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Abstract: We prove the asymptotic functional Poisson laws in the total variation norm
and obtain estimates of the corresponding convergence rates for a large class of hy-
perbolic dynamical systems. These results generalize the ones obtained before in this
area. Applications to intermittent solenoids, Axiom A attractors, Hénon attractors and
to billiards, are also considered.
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1. Introduction

The studies of Poisson approximations of the process of recurrences to small subsets in
the phase spaces of chaotic dynamical systems, started in [40], are developed now into a
large active area of the dynamical systems theory. Another view at this type of problems
is a subject of the theory of open dynamical systems [39], where some positive measure
subset A of the phase space is named a hole, and hitting and escape the hole processes
are studied. The third view at this type of problems concerns statistics of extreme events
(“record values") in the theory of random processes [23,25,29,38]. In this paper we
present new advances in this area.

In a general set up, one picks a small measure subset A in the phase space M of
hyperbolic (chaotic) ergodic dynamical system and attempts to prove that in the limit,
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when the measure of A approaches zero, the corresponding process of recurrences to A
converges to the Poisson process.

This area received an essential boost in L-S.Young papers [45,46], where a new
general framework for analysis of statistical properties of hyperbolic dynamical systems
was introduced. This approach employs representation of the phase space of a dynamical
system as a tower (later called Young tower, Gibbs-Markov-Young tower, etc), which
allow to study dynamics by analysing recurrences to the base of this tower. Several de-
velopments of this method were proposed later, essentially all focused on the dynamical
systems with weak hyperbolicity (slow decay of correlations). For such systems the
method of inducing was employed, when the base of the tower is chosen as such subset
of the phase space where the induced dynamics, generated by the recurrences to the
base, is strongly hyperbolic [17,18,34].

Our approach to the Poisson approximations is slightly different. It employs pulling
back a hole A to a nice (strongly hyperbolic) reference set in the phase space, e.g., the
base of the Young tower. This pull back method gives a new approach to two main
challenges for Poisson approximations: short returns and coronas (see Definition 7)
which were introduced and studied in [16,37]. It allows to improve various results
previously obtained in this area.

The main results (Theorems 3 and 4) of the paper are dealing with convergence of a
random process, generated by the measure preserving dynamics, to the functional Pois-
son law in the total variation (TV) norm. We also obtain estimates of the corresponding
convergence rates in the following form: for almost every z € M,

dry (N”Z'T, P) =9, (1.1)

where P is a Poisson point process and N™>T is a dynamical point process which counts
a number of entrances by an orbit to a metric ball B, (z) with radius r and the center z
in the phase space of a dynamical system during the time interval [0, T']. The notation
=r., means that a constant in (1.1) depends only on z and T (see Definition 1 for more
details).

These results on convergence to the Poisson distribution are stronger than the ones
obtained previously [16,22,26,29,30,37]. Namely

1. In [22,26,29] the following forms of convergence were obtained: for almost every
zeM
lim P {N”Z’T ([0, 7] = k} =P{P(0,T] =k}
rF—>

and/or when r — 0,

(N%Tm), o N”Z’T(Im)) —a (P, -, P(In))

where m > 1,k > 0 and intervals I, ... I, C [0, T]. Clearly, (1.1) implies these
two forms.

2. In [22,26,29,37] only convergence to the Poisson law was considered, while the
estimations of the convergence rates were not studied because the approaches used
there did not allow for such estimates.



Poisson Approximations and Convergence Rates for Hyperbolic Dynamical Systems 115

3. In [16,30] convergence rates were obtained in a weaker form. Namely, for any r €
(0, 1) there exist positive constants a, b and a set M, € M with P(M,) < r? such
that for any z ¢ M,

> [T o, 71 =k} ~ P (P10, T) = kY| 3 7. (1.2)
k

Besides just mentioned generalizations and strengthens of previous results, we also
obtain results under weaker conditions than the ones that were used previously. Namely,

1. In [16,30] a relatively high regularity (at least bounded derivatives) of dynamics
was required, while we just need it to be a local C'-diffeomorphism. Particularly,
derivatives can be unbounded. Note also that the results of [16] require a bounded
derivative and therefore are not applicable to dispersing billiards.

2. Unlike [16], we do not assume that unstable manifolds are one-dimensional.

3. In [16,29,30,37] sufficiently fast decay rates of return times on hyperbolic towers
were required. Our proofs of the existence of the Poisson limit laws use only poly-
nomial contraction (expansion) rate & on unstable and stable manifolds. Particularly,
a simple (easy to verify) criterion for existence of the Poisson limit law is obtained:

a > Cgim yU dimy ws

where a constant Cgim y# dimy . only depends on the dimension dim y* of unstable
manifolds y* and on the Hausdorff dimension dimy p of the SRB measure  on a
Gibbs—Markov—Young tower (see the details in Theorems 3 and 4).

This criterion allows to skip verification of the so called corona conditions (see Defi-
nition 7 or [37]), which is usually rather cumbersome even for uniformly hyperbolic
dynamical systems. Such verification becomes even more involved for non-uniformly
hyperbolic systems.

Now we briefly describe main theorems and applications considered in the paper.
Theorem 3 deals with the systems which can be modelled by Young towers with the
first return times. We apply it to smooth dynamical systems studied in [37], i.e., to
Axiom A attractors and intermittent solenoids. For systems which can not be modelled
by first return Young towers, our Theorem 4 gives different criteria. We apply it to
non-uniformly hyperbolic dynamical systems studied in [16,37], i.e. to Billiards and
Hénon attractors. Our results improve various previously known ones for these classes
of dynamical systems.

Finally, it is worthwhile to mention that convergence to compound Poisson distribu-
tions was studied in [23,28] for periodic points z € M of hyperbolic dynamical systems.
We do not consider such limit laws in the present paper.

The structure of the paper is the following. In Sect. 2 we introduce notations, give
necessary definitions and formulate main results. Section 3 presents a proof of the func-
tional Poisson law (with the error term) for systems admitting Young towers of general
type. Section 4 contains a proof of Theorem 3. A proof of Theorem 4 is in section 5. Ap-
plications to Axiom A attractors, intermittent solenoids, billiards and Henon attractors
are considered in Sect. 6.

2. Definitions and Main Results

We start by introducing some notations and conventions
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—

C, denotes a constant depending on z.
2. The notation “a, =, b," (“a, = O;(b,)") means that there is a constant C, > 1
such that (s.t.) a, < C;b, for all n > 1, whereas the notation “a, = b," (or

“a, = O(by)") means that there is a constant C > 1 such that a, < Cb, for all
n > 1. Next, “a, ~; b," and a, = Czilbn mean that there is a constant C, > 1
such that C 'y, <a,<C by, for all n > 1. Further, the notation “a,, & b," means
that there is a constant C > 1 such that C~1b, < a, < Cb, foralln > 1. Finally,
“a, = o(by)" means that lim,— o |a,/b,| = 0.

3. The notation P refers to a probability distribution on the probability space, where a
random variable lives, and [E denotes the expectation of a random variable.

4. By 14 we denote the characteristic function of a measurable set A.

5. N={0,1,2,3,...}

Definition 1 (Dynamical point processes). Let (M, d) be a Riemannian manifold (with
or without boundaries, connected or non-connected, compact or non-compact), d is the
Riemannian metric on M and B, (z) is a geodesic ball in M with a radius r and a center
z € M. We assume that dynamics f : (M, u) — (M, p) is ergodic with respect to
(w.r.t.) some invariant probability measure u.

Let T > 0. Consider a dynamical point process on [0, T], so that for any ¢ € [0, T]

/(B (2))

T .
Nlr' L= Z ]lBr(Z) o fl.

i=0
Thus the dynamical point process N”>7> is a random counting measure on [0, T'].

Definition 2 (Poisson point processes). For any T > 0, we say that P is a Poisson point
process on [0, T'] if

1. P is a random counting measure on [0, T'].

2. P(A) is a Poisson-distributed random variable for any Borel set A € [0, T].

3.If Ay, Aa, ..., Ay C [0, T] are pairwise disjoint, then P(A1), ..., P(A,) are inde-
pendent.

4. EP(A) = Leb(A) for any Borel set A C [0, T'].

Definition 3 (Total variation norms of point processes). For any T > 0 consider the
o -algebra C on the space of point processes on [0, 7], defined as

a{nI;lB:Ag [0,T]. B gN}, 2.1)

where A, B are Borel sets and 174 is an evaluation map defined on the space of counting
measures, so that for any counting measure N

waN = N(A).

Now we can define the total variation norm for the Poisson approximation of a
dynamical point process as

dry (N”T’Z, P) = sup ’M(N"T’Z € C)—P(P cC)
ceC
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Remark 1. The total variation norm in [16,37] is actually

sup ’;L(N"T’Z[O, T]e C)—P(P[0,T] e C)( .

CCN

Obviously, our total variation norm is stronger and gives more information, for example,

for any sub-interval [T7, T>] C [0, T],

sup [i(N"T<[Ti, To] € ©) = B(PITi, Tal € O] = dpy (N"T, P).
CcN

Definition 4 (Convergence rates of Poisson approximations). Suppose that for any T >
0 there exists a constant @ > 0 s.t. for almost every z € M

dry (Nr’T’Z, P) jT,z r4 — 0.

Then a is called a convergence rate of a Poisson approximation.

Remark 2. Our convergence rates imply that for any sub-interval [T, T>] < [0, T,

sup |[w(N"T3[Ty, ] € C) — P(P[Ty, T») € C)| 3., r* — 0.
CCN

We now turn to the definition of the Gibbs-Markov-Young structures [2,45,46]:

Definition 5 (Gibbs-Markov-Young structures). Introduce at first several notions con-
cerning hyperbolic dynamics f on Riemannian manifolds (M, d).

1. An embedded disk y* is called an unstable manifold if for every x, y € y*
tim d( /700 f7'()) =0
n— o0
2. An embedded disk y* is called a stable manifold if for every x, y € y*
lim_d( /"), f"()) =0
n—oQ

3.T" := {y"} is called a continuous family of C I_unstable manifolds if there is a
compact set K*, a unit disk D" in some R"” and a map ¢* : K* x D* — M such
that
(a) y* = ¢" ({x} x D") is an unstable manifold,

(b) " maps K* x D" homeomorphically onto its image,
(c) x = ¢"|{x)xpv defines a continuous map from K* to Emb' (D%, M), where
Emb! (D*, M) is the space of C'-embeddings of D" into M.

A continuous family of C!-stable manifolds I'* := {y*} is defined similarly.

We say that a compact set A € M has a hyperbolic product structure if there
exist continuous families of stable manifolds I'¥ := {y®} and of unstable manifolds
' := {y"} such that

LAa=Ur)NUr").
2. dim y* + dim y* = dim M,
3. each y* intersects each y* at exactly one point,
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4. stable and unstable manifolds are transversal, and the angles between them are uni-
formly bounded away from 0.

A subset A; C A is called a s-subset if A has a hyperbolic product structure and,
moreover, the corresponding families of stable and unstable manifolds I'] and I'{' can
be chosen so that I'j € I'* and '} = T'*.

Analogously, a subset A> € A is called an u-subset if A, has a hyperbolic product
structure and the families I'; and I'} can be chosen so that 'y € I'* and I'; = T'*.

For x € A,denote by y“(x) (resp. y* (x)) the element of I'* (resp. ['*) which contains
x. Also, for each n > 1, denote by (f™)" the restriction of the map f" to y*-disks, and
by det D (f™)" denote the Jacobian of (f™)".

We say that the set A with hyperbolic product structure has also a Gibbs-Markov-
Young structure if the following properties are satisfied

1. Lebesgue detectability: there exists y € I'* such that Leb, (A (y) > 0.
2. Markovian property: there exist pairwise disjoint s-subsets A1, Az, ... € A such
that
(a) Leb,, (A \ (Uizl Aj)) =0oneachy e I'",
(b) for each i > 1 there exists R; € N such that f Ri(A;) is an u-subset, and for all
x €A;

R (@) < (F0 )
and
R ) 2 v (R ).

Define now a return time function R : A — N and a return function f% : A — A,
so that for each i > 1

R}Ai = R; and fR|A,- = fRi|A,-
The separation time s(x, y) for x, y € A is defined as
n n
s(x,y) := min{n >0 : (fR) (x) and (fR) () belong to the different sets A;}.

We also assume that there are constants C > 1, ¢ > 0and 0 < 8 < 1, which depend
only on f and A, such that the following conditions hold
3. Polynomial contraction on stable leaves: for any y* € I'*, x, y € y*,n > 1,

d( e 1) = one.

4. Backward polynomial contraction on unstable leaves: for any y* € I'*,x,y €
y“n=1,

d(f7. f7m) = en.
5. Bounded distortion: for any y € I'* and x, y € ¥ [ ) A; for some A;,

det D (75) ) _ cps(rmenn o),

I
% detD (FF)" (3~
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6. Regularity of the stable foliations: for each y, y’ € I'* denote

®y,y/:y’ﬂA—> yﬂA:x—> y“(x)my.

Then the following properties hold
(a) ©,, is absolutely continuous and for any x € y () A

d(®,,),Leb, det D" (f" (x))
4Oyy), Leby ,
L )

d (), Leb,

y +1
= Cc*!,
dleb,
(b) forany x,y € y [ A
d(®y.y/) Leby/
log ate, () < Cp,
d(©,,) Leb,
ate, )

7. Aperiodicity: ged (R;,i > 1) = 1.
8. A decay rate of the return times R: there exist £ > 1 and y € I'* such that

Leb, (R > n) < Cn~s.

SRB measures: Let the dynamics f : (M, u) — (M, u) has Gibbs-Markov-Young
structure. It was proved in [2,45,46] that there exists an ergodic probability measure ©
such that for any unstable manifold y* (including I') p1,« < Leb,«, where ji,« is the
conditional measure of & on an unstable manifold y*. Such u is called Sinai-Ruelle-
Bowen measure (SRB measure).

Assumption 1 (Geometric regularities). Assume that f : M — M has the Gibbs-
Markov-Young structure, as described in Definition 5, and

1. f is bijective and a local C'-diffeomorphism on Uiz1 Uo<j<r; FI(A).

2. the following limit exists

dimy 1 = lim 2EH(Br (@)
r—0 logr

for almostevery z € M. Thendim g is called a Hausdorff dimension of the measure

.
3. adimg u > 1, where « is the contraction rate of the (un)stable manifolds in Defini-
tion 5.
Assumption 2 (The first returns & interior assumptions on A). Assume that f : M —

M has the Gibbs-Markov-Young structure, and there are constants C > land 8 € (0, 1)
(the same as that in Definition 5) such that

1. R : A — Nis the first return time and f® : A — A is the first return map for A.
This implies that £ R is actually bijective (see Lemma 4 below).
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foranyy € T, y; e T% x,y € y (A, x1, y1 € y1 () A,
(%) . (£5) ) = cp.
and
a((£5) "0 (F5) o) = e .
p{int (A)} > 0 and 1 (dA) = 0, where
int A :={x € A: thereexists ry > 0s.t. u (B, (x) \ A) =0}, 9A:=A\intA.

In other words, x € int A if and only if x € A and there is a small ball B, (x) s.t.
B, (x) € A p-almost surely.

Now we can formulate the first main result of the paper.

Theorem 3 (Convergence rates for functional Poisson laws I). Assume that the dynamics

f

(M, ) — (M, w) has afirst return Gibbs-Markov-Young structure (see Definition

5) and satisfies Assumptions 1 and 2. Then for any T > 0 the following results hold

1.
2.

dimyg p > dim y"* and

: 2 1
If either a > Tmy® — Fmph
almost every z € M

(M), then for

loc

or n & Lebag with dli—ll;M e LY

drv (Nr’Z’T, P) Sre Y,

where the constant a > 0 depends on & > 1, dimpg w, dim y* and «, but it does not
depend on z € M. The expression for a can be found in Lemma 19.

Definition 6 (Induced measurable partitions). We say a probability measure u for the
dynamics f : M — M has an induced measurable partition if there are constants
B €(0,1),C > 1 (the same as that in Definition 5) and » > 0 such that

1.
2.

W B~ W

There exists a subset U € M with u{int (U)} > 0, u(8U) = 0.

The subset U has a measurable partition ® := {y"(x)},ey (which could be different
from I'*), such that the elements of ® are disjoint connected unstable manifolds, so
that p-almost surely U = | |, ., ¥"(x) and for any function g

nu(g) =fuuyu<x>(g)duu(X),

where uy = ;f(lg) and f4u(y) is the conditional probability induced by p on y*(x) €
C]

. Each y* € © is (at least C!) smooth.
. All y* € © have uniformly bounded sectional curvatures and the same dimensions.
.Foranye € (0, 1)

pulx € U [y*(x)] < €} < Cev,

where |y*(x)| is the radius of the largest inscribed geodesic ball in y“(x) € O,
and a geodesic ball is defined with respect to the distance du(y) on y*(x), induced
by the Riemannian metric. This property implies that almost every y“(x) € © is
non-degenerated, i.e., |y*(x)| > 0 for almost every x € U.
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6. For almost every point x € U we have f1,u(y) < Lebyu(y), ptyu(y) (y*(x)) > 0, and
forany y, z € y*(x)

d ity (x) () = C*! d ity (x)

d Lebyu (x) o d Lebyu(x) (Z)

7. Denote by R the first return time to U for f. Then the first return map fﬁ U —->U
has an exponential u-contraction, i.e., forany y* € ®,x,y € y*, n > 1

a((£7) " (£F) ") = cprace .

and an exponential decay of correlation, i.e., for any 7 € Lip(U)

/h o (ff)" hdpy — (/ hduu>2

Now we are able to formulate the second main result of the paper.

< CB" |l

Theorem 4 (Convergence rates for the functional Poisson laws II). Assume that the
dynamics f : (M, u) = (M, w) has the Gibbs-Markov-Young structure (see Definition
5), satisfies Assumption 1 and p has an induced measurable partition (see Definition 6).
Then for any T > 0, the following results hold.

1. dimy u > meu dim y* and
. 2 b+dim y" 1 00
2. If either a > 3= T~ @m0 <K Lebpyg and 45— dLebM € L7 (M), then

for almost every (a.e.) z € M,
drv (NV’Z’T, P) bl

where a constant a > 0 depends on & > 1, dimpy u, dim y*, b and «, but it does not
depend on 7 € M. The expression for a can be found in Lemma 31.

Remark 3. 1. For many hyperbolic systems contraction (resp. expansion) along stable
(resp. unstable) manifolds is exponential. Therefore, the rate & can be chosen as an
arbitrary large number. Therefore, in this case, the condition for o in Theorems 3 and
4 holds automatically.

2. For a simple uniformly hyperbolic system, e.g. for an algebraic toral automorphism
(Arnold’s cat), dimpg pu = 2, dim y* = 1 and &, « can be arbitarily large. Therefore
it follows from Lemma 19 that the convergence rate a can be chosen as any number
in the interval (0, 24%).

3. Our Assumption 2 that R is the first return time and ¥ is the first return map of A is
natural for hyperbolic systems that have a Markov partition. Otherwise, we assume
that the system has a subset U with an induced measurable partition (see Definition
6).

It will be shown in what follows that Theorems 3 and 4 work efficiently for various
systems in applications (see section 6). Clearly, a key issue here is a choice of the
reference sets A and U.

Our approach is close to a standard one in Ergodic theory, which restricts dynamics as
an induced map to some “good" subset. Then a result is proved for the corresponding
induced map, and then it is“lifted" to entire phase space. Our approach employs
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instead pulling of a hole back to good sets A and U, and then uses the induced map
with good properties to deal with two main challenges for Poisson approximations:
short returns and coronas (see Definition 7).

Therefore our approach (see the details in Sects. 4 and 5) does not work for non-
invertible systems (e.g. expanding and intermittent type maps). The reason is that
such non-invertible systems usually have multiple inverse branches, and a hole can
not be entirely pulled back to A and U. We believe that our approach could be
modified to handle as well non-invertible systems. However, it is a subject for future
studies.

4. Under similar conditions to Definition 6, it was proved in [43] that g (E > n) char-
acterizes the optimal bound for the decay rates of correlations for sufficiently good
observables supported on U (see Theorem 1.3 in [43]); the paper [10] uses operator
renewal theory as a method to prove also sharp results on polynomial decay of corre-
lations (see Theorem 3.1 in [10]). For many purposes the aperiodicity in Definition 5
isirrelevant provided the dynamic f : (M, u) — (M, w) is mixing (see Remark 2.2
in [10]). Indeed all dynamical systems, which we consider in applications (Sect. 6), do
have a countable Markov partition. And any hyperbolic ergodic dynamical systems
with singularities (e.g. dispersing billiards) in Sect. 6 only have countably infinite
Markov partition (see [14]). Also an ergodic completely hyperbolic (all Lyapunov
exponents do not vanish) dynamical system is mixing. Therefore Young towers are
mixing. So, to simplify the argument of our proof, we only assume aperiodicity in
the Gibbs-Markov-Young structures.

5. When dealing with applications, (see Sect. 6), it is always assumed that u is a hyper-
bolic measure (i.e., the Lyapunov exponents do not vanish almost everywhere, see
[4]). Also, in applications most often there is an explicit natural invariant measure
(sometimes called a physical measure). Therefore, Assumption 1, which requires

that dimy @ := lim,_¢ W, is relevant to such approach. (However, another
dimension conditions, like e.g. in [29], could be used as well).

6. If an SRB measure u is explicitly known, then the Poisson approximations are usually
well understood [8,9,21,26,29]. However, if it is not the case, then often essential
difficulties arise, e.g. for intermittent solenoid attractors, Axiom A attractors, etc
(see [37]). Our Theorem 3 provides an useful, easy to verify, criterion. Indeed, if
o > 2/dim y*, then there is no need to know dimy . Moreover, estimations of the
corresponding convergence rates can be obtained as well.

7. According to Theorems 3 and 4, it is only required that £ > 1. In fact, it is a minimal
requirement for the existence of the SRB measures (see [2]).

8. Observe that for our approach only the contraction rate O (n’“) along (un)stable
manifolds matters, which is different from the ones employed in [16,29,37].

9. If f has a sufficiently good regularity, then dimy p > dim y* [4,32,33]. Our only
assumption is that f is a local C'-diffeomorphism. Observe that we do not even
assume that M is a compact manifold (see Definition 5 and Assumption 1). Therefore
Theorem 4 does not provide a good lower bound for dimy . It is worthwhile to
mention also that for all applications considered below (see Sect. 6) the relation
dimy @ > dim y* always holds.

Corollary 1 (The first hitting and survival probabilities). Under the same conditions

as in Theorem 3 or 4 consider first hitting moment of time tp, (;)(x) := inf {n >1:

f"(x) € B (2) } Then for almost every z € M, any T > Oandanyt < T the following
relation holds for the first hitting probability
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(T80 > 1/1(Br@)) — €™ = Or...0%). 22)
Particularly, survival probability at time T can be approximated as
1 (tp) > T) = e THB @) 4 min {O76,:(r"). 1} .
Moreover, the following limiting relations hold

lo T >T
lim 1im 22X (B0 >T) 1, 2.3)
T—oor—0 —Tu(Br(2))

and forany T > 0

tog (8, > T /(B 2)))

Proof Clearly 1 {75, o) > 1/1(B,(2))} = i {N"T%10. 1/1u(B, (2))] = 0}. Apply now
a relevant one of Theorems 3 and 4. Then Or ¢ ; ,(r“) is the error term with the con-
vergence rate a. For the survival probability at time 7 take t = T w(B,(z)). The re-
lation (2.2) implies (2.4). According to Assumption 1, f is a local diffeomorphism
almost everywhere. Besides, the set of all periodic points has measure zero. Hence
7 (TBr(z) > T) =1—u {UKT [ Br(z)} = 1—(T+1D)u(Br(z)),if r is small enough.
Therefore (2.3) holds. |

Remark 4. The papers [1,24,31,44] obtained convergence rates for hitting times statis-
tics, extreme value distributions and escape rates. Particularly, the paper [44] also pro-
vides error terms for Poisson approximations for some stochastic processes.

3. Functional Poisson Limit Laws

This section deals with the functional Poisson limit laws and convergence rates of
dry (N roT P) for the dynamics f described in Definition 5 and satisfying Assumption
1 only. For any n > 0, I < [0, n], let

X; = IlBr(z) ofi, X7 = Z]]'Br(Z) Ofi.

iel

Denote by (X }i>0 1.1.d. random variables defined on a probability space (<, I@’), such
that for each i > 0,

Xi =aq Xi,
that is, they have the same distribution. Let
X7 = Z X;.
iel

Observe that generally X; and X are not identically distributed. For any m > 1 we
define
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dTV<<X11» e X1,,,>, ()211, X[,,,))

= Ssup )Eh(X[l,...,le) —h (X]I,...,)?Im) ‘,
hel0,1]

where % is a measurable function on R with values in [0, 1] and E is expectation of

n® P.
Throughout this section the notation A (-, «, . . ., ») means that function / is defined on
——

m
R™ for some m > 1. h € [0, 1] means that a function & takes values in [0, 1].

Lemma 1. For any disjoint sets I, I, ..., I, C [0, n] and any integer p € (0, n),
dTV<(X11, X)), (X,lxlm)) < Ri+Ry+Rs,
where
Ri=2 3 sup [E[lxgmthXp . Xoo) | = ELgomi E[h(X,. .. Xao0)|
0<i=n—p hel0.1]

Ry :=4(n — p)E(1X0=1]121gsp71 x,-zl)
Ry i=4p(n — pu(Br(2)) +4pp(B; (),

and h is a measurable function with values in [0, 1]. Observe that we obtain a slightly
better error bound here, compared to Theorem 2.1 in [16].

Proof. By definition of total variation norm

dTV((Xn, e, le), (ffll, cees }Aflm>)

= Sup ‘Eh(XIl,...,le) —h()?ll,...,)A([m)‘
hel0,1]

< sup ‘Eh(Xo,...,X,,) —h()?o,...,f(,,)‘
hel0,1]

e (oo %) (o ) ).

Hence, it suffices to estimate

aro((¥o %), (o ) )

= sup ’Eh(Xo,...,X,,)—h()A(O,...,)A(,J’
hel0,1]

= sup ‘
helo. 11" 52,

—Eh(f(l,...,)21_1,)2],...,)(,,>’

)

< sup ‘ Z Ehz(Xl,,X1+1,-..,Xn> —En (Xz,Xm,-.-,Xn)
nelo.n 'y 52,
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here h;(+) := h(fﬁ, e, )A(l,] ,+). Since )A(l, R )A(Z,] are independent of other random
variables, without loss of generality, 4; can be regarded as a function which does not
depend on X1, ..., X;—1. Note that X; =4 X; are {0, 1}-valued random variables. Thus

‘Ehl(Xh Xigtsoons Xn) —Eh ()A(l, Xist, oo, Xn) ‘
= [E[ 100 0. X1, .o Xo) | + B[ Lxm (L, Xian, -, X |
— Eﬂ)?lzo

= [E[ Lm0, Xt o X) |+ B[ Lt (1 X, X |

Eh; (0, Xi41, ..., Xy) — Eﬂ)}lzl]Ehl(l’ Xitty oo Xp)

—El,

X1=1]Ehl(0’ Xl+17 B Xn) - E]‘LXl:lEhl(ly Xl+17 e Xn)

<2 sup E[I[XI:lh(X]H, e, Xn)] —Elx,—1Eh(Xpp1, ..., Xn)
hel0,1]

Therefore,

arv((¥o. oo X0), (R R2))

<2 3 sup [E[Txmthans o Xa) | = BLx o BA KX X0)
hel0,1]

. (3.0

0<i<n

We will first estimate the terms with/ <n — p in (3.1).

‘E[lx,:lh(xm, e Xn)] —Ely,=1Eh (X141, ..., Xp)
= [B[Lxmih (Xt o X) | = B[ L2 5O, .0, X, X))
+IE[]LX,:1h(0, 0, X, X)] — Ely, EA(Xpas - .., Xn)

+Eﬂx1:1Eh(0, ...,0, Xitpsoons X)) —Ely,=1ERQ,...,0, Xips ooy X,)

= [B{Lxm A1, Xa) = (O, 0, i X ]

+IEILX,:1E[h(O, 0 Xpeps oo Xn) = Rt X,,)]

+IE[ILX,:1h(0, 0 X X,,)] — Elx,—1BAQ, ....0, Xpep. ... Xp)

Observe that
|h(Xl+17 K] Xn) - h(07 D] 07 Xl+p7 ey X}’l)| = 212]+1§j§1+l7*1 XJZI'

Now, because of stationarity of (X;);>0, we can continue estimates as

< ‘E[nx,zlh(o, 0, Xep X)] — Elx—tER (0., 0, Xpap. ... Xp)

+ 2E<1X’:1121+15/‘§1+p—1 XJZ]) + 2E1X121E121+I§j51+p—1 Xj=1

< |E[Lx=ih (O, 0, Xiap o Xo) | = BLg i BAQ, .., 0, Xpips o Xa)
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+ 2]E<ILX0=1 Iy, ijl) +2ELxmEly,  x;s1-

Note that 12151'5;)71 X;z1 = LUy i B2 Hence, we can continue the sequence
of inequalities above as

< ‘]E[]lelh(O, 0, Xpap, - X)] — Lyt BAO, ..., 0, Xpp. ... Xn)
+ 21 <1X0=11215,-5p_1 X_,-zl) +2(p — Du(Br(2))*.
Therefore for terms with/ < n — p in (3.1) we have
‘IE[]IxF]h(XH], e Xn)] —Elx,—1Bh(Xs1. ..., Xn)
< ‘]E[lxlzlh((), 0, Xep X)] — ElLy, 1 BAO, ..., 0, Xpsp. ... Xn)
+ 2k (ILX"ZI Ly cjepmi X.le) +2pu(B,(2))*.

Consider now the terms with [ > n — p in (3.1). Since ||/]|o0 < 1, then

B[ 1xmth X, X | = Bl BA (X, X

< 2u(B,(2)).

Therefore
GD=2 3 sup [B[Lxmth(pet. s Xo) | = By B, -, X)
0<2n hel0.1]
<2 3 sup [B[lxmth(Kieps s Xo) | = BLxmiBAXiap, -, X)
O<ian—phel0.1]

+4(n — p)]E<]lXo=1]lzlgjip,1 sz1) +4p(n — p)(B,(2)” +4pu(B,(2)).

By making use of stationarity of (X;);>0, the last expression above can be estimated
as

<2 3 s E[]lxo:lh(Xp,...,Xn_z)]—Elle:]IEh(Xp,...,Xn_z)

O<izn—phel0.1]

+4(n — p)E (ILXO:IILZlSjSP_I ijl) +4p(n — p)u(B(2))* +4pu(B;(2)).

For further estimates we will need the following lemma.

Lemma 2 (Hyperbolic towers, see [37,45]). Define a tower A and amap F : A — A
as
A:={x,) e AxN:0=<!l < R(x)},

(x,1+1), [l < R(x)—1

F(x,D ::{(fR(x),O), I= RG)—1°
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Equivalence relation ~ on A is then
x ~yifandonlyifx,y € y* for some y* € T'*.

Now we can deﬁne a quotient tower A= A/ ~, a quotzent Gibbs-Markov-Young

product structure A= =A/~, quottent maps F:A—> A, fR: A — A, and canonical
projections Ta : A — Aand Ty : A — A.
At first, we introduce a family of partitions (Qi)k=0 of A as

Qo :={Aix{l}i=1,l<R}), Q:=\ F'Q
0<i<k

Next, a projection m : A — M is defined as

a0 = L.

Then there exists a constant C > 1 (the same as that in Definition 5) such that for
any Q € Qo

diam (rr ° F"(Q)) < Ck. 3.2)
There exist also probability measures jLa, Lp on A and A, respectively, such that
Tapta = Wy Feflp = pa,  fult = 1, (fR>* KA = [AA- (3.3)
Further, there exist probability measures iy, Ly on A and A respectively, such that
Fads o = UX> FEadstin = u3, Fenx =nz, (FR),uz =pnz. 4
Thus u is supported on | J; -1 U, g, FI(AD), ie.,
U U ran) =1
i>1j<R;
Moreover

d(MA)y“ eS|

(1p)yn K Lebyu, TLebnw = )
yu

(3.5)

where (11 p)yu is the conditional measure of pa on y" € I'". Since R is the first return
time, (see Assumption 2), then

“la
(A

Finally, for any k > 1 and any (Q;)i>1 € Qk, any h : A — R satisfying ||h]|ec <1
and h(x,l) = h(y,l) for any x,y € y* € I'°, and any allowable | € N (ie., h is
U(Ukzo Ox)-measurable), we have the following estimate for decay of correlations

)/%izl oiho F*dua —MA(U Qi)/hdﬂA‘ < Ckl‘sm(U Q,-). (3.6)
i>1 i>1

KA =
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Lemma 3. Foranyl > 0, p~* < r and any measurable function h with values in [0, 1]
(E[ﬂxo:lh(xp, L Xp+,)] — Elxgt EA(Xp. ... Xput)
< 4Cp Fu(Byacaep o (@) + 2+ 410 Bracae o () )|

% 1(Bracepe )\ By_canpe (@),

where a constant C is the same as that in Definition 5.

Proof. Similarly to the approach of [37], we will make use of Markov partition of
hyperbolic towers. Let m := | p/4]. By (3.3) and the invariance of F (i.e., Foup = )
we have

B[ 1xomth(Xp s Xpu)|
=/ﬂBr(oh(ﬂBr(z)Of”,.-.,JlB,(oof””)du

= / ]13'4(1) OJT o th(]lBr(z) OJT o Fp+m7p ..... ]lBr(Z) OoTT O Fp+l+m7p) [e) depLA.

Denote Ay = F™"z7'B(2), Ao = Lpecg,onasQ and Ay =

measurable. Therefore we can continue the equality above as

=/11A1h(]1A1,...,]1A1 o F'yo FPdun
:/]lAlh(ILAIUAz,...,ILAIUAzoFl)oF”d;LA
+/]1A1h(ILA1,...,ILA1 o F'yo FPdun
—/]lAlh(]lAIUAz,...,]lAlUAzoFl)oFPdMA.
Claim: |h(]1.A1,...,]1A1oFl)—h(lAIUAZ,...,‘]lAIUAZoFl)]52]1U!,§1F7,-A2.
Indeed, if F/(x,l) ¢ Apforall j <[,thenla, o F/7P(x,l) = L1a,ua, 0 F/7P(x,1).

On the other hand, ||4||oc < 1. Hence, the claim holds.
Therefore,

‘E[leozlh(x,,, L x,,+1)] — Elyy 1 EA(Xp. ... Xpa)

= | [ tah (th e La s o F) 0 FPdps = matan
/h<1A1UA27-~-vILA1UA2OFl)d/*LA
+/]lA1h(ILA1,...,]lA1OF[>ond/,LA

—/]lAlh(]lAIUAz,...,]lAIUAzoFl>ond,uA
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—/ﬂAlduA/h<ﬂAl,...,ﬂAl oFl>oF”d,uA+,uA(A1)
fh(ﬂAIUAz,...,ﬂAIUAZOFZ)d,LLA‘

/]lAlh (14U Ta s 0 F') 0 FPdpa = pia(AD)

/h<1A1UA27~~'71A1UA2OFZ)dMA

+2/1A11U,—51F7j142 o FPdun +2MA(A1)/]1U]-S,F*J'A2dV’A

/]leh (ILAIUAz,...,IlAlUAzoFl>onduA—,uA(Ao)
/h<1A]UA2,...,ﬂA,UAzoFl)dMA
+‘/ILAO\Alh(]lAIUAZ,...,ILAIUAZoFl)oFPdMA
—/h(]lAlUAz,...,]lAlUAzoFl)d,uA

x MA(AO\AI)‘+2/]1A|1UjilF*fA2 o FPdpa +2pa(Ar)

f ]IUjgl FfjAszA

Ap\ A1 C Ay, A1 C Ao, which means that we can continue the estimate

[ 1t (10 Ly © F) 0 PP = patao

+/ 1a,h (ILAIUAZ,..., La, 4, oF’) o FPdua + pa(A2)

Jn
2
/ﬂu
/IL

=<

/h<1AIUA2""’]‘A1UA2OFl)du“A

|/

ﬂAlUAZ""’]lAIUAZ OFl)dMA
Lagly, ., ria, © FPdpa +20na(A1)
= F*fAszA

th (]]-Al UAzsr -+ ]lAl Jax © Fl) ° de,bLA — na(Ao)

L,k (1A1UA2,...,1A1UA2oF’)oFPdM
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_/h(1A1UA27~"’ﬂA]UAgoFl)dMA
x MA<A2>(+2M(Az>fh(11A1UA2,..., La,uas o F) dua

+2‘/ HAOILU/S,F*J'AQOdeMA_/ledMA/HU/S,F*jAQOdeMA

+2/1Aod:uA/]IU]-EIF*J'AZ0deMA+2/lAldMA/EUjglFffAzd:uA'
3.7

Claim: 7 (1, Udssr > La Ja, © Fl) is 0 (U0 Qk)-measurable. Observe, that
forany (x,1), (y,1) € A, x,y € y* € ' wehave F/~P(x,1) = (x', ), FI7P(y,l) =
(', 1") for some I € N and some x’, y" € (y*) € I'*. Since 14, U4z 18 0 (Uk=0 Qi)-

measurable, ]lAlqu o) F/_p(x’ l) = ]lAIUAZ (e} Fj_p(y’ l). Therefore h(]lA] UAZ’ ey
La,yas© Fl> is 0 (Ug>0Qk)-measurable.
Claim: Ly, F-ia, is also 0 (U0 Qk)-measurable.

Indeed, each set F~/A, is cr(UkZO Qi )-measurable. So their union is also
0 (U0 Qk)-measurable.

Claim: (1a(A2) < @ (Brycaep (@) \ Br_cgopa(2)).
Observe that

na(A2) = ua (F"a ™' F" Az) = o (T F" As).

By definition of A := l—lQEQQ,n:Q N(Ao\A 18 Q, for each Q, contained in A,, there
exist x1, xp € Q, such that w(F"x1) € B, (2), t(F"x2) ¢ B,(z). Now, by making use
of (3.2) and m = | p/4], we obtain 7 (F™ A3) C B, c4ep—«(2) \ Br_c4e p—(2). Hence
the claim holds.

Having these claims and (3.6), we can continue estimate of (3.7) as

< Cp' ¥ ua(A0) + Cp' 5 ua(A2) + 21 a(A2) +2Cp" 5 ua (Ap)

+2ua(Ao)pa ( U F_jAz) +2ua(AD) A ( U F_jAz)
Jj=l Jj=l

< Cp' Eua(AD) + Cp 5 ua(Ar) + Cp' 5 A (A2) + 21 a (A2)
+2Cp" S ua(A)) +2Cp' S ua(Ar)

+2[uaAn +uat Jua(UJF7a2) +2maanpa(|JF742). 38
= j<l

Letg™® := C4%p~“, recall that u (B, (2)) = na(Ar) and pa(Az) < /L(BHqﬂx @\
B,_ g« (Z)). Therefore estimate of (3.8) can be continued as
< Cp' (B (@) +2Cp' 1 Brage () \ Brya(2))

+201(Brage(2) \ Brge(2)) +2Cp' (B, (2))
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+2Cp" " By (@) \ By a(@) + 2011 (Br @1 Brag« () \ By (2))
+2[ (B, @)+ 1 (Brage )\ Brg (@) | Brage(2) \ Br_ge(2))
= 4Cp " (Braga(@) 421 (Brige (D \ By _ge ()

4111 (Brage )1 Brige (D) \ By _ge (D).

To finish proof we replace ¢ = with C4% p~%. O
di(r;lH n—e
Proposition 1 (Functional Poisson limit laws). Let p := HWJ e J where €
is so small that
. dimpy 2 s
a(dimyg u — €) > —— > 1 (see Assumption 1).
dimyg u — €

Then for almost any 7z € M there is r, > 0, such that for any r < r,
dry (N"T5,P) Src Ri0)+ Ro(r2) + Ra(r, ) + Ra(r, 2)
where

. (dim g ;/,—5)2 (=1 e(dimy p—e)
Rl(r) = rdlmH H—€ 4 dimgp 4+ dimgp

1
Rz(rv Z) =M B im —6)2a (Z)\B im —6)2a (Z)
14(Br(2)) ( P e

dimpy 1 F—C'y dimgu
1 2
R3(V, Z) =5 M B im —6)2a (Z)\B im —6)2a (Z)
(B @)\ T
1
Ry(r,z) ' = ———— 1y . ipdu,
(B (2)) Js, ) Ui<j<p [/ Br (D)

and C’ depends on T, a, € and on constant C in Definition 5.

Obviously, lim,_o R{(r) = 0 and R3(r,z) < Ry(r, 7). Therefore, to claim dry
(Nr*T’Z, P) — 0 with certain convergence rate, it suffices to prove lim,_.o Ra(r, z) =
lim,_,0 R4(r, z) = 0 for a.e. z € M with certain convergence rates in Sects. 4 and 5.

dim gy pu—e . 2

— T e Y7 —a . - . (dimy p—e)’a
Proof. Letn = LmJ, p = \j’l dim gy ¢ J,q * = C4ap Ol, n = dﬁn—yu
where € is so small that o(dimy u — €) > didrgz—’z’je > 1 (in view of Assumption 1).

Therefore for a.e. z € M there exists r; > 0 such that for any r < r,, in view of
Assumption 1,

Tre—dimyu <n= Tr—dimH n—e

a(dimgy p—e) dimpy p—e .

. _ Ay 1me) - a(dimy p—e

p Ot:jn dim gy :jT,Dlr dim g ( H K )_r17<<r'
Hence by Lemmas 1 and 3, for any disjoint sets Iy, ..., I,, < [0, n] we have

dTV(<X11,---,X1m>, ()A(ll,.--,f(lm>)
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<2 Y sup [B[Txmth(pn o Xop) | = Blxym BAX -, X))

0<l<n— pheOl

+401 = PIE (Lxgm Ly, xy21) 4P = pIR(B, () +4pu(By(2)

> 8P u(Brage @) + [44800—1 = pu(Brige ()]

0<l<n—p

% 1 (Brag @\ By a(®) + 41— pIE (Limi Iy, x,21)
+4p(n — p)u(Br())* +4pu(B,(2))

< 8nCp1—¥u<Br+q—a (z)) + [4 + 8nu(Br+q_a (z))]nu(BHq_u @)\ Br_ge (z))
+ Ak (1Xo=1 IS ep x,-ZI) +4pnu(Br(2))* +4pu(B,(2))

< 8Cnp! u(B1(2) +8Cnp 1 (Brag« )\ By (2))
+[44 808, (@) + 8111 (Brag-(@) \ Brge @) |12 (Brag o (0)\ Brye(2)
+4nk <1Xo=1 Iy e, X,-zl) +4pn(B,(2))* +4pu(B,(2)).

Note that

dim gy p—e

P =T /L(Br(z))7 dmgn - np(Br(z)) < T.

Thus we can continue the inequality above as

e oy (Brege(@\ Br_ge(2)
e (B () S G
~The B 2) ’ (B, (2)

1(Brige (@ \ By ge ()

+
n(B,(z))

1

+ (B2 o ILU]SJ.SP F-iB (A1 + p(By(2))

By applying Theorems 2 and 3 of [3] to (X; )i>0 one gets that for any disjoint intervals
o JIm €10, 71,

s B (P P =k (R Ry ) | = 4nia(Br@)? S w(B, ),

where Jl.’ = Ji/u(Br(2) :={x:xu(By(2)) € J;} S [0,n]foralli =1,...,m
Approximate now (X VERRRS X ) by the Poisson point process P. Then

s [En (Xsp - Xg) =0 (POD, - PG|

< sup Eh(P(Jl),...,P(Jm))—h(f(y,...,f(,y/n)‘
hel0.1] !
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+dTV<(XJI’, s X (X’Jl/,.-.,f(ﬁ ))

m

dim gy pu—e %% Br+ — (Z) \ Br— o (Z)>
< T €D ( 1 1
J1.8e (B (2) + (B (2)) (B, (2)

M(Br+q—°‘ @\ B4 (Z))
w(Br(2))

+

L
w(Br(2)) JB, (2

Since o -algebra C = a{nXIB : any Borel sets A C [0, T'], B C N} is generated by
C = {n;lAl ﬂu-ﬂn;lAm :any Ay, ..., Ay CN, disjoint intervals Jy, ..., J, C

)

[0, T}, we obtain the foﬁowing functional Poisson approximation: for any r < r;

dry (Nr’T’Z, P)

< sup ‘Eh(P(Jl),..., P(Jm)) —h(Nr’T’Z(Jl),...,N”T’Z(Jm))‘
disjoint J; €[0,T],h€[0,1]

ILU]S/S/I FoiB A+ (B, (z))Tmu i,

- sup )Eh(P(Jl),...,P(Jm))—h(x,/,...,x%)‘
disjoint J; C[0,T1,h€[0,1] !
A€ (1) T
2166 W(Br(2) + (B, (2)) Tk + (B, (z)) i v

N H‘<Br+q7°‘ @\ Br—qfa (Z)) + 18 (Br+q*“~' @)\ Br—q*“ (Z)) ?
n(B(2)) n(Br(2))

1
+t 1 - d
/L(Br (Z)) B (2) UlSjSp [~/ Br(2) w

@imgy p=0? (o ) eldimp ) M<3r+C'rv(Z) \ Br—C’r”(Z))
+r

jT £ rdimH n—€ 4+ dimgn dimp o 4
wu(Br(2))

2
1 (Br+C/r’7 (2) \ B¢ (Z)) 1 1 ) d
* Uizjzp 7B CH

w(Br(2)) * w(Br(2)) JB, )

where the last “=" follows from ¢~ < C’r" for some C’ depending on T, «, € and

. 2
constant C in Definition 5. To finish proof replace n with W. O

Definition 7. (Short returns and coronas) Let p be the one in Proposition 1. Define

1. Short returns:

1 L du.
./Br(z) Uisjep F778:@

2. Coronas:

1% (B (dimpy p—e)2a (Z)\B (dimpy p—e)2a (Z)> .

r+C'r dimpy r—C'r dimpy 1o
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It will be shown below that these quantities tend to O for almost all z € M with
certain convergence rates.

4. Proof of Theorem 3

4.1. Properties of the first return to A. Before studying convergence rates for short
returns and coronas we will prove several lemmas for the first return time R and for the
first return map f® : A — A under Assumptions 1 and 2.

Lemma 4. The map fR : A — A is bijective.

Proof. We will show first that f& is one-to-one. Suppose that f¥(x) = f&(y) for
x,y € A.Ifx, y € A; for some i, then fRi(x) = fRi(y). On the other hand, it follows
from Assumption 1 that f is bijective on | J,-.; U J<R; f7(A;). Thus we have inductively
the following reduction

f (fRf—‘x) = f (fR"_ly) = f (fR"‘ZX) =f (fR"_zy)
== fO=f)=>x=y.

Letx € A;,y € Ajforsomei # jand fR(x) = fR(y). Without any loss of generality,
we may assume that R; < R;. Then f&i(x) = fRi(y). Again, by Assumptions 1

()= £ () (220 =1 (102
= ..o x=fRiRiyecp,

But the firstreturn time of y to A is R, i.e., fRi—Riy ¢ A.Sowecame toacontradiction,
and therefore this case cannot occur.
We show now that R is onto. Let y € A and y € A; for some i. Then y €

Uis1 U<, [/ (A1). By Assumption 1 f is bijective on ;= U;_g, /7 (A;). There-
fore there exists x" € ;= U< g, fI(A)), i.e., thereis x € Ay such that £/ (x) = x/,
where j < Ry and f(x") = f/*!(x) = y. Since Ry is the first return time for x, then
j+1=Ryand fR(x)=y. O

Lemma 5. The following properties hold
TiA—> U U fj(Ai) is bijective,

i>1 j<R;
7w Ag — A is identity,
TiAs — U U fj(Ai) is bijective,
il 1<j<R;
where A>1 :={(x,]) e AxN:1<Il < R(x)},
Ag :={(x,0):x e A} C A.

Proof. Clearly, it is enough to prove just the first statement. By definition of A the first
map 7 is onto. Let us show now that it is actually one-to-one. For all (x, 1), (x',I") € A

with 77 (x, 1) = m(x', ') it holds that f'(x) = f!(x"). Without loss of generality, let
I <I'.By Assumption 1 f is bijective on (J;» U, g, f/(Ai). Then

F(r) = () = () =7 () = s =



Poisson Approximations and Convergence Rates for Hyperbolic Dynamical Systems 135
Since x,y € A and !’ — [ is less than first return time of y, one gets that I’ = [ and
X =y. O

Forevery z € (UJ;o1 Up<j<g, f/(Ai) we define
j.:=min{n € N: f7"(z) €int (A)}. 4.1)

Recall that u{int (A)} > 0, so j; < oo for almost every z € ;21 Up<j <, fI(A) by
Birkhoff’s ergodic theorem. B -

Lemma 6 (Pulling metric balls back to A). There exists a small enough r > 0 such that
w(7 B, A) =0, na({=' s B0} N az) =0,

and

ua(f==' B} N a0) = 1.
where j, is defined in (4.1).

Proof. By Assumption 2 there is a small neighborhood U, € M of 7' € int (A) such
that

w(ueNa)=nlv.N{U U Fan}|=o.
i>11<j<R;
Because f/ is a local C!-diffeomorphism, there exists a small ball B,(z) such

that 7 B,(z) € Uy. So u(f /B (2)(AS) = M<f_szr(Z) N [ Uis1 Ui<j<r,
f-/(Ai)}> = 0. Hence by Lemma 5,

ua({==' 1B, az1) = 0and pa ({77! r 7B, M A0) = 1.

O

Definition 8 (Topological balls). We say that a set U, (z') € M is a topological ball if
there is a ball B,(z) € M and amap T of B,(z), such that

T : B,(z) — U,(Z) is a C'-diffeomorphism and T'(z) = 7.
We say that r, 7’ are the radius and the center of U, ().

Foralmostevery z € U, Up<jg, /7 (Ai) wehavez = f/:(z'), whereZ’ € int (A)
(see (4.1)). Since f Jz is a local diffeomorphism (by Assumption 1), then U, ( f _sz) =
f /2B, (2) is a topological ball for sufficiently small » > 0.

Lemma 7 (Comparisons of topological and metric balls). There exist constants C, > 1
and r; > 0, such that for any r < r;

B, (fijzz) c U, (f*fzz) C Bc,, (f*jzz) )



136 Y. Su, L. A. Bunimovich

Proof. Since f~/: is alocal diffeomorphism near z, then f~/= (3B, (2)) = U, (f~/:2).
We will estimate sup, oy, (r-iz ;) 4 (x, f77z) and inf, oy, (r-iez) d (x, f~%z).Forany
x € 0U, (f7/=z) one has f/:(x) € 3B, (z). Let (y;)o<i<1 be the geodesic connecting x
and f~/:z,and a curve y := f/2y is connecting f/:x and z. Then

. 1 1 - -
d (x, f5z) =/0 Vs V/>y,dz=/0 JDF 59, Df=iep)yydr. (42)

If  is sufficiently small (i.e., r < r; forsomer; > 0),then Df ~Jz and the Riemannian
metric (-, -),, are close to Df ~/=(z) and (-, ), respectively. Then there exists C, > 1
such that

d (x, f—/zz) > ;! /Ol [(9.9!)ydt > CT'd (ka,z) =c;'r

Similarly, let (y)o</<1 be a curve connecting x and f <z, such that y := f/y is
geodesic connecting f/x and z. Then

1 1
d (x, fﬁJZZ) 5/(; v <Vt/’ Vt/)yfdt = A \/(Dfijz)’)t/’ Dfijzptwy;dt
1
fcz[) v <J;t/f ?t/)ﬁ,dt = C.r,

which proves lemma. O

Definition 9 (Two-sided cylinders in A). Since f® : A — A is bijective, we can define
two-sided cylinders as

b= () AL D) A e NN ) A
N " A

Introduce now a new partition of A as

Mo :={A;,i > 1}, Mp:= \/ (fR>_i Mo.

0<i<k

Using Assumption 2 we obtain the following estimate. A proof here is standard.
Therefore, we omit it.

Lemma 8 (Diameters of two-sided cylinders).
diamé&; 4., <2CB",
where C > 1 and B € (0, 1) are the same as that in Assumption 2.
It is proved in [45,46] that }7" : (K, Hx) — (7\, 13x) is exact and, hence, mixing.

Together with (3.4) and Corollary 2.3 (b) of [35], we have the following estimate for
decay of correlations. Again, a proof is standard, and we omit it.

Lemma 9 (Decay of correlations for f® : A — A). There exist constants C" > 1, B €
(0, 1), such that for any one-sided cylinder &, ; € M, and any A € G(UkZO Mpi)

2n
'/1&0._1”1/40 (fR) dpp —flsio..,indMAflAdﬂA

< C"B e Gig...in)-
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dim g p—e
4.2. Short returns. Recall that n := LWJ, p = Ln dim gy 1 J (see Proposition 1).

Consider short returns to A. A reason to do this is that short returns problem on M can
be turned into short returns problem on A (see Lemma 15). For any z’ € int (A), a fixed

positive integer M > 0, sufficiently small constants €’ > 0, r > 0, such that n¢ < p,
By (z) C int (A) almost surely

1 o dup = 1 e d
/BMr(Z/) Unzesp (FF) ™ Baay ) HH1 /BMr(z/) Uszew (FF) ™ Bagr ) 4 HA
" ~/BMr(Z,) HUNSkSnE/ (fR)ikBMr(Z/)dMA

+ 1 Ry —k ~dua,  (4.3)
/BMr(z’) Un"sksp(‘fk) Bur )

where N = {_&g;CJ + 1, and constants C and $ are defined in Assumption 2.

We begin with very short returns described by
1 - din.
/;?Mr(z’) Ureken (FF) ™ Bur (@) KA

Lemma 10 (Very short returns). For almost every 7' € int (A) and sufficiently small
rn. .M,z > 0we have foranyr <ry p .z

1 _ —0.
v/BMr(Z/) Ui<ken (F5) kBMr(Z’)d/“LA 0

(Actually, a stronger result will be proved, i.e., for any k € N a map (f®)* is a local
diffeomorphism at almost every point 7' € int (A)).

Proof. From Assumption 2 £(dA) = 0, and then p (Uiez f_"8A) = 0. Since a quo-
tient map ]’”7? ‘A > Ais mixing, the maps (ﬁ)i are ergodic for all i > 1. Therefore
the set of periodic points A, of ]?k has ux (A[,er) =0, and pp (ﬁgl (Aper)> =0
due to (3.4).

Choose now 7' € 7, ' (Agm) MNint (A) () [Uicz, f79A]". Then there is rys > 0,

s.t. for any r < rjs almost surely By, C int (A). We will make now several claims.
Claim: For any k € N let R* be the k-th return time. Then R¥| B = R (') for

any k € [, N]ifr <ry ,, , for small enough ry ,, , > 0.

From choice of 7’ we have for any k € [0, N — 1]
() ¢ A forany m € [Rk(z’) +1, RM () — 1] ,
and for any k € [0, N]
FRE ) eint(A).

Due to Assumption I thereis 7y p7 7 > 0, suchthatifr <ry o By, (Z) Cint (A)
almost surely, then for any k € [0, N — 1]

f"(Byr(z')) € A€ forany m € [Rk(z’) +1, R*(7) — 1] ,
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and for any k € [0, N]

ka(Z/)(BMr (z')) € A almost surely.

Since R, R%, ..., RN are consecutive return times to A, then RkiBM @) = Rk(z’)
for any k € [1, N]. Thus, this claim holds.

Claim: f R for all k € [1, N]is alocal diffeomorphism at z’. .

This claim holds because f is a local diffeomorphism on Uizl UO§ i<ri J(A;) and
Rk|BMr(z’) = R¥() for sufficiently small r > 0.

These two claims, together with the fact that f R (z/) € int(A) are distinct for
any k € [0, N], imply that there exists small enough r, s y > 0, such that for any
r <ry y. n the sets ka (Buyy(2')) are disjoint for all k € [0, N]. Hence, lemma holds.
O

Before estimating moderate short returns || By, (<) ILU dup we

—k
Nskfne/ (fR) By (Z/)
will need one more lemma.

Lemma 11 (Recurrences). There exists ry > 0, such that foranyr < ry, y* € I' and
i > N, the following inequality holds

—i . u
Leb,u {z/ € Aﬂy” d ((fR) z/,z’) < Mr} Zdim yr (Mr)dim?r"

where a constant in Zgim yu depends on dim y*“, but does not depend on i > N and
yt el
Proof. We start with making

Claim: there are finitely many balls {Bri/ ):1<i<N }, where N’ € N depends
only on A, such that all unstable fibers y* € I'* are almost flat in each Br’g (zg).

In view of Definition 5 of I'® (respectively, of '), for any z”” € A there exists a small
open ball B,»(z"), such that all y* € I'* (respectively, y* € T'*) intersecting B, (z")
are almost flat and parallel. Since A is compact, one can find finitely many open balls
{B,{/ @, ..., Br;\’,, ()}, which cover A. Hence, claim holds.

Take now any of these balls, say Br]//(z/l’), and any y* € T'", z|,z) € {' €

" "

ANY“N Br;/(z’f) 2d((f®77, /) <Mr). Thenforany r <t ::min{gr—lM, LAY

> 8
a((r7) da) s mara (1) ht) <

By making use of Assumption 2 together withi > N, we get that C8' < CAN < 1/2
and

—i —i —i —i
atea) = (s () ) v (1) e () ) e (%) 0t)
<2Mr+CB'd(2), 75) < 2Mr +d (), 25)/2.
Thus d(z, z5) <4Mr < r{/2,and

diam {z/ e A ByGEH(r":d <<fR)_i Z, z’> < Mr} < 4Mr.
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Since y* in the ball Bri/ (z) is almost flat, then its Lebesgue measure can be estimated
by diameters, i.e.,

—i . u
Leb, {z/ eA) By(z)) :d ((fR) Z, z’) < Mr} Zdimye (Mr)4mr",

This estimate also holds for balls B,y (z5) , ..., B, (/). By summing over all
balls and noting that A € | J,_; -y B, (z}). we get

—i . u
Leb,u {z/ €A:d <<fR> Z, z’> < Mr} Sdimyn (Mr)imv"

where the constant in Zdim,« depends on dim y*, but does not depend on i > N and
y'er", O
Lemma 12 (Moderate short returns). Choose n = Lmj Then for almost every

z€ M, 7 € Athere exists r, y y > 0, such that forany r < r, oy

min{dim y* .dimgy }  min{dim y* dimg u}
1

1 C(FRy—k gy (nAIA ST (Mp)dima =€ py g r 2 ,
fB oy WUyeizge U7 Bur@)

min{dimg p,dim y*}

. . o ,
where € > 0 is the same as that in Proposition 1, and €' < T2 dimp ji+12¢

Proof 1t follows from (3.5), the relation (f*)_pa = pua and Lemma 11 that

k —k
A {z/ e A :d((fR) z/,z’) < Mr} = uA {z/ cA:d ((fR> z/,z/> < Mr}
—k
= /Myu {z' eA:d ((fR) z’,z') < Mr}dp,A
—k
= /Lebyrt iz’eA :d((fR) z/,z’> < Mr}duA
Sdimyn (M3
By Assumption 1, for § = min{dim y*, dimg 1}/6 > 0 and almost every z’ € A
there exists 7.5 > 0, such that r&imi# 148 < 1 (B, (7)) < rdima #=3 for any r < ry 5.
Let Ay, :={z' € A :ry s > 1/m}. Then | J,, Ay = A, and for any z’ € A, and any
r<1/m
}"dimH n+s <u (Br(Z/)) < rdimH n—3s (44)

and
]l —k /d S/ ]l d )
/I;Mr(z’) UNSkgne’ (f®) " Bur (@) KA By, (<) UNskgnE/ d((fR)ky,y>§2Mr ua(y
Letakernel on A x Ay, be K(y, 2') := 1p,,.H(¥). If r < 1/(3mM), then by (4.4)

/ K(y, 2)dpa(y) = pa(Bur(2)) 3 (Mr)dima 138,
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In order to estimate [ K (y, 2)14,, (2)dpa(z)) = ua (Am () Bur(y)), observe that
if 27 € Ay () Bur(y) # @, then By, (y) € Bay,(z”). Again, by (4.4)

/ K () La, dpa ) = pa (An () Bur()) < en (Baaar (1)) 3 GMrymi b,

Having the estimates of K (y, z’) above and Lemma 11, we can use the Schur’s test
(see Theorem 5.6 in [42]), i.e., for all » < min{l/(3mM), rp}

/ 14, (Z/)dlLA (Z/) dua(y) jdim pu (3Mr)dimﬁ pn—=4 (Mr)dim pl 7

Bur (2) 110’((f’*)ky,y)52Mr

where the constant in Zgim yu does not depend on M, r, m, k.
4(dim gy pte)

e — 4 . . —_—
Choosenow r; =i ™minldimy wdimy®s < min{1/(3mM), rys}. Letq = 2mintdimp p.dimy®}
_di _ —di — . i
n' = Tr=dimmn=e e Tp” MMHHTE Since pdimu 15 < 11 (B, (7)), one gets

N1 :
fBMr(Z ) UN<k<(qn/)€/ d((fR)l‘y,y)SZMrdMA ) ,
/ " dua(z)
Ap

(n") (B, (2)(Mr)°
(Mr)dimH p—38+dim y*

jdimH w,dim y# €€’ (Mr)dimH u+28

< (Mr)min{dimH ,dim y“}/2.

Therefore, by the Borel-CanteHi Lemma_t, for almost every z’ € A,, there exists
Nt > min{1/BmM), ry )~ minldimz w.dimy*}/4 “such that for any i > Num.z

NG ’ NS
/;?Mri (@) HUNskﬁ(qiv,/')f/ d((fR)ky,y>§2MridMA(y) = (n’) M(BM” @NMri)°. (@45)

Hence for almost every z' € A (in particular, for z’ € int (A)) there is m, > 0, such
4

" min{dim g jz,dim y%
N H

thatz € Ay, . Letry p :=min{ry, Ny, " - ) . By Assumption 1, for € from

Proposition 1 there exists r, ./ s € (0, ry pr), such that for any r < r, .y
n<TuB @)™ <n's u(Byy (@) < (MM,

Then for any r € (0, r; 7 p) there exists i > 0, such that r;4; < r < r;, and the
following estimates hold

1 o hpedia = [ 1 k dpa )
/BMr(z’) U ccne’ (FF) 7 Bar @) Bur, () UNEkg(n/)f/d((fR) y’y)gzMr,-
< 1 Ry dua(y)
/BMr,- @) UNsks(:z;+l)€’d<(fR) y’y)SZM”

=< 1 dpa(y).
'/Z;Mr[- @) UNsks(qnﬁ)G' d((fR)ky’y>52Mri
(4.6)
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e min{dim y",dimgy p©}
Hence, if €' < =55 —mae

Namely,

, then we can use (4.5) to continue the estimate (4.6).

1 —* / d,bLA
/I;M,(z') Uy <tzne’ (FF) 7 B ()
< (Mr;)dimn n—€ gy, ymin{dimy* dimp u}/6(n;)e/

. g . . ,
< (Mrri/r,-+1)d‘m” n—e (Mrri/rl_+1)m1n{d1m y",dimgy u}/6(Tr—d1mH [l—é)é

. min{dim y”,dimH ©}  min{dim y“.dimH w}
2r.e (Mp)timar=<pg 5 r 7

where the last inequality holds because r; /ri+1 =3 1. O

n—€

dimpy
T dimpy
u(B‘r_(z))J J and

n¢ « p. Then, for almost all z € M, 7' € int (A), there exists r, ;7 y > 0, such that
foranyr <r; o m

— T —
Lemma 13 (Longest short returns). Let n = LmJ p= H

L Ryk 2 dup
/;Mr(zl) Un‘/gkgp(f) By (2')

r—(dimH n—e)e’

jT,E {(Mr)dimH 'u_€3 + A |:B —(dim gy p—e)e’ (Z/)\BMV(Z/)] } ﬁZ

Mr+2CB}

dimpy ju—e

2
—(dimpy p+e) dimy p—e? / /
+r i | (Mryima =< 4| B iy e \B :
{( ) MA[ Mrs2cpy~ O @)\ Bur(z )”

where C > 1 is the same as that in Definition 5 and B, € (0, 1) does not depend on
/
z,z,r, M.

dimy p—e

Proof. Observe first that n€ < p implies €’ < dimy 2

. Cover By, (Z) by two-sided

cylinders &_, . j,..i,» where m = ne//4 and &, io.i, [V Bur(@) # #. By Lemma
8 we have diam&;_,, io..i,, < 2CB". So U&i_, . .ig..in \ Bur(@) S Buyrsacpm (2) \
By (). Denote i := p — n€ . Then

! Ry * g, (o) PN
‘/;;Mr(z/) U"‘/sksp(f) By (2)

&

R i R n
= | Ipy,@»lz10 ﬂBM,<<z’)+“'+]lBMr(z'>O(f) O(f) dua

’
€

- R\ r\"
= /]l(fk)—mBMr(Z,)]lz] o |:]l(fk)—mBMr(Z,)+-~-+1]_(fR)*mBMr(Z,) o (f ) ] o] (f ) d/,l//\
4.7)

Let Ay := (fR)_m Bur (@), Ay = (fR)_m Uéifm.,.[o,..im (3B, (2)#0 Eivigevims
and Ag := (fR)_m U& ,..io...i,, - Observe that

m
Ag, Ay € Moy, Ap = Ay U Az, (fR> A2 € Byrsacpn (2) \ Bur—2cpm (2),



142 Y. Su, L. A. Bunimovich

and, moreover, the function 151 o [14, +--- + L4, o (f®)] is constant along each
y* € I'*. Then we can continue the equality (4.7) as

- [/ 14,151 0 [ILAI bt o (fR)iO} o (£%)" dua
—/ﬂmﬂzlo[ﬂA0+...+1Aoo(fR)i°} o (f" diin
—ano\Alﬂzl0[1A0+...+1Aoo(f’?)i°]o )" dua
o R e N
—/ﬂAodﬂA/lzl o [1A0+...+1Aoo (f"‘)“} o (£5)" dua]
¥ / Laydiin f 1.0 [1A0+...+1A0 o (fR)iO} o (fR)"E, dun. (48

Apply now Lemma 9, the relation Ag \ A; € A and the inequality

Ri() Ri()
1o10 ]lA1+-~~+]lAlo(f) “ 1.0 ]lA0+-~-+]leo(f) <1

to the right hand side of (4.8). Then it can be estimated as

5[1A1121°[1Az+-~+h2 ( R) } < R>n

f f
R R 2.
+/1A2nzlo[ho +Lago (£*) ](f ) a0+ un Ao i

U/gi(] (fR)ijAZ

e

< 2/ Tgpls10 [ho “+ 140 (fR) ] o <fR) d,uA + C”MA(AO)ﬁ ? 4 ua(A0)%io
f

—2[1A0duA/1210[1A0 o R) ] (r R)"eldm
+2f]1AOdMA/nzlo[h”...w% (fR) ] ( R)"E/dﬂ,\. (4.9)

By applying Lemma 9 again, with ip < p,m = nf//4, (4.9) can be estimated as

ne’ m ne m 2
= 3C"un (0B 2+ 3pua0? =3¢"ma [ (1*)" 4] B2 +3pua [(£F)" 40]

o @&\ Bur )] g

Mr+2CB %

2
o @O\ Bur@ >]} (4.10)

Mr+2CB &

6/ 2
2 uaBur @)Y P + s [B

+p {MA(BMr(z’)) + A [B
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By making use of Assumption 1, we choose now the same € > 0 as in Proposition
1. Then for almost all z € M, 7’ € int (A) thereis r; /> Os.t. forany r < r; o p

Bur(z)) € A almost surely, T~ 4mun+e < < p—dimpy p—e

. . _ . 3 . 3
rAMIIYE < (B, (2)) < rMHITE (M) S < p(A)a (Bur (2)) < (Mr)3m e
dimg p—e dim g p—e ¢ ¢
dimpg p dimpg @ ,
_r L= _r " S D S S
pdimp p—e ~ e\ pdimp pte ’ pdimp p—e ~ ~ \ pdimpy pte

Then we can continue the estimate in (4.10) as

r—(dimH p.—e)e’ r—(dimH u—s)e/

B —(dim gy p—e)e’ /\B !
+MA|: Mr+2C8; @imp u—oe’ (Z) \ Bur(2') | B3

2
—(dim gy p—e)e’ (Z/)\BMI” (Z,)] } )

. _.3
21 (Mr)tma = g,

. dimgy p—e
—(dimpy p+e) e

: 3
+ My)dima =€ B
r {( r) Ba |: Mr+2Cﬂ£

where B, € (0, 1) only depends on T, €’, B, B;. m]

By combining Lemmas 10, 12 and 13, we obtain the following summary of obtained
results.

Proposition 2 (Rates of short returns). Let €, €' > 0 satisfy relations a(dimyg p — €) >
dim gy u—e
dimpy p _ T dimp ’ . min{dimyg w,dimy"} dimg pu—e
Gmppu—< > L P = Hu(Br(z))J J € < mm { [2dimy uti2e  * dmpp |°
Then for almost all z € M, 7’ € int (A) and for each integer M > 0 there exists a small
enough r; 1y > 0 such that for anyr <r, oy m

! Ry~ Byg, () A
/BMy(z’) Uskzp U7 Bur ()

min{dim y*.dimg p}  min{dim y* dim g pu}
G r ]

r—(dimH u—e)e/

Sr.e (Mryima ey + (M) =€ g,

r—(dimH ;L—e)e/

+ B —(dimy p—e)e’ /\B !
MA|: Mre2cs; O @)\ Bur (@) | By

—(dimpy pu+e) dimpy e

2
B 3
+ dmp i J (M) | B r——y 4 \B @
r {( r) MA[ Mr2CP; (dim gy j—e) (@) mr(2)
where the constant C > 1 is the same as that in Definition 5, the constant > € (0, 1) is
independent of 7,7/, r, M.

Proof. Recall that in Lemmas 10, 12 and 13 we fixed an integer M > 0. Then for almost
allz € Mand 7’ € int (A) desired estimates hold. The set of such points in M x int (A)
has the full measure u(M) x w (int (A)) and it depends on M. However, since M is
an integer, we can find a smaller set of points (z,z') € M x int (A), which does not
depend on M > 0 and has full measure with respect to (M) x u (int (A)). Therefore
the required estimate holds. O
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4.3. Coronas. Here we study two coronas, which appeared in previous sections. One

r+C'r dimg u r—C'r dim g

of them is in M and has measure © |:B (impy - 2a (z)\B dimp ji—02a (z)i| (see

—(dim gy p—e)e’ (Z/)\

Proposition 1). The other one is in A, and its measure is | B
Mr+2Cp}

By (7 )] (see Proposition 2).

Proposition 3 (Coronas in M and A). For almost every z € M, 7' € int (A) there are
rz, ¥y . > 0 such that for any r < min{r;, ry p}

(l+ (dim gy ;L—e)Zm ) dim y¥
1% B (dim g7 p.fe)zot (Z) B (dim g7 ;/.76)201 (Z) ;jz,dim yu r )
r+C'r dmy r—C'y dmpgp

dimy* (p—(dimpy #—6)6/) di"‘zyu

HA |:BMr+2Cﬂ£—(dimHu—s)s/ (Z/)\BM}‘(Z/):| 5z,dimy“ (MI") 2 ﬂz

: 2
Proof. Letq := %#H_;)“. For corona in M we have from Lemma 6 for almost all

z € Uiz1 Up<j<r f7(Ay), z = f/(2)), 2/ € int(A) that there exists , > 0 such that
forany r < r]

u(f*fz[Bch D)\ Br_cira (Z)] N i U U ff(Ai)]> .
Hence, by invariance of u (i.e., fipt = p) we ;1 ;sme,-

p([Brem@\Ben@] U U Fanf)=o
Therefore iZ11=j<R

[BHCrrq (@) \ Br—crra (z)] C f7/:A almost surely.

Because f Jz is a local diffeomorphism, then for sufficiently small  all manifolds
Fy" (y* € T")in any non-empty set (f/<y") () [Br+c/rq @)\ Br—crya (Z)] are almost
flat. From Gauss lemma for exponential map exp, we have, that in a neughborhood of
zeM

(exp,) " [Bracrra(2) \ Br—crra(2)] S Cor
= {v e RIMM : (y v, € [r—C'ri,r+ C/rq]} ’

where (-, ), is Riemannian metric at z € M. This is corona in an ellipse. If r is
sufficiently small, say r < r, < r. for some r, > 0, then all manifolds (expz)’1 flaypH
in Cor are almost flat. Hence, their diameters (in Euclidean norm) satisfy following
inequality

diam H[(expz)flszj/u:l mCOI‘] jz \/(r + C/rq)Z —(r— C/rq)Z ,j r(q+l)/2.
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Therefore, Lebesgue measure of (expz)_l fJzy" in Cor can be controlled by diame-
ters, i.e.,

Lebexp -1 fizyu {[(expz)*1 szy“] ﬂCor} Zdim e O A2,
Since exp, is a local diffeomorphism, then
Leb sz [Brecrra (2) \ Br—crra (2)] Zedimyn v+ MY/,
Now, since f Jz is also a local diffeomorphism, we have
Leb,« [f_jz [Bricrra(2) \ Br—crra (Z)]} SLodim yu r IO AmYY/2,
By making use of (3.5) and integrating over all y* € I'%, we get

i1 { 175 [Brecn @\ Br—cra @]} Segimye r 0 Im 02,

Wimpy p—e)’a

Hence, thanks to invariance of measure u (fuu = @) and g = dimg

L+ (dimg ;L—s)za dim ¥
dimpg 2

122 [Br+C’rq (@) \ Br—crra (Z)] ﬁz,dimy“ V<

For corona in A, i.e. for B —imy u—ee’ (2') \ Bumy(2'), trick is the same and
Mr+2Cg5

even more straightforward. Indeed, because y* € I'* intersects with this corona, there
is 77y > 0 such that for any r < ry y

dimy?  dimy" —(dimy p—e)e’

’ ’
WA |:BMr+2C/3£(dimH u—oe (2 )\BMr(Z ):| jz/,dim pl (Mr) 2 ,32 :

4.4. Conclusion of proof of Theorem 3.

4.4.1. Proof that dimpg p > dim y*
Lemma 14. It follows from Assumptions 1 and 2 that dimyg @ > dim y*.

Proof. Due to ergodicity of w, it is enough to consider z’ € int (A) and a ball B, (z')
in A. If r is sufficiently small then y* € I'" is almost flat in B, (z’) [ y*. Therefore
diam { B, (z') (" y"} 2z r. By the same trick as in Proposition 3 we get
Lebyu (B, (2) Zzdimyn 1™, w(Br(2)) S dimyn r™7"

On another hand, by Assumption 1 for almost all 7" € M and any m > 1 there is
rom > 0, such that u(B,(z)) > rdimu#+l/m for any r < r.,. This implies that
dim y* < dimyg @ + 1/m for any m > 1. By taking limit m — 0o one gets dimy © >
dim p*. O

We will address now convergence rates in Theorem 3. According to Proposition 1 it
suffices to find convergence rates for short returns and coronas. A proof will consist of
several steps.



146 Y. Su, L. A. Bunimovich

4.4.2. Pull back short returns fB,(z) ]lU1§j§p 7B, (»du For almost any z € J;5
UO§j<R,~ fI(A;) wehave z = fJ:(z’) for some 7’ € int A. By Lemma 7 there is a topo-
logical ball U, (") = U, (f_-/l (z)) and a constant C; > 1, such that B-1, (f_jzz) c

Ur (F2) € Be (1), :

Lemma 15 (Pull short returns back to A). There exists a small enough r, > 0 such that
for any r < r; the following inequality holds

/B o Lcey £ B AR = 1L(A) L ey PRy # By, (f e 2) AR

BCzr(f_jZZ)

Proof. Tt follows from invariance of u (i.e., fiu = ) that

1 —k d,u:/ 1 —k —jandL.
/B,-m Uisiep /75 @) Up(fiegy Distee ITUUTED

By Lemma 6 we have U, (f ~/:z) € A almost surely for any r < r,, where r, > 01is
small enough. Then the equality above can be continued as

= 1 kU (fiz du|A=/ 1 —ky, (f-izz) AHIA-
fur(ffzz) Uisisy S70-(7752) (g Dt O
(4.11)

Denote R* := R""'+ Ro fR R':= R > 1. Then p < RP. Also note that, since R
is first return time, then f* ¢ A almost surely (a.s.) if R’ < k < R'*!. Therefore

Yo, (i) W, chcpp £40(F22) = Lup(piy LU,y o (FR)HU (£ ) RS-
Then we can estimate (4.11) as
< 1 - —jiend = 1 - \d .
‘/U,(ffza Unsaur 47405 Tl /u,<fm) Unetep (9 05 (i) 1A
(4.12)

By Lemma 7 there is a constant C; > 1, such that U, (f_jzz) C Be.r (f_jzz), and
we can continue (4.12) as

< (A 1 - o Ndua.
= p(d) Be,r(f752) Uisksp (FF) kBCzr(f 2z) Ha

O

So the short returns problem on M becomes short returns problem on A. The next
task is to
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443 Estlmate —M(Br(z)) fBCzr(fijZZ) ]lUlsksp(fR)—kBCZr(f—jzZ)d/J/A

Lemma 16. If ¢ < min {dim y*/24, dimy /24, 3dimy n)~'} satisfies o(dimp p —

dimgy .
€) > m > 1, then for almost every z € M there is r, > 0, such that for any
r<r.9+

1
u(By(2)) Beor(f712) lulikﬁp(fR)_kBCZ’(f_jzz)dMA

S . 2
min{dim y* dimg p} €363
Spaer 2 4 pmn 3¢ s,

Proof. Observethat C; < oo foralmostallz € M.Denote F| := {C, < oo}, Fp x F3 :=
{(z,7) €e M xint(A) : Propositions 2, 3 hold}. Define a new measure one set in M
as F:= Fi (VFa (N { U0 f/Lint (A) () F§1}*. Then for any z € F we have C, < oo

and (z, f_jf-z) € F>» x F3.Let M := |C,] +1,7 = f~J2z. Then by Proposition 2 there
iS rZYZ”M = rl,fijZZ‘I_CgJ+l > O SU.Ch that fOr any r < rZ,fijZZ,LCzJ+1

1 - _.Nd
~/Bczr(f’/'zz) UlSkﬁp(-fR) kBCz’(f ]”Z) Ha

S/ ﬂUlsksp(fR)kaMr(Z')dH’A
By (2)

min{dim y" dimg )} min{dim y* dim g p}
Q r I¥]

Srie (Mp)imiEeey

),—(dimH ;L—e)e/

—(dim g p—e)e’ (Z/)\BMI‘ (Z/)] 132

2
iy o <z/)\BMr(z/)] } .

By Proposition 3, the right hand side of inequality above can be estimated as

dim —63 r—(dimH u—e)e/
+ (Mr)mH T By +up | B
(Mr) p ® Mr+2CB;
. dimg pn—e
—(dimy pte) TpH i _e3
4 B g Y ppydime =< 4 LB
Mr+2CB;

. min{dim y* dim g 11} . 3 i )/ F—(dimpy p—e)é’ (dim yU +1)
_<T Cowzc rdlmH p—et e i rdlmH u—e ﬂzr— im g 1—e)e . —
[a R S 4 L]
i . . 2
M . dim g p—e . im 4 —(dim g p—e)e’ dim y"
o rdnmzy + r*(dlmH MAE) =g {rdlmH u—e3 + }“M ; H dimn.

By Assumption 1 for almost all z € M there is r, > 0 such that for any r < r;
rdimH ;.L+63 S /»L(Br(z)) S rdimH ;l.—es.

Then for any r < min lrz,f*sz,LCdH , rz},

1

(B (2)) JBe., (1:2) L 01ckep (70 F e (rin) M

dim y¥

min{dim y¥.dim g u}
12 r

: _ —(dim g ;L—e)e/
+ rdlmH n eIB2r +

<T e r*dimH M7€3 {rdimH n—e+
~T.z,

—(dimpy p—e)e’ (dim b 1) . dimgy p—e im 4 —(di —ope dimy" \ 2
r + HM . dim (dimy p—e)e Y

2 —(dimpy p+e) —x —e3 dimy® r H —
X By 4 A S (pdimp e S B 2

2

. . . i U . ,
min{dim y" dim 7 p} 3 —(dimpy p—e)e’ —(impy p—e)e dimy" | —(dimy p—e)e
— = o A9 —e—¢” H H—€)€ r +r

<r 2 CqrTe ﬁzr + 132 2
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. u . . . dimpy p—e
d'%—?—dlmy w —dimy p—e*—(dimp p+e) gl

X r +r dimpy

: ’
dim y r—(dlmH H—€)e dim %

. 3 2
{rdlmyu—e +ro 2 ﬂ2 2 }

- . 2
min{dim y* dim g pu} € 3¢
Nr$725+r‘“mﬁ“ —-0

)

where the last inequality holds because ﬂ{c < r¢ for any ¢, ¢’ > 0. O

By combining Lemmas 15 and 16 we get

. 1
4.4.4. Estimate for short returns rates B, @) fBr(z) IIUIS]_EP i) dH

Lemma 17. Ife < min {dim y*/24, dimy /24, 3dimpy )~ '} satisfies o(dimp p —

Ayl then for almost all z € M

6) > dimy p—e

1 min{dim ;/1”2,dimH w) 3¢3

e |
T 4 pdimg — 0.

14(B(2)) LWyjep 7B @AM et 7
w(Br(2) JB.(2) Ul<j<p f77Br(2) z,T,e

We finished now estimates for short returns and move to

4.4.5. Estimate for coronas rates m,u [B (dimyy -2 (z)\B dimpy p—e)a (Z)i|

F+Clr dimpgp Cc/y dimpgpu
Lemma 18. [fo > dirr%y dlmH s and € <min {dlm y /24 dimy p/24, 3dimyg @)~ 1}
is small enough, so that o > (dimy“ — dimIH;L + dlmy“ dlmH u)( GllmHM) =2 then for
almost all 7 € M

T dimg r—C'r dimg dim 7 1t

(B (2)) ~

n B Wimy p—e)ca 5)2 (Z)\B (dimH ufe)za (Z) (dim gy p— 6)2 dim 4 A
r+C'r < g | —7 —dimpy pu—e
r

— 0.

Proof. By Assumption 1 for almost all z € M there exists r; > 0, such that for any
r<r;

rdimH U+€E S /‘L(Br(z)) S rdimH M—E.

Now, in view of Proposition 3 and choice of €, we have

di —€)%a\ dim y*
<1+(1mH'M €) oz) 1my —dimg u—€ >0,

dimgy pu 2
and the result holds. m]

By that we finished estimation of rates for coronas, and can now conclude a proof of
Theorem 3.
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4.4.6. Convergence rates a > 0 in dry(N"Tz_p) Sror?

2 1 . dimy" dimgy p 1
Lemma 19. If « > FmyT ~ dmp choose a small € < min { 2 24 3dmp
) -2
1 dimpy p—e 2 1 2e
such that o > max{dimHu ( Tmy ) ; (dimy“ Tmgp T Tmyt dimy u)

. -2
dimy u—e . .
(—dimH m ) }, then we obtain the following convergence rate

_[(Wimpg pu—e)*E —1) (dimy p — €)%\ dimy*
a:mln{ - 1+ - —dimg u — €,
dimy n dimy pn 2
| €2 Y min{dim y*, dimy p} 26}_

dimy p 12

loc

If dee—l‘;M € L (M), choose a small € < min{dim y" /24, dimy /24,

(3dimy u)_l} such that o > @iir:%’ then we obtain the convergence rate
o { (dimy p—€)*(6 — 1) (dimy p — )’ e’
a :=min - , : =1, =
dimyg p dimyg n dimg n
in(dim ", di
3¢ min{dim )/12 img u} _ 26}.

Proof. From Proposition 1

dry (N1, P) Srs.c Ri()+ Ra(r,2) + Ry(r,2) + Ra(r, 2),

where
. (dim /176)2 e(dimy p—e)
R T
Ry(r, 2) : B (2) \ B (2)
2 2) (= ———— M (dim gy p—e)2a Z\ dimp p—e)2a (Z
w(Br(2)) eCly ORgE P
1 2
R3(i) = it (B it O\B gy
) 2 (dimpy p—e)“a (dimg p—e)“a
M(Br (Z)) r+C'r dgnH n r—C'r d{!ﬂH I
1
R4(r, Z) = — ]lUISjS]) f—jBr(Z)d/J/.

n(Br(2)) Jp, )

From Lemma 17 we have

min{dim y* dimp; p) & _3¢3
Ra(r,2) Zzre 2 2 4 p@mp

1

— T ,then from Lemma 18,

2
IfO{>W

. 2 .
(dim gy p—€)“a '\ dim y* .
1+W ———dimy u—e

R3(r’ Z) S RZ(’G Z) jZ r(
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Therefore, dry (N"T*Z, P) Jr.Ee T,

(dimpy p— €)% — 1) e(dimpy p —€)

a :=min[ - , -
dimyg dimyg
di —e)%a) dim y“
1+(1m1.1u €)°a imy _ dimp i — .
dimyg 2
2 . . u .
€ min{dim y*, dim .
.——33, { Y HM}—Ze,dlmHu—e}
dimyg n 12
C((dimyg pu—e€)2(E = 1) (dimg p — €)% dimy*
=m1n[ - 1+ - —dimg u — €,
dimy dimyg n 2
2 . . u .
€ min{dim y*, dim
' 3 M {dim y HM}_ZG]’
dimyg n 12
where the last equality comes from relations diniu —3e3 < % <dimy pu—e.

If 71— € L%, (M), then

1
R3(I", Z) =< RZ(rv Z) = —F M B im gy p—e)2a (Z)\B im g ji—e)%a (Z)
m(By(2)) r+Cr% r—Cr%

(dim g )L—G)zd 1
<.y dmgu

~7Z

Therefore, dry (N"1%, P) Zr.¢.c 1%,

(dimg p —e)2(E — 1) e(dimy p —e€) (dimpy pu — €)%w €

a:=min[ - s - , - -1, = —363,
dimpg dimg pu dimg dimg
min{dim y“, dimg u} .

—2¢,dimy p — e}
12
. [Wimp p—e)?E —1) dimy p—€)’w €’
=min [ - , - -1, —
dimpg dimyg u dimg
36 min{dim y*, dimy u} _ 26],
12

where the last equality follows from dini, i 3e3 < % <dimpy pn — €.

This completes the proof of Theorem 3. O

5. Proof of Theorem 4

The scheme of a proof of Theorem 4 is analogous to the one of Theorem 3, i.e., it relies
on estimating the probability of having short returns and the measure of the coronas.
However, we establish the estimates in another way because of the different assumptions
in Theorem 4.
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5.1. Properties of first return map fﬁ.

Lemma 20 (Properties of firstreturns). The map f R s ergodic with respect to probability
Uy = :(‘5), and it is bijective on U (\U;»1 Uo<j<r, £/ (Ad).

Proof. A proof that f R i3 one-to-one is the same as that of Lemma L 4, which uses the
first return R and replaces R;, R; by R(x), R(y). Clearly, the map f* is ergodic due to
exponential decay of correlations, and it is also onto due to ergodicity. O

Now, since p{int (U)} > 0, then by Birkhoff’s ergodic theorem for almost every
z€Uist U0§j<R,- f7(A;) we have z = fJ=(z) for some 7' € int (U), and

J.:=min{n € N: f7"(z) € int (U)} < oc.
Analogously to the proof of Lemma 6, we obtain

Lemma 21 (Pull metric balls back to U). There exists sufficiently small r > 0 such that

w(f=B.(z) U) =0.

5.2. Short returns. Let 7 € int (U). Take now any fixed positive integer M > 0, a
sufficiently small constant €’ > 0 such that nf « p, where n = {WJ p =

dimpg p—e

HmJ dmpp J, and the same ¢ as in Proposition 1. Then By, (z') C int (U)
almost surely for a sufficiently small » > 0. We now consider short returns for induced

map fR: U — U, namely

I 7\ ¢ dpy —f 1 ok duy
/I;M’(Z/) Ulfkf”(fR> Bur @) By (z) U|sksN<fR) By (z)
* 1 7\ duy
/I;Mr(z/) UNSkSng/ (fR) By (2)

+ ]l =\ K dMUs ’
—/;Mr(z/) Une/ﬁkﬁp (fR) By (2)

—122C | | 1, and C, B are the ones from Definition 6.

log B

Lemma 22 (Very short returns). For almost every 7' € int (U), sufficiently small ry .o
> O0andanyr <ry y., we have

where N = |

1 —\ —k d/,LU =0.
/BMr(Z/) UISkSN (fR) By (2)

—k
(Actually, a stronger result will be proved, i.e. for any k € N a map f® is a local

diffeomorphism at almost every point 7/ € intU ).

Proof. According to Definition 6, we have u(dU) = 0. Also, exponential decay of

correlations holds for fﬁ. Let A, be the set of all periodic points for fﬁ. Then

1 (Aper) = 0and (U, ez f7"0U) = 0. Choose 2’ ¢ (J,,cz, f~"0U |J A per. The rest
of the proof is exactly the same as that of Lemma 10, replacing R by R and A by U. 00
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Before estimating moderate short returns | By, (@) L duy we

_\—k
UNSkSne/ (fR) BMr(Z/)
will need one more lemma.

Lemma 23 (Recurrences). There exists ry; > 0, such that for anyr < ry andi > N
/ RNi /1t bdimy”
KU {z eU:d ((f )z ,z) < Mr} Sdimyn (Mr)bramy™
where a constant in Zdimyu depends on dim y*, but does not depend on i > N and

y! e 0.

Proof. Forany y" € ©,z],z, e {z e U y" :d((fﬁ)_iz/,z/) < Mr} we have
a7 ) < Mr a (R <) < M

The u-contraction (see Definition 6), together with i > N, give that C ,Bi <CB N
1/2 and

d(zl,z2)<d(z1 (FRy-i )+d((f LR )+d((fR) zz,z/2>
gzMr+c5fd(z3,zg)52Mr+d(z’1,z’2)/2.

So d(Z/l,Z/Z) <4Mr = diam{z’ e U y": d((fﬁ)_"z’,z’) < Mr} <4Mr.
Sinceeach y* € © has uniformly bounded sectional curvature, then Leb,,« (B4Mr 4 ))
= @Mr)4imv" for any 7' € y* and

Leby {2/ € U d ((fR77, ') < Mr| Zamp (M) m7",

where a constant in Zgim,« depends only on dim y*.

From Definition 6 we get ry; := 1/M such that for any r < ry, ,uU{x e U :
dim y¥ hdimy

ly"(x)| < (Mr)bdimy™} < C(Mr)b+dimy™ and for any y € y* € O, dLeb u( ) =

+ 1
C Tebu 7 Hence

o evid (7 2) < mr
= [ [ e U a (P2 E) < v} dno o

:/ dimy¥ [yt (x) {Z eU:d ((f ) /) < M"}d/,LU(.x)
|yu (x)|<(Mr)[’+d“n7

+/ dimyt Pt (x) {z ceU: d((f )i /) < Mr}duy(x)

ly 14(1)‘>(M,)b+d|my"
bdim y" —
< C(Mr)b+amym +/ dimy" [yt (x) {z/ eU:d ((fR)f’z/, Z/) = Mr}dﬂu(x)
|y”(x)|Z(Mr)b+dimV”

) by Leb,u(y) {z/ eU:d ((fﬁ)—fz’, z’) < Mr}
Zdim yu (M) brdimyT +/ dim duy (x)

" IV"('C)I>(Mr)b*di"’VV" Leby e (r"(x))

bdim y" dim ¥ —dim e bdim y*
<d1m yu (Mr) brdimy™ (M ) v v b+d1my” <d1m pu (Mr) b+dim ¥ ,

~
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where in the last two inequalities we used that sectional curvature of y“(x) € © is
u dimy" _ bdimy"

uniformly bounded, and dim y* — dim y brdimy® = brdmy?

Finally, ( fﬁ)* uy = py implies that
/ RNi L/t bdimy!
Ku {z eU:d ((f )z ,z> < Mr] Zdim yu (Mr)bramy™
O

Lemma 24 (Moderate short returns). For almost every 7' € int (U), z € M there exists
ro.o.m > 0, such that foranyr <r; o y

bdim y* dim[-[li}

_ dimpy p—e min{ gz
/B / ]lUN<k< e (fR)ikBMr(Z/)dIJLU jT’b (Mr) " (Mﬁ) (brdimy™) ’ ’
mr(2) =Kz=n

bdim y*
b+dim y
12dimpy pu+12e

min{dimy u«,

where € > 0 is the same as that in Proposition 1 and €’ <

Proof. In Lemma 23 we already proved that

b dim ¥

K“u {Z/ eU:d ((fﬁ)iz/, z/> < Mr} Zdimyu (Mr)bHdimyT

The rest of the proof is exactly the same as that of Lemma 12, where one should replace

. bd u —
dim y“, A, R by %,U,R. ]

dimpy p—e

o T o T dim gy
Lemma 25 (Longest short returns). Let n = L—M( B, (z))J , P = H—M( B, (Z))J J and

n€ & p. Then for almost all 7' € int (U) and z € M there is rz.z.m > 0, such that for
anyr <rgg.m

1 —\—k dpy
/Bmz’) Uyt cee, (/FF) Bur(@)

. dimg p—e .
,jTe r<_dlmH#_f)#HﬂI:(Mr)zdlm[.[pl*2€3 +MU(B

mrayplT w-a]” (Z/)\BM;- (z’))},

where B € (0, 1) is the same as that in Definition 6.

Proof. The approach to proving required estimate is quite standard. It uses Lipschitz
functions to approximate By, (z'). However, we will write it down for completeness.

Let ¢ := T€r~Wima =€ | ¢ Lip(U), such that L = 1 on By, (z)), L = 0 on
BICVIH((‘/E)" (z)), and L is linear on BMH_(%)q (") \ By ('), where € is the same as that

in Proposition 1. Hence L € Lip(U) with Lipschitz constant (/) 9. Therefore for any
ke n, pl

/ 1By, ) © (ff)kdlLU
By (@)
< /LL o (fBduy +2uy (BMHWE):; @)\ BMr(z’))

=<

/LLO(fﬁ)kd/,LU —/LdﬂquO(fF)deU
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+ / Lduy / Lo (R dpu + 200 (Byyy( 2731\ Butr ().

Now, by making use of exponential decay of correlation in Definition 6, we can
continue the estimate as

e 2
SLPLE" + o By (@) + 200 By @)\ Butr ()
e 2
= (BB 4110 (Bugya( 751 @)) + 2000 (Bagya( 751 D\ Batr @)
Hence
e 2
—q pn ’
/BM’.(Z/) ]lUne/Skip(]@)*kBMr(Z/)dHU 2 p(\/,E) B +puu (BMr+(i‘/E)q (z ))
+2p10 (By @\ B (). 5.1

Choose now from Assumption 1 the same € > 0 as in Proposition 1. Then, for almost
all z € M and 7’ € int (U), there exists r, .7y > 0 such that for any r < r, 7y

B f‘/ﬁ)q(z/) cu, Tr_dimH ute 5 n 5 Tr—dime,—€’

Mr+(
rAmI I < p(B, (2)) < réma e,

. 3 . .3
(Mr)8ma 14 < (B, (2)u(U) < (Myp)dima =€,
e—dimpy p % —dimy u—e %

(Tr ) i < p 3(Tr )

(TrefdimH M)e/ < ne’ < (Tr*dimH /L*G)é/'
Therefore, the estimates from (5.1) can be continued as

dimp pu—e

. dimgy p—e .
f, (TrfdlmH ufe)d;rgT(\/E)fqﬂq+(Tr7d1mﬁufe) dimpy 1t

x [uu (Burscyin @)+ 120 (Butra e &\ Bat (z/))}

T _ (lilTlHu—é . 3
,jT,E r( dimpy p E)idanu |:(Mr)2d1myu—26 +py (B

Mr+(§/ﬁ)ré’r—(dimy n—e)e’ (@) \ BMr(Z/))] .

The last inequality holds because 8"~ = r< for anyc’,c>0andg = 7€ p=(impg p—e)e’,
0

Combining now Lemmas 22, 24, 25, and arguing as in Proposition 2, we can formulate
the following summary of obtained results.

Proposition 4 (Short returns rates). Let €, €' > 0 satisfy the relations a(dimyg . — €) >
dimpyjpu—e . bdi u .
dimpy 1 _ T dimp 1t ’ min mm{h+dlinr:1z/” Jdimpy () dimy p—e
dmppu——< = P = || uB » € < Ddimy pti2e > dmpp [
Then for almost all 7 € M, 7' € int (U) and for each integer M > 0 there exists small

enough r, 1y > 0, such that for any r <r; ;1 y

1 7 duy
/BMr(z’) U1§k§p<fR) By (2)
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. . bdimy"  dimgy pn . dimpy p—e
<o (Mryima e g Jrym s | i e S
~E, 1,

¢ @\ Bur )]

% [(Mr)2dimH u—2e3 +MU(B

7p—(dim g p—e)

Mr+<4ﬂ>[

where B € (0, 1) is the same as that in Definition 6.

5.3. Coronas.

Proposition 5 (Coronas in M and U). For almost every z € M and 7' € int (U) there
existry, ry y > 0, such that for any r < min{r;, r p} the following estimate holds for
corona in M

(1 dimy p—e)%a ) dim y%b
dim g 2(b+dim y¥)
)

1% { B (dim g7 u—e)za (Z)\B (dim g7 )L—E)zot (Z)} er,dim yu r

r+C'r dimg u r—C'r dim g

and the estimate for the corona in U is

’ /
nu |:BMr+(<1/B)Te’r(dimH u—oe (2 )\BMr(Z ):|
dim y“b (Te’rf(dimH Mfg)e/) dim y“b

=, dim i (M) 2@+aimy™ B 8p+8dim y7

~

. _ 2 .
Proof. Letq = W. For the corona in M we have from Lemma 21 for almost

all z € U5 U0§j<R,- fI(A;) that z = fJz(Z’) for some z’ € int (U). Moreover, there
exists r, > 0, such that for any r < r]

i (S5 [Bracra @\ B @] US) =00
Since fyp = p and f is bijective on ;- Ug<j g, 7 (A;), then

i ([Brscna @\ Brcna @] () F:U°) = 0.
Therefore
[By+cra(2) \ Br—crra(2)] € f72U almost surely.

The rest of the proof is exactly the same as that of Proposition 3, where one should
replace y* € I'" by y* € ©, and then use that sectional curvatures of all y* € © are
uniformly bounded. Then there exists 7, > 0 such that for any r < r;

(1+¢) dim y*
2

Lebyu {f_jz[Br+C’rq @\ Br—crra (D1} jz,dim yu I
Similarly to the proof of Lemma 23, we have
LS T [Bracrra(2) \ Br—crra (2)])

= /My“(x){fijZ[Br+C’r‘1 @)\ Br—_crra (2)1}dp(x)
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= / (zl(zqfifiim 1;{‘; 15 (x){f_k [Bricrra(2) \ Br—crra()1}dn(x)
[y"(x)|zr 2rdmy
+/ (g dim ¢ Wyt f [ Bracira (2) \ Br—crra ()} (x)
[y"(x)|<r =brdimy
(+q) dimy*b (l+q) dim y* _ (I+g) dim y!* dim y* (+gq)dim y''b
jz,dimy“ r 2(b+dim yit) +r 7 r 2(b+dim yt) jz,dimy” r 2(b+dim %) .

(dimy p—e)?a

Then, using that f,u = pand g = i i

, we obtain

. 2 .
B B < . ( +(dlr:ll¥nu ;) a) 2(13:31;'4:]1‘)
1% dim g 1—6)%a (2) dimyy p—e)%a (2) ¢ Zz.dim yu T H .
r+C'r dim gy 1 r—C'r dimpy

For the corona in U let g := [Tr_(dimH”_e)]f/, then there is 7,/ py € (0, 1/M) such
that for any r < ry y

BMH((‘/B)q (Z/) cvu,

Now, using the same argument as in Lemma 23, we have

1O LBy 450 (@) \ Bur (2]

= / dim yt g dim y# H«y“ (x){BMr+(W)q (Z/) \ BMr (Z/)}dﬂ(x)
ly

u(x)|>(Mr)2(b+dimy™) g 8(b+dim )

+ / dim y4 g dim y4 MVM(X){BMV+(W)4 (Z/) \ BMr (Z/) }dﬂ(x)
ly

u(x)|<(Mr) 2(b+dim %) B 8(b+dim yt)

dim y“b (Te’r—(dimH /L—G)E/) dim y“b
_<Z dim yu (Mr) 2(b+dim y') ﬂ 8(b+dim y*)
NIy '

5.4. Conclusion of proof of Theorem 4.

5.4.1. Proof that dimp pu > gty dim "

Lemma 26. It follows from Assumptions 1 and Definition 6 that dimpy p >

u

Y.

Proof. Due to ergodicity of p, it is enough to consider z’ € int (U) and a ball B, (z’) in
U. By the same trick as in Proposition 5 we get for any y* € ©

b .
brdim v dim

i dim y"b
Leb)/u (Br(Z/)) jz”dim pl lemyu and /,L(Br(Z/)) jZ’,dimy“ y b+dim y?

On another hand, by Assumption 1 for almost all 7’ € M and any m > 1 there
is 7y m > 0, such that u(B, (7)) > rdimuwtl/m for any r < ry,,. It implies that
dim y“ﬁ < dimyg p + 1/m for any m > 1. By taking limit m — oo one gets
dimpy p > dim y" pgl—r. O

We will obtain now convergence rates in Theorem 4. According to Proposition 1 it

suffices to find convergence rates for short returns and coronas. A proof will consist of
several steps.
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5.4.2. Pull ?ack short returns f@’(Z) 1Ul§j§p /i, (zdi For almost any z € J;+
Uo<j<r f/(Ai) wehave z = f:(2') for some " € int (U). By Lemma 7, there exist a
topological ball U, (z') = f /< B,(z) and a constant C, > 1, such that Bcjlr(f_jZZ) c
U, (f~%z) C Be,r(f/2z) for sufficiently small » > 0.

Lemma 27 (Pull short returns back to U). There exists small enough r, > 0, such that
foranyr < r; one has

\/l; - lulgkgp f_kBr(Z)d/'L = I‘L(U) 1U1Sksp(fﬁ)ikBCzr(fijZZ)dMU

BCzr (fijz 2)

Proof. 1t follows from invariance of w (i.e. fuu = ) that

1 —kp d,u:/ 1 Ky (f—ieyd 1L
~/Br(z) U]Skgpf r(2) U,(f—-fzz) UISkSpf F(f7)22)

By Lemma 21 we have that U, (f ~/:z) C U forany r < r; ifr, > 0is small enough.
The rest of the proof is the same as that of Lemma 15, where one should use first return

map fR. O

5.4.3. Estimate M(Br(Z)) ch,, (f~F2) U1<k<p(fR) kBe,,(f~ /Z)dM

. b dim y* dlmH " 1 : :
Lemma 28. For any small € < min {24b+24dimy” , ,3dimy )~ } satisfying

_dmi i o and for almost every 7 € M there exists r, > 0, such

a(dimyg u —€) > Timy ji—<
that for any r < r;

fBCzr(fijZ) lUlskSP(fk)’chZr(f’jZ z)d’uU

w(By(2))
. bdim y* dimg p }_ €2 a3
2T red P n{ 125+12dim %~ 12 2 + p @y 3e

Proof. Note that C, < oo for almost all z € M. Denote F := {C,; < oo}, F» x F3 :=
{(z,7) e M xint (U) : Propositions 4, 5 hold}. Define a measure one subset in M as
F:=FNF m{szo f1(int (U) () F5)}¢. Then for any z € F we have C; < oo and
(z, f7/:z) € F» x F3.Letnow M := |C,] + 1,7 = f~J2z. By Proposition 4, there
exists r; oy = Ty f=izz,|Col4l > 0, such that for any r < Ty f=izz,|Cy)41

1 R~k _aduy S/ 1 ®ykp oAU
/;;CZ,.(_ff/zZ) Uicksp (FO ™ Ber (£7722) Barr () Ur<k<p (FO By (2)

. : bdim y* d|mH " bdim p¥ dim gy
2The (Mr)dlmH n—e Mm1"{6b+6dim % } m'"{ Dhel2dimy 13 )

dimp p—e

Sy e : 3
AT [(Mr)“‘"‘”*“zf iy (B [deim,,wa]<z’>\BMr<z/>>].
Mr+(Y/B)

Next, by Proposition 5, the right hand side of inequality above can be estimated as

; in{-bdimy" dimpyp —(di dimp p—e 3
—<T C.ozeh rdlmH ll«*ermln{ 12b+12dim y% * 12 } +r (dimpy p+e) dimpy 1 r2 dimy pu—2e¢
~1,Cz,2,€,

. dimgy p—e dim y“b ( € —(dimp pu— /) dim y"b
— - H "—€)€ Y
4 im 1 €) TR e T dim B e Bb+8dim ™ |
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Now, by Assumption 1 for almost all z € M there exists r; > 0, such that for any
r <ry

; 3 ; 3
rdlmH u+e S M(Br(Z)) S rdlmH H—€ .
Then for any r < min{rz)fijZ’LcmH, r.}
1

u(By(2)) B, (f7922) ]lUlskSp(ff)ik Ber(fF Z)dMA

. . : bdim y" dimp p . dim gy p—e .
—dimy p—e? {rdlmH u—ermln{mx ) + r*(dlmH #+€)Wr2 dimpy u—2€3

jT,z,e,b r

+

(a dimgy p—e dimy"b ( e —(dim ,‘4)5/) dim y“b
r (dimpy p+€) =g r 2x2dimy™ g T*r " 8h+8dimy"]

dim y%b dimgy p 3
Tp+lzdmy™ 12 )2 3e

in{ — 0

2

€
mi € Freraies
jT,Z,E,b r +rd""H“ ,

where the last inequality holds because 5 < r¢ for any ¢, ¢’ > 0. O
By combining Lemmas 27 and 28 we get an
5.4.4. Estimate for short returns rates m fBr(z) 1U1§j§p f-iB ()41

. b dim y* dimy p . —1 .
Lemma 29. For any small € < min { prdAdimyT 24 (Bdimyg n) , satisfying

a(dimyg u —€) > did]g;—’ft’ie > 1, and for almost every z € M
1 . dimy"b dimpp] 2 a3
Loy 1B @M STzeb rmm{ 12b+12dimytt> 12 } €4 g € L,
w(Br(2)) Jp,zy “'=i=r

. 1
5.4.5. Estimate for coronas rates R [B (dimpy ji—)2a (Z)\B (dimpy p—e)%a (Z)]
r+C/y dmy r—C’r dmpn

2 b+dim y" 1 . b dim y" dimy

Lemma 30. Let o« > dmyT b — @ and € < m1n{24b+24dimyu, 7l
(B dimpy )~} issmall enough, so that o > z_ 4 2¢ bdimy" 1

H M1 8h, dimy” T dimy* dimy b dimp 1t

-2
(1 - < ) . Then for almost all 7 € M

dimg p

pClp dimp p—Cly  dimppu dimpy 1 vz dinm 7 —AMH pL€

(B (2)) ~

M[B dimy p—e)2a (Z)\B dimyy p—e)2a (Z)] <1+(dim” ,‘,e)Za) dim b
2 r — 0,

Calculations here are exactly the same as that in Lemma 18, using Proposition 5. There-
fore we will not repeat them.
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5.4.6. Convergence rates a > 0 in dpy (N"T%, P) 212 e

2 1 . bdim y" dimgy
Lemma 31. If o« > Tmy® — Fmp choose a small € < m1n{24b+24dimyu, s
1 dimg (2dimpy pu+2€)(b+dim y") 1
Idimpg i } such that o > max { (dimp -2 [ bdimyTdimy u dimy u]
-2
(1 - m> }, then we have convergence rate
(dimpp—e*E -1 & 3
a :=min - , — —3e’,
dimpy dimpy
(dimy n — €)%« dim y“b .
1+ - - —dimyg n
dimyg 2b +2dim y#
. dim y“b dimgy
— €, min - , — 26},
126 + 12 dim p# 12

dp 00 . bdim y" dimpy p . il
IdeebM € Ly (M), chooseasmalle < min { SThddmyT A Bdimyg w)~ "¢,

dim .
HE _ Then we obtain convergence rate

such that o0 > m

[Wimpy p— )’ — D (dimpy p— )’ €
a :=min { - , : -1, — -
dimpy dimpy dimpy

. dim y*b dimpy
min - , —26},
126 + 12 dim y* 12

Proof. From Proposition 1,

dry (NV’T’Z, P) 2r.6e R1(r) + Ra(r, 2) + R3(r, 2) + Ra(r, 2),

where

. (dim g u—e)z (s_l) e(dimy p—e)
Ri(r) := rdlmH W—€ . dmpu +p dmpp

1
Ry(r,2) i= ————nu (dimpy p—e)2a (Z)\B (dimpy p—e)2a (2)
w(Br(2)) I B
1 2
R3(r,2) i= —————=n|B (dimpy p—e)2a (Z)\B (dimpy p—e)2a (2)
(B (2))? aCry R P e
1
Ry(r,z) = —— 1 ) —ig.(nd -
1B, @) Iy D= /O

From Lemma 29 we have

. dim y“b dimg €2 3
MmN 15 D dimy 12 —2e Tmp €
Ra(ryz) 1.z 7 + rdimy .

1

2 .
Ifa > TmyT ~ dmp then from Lemma 30, we obtain

. 2 .
d - u .
Wim gy p—e) Ot) dim y*b di e

R3(r,z) < Ra(r,2) =2 r( dimgy 2b+2 dim ¥
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Therefore, dry (N"T*Z, P) I1.6ep Y, and

(dimpy u —)* (€ — 1) e(dimpy p —e)

a :=min - ) :
dimy p dimyg n
(dimy n — €)%« b dim y* ,
1+ - - —dimg n
dimy pn 2b + 2 dim y#
€2 . dim y“b dimpy p ,
— €, — — 3€”, min - , —Zé,dlmH/L—G}
dimyg n 12b + 12 dim y# 12
: { dimgp—e)*E -1 € 3
= min - N —3e”,
dimyg n dimyg n
(dimpy p — €)%« dim y“b .
1+ - - —dimg n
dimg 2b + 2 dim y4
. dim y*b dimgy
— €, min - , — 26},
12b + 12 dim y# 12
: . 2 3 _ e(dimy p—e) p
where the last equality comes from relations g=— — 3¢ < &#"Me <dimy pu—e.

du o0
If dLebpg € Lluc

(M), then

dimg Cr dimg

1
R3(22) S R D) =~ [ B ot @ \B g uce (O
(B @)\, I

(dim g /L—€)20( _
< r dim gy

~7Z

Therefore, dry (N"1+%, P) Zr¢.cp r*, and

1

. { (dimp p— (€ — 1) e(dimyp—e€) (dimy p —€)’a €’
a ;= min —1

, , - s - 36,
dimy dimy u dimyg u dimyg n

. dim y%b dimpg pn
mi s
12b + 12 dim y* 12
- (imy p—e)?(E —1) (dimy p—e)’a €
= min { - , - -1, = -
dimyg dimyg n dimyg

}—2e,dimHu—6}

2
363,

. dim y“b dimgy n
in - , — 26},
12b + 12 dim y* 12

where the last equality follows from dirflil e 3e3 < % <dimpg p — €.
This completes the proof of Theorem 4. O

6. Applications

For all classes of dynamical systems, which will be considered in this section, it is known
that there exist Gibbs-Markov-Young structures (see Definition 5) and SRB measures
. Our Assumption 1 also holds, except possibly for the condition o dimpg p > 1.
Therefore, only the following conditions must be verified:

1. For Theorem 3
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(a) R is the first return time for A and f,
(b) there exist constants « > 0 and C > 0 such that

sup {d(f"x, 1), d(f 7", f7"Y)} < Cn79,

x,yeySel x/ ,y'eytel’t

(¢) ufint (A)} > 0and w(dA) =0,
(d) verify, whether ornoto >

L7 (M).

2. For Theorem 4 -
(a) find such reference subset U C M that its first return map f® has exponential
decay of correlations,
(b) find a measurable partition ® := {y"(x)} ey with required properties,
(c) check that estimate uy{x € U : |y*(x)| < €} < Ce” holds,

. . . . dbyu(y du(y
(d) getanestimate for the distortion, i.e., dL’;’;yL()X) (y) = C*! #y;()x)(z) for any v, z

1 - 1
dimy*  dimpyg p dimgy @’

du
and whether or not TTebry €

cey'(x) €O,
(e) show that there exist constants @ > 0 and C > 0, such that

sup {d(f"x, "y, d(f7"x fTY) = Cn7,

x,yeysels x/,y'eytelt

2 b+dim p" 1 1

(f) verify, whether or not o > Ty 5 — Tmpn > Tmpn

du e’}
aTebn; € Line(MD.

, and whether or not

All other required conditions hold for the classes of dynamical systems we present below.

6.1. Intermittent solenoids. Following [2,37]let M = S xD, fr(x,2) =(gy(x),0z+
eZ”ix/Z), where g, : St — s!is a continuous map of degree d > 2 and y € (0, +00)
such that

1. g, is C?on S'\ {0} and Dg, > 1 on S'\ {0},

2. 2,(0) =0, Dg,(0+) =1and xngy (x) ~ x? for sufficiently small positive x,
3. Dg,(0—) > 1,

4. 6 > 0is sosmall that ]| Dgy ||oc < 1 — 6.

It was proved in [2] that the SRB probability measure p exists iff y € (0, 1), the
attractor is A 1= (");5o fy(M), § =1/y > La =1+1/y, A = (I x D)) A, where
I is one of intervals of hyperbolicity, and f,, : [ — § !'is a C2-diffeomorphism. Then
dA = (01 xD)[Aand n(dA) 3 Lebgi(d1) = 0 due to (3.4) and (3.5). Let R be the
first return time constructed in [2], and ff : A — A is the corresponding first return
map. Clearly, dim y* = 1.

With all of these, we have thatoe = 1+ 1/y > 2 > W — m.
wufint (A)} > 0 holds also. Hence, by Theorem 3 we have the following

The condition

Corollary 2. Functional Poisson limit laws hold for f, for any y € (0, 1) with conver-
gence rates specified in Lemma 19.
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Remark 5. 1. We could also use here Theorem 4. Indeed, let U = [ x DD, R is the
first return time to U, ® is the set of all unstable manifolds in U (observe that their
union is, actually, A). The lengths of all y* € A are uniformly bounded from below.
Therefore, if € is small enough, then uy{x € U : |y"(x)| <€} =0 < €’ (note,
that here b is arbitrarily large). For each y" € ©, v ~ Lebyu anda = 1+1/y.

It is well known that correlations for fX : U — U decay exponentially. Therefore
Corollary 2 holds.

2. In [37] a “maximum" metric was chosen, instead of Riemannian metric. It was proved
there that Poisson limit laws hold for y € (0, +/2/2). After checking details therein,
we found that our approach allows to improve the results obtained there to y € (0, 1),
i.e., by using their metric. Note however, that we consider only Riemannian metric
everywhere in the present paper. Therefore we omit here these calculations.

6.2. Axiom A attractors. It was proved in [16] that for Axiom A attractors ¥ C M with
dim y* = 1 Poisson limit laws hold. Later, in [37], Poisson limit laws were established
forergodic dynamics f : ¥ — ¥ ifdimg p > dim M — 1. We will show that conditions
on dimg p and dim y* can be dropped.

Definition 10 (Axiom A attractors, see [7,41,45]). Let f : M — M be a C>-diffeomor
phism. A compact set ¥ € M is called an Axiom A attractor if

1. There is a neighborhood U of X, called its basin, such that f"(x) — X for every
xeU.

2. The tangent bundle over X is split into E* @ E®, where E* and E* are df-invariant
subspaces.

3. df|g« is uniformly expanding and df | gs is uniformly contracting.

4. f : ¥ — ¥ is topologically mixing.

Before turning to proofs, we need one lemma from [7]:

Lemma 32 (Markov partitions, see the chapter 3 of [7]). The set ¥ has a Markov parti-
tion {X1, Xo, ..., X} into elements with arbitrarily small diameters. Here the sets X;
are proper rectangles (i.e., ¥; = int (X;) and int (X;) (int (X;) = @ for i # j, where
interior and closure are taken with respect to topology of X, rather than to topology of

M.

We will verify now conditions imposed in our main theorems.

1. Let a horseshoe A coincides with ;. Then return time for a hyperbolic tower A is
actually the first return due to existence of Markov partition.

2. Contraction rates of (un)stable manifolds are exponential, i.e., faster than required
o(n™9).

3. A constant & can be, in this case, arbitrary large (namely, @ > max{2, (dimz u)~'}).

1 1

Theno > 2 > Tmy? ~ g > dmp

4. Finally, from existence of a finite Markov partition follows that i (int (A)) > 0. And
n(dA) = 0 due to the structure of d X1, according to Lemma 3.11 of [7].

Therefore Theorem 3 holds, and we obtain the following

Corollary 3. Functional Poisson limit laws hold for Axiom A attractors with conver-
gence rate specified in Lemma 19.
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6.3. Dispersing billiards with and without a finite horizon. Existence of the Gibbs-
Markov-Young structure for dispersing billiards was established in [17]. Denote by D
a billiard table, i.e., a closed region on the Euclidean plane with piecewise C3-smooth
boundary d D. The phase space of a billiard M is 3D x [—x/2, 7 /2]. In dispersing bil-
liards the boundary is convex inwards. These billiards are hyperbolic dynamical systems
with singularities, which appear because of orbits tangent to the boundary and orbits
hitting singularities of the boundary. For technical reasons (see [15]) it is convenient
to introduce some extra (artificial) singularities, and represent the phase space M as
Uksio 0D X [=7/2+ (k+ )72, =7 /2+k 21 U_gop, 0D X [m/2— k™2, /2 — (k +
DU ID x [—7/2+ky 2, /2 — k521, where ko >> 1. Then M becomes formally
closed, non-compact and disconnected. Moreover, the billiard map f : M — IM
becomes multi-valued because the phase space M gets partitioned into infinitely many
pieces, and the boundary 9.M acquires infinitely many new components. As a result, the
billiard map acquires additional singularities. However, this trick allows to get proper
estimates of distortions, probability densities and Jacobian of the holonomy map due
to partition of unstable manifolds into homogeneous ones (see the details in [15] or in
chapter 5 of [19]). Denote by S the union of all singular manifolds.
We will verify now for dispersing billiards conditions of our main theorems.

1. R=1U = M, n < Leby. It was proved in [17,45] that correlations decay
exponentially.

2. o > 0is arbitrarily large, dimyg u = 2, dim y* = 1.

3. Let Q¥ (x) be a connected component of M \ Uh—o f™(S) containing a point x.

The partition © := ((),~; Q5 (x))rer, Which consists of maximal homogeneous
unstable manifolds, is measurable.
4. A required distortion’s estimate holds for each y*(x) € ® by Corollary 5.30 in [19].
5. Theorem 5.17 of [19] gives estimate uy{x € U : |[y*(x)| < €} < Ce. (Observe that
here b = 1).

Hence Theorem 4 can be applied, and we have

Corollary 4. The functional Poisson limit laws hold for two-dimensional dispersing
billiards with or without a finite horizon, and corresponding convergence rates satisfy
estimates from Lemma 31.

6.4. Billiards with focusing components of the boundary. In this section we consider
two-dimensional hyperbolic billiards, which have convex outwards of billiard table cir-
cular boundary components together with dispersing and neutral (zero curvature) com-
ponents of the boundary. The main assumption is that the entire circle, which contains
any focusing component, belongs to a billiard table D. This class of billiards was in-
troduced and studied in [11,12]. Standard coordinates for the billiard map f are (r, ¢),
where r fixes a point on the boundary of a billiard table and ¢ is an angle of reflection
off the boundary at this point. To simplify the exposition, we will consider now only
the most studied and popular example in this class, called a stadium. (Actually, all the
reasoning for a general case is the same [13]).

The boundary of a stadium consists of two semicircles of the same radius connected
by two tangent to them neutral components. Existence of the Gibbs-Markov-Young
structure for a stadium was proved in [20,34]. The phase space in this case is M :=
0D x [—m/2, /2], where d D is the boundary of a stadium.



164 Y. Su, L. A. Bunimovich

1. Let U € M consists of all points, where the first or the last collision of billiard orbits
with the semicircles occur. By the first (resp., last) collision we mean here the first
(resp., last) collision with a circular component of the boundary, which occur after
(resp., before) the last (resp., first) collision of the orbit in a series of consecutive
collisions with the neutral part of the boundary or with another focusing component.
Clearly this set is a disjoint union of two similar hexagons. Hence, it is enough to
consider one of them, say the hexagon attached to {(r,¢) € M : r = 0}, (see

the Figure 8.10 of [19]). We have u© < Lebag and w(0U) = 0. Let R be the first
return time to U. Using Theorems 4 and 5 in [20] one can prove that the first return

map fR : U — U has an exponential decay of correlations. Consider the set of
singular points S which correspond to hitting four singular points of the boundary,
where focusing and neutral components meet and generate jumps of the curvature.
Let Sy := (f®)7L(S).
2. Let Q,(x) be the connected component of M \ |}, _o(f Rym(S|JS1) containing a
point x. The partition ® = (["),,»; @n(x¥))re is measurable.
3. A required estimate of distortion holds for each y“(x) € ® by Corollary 8.53 in [19].
4. We will prove now that uy{x € U : |y"(x)| < r, y"(x) € ®} 2 /r. Denote by
Q) (x) the connected component of the set M \ |}, _o (%)™ (S) which contains a
point x. Then some smooth unstable manifolds y”/(x) €O =, L@X))rem
are cut by the set S; into smaller pieces, which belong to ®. (Observe that some of
them could be disjoint with Sy). It follows from Theorem 8.42 of [19] that uy{x €
U:ly" @) <ry”(x)e®)<Cr.
Connected components of the set Sy are of two types:
(a) Ly is a straight (increasing in the (r, ¢)- coordinates) segment in U with slope
1/k, representing k successive reflections at one and the same semicircle (see e.g.
the Figure 8.11 in [19]).
(b) F,, is an increasing curve (in (r, ¢)-coordinates) in U with slope &~ 1 (i.e., it is
bounded away from 0 and +00), which corresponds to m successive bounces on
flat sides of the boundary (see e.g. Figure 8.12 in [19]).
Moreover, Ly is located at the distance & 1/k fromthe set {(r, ¢) € M : ¢ = 7 /2},
and F,, is at the distance ~ 1/m from {(r, ) € M : ¢ = 0}. Let

vi= U BwolJ U BFED vai= J Bl U B,
k>1/r m>1//r k<1/Jr m<1//r

where B, (L), Br(Fy,) are the r-neighborhoods of L, Fy,. Then uy (Vi V2) 3

Jr+r/r 2 /r. For almost every x € U [(Vi|JW)¢, a curve y“(x) € ©
is decreasing (in (r, ¢) coordinates), and if its length |y*(x)| < r, then y“(x) is
disjoint with Sy, and thus y*(x) € @’. Therefore,

po {x Y )] < ry"(x) € O}
<y (Vl U Vz) + ny {x € (Vl U Vz)c Syt ol < r}
v lre(UW) @i <y @ eo | 57

5. It was proved in [37] that @ = 1. Also, dimy = 2 and dim y* = 1.

Therefore all conditions of Theorem 4 are satisfied, and we have
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Corollary 5. Functional Poisson limit laws hold for stadium-type billiards, and corre-
sponding convergence rates are provided by Lemma 31.

Remark 6 (A general remark on billiards). All considerations in our paper were tradi-
tionally dealing with hitting small sets (e.g. small balls) in phase spaces of hyperbolic
(chaotic) dynamical systems. However, in case of billiards, the most interesting and nat-
ural questions are about hitting (or escape through) some small sets (particularly “holes")
on the boundary of billiard tables, rather than in the interior of a billiard table. These sets
are small in the space (e.g. ) coordinate, but they are large (have a “full" size) along the
angle (¢) coordinate.

Itis worthwhile to mention though, that there are some real life situations, when actual
escape (radiation, emission) from various physical devices (cavities, lasers, etc) occurs
only in some small range of angles (see e.g. [27,36]). Our results could be directly applied
to such cases. However, when a target set is a strip (or a cylinder) with a finite fixed
height in the angle ¢-coordinate, results of the present paper can also be used/adapted by
cutting a cylinder into small sets. Then the obtained estimates are valid for these pieces
of a cylinder. Clearly, this approach does not generally work for recurrences, but it could
be applied for the first hitting probabilities because an orbit cannot escape through one
hole and then again escape through another hole. (By holes we mean here disjoint pieces
of a cylinder). Therefore, one can take in such cases a relevant maximum or minimum
of obtained estimates for “small" sets, i.e., for pieces of a cylinder in the phase space of
a billiard.

It is worthwhile to mention though, that functional Poisson limit laws for billiards
with holes in the boundary (“cylindric" holes in the phase space) is a work in progress.
It requires some new arguments and lengthy computations.

6.5. Hénon attractors. The Poisson limit laws for certain Hénon attractors (see [5,45])
have been proved in [ 16]. However, convergence rate for this class of dynamical systems
was obtained in a weaker form (1.2). Here we give a simpler proof than the one in [16]
and derive stronger rate of convergence (1.1) by using Theorem 4.

1. LetR = 1,U = M.1tis proved in [6,45] that f has exponential decay of correlation,
and a constant « can be, in this case, arbitrarily large.

2. Each Hénon attractor is a closure of an unstable manifold. In order to construct a
measurable partition we consider a certain family of unstable leaves by making use
of Young towers. Recall that a hyperbolic Young tower is generated by a horseshoe
A =J; Aj. Let uala; := ja,. For any measurable A € M,

A = pa A =" pal(F A AD =D D (Fusa; (A).

i j<R i J<Ri

Since only measures play roles when dealing with measurable partitions, then, with-
out loss of generality, we can identify pas ) ; Y i<R; (f7)sma,,and identify M as
a disjoint union |; U; _ g, FI(A). Thus © == {fIy" 1y € T*(Ai, j < Ri}is
a measurable partition of M.

3. From (P4) of [45] we have gzg—m = C*! for any x,y € y/ e I'" (N A; and

j < R;. Therefore a slop of f/ y;" is almost constant. Hence all unstable leaves of ®
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are almost flat. Moreover,

M giyu . d(f7)xltyn .
#(fj)’) =dj—y’(fJY) =C*!
ebpjyu (f7)« Leb,u
d(f)spys divyj
= (i = L (pi),
d(f])*Leb u dL bf/)/u
where the second and third “=" hold because the density of [y is bounded from

above and from below.

4. Estimate now u{x : |[y(x)|] < €, y(x) € O}). Let M := max|Df|+1 < oo,
m := (max |Df|+1)~! > 0. For any v/ € T* () A;. We know that fR"yi” = y" for
some y“ € I'“. Therefore [y*| < MRi|y!|, ie. || > |y“|IM~ K > C’M~Fi for
some constant C’ > 0. If ly/| <8 < 1,then R; > —logy, 4, ie., R; < —logy, 4,
and therefore [y > 4.

The next step is to obtain estimation of size of f/ v € ®forany j < R; < —log,, é.
We have

logm

FIv8 =yt imd = smT > sm®i > sm~loemd = 517wt

logm

Therefore, if ffy € O has length |fJ " < 5! ~Tog ,then R; > —log,, 8. The last
inequality implies that

nix : |y(x)|<8 loggM ,y(x) € ®) < uix: xeijl € O for some j < R;, R; >

— log,, 8}
= D nualx:RG@) =n)
n>—1log,, &

—logy 8§ o—logrn
20 nph Sy ot = s,
n>—1logy, 8

where pp € (0, 1) in view of the exponential decay of return time R on Hénon

logm —lo,

_ logm _—logpy
attractors. Let € = & g™ then u{x : |y (x)| < €, y(x) € ®} 3 eleM-Togm  Thus
all conditions of Theorem 4 are verified, and the following result holds.

Corollary 6. Functional Poisson limit laws with convergence rates (1.1) hold for Hénon
attractors that can be modelled by Young towers.
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