posedness

of the definition of variational derivative, we have

δ

δui
(S − 1) f = 0,

δ

δui
[ f, g] = 0. (3.6)

Note that the Sweedler’s notation in (3.4) leaves a further sum implicit (e.g., ∂uu3 =
1 ⊗ u2 + u ⊗ u + u2 ⊗ 1).

Lemma 1. The commutator of two evolutionary vector fields is a vector field with char-
acteristics

[X,Y ]i =
∑
n, j

[(
∂Y i

∂u j
n

)′ (
Sn X j

) (
∂Y i

∂u j
n

)′′
−

(
∂Xi

∂u j
n

)′ (
SnY j

) (
∂Xi

∂u j
n

)′′]
. (3.7)

Proof. Let us omit the summation symbol for repeated indices with their natural bound-
aries ( j = 1, . . . , � and n ∈ Z), and introduce a shorthand notation for the derivative
∂uip

f := ∂ f/∂uip.
A straightforward computation leads to

X (Y ( f )) = m

((
Sn Xi

)
	

∂

∂uin

[(
∂
u j
m
f
)′ (SmY j

) (
∂
u j
m
f
)′′])

. (3.8)

When the partial derivative acts on the inside of the square bracket it produces two kinds
of terms, with first and second derivatives. We need to prove that the expression with the
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second derivatives vanishes and that the remaining part acts as an evolutionary vector
field. Let us consider the terms with first derivatives only. We have

(
∂

∂uin
(SmY j )

)′ (
Sn Xi

) (
∂

∂u j
n

(SmY j )

)′′
	 ∂

u j
m
f,

that, since the partial derivatives have the following commutation rule with the shift
operator

∂uin
(S f ) = S

(
∂uin−1

f
)

,

can be rewritten as

Sm
[(

∂uin−m
Y j

)′
(Sn−mXi )

(
∂uin−m

Y j
)′′]

	 ∂
u j
m
f.

Subtracting the same expression with X and Y exchanged we get (3.7).
We must now prove that the terms with the second derivatives vanish. They appear

from (3.8)when the derivative acts on one of the factors produced by the double derivative
of f—when we subtract the same expression with X and Y exchanged, this produces
two families of terms. One of these is

(
∂(∂

u j
m
f )′

∂uin

)′ (
Sn Xi

) (
∂(∂

u j
m
f )′

∂uin

)′′ (
SmY j

)
(∂

u j
m
f )′′

−(∂uin
f )′

(
Sn Xi

) (
∂(∂uin

f )′′

∂u j
m

)′ (
SmY j

) (
∂(∂uin

f )′′

∂u j
m

)′′
. (3.9)

Note that the expression (3.9) can be written as

m

(
(m ⊗ 1)

((
1 ⊗ Sn Xi ⊗ SmY j

) ((
∂

∂uin
⊗ 1

)
◦ ∂ f

∂u j
m

−
(
1 ⊗ ∂

∂u j
m

)
◦ ∂ f

∂uin

)))
,

where the product from the left acts on each factor ofA⊗3 andwe apply themultiplication
map twice to obtain an element inA. From [14, Lemma 3.7] we have that the expression
in the innermost bracket vanishes (the double derivatives act on an algebra of differential
polynomials, but the definition itself is the same as (3.2)). The same happens to the other
terms involving second derivatives.

3.2. Double Poisson algebras and ultralocal Poisson brackets. In this section we briefly
recall the notion of double Poisson algebra [14,36], introduced to describe the Hamil-
tonian structure of noncommutative ODEs. Our aim is establishing its equivalence with
the notion of ultralocal Poisson operators (see Definition 9) and the noncommutative
Poisson bracket they define.

Let us now focus on the ultralocal case, namely we disregard the shift operation
and drop the shifted variables. Let A0 ⊂ A be the space of the ultralocal Laurent
polynomials, generated by the variables ui0 := ui only. We introduce the main object in
the theory of double Poisson algebras, the double bracket.
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Definition 10. A n-fold (double, triple, …) bracket is a n-linear map

{{−,−, · · · ,−}}: A0 × · · · × A0︸ ︷︷ ︸
n times

→ A⊗n
0 ,

which is a n-fold derivation in the last entry

{{a1, . . . , an−1, bc}} = b{{a1, . . . , c}} + {{a1, . . . , b}}c
and it is cyclically skewsymmetric, namely

τ {{−,−, . . . ,−}}τ−1 = (−1)n+1{{−,−, . . . ,−}}.
For example, we have {{a, b}} = −{{b, a}}σ , {{a, b, c}} = τ {{b, c, a}}. In particular, a

double bracket is also a derivation in the first entry for the inner bimodule structure of
A0 ⊗ A0, namely

{{ab, c}} = a 	 {{b, c}} + {{a, c}} 	 b.

To write the double bracket between elements of A0 in terms of the brackets between
its generators we have the explicit formula (called master formula in [14])

{{a, b}} =
�∑

i, j=1

∂b

∂u j
• {{ui , u j }} •

(
∂a

∂ui

)σ

. (3.10)

Now let a ∈ A0, B = b1 ⊗ b2 ∈ A⊗2
0 . We introduce the additional notation

{{a, B}}L = {{a, b1}} ⊗ b2, {{a, B}}R = b1 ⊗ {{a, b2}};
{{B, a}}L = {{b1, a}} ⊗1 b2, {{B, a}}R = b1 ⊗1 {{b2, a}}.

Definition 11. A linear associative algebraA0, endowed with a double bracket {{−,−}},
is a double Poisson algebra if the triple bracket

{{a, b, c}} := {{a, {{b, c}}}}L + τ {{b, {{c, a}}}}L + τ 2{{c, {{a, b}}}}L
= {{a, {{b, c}}}}L − {{b, {{a, c}}}}R − {{{{a, b}}, c}}L (3.11)

vanishes for any a, b, c ∈ A0.

From the definition and properties of a triple bracket [36], this is equivalent to the
vanishing of the brackets for all the triples of generators of A0.

We associate an ultralocal operator (see Definition 5) to a double Poisson bracket
and vice versa. We observe that the bullet product (3.1) has the same structure of the
composition of multiplication operators: we can then identify a multiplication operator
as an element ofA0 ⊗ A0, by

l f �→ f ⊗ 1, rg �→ 1 ⊗ g, l f rg �→ f ⊗ g,

and the composition of such operators by the multiplication (3.1) on the left. Ultralocal
Hamiltonian operators are compositions and linear combinations of left and right mul-
tiplication operators only. In the scalar case, A0 has a single generator u, hence all the
double brackets are defined by

{{u, u}} =
∑
α

fα ⊗ gα (3.12)
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for some fα, gα ∈ A0. From a double bracket as in (3.12) we define the multiplication
operator K = ∑

α l fα rgα , which is skewsymmetric. Indeed, from the skewsymmetry of
the double bracket we have

{{u, u}} = −{{u, u}}σ = −
∑
α

gα ⊗ fα

corresponding to the operator −K † = − ∑
α lgα r fα . Similarly, for an algebraA0 with �

generators we can define an � × � matrix of operators, whose entries Ki j correspond to
the brackets between u j and ui (note the exchange of indices, which is the convention
adopted in [14]). Equivalently, given a skewsymmetric multiplication operator K we can
define a double bracket, identifying the bracket between the generators with its entries
and extending it to the full algebraA0 by means of (3.10). Indeed, the bracket onA0 is
uniquely determined by the bracket between generators.

Observe the striking analogy between the double bracket structure and the bivector
defined by K . If we denote Ki j as

∑
α lK (α)i j

L
r
K (α)i j
R

we have on one hand

P = 1

2
Tr

∑
i, j

∑
α

θi K
(α)i j
L θ j K

(α)i j
R

= − 1

2
Tr

∑
i, j

∑
α

θ j K
(α)i j
R θi K

(α)i j
L = − 1

2
Tr

∑
i, j

∑
α

θi K
(α) j i
R θ j K

(α) j i
L ,

(note that in the ultralocal case we have dropped the integral operation) and on the other
hand

{{u j , ui }} =
∑
α

K (α)i j
L ⊗ K (α)i j

R = −
∑
α

K (α) j i
R ⊗ K (α) j i

L . (3.13)

We can read one expression from the other by replacing the tensor product in (3.13) by
θ j and multiplying the result on the left by θi .

After these preliminary observations,we are ready to address the equivalence between
double Poisson brackets and ultralocal Poisson operators.

Proposition 1. Let H be an ultralocal operator with entries

Hi j =
∑
α

l
H (α)i j
L

r
H (α)i j
R

Then H is Poisson if and only if the double bracket defined on generator as

{{ui , u j }} =
∑
α

H (α) j i
L ⊗ H (α) j i

R

is the bracket of a double Poisson algebra.

Proof. The bracket of a double Poisson algebra is, in particular, skewsymmetric; the
skewsymmetry of the bracket defined by H is then equivalent to

∑
α

H (α) j i
L ⊗ H (α) j i

R = −
∑
α

H (α)i j
R ⊗ H (α)i j

L ,

where the LHS and RHS correspond, respectively, to the entries of the bracket de-
fined by

∑
α lH (α)

L
r
H (α)
R

and minus its adjoint. On the other hand, the property defining
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Poisson bivectors (2.6) and the vanishing of the triple bracket (3.11) are not linear iden-
tities. Indeed, taken an operator H = ∑

α H (α) (and the corresponding double bracket∑{{−,−}}(α)), we have

prH� Tr(θHθ) =
∑
α,β

prH (α)� Tr(θH (β)θ) (3.14)

and

{{a, b, c}} =
∑
α,β

[{{a, {{b, c}}(α)}}(β),L + τ
({{b, {{c, a}}(α)}}(β),L

)
+ τ 2

({{c, {{a, b}}(α)}}(β),L
)]

=
∑
α,β

{{a, b, c}}(α,β). (3.15)

Each term of the summation (3.14) is

prH (α)� Tr
(
θi H

(β)i jθ j

)
= prH (α)� Tr

(
θi H

(β)i j
L θ j H

(β)i j
R

)
. (3.16)

A direct computation for (3.16) gives, up to a sign and denoting the characteristics of
prH (α)� by H (α)lkθk = H (α)lk

L θk H
(α)lk
R and the partial derivative with respect to ul as

∂l ,

Tr

[
θi

(
∂l H

(β)i j
L

)′
H (α)lk
L θk H

(α)lk
R

(
∂l H

(β)i j
L

)′′
θ j H

(β)i j
R

−θi H
(β)i j
L θ j

(
∂l H

(β)i j
R

)′
H (α)lk
L θk H

(α)lk
R

(
∂l H

(β)i j
R

)′′]

= Tr

[
θi

(
∂l H

(β)ik
L

)′
H (α)l j
L θ j H

(α)l j
R

(
∂l H

(β)ik
L

)′′
θk H

(β)ik
R

+ θi H
(β) j i
R θ j

(
∂l H

(β) j i
L

)′
H (α)lk
L θk H

(α)lk
R

(
∂l H

(β) j i
L

)′′]
, (3.17)

where we exchanged indices in the first term and used the skewsymmetry of H (β) in the
second one.

Because of the trace operation, the expression does not vary (up to a constant) if we
replace theRHSwith an expression obtained taking the cyclic sums over the factors of the
form (θi f, θkg, θ j h), when we denote each term of the RHS of (3.17) as Tr[θi f θ j gθkh].
Moreover, in the result we can change the summation indices so that the relative position
of (θi , θ j , θk) is the same in each monomial. The terms we get can be summed in pairs,
so that we obtain

−3

2
prH (α)� Tr(θH (β)θ) = Tr

[
θi

(
∂l H

(β)ik
L

)′
H (α)l j
L θ j H

(α)l j
R

(
∂l H

(β)ik
L

)′′
θk H

(β)ik
R

+ θi H
(β) j i
R θ j

(
∂l H

(β) j i
L

)′
H (α)lk
L θk H

(α)lk
R

(
∂l H

(α) j i
L

)′′

+ θi H
(α)li
R

(
∂l H

(β)k j
L

)′′
θ j H

(β)k j
R θk

(
∂l H

(β)k j
L

)′
H (α)li
L

]
. (3.18)
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On the other hand, let us compare (3.18) with {{u j , uk, ui }}(β,α) as given in (3.15).
For the first term we have

{{u j , {{uk, ui }}(β)}}(α)L = {{u j , H (β)ik
L }}(α) ⊗ H (β)ik

R

=
(
∂l H

(β)ik
L

)
•

(
H (α)l j
L ⊗ H (α)l j

R

)
⊗ H (β)ik

R

=
(
∂l H

(β)ik
L

)′
H (α)l j
L ⊗ H (α)l j

R

(
∂l H

(β)ik
L

)′′ ⊗ H (β)ik
R . (3.19)

The three factors of (3.19) are exactly the three factors f, g, h of θi f θ j gθkh in the first
summand of (3.18); computing the full triple bracket produces two more terms that
reproduce the second and third summand.

We have then established the equivalence between each term of (3.14) and (3.15)
for the triple of generators (u j , ui , uk). The summation over all the pairs (α, β) is then
equivalent, too. In particular, identity (3.18) includes an implicit sumover all the triples of
indices (i, j, k). Then the vanishing of each individual term is a sufficient and necessary
condition for

prH� Tr
(
θi H

i jθ j

)
= 0 (3.20)

and (3.20) is equivalent to the vanishing of (3.11) for all the triples of generators.

Example 2. ([36]) The operator H = l2uru − lur2u (which is the operator presented in
Theorem 5 with α = β = 0, γ = 1) is Poisson. We can easily show it with the
language of double Poisson algebras: the operator corresponds to the double bracket
{{u, u}} = u2 ⊗ u − u ⊗ u2. The triple bracket in the scalar case is

{{u, u, u}} = (1 + τ + τ 2){{u, {{u, u}}}}L
= (1 + τ + τ 2)

[
{{u, u2}} ⊗ u −

(
u2 ⊗ u − u ⊗ u2

)
⊗ u2

]

= (1 + τ + τ 2)
[
u

(
u2 ⊗ u − u ⊗ u2

)
⊗ u +

(
u2 ⊗ u − u ⊗ u2

)
u ⊗ u

−
(
u2 ⊗ u − u ⊗ u2

)
⊗ u2

]

= (1 + τ + τ 2)
(
u3 ⊗ u ⊗ u − u ⊗ u3 ⊗ u − u2 ⊗ u ⊗ u2 + u ⊗ u2 ⊗ u2

)

= 0.

Since the operator is Poisson, in particular it is Hamiltonian.

The language of double Poisson algebras can be used not only to characterise the
operators, but to replace the whole Hamiltonian formalism. The Hamiltonian equations
defined by the Hamiltonian structure H and Hamiltonian functional Tr f is, with this
language,

uit = m
(
{{ f, ui }}

)
.

Similarly, the Poisson bracket between two local functionals Tr f and Tr g is

{Tr f,Tr g} = −Trm ({{ f, g}}) . (3.21)

The two statements can be easily verified by a direct computation. For instance, let us
consider the operator Hi j = ∑

α lH (α)i j
L

r
H (α)i j
R

and the functional Tr f . From (2.7) and
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the formula for the variational derivative (3.5), we have that the characteristics of the
Hamiltonian vector field has the same form prescribed by the master formula (3.10),
namely

uit = m

(∑
(H (α)i j

L ⊗ H (α)i j
R ) •

(
∂ f

∂u j

)σ )
= m

(∑
H (α)i j
L

(
∂ f

∂u j

)′′
⊗

(
∂ f

∂u j

)′
H (α)i j

R

)

=
∑

H (α)i j
L

(
∂ f

∂u j

)′′ (
∂ f

∂u j

)′
H (α)i j

R .

3.3. Difference operators, multiplicative double Poisson vertex algebras and Poisson
bivectors. In this sectionwe present the axioms of thewhatwe call doublemultiplicative
Poisson vertex algebras (double multiplicative PVAs). While (standard) double PVAs
[14] are tailored for nonabelian PDEs, double multiplicative PVAs are the structures
corresponding to the Hamiltonian formalism for nonabelian D�Es. Their axioms are
modelled on those of multiplicative Poisson vertex algebras, [15,16] which describe the
structure of Abelian differential-difference equations.

Definition 12. LetA be the space of difference (Laurent) polynomials with � generators
as in Sect. 2. A multiplicative λ bracket is a bilinear operation

{{−λ−}}: A × A → A ⊗ A[[λ, λ−1]]
such that the following properties hold:

1. {{Saλb}} = λ−1{{aλb}} and {{aλSb}} = λS{{aλb}} (sesquilinearity)
2. {{aλbc}} = {{aλb}}c + b{{aλc}} (Left Leibniz property)
3. {{abλc}} = {{aλSc}}→ 	 b + (→a) 	 {{bλSc}} (Right Leibinz property)

The notation used for the right Leibniz propertymeans that, for {{aλb}} = ∑
B(a, b)′p

⊗ B(a, b)′′pλp, we have

{{aλSc}}→ 	 b =
∑

B(a, c)′p
(Spb

) ⊗ B(a, c)′′pλp,

(→a) 	 {{bλSc}} =
∑

B(b, c)′p ⊗ (Spa
)
B(b, c)′′pλp.

Definition 13. A double multiplicative PVA is an algebra of difference polynomials A
endowed with a multiplicative λ bracket satisfying the additional properties

1. Skewsymmetry: {{bλa}} = −→{{a(λS)−1b}}σ ;
2. Double Jacobi identity {{aλ{{bμc}}}}L − {{bμ{{aλc}}}}R = {{{{aλb}}λμc}}L .
The notation for the skewsymmetry property is

→{{a(λS)−1b}}σ :=
∑

S−p
(
B(a, b)′′p ⊗ B(a, b)′p

)
λ−p, (3.22)

namely the arrow on the left of the bracket denotes that the shift operator acts on the
terms of the bracket themselves. Similarly to the definitions used for double Poisson
algebras in Sect. 3.2 and adopting the same notation we used for the Leibniz property,
the entries of the double Jacobi identity are

{{aλb ⊗ c}}L := {{aλb}} ⊗ c, {{aλb ⊗ c}}R := b ⊗ {{aλc}},
{{a ⊗ bλc}}L := {{aλSc}}→ ⊗1 b, {{a ⊗ bλc}}R := {{bλSc}}→ ⊗1 a.
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Note that the skewsymmetry property, together with the left Leibniz property, implies
the right Leibniz property and generalises the notion of double bracket.

The master formula for the double multiplicative λ bracket is

{{aλb}} =
�∑

i=1

∑
n,m∈Z

∂b

∂u j
m

(λS)m • {{uiλSu j }} • (λS)−n
(

∂a

∂uin

)σ

, (3.23)

where {{aλSb}} • (c ⊗ d) = B(a, b)′p(Spc) ⊗ (Spd)B(a, b)′′pλp.
Exactly as we showed for the ultralocal case in Proposition 1, there is a one-to-

one correspondence between λ brackets and difference operators; the skewsymmetry
property of the bracket is equivalent to the skewsymmetry of the operator and the double
Jacobi identity is equivalent to condition (2.6).

A generic scalar difference operator has the form (2.2); we also want to consider
nonlocal operators, allowing the summation of (2.2) to either run from N to ∞, as a
Taylor series, or from −∞ to M as a Laurent series. As an example, let us consider an
operator of the form K = J (S−1)−1L for J and L ultralocal difference operators (this
will allow us to focus on a single expansion). Its corresponding double λ bracket can be
written as

{{uλu}} = (
J ′ ⊗ J ′′) • 1

λS − 1

(
K ′ ⊗ K ′′) ,

which we can expand, alternatively, as

{{uλu}} =
−1∑

k=−∞
J ′(Sk K ′) ⊗ (Sk K ′′)J ′′λk or {{uλu}} =

∞∑
k=0

−J ′(Sk K ′) ⊗ (Sk K ′′)J ′′λk .

Note that some difficultieswith the definition of skewsymmetry arise from the choice of a
direction for the expansion, since the one prescribed in (3.22) is in the opposite direction
than the one chosen for {{bλa}}. For the class of nonlocal operators we consider, as
detailed in the proof of the following Theorem 1, the skewsymmetry of the double λ

bracket follows from the expansion in the same direction of the bracket associated to
its adjoint operator. For a more detailed account regarding the manipulation of nonlocal
operators as double λ brackets (including their skewsymmetry) the interested reader
shall consult the recent preprint [19], which appeared while this manuscript was under
revision.

Let

Hi j =
∑
p,αp

l
H

(αp )i j
L

r
H

(αp )i j
R

Sp (3.24)

be the entries of a difference operator-valued matrix for the �-components case. To such
a difference operator we associate a double λ bracket defined on the generator {ui } of
A

{{uiλu j }} =
∑
p,αp

H
(αp) j i
L ⊗ H

(αp) j i
R λp; (3.25)

conversely, given a double λ brackets on the generators of {ui } of A, we can define the
matrix of difference operators

Hi j = {{u j
λu

i }}
∣∣∣
λ=S

.
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Theorem 1. The λ bracket associated to a skewsymmetric difference operator according
to (3.25) is the bracket of a double multiplicative PVA if and only if the operator H =(
Hi j

)�

i, j=1 with entries of the form (3.24) is Poisson.

Proof. The equivalence between the skewsymmetry of H and the double bracket is due
to an elementary computation. The double bracket associated to the entry Hi j is

∑
H

(αp) j i
R ⊗ H

(αp) j i
L λp = −

∑
(λS)−p

[
H

(αp)i j
L ⊗ H

(αp)i j
R

]
,

which indeed corresponds to the difference operator

−
∑

S−p l
H

(αp ) j i
L

r
H

(αp ) j i
R

= −(H ji )†.

Note that, if the difference operator is nonlocal, then the skewsymmetry property should
be checked by expanding {{aλb}} and →{{b(λS)−1a}} in the same direction.

Establishing the equivalence between the double Jacobi identity and the Poisson
condition for a difference operator requires some long but straightforward computations.
They have the same structure as in the ultralocal case: we exhibit them for a scalar
difference operator of the form

H =
∑

l
H

(αp )

L
r
H

(αp )

R
Sp (3.26)

in Appendix A. The multi-component case behaves in the same way.

As for the ultralocal case,we canuse the doubleλbrackets to describe theHamiltonian
action and the Poisson brackets defined by the operator H , by the identities

uit = m
(
{{ fλui }}

) ∣∣∣
λ=1

and

{∫Tr f, ∫Tr g} = −
∫

Trm ({{ fλg}})
∣∣
λ=1. (3.27)

The well-posedness of the two identities above, and in particular that the RHS of (3.27)
defines a Poisson bracket onF can be easily proved, following the same lines of the proof
of the similar result for double Poisson vertex algebras (namely, the partial differential
case) given in [14, Theorem 3.6].

We sketch here the proof of the well-posedness of the definition of the bracket with
respect to the integral operation (namely that replacing f (or g) with S f (or Sg) in the
RHS of (3.27) does not affect the result, and show that the formula (2.5) coincides with
the one obtained starting from the double λ bracket.

Proposition 2. Let {{−λ−}} be the λ bracket of a multiplicative double Poisson vertex
algebra. Then

∫
Trm ({{S fλg}})

∣∣∣
λ=1

=
∫

Trm ({{ fλSg}})
∣∣
λ=1 =

∫
Trm ({{ fλg}})

∣∣
λ=1. (3.28)
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Proof. Using the sesquilinearity properties we have
∫

Trm ({{S fλg}})
∣∣∣
λ=1

=
∫

Trm
(
λ−1{{ fλg}}

) ∣∣∣
λ=1

,

∫
Trm ({{ fλSg}})

∣∣∣
λ=1

=
∫

Trm (Sλ{{ fλg}})
∣∣∣
λ=1

=
∫

Trm (λ{{ fλg}})
∣∣∣
λ=1

.

Setting λ = 1 we have (3.28).

Proposition 3. Let H be a Poisson difference operator of the form (3.24) and let {{uiλu j }}
the corresponding λ bracket of a multiplicative double Poisson vertex algebra as in
(3.25). Then the Poisson bracket defined by H as in (2.5) is equal to (3.27).

Proof. Using the master formula (3.23) with (3.27) we obtain

− {∫Tr f, ∫Tr g} =
∫

Tr

[(
∂
u j
n
g
)′ (SmH

(αp) j i
L

) [
Sm+p−n

(
∂uin

f
)′′ (

∂uin
f
)′]

(
SmH

(αp) j i
R

) (
∂
u j
n
g
)′′]

=
∫

Tr

[(
∂
u j
n
g
)′ (SmH

(αp) j i
L

) (
Sm+p δ f

δui

) (
SmH

(αp) j i
R

) (
∂
u j
n
g
)′′]

=
∫

Tr

[[
S−m

(
∂
u j
n
g
)′′ (

∂
u j
n
g
)′]

H
(αp) j i
L

(
Sp δ f

δui

)
H

(αp) j i
R

]

=
∫

Tr

[
δg

δu j
H

(αp) j i
L

(
Sp δ f

δui

)
H

(αp) j i
R

]
.

From the skewsymmetry of the operator H , this turns out to be the same as

{∫Tr f, ∫Tr g} =
∫

Tr

[(
S−p δ f

δui

) (
S−pH

(αp)i j
L

) δg

δu j

(
S−pH

(αp)i j
R

)]
.

Finally, by shifting all the integrand by p, we obtain

{∫Tr f, ∫Tr g} =
∫

Tr
δ f

δui
H

(αp)i j
L

(
Sp δg

δu j

)
H

(αp)i j
R =

∫
Tr

δ f

δui
Hi j

(
δg

δu j

)

as in the definition we gave in (2.5).

Proposition 3 establishes the equivalence between the language of Poisson operators
and double multiplicative PVAs not only at the level of the operators (namely, between
Poisson operators andλbrackets), but also at the level of the Poisson brackets themselves.

4. A Path to Noncommutative Poisson Geometry

The θ formalism, introduced as a mere computational tool in Sect. 2, deserves to be in-
vestigated in further detail. In this section we find a characterisation of Poisson bivectors
in terms of a noncommutative version of the Schouten torsion—this allows us to exploit
the standardmachinery of Poisson geometry to treatHamiltonian and integrable systems,
even defining the Poisson–Lichnerowicz complex for nonabelian Poisson manifolds and
its cohomology.
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4.1. θ Formalism and functional polyvector fields. The complex of functional polyvec-
tor fields, which is presented in [9,22] for the difference Abelian case, generalises nat-
urally to the nonabelian case we are dealing with; the θ formalism for the nonabelian
differential case is presented in [30] and the one for the difference case in [10].

The aim of this section is reviewing the θ formalism used in Sect. 2 and, in analogy
with the well-established theory for the commutative case, establishing the isomorphism
between polynomials in θ and polyvector fields we implicitly use when representing
skewsymmetric operators with degree 2 polynomials (as in Eq. (2.4)), providing explicit
formulae for their Schouten brackets.

Definition 14. A local p-vector field is a p-alternating map from F p to F ; it is then of
the form

B(F1, . . . , Fp) =
∫

Tr

[
B
i1,...,i p
(1)n1,...,n p

(
Sn1 δF1

δui1

)
B
i1,...,i p
(2)n1,...,n p

· · · Bi1,...,i p
(p)n1,...,n p

(
Sn p

δFp

δuip

)]

(4.1)

with B(r) inA such that B(σ (F1), . . . , σ (Fp)) = (−1)|σ |B(F1, . . . , Fp).

A 0-vector field is clearly just an element of F , namely a local functional. A 1-vector
field has the form

X (F) =
∫

Tr Xi
nSn δF

δui
, F ∈ F

which is equivalent, under the integral and cyclic permutation, to the action of the (sum
of) evolutionary vector field of characteristics S−n Xi

n on F (see Eq. (3.4)): the notion of
local 1-vector fields coincides with the notion of evolutionary vector fields on F . More
interestingly, let us consider a local 2-vector field:

B(F,G) =
∫

Tr Bi j
(1)mn

(
Sm δF

δui

)
Bi j

(2)mn

(
Sn δG

δu j

)

=
∫

Tr
δF

δui
B̃i j

(2)n′

(
Sn′ δG

δu j

)
B̃i j

(1)n′

where n′ = n−m, B̃i j
(1)n′ = S−mBi j

(1)mn and B̃i j
(2)n′ = S−mBi j

(2)mn , by the cyclic property
of the trace and integrating by parts to get rid ofSm . It matches the definition of a bracket
given in (2.5), for an operator K of the form rB̃(1)n′ lB̃(2)n′Sn′

. We also observe that the

skewsymmetry property for a bivector field, B(F,G) = −B(G, F), can be written as
∫

Tr
δF

δui
Bi j

(2)n

(
Sn δG

δu j

)
Bi j

(1)n = −
∫

Tr
δG

δu j
B ji

(2)n′

(
Sn′ δF

δui

)
B ji

(1)n′

= −
∫

Tr
δF

δui
S−n′

(
B ji

(1)n′
δG

δu j
B ji

(2)n′

)
,

which is exactly the skewsymmetry of the aforementioned operator K . One can read
how the requirement that a polyvector field is an alternating map affects the coefficients
in the same fashion. Moreover, since in F one can always integrate by parts to get rid
of the shift operator acting on one (“the first”) argument of the polyvector field, it is
apparent that a local p-vector field is defined by a totally skewsymmetric difference
operator with p − 1 arguments.
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Let us now consider the spaces Â and F̂ introduced in Definitions 6 and 7; the θ

variational derivative can be defined, in analogy with the standard one given in (3.5),
as

δ f

δθi
:= S−nm

(
∂ f

∂θi,n

)σ

and it satisfies the same properties (3.6).

Proposition 4. The space F̂ is isomorphic to the space of local polyvector fields; in
particular, an element of F̂ p is in a one-to-one correspondence with a local p-vector
field.

Proof. The lines of the proof of the analogue theorem for the commutative case [9,
Proposition 2] are still valid in the noncommutative setting. Given an element

∫
Tr B ∈

F̂ p, the corresponding p-vector field is given by

B̃(F1, . . . , Fp) =
∫

Trm

[
∂

∂θi p,n p

· · ·m
(

∂

∂θi1,n1
B 	 Sn1 δF1

δui1

)
	 · · ·Sn p

δFp

δuip

]
.

Conversely, given a p-vector field of the form (4.1), the corresponding element in F̂ p

is

1

p!
∫

Tr
[
B
i1,...,i p
(1)n1,...,n p

θi1,n1B
i1,...,i p
(2)n1,...,n p

· · · Bi1,...,i p
(p)n1,...,n p

θi p,n p

]
. (4.2)

Note that a p-vector of the form (4.2) can always be integrated by parts and cyclically
permuted in such a way that it can be written as

∫
Tr θi1K

(
θi2 , . . . , θi p

)
,

with K a (p − 1) difference operator acting on θ ’s.
As anticipated in Sect. 2, the existence of the isomorphism between the space of local

polyvector fields and F̂ allows us to perpetrate an abuse of language and identify the
formerwith the latter one. This leads us to introduce a tailored notion of Schouten bracket
on F̂ . In Sect. 4.2 we present the construction for double Poisson algebras, namely in the
case of ODEs; in Sect. 4.3 we repeat the construction for multiplicative double Poisson
vertex algebras, namely those tailored on nonabelian differential-difference systems.
In both cases, we start defining a double bracket on Â, and then use it to obtain a
well-defined bracket on F̂ satisfying the axioms of a Gerstenhaber algebra, namely
proving that it is indeed the Schouten bracket for the corresponding local polyvector
fields.
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4.2. Schouten brackets for nonabelian ODEs. Let us consider the “θ version" of an
ultralocal algebraA0, as the one introduced in Sect. 3.2. We have Â0 = A0[θ1, . . . , θ�].
Similarly we have the space F̂0 = Â0/[Â0, Â0].

First, we need to introduce a graded version of the operations we have defined on
A⊗n (since the shift operation is not involved, the following are the same for both Â0

and Â). We have

(a ⊗ b)σ = (−1)|a||b|b ⊗ a,

τ (a1 ⊗ an−1 ⊗ an) = (−1)|an |(|a1|+···+|an−1|)an ⊗ a1 · · · ⊗ an−1,

a ⊗ b ⊗1 c = (−1)|b||c|a ⊗ c ⊗ b, (4.3)

(a ⊗ b) 	 c = (−1)|b||c|ac ⊗ b, a 	 (b ⊗ c) = (−1)|a||b|b ⊗ ac, (4.4)

(a ⊗ b) • (c ⊗ d) = (−1)|b|(|c|+|d|)ac ⊗ db. (4.5)

Moreover,

∂

∂z
(ab) = ∂a

∂z
b + (−1)|z||a|a ∂b

∂z

and, by the graded version of the trace,
∫

Tr ab = (−1)|a||b|
∫

Tr ba. (4.6)

Our aim is to define the Schouten bracket among ultralocal polyvector fields, namely
in F̂0. For this, we introduce a degree -1 double bracket Â0 × Â0 → Â0 ⊗ Â0 given
by the formula

[[a, b]] :=
�∑

i=1

(
∂b

∂ui
•

(
∂a

∂θi

)σ

+ (−1)|b| ∂b

∂θi
•

(
∂a

∂ui

)σ )
. (4.7)

Proposition 5. The bracket (4.7) satisfies the following basic properties:

(i) [[b, a]] = −(−1)(|a|−1)(|b|−1)[[a, b]]σ (graded skewsymmetry);
(ii) [[a, bc]] = b[[a, c]] + (−1)(|a|−1)|c|[[a, b]]c (graded Leibniz property).

Note that the signs for the Leibniz property imply that this bracket is a derivation
from the right, i.e. D(ab) = aD(b) + (−1)|D||b|D(a)b.

Proof. (i). A direct computations using the definition (4.7) shows that

[[b, a]] =
∑

(−1)b
′
θb

′′
θ

((
∂a

∂ui

)′
⊗

(
∂a

∂ui

)′′)
•

((
∂b

∂θi

)′′
⊗

(
∂b

∂θi

)′)

+ (−1)|a|+b′
ub

′′
u

((
∂a

∂θi

)′
⊗

(
∂a

∂θi

)′′)
•

((
∂b

∂ui

)′′
⊗

(
∂b

∂ui

)′)
,

(4.8)

where for shorthand we denote degθ (∂ub)
′ = b′

u and so on. Then, by combining (4.5)
and (4.3) we get

[(a ⊗ b) • (c ⊗ d)]σ = (−1)(|a|+|b|)(|c|+|d|)(c ⊗ d)σ • (a ⊗ b)σ .
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This means that for (4.8) we have

[[b, a]] =
∑

(−1)b
′
θ b

′′
θ +(a′

u+a
′′
u )(b′

θ+b
′′
θ )+b′

θ b
′′
θ +a

′
ua

′′
u

[((
∂b

∂θi

)′
⊗

(
∂b

∂θi

)′′)
•

((
∂a

∂ui

)′′
⊗

(
∂a

∂ui

)′)]σ

+ (−1)|a|+b′
ub

′′
u+(a′

θ+a
′′
θ )(b′

u+b
′′
u )+b′

ub
′′
u+a

′
θa

′′
θ

[((
∂b

∂ui

)′
⊗

(
∂b

∂ui

)′′)
•

((
∂a

∂θi

)′′
⊗

(
∂a

∂θi

)′)]σ

=
∑ [

(−1)(a
′
u+a

′′
u )(b′

θ+b
′′
θ ) ∂b

∂θi
•

(
∂a

∂ui

)σ

+ (−1)|a|+(a′
θ+a

′′
θ )(b′

u+b
′′
u ) ∂b

∂ui
•

(
∂a

∂θi

)σ ]σ

.

Wefinally observe that (z′u +z′′u) = |z| and (z′θ +z′′θ ) = |z|−1 for z = a, b, so that the two
exponents are respectively |a|(|b|−1) and |a|+(|a|−1)|b|. By rearranging the two terms
of the sum and collecting common factors we obtain [[b, a]] = (−1)|a||b|+|a|+|b|[[a, b]]σ
as claimed.

(ii) From a straightforward application of the formula (4.7) we have

[[a, bc]] =
(

∂b

∂ui
c + b

∂c

∂ui

)
•

(
∂a

∂θi

)σ

+ (−1)|b|+|c|
(

∂b

∂θi
c + (−1)|b|b ∂c

∂θi

)
•

(
∂a

∂ui

)σ

= b

[
∂c

∂ui
•

(
∂a

∂θi

)σ

+ (−1)|c| ∂c

∂θi
•

(
∂a

∂ui

)σ ]

+

((
∂b

∂ui

)′
⊗

(
∂b

∂ui

)′′
c

)
•

(
∂a

∂θi

)σ

+ (−1)|b|+|c|
((

∂b

∂θi

)′
⊗

(
∂b

∂θi

)′′
c

)
•

(
∂a

∂ui

)σ

= b[[a, c]] + (−1)|c|(|a|−1)
[

∂b

∂ui
•

(
∂a

∂θi

)σ ]
c + (−1)|b|+|c|+|a||c|

[
∂b

∂θi
•

(
∂a

∂ui

)σ ]
c.

Collecting the common factor in the second and third summands we obtain (−1)|c|(|a|−1)

[[a, b]]c as claimed.

Proposition 6. The bracket (4.7) enjoys the following “right Leibniz property”:

[[ab, c]] = [[a, c]] 	 b + (−1)|a|(|c|−1)a 	 [[b, c]].
Proof. Using skewsymmetry and the graded Leibniz property of Proposition 5 we have

[[ab, c]] = −(−1)(|a|+|b|−1)(|c|−1) (a[[c, b]])σ − (−1)(|a|−1)(|c|−1) ([[c, a]]b)σ .

Denoting (cb)′ = |[[c, b]]′|, and similarly for (cb)′′, (ca)′, and (ca)′′, then

[[ab, c]] = −(−1)(|a|+|b|−1)(|c|−1)+(cb)′(cb)′′a 	 [[c, b]]′′ ⊗ [[c, b]]′
− (−1)(|a|−1)(|c|−1)+(ca)′(ca)′′ [[c, a]]′′ ⊗ [[c, a]]′ 	 b

= (−1)|a|(|c|−1)a 	 [[b, c]] + [[a, c]] 	 b.

The bracket (4.7) satisfies graded versions of skewsymmetry property, gradedLeibniz
property and, aswe prove for Proposition 21 inAppendixB, double Jacobi identity. Since
these properties are analogue to the properties that a (standard) Schouten bracket enjoys,
we call [[−,−]] the double Schouten bracket. It is the fundamental building block for
the Schouten bracket in the nonabelian setting.
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Remark 1. The structure of double Schouten bracket we have presented is the same as
the double Schouten–Nijenhuis bracket on the derivations of A, with A = A0, defined
by Van Den Bergh in [36, Section 3.2] after the identification

θi := ∂

∂ui
: A0 → A0 ⊗ A0.

Both the brackets define a structure of double Gerstenhaber algebra and they coincide
on the generators. Indeed, the bracket is trivial on generators of A0 and ∂

∂ui
(u j ) =

δ
j
i 1 ⊗ 1 = [[θi , u j ]]. On the other hand, in Van Den Bergh’s double bracket we have

{{
∂

∂ui
,

∂

∂u j

}}
= τ(23)

((
∂

∂ui
⊗ 1

)
◦ ∂

∂u j
−

(
1 ⊗ ∂

∂u j

)
◦ ∂

∂ui

)

+ τ(12)

((
1 ⊗ ∂

∂ui

)
◦ ∂

∂u j
−

(
∂

∂u j
⊗ 1

)
◦ ∂

∂ui

)
,

where τ(12) and τ(23) denote permutations of the factors in A⊗3
0 . Both the terms in the

RHS vanish because of the commutation of double derivatives [14, Lemma 2.6], so that
the double bracket between the derivations coincides with [[θi , θ j ]] = 0.

Proposition 7. Let a, b ∈ F̂0. The bracked defined by

[a, b] := Trm([[a, b]]) (4.9)

is a well-defined bilinear map F̂ p
0 × F̂ q

0 → F̂ p+q−1
0

Proof. The grading of the bracket is obvious, because the derivative with respect to
θ is of degree −1, while all the other operations in the definition are of degree 0.
We need to prove that such an operation is well-defined, namely that it is vanishes
on elements of [Â0, Â0]. To do so, let’s recall that the graded commutator in Â0 is
[a, b] = ab − (−1)|a||b|ba. Then

[a, bc − (−1)|b||c|cb] = Trm([[a, bc]]) − (−1)|b||c| Trm([[a, cb]])
= Trm

(
b[[a, c]] + (−1)|a||c|+|c|[[a, b]]c

−(−1)|b||c|c[[a, b]] − (−1)|b||c|+|a||b|+|b|[[a, c]]b
)

.

Observing that Tr ab = (−1)|a||b| Tr ba we have then

[a, bc − (−1)|b||c|cb] = Trm
(
b[[a, c]] + (−1)|a||c|+|c|[[a, b]]c − (−1)|b||c|+|a||c|+|b||c|+|c|[[a, b]]c

−(−1)|b||c|+|a||b|+|b|+|a||b|+|b||c|+|b|b[[a, c]]
)

= 0.

Note that the vanishing of the expression is due to the overall trace. We also need to
show that the bracket vanishes for elements of [Â0, Â0] in its first entry. By definition
we have

[ab − (−1)|a||b|ba, c] = Trm
(
[[ab − (−1)|a||b|ba, c]]

)

= −(−1)(|a|+|b|−1)(|c|−1) Trm
(
[[c, ab − (−1)|a||b|ba]]σ

)
,
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because of the skewsymmetry of the double Schouten bracket. We can now go back to
the computation for the commutator in the second entry because Trm(Aσ ) = Trm(A),
which is straightforward given (4.3) and (4.6). In conclusion, the bracket vanishes for
elements of [Â0, Â0] in either entry, which means that it is well-defined on F̂0.

Definition 15. Let [−,−] be a degree -1 bilinear bracket among polyvector fields. We
call such a bracket a Schouten bracket if it coincides with the commutator of vector
fields among 1-vectors, with the action of a vector field on a functional when computed
between a 0- and a 1-vector, and satisfies the following graded versions of skewsymmetry
and Jacobi identity:

(i) [P, Q] = −(−1)(p−1)(q−1)[Q, P]
(ii) [P, [Q, R]] = [[P, Q], R] + (−1)(p−1)(q−1)[Q, [P, R]]
for a p-vector P , a q-vector Q and a r -vector R.

We are now going to prove that bracket (4.9) fulfils the properties outlined in Def-
inition 15, starting from the fact that it coincides with the action of a vector field on a
local functionals when evaluated between elements ofF0 and F̂ 1

0 . Indeed, if we compute
[X, f ] using (4.7) for X = Tr Xiθi and f ∈ F0, we obtain exactly the same expression
as in (3.3).

Proposition 8. For any pair of vector fields X,Y , the bracket [X,Y ] defined as in (4.9)
coincides with the commutator of vector fields, namely produces a vector field whose
action on the functional f is X (Y ( f )) − Y (X ( f )).

Proof. Note that in the ultralocal setting a vector field {Xi } acts on f simply by

Trm

(
Xi 	

∂ f

∂ui

)
= Tr

((
∂ f

∂ui

)′
Xi

(
∂ f

∂ui

)′′)
,

where the sum over i is left implicit. From Lemma 1, the commutator of vector fields
has characteristics

[X,Y ]i =
(

∂Y i

∂u j

)′
X j

(
∂Y i

∂u j

)′′
−

(
∂Xi

∂u j

)′
Y j

(
∂Xi

∂u j

)′′
. (4.10)

The elements of F̂0 corresponding to those vector fields are Tr Xiθi and Tr Y jθ j ; using
formula (4.7) we have

[Xiθi ,Y
jθ j ] = Trm

[(
∂Y j

∂ui
θ j

)
• (1 ⊗ Xi ) −

(
Y i ⊗ 1

)
•

(
∂X j

∂ui
θ j

)σ
]

= Tr

[(
∂Y j

∂ui

)′
Xi

(
∂Y j

∂ui

)′′
θ j − Y i

(
∂X j

∂ui

)′′
θ j

(
∂X j

∂ui

)′]
.

Using the trace operation to bring θ j in the second term to the rightmost position we
easily read the expression

[Xiθi ,Y
jθ j ] = Tr[X,Y ] jθ j

with [X,Y ] j as in (4.10).
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Proposition 9. Thebracket (4.9) is graded skewsymmetric as a Schouten bracket, namely

[b, a] = −(−1)(|a|−1)(|b|−1)[a, b] (4.11)

and fulfils the graded version of the Jacobi identity

[a, [b, c]] = [[a, b], c] + (−1)(|a|−1)(|b|−1)[b, [a, c]]. (4.12)

Proof. Let us first prove (4.11). From the definition and the graded supersymmetry of
[[a, b]] we have

[b, a] = −(−1)(|a|−1)(|b|−1) Trm([[a, b]]σ ).

Let us assume that [[a, b]] = A ⊗ B; then

[b, a] = −(−1)(|a|−1)(|b|−1)+|A||B| Tr BA = −(−1)(|a|−1)(|b|−1) Tr AB

= −(−1)(|a|−1)(|b|−1)[a, b].
The proof for (4.12) is long and left to Appendix B.

From Propositions 8 and 9 we conclude that the bracket (4.9) is the Schouten bracket
for nonabelian ultralocal polyvector fields.

4.3. Schouten (lambda) brackets for the local case. Having defined theSchouten bracket
for ultralocal polyvector fields, we now address themore general case of difference ones.
The underlying space of densities is the space of Laurent difference polynomials A.
Similarly to what we did in the previous section, we first introduce a double λ bracket
on Â and use it to define the Schouten bracket on the space F̂ .

Let us define the degree − 1 double λ bracket Â × Â → Â ⊗ Â[[λ]] given by the
formula

[[aλb]] :=
�∑

i=1

∑
m,n

(
∂b

∂uim
• (λS)m−n

(
∂a

∂θi,n

)σ

+(−1)|b| ∂b

∂θi,m
• (λS)m−n

(
∂a

∂uin

)σ )
.

(4.13)

Apart from the introduction of a grading, (4.13) is amultiplicative λ bracket: in particular
it satisfies the sesquilinearity property (see Definition 12).

Proposition 10. For the bracket defined in (4.13), we have the following:

[[Saλb]] = λ−1[[aλb]], (4.14)

[[aλSb]] = λS[[aλb]]. (4.15)

Proof. We recall that, for both the derivatives with respect to u’s and θ ’s, we have

∂S f

∂uin
= S ∂ f

∂uin−1

,
∂S f

∂θi,n
= S ∂ f

∂θi,n−1
.
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Let us just consider the first of the two summands in (4.13), since the behaviour is the
same in both. For the expansion of (4.14) we have

∂b

∂uim
• (λS)m−n

(
∂Sa
∂θi,n

)σ

= λ−1 ∂b

∂uim
• (λS)m−(n−1)

(
∂a

∂θi,n−1

)σ

,

and similarly for the second term. On the other hand, computing the bracket for (4.15)
we obtain

∂Sb
∂uim

• (λS)m−n
(

∂a

∂θi,n

)σ

=
(
S ∂b

∂uim−1

)
• (λS)m−n

(
∂a

∂θi,n

)σ

= λS
(

∂b

∂uim−1

• (λS)m−1−n
(

∂a

∂θi,n

)σ
)

.

The same happens for the second term in (4.13), giving us the full result (4.15).

Proposition 11. The bracket (3.23) enjoys the following version of the properties for the
λ brackets:

(i) Skewsymmetry

[[bλa]] = −(−1)(|a|−1)(|b|−1)→[[a(λS)−1b]]σ . (4.16)

(ii) Left Leibniz property

[[aλbc]] = b[[aλc]] + (−1)(|a|−1)|c|[[aλb]]c. (4.17)

(iii) Right Leibniz property

[[abλc]] = [[aλSc]] 	 (→b) + (−1)|a|(|c|−1) (→a) 	 [[bλSc]]. (4.18)

(iv) Jacobi identity

[[aλ[[bμc]]]]L − (−1)(|a|−1)(|b|−1)[[bμ[[aλc]]]]R − [[[[aλb]]λμc]]L = 0. (4.19)

The notation (→b) (resp., (→a)) used in (4.18) means that the shift operators ap-
pearing in the double Schouten brackets act also on b (resp. a).

Proof. For the sake of compactness, we omit the symbol for the summation over all the
indices i = 1, . . . , � and m, n ∈ Z. To prove (4.16), we compute using (4.13)

[[bλa]] = −(−1)(|a|−1)(|b|−1)
((

Sn−m ∂b

∂uim

)
•

(
∂a

∂θi,n

)σ

+(−1)|b|
(
Sn−m ∂b

∂θi,m

)
•

(
∂a

∂uin

)σ )σ

λn−m

= −(−1)(|a|−1)(|b|−1)λn−mSn−m
(

∂b

∂uim
• Sm−n

(
∂a

∂θi,n

)σ

+(−1)|b| ∂b

∂θi,m
• Sm−n

(
∂a

∂uin

)σ )σ

.
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If we write, symbolically, [[aλb]] = B ′ ⊗ B ′′λm−n , then in the last passage we can
read λn−mSn−m

(
B ′ ⊗ B ′′)σ , namely →[[a(λS)−1b]]. We have therefore obtained (4.16)

as claimed.
For (4.17), we have explicitly from (4.13) that

[[aλbc]] =
(

∂b

∂uim
c + b

∂c

∂uim

)
• (λS)m−n

(
∂a

∂θi,n

)σ

+ (−1)|b|+|c|
(

∂b

∂θi,m
c + (−1)|b|b ∂c

∂θi,m

)
• (λS)m−n

(
∂a

∂uin

)σ

= b[[aλc]] + (−1)|c|(|a|−1)
[

∂b

∂uim
• (λS)m−n

(
∂a

∂θi,n

)σ ]
c

+ (−1)|b|+|c|+|c||a|
[

∂b

∂θi,m
• (λS)m−n

(
∂a

∂uin

)σ ]
c.

Note that the set of sign rules (4.3), (4.4), (4.5) can be summarized as if the formulae
followed the standard rule for a θ -graded commutative product. This means that we
produce a (−1)|a||b| factor whenever we exchange the position of two elements a and b
following the definition of bullet, outer or innermodule product, orwe swap the factors in
Â⊗Â.Observe that the sign factor in the third termof the previous equality canbewritten
as (−1)|c|(|a|+1)+|b| = (−1)|c|(|a|−1)+|b|, that we can collect the overall (−1)|c|(|a|−1)

factor in the second and third terms and express them as (−1)|c|(|a|−1)[[aλb]]c, namely
the second term in the RHS of (4.17).

Property (4.18) follows from (4.17) together with the skewsymmetry (4.16).
The proof for (4.19) follows the same lines as the one for Proposition 21 in Appendix

B. The formal parameters λ andμ play little role in the overall computations: note that in
all the instances where the left Leibniz property for the double Schouten bracket (Part (ii)
of Proposition 5) is used, we replace it with the same property for the double Schouten
λ bracket (4.17).

Similarly to what we observed in the previous section, the bracket (4.13) is a double
λ bracket satisfying a skewsymmetry and a double Jacobi identity with suitable and
consistent grading. We call this bracket a double Schouten λ bracket and use it to define
the Schouten bracket on the space F̂ . As before, we give a well-defined bracket on it
and we prove that it satisfies the properties of Definition 15.

Proposition 12. Given two elements a, b ∈ F̂ , the bracket

[a, b] :=
∫

Trm ([[aλb]])
∣∣
λ=1 (4.20)

is a bilinear map F̂ p × F̂ q → F̂ p+q−1 that satisfies the graded skewsymmetry (4.11)
and the graded Jacobi identity (4.12).

Proof. We prove that (4.20) is well-defined. To check that the result does not change
if we perform cyclic permutations of a and b, we can follow the proof of Proposition
7, using the Leibniz properties (4.17) and (4.18). In addition, we have to check that
the same happens if we replace a (resp. b) with Sa (resp. Sb), since in F̂ the two are
identified. From (4.14) we have

[[Saλb]]
∣∣
λ=1 = [[aλb]]

∣∣
λ=1,
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so that the value of the bracket in F̂ does not change. Similarly, from (4.15) we have

[[aλSb]]
∣∣
λ=1 = S[[aλb]]

∣∣
λ=1,

which yields the same result as [[aλb]]|λ=1 after the integration.
The skewsymmetry and the Jacobi identity for (4.20) follow from Proposition 11 as

in the analogue ultralocal case (compare with Proposition 9 and Appendix B).

FromProposition 12we can conclude that the bracket defined in (4.20) is the Schouten
bracket for nonabelian difference polyvector fields. Moreover, observe that the double
Schouten bracket (4.7) (and its corresponding Schouten bracket (4.9)) can be regarded
as a special case of the double Schouten λ bracket (4.13). This is the reason why we use
the same notation for (4.9) and (4.20).

4.4. Poisson bracket revisited. The identification of F̂ with the complex of polyvector
fields and the introduction of a Schouten bracket (4.20) on it allows us to replace the
definition of Poisson operator (2.6) with the standard language of Poisson geometry.

Let us consider a bivector B of the form

B =
∑
p,αp

∫
Tr θi H

(αp)i j
L θ j,pH

(αp)i j
R , (4.21)

defined, according to (2.4), by the skewsymmetric operator

H =
∑ (

l
H

(αp )i j
L

r
H

(αp )i j
R

Sp − S−pr
H

(αp ) j i
L

l
H

(αp ) j i
R

)
.

As in classical Poisson geometry, we say that H is a Hamiltonian operator if it has
two main properties (which are shared by double Poisson brackets and double Poisson
λ bracket, see [14]):

1. It defines a Lie algebra onF , namely it defines a skewsymmetric bracket which fulfils
the Jacobi identity (a Poisson bracket)

2. Defines an action of F onA by derivations (Hamiltonian vector fields).

We can define and interpret both these structures using only the Schouten bracket and a
bivector satisfying some constraints, starting from the action of F on A.

Proposition 13. Let B be a bivector and F = ∫
Tr f a local functional. Then the

evolutionary vector field associated to F and produced by the operator H is

XF = −[B, F]. (4.22)

Proof. From the definition of Schouten bracket (4.20) and the master formula (4.13) we
have

[B, ∫Tr f ] =
∫

Tr

(
∂ f

∂uim

)′ (
Sm−n

(
∂B

∂θi,n

)′′ (
∂B

∂θi,n

)′) (
∂ f

∂uim

)′′
. (4.23)

The derivative of B with respect to θ is
(

∂B

∂θl,n

)σ

= δn,0H
(αp)l j
L θ j,pH

(αp)l j
R ⊗ 1 − H (αn) jl

R ⊗ θ j H
(αn) jl
L . (4.24)
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After some elementary manipulations we can rewrite (4.23) as

[B, ∫Tr f ] =
∫

Tr
(
H

(αp)li
L θi,pH

(αp)li
R −

(
S−pH

(αp)il
R

)
θi,−p

(
S−pH

(αp)il
L

)) δ f

δul

(4.25)

Finally, normalising (4.25) collecting θi we obtain the evolutionary vector field

[B, ∫Tr f ] =
∫

Tr

[(
S−pH

(αp)li
R

) (
S−p δ f

δul

) (
S−pH

(αp)li
L

)

−H
(αp)il
L

(
Sp δ f

δul

)
H

(αp)il
R

]
θi ,

which is exactly the evolutionary vector field of characteristics

Xi = −
∑
l

H il
(

δ f

δul

)
.

If H is a Hamiltonian operator, this is, up to the sign, the expression for the characteristic
of a Hamiltonian vector field (2.7). Because of this, we put the minus sign in (4.22).

Given an evolutionary vector field as defined in (4.22), we use the Schouten bracket
to define a bracket inF , too. The operational definition of Poisson bracket (2.5) we have
used throughout the paper can be read, indeed, as

{F,G} = XG(F), (4.26)

or

{F,G} = −[[B,G], F]. (4.27)

We can call (4.26) a Poisson bracket only if it satisfies skewsymmetry and Jacobi identity
(or, equivalently, if H is a Hamiltonian operator); however, any bivector B can be used
to define a bracket in F according to (4.27).

Proposition 14. The bracket (4.27) is skewsymmetric.

Proof. It simply follows from the Jacobi identity for the Schouten bracket. Indeed, we
have

{F,G} = −[[B,G], F] = −[G, [B, F]] − [B, [G, F]]
Then, using the fact that the Schouten bracket between local functionals vanishes and
the skewsymmetry (4.11), we can conclude that

{F,G} = −[G, [B, F]] = [[B, F],G] = −{G, F}.
We can exploit the skewsymmetry of the Poisson bracket to define, equivalently to

(4.27),

{F,G} = [[B, F],G]. (4.28)
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Lemma 2. The Jacobiator of the bracket (4.28) is

{F, {G, H}} + {G, {H, F}} + {H, {F,G}} = −1

2
[[[[B, B] , F] ,G] , H ] . (4.29)

Then, the Jacobi identity is equivalent to

[[[[B, B], F],G], H ] = 0, ∀F,G, H ∈ F . (4.30)

Proof. Let us first consider the two innermost brackets on the RHS of (4.30). By the
graded Jacobi identity for the Schouten bracket we have

[[B, B] , F] = 2 [B, [B, F]]
(4.22)= −2 [B, XF ] .

Then

[[[B, B] , F] ,G] = −2 [[B, XF ] ,G] = −2 [B, [XF ,G]] + 2 [XF , [B,G]]

(4.26)= −2 [B, {G, F}] − 2 [XF , XG ] = 2X{G,F} − 2 [XF , XG ] .

(4.31)

Moving to the outermost bracket, we obtain

[[[[B, B] , F] ,G] , H ] = 2X{G,F}(H) − 2XF (XG(H)) + 2XG (XF (H))

= 2 ({H, {G, F}} − {{H,G} , F} + {{H, F} ,G}) .

We then obtain the LHS of (4.29) using skewsymmetry. The vanishing of the RHS is the
Jacobi identity for the bracket {−,−}, hence it is equivalent to (4.30) as claimed.

We discussed the condition that B must satisfy in order to define a Poisson bracket,
which endows F with a Lie algebra structure. On the other hand, B allows us to define
evolutionary vector fields associated to local functionals by (4.22). If we want it to define
an action ofF onAwemust also ascertain that there is a Lie algebra morphism between
the Lie algebra of local functionals (F , {−,−}) and that of (evolutionary) vector fields
(A, [−,−]) (note that the we have already proved that the commutator of vector fields
in A is equivalent to the Schouten bracket of 1-vectors in F̂ in Proposition 8). The
condition is

X{F,G} = −[XF , XG ], (4.32)

which is equivalent (see (4.31)) to

[[[B, B], F],G] = 0. (4.33)

We saw that a generic bivector B defines a skewsymmetric bracket, and how the prop-
erties we require from a Poisson bracket are expressed in terms of the Schouten bracket.
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4.4.1. Poisson bivectors We introduced Poisson bivectors in Definition 9, but now we
give a characterisation in terms of Schouten brackets, as in classical Poisson geometry.

Theorem 2. Let P be a bivector defined by the operator H. Then

2[P, P] = prH�P.

Thus, P is Poisson if and only if [P, P] = 0.

The quantity [P, P] is, in general, a 3-vector which is called Schouten torsion of P .
Before proving our claim, let us start with a preliminary Lemma.

Lemma 3. Let P be a bivector. Then

∫
Trm

[
∂P

∂uim
• Sm−n

(
∂P

∂θi,n

)σ ]
=

∫
Trm

[
∂P

∂θi,m
• Sm−n

(
∂P

∂uin

)σ ]
(4.34)

Proof. The computations are essentially the same performed in the proof of (4.16)
for the double Schouten bracket. Note that |P| = 2, so that |(∂u P)′| ≡ |(∂u P)′′|,
|(∂θ P)′| + |(∂θ P)′′| = 1, and |(∂θ P)′||(∂θ P)′′| = 0. Then, from the definition of the
graded version of the bullet product and the swap operation we have that the LHS of
(4.34) is

(−1)|(∂u P)′′|
∫

Tr

(
∂P

∂uim

)′
Sm−n

((
∂P

∂θi,n

)′′ (
∂P

∂θi,n

)′) (
∂P

∂uim

)′′
.

Taking a graded cyclic permutations of the integrand and keeping into account the
possible grading of each factor we obtain

(−1)|(∂u P)′||(∂u P)′′|
∫

Tr

(
Sm−n

(
∂P

∂θi,n

)′) (
∂P

∂uim

)′′ (
∂P

∂uim

)′ (
Sm−n

(
∂P

∂θi,n

)′′)

= (−1)|(∂u P)′||(∂u P)′′|
∫

Tr

(
∂P

∂θi,n

)′ (
Sn−m

(
∂P

∂uim

)′′ (
∂P

∂uim

)′) (
∂P

∂θi,n

)′′

=
∫

Trm
∂P

∂θi,m
• Sm−n

(
∂P

∂uin

)σ

.

Proof of Theorem 2. Combining the master formula for the double Schouten bracket
(4.13) with (4.20) we compute

[P, P] =
∫

Trm

[
∂P

∂uim
• Sm−n

(
∂P

∂θi,n

)σ

+
∂P

∂θi,m
• Sm−n

(
∂P

∂uin

)σ ]
. (4.35)

Lemma 3 tells us that it is sufficient to compute just one of the two terms of (4.35),
namely

[P, P] = 2
∫

Trm

[
∂P

∂uim
• Sm−n

(
∂P

∂θi,n

)σ ]
. (4.36)
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According to the definition of P (4.21), we have

∂P

∂ulm
= θi

(
∂ulm

H
(αp)i j
L

)′ ⊗
(
∂ulm

H
(αp)i j
L

)′′
θ j,pH

(αp)i j
R

+ θi H
(αp)i j
L θi,p

(
∂ulm

H
(αp)i j
R

)′ ⊗
(
∂ulm

H
(αp)i j
R

)′′
,

while we have already a formula for the derivative with respect to θ in (4.24). The
computation for (4.36), then, produces

1

2
[P, P] = −

∫
Tr

[
θi

(
∂ulm

H
(αp)i j
L

)′ (Sm
(
H

(βq )lk
L θk,q H

(βq )lk
R

−
(
S−q H

(βq )kl
R

)
θk,−q

(
S−q H

(βq )kl
L

))) (
∂ulm

H
(αp)i j
L

)′′
θ j,pH

(αp)i j
R

]

+
∫

Tr

[
θi H

(αp)i j
L θ j,p

(
∂ulm

H
(αp)i j
R

)′ (Sm
(
H

(βq )lk
L θk,q H

(βq )lk
R

−
(
S−q H

(βq )kl
R

)
θk,−q

(
S−q H

(βq )kl
L

))) (
∂ulm

H
(αp)i j
R

)′′]
.

Observe that the term which is “sandiwched” between the two factors of the derivative
of Hi j is of the form Sm(H�)l , for

(H�)l = H
(βq )lk
L θk,q H

(βq )lk
R −

(
S−q H

(βq )kl
R

)
θk,−q

(
S−pH

(βq )kl
L

)
.

On the other hand, by definition we have that (2.6) reads

prH�P = −
∫

Tr θi
(
∂ulm

H
(αp)i j
L

)′ (Sm(H�)l
) (

∂ulm
H

(αp)i j
L

)′′
θ j,pH

(αp)i j
R

+
∫

Tr θi H
(αp)i j
L θ j,p

(
∂ulm

H
(αp)i j
R

)′ (Sm(H�)l
) (

∂ulm
H

(αp)i j
R

)′′ = 0.

Then the vanishing of the Poisson property is equivalent to [P, P] = 0 (or we can regard
2[P, P] as an alternative way to write prH�P).

Proposition 15. Let P be a Poisson bivector. Then the bracket defined on F as in (4.28)
is a Poisson bracket, namely

{G, F} = −{F,G},
{F, {G, H}} = {{F,G}, H} + {G, {F, H}}.

Proof. Since P is a bivector, the bracket is skewsymmetric (see Proposition 14). The
Jacobi identity is equivalent to (4.30) which follows from [P, P] = 0.

This means, in particular, that a Poisson operator (namely, an operator defining a
Poisson bivector) is always Hamiltonian (namely, it defines a Poisson bracket). Finally,
by the same property [P, P] = 0 we have (4.32).
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4.4.2. The Poisson cohomology It is a well-known fact in Poisson geometry that the ad-
joint action of the Poisson bivector defines a cochain complex on the space of polyvector
field, the so-called Poisson–Lichnerowicz complex. The cohomology of this complex
plays a crucial role both in the study of the Poisson manifolds themselves and for the
theory of the integrable systems. Indeed, it characterizes the Casimir functions and the
deformations of the Poisson bracket; moreover, the vanishing of the first cohomology
group guarantees the integrability for a bi-Hamiltonian system (see [13,21]). In this
section, we choose to define the Poisson cohomology of F using a Poisson bivector and
the notion of Schouten bracket, exactly as in the classical finite dimensional case or for
commutative PDEs and D�Es, without a direct reference to the underlying noncommu-
tative structure. For the ultralocal case, Pichereau and Van de Weyer [31,37] defined the
double Poisson cohomology on Â0 and showed how this maps on the space F̂0.

The Schouten bracket we have defined on F̂ allows to define the adjoint action of a
bivector P on the space,

adP : B �→ [P, B] B ∈ F̂ p, adP B ∈ F̂ p+1

Proposition 16. Let P be a Poisson bivector. Then (adP )2 = 0.

Proof. The proposition is an immediate consequence of the Jacobi identity for the
Schouten bracket. Let B be a p-vector field. We have

(adP )2 B = [P, [P, B]] = [[P, P], B] + (−1)1·1[P, [P, B]],

and the first term of the RHS vanishes because P is a Poisson bivector. Then we have
[P, [P, B]] = −[P, [P, B]] = 0.

This proposition allows us to call the adjoint action of P the Poisson differential and
to denote it as dP .

Definition 16. The space of local polyvector field F̂ , endowedwith a Poisson differential
dP , is the Poisson–Lichnerowicz complex of (F , P).

0 −−−−→ F dP−−−−→ F̂ 1 dP−−−−→ F̂ 2 dP−−−−→ · · · −−−−→ · · ·
The cohomology of the complex is called the Poisson cohomology of (F , P), that is,

H(P,F ) =
∞⊕
p=0

H p(P,F ) = Ker dP : F̂ p → F̂ p+1

Im dP : F̂ p−1 → F̂ p
.

The computation of the Poisson cohomology, even in the commutative case, is a
challenging task. For the commutative differential and difference case, see for instance
[8,9,24]; for the noncommutative ultralocal case, several examples of double Poisson
cohomology and their relation with the Poisson cohomology on the space of local func-
tionals have been obtained and discussed [3,31,37]. An investigation of the Poisson
cohomology for the local nonabelian case will be discussed in a forthcoming work.
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5. Quasi-Poisson structures and Hamiltonian structures

In this section we focus on ultralocal operators, which—as we have seen in Sect. 3.2—
coincide with the class of operators used to describe ordinary differential equations.

In 2012,T.Wolf andO.Efimovaskaya investigated the integrability of a two-component
system of ODEs proposed by Kontsevich [38]:

{
ut = uv − uv−1 − v−1

vt = −vu + vu−1 + u−1 (5.1)

This system is integrable, possessing a Lax pair representation; this allows to compute
its infinite series of conserved quantities and to find the corresponding hierarchy of
symmetries. It can be cast in “Hamiltonian” form (2.7), using the operator (first identified
by Mikhailov and Sokolov in [27])

H =
(

ru2 − lu2 luv + lurv − lvru + rvu
−ruv + lurv − lvru − lvu lv2 − rv2

)
(5.2)

and the local functional

h = 1

2
Tr

(
u + v + u−1 + v−1 + u−1v−1

)
.

Let us call Q the bivector defined by the operator H ,

Q = 1

2
Tr

∑
i, j

(
θi H

i j (θ j )
)

.

The bivector does not satisfy the Poisson condition (2.6), namely [Q, Q] �= 0. However,
in their paper [38, §3], Wolf and Efimovaskaya observe that H enjoys the property

LXh (Q) = 0, (5.3)

where L is the Lie derivative and Xh is the “Hamiltonian” vector field H(δh). This
property for the operator H , which is system-dependent, allows us to employ it in most
of the constructions which would normally involve a bona fide Hamiltonian operator.

We recall that a conserved quantity for the system defined by an evolutionary vector
field X is a functional f such that X ( f ) = 0. It is well known that the Lie derivative of
a polyvector field can be written in terms of the Schouten bracket, by LX (B) = [X, B].
Hence, for a conserved functional f we can write

LX ( f ) = [X, f ] = 0.

Similarly, a vector field Y is a symmetry of the system X if and only if [X,Y ] = 0.

Proposition 17. Let Q be the bivector defined by an operator H, such that it satisfies
(5.3) for the system Xh. Then Q maps conserved quantities of the system into symmetries.
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Proof. Let f be a conserved quantity for the system Xh . From (4.22) we have then
−[[Q, h], f ] = 0. The bivector Q maps the conserved quantity f into the vector field
X f = −[Q, f ]; equivalently, the operator H maps the conserved quantity into the
characteristics of the vector field by H(δ f ). By the Jacobi identity for the Schouten
bracket we have

[X f , Xh] = [[Q, f ], [Q, h]] = [Q, [ f, [Q, h]]] + [ f, [Q, [Q, h]] = 0,

namely the vector field X f is a symmetry of the system Xh . Indeed, the first term of
the RHS vanishes because [ f, [Q, h]] = −[[Q, h], f ] = Xh( f ) and f is a conserved
quantity of Xh , while the second one does because [Q, [Q, h]] = −[[Q, h], Q] =
LXh (Q) = 0 by (5.3).

Proposition 18. Let f and g be conserved quantities for the system Xh. Then the bracket

{ f, g} := Xg( f ) = [[Q, f ], g]

is a conserved quantity of the system, too.

Proof. We need to prove

Xh ({ f, g}) = 0. (5.4)

Using the definition of “Hamiltonian” vector field and of bracket we rewrite the LHS of
(5.4) as

−[[Q, h], [[Q, f ], g]]

which, because of the Jacobi identity for the Schouten bracket, is equal to

−[[[Q, h], [Q, f ]], g] + [[Q, f ], [[Q, h], g]].

The first term vanishes because [[Q, h], [Q, f ]] = [Xh, X f ] and we have proved in
Proposition 17 that the vector field associated to a conserved quantity f commutes with
Xh . The second term vanishes, too, because [[Q, h], g] = −Xh(g) and g is a conserved
quantity.

Property (5.3) is sufficient to explain why H maps conserved quantities into com-
muting symmetries; however, if we use the bivector Q to define a bracket according to
(4.28), we obtain an operation which satisfies Jacobi identity, namley a Poisson brackets
defined by a non-Poisson bivector. The property identified by Wolf and Efimovskaya is
not sufficient to guarantee this outcome.

A class of non-Poisson structures giving rise to Poisson brackets in some quotient
space (as our space of local functional F is) was originally introduced by Alekseev,
Kosmann-Schwarzbach and Meinrenken as quasi-Poisson manifolds [4]. In the non-
commutative case, Van Den Bergh [36] introduced a twisted version of double Poisson
algebras called double quasi-Poisson algebras.
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5.1. Double quasi-Poisson algebras. The definition of double quasi-Poisson algebra we
present in this section is given in the form proposed by Fairon [18]. The notion has been
introduced by Van Den Bergh [36] in his seminal work on double Poisson algebras, but
the more modern version is equivalent and requires less background material.

LetA0 be an associative but non commutative algebra whose identity admits a finite
decomposition in terms of orthogonal idempotents,

1A0 =
n∑

s=1

es,

with eset = δst es . We can then regard A0 as a B-algebra for B = ⊕sKes . Let us now
consider a B-linear double bracket {{−,−}} on A0; its associated triple bracket is

{{−,−,−}} =
3∑

s=1

τ s{{−, {{−,−}}}}Lτ−s,

which is an alternative way of writing (3.11).

Remark 2. We are reproducing Fairon’s definition, that allowsA0 to have a decompos-
able unit. The standard example for this is the double quasi-Poisson algebra realised on
the path algebra of a quiver; the identity in such an algebra is obtained as the sum of the
“stationary paths” associated to each vertex of the quiver [36].

Definition 17. We say that a B-algebra A0, endowed with a B-linear double bracket
{{−,−}}, is a double quasi-Poisson bracket if it satisfies

{{a, b, c}} = α
∑
s

(cesa ⊗ esb ⊗ es − cesa ⊗ es ⊗ bes − ces ⊗ aesb ⊗ es + ces ⊗ aes ⊗ bes

− esa ⊗ esb ⊗ esc + esa ⊗ es ⊗ besc + es ⊗ aesb ⊗ esc − es ⊗ aes ⊗ besc) ,

(5.5)

for some α �= 0 and all triples a, b, c ∈ A0.

The remarkable feature of double quasi-Poisson algebras is that, despite their triple
bracket does not vanish, the bracket defined on the spaceF0 = A0/[A0,A0] is a Poisson
bracket (in particular, it satisfies the Jacobi identity for any triple of entries). Moreover,
since the vanishing of (5.5) is equivalent to the vanishing of the triple brackets among
all the generators of A0 [36], we have a quick and explicit way to verify whether an
ultralocal operator is quasi-Poisson (or, more precisely, defines the bracket of a double
quasi-Poisson algebra).

Theorem 3. ([36]) Let (A0, {{−,−}}) be a double quasi-Poisson algebra. Then the
bracket defined on F0 as in (3.21) is a Poisson bracket.

Proof. The skewsymmetry of the bracket on F0 is guaranteed by the skewsymmetry of
the double bracket on A0. From [36, Proposition 2.4.2 and Corollary 2.4.4], a graded
version of which we prove as Equation (B.13) in Theorem 11 of Appendix B, we have

{Tr a, {Tr b,Tr c}} + {Tr b, {Tr c,Tr a}} + {Tr c, {Tr a,Tr b}}
= Trm ((m ⊗ 1){{a, b, c}} − (1 ⊗ m){{b, a, c}}) . (5.6)

From (5.5) we have that the RHS of (5.6) vanishes, so that the bracket {−,−} satisfies
the Jacobi identity and it is, hence, a Poisson bracket on F0.
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Theorem 3 states that a double quasi-Poisson algebra onA0, whose bracket does not
define a Poisson operator (in the sense of (2.6)), defines nevertheless a Poisson bracket
on F0.

Definition 17 is more general than what we need in our discussion. The algebra A0
we consider is the space of Laurent polynomials in the generators {ui } and B = R with
1 as the only idempotent: we can henceforth drop the sum over the different idempotents
es from our formulae.

Proposition 19. The double bracket defined by the skewsymmetric ultralocal operator
(5.2) is the bracket of a double quasi-Poisson algebra.

Proof. According to Proposition 1, the double bracket among the generators is

{{u, u}} = 1 ⊗ u2 − u2 ⊗ 1, {{u, v}} = −1 ⊗ uv + u ⊗ v − v ⊗ u − vu ⊗ 1,

{{v, v}} = v2 ⊗ 1 − 1 ⊗ v2, {{v, u}} = uv ⊗ 1 + u ⊗ v − v ⊗ u + 1 ⊗ vu.

This double bracket is a special case of the quasi-Poisson bracket obtained in [18,
Theorem 3.5], for i = 1. The result we explicitly show is due to Massuyeau and Turaev
[26]. In principle, we would have to compute the four triple bracket {{u, u, u}}, {{u, u, v}},
{{u, v, v}}, and {{v, v, v}}. However, given the apparent symmetry of the expression in
the exchange of u with v we restrict ourselves to the first two ones.

Computing {{u, u, u}} gives us

{{u, u, u}} =
(
1 + τ + τ 2

)
{{u, {{u, u}}}}L

= −
(
1 + τ + τ 2

) (
{{u, u2}} ⊗ 1

)

=
(
1 + τ + τ 2

) (
u2 ⊗ u ⊗ 1 − u ⊗ u2 ⊗ 1

)
. (5.7)

On the other hand, the RHS of (5.5) is

α
(
u2 ⊗ u ⊗ 1 − u2⊗1 ⊗ u − u ⊗ u2 ⊗ 1+u ⊗ 1 ⊗ u2 + 1 ⊗ u2 ⊗ 1−1 ⊗ u ⊗ u2

)
,

which is equal to (5.7) for α = 1. The same computation for {{u, u, v}} gives us
{{u, u, v}} = 1 ⊗ u2 ⊗ v + v ⊗ u ⊗ u − u ⊗ u ⊗ v − v ⊗ u2 ⊗ 1 + vu ⊗ u ⊗ 1

+ u ⊗ 1 ⊗ uv − 1 ⊗ u ⊗ uv − vu ⊗ 1 ⊗ u,

which is, again, the RHS of (5.5) for α = 1.

It follows from Theorem 3 that the Mikhailov and Sokolov’s operator (5.2) defines a
Poisson bracket on F0 and it is, hence, Hamiltonian.

5.2. Hamiltonian operators and quasi-Poisson bivectors. In Sect. 2 we have defined a
Hamiltonian operator as an operator on A, which induces a Lie algebra structure on F
by means of the Poisson bracket. In Sect. 4.4 we showed the properties that a bivector
must satisfy in order to do the same. Proposition 15 says that having a Poisson bivector
is a sufficient condition. However, a bivector B satisfying the condition

[[B, B], F] = 0 ∀F ∈ F , (5.8)
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which appears to be less strict than [B, B] = 0, still defines a Hamiltonian structure:
indeed, condition (5.8) guarantees both the validity of the Jacobi identity by (4.30) and
the existence of the Lie algebra action by (4.33).

Note that property (5.3) can be rewritten as [[Q, Q], h] = 0 (we showed this in the
proof of Proposition 17), namely as identity (5.8) for a particular h ∈ F0 ⊂ F . Identity
(5.8) is a natural generalisation of the Poisson property, relaxing the condition and still
obtaining a Hamiltonian structure. Indeed, we have the following theorem:

Theorem 4. Let Q be a quasi-Poisson bivector. Then [[Q, Q], f ] = 0 for all f ∈ F0.
Thus, Q defines a Hamiltonian structure.

Proof. From the computation performed in the proof of Proposition 1 and Lemma 3, we
have that then

[Q, Q] = −2

3

∑
i, j,k

Tr
(
θi {{u j , uk, ui }}′θ j {{u j , uk, ui }}′′θk{{u j , uk, ui }}′′′

)
, (5.9)

where we extend Sweedler’s notation to elements of A⊗3 by {{u, u, u}} = {{u, u, u}}′ ⊗
{{u, u, u}}′′ ⊗ {{u, u, u}}′′′. For convenience, we drop the sum over the indices from
Equation (5.9). From the quasi-Poisson property (5.5) for α = 1, after changing the
indices and reordering the terms we have

[Q, Q] = −2

3
Tr

(
3θiθ j u

j ukθku
i − 3θiθ j u

jθku
kui + θi u

iθ j u
jθku

k − θi u
jθ j u

kθku
i
)
.

A direct computation with (4.7) gives

− 1

2
[[Q, Q], f ] = Tr

[
θiθ j u

j
(
ul f ′′

l f ′
l − f ′′

l f ′
l u

l
)
ui + θi u

iθ j u
j
(
f ′′
l f ′

l u
l − ul f ′′

l f ′
l

)

+θi u
jθ j

(
f ′′
l f ′

l u
l − ul f ′′

l f ′
l

)
ui + θi u

i u jθ j

(
ul f ′′

l f ′
l − f ′′

l f ′
l u

l
)]

,

(5.10)

where we denote ∂ul f = f ′
l ⊗ f ′′

l . The main point of the proof is showing that the
terms in the brackets vanish, when summed over all l’s and all the terms in the double
derivative of f .

Let f be a linear combination of monomials of the form

f = (ui1)±1(ui2)±1 · · · (uid )±1.

Then

∂ f

∂ul
=

d∑
s=1

′
δl,is (u

i1)±1 · · · (uis−1)±1 ⊗ (uis+1)±1 · · · (uid )±1

−
d∑

s=1

′′
δl,is (u

i1)±1 · · · (uis−1)±1(uis )−1 ⊗ (uis )−1(uis+1)±1 · · · (uid )±1,

(5.11)

where with
∑′ we denote the sum over all the factors uis with power +1 and

∑′′ the
one over all the factors with power −1. The expressions within the parentheses in the
RHS of (5.10) have then the form
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ul f ′′
l f ′

l − f ′′
l f ′

l u
l =

d∑
s=1

[
(uis+1)±1 · · · (uid )±1(ui1)±1 · · · (uis )±1

−(uis )±1(uis+1)±1 · · · (uis−1)±1
]
,

where distinguishing between the two different forms of the partial derivative (5.11) is
no longer needed. The four expressions (ul f ′′

l f ′
l − f ′′

l f ′
l u

l) (resp. ( f ′′
l f ′

l u
l − ul f ′′

l f ′
l ))

vanish when summing over all the cyclic permutations of the monomial f , therefore
proving the vanishing of [[Q, Q], f ] for any f .

We provided a geometric interpretation for double quasi-Poisson algebras; we have
showed that the operator (5.2) is not Poisson (having a nonvanishing triple bracket, see
Proposition 19), but it is quasi-Poisson as for Proposition 19. Then we can conclude
that it is Hamiltonian. Moreover, we showed that property (5.3), noted by Wolf and
Efimovskaya, is in fact a consequence of the stronger property (5.8). However, note that
the notion of quasi-Poisson algebra is defined on A0 and not on A, since it is given in
terms of double Poisson brackets and not λ brackets. Noncommutative Hamiltonian
systems of ODEs defined in terms of quasi-Poisson brackets have been studied in the
last few years by several authors [6,7,11,12]; we are not aware of any example of non-
Poisson operators defining Poisson brackets, and hence being labelled Hamiltonian, for
systems of PDEs or of D�Es. However, should a differential or difference operator exist
such that it fulfills (5.8), we could still call the corresponding bivector a quasi-Poisson
one.

6. Nonabelian Hamiltonian Operators for Difference Systems

In this section we will present several examples of nonabelian Hamiltonian structures,
applying the results we we have presented in the previous sections. All the results are
described using the bivector formalism recalled in Sect. 2, which is better known among
the Integrable Systems community. However, most of the computations were performed
using the Schouten bracket described in our “geometric” setting of Sect. 4.

The operators we discuss, some of which are not previously known, contribute to
the study of nonabelian differential-difference integrable systems. More in detail, we
investigate scalar ultralocal and local Hamiltonian operators. In the ultralocal case,
we show that all the Hamiltonian structures coincide with Hamiltonian structures for
nonabelian ODEs, for whichwe proved in Sects. 3 and 5 the relationwith double Poisson
algebras and quasi-Poisson algebras. We then study local Hamiltonian structures and
present a class of nonlocal ones; finally, we provide an answer to a question left open
in our recent work [10], exhibiting the Hamiltonian structures for, respectively, the
nonabelian Kaup, Ablowitz–Ladik, and Chen–Lee–Liu lattices.

6.1. Scalar ultralocal and local Hamiltonian operators. A scalar (� = 1) ultralocal (see
Definition 5) skewsymmetric operator must be of the form

K =
∑
α

(
l f (α)rg(α) − r f (α) lg(α)

)
,

with f (α), g(α) ∈ A. We have the following Lemma:
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Lemma 4. A necessary condition for a skewsymmetric scalar ultralocal operator K
to be Poisson is that f (α) = f (α)(u) and g(α) = g(α)(u), namely the operator must
multiply on the left and on the right for polynomials of u’s only.

Proof. The Poisson property in this case reads

∑
prK θ

∫
Tr θ f (α)θg(α) = 0.

Let

f (α) = c(α)ui (α)
1

. . . u
i (α)
r

and g(α) = u
j (α)
1

. . . u
j (α)
s

for constants c(α). We define p = maxl,α{i (α)
l } and q = maxl,α{ j (α)

l }.
Let us first consider the case p > q > 0 (or, equivalently, q > p > 0 switching the

role of p and q in the proof). Then, the only terms in prK θ P including θp is of the form

∑′

α,β,i (α)
l =p

∫
Tr c(α)

(
(Spg(β))u

i (α)
l+1

· · · u
i (α)
r

θg(β)θu
i (α)
1

· · · u
i (α)
l−1

(Sp f (β))

−(Sp f (β))u
i (α)
l+1

· · · u
i (α)
r

θg(β)θu
i (α)
1

· · · u
i (α)
l−1

(Spg(β))
)

θp, (6.1)

where the sum runs for all β and for α such that f (α) depends on u p and for the indices

l such that i (α)
l = p. Note that the presence of θp, for p �= 0, fixes the position of

all the terms with respect to the cyclic permutations, and hence that the expression can
vanish only if f (β) = g(β). If p = q �= 0 the picture is similar, and in the sum there
will be present additional terms with expression multiplying (from both the left and the
right) the expression θ f (α)θ . An analogue result holds if we consider the variables with
the minimum negative index; the only way for the expression (6.1) to vanish without
requiring f (α) = g(α) is by allowing p = q = 0, so that we can exploit the cyclic
permutations of the products.

Lemma 4 implies that all the scalar ultralocal Poisson operators in the differential-
difference setting are Poisson operators for nonabelian ordinary differential equations,
too. In Sect. 3.2 we discussed the equivalence between Poisson structures for nonabelian
ODEs and the notion of double Poisson algebras. The classification results for the latter
ones provide an equivalent classification of ultralocal Poisson operators: we can then
provide a list of ultralocal Poisson operators based on [14,27,32,36].

Theorem 5. (1) All the scalar Hamiltonian ultralocal operators are of the form

H = αcu + βcu2 + γ
(
lu2 ru − luru2

)

These operators are Poisson if and only if β2 − αγ = 0.
(2) The Poisson operators H1 and H2 (with their respective constants αi , βi ,γi ) form

a bi-Hamiltonian pair if and only if 2β1β2 − α2γ1 − α1γ2 = 0.

Proof. From Lemma 4 we know that we must investigate only operators without shifted
variables. Then, for part (1) we can rely on the result due to Van Der Bergh [36] in
the context of double Poisson algebras. It can easily verified by (2.6) that condition
β2 − αγ = 0 is necessary and sufficient for the Poisson property. Powell [32] gives a
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full proof of this fact. However, for any value of the constants the operator corresponds
to a double quasi-Poisson algebra [18].

On the other hand, 2β1β2 − α2γ1 − α1γ2 = 0 is equivalent to the Poisson property
for H1 − λH2, for any λ, giving (2).

Definition 18. We call a difference operator local if its entries (or itself in the scalar
case) are Laurent polynomials in S.

Because of the skewsymmetry requirement, a scalar operator is of order (−N , N )

for some 0 < N < ∞.
The Poisson property imposes very rigid constraints on the form of such operators,

so that very few of them are known in the literature: in two components, for instance,
the only nonconstant local (in particular, not ultralocal) Hamiltonian operator we know
is the first Hamiltonian structure of the Toda lattice (6.8). By solving the equation (2.6)
for a scalar operator of order (−1, 1) we have found a new class of examples, that are
novel at the best of our knowledge.

Theorem 6. For � = 1, all the Poisson operators of order (−1, 1) are, up to linear
transformations of the dependent variable u, of one of the following forms

H1 = luu1 ru1uS − S−1ruu1 lu1u,

Hc = S − S−1.

Proof. The skewsymmetry condition implies that a candidateHamiltonian operatormust
be of the form

H =
∑ (

l
H

(α1)

L
r
H

(α1)

R
S − S−1r

H
(α1)

L
l
H

(α1)

R
+ l

H
(α0)

L
r
H

(α0)

R
− r

H
(α0)

L
l
H

(α0)

R

)
.

The Poisson bivector associated to the operator is

P =
∫

Tr
∑ (

θH (α1)
L θ1H

(α1)
R + θH (α0)

L θH (α0)
R

)
,

and a computation similar to the one performed in the proof of Lemma 4 shows that
H (α1)
L = H (α1)

L (u, u1),H
(α1)
R = H (α1)

R (u, u1),H
(α0)
L = H (α0)

L (u), andH (α0)
R = H (α0)

R (u).
Moreover, a necessary condition emerging from comparing the terms of the expression
(2.6) for expressions containing (θ, θ1, θ2) is that H

(α1)
L (respectively, H (α1)

R ) must be all
equal (or at least proportional) and HL = (λu+μ)(λu1+μ) and HR = (νu1+ρ)(νu+ρ).
Note in particular that we obtain Hc for λ = ν = 0. The conditions λ = ν and μ = ρ

come from the vanishing of the terms with (θ, θ1, θ1). The terms containing (θ, θ, θ) in
the identity can come only from the ultralocal term, which must on its own be Poisson:
they can be then either cu or lur2u − l2uru , but not a linear combination of these two.
We then obtain the statement checking case by case. In particular, H1 and Hc are not
compatible.

This class of examples can be extended to an arbitrary operator of order (−N , N ),
closely resembling the so-calledmultiplicative Poisson λ-bracket of general type defined
in [15]. It is easy to verify that

Hp = luu p ru puSp − S−plu puruu p

is Hamiltonian for any p > 0 and that any linear combination of Hp, for different p’s,
is Hamiltonian too. Note, however, that the condition for the nonabelian case is much
more rigid: the form of the operators in the commutative case depends on an arbitrary
function of the variable u (see [15]).
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6.2. Nonlocal Hamiltonian operators. Similarly to the differential case, many systems,
whose Hamiltonian structures are local in the Abelian case, are Hamiltonian only with
respect to nonlocal Hamiltonian operators in the noncommutative case. In this sectionwe
recall some results already presented in [10], and then we exhibit new two-components
(� = 2) Hamiltonian structures which reduce to ultralocal brackets in the commutative
case. In particular, they provide theHamiltonian structures for theNonabelianAblowitz–
Ladik, Chen–Lee–Liu and Kaup lattices which had not been constructed before.

The prototypical example of nonlocal Hamiltonian structures reducing to local ones
in the commutative case is the Hamiltonian structure of nonabelian Volterra chain, that
we presented in [10] (the sign difference is due to the opposite definition of cu):

HV = ruSru − luS−1lu − rucu − cu(1 − S)−1cu . (6.2)

Note that the last two terms can be written in a formwhich is skewsymmetric at sight,
namely HV = ruSru − luS−1lu − H (sc)

0 with

H (sc)
0 = 1

2

(
aucu − cu(1 + S)(S − 1)−1cu

)
. (6.3)

Proposition 20. The operator H (sc)
0 is Poisson, and therefore Hamiltonian.

Proof. In [10, Proposition 7] we proved that (6.2) is a Poisson operator. Let us introduce
the nonlocal variable

ρ = (S − 1)−1(uθ − θu)

with the useful identity

ρ1 := Sρ = ρ + (uθ − θu).

The characteristics of the formal vector field Hθ := H (sc)
0 θ is

Hθ = uθu − θu2 + ρu − uρ

and its associated bivector is

2P =
∫

Tr
(
−u2θθ + ρ1ρ

)
.

To compute (2.6) we need to obtain an explicit form for the prolongation of the formal
vector field applied to the nonlocal terms. For a generic formal vector field of character-
istics V (and degree 1 in θ ) we have, as illustrated with more detail in [10],

prV

∫
Tr ρ1ρ =

∫
Tr

[
ρprV (ρ1) − ρ1prV (ρ)

]

= Tr
∫ [

ρprV (ρ1 − ρ−1)
] =

∫
Tr

[
ρprV

(
(1 + S−1)(uθ − θu)

)]

=
∫

Tr
[
((1 + S)ρ)prV (uθ − θu)

]

=
∫

Tr
[
2ρprV (uθ − θu) + (uθ − θu)prV (uθ − θu)

]
. (6.4)
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An explicit and a bit tedious computation gives us

prHθ P =
∫

Tr
[
ρ(uθ − θu)2 + ρ2(uθ − θu) − uθ2u2θ + θ2uθu2

]
,

The identity
∫
Tr (ρ1ρ1ρ1 − ρρρ) = 0 implies

∫
Tr

[
ρ(uθ − θu)2 + ρ2(uθ − θu)

]
= −1

3

∫
Tr(uθ − θu)3

from which we obtain

prHθ P =
∫

Tr

[
−1

3
(uθ − θu)3 − uθ2u2θ + θ2uθu2

]
,

which vanishes. Hence, H (sc)
0 is a Poisson operator.

In [10] we used the result for (6.2) to proof by induction that the operator

HN I B =
p∑

i=1

(
ruSi ru − luS−i lu

)
− H (sc)

0

is the Hamiltonian operator for the Narita–Itoh–Bogoyavlensky lattice. Note that also in
this case the Hamiltonian operator is the sum of an operator which is not Hamiltonian,
but reduces to the Hamiltonian one for the corresponding commutative system, and of a
Hamiltonian operator vanishing in the commutative case.

6.2.1. “Null” Hamiltonian operators A similar pattern as the one we have just observed
can be also found in two-component systems. In [10] we studied the nonabelian 2D Toda
system. Its first Hamiltonian structure is local, but the second one—obtained applying
the recursion operator to the first structure—is nonlocal and reduces to the standard one
in the commutative case. Similarly to the nonabelian Volterra Hamiltonian structure, that
operator can be regarded as the direct promotion of the Abelian Hamiltonian operator
to the noncommutative case (which is not Hamiltonian) plus a Hamiltonian operator,
vanishing in the commutative case.

Theorem 7. The operator

H =
(
rucu − cu(S − 1)−1cu rucv − cu(S − 1)−1cv

cvru − cv(S − 1)−1cu cvrv − cv(S − 1)−1cv

)
(6.5)

is Poisson.

Proof. We show that the bivector defined by H is Poisson; we denote θ and ζ the basic
univectors corresponding, respectively, to u and v.

Let (ρ, σ ) be the nonlocal variables

(S − 1)−1(uθ − θu) = ρ, (S − 1)−1(vζ − ζv) = σ,

and write the characteristics of the formal bivector H� as

H

(
θ

ζ

)
=

(−θu2 + uθu − uρ + ρu − ζvu + vζu + σu − uσ

−θuv + vθu + ρv − vρ − ζv2 + vζv + σv − vσ

)
.
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The bivector P is then written as

2P =
∫

Tr�†H�

=
∫

Tr
(
−θθu2 − ζ ζv2 + uθvζ + ζvθu − uθζv − vζθu

+ (ρ1 + σ1) (ρ + σ)
)
,

where ρ1 = Sρ and so on.
The condition (2.6) that must be checked for P and Hθ is an element of F̂ of degree

3 in θ and ζ : indeed, the Schouten torsion of a bivector is a trivector. Because of the
symmetry of the bracket in the exchange of (u, θ) and (v, ζ ), it is sufficient that the
homogeneous components respectively of degree 3 in θ , and degree 2 in θ and 1 in ζ

vanish. Moreover, the vanishing of the coefficient in degree 3 in θ (resp. ζ ) is equivalent
to the claim that the (1, 1) (resp. (2, 2)) entry of H , is Poisson in its own right. Indeed,
they are both the same as H (sc)

0 given in equation (6.3), which is Poisson according to
Proposition 20.

Let us denote by Pθθ , Pθζ , Pζ ζ the homogeneous components of P . Similarly, we
denote Hθθ , Hθζ , Hζ θ , Hζ ζ the linear components in θ and ζ of each component of
H�.

We need to compute the terms of degree 2 in θ and degree 1 in ζ (the vice versa is
the same by the symmetry of H ), that are obtained by

prHθζ Pθθ + prHθθ+Hζ θ Pθζ . (6.6)

Similarly to identity (6.4), we also have

prV

∫
Tr (σ1ρ + ρ1σ)

=
∫

Tr
[
2σprV (uθ − θu) + (vζ − ζv)prV (uθ − θu)

+ 2ρprV (vζ − ζv) + (uθ − θu)prV (vζ − ζv)
]
.

The computation is then longer but similar to the one performed in the proof of Propo-
sition 20. We obtain purely local terms, terms with a single nonlocal variable and terms
with two nonlocal variables. The latter ones are

2
∫

Tr [σρ(uθ − θu) + σ(uθ − θu)ρ + (vζ − ζv)ρρ] , (6.7)

which can be rewritten, from
∫
Tr(σ1ρ1ρ1 − σρρ) = 0 and σ1 = σ + vζ − ζv, ρ1 =

ρ + uθ − θu, as

(6.7) = −
∫

Tr [σ(uθ − θu)(uθ − θu) + ρ(uθ − θu)(vζ − ζv)

+ρ(vζ − ζv)(uθ − θu) + (vζ − ζv)(uθ − θu)(uθ − θu)] .

These terms cancel with the remaining ones in the expression (6.6). By symmetry, the
same happens for the terms quadratic in ζ and linear in θ , fulfilling (2.6)
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The operator H in (6.5) vanishes in the Abelian case. It would be interesting to
investigate the existence of integrable equations defined in terms of it, because they
would not have a commutative counterpart. However, as we anticipated the second
Hamiltonian structure of the nonabelian Toda system (see [10, Section 3.3]) is given by

H (2)
Toda =

(
luS−1lu − ruSru lurv − ruSrv
−lvru + lvS−1lu S−1lu − ruS

)
+ H. (6.8)

The operator (6.5) is not the only two-component Hamiltonian operator vanishing
when we assume that the variables do commute. We also have

Theorem 8. The operator

H̃ =
( −cu2 lurv − lvru − luv + rvu
rvlu − ru lv + ruv − lvu cv2

)

+

(
au

−av

)
S(S − 1)−1 (

cu cv

) −
(
cu
cv

)
(S − 1)−1 (

au −av

)

is Poisson.

Proof. As for Theorem 7 this reduces to cumbersome computations. Note that both
the local and nonlocal parts are skewsymmetric at sight, since (A(S − 1)−1B)† =
−B†S(S − 1)−1A†, with c†u = −cu , a

†
u = au . We introduce nonlocal variables

λ = (S − 1)−1uθ, μ = (S − 1)−1vζ,

ρ = (S − 1)−1θu, σ = (S − 1)−1ζv,

and explicitly compute

H̃

(
θ

ζ

)
= 2

(
λu − uρ + uμ − σu

θuv − vuθ + ρv − vλ + vσ − μv

)
.

Then, its associated bivector is

P̃ =
∫

Tr (ρρ1 − λλ1 + μμ1 − σσ1 − 2uθσ + 2θuμ) .

To compute (2.6) we need, as before, some additional identities. We have

prV

∫
Tr ρρ1 = −

∫
Tr 2ρprV (θu) + θuprV (θu), (6.9)

prV

∫
Tr θuμ =

∫
Tr

[
μprV (θu) − θuprV ((S − 1)−1vζ )

]

=
∫

Tr
[
μprV (θu) + ρ1prV (vζ )

]

=
∫

Tr
[
μprV (θu) + (θu + ρ)prV (vζ )

]
, (6.10)

and similarly for the other nonlocal variables. As previously, we only need to check
the vanishing of the expression for θθθ and θθζ (and their corresponding nonlocal
variables).
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For the θθθ part, the direct computation gives

prHθθ P̃θθ = 2
∫

Tr (ρρθu − λλuθ + ρθuθu − λuθuθ) .

Using
∫
Tr(ρ1ρ1ρ1−ρρρ) = 0 and ρ1 = ρ+θu, we have

∫
Tr ρρθu = ∫

Tr(−ρθuθu−
1
3θuθuθu), and similarly for λ. Then

prHθθ P̃θθ = 2

3

∫
Tr(uθuθuθ − θuθuθu) = 0.

For the θθζ part the picture is similar: we use the identities
∫
Tr(ρ1ρ1μ1 − ρρμ) = 0

and
∫
Tr(λ1λ1σ1 − λλσ) = 0 to simplify the expression and verify that it vanishes.

The operator H̃ of Theorem 8 can be combined with ultralocal, non-Hamiltonian
operators to give a one-parameter family of Hamiltonian operators which provide the
Hamiltonian structures for the nonabelian Ablowitz–Ladik and Chen–Lee–Liu inte-
grable equations. They reduce to ultralocal brackets when the variables are assumed to
commute.

Theorem 9. The operator

Hα =
(

0 −2rvu + α

2lvu − α 0

)
+ H̃ (6.11)

is Poisson for any α ∈ R (and, therefore, Hamiltonian).

Proof. We can consider a generic operator depending on two parameters

Ȟ =
(

0 βrvu + α

−βlvu − α 0

)

with the associated bivector

P̌ = 2
∫

Tr (βvuθζ + αθζ ) .

The Poisson property (2.6) for P̌ + P̃ reduces, since P̃ is Poisson on its own, to

prH̃ P̌ + prȞ P̃ + prȞ P̌ = 0.

Relying on the identities (6.9), (6.10) and the analogue ones for the remaining nonlocal
terms in P̃ , we can perform a straightforward computation that gives us

−
∫

Tr [α(β + 2)uθζθ + β(β + 2)uθuθζv] = 0,

which is satisfied if and only if β = −2, for any value of α.

By shift of variables, from Hα we can obtain a further Hamiltonian operator, linear
in the variables (u, v).
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Theorem 10. The operator

H =
(

cu lv + ru
−rv − lu −cv

)

−
(

1
−1

)
S(S − 1)−1 (

cu cv

)
+

(
cu
cv

)
(S − 1)−1 (

1 −1
)

(6.12)

is Poisson and, therefore, Hamiltonian.

Proof. By the constant coordinate change u �→ u − η, v �→ v − η in Hα , we obtain
H̃ = Hα−2η2 + 2ηH . Let us denote P the bivector defined by H and Pα−2η2 the one
defined by Hα−2η2 . Note that the latter is Poisson, as proved in Theorem 9 for any value

of α. Condition (2.6) for H̃ gives

0 = prH
α−2η2�Pα−2η2 + 2η

(
prH

α−2η2�P + prH�Pα−2η2

)
+ 4η2prH�P.

The first term vanishes because Hα is Poisson for any value of the constant. Moreover,
since the second term is either linear or of degree three in η, its vanishing is independent
from the one of the third one, which corresponds to the Poisson property for H .

6.3. Hamiltonian structures for integrable nonabelian difference systems. In this section
we provide a Hamiltonian formulation for three nonabelian systems we introduced in
[10]. Their Hamiltonian structures belong to the class discussed in Sect. 6.2.1

6.3.1. Nonabelian Kaup Lattice The nonabelian Kaup system (see [2] for the Abelian
version)

{
ut = (u1 − u)(u + v)

vt = (u + v)(v − v−1)

is Hamiltonian with respect to the structure H given in (6.12) with Hamiltonian func-
tional

F =
∫

Tr (u1v − uv) . (6.13)

Note that the Hamiltonian functional has the same form of the one for the Abelian case,
see [20].

6.3.2. Nonabelian Ablowitz–Ladik Lattice The nonabelian Ablowitz–Ladik lattice (first
introduced in [1] for the Abelian case)

{
ut = α(u1 − u1vu) + β(uvu−1 − u−1)

vt = α(vuv−1 − v−1) + β(v1 − v1uv)
α, β ∈ R

is Hamiltonian with respect to the operator H2 (Hα of Eq. (6.11) with α = 2) and
Hamiltonian functional

G = 1

2

∫
Tr (αu1v − βuv1) .
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6.3.3. Nonabelian Chen–Lee–Liu lattice The nonabelian Chen–Lee–Liu lattice (see
[34] for the Abelian case and [20] for its Abelian Hamiltonian formulation)

{
ut = (u1 − u)(1 + vu)

vt = (1 + vu)(v − v−1)

is Hamiltonian with respect to the operator −H−2 (Hα of Eq. (6.11) with α = −2) and
Hamiltonian functional 1

2 F with F as in (6.13).

7. Discussion and Further Work

The main purpose of this paper was investigating the notion of Hamiltoninan structure
for noncommutative systems, in particular focussing on the differential-difference case
(when these structures are given by difference operators).

In the literature, one finds two main approaches to the problem: on the one hand, one
can require the existence of an operator defining a “Poisson bracket” (more precisely, a
Lie bracket on the space of local functionals and an action of these by derivations, namely
the Hamiltonian vector fields), see for example [23,30]: this is the most commonly
adopted notion among the researchers active in Integrable Systems. On the other hand,
one can define a suitable algebraic structure on the space of noncommutative local
densities, and prove that this produces a Poisson bracket (in the sense above) among
local functionals. This is the basic idea leading to the definition of double Poisson
algebras [36], double Poisson vertex algebras [14], and multiplicative double Poisson
vertex algebra (see Sect. 3.3). In this paper, we show how the classical (and somehow
geometric, in the sense that it exploits the language andmachinerywidely used in Poisson
geometry) notion of Poisson bivector, and of Schouten brackets between polyvector
fields, can be tailored to the functional nonabelian case (functional polyvector fields for
Abelian differential systems are very well known and long-established, see for instance
[29], and we have introduced them for Abelian differential-difference systems in [9]).
The Schouten brackets we defined in Sect. 4 unify the two aforementioned languages,
as well as the standard language of Poisson geometry.

One of the fundamental and basic notions of classical (in particular, commutative)
Hamiltonian and Poisson structures is that the existence of a Poisson bracket is equivalent
to the existence of a bivector (concretely, of an operator) with vanishing Schouten torsion
(for a bivector P , this means [P, P] = 0), so that the bracket it defines is skewsymmetric
(because a bivector is skewsymmetric bydefinition) and fulfils Jacobi identity (because of
the Schouten condition). While this equivalence has been widely believed to exist in the
nonabelian setting, too, we can now conclude that this is not the case – the quasi-Poisson
structure of Kontsevich’s system being a clear counterexample. As demonstrated in this
paper, the notions of double Poisson (vertex) algebras and of Poisson bivectors (defined
by suitable multiplicative or difference operators) on the space A of noncommutative
(difference) Laurent polynomials are equivalent, but it is possible to define Hamiltonian
structures with weaker assumptions.

An obvious way to do so is introducing the notion of double quasi-Poisson algebras.
They are the noncommutative analogue of quasi-Poisson manifolds [4], which are en-
dowed with a non-Poisson bivector, and yet the bracket it defines satisfies the Jacobi
identity on the orbit space of a group action. In our noncommutative case, we can re-
gard the cyclic permutations (the quotient with respect to which constitutes our “trace
operation”) as such a group action.
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In Sect. 4.4 we have reviewed, in abstract terms, the relation between (Poisson)
bivectors and Poisson brackets; in particular, we showed that the Jacobi identity is
equivalent to

[[[[P, P], f ], g], h] = 0

for any triple of local functionals f, g, h, and that the Lie algebra morphism between
vector fields and local functionals is guaranteed by

[[[P, P], f ], g] = 0

for any pairs of local functionals. Both this conditions are satistified if P is a Poisson
bivector, namely [P, P] = 0, but the condition is not necessary as showed in Theorem
4. Identifying the quasi-Poisson property as being equivalent to [[P, P], f ] = 0 for all
f clearly shows that a non-Poisson bivector can indeed define a Poisson bracket on an
appropriate space.

There are also examples of cases when an operator defines a Hamiltonian structure
even if it is not skewsymmetric itself; in [5], the author exhibits the double bracket

{{u, v}} = −vu ⊗ 1, {{v, u}} = uv ⊗ 1, {{u, u}} = {{v, v}} = 0,

which can be used to define a different Hamiltonian structure for the Kontsevich system
(5.1). The bracket {a, b} := m({{a, b}}) (note that this is not yet a “Poisson bracket” as
the one we define in (3.21), since it is not defined between local functionals because of
the lack of the trace operation) satisfies the Loday property, which implies the Jacobi
identity when computed on local functionals. At the same time, the double bracket is not
skewsymmetric inA0 ⊗A0 but defines a skewsymmetric bracket on F0. Such a bracket
is neither double Poisson nor double quasi-Poisson, and yet it defines a Poisson bracket.

This example, as well as the results on double quasi-Poisson algebras, motivates
us to pursue further work in the direction of finding a more general class of operators
which can give rise to Hamiltonian structures (then characterising integrable systems,
maybe in the bi-Hamiltonian flavour). One may drop the skewsymmetry requirement,
as Arthamonov showed, or – keeping the description in terms of functional bivectors,
that are necessarily skewsymmetric – look for structures which fail to be quasi-Poisson
([[P, P], f ] �= 0) but can still play the same role (possibly by [[[P, P], f ], g] = 0),
which seems to be the necessary condition to guarantee the existence of a “Poisson
action".
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A. Equivalence Between Schouten Property and Jacobi Identity for Double
Multiplicative PVAs

In thisAppendixwe show, as claimed in the proof of Theorem1, that the Poisson property
for a scalar difference operator is equivalent to the Jacobi identity of the corresponding
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double multiplicative PVA. Since we are in the scalar case, we denote the only degree
1 variable as θ and Spθ = θp. We consider a skewsymmetric scalar difference operator
of the form (3.26), namely

H =
∑

l
H

(αp )

L
r
H

(αp )

R
Sp

and its corresponding λ bracket

{{uλu}} =
∑

H
(αp)

L ⊗ H
(αp)

R λp.

Note that the skewsymmetry of the operator (and of the bracket) implies
∑

H
(αp)

L ⊗ H
(αp)

R λp = −
∑ (

S−pH
(αp)

R

)
⊗

(
S−pH

(αp)

L

)
λ−p.

Weobtain the three terms of the double Jacobi identity by a straightforward computation.
In analogy with (3.15) and denoting ∂um as ∂m , we write

{{uλ{{uμu}}(αp)}}(βq ),L =
(
∂mH

(αp)

L

)′ (SmH
(βq )

L

)
⊗

(
SmH

(βq )

R

) (
∂mH

(αp)

L

)′′

⊗ H
(αp)

R λm+qμp, (A.1)

{{uμ{{uλu}}(αp)}}(βq ),R = H
(αp)

L ⊗
(
∂mH

(αp)

R

)′ (SmH
(βq )

L

)

⊗
(
SmH

(βq )

R

) (
∂mH

(αp)

R

)′′
λpμm+q , (A.2)

{{{{uλu}}(αp),λμu}}(βq ),L = H
(βq )

L

(
Sq−m∂mH

(αp)

L

)′′ ⊗
(
Sq−mH

(αp)

R

)

⊗
(
Sq−m∂mH

(αp)

L

)′
H

(βq )

R λp+q−mμq−m . (A.3)

On the other hand, to compute (2.6) we have

P =
∑

P(αp) = 1

2

∫
Tr

∑
θH

(αp)

L θpH
(αp)

R ,

from which we obtain

−2prH (βq )θ
P(αp) =

∫
Tr

[
θ

(
∂mH

(αp)

L

)′ (SmH
(βq )

L

)
θq+m

(
SmH

(βq )

R

) (
∂mH

(αp)

L

)′′
θpH

(αp)

R

− θH
(αp)

L θp

(
∂mH

(αp)

R

)′ (SmH
(βq )

L

)
θq+m

(
SmH

(βq )

R

) (
∂mH

(αp)

R

)′′]
.

(A.4)

As for the ultralocal case, the trace operation allows us to rewrite the RHS of (A.4)
replacing itwith all the cyclic permutations of its factors;moreover, the integral operation
allows us to “normalise” each of the monomials we obtain by imposing the first θ to be
taken without shifts.This gives us the six terms

3(A.4) =
∫

Tr

[
θ

(
∂mH

(αp)

L

)′ (SmH
(βq )

L

)
θq+m

(
SmH

(βq )

R

) (
∂mH

(αp)

L

)′′
θpH

(αp)

R

− θ
(
S−p∂mH

(αp)

R

)′ (Sm−pH
(βq )

L

)
θq+m−p

(
Sm−pH

(βq )

R

)
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(
S−p∂mH

(αp)

R

)′′
θ−p

(
S−pH

(αp)

L

)

− θH
(αp)

L θp

(
∂mH

(αp)

R

)′ (SmH
(βq )

L

)
θq+m

(
SmH

(βq )

R

) (
∂mH

(αp)

R

)′′

+ θ
(
S−pH

(αp)

R

)
θ−p

(
S−p∂mH

(αp)

L

)′ (Sm−pH
(βq )

L

)
θq+m−p

(
Sm−pH

(βq )

R

) (
S−p∂mH

(αp)

L

)′′

− θ
(
S−q H

(βq )

R

) (
S−q−m∂mH

(αp)

R

)′′
θ−q−m

(
S−q−mH

(αp)

L

)
θp−q−m

(
S−q−m∂mH

(αp)

R

)′ (S−q H
(βq )

L

)

+ θ
(
S−q H

(βq )

R

) (
S−q−m∂mH

(αp)

L

)′′
θp−q−m

(
S−q−mH

(αp)

R

)
θ−q−m

(
S−q−m∂mH

(αp)

L

)′ (S−q H
(βq )

L

)]
.

Note that these six terms can be paired; we can actually show that they cancel in such
pairs, thanks to the skewsymmetry of the operator H and the property S∂m = ∂m+1S.
Let us consider the first two lines: we can move the shift operators inside the derivatives
in the second line, obtaining

−θ
(
∂m−pS−pH

(αp)

R

)′ (Sm−pH
(βq )

L

)
θq+(m−p)

(
Sm−pH

(βq )

R

) (
∂m−pS−pH

(αp)

R

)′′
θ−p

(
S−pH

(αp)

L

)
.

By using the skewsymmetry for H
(αp)

L ,R (which allows us to replace S−pH
(αp)

R θ−pS−p

H
(αp)

L with −H
(αp)

L θpH
(αp)

R ) and relabelling the indices, we obtain

θ
(
∂mH

(αp)

L

)′ (SmH
(βq )

L

)
θq+m

(
SmH

(βq )

R

) (
∂mH

(αp)

L

)′′
θpH

(αp)

R ,

which is another copy of the first term. We do the same for the term of the forth line
and obtain the term on the third one. For the term in the fifth line, first we exploit the
skewsymmetry inside the argument of the derivatives, obtaining

θ
(
S−q H

(βq )

R

) (
S−q−m∂mS−pH

(αp)

L

)′′
θ−q−m

(
S−q−m−pH

(αp)

R

)
θ−p−q−m

(
S−q−m∂mS−pH

(αp)

L

)′ (S−q H
(βq )

L

)

= θ
(
S−q H

(βq )

R

) (
S−q−(m+p)∂m+pH

(αp)

L

)′′
θ−q−m

(
S−q−(m+p)H

(αp)

R

)
θ−q−(m+p)

(
S−q−(m+p)∂m+pH

(αp)

L

)′ (S−q H
(βq )

L

)

= θ
(
S−q H

(βq )

R

) (
S−q−m′

∂m′ H
(αp)

L

)′′
θ−q−m′+p

(
S−q−m′

H
(αp)

R

)
θ−q−m′

(
S−q−m′

∂m′ H
(αp)

L

)′ (S−q H
(βq )

L

)
.
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Then, using the skewsymmetry again, we obtain

−θH
(βq )

L

(
Sq−m∂mH

(αp)

L

)′′
θp+q−m

(
Sq−mH

(αp)

R

)
θq−m

(
Sq−m∂mH

(αp)

L

)′
H

(βq )

R .

Repeating this passage for the last line, our final result is

− 3prH (βq )θ
P(αp) =

∫
Tr

[
θ

(
∂mH

(αp)

L

)′ (SmH
(βq )

L

)
θq+m

(
SmH

(βq )

R

) (
∂mH

(αp)

L

)′′
θpH

(αp)

R

− θH
(αp)

L θp

(
∂mH

(αp)

R

)′ (SmH
(βq )

L

)
θq+m

(
SmH

(βq )

R

) (
∂mH

(αp)

R

)′′

−θH
(βq )

L

(
Sq−m∂mH

(αp)

L

)′′
θp+q−m

(
Sq−mH

(αp)

R

)
θq−m

(
Sq−m∂mH

(αp)

L

)′
H

(βq )

R

]
.

(A.5)

Comparing (A.5) with the expression for the double Jacobi identity (see Definition 13,
explicitly obtained by (A.1)–(A.2)–(A.3)), we observe that each term of (A.5) is made of
three elementary pieces kept separated by the θ variables, similarly to the fact that each
of the summands in the double Jacobi identity is an element ofA⊗A⊗ A. Moreover,
they exactly match each of them line by line: for instance, the three factors in (A.1)

are
(
∂mH

(αp)

L

)′ (SmH
(βq )

L

)
,
(
SmH

(βq )

R

) (
∂mH

(αp)

L

)′′
, and H

(αp)

R . Finally, the degree

of λ and μ in each terms of the double Jacobi identity matches the number of shift of,
respectively, the second and the third θ ’s in (A.5) (the order of the θ ’s in the expression
is fixed by “normalizing” them leaving the first one without shifts).
If we compare the results we computed with the structure of (3.15) and (3.14) respec-
tively, we see that each of the summands for the Poisson property of the operator and
of the double Jacobi identity for the λ brackets coincide, making them equivalent. In
particular, the vanishing of the former one is equivalent to the vanishing of the latter
one, as claimed in Theorem 1.

B. Graded Jacobi Identity for the Schouten Bracket

In this Appendix we prove the second half of Proposition 9 of Sect. 4.2, namely that the
bracket we have defined in (4.9) satisfies the graded version of the Jacobi identity (4.12);
together with Proposition 9 and 8, this means that it is a bona fide Schouten bracket. Part
(iv) of Proposition 11 of Sect. 4.3 is proved along the same lines: we do not repeat the
proof because this one has the advantage of being more compact because of the single
index on the generators and the absence of the formal variables λ and μ.
The proof is in two main steps: first, we prove a version of the vanishing of the graded
triple bracket associated to a double Schouten bracket, similarly to (3.11). To do so, we
prove that it vanishes for local functionals and vector fields (namely for elements of
degree 1); then we show by induction that it holds true for elements of arbitrary degree.
Secondly, we prove (similarly to [36, Corollary 2.4.4]) that the Jacobi identity for the
Schouten bracket follows from the vanishing of the graded triple bracket.
Let us start with the graded Jacobi-like identity for the double Schouten bracket. We
introduce the notation

[[a, b ⊗ c]]L = (−1)(|a|−1)|c|[[a, b]] ⊗ c, [[a, b ⊗ c]]R = b ⊗ [[a, c]],
[[a ⊗ b, c]]L = [[a, c]] ⊗1 b, [[a ⊗ b, c]]R = (−1)(|c|−1)|a|a ⊗1 [[b, c]].



272 M. Casati, J. P. Wang

which will be instrumental in writing the Jacobi identity for the Schouten bracket, sim-
ilarly to the one we introduced for the Jacobi identity of double λ brackets in Sect. 3.3.

Lemma 5. We have the following identities:

[[b, [[a, c]]]]R = −(−1)(|a|−1)(|c|−1)τ ([[b, [[c, a]]]]L) , (B.1)

[[[[a, b]], c]]L = −(−1)(|c|−1)(|a|+|b|)τ 2 ([[c, [[a, b]]]]L) . (B.2)

Proof. Straightforward computation. For instance, let (ca)′ = ∣∣[[c, a]]′∣∣ and (ca)′′ =∣∣[[c, a]]′′∣∣. Then for (B.1) we have

[[b, [[a, c]]]]R = −(−1)(|a|−1)(|c|−1)[[b, [[c, a]]σ ]]R
= −(−1)(|a|−1)(|c|−1)+(ca)′(ca)′′ [[c, a]]′′ ⊗ [[b, [[c, a]]′]]′ ⊗ [[b, [[c, a]]′]]′′
= −(−1)(|a|−1)(|c|−1)+(ca)′(ca)′′+(ca)′′(|b|+(ca)′+1)τ

([[b, [[c, a]]′]]′
⊗[[b, [[c, a]]′]]′ ⊗ [[c, a]]′′)

= −(−1)(|a|−1)(|c|−1)+(ca)′′(|b|+1)+(ca)′′(|b|+1)τ ([[b, [[c, a]]]]L)

= −(−1)(|a|−1)(|c|−1)τ ([[b, [[c, a]]]]L) .

A similar computation yields (B.2).

We prove the graded Jacobi identity for the double Schouten bracket by induction. The
statement is given in the following Proposition:

Proposition 21. Let [[−,−]] be the double Schouten bracket defined in (4.7). Then the
following identity holds true for any a, b, c in Â0:

[[a, b, c]] := [[a, [[b, c]]]]L − (−1)(|a|−1)(|b|−1)[[b, [[a, c]]]]R − [[[[a, b]], c]]L = 0.

(B.3)

We first need to prove the initial cases of the induction, namely that identity (B.3) holds
true if we consider local functionals (0-vectors) and 1-vector fields.
It is obvious from (4.7) that the bracket between two local functionals is 0: the Jacobi
identity is then satisfied for triples of local functionals and for two local functionals and
a 1-vector field (in this latter case, because the bracket of a 1-vector field with a local
functional is a local functional, and hence the further bracket vanishes). We need to add
to the initial cases the identity among two vector fields and a local functional, as well as
the one among three vector fields. This is the result of the following two lemmas.

Lemma 6. Let X and Y be local vector fields (elements of degree 1 in F̂0) and f a local
functional. Then

[[X, [[Y, f ]]]]L − [[Y, [[X, f ]]]]R = [[[[X,Y ]], f ]]L . (B.4)

Proof. Let us take for example X = X pθp and Y = Yqθq (the computation is similar
and yields the same result if we consider more complicated forms for the 1-st order
elements). For the LHS of (B.4) we have

(
∂(∂p f )′

∂uq

)′
⊗ Xq

(
∂(∂p f )′

∂uq

)′′
⊗ Y p(∂p f )

′′ − (∂p f )
′ ⊗ (∂q X

p)′ ⊗ Yq(∂q X
p)′′(∂p f )′′
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−(∂q f )
′ ⊗ Xq

(
∂(∂q f )′′

∂u p

)′
⊗ Y p

(
∂(∂q f )′′

∂u p

)′′
,

where the sake of compactness, we adopt the shorthand notation

(∂p Z
q)

′,′′ :=
(

∂Zm

∂u p

)′,′′

.

On the RHS of (B.4) we obtain

−(∂p f )
′ ⊗ (∂q X

p)′ ⊗ Yq(∂q X
p)′′(∂p f )′′.

The terms with first derivatives only immediately cancel. For the terms with the second
derivatives, we are in a similar situation as (3.9) in the proof of Lemma 1—here we don’t
have shifted variables and the expression is inA0 ⊗A0 ⊗A0 rather than inA0, but the
terms are of the same form:

(
∂(∂p f )′

∂uq

)′
⊗ Xq

(
∂(∂p f )′

∂uq

)′′
⊗ Y p(∂p f )

′′ − (∂q f )
′ ⊗ Xq

(
∂(∂q f )′′

∂u p

)′

⊗Y p
(

∂(∂q f )′′

∂u p

)′′
.

They vanish for the same reason explained in Lemma 1.

Lemma 7. Let X = Xiθi , Y = Y jθ j , Z = θk Zk (note the different position of θ : we
do this to show that it is not relevant) be densities of 1-vector fields. Then

[[X,Y, Z ]] = [[X, [[Y, Z ]]]]L − [[Y, [[X, Z ]]]]R − [[[[X,Y ]], Z ]]L = 0. (B.5)

Proof. A direct computation gives

[[X, [[Y, Z ]]]]L = θk

(
∂(∂m Zk)′

∂ul

)′
⊗ Xl

(
∂(∂m Zk)′

∂ul

)′′
⊗ Ym(∂m Z

k)′′

− (∂l X
k)′′θk ⊗ (∂l X

k)′(∂m Zl)′ ⊗ Ym(∂m Z
k)′′

−
(

∂(∂mY k)′′

∂ul

)′
⊗ Xl

(
∂(∂mY k)′′

∂ul

)′′
θk ⊗ (∂mY

k)′Zm

+ (∂mY
l)′′(∂l Xk)′′θk ⊗ (∂l X

k)′ ⊗ (∂mY
l)′Zm, (B.6)

[[Y, [[X, Z ]]]]R = θk(∂m Z
k)′ ⊗ (∂l X

m)′ ⊗ Y l(∂l X
m)′′(∂m Zk)′′

+ θk(∂m Z
k)′ ⊗ Xm

(
∂(∂m Zk)′′

∂ul

)′
⊗ Y l

(
∂(∂m Zk)′′

∂ul

)′′

− (∂mX
k)′′θk ⊗

(
∂(∂mXk)′

∂ul

)′
⊗ Y l

(
∂(∂mXk)′

∂ul

)′′
Zm

− (∂mX
k)′′θk ⊗ (∂mX

k)′(∂l Zm)′ ⊗ Y l(∂l Z
m)′′ (B.7)

and

[[[[X,Y ]], Z ]]L = −
(

∂(∂mY k)′

∂ul

)′′
⊗ Xm(∂mY

k)′′θk ⊗
(

∂(∂mY k)′

∂ul

)′
Zl
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− θk(∂l Z
k)′ ⊗ (∂mXl)′ ⊗ Ym(∂mXl)′′(∂l Zk)′′

+ (∂lY
m)′′(∂mXk)′′θk ⊗ (∂mXk)′ ⊗ (∂lY

m)′Zl

+

(
∂(∂mXk)′′

∂ul

)′′
θk ⊗ (∂mXk)′ ⊗ Ym

(
∂(∂mXk)′′

∂ul

)′
Zl .

We observe that, taking the three expression with the signs given in (B.5), the terms
with only first derivatives vanish (for instance, the second line of (B.6) cancels out with
(minus) the fourth line of (B.7) upon the exchange of the indices (l,m)). For the terms
with second derivatives we have, for instance, that (B.6) and (B.7) yield

(
θk ⊗ Xl ⊗ Ym

) ((
∂

∂ul
⊗ 1

)
◦ ∂Zk

∂um
−

(
1 ⊗ ∂

∂um

)
◦ ∂Zk

∂ul

)
,

and the terms in the bracket vanish because of the commutation of the double derivatives
[14, Lemma 2.6].

Similar computations shows that the identity holds true regardless of the relative position
of θ inside X , Y , or Z .
Finally, let (B.3) be our inductive hypothesis. We show that raising the degree of the
vector fields in the Jacobi identity bymultiplying an entry by a 1-vector gives us a version
of the identity with signs in accordance with our claim.

Lemma 8. Given x of degree 1, we have

(i) [[a, [[b, cx]]]]L − (−1)(|a|−1)(|b|−1)[[b, [[a, cx]]]]R − [[[[a, b]], cx]]L = 0;
(ii) [[a, [[bx, c]]]]L − (−1)((|a|−1)|b|[[bx, [[a, c]]]]R − [[[[a, bx]], c]]L = 0;
(iii) [[ax, [[b, c]]]]L − (−1)|a|(|b|−1)[[b, [[ax, c]]]]R − [[[[ax, b]], c]]L = 0.

Proof. The proof is essentially computational, exploiting the skewsymmetry and the
Leibniz property for the double Schouten bracket. We show here the detailed derivation
of (i). For the first term we have

[[a, [[b, cx]]]]L = [[a, c[[b, x]]]]L + (−1)|b|−1[[a, [[b, c]]x]]L
= [[a, c[[b, x]]′ ⊗ [[b, x]]′′]]L + (−1)|b|−1[[a, [[b, c]]′ ⊗ [[b, c]]′′x]]L
= (−1)(|a|−1)(bx)′′ [[a, c[[b, x]]′]] ⊗ [[b, x]]′′
+ (−1)|b|−1+(|a|−1)((bc)′′+1)[[a, [[b, c]]′]] ⊗ [[b, c]]′′x,

where we denote (bx)′′ = |[[b, x]]′′| and (bc)′′ = |[[b, c]]′′|. Using once again the Leibniz
property and the definitions of [[−,−]]L we obtain

[[a, [[b, cx]]]]L = c[[a, [[b, x]]]]L + (−1)(|a|−1)|b|[[a, c]][[b, x]]
+ (−1)|a|+|b|[[a, [[b, c]]]]L x .

Similar computations for the remaining terms give

[[b, [[a, cx]]]]R = c[[b, [[a, x]]]]R + (−1)|a|−1[[a, c]][[b, x]]
+ (−1)|a|+|b|[[b, [[a, c]]]]Rx,

[[[[a, b]], cx]]L = c[[[[a, b]], x]]R + (−1)|a|+|b|[[[[a, b]], c]]L x .
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Upon multiplication of the second term by −(−1)(|a|−1)(|b|−1) and of the third by (−1)
we observe the vanishing of the two summands with two double brackets and can collect

c
(
[[a, [[b, x]]]]L − (−1)(|a|−1)(|b|−1)[[b, [[a, x]]]]R − [[[[a, b]], x]]L

)

+
(
[[a, [[b, c]]]]L − (−1)(|a|−1)(|b|−1)[[b, [[a, c]]]]R − [[[[a, b]], c]]L

)
x .

The terms in the two parentheses vanish by inductive hypothesis, proving our statement
by induction. To prove the remaining two identities, we can observe that, due to Lemma
5, the first one can be alternatively written as

(−1)(|a|−1)|c|[[a, [[b, cx]]]]L + (−1)(|a|−1)(|b|−1)τ ([[b, [[cx, a]]]]L)

+(−1)(|b|−1)|c|τ 2 ([[cx, [[a, b]]]]L) = 0. (B.8)

This form is apparently cyclically symmetric: then (2) and (3) can be easily brought to
the form (B.8) by the suitable cyclic permutation.

Lemma 8, together with the initial cases (the obvious ones, Lemma 6 and Lemma 7),
completes the proof by induction of Proposition 21.We can nowmove to themain result,
holding true for the “actual” Schouten bracket.

Theorem 11. Let A, B and C be, respectively, a-, b-, and c-vector fields. Then their
Schouten bracket (4.9) satisfies the Jacobi identity

[A, [B,C]] = [[A, B],C] + (−1)(a−1)(b−1)[B, [A,C]]. (B.9)

Proof. First, we rewrite (B.9) from its definition in terms of double Schouten brackets.

Trm
(
[[A,Trm[[B,C]]]] − (−1)(a−1)(b−1)[[B,Trm[[A,C]]]] − [[Trm[[A, B]],C]]

)
=0.

Since we have learnt in Proposition 7 that the Schouten bracket is well-defined, we can
drop the trace operation inside the brackets, and focus on

Trm
(
[[A,m[[B,C]]]] − (−1)(a−1)(b−1)[[B,m[[A,C]]]] − [[m[[A, B]],C]]

)
. (B.10)

The quantity (B.10) can be written, using the usual Sweedler’s notation, as

Trm
([[A, [[B,C]]′[[B,C]]′′]]

−(−1)(a−1)(b−1)[[B, [[A,C]]′[[A,C]]′′]] − [[[[A, B]]′[[A, B]]′′,C]]
)

.
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By the Leibniz properties for the double Schouten bracket, this is in turn

Trm
(
[[B,C]]′[[A, [[B,C]]′′]] + (−1)(a−1)(bc)′′ [[A, [[B,C]]′]][[B,C]]′′

−(−1)(a−1)(b−1)[[A,C]]′[[B, [[A,C]]′′]] − (−1)(a−1+(ac)′′)(b−1)[[B, [[A,C]]′]][[A,C]]′′
−[[[[A, B]]′,C]] 	 [[A, B]]′′ − (−1)(ab)

′(c−1)[[A, B]]′ 	 [[[[A, B]]′′,C]]
)

.

Wenow recall the definitions of [[−,−]]L ,R which allow, together with themultiplication
map, to rewrite the previous expression as

Trm ((m ⊗ 1)[[A, [[B,C]]]]R + (1 ⊗ m)[[A, [[B,C]]]]L
−(−1)(a−1)(b−1)(m ⊗ 1)[[B, [[A,C]]]]R − (−1)(a−1)(b−1)(1 ⊗ m)[[B, [[A,C]]]]L
−(m ⊗ 1)[[[[A, B]],C]]L − (−1)(ab)

′(c−1)[[A, B]]′ 	 [[[[A, B]]′′,C]]
)

. (B.11)

The last term requires a closer inspection. By definition we have

[[A, B]]′ 	 [[[[A, B]]′′,C]] = (−1)(ab)
′((ab)′′c)′ [[[[A, B]]′′,C]]′ ⊗ [[A, B]]′[[[[A, B]]′′,C]]′′

= (−1)(ab)
′(((ab)′′c)′+((ab)′′c)′′)(1 ⊗ m)[[[[A, B]]′′,C]]′ ⊗ [[[[A, B]]′′,C]]′′

⊗1 [[A, B]]′
= (−1)(ab)

′(ab)′′+(ab)′(c−1)(1 ⊗ m)[[[[A, B]]′′ ⊗ [[A, B]]′,C]]L
= −(−1)(a−1)(b−1)+(ab)′(c−1)(1 ⊗ m)[[[[B, A]],C]]L .

This means that (B.11) is finally equal to

Trm ((m ⊗ 1)[[A, [[B,C]]]]R + (1 ⊗ m)[[A, [[B,C]]]]L
−(−1)(a−1)(b−1)(m ⊗ 1)[[B, [[A,C]]]]R − (−1)(a−1)(b−1)(1 ⊗ m)[[B, [[A,C]]]]L
−(m ⊗ 1)[[A, B]],C]]L + (−1)(a−1)(b−1)(1 ⊗ m)[[[[B, A]],C]]L . (B.12)

Now, from m(m ⊗ 1)(a ⊗ b ⊗ c) = m(1 ⊗ m)(a ⊗ b ⊗ c) we can rearrange the terms
in (B.12) and obtain

Trm
(
(m ⊗ 1)

(
[[A, [[B,C]]]]L − (−1)(a−1)(b−1)[[B, [[A,C]]]]R − [[[[A, B]],C]]L

)

−(−1)(a−1)(b−1)(1 ⊗ m) ([[B, [[A,C]]]]L
−(−1)(a−1)(b−1)[[A, [[B,C]]]]R − [[[[B, A]]]]C]]L

))
. (B.13)

Comparing this expression with (B.3), we observe that it is

Trm
(
(m ⊗ 1)[[A, B,C]] − (−1)(a−1)(b−1)(1 ⊗ m)[[B, A,C]]

)
,

which vanishes because of Proposition 21.
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