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Abstract: This paper aims to study time periodic solutions for 3D inviscid quasi-
geostrophic model. We show the existence of non trivial rotating patches by suitable
perturbation of stationary solutions given by generic revolution shapes around the verti-
cal axis. The construction of those special solutions are done through bifurcation theory.
In general, the spectral problem is very delicate and strongly depends on the shape of
the initial stationary solutions. More specifically, the spectral study can be related to an
eigenvalue problem of a self-adjoint compact operator. We are able to implement the
bifurcation only from the largest eigenvalues of the operator, which are simple. Addi-
tional difficulties generated by the singularities of the poles are solved through the use
of suitable function spaces with Dirichlet boundary condition type and refined potential
theory with anisotropic kernels.
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1. Introduction

The large scale dynamics of an inviscid three-dimensional fluid subject to rapid back-
ground rotation and strong stratification can be described through the so-called quasi-
geostrophic model. It is an asymptotic model derived from the Boussinesq system for
vanishing Rossby and Froud numbers, for more details about its formal derivation we
refer to [36]. Rigorous derivation can be found in [3,10,30].

We point out that this system is a pertinent model commonly used in the ocean and
atmosphere circulations to describe the vortices and to track the emergence of long-lived
structures. The quasi-geostrophic system is described by the potential vorticity ¢ which
is merely advected by the fluid,

8:q +udiq +vdg =0, (t, x) € [0, +00) x R3,

Ay =gq,

u=—oh,v=o0oy, .1y
q(t =0,x) =qo(x).

The second equation involving the standard Laplacian of R3 can be formally inverted
using Green’s function leading to the following representation of the stream function

v,

it x) = 41 402 44y,
T ]R%| _y|

where d A denotes the usual Lebesgue measure. The velocity field (u, v, 0) is solenoidal
and can be recovered from ¢ through the Biot—Savart law,

_ 1
(. v) (¢, %) = —/ t yl’_xip 27 4 A,
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Notice that the velocity field is planar but its components depends on the all spatial
variables and the potential vorticity is transported by the associated flow. The incom-
pressibility of the velocity allows us to adapt without any difficulties the classical results
known for 2D Euler equations. For instance, see [34], one may get global unique strong
solutions when the initial data go belongs to Holder class €%, for« > 0. Yudovich theory
[44] can also be implemented and one gets global unique solution when go € L' N L.
This latter context allows to deal with discontinuous vortices of the patch form, meaning
a characteristic function of a bounded domain. This structure is preserved in time and the
vortex patch problem consists of studying the regularity of the boundary and to analyze
whether singularities can be formed in finite time on the boundary.

For the 2D Euler equations, the 4’ regularity of the boundary of the patch, with
a € (0, 1), is preserved in time, see [4,11,41]. The contour dynamics of the patch is in
general hard to track and filamentation may occur. Therefore it is of important interest to
look for ordered structure in turbulent flows like relative equilibria. It seems that only a
few explicit examples are known in the literature in the patch form: the circular patches
which are stationary and the elliptic ones which rotate uniformly with a constant angular
velocity. This latter example is known as the Kirchhoff ellipses. However, a lot of implicit
examples with higher symmetry have been constructed during the last decades and the
first ones were discovered numerically by Deem and Zabusky [13]. Having this kind
of V-state solutions in mind, Burbea [5] designed a rigorous approach to generate them
close to Rankine vortices through complex analysis tools and bifurcation theory. Later
this idea was fruitfully improved and extended in various directions, generating a lot of
contributions dealing, for instance, with interesting topics like the regularity problem of
the relative equilibria, their existence with different topological structure or for different
active scalar equations and so forth. For more details about this active area we refer the
reader to the works [6-9,14-16,19,21-29] and the references therein.

Coming back to the 3D quasi-geostrophic system, it seems that stationary solutions
in the patch form are more abundant than the planar case. Indeed, any domain with
a revolution shape about the z-axis generates a stationary solution. The analogues to
Kirchhoff ellipses still surprisingly survive in the 3d case. In [35] it is shown that a
standing ellipsoid of arbitrary semi-axis lengths a, b and c rotates steadily about the
z-axis with the angular velocity

ATIRp (w2 A 27 — ARp (U2, 271 0)
31—

where A = % is the horizontal aspect ratio, u :=

QL=

)

C

the vertical aspect ratio and Rp

Vab
denotes the elliptic integral of second order
Rp( ) 3 /*‘X’ dt
X,¥,2) == .
DIy 2)y Jarmarna+o)

For more details about the stability of those ellipsoids we refer to [17,18,20].

The main concern of this paper is to investigate the existence of non trivial relative
equilibria close to the stationary revolution shapes. In our context, we mean by relative
equilibria periodic solutions in the patch form, rotating uniformly about the vertical axis
without any deformation. Very recently, Reinaud has explored numerically in [40] the
existence and the linear stability of finite volume relative equilibria distributed around
circular point vortex arrays. Similar analysis has been implemented in [39] for toroidal
vortices. Apart from the numerical experiments, no analytical results had been yet de-
veloped and the main inquiry of this paper is to design some technical material allowing
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us to construct relative equilibria close to general smooth stationary revolution shapes.
The basic tool is bifurcation theory but as we shall see its implementation is an involved
task which requires refined and careful analysis. Let us explain more our strategy and
how to proceed. First, we start with deriving the contour dynamic equation for rotating
finite volume patches 1p. To do so, we look for smooth domains D with the following
parametrization,

D={(re"9,cos(¢)) : 05r§r(¢>,6),0§9527t,()§¢§7'[],

where the shape is sufficiently close to a revolution shape domain, meaning that

r(@,0) =ro(@) + f(¢.0),

with small perturbation f. Since the domain is assumed to be smooth then we should
prescribe the Dirichlet boundary conditions,

r0(0) = ro(m) = f(0,6) = f(7,0) =0.

Notice that without any perturbation, that is, f = 0, the initial data go = 1p defines a
stationary solution for (1.1), as we will prove in Lemma 2.1. Now a rotating solution
about the vertical axis is a time-dependent solution taking the form,

q(t,x) = qole ¥ xp,x3), qo=1p, xp = (x1,x2).

We shall see later that it is equivalent to check that

. Q
F(Q, [)(¢,0) := vo(r(¢, 0)e?, cos(¢)) — 5r2<¢, 0) —m(Q, f)(¢) =0,

for any (¢, 0) € [0, 7] x [0, 2], where

e i0 )
m(&2, f)(¢) = I {wo(r(dh 0)e’”, cos(¢)) — 3@ 9)} de,
0

where 1 stands for the stream function associated to gg. With this reformulation we
visualize the smooth rotating surface as a collection of interacting stratified horizontal
sections rotating with the same angular velocity but their size degenerates when we
approach the north and south poles corresponding to ¢ € {0, 7r}.

In order to apply a bifurcation argument, one has to deal with the linearized operator of
F around f = 0.From Proposition 3.2 such linearized operator has a compact expression
in terms of hypergeometric functions. Indeed, for A(¢, 0) = ), .| hy(¢) cos(nd), one
gets

307 F(Q,00h(¢. 0) = ro(@)va(@) Y _ cos(nd) L, (hy)($),

n>1

where
La(hn)(@) = hu(@) — K2 () (@)
= ha(¢) — /0 b5 (@) Hy (6. ) (@),
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with
o (p) = /0 Hi(p, 9)dg — 2, R($, 9) = (ro(®) +r0(9))* + (cos(¢p) — cos(p))?

and forn > 1,

Hy (¢, ¢) =

2271 (1)2 sin()r = (¢)ri* () . <4r0(¢)r0(§0)>
2n)! [R($, @)]™2 R(@¢.9) )

Here F), denotes the hypergeometric function

1 1
Fn(x)=F<n+§,n+§,2n+l,x), x €[0,1).

An important observation is that the kernel study of d7F (€2, 0) amounts to checking
whether 1 is an eigenvalue for IC,SIZ. To do that we first start with symmetrizing this
operator by working on suitable weighted Hilbert spaces. A natural candidate for that is
the Hilbert space Li (0, ) of square integrable functions with respect to the measure

dug(p) = sin(@)rg (P)va(p)de.
In general this defines a signed measure and to get a positive one we should restrict the

b1
values of €2 to the set (—o0, k), where k¥ := inf / Hi (¢, p)do.
¢€0,7) Jo

In the next step we prove that for any n > 1, the operator ICfl2 : Li Q= Li o, acts as
a compact self-adjoint integral operator. This gives us the structure of the eigenvalues
which is a discrete set and we establish from the positivity of the kernel that the largest
eigenvalue A, (2) giving the spectral radius is positive and simple. For given integer
n > 1, we define the set

Sy = |sz € (—00,K) St An(Q) = 1},

and in Proposition 4.2 we shall describe some basic properties of 1, through precise
study of the kernel. Those properties show in particular that the set ., is formed by
a single point denoted by €2,, see Proposition 4.3 for more details. In addition, we
show that the sequence n € N* — €, is strictly increasing which ensures that the
kernel of the linearized operator is a one-dimensional vector space, see Proposition 4.6.
Notice that the weighted space LIZL ., is chosen to be so weak in order to have it be stable
under the nonlinear functional F'. So we need to reinforce the regularity by selecting
the standard Holder spaces ¢’'% with Dirichlet boundary condition and a € (0, 1).
However this choice generates two delicate problems. The first one is to check that the
eigenfunctions constructed in Li ., are sufficient smooth and belong to the new spaces.

To reach this regularity we need to check that the function vg is € and this requires
more careful analysis due to the logarithmic singularity, see Proposition 4.1. Notice
that the eigenfunctions satisfy the boundary condition provided that n > 2 and which
fails for n = 1. The second difficulty concerns the stability of the Holder spaces by the
nonlinear functional ¥, in fact not F but another modified functional F deduced from the
preceding one by removing the singularities coming from of the north and south poles,
see (2.13). The deformation of the Euclidean kernel through the cylindrical coordinates
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generates singularities on the poles because the size of horizontal sections degenerates
at those points. That is the central difficulty when we try to implement potential theory
arguments to get the stability of the function spaces and will be discussed in Sect. 5.

Before stating our result, we need to make the following assumptions on the initial
profile rop and denoted throughout this paper by (H) :

(H1) rg € ‘52([0, ]), with r9(0) = ro(r) = 0 and ro(¢p) > 0 for ¢ € (0, 7).
(H2) There exists C > 0 such that

Vo e[0,7], Clsing <ro(¢) < Csin(e).

(H3) ;0 is[(s)yr}rn]netric with respect to ¢ = 3, i.e., ro (5 — @) = ro (5 + ), for any
S > 3l

Now we are ready to give a short version of the main result of this paper and the precise
one is detailed in Theorem 6.1.

Theorem 1.1. Assume that rq satisfies the assumptions (H). Then for any m > 2, there
exists a curve of non trivial rotating solutions with m-fold symmetry to the Eq. (1.1)
bifurcating from the trivial revolution shape associated to rq at the angular velocity Q,,
the unique point of the set ./,.

We specify that by m-fold shape symmetry of R?, we mean a surface invariant under
rotation with the vertical axis and angle 27”

There is the particular case of ro(¢p) = sin(¢) defining the unit sphere. Here, its
associated stream function can be explicitly computed (see [32]) and it is quadratic
inside the shape, that is,

1
Yo) = £ 33+ = 3).

That gives us some interesting properties on the eigenvalues €2, of the above Theorem
1.1. In particular, we achieve that the above eigenvalues €2, belong to (0, %). The same
properties occur also in the case of an ellipsoid of equal x and y axes defining a revolution
shape around the z-axis. In this case, the associated stream function is also quadratic.
See Sect. 6.1 for a more detailed discussion about those cases.

The paper is structured as follows. In Sect. 2, we provide different reformulations for
the rotating patch problem and we introduce the appropriate function spaces. Section 3
is devoted to different useful expressions of the linearized operator around a stationary
solution. The spectral study of the linearized operator will be developed in Sect. 4. In
Sect. 5, we shall discuss the well-definition of the nonlinear functional and its regularity.
In Sect. 6, we give the general statement of our result and provide its proof. We end
this paper with three appendices concerning special functions, bifurcation theory and
potential theory.

2. Vortex Patch Equations

Take an initial data uniformly distributed in a bounded domain of R3, that is, go = 1p.
Then, this structure is preserved by the evolution and one gets for any time ¢ > 0

q(t,x) = 1p@p(x), 2.1
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for some bounded domain D(¢). To track the dynamics of the boundary (which is a
surface here) we can implement the contour dynamics method introduced by Deem and
Zabusky for Euler equations [13]. Indeed, let y; : (¢,60) € T? — y,(¢,6) € R be
any parametrization of the boundary 9 D,. Since the boundary is transported by the flow
then

(e = U, ) -n(y) =0, (2.2)

where U = (u, v, 0) and n(y;) is a normal vector to the boundary at the point y;. There
is a special parametrization called Lagrangian parametrization given by

oy =U, n),

which is commonly used to follow the boundary motion. From the Biot—Savart law we
deduce that

do(y),
(2.3)

Uty(#.0)) = 31— | s dA) = $.0)— ]

1 (i, 0) — )t 1 / nt(y)
4 Ip, lyi(e.0) — yP ap, 17

where do denotes the Lebesgue surface measure of d D,. We have used the notation
xt = (=x2, x1, 0) e R3 for x = (x1,x2,x3) € R3.

2.1. Stationary patches. Our next goal is to check that any initial patch with revolution
shape around the vertical axis generates a stationary solution. More precisely, we have
the following result.

Lemma 2.1. Letr : [—1, 1] — Ry be a continuous function withr (—1) = r(1) = Oand
let D be the domain enclosed by the surface {(r(z)e’g, z), 0 €[0,27],z € [—1, l]},
then q(t, x) = 1p(x) defines a stationary solution for (1.1).

Proof. Recall from (2.3) that

1 _ L
Ux) = — %dA(y). (2.4)
dn | sl
Define
oL
o) =Uw) -x=—— | 22 a0, xeR,

an | =P

and let us prove that G = 0. Take 6 € R and denote by Ry the rotation: x = (xj, x3) —
(e x,, x3). Since D is invariant by Ry, changing variables leads to

G(Ryx) = G(x).

Therefore G(x) = G(|xp], 0, x3), which means that

Gy =~ / y2dAQ)
A o (xal = y)2 + 2 + (x3 — y3)2)3
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Since D is invariant by the reflexion: y +— (y1, —y2, y3) then a change of variables
implies that G(x1, x2, x3) = G(x1, —x2,x3) = —G(x1, x2,x3) and thus G(x) = 0.
Consequently we get in particular that

Ux)-x=0, VxeaD.

On the other hand, we get from the revolution shape property of D that the horizontal
component of the normal vector is 7, (x) = (x1, x2), which implies

Ux) -n(x) =@, v)x) - -n,(x)=0, VxeaD. (2.5)

This implies that 1p is a stationary solution in the weak sense. O

2.2. Reformulations for periodic patches. In this section, we shall give two ways to
write down rotating patches using respectively the velocity field and the stream function.
Assume that we have a rotating patch around the x3 axis with constant angular velocity
Q € R, thatis D; = Rq; D, with Rg; being the rotation of angle Q¢ around the vertical
axis. Inserting this expression into the Eq. (2.2) we get

(Ux) — Qxt) -ii(x) =0, YxedD.

Since U is horizontal then this equation means also that each horizontal section Dy, :=

{y € R?, (v, x3) € D} rotates with the same angular velocity €2. Hence the horizontal
sections satisfy the equation

(Ux) —Qxb) -7ip,, (xn) =0, xjp = (x1,x2) € Dy, x3 €R,

where 1 D,, denotes a normal vector to the planar curve 9 D.;. Next we shall write down
this equation in the particular case of simply connected domains that can be described
through polar parametrization in the following way:

D= [(reie,cos(rb)) c0<r<r(¢,0),0<60<27,0<¢< n}. (2.6)

Notice that we have assumed in this description, and without any loss of generality, that
the orthogonal projection onto the vertical axis is the segment [—1, 1]. The horizontal
sections are indexed by ¢ and parametrized by the polar coordinates as 6 +— r(¢, 0)
and it is obvious that

Ry, (r($,0)e'") = (idpr (¢, 6) — (¢, 6)) €.
Then, the equation of the sections reduces to
Re [{Un(@.0) = igr@. 00 | {[it0r 6. 0) + r9. )]} | =0,
V(¢,0) €0, 7] x [0, 27], 2.7)

with, according to (2.3) and the change of variable y3 = cos ¢,

Un(¢,0) := (U1, U2)(r(9, 0), cos )

1 /1/ nyp,, (Yn)dyndys
)y o, |(r(¢, 0)e®, cos()) — ¥l
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T 27 . .
1 sin(g) (9,7 (@, me'" +ir(p, n)e'") dnd
T an (. 0)el?, cos(d)) — (r(g. e, cos(@)]
0 O b 9 9 b

2.8)

We shall look for a rotating solution close to a stationary one described by a given
revolution shape (6, ¢) — (r0(¢>)e’9, cos(¢)). This means that we are looking for a
parametrization in the form

r(¢,0) =ro(@) + f(,0), [($,0) = fulg)cos(nd). (2.9)

n>1

Implicitly, we have assumed that the domain D is symmetric with respect to the plane
x3 = 0. In addition, we ask the following boundary conditions,

r0(0) = ro() = f(0,0) = f(7,0) =0,

meaning that the domain D intersects the vertical axis at the points (0,0, —1) and
(0,0, 1).
Define the functionals

(2, ) (¢, 0)
=Re[{1(N©.0) — i@, 00"} i@, 007 +r(g,0)e7 ],

with

I(f)(¢.0) = Un(,0)

b4 2w . . . .
= 4i_/ / SOy (0, e +ir, me) dnde. (2.10)
4
0 0

|(r (¢, 0)e'?, cos(¢)) — (r(p, me'™, cos(p))]

The subscript v refers to the velocity formulation and we use it to compare it later to the
stream function formulation. Hence, we need to study the equation:

Fy(2, f)(#,0) =0, (¢,0)€[0,7] x[0,2x].
By Lemma 2.1, one has Fy(£2,0)(¢, 6) =0, for any 2 € R.

2.3. Stream function formulation. There is another way to characterize the rotating so-
lutions described in the previous subsection by virtue of the stream function formulation.

For ¢ € [0, ], let 6 € [0,27] > y4(0) = r (¢, 0)e'? be the parametrization of
d D, where z = cos(¢). Then one can check without difficulties that (2.7) agrees with

Q
dg {WO(V¢(9),COS(¢)) - 3|V¢(6’)|2} =0, V(¢,0)€[0,7]x[0,2n].

Then, the equation can be integrated obtaining

Q
Yo(vg(6), cos(¢)) — 5|J/¢>(9)|2 =m(S2, f)(#),
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where m (€2, f)(¢) is a function depending only on ¢ and given by

2
1 . Q
m(§2, ) (@) = g./‘ {lﬂo(r(tﬁ, 0)e'?, cos(¢)) — Er2(¢, 9)} do, r=ro+f.
0

(2.11)
Let us consider the functional
. Q
Fs(2, )(@,0) := Yo (r($, 0)e?, cos(¢)) — Erz(qﬁ, 0) —m(2, f)(P)
1 2
=GR, /)¢,0) — 2—/ G(2, /)¢, mdn, (2.12)
T Jo

where
i0 £,
G2, )(9.0) :=Yo(r(@,0)e™, cos()) — =r7($.0),
and the stream function is given by

Yo(r(p, 0)e?, cos(¢))

T pm rriea) )
__ L sin(e)rdrdnde .
= T ar _[ [ [ [(rein, cos(p)) — (r(¢, 0)ei?, cos())|

Then, finding a rotating solution amounts to solving in f, for some specific angular
velocity constant €2, the equation

Fs(Q, f)(¢,0) =0, Y(¢,0) [0, 7] x[0,27].

Remark that one may check directly from this reformulation that any revolution shape is
a solution for any angular velocity €2, meaning that, F5(£2, 0) = 0, for any 2. Motivated
by the Sect. 3 on the structure of the linearized operator, we find it better to get rid of
the singularities of the poles and work with the modified functional

Fy(2, )(@.6)

F(Q, f)(¢,0) = o @)

Therefore, we get

- 1 Q
F(2, f)(¢.0) = @) {I(f)(qﬁ, 0) — 5 ré 6)> — m(, f)(¢)} . (213)

@)
with
PRI B L I L
D=z || | TG costeo) — (@ )7 cos@)l’
(2.14)
and

r(¢.0) =ro(@) + f(¢,0).
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2.4. Functions spaces. First we shall recall the Holder spaces defined on an open
nonempty set @ C RY. Let « € (0, 1) then

€10 ={1: 0> RISl <o),

with

Vfx)—V
1 Flgra = 1 fllio + 19 fllpe + sup LA = VIO,
x#yeld lx — yl

It is known that €1 (&) is a Banach algebra, meaning a complete space satisfying

I fellgre < Clifllgrellglisre

Denote by T the one-dimensional torus and we identify the space €' (T) with the space
‘5217’1“ (R) of 2m-periodic functions that belongs to €12 (R). Next, we shall introduce the

function spaces that we use in a crucial way to study the stability of the functional F
defined in (2.13). For @ € (0, 1) and m € N*, set

X% = {f e E (0.1 xT), f(@.0) = ful@) cos(nme)}, (2.15)

n>1
supplemented with the conditions

Vo € [0,27] f(0,0) = f(7,0) =0 and
V(p,0) € [0, 7] x [0,27] f (7 —¢,0)=[f(9,0). (2.16)

This space is equipped with the same norm as "1 ((0, 7r) x T). The first assumption in
(2.16) is a kind of partial Dirichlet condition and the second one is a symmetry property
with respect to the equatorial ¢ = 7. Notice that any function f € ¢l ((0, ) X
’]I‘) admits a continuous extension up to the boundary, so the foregoing conditions are
meaningful. Furthermore, the Dirichlet boundary conditions allow us to use Taylor’s
formula to get a constant C > 0 such that for any f € X,

[f (@, m = Cll fluipsine,
I f(O,m) =03, f(r,n) =0 and [3,;f(p, M| = C| [flgesin®(p). 2.17)

The notation By« (¢) means the ball in X}, centered in O with radius .

Next we shall discuss quickly some consequences needed for later purposes and
following from the assumptions (H) on rg, given in the Introduction before our main
statement.

e From (H2) we have that j(0) > 0 and by continuity of the derivative there exists
8 > 0 such that ry(¢) > 0 for ¢ € [0, 5]. Combining this with the mean value
theorem, we deduce the arc-chord estimate: there exists C > 0 such that

C7 ¢ — 9)? < (ro(p) — r0())* + (cos(¢) — cos(p))? < C(p — ¢)?, (2.18)

for any ¢, ¢ € [0, 7].

e We have that % € €*([0, 7)), and then ¢ € [0, 5] —~ =% € €*([0, 3]).
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3. Linearized Operator

This section is devoted to show different expressions of the linearized operator around
arevolution shape. We can find an useful one in terms of hypergeometric functions. See
“Appendix A” for details about these special functions.

From now on, we will use the stream function formulation and then we omit the
subscript s from Fy in order to alleviate the notation. The linearized operator of the
velocity formulation is closely related to this one, see the previous section.

3.1. First representation. In the following, we provide the structure of the linearized
operator of F' around the trivial solution (€2, 0).

Proposition 3.1. Let F be as in (2.13) and (¢, 60) € [0, 7] x [0,27] — h($,0) =
anl h, (@) cos(n@) be a smooth function. Then,

07 F(Q,00h(¢.0) = —Q Y ha(¢) cos(nd) + Y _ cos(nf)

n>1 n>1

T 2
hn($) / / sin(@)ro(p) cos(n) dnde
@) J f) SR @)+ ra@) + (cosd — cos )2 — 2r0(@)roe) cos(n)

T [2r
1 sin(@)hn (¢)ro() cos(nn) .,
- ndg
@) 1 Jy @)+ @)+ (cos ¢ —cos @)~ 2r0($)ro ) cos(n)

3.1)

Proof. First, note that

|(re'™, cos(p)) — (ro(@)e'?, cos(@))|?
=12 +1r3($) + (cos(¢) — cos())? — 2rro(¢) cos(@ — n).

The linearized operator at a state ry is defined by Gateaux derivative,

- d -~
0 F(R2,0h(¢,0) := EF(Q’ th)‘tzo(qﬁ,e)

| /d
=5 (EG(Q,th)‘t:O(qﬁ,@) -

Thus straightforward computations yield

k4 2
d 1 i h(g, n)dnd
d—G(Q,th)’ (.0) = —— sin(g)ro(p)h (e n)l 199 aro(@)h(e. 6)
' = R A@.6.9.1)?

b4 2w 70 ()
| 9.6) Sin(@)r (ro(@) — r cos(n) drdde
o J Sy (P HrR@) + (cos(@) — cosg)) — 2rro(@) cos(n)F

1
2

2 d
/ EG(Q,th)L:O(cb,n)dn)-
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with
A9, 0, 9, 1) =13 () + 13 () + (cos(¢) — cos(@))? — 2ro(@)ro(¢) cos(@ — ).

By expanding / in Fourier series we get

0rG(2,0)h(9,0) =

T 2
-y = / f SNIO) COSWI ) (o)dndyp +Qro(@)hn () cos(nb)
n>1 T 0 0 A((f),@, @, 77)2

| T 2 ro(@)
+— Y ha(@) cos(nf) / / /
am n>1 0 0 0

sin(p)r (ro(¢) — r cos(n)drdnde '
(r2 +13(9) + (cos() — cos()? — 2rr (¢, 0) cos(n))?

X

Let us analyze every term. For the first one, making the change of variable 8 — n — n
we get using a symmetry argument,

/ " / ” sin(@)ro(@)hy () cos(nn)dnde

0o Jo A($,6,9,m)?

~ / § / 7 Sin()ro(@)h (@) cosn(y — 0))dndp
o h A.0,9,0 — )}

- [T Sin()70(¢)hn (¢) cos(un)dndy
= cos(nb) 5 5 T
b S (R +13(@)+(cos(®) — cos(@))2—2ro(@)ro(d) cos(n))

Concerning the last integral term, we first use the identity

r

0
(r2 + 13 (§) + (cos(@) — cos())? — 2rro(¢) cos(i)) *
1

(r2 + 15 (¢) + (cos(p) — cos(9))? — 2rro(¢) cos(n))?
r(r —ro(¢) cosn)

(r2 + 15 () + (cos(¢) — cos(9))? — 2rro(¢) cos())? '

Consequently

T o) rcos(n)drd
(P, @) = / / dr > - ) 3
0 0 (r? + 5 (@) + (cos(¢p) — cos(9))? — 2rro(¢) cos(n))2

B f o / o) cos(n)drdy
0 0 (r2 + V§(¢) + (cos(¢) — cos())? — 2rro(¢) COS(U))%
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2 ro(p) 2 . 9
_ / f r=cos(n) — rro(¢)(1 — sin“(n))drdn .
0 0 (r2 + 13 () + (cos(¢) — cos(9))? — 2rro(¢) COS(n))%
Thus

) = f ” / o F(r0($) — r costn)drdn 3
b o P Hr@) + (os($) — cos())? — 2rro(@) cos(n)’?

N / 2” / e cos(drdy
b b P Hr@) + (os(®) — cos(9))? — 2rro(@) cos(n)

) /2” f")(“’) rro(@) sin® (mdrdn ,
b b G2R@) + (cos(@) — cos@)? — 2rro() cos()}

Integrating by parts with respect to n gives

/2” frow cos(n)drdn
A A (r2 + 13 () + (cos(¢) — cos(g))? — 2rro() COS('?))%

) /2n /ro(go) rro(@) sin(n)zdrdn _o
A A (r2 + 13 () + (cos(¢) — cos())? — 2rro(¢) COS(’?))%

Putting together the preceding identities allows to get
b4 2 ro(p) .
f / / Sin()r(ro(¢) — r cos(m))drdndep
3
o Jo 0 (r2 +15() + (cos(¢) — cos(9))? — 2rro(¢) cos())?

T 2 ro(®) .
_ / / / 3 sin(p)r cos(n)drdnde
0o Jo 0 (r? +13() + (cos(p) — cos(¢))? — 2rro(p) cos(n))?

B /” /2” sin()ro(¢) cos(n)drdnde
0 Jo (:2(p) + r3(¢) + (cos(®) — cos(@))2 — 2ro(¢)ro(¢) cos(n)) 2

Therefore we obtain

b4 27
07 G(Q,0)h(¢, 0) = =) 4L/ / sin(@)ro(¢) COS(”Z)hn(w)dndcp cos(nf)
n>1 T 0 0 A(d’a 97 §0a9_77)2

T 2w
1
+ — hu (@) cos(nd) f /
A V; 0 0

sin(@)ro(@) cos(n)drdnde

X

(r2(9) + 13 () + (cos(@) — cos(9))? — 2ro(¢)ro() cos(n))?
+Qro($) Y ha(¢) cos(nd).

n>1
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Now it is clear that

1 2
—/ 9,G(S2. 0)h(ep, )y = O,
2w 0

and so (3.1) is obtained. 0O

Remark 3.1. Notice that the local part of the linearized operator (3.1) can be directly
related to the stream function vy associated to the domain parametrized by (¢, ) —
(ro(¢>)ei9, cos(¢)). Indeed, by differentiating the functional vy : f +— Yo((ro(¢) +
f(p,0))e'?, cos(¢p)) at f = 0 and in the direction & one gets

@ Y0)h($. 0)
T 2
:h(¢’9)// sin(g)ro(¢) cos(n) dndg .
Tl S JR@ @)+ (cosd —cosg)? — 2r0(B)ro(e) cos(n)

This form is useful later for spherical and ellipsoidal shapes where the stream functions
admit explicit expressions inside these domains, see Sect. 6.1.

3.2. Second representation with hypergeometric functions. The main purpose of this
subsection is to provide a suitable representation of the linearized operator. First we
need to use some notations. For n > 1, set

1 1
F,(x) :=F<n+5,n+§;2n+1;x>, x €]0,1),

where the hypergeometric functions are defined in the “Appendix A”. Other useful no-
tations are listed below,

R(¢, ) := (ro(¢) +ro(p))* + (cos(p) — cos(@))?, 0<¢, 9 <m,  (3.2)

and

Hy (¢, @) ==

_ 2, n— n+
2 (3), sinoir ™ @ @) (4’0("’)“(“’)). (33)

(2n)! [R(¢, ¢)]"+? R(9, )
Now we are ready to state the main result of this section.

Proposition 3.2. Let F be as in (2.13) and h(¢,0) = Y, hu(@) cos(nb), (¢,0) €
[0, 7] x [0, 27, be a smooth function. Then, B

3 F(2,00h($.0) =Y cos(nd) LS (hn)($). (3.4)

n>1

where

L3 (ha) (@) = hn() [/ H1(¢,<0)d<ﬂ—§2:|—/ Hy (¢, 9)hn(@)de, ¢€(0, ).
0 0
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Proof. With the help of Lemma A.1, we can simplify more the expression of the lin-
earized operator given in Proposition 3.1. We shall first give another representation of
the first integral of (3.1),

16 = % sin(¢)ro(p) cos(n) dndo
T I Sy V@) + @) + (cos@) — cos)? — 2r0(é)ro(e) cos(n)

T
1 sin(g)ro(ep) cos(n)
- i A S dnde.
4 V2ro(@)ro(p) 12 () +72 () +(cos($) —cos(9)?
0 0 2ro(¢)ro(p) — cos(1)

From Lemma A.1 we infer

27
/ cos(n) dn
2 2 _ 2
A \/r0(¢)+r0((p)+(cos(¢) O o)

2ro(d)ro(ep)
Fy 2 ) 2 7
2 gy (@)+r(y (9)+(cos(¢p)—cos(¢))
2 (L [+ 00—
. (2)1 20 @0 (@) .
| + B@HT@+(cos(9)—cos(y))? 2
2ro(P)ro(p)
Thus we deduce
s
1 sin(@)rd (<p) 4ro(P)ro(e) T
1) = ro(d)~ 2 do = ro(@) / Hi (6. ¢)do.
4 R3 (6, 9) R(9.¢) 0

Remark that the validity of Lemma A.1 is guaranteed since the inequality
g () + 75 (9) + (cos(¢) — cos(¢))?
2ro(@)ro(e)

is satisfied provided that ¢ # ¢ which leads to a negligible set. For the last integral in
(3.1), we apply once again Lemma A.1,

> 1,

cos(nn)

[ @) +r3(9) + (cos(d) — cos())? — 2ro(@)ro(p) cos(n)

2 (), @) (4r0(¢)"0(</?))
Qm)! gt (g ) "\ TR0 )

dn

It follows that

/ / sin(@)hy, (@)ro(e) cos(nn) dndy
\/ 5 (9) + 75 (@) + (cos(¢) — cos(¢))? — 2ro(¢)ro(p) cos (i)
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_ 221 (%)i rg(¢)r6’+1((p)sin((p)F <4ro(¢)ro(<ﬂ)

@t J R™2($, ¢) R, ¢)

) hn(@)de

=r0(¢)/0 Hy (¢, 9)hn(p)dy,

which gives the announced result. O
Remark 3.2. By virtue of Remark 3.1 and the previous expression one has that

1
ro(¢)

where v is the stream function associated to the domain parametrized by (ro(¢)e’?,
cos()), for (¢, 0) € [0, ] x [0, 27].

/0 Hi(§. 9)dp = ——dpiio(RE?. cos(@)) | kero(@) - (3.5)

3.3. Qualitative properties of some auxiliary functions. In the following lemma, we
shall study some specific properties of the sequence of functions {H,}, introduced in
(3.3). We shall study the monotonicity of the sequence n — H, (¢, ¢) which will be
crucial later in the study of the monotonicity of the eigenvalues associated to the operators
family {£,,n > 1}. We will also study the decay rate of this sequence for large n.

Lemma 3.1. For any ¢ # ¢ € (0, 1), the sequence n € N* +— H,(¢p, ¢) is strictly
decreasing.
Moreover, if we assume that rq satisfies (H2), then, for any 0 < o < 8 < 1 there
exists a constant C > 0 such that
1
_oSin(@)rg (@)
3
ro (0)

Proof. By virtue of (3.3) we may write

|Hu(¢. )| = Cn 6=l Vn=1,6#¢cOm). (36)

227112 (1 + 1) sin(p)ro(p) 2

1
"2, (x),
@l i@l

Hy (¢, 9) =

where x = % belongs to [0, 1) provided that ¢ # ¢. Now using the integral

representation of hypergeometric functions (A.2) we obtain

1
2207112 (n + 3) sin(@)rg () (2n)! n+d
@i el gy T2 (04 ])

1
x/ 31— 0" (1 — 1x) " 2 dr
0

2272 (n+ 5) sin(go)ro% (@)  (2n)!

H, (¢, ) =

Ha(x)
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_ Lol e

)

with the notation
1 1 1 1 1
Hpy(x) :=x""2 / "2 —-0)""2(1 —tx)"""2dt.
0

Therefore the desired result amounts to checking that n +— H, (x) is strictly decreasing

for any x € (0, 1). This follows from the fact that n X3 s strictly decreasing
combined with the identity
t(1-0\"
1 < ( )) di,
1 —tx

t(1—1)
1—tx

1 1 1 1 ! 1 1
f MT2(1—0)""2(1 —tx) " 2de =/ 2 =020 —=1x)"
0 0

which shows the strict decreasing of this sequence since 0 <
t,x € (0,1).

It follows that for any ¢ # ¢, the sequence n +— H, (¢, ¢) is strictly decreasing.

It remains to prove the decay estimate of H, for large n. It is an immediate conse-
quence of the following more precise estimate: for any « € [0, 1], we get

< 1, for any

[In(1 — x)|! =@
Tl

forn > 1and 0 < x < 1. To see the connection with (3.6) recall first from (3.7) that

[Hu(x)] < X"~ 24 , (3.8)

sin(p)ro(p)?
|Ho (¢, 0)] S ﬂm ).
70(¢)2
Since 0 < x < 1 then we obtain from (3.8) that forany 1 > 8 >« >0
[In(1 —x)|'=* 5
[H ()] S The(d—x)e SnmY(1—=x)

According to (4.10) we deduce that
1
n%l¢ —glf

which is the desired inequality. Let us now turn to the proof of (3.8). We write

1 ! |
_ 3
e I T Ll s
o (1 —tx)y"z (1 —1x) g 1 —1x

where we have used that

Hn (0] <

1—tx>1-—1,

forany t € [0, 1] and 0 < x < 1. Observe that we easily get the identity

1
13 = 39
/0 1 —1tx Z:n+ +k G2

k=0
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1
t"_% dt _ 1 ’
b 1—tx =~ n(l—1x)

which implies

and

By using interpolation, we obtain

1
_ l—a
tn_% dt - L|ln(1 X)| ,
A 1 —tx — n¥ xl=¢(1 —x)~

which gives us

[In(1 —x)|'= 1

41
[H,(x)] <22 mn—a,

forneN*andO<x < 1. O

4. Spectral Study

In this section, we aim to investigate some fundamental spectral properties of the lin-
earized operator d 7 F'(£2, 0) in order to apply the Crandall-Rabinowitz theorem. For this
goal one must check that the kernel and the co-image of the linearized operator are one
dimensional vector spaces. Noting that the study of the kernel agrees with the eigenvalue
problem of a Hilbert—Schmidt operator, we achieve that the dimension is one. Moreover,
we will study the Fredholm structure of the linearized operator, which will imply that
the codimension of the image is one. At the end of the section, we characterize also the
transversal condition.

4.1. Symmetrization of the linearized operator. The main strategy to explore some spec-
tral properties of the linearized operator at each frequency level n is to construct a suitable
Hilbert space, basically an L? space with respect to a special Borel measure, on which
it acts as a self-adjoint compact operator. Later we investigate the eigenspace associated
with the largest eigenvalue and prove in particular that this space is one-dimensional.
Let us explain how to symmetrize the operator. Recall from (3.4) that for any smooth

function h(¢, ) = Z hy, (@) cos(nf), we may write the operator £,, under the form

n>1

L3 (ha) (@) = va(¢) {hn(¢) _/o K (¢, w)hn(w)dlm(cp)} . ¢ €[0,7], (4.1)

with
H, (¢, ¢)

K, (o, = ’
@9 = G @va@ @@

4.2)
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T

vo(9) :=/0 Hi (¢, p)dy — 2, (4.3)

and the signed measure
dua(p) = sin(p)rg (@)va(@)dy. (4.4)

Define the quantity
m

K := inf Hi(¢, )do. 4.5
St [ .o (4.5)

We shall discuss in Proposition 4.1 below the existence of x which allows to guarantee
the positivity of the measure d 1 provided that the parameter €2 is restricted to lie in the
interval (—o0, k). We shall also study the regularity of the function vg which is delicate
and more involved. In particular, we prove that, under reasonable assumptions on the
profile rg, this function is at least in the Holder space € for any « € (0, 1).

Notice that the kernel K, is symmetric. Indeed, according to (3.3) we get the formula

22n—1 1 2 n—1 n—1
Kb, 0) = )y @@ F(4ro(¢)r0(¢)>7 “6)

Cm)! ug(@)va(e) [R(. )2 R(¢. )

which gives the desired property in view of the symmetry of R, that is, R(¢, ¢) =
R(p, ¢).

We shall explore in Sect. 4.3 more spectral properties of the symmetric operator
associated to the kernel K,.

4.2. Regularity of vg. This section is devoted to the study of the regularity of the function
v thatarises in (4.1), which turns to be a very delicate problem. This is needed for getting
enough regularity for the kernel elements that should belong to the function spaces where
bifurcation will be applicable. For lower regularities than Lipschitz class, this can be
implemented in a standard way using some boundary behavior of the hypergeometric
functions. However for higher regularity of type ¢, the problem turns out to be more
delicate due to some logarithmic singularity induced by H;. To get rid of this singularity
we use some specific cancellation coming from the structure of the kernel. We shall also
develop the local structure of vg near its minimum which appears to be crucial later
especially in Proposition 4.2.

The main result of this section reads as follows.

Proposition 4.1. Let ro be a profile satisfying (H1) and (H2). Then the following prop-
erties hold true.

(1) The function ¢ € [0, ] — va(¢) belongs to €P ([0, 1), for all B € [0, 1).
(2) We have k > 0 and for any 2 € (—o0, k) we get

Vo € [0, ], va(d) >k —Q2 > 0.
(3) The function vg belongs to €1 ([0, 1), for any a € (0, 1), with

v (0) = v () = 0.
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(4) Let Q € (—o0, k] and assume that vq reaches its minimum at a point ¢y € [0, 7]
then there exists C > 0 independent of Q2 such that,

Vo € [0, 7], 0 <va(p) —va(do) < Cle — ¢ol'*.

Moreover, for Q = k this result becomes
Vo € [0, 7], 0<vc(¢) < Clgp— ol

Proof. (1) To start, notice that according to (3.3)

1 sin(p)rg (¢) <4ro<¢>ro<<p)>
Hi(¢,¢) = — F .V 0,
16.9) = o oL RG.0) 0 #¢ e (0,7)
= A1, 9)H5(9, @), (4.7)
where
1si 2
Hi(h. p) = Zw’ 4.8)
R2(¢, ¢)
and
4
#566.0) 1= b (AO), “9)

Therefore we may write

Yo € (0, 7), m(¢)=f0 Hi (b, 9) A5, 9)dg — .

Using the boundary behavior of hypergeometric functions stated in Proposition A.1 we
deduce that

15%(¢,¢)5C+C‘1n<1_w)‘

R(¢. )
<C+C ‘ln ( (ro(@) + ro(@))? + (cos ¢ — cos )? ) ‘ |
(ro(¢) — ro(9))? + (cos ¢ — cos ¢)?

From the assumption (H2) on ry we can write, using the mean value theorem

(ro(¢) +ro(@))* + (cosd — cos ) < C(sing +sing)* + (¢ — p)*.
In view of (2.18) we get for all ¢ # ¢ € [0, ],

- (ro(@) + ro(@))? + (cos ¢ — cos @)? - (sin ¢ + sin @)?

= 0@ @)+ cosp—cosp)? = @2 O GO
Consequently, we get
15%(¢,¢)§C+C‘ln<w>‘. “.11)
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On the other hand, it is obvious using the assumption (H2) on rq that

. 2 :
sin(@rg(9) _ sine _ Vo, d € (0, ). (4.12)

0<7(p,9) < - < <
[R(p, )2 T0(9)

It follows that

- . .
sup |vg(@)| < C+C sup / In <M>d¢§a
$€(0,7) $e(0,7) Jo ¢ — ¢l

which ensures that vg is bounded.
Now let us check the Holder continuity by estimating

lva(é1) — va(h)l S/O |21, ) A1 (91, ) — H1(d2, 9)de

+ /0” |21 (2, K21, @) — Ha (2, @)|de
=1 H1(p1, 2) + H2(91, $2).
Let us begin with 1. Notice that
IpR(¢, ¢) = 2r((9) (ro() +10(¢)) + 2 sin ¢ (cos ¢ — cos ), (4.13)

which implies that

1
105 R (0, 9)| < CRZ (¢, 9).
It follows that
3 _ _
10sR™2(, )| S R, 0) S g (@)

Differentiating %] with respect to ¢ yields

_3 .
473971 ($, 9) = 35 (R™2)(¢. ) sin g 15 ().
Hence using (H2) we deduce that
sin 1
sup g1 (¢, 9)| < Copt < ——.
$e(0,7) ro(p) ~ sing

(4.14)

From an interpolation argument using the boundedness of .”#] we find, according to the
mean value theorem,

|1 (p1, ) — Hi(pa, 9)| = | K1 (1, @) — Hi (2, )| P 1A (1, ) — Hi (2, 9)IP
<@ AN=) " 1A 191 — gol?

< |1 — ¢2|ﬂ'

4.15
sinf ¢ ( )

Using (4.11), we obtain

%‘i(¢1,¢z)sC|¢1—¢z|ﬁ/n ! {mn(w)}
o sinfg 161 — ol
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dg < Clp1 — $al”, (4.16)

forany g € (0, 1).
Next we shall proceed to the estimate .773. From (4.12), one finds that

Ao, 2) < cfo A1, ) — A5, 9)ldo.

We separate the last integral as follows:

HG(p1, ¢2) < Cf | 22(1, ) — Ha(g2, @)|de
0
By, (d)UBy, (d)

+Cf |25 (P11, @) — (P2, @)|de
(d)ﬂB (d)

=1 91(¢1, $2) + H22(¢1, $2),

where d = |¢1 — ¢2|, By(r) = {9 € [0,7] : |¢ — ¢| < r} and B;(r) denotes its
complement set. For the first term, 7743 1, we simply use (4.11)

H5,1(¢1, ¢2)
e f IRMECAEIC NIRRT
Bg, (d)UBy, (d) [p1 — ¢l |2 — @l

Since for ¢ € By, (d)U By, (d) one has |¢1 —¢| < 2|¢p1 — 2| and |¢2 — | < 2|¢p1 — 2],
then one achieves

76,1(d1, $2)

! sin(¢1) + Sln(w)
§C|¢1—¢2|ﬂ/ { +‘1n< )’
Boy @By |91 OV o1 = 61 — gl

N ‘ln (sin(¢2) + sin(g) )’ 1 } do
|p2 — ¢l lp2 — @lf

< Clg1 — pl?, (4.17)

forany 8 € (0, 1). For the second term of .73, we observe that forany ¢ € B (d )N B (d)
one has

1
Flor—el<lhr—ol < 2|1 —ol. (4.18)
On the other hand, direct computations yield

0(PIR(, ¢) — 3y R(¢, (4
99 H5(0. @) :4,0((p)ro(¢) (¢ ¢I§2(¢V0;<;>) o R(P, ¢) Fl < r(;e(g))r;()@)
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We know that
Vx e (—1,1), F{(x)= ZF(S/Z, 5/2; 4; x),
and by virtue of the boundary behavior stated in Proposition A.1 we get
Vxel0, 1), [F{x)]<-x)""
It follows that, using (2.18),

4
o £pe0m |F (%)\

< (@) +10(9)* + (cosp —cosg)® _ R(@.¢)
~ (ro(@) —ro(@))* + (cos ¢ —cos )2 ~ ¢ — ¢

By explicit calculation using (4.13) we get

(4.19)

HH@IR@. @) = r0@)0s R@. 9) = (@) (13 (9) = 13 (#) + (cos ¢ — 03 9)?)
+ 2rg(¢) sin ¢ (cos ¢ — cos ).

Then using the mean value theorem we find
0@ R($. ¢) = r0($)0s R($. 9)| < 16 — ¢l (ro(p) +r0() +| cos ¢ — cos ¢])
+ro(¢) sin ¢| cos ¢ — cos ¢|
S 19— gIR> (@, 9).
Putting together the preceding estimates we find

4ro(@)ro(e)

10575($, 9)] S ro(@)|$ _¢|R—§(¢,¢)’F{< R(®,¢)

)]5|¢—¢|—1.

Then applying once again the mean value theorem, we get for any ¢ € Bgl @n Bgz )
avalue ¢ € (¢1, ¢2) such that

|3 (b1, @) — Ha(da, )| S b1 — dallp — ™!
<l — pallgr — ol 7L

Combining this estimate with (4.11) and (4.18), and using an interpolation argument we
get for any ¢ > 0,

| (1, 9) — Ha(pr, ©)| S |y — dalP o1 — o] P

N (C ol (sinqSl +sin(p)‘ N 'ln (sinq&z + sinw)‘)l_ﬁ
1 — ol 2 — ol

S lor — ¢ol” (1 + |1n(sin<p)|]’ﬁ) (161 — oI #7).

(4.20)
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Hence, we find that

K221, ¢2) = Clor — ¢2|ﬁ/ (1 + | In(sin <p)|1_ﬁ) (161 — o 7#~%) dg
0

< Clgr — ¢!’ 421
for any g € (0, 1). Finally, putting together (4.17)—(4.21) we get

H(p1. ¢2) < Clp1 — ol
for any 8 € (0, 1). Then, we find that vg € &P, for any g8 € (0, 1).

(2) The function ¢ — Q + vq(¢) is continuous over the compact set [0, 7] then it
reaches its minimum at some point ¢y € [0, 7 ]. Thus from the definition of k in (4.5)
we deduce that

s s
c= inf / H1(¢,¢>d¢=f Hi ($. 9)do > 0,
¢c0,7) Jo 0

which implies that

Vo e [0, 7], vg(¢>)z/0 Hi(do. 9)dg — Q2 >« — 2.

Hence we infer that for any Q2 € (—o0, k)
Vo €0, 7], volp) >k —Q>0.

(3) The proof is long and technical and for clarity of presentation it will be divided into
two steps. In the first one we prove that vg is %" in the full closed interval [0, 7 ]. This
is mainly based on two principal ingredients. The first one is an important algebraic
cancellation in the integrals allowing us to get rid of the logarithmic singularity coming
from the boundary and the second one is the boundary behavior of the hypergeometric
functions allowing us to deal with the diagonal singularity lying inside the domain of
integration. Notice that in order to apply Lebesgue theorem and recover the continuity of
the derivative up to the boundary we use a rescaling argument. This rescaling argument
shows in addition a surprising effect concerning the derivative at the boundary points
vb (0) and 1)/9 (r): they are independent of the global structure of the profile rp and
they depend only on the derivative r(0). This property allows us to compute vg,(0) in
the special case of ro(¢) = sin(¢) by using the special geometry of the sphere and
observe that this derivative vanishes. As to the second step, it is devoted to the proof of
v € €*(0, ) which is involved and requires more refined analysis.

e Step 1: vg € €' ([0, 7]). The first step is to check that v is ! on [0, ]. Define

__4ro(@)ro(e)
0@, 9) = TR0

’

then we can check that

dp Hi (¢, @)

3
= J1(d, 9) <—§R‘1(¢, P)ogR (P, 9)Fi(0(9., 9)) + Fi(0(d, 9))dg0 (s, 9)) ,
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which implies after simple manipulations that
304R 3 304R ,
I Hy = 1 <_§T + 2000 = 5= (F1(0) = 1) + (Fi(p) = 3/4)[ 950 + 3<pp]>
— J4(F{(p) = 3/4) 2.

In addition using the identity

H1(F{(p) —3/4)0,p = H10,[F(p) —3/4p — 1]

=0, (HA[F(p) = 3/4p — 1]) — B D[ F(p) — 3/4p — 1],
we find
dpH1 = 0 + 21 (Fi(0) — 1) + s02(F{ (@) — 3/4) — 3, (S [F(p) —3/4p — 1],

with

306R 3
= |—=—+-9 — =Py
Q) 1<2R 4¢P) 4 P11
304R
= 2R v,
= ) (8¢,,o+8¢,0). (4.22)

Notice that F1(0) = 1, F{(0) = %. Assuming that the following functions are well-
defined and using the boundary conditions then we can write

6@ = [ (0.0 + 2@ 0[Fie@ ) 1]

+506, 9 Fle(@, ) - 3/4])dg
=0 +0@) +G®). (423)
with

0(g) = /0 0. 9)do. () = /0 (6. ) [Fi(o(. 0)) — 1]dg
and
05(9) = /O 2. ) [Fl (0. 9)) — 3/4]dg.

Direct computations show that

4 ’
B0 (6, 9) = %‘g’)(m, ©) = 250@) (0(9) +r0($)))

_ 8ro(@)ro(e)
R (9. 9)

According to (4.13) and using some cancellation, it implies that

ro(9)-#1(¢. ¢) <1 L o10@)0(d) + ro((ﬂ)))

sin ¢ (cos ¢ — cos @).

) = _3 )
(@, 9) = 3@ —p o= R($.¢)
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+ 6% sin(¢) ro(¢) ro(e)( cos ¢ — cos ¢)
6. 0) @roe)
"I Ry O (0056 —cos9) =M ATEIE 420

We point out that this simplification is crucial and allows to get rid of the logarithmic
singularity.
Now we shall start with the regularity of the function

G deOm) /O (. 9)do.

and prove first that it is continuous in [0, 7 ]. It is obvious from (4.24) that s is € Lover
any compact set contained in (0, 7) x [0, 7] and therefore ¢; is €' over any compact
set contained in (0, 7). Thus it remains to check that this function is continuous at the
points 0 and 7r. The proofs for both cases are quite similar and we shall only check the
continuity at the origin. For this purpose it is enough to check that ¢; admits a limit at
zero. Before that let us check that ¢ is bounded in (0, 7). From the definition of R stated
in (3.2) and using elementary inequalities it is easy to verify the following estimates: for

any (¢, ¢) € (0, 7)*

ro(@)(ro(@) + ro(p)) <1

]

R(9,9)
ro(@rol) _ 1
R@,¢9) — 2

ro(@)ro(p)| cos ¢ — cosg| < R(¢. ).
In addition, the assumption (H2) implies that

sup  A1(9, ¢) < o0.

¢.9€(0.7)
Thus we find according to (4.14) and (H2)
6.0 € (072 ooy < SN@ | @) _ sin@)
(@, 9) € (0,7)7, |50(¢, 9)| S R(¢,¢)+| o Z1(9, )] R@.0) ~ R.0)
(4.25)
Hence we deduce that
T sin(¢)
A 0, ), < ——d
¢ €(0,7), [51(P) /0 Ré.0) @

% .
[,
o (sing +sing)?

Making the change of variables sin ¢ = x we get

/2 sing ing ! 1 dx
——— _d¢p =sin
o (sin¢ + sin )2 ¢ 0 (sing+x)? /1 —x2

1

2 1
< si ————dx+sing S 1.
Nsmqﬁ/o Ging 1) X+sing S
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Thus

sup [£1(¢)| < oo. (4.26)
¢€(0.7)

Let us now prove that £; admits a limit at the origin and compute its value. For this goal,
take 0 < § << 1 small enough and write

T

S
m@=ﬁzm¢@W+A;m¢@w.

The assumption (H2) combined with standard trigonometric formula allow to get the
estimate

R(p, ¢) = (sin¢ + sin (p)2 + (cos ¢ — cos (p)2 = 2(1 — cos(¢ + ga))
21 —cos(¢p + ¢). 4.27)

From this we infer that
Vo e[0,7/2],Vp € (8, ), R(p,p) = 1—coss. (4.28)
Thus we get from (4.25)

b1 b1 é S
M mwwmﬁsﬂ e S 907

This implies that for given small parameter § one has

s
(;gnofs »0(¢, p)de = 0.

Therefore

S
g%mw=g%ﬂ»m¢@w.

Making the change of variables ¢ = ¢ we get

5 s
A mm#¢M¢=i£¢¢mm#¢®d&

From (4.25) and (H2) one may write

_¢
@+9)?’

which yields after simplification to the uniform bound on ¢,

Vg, 9) € (0,8)%, (¢, 9)| <

1
V0 € 10.6/81. $:0(6.99) S g

This gives a domination which is integrable over (0, +00). In order to apply classical
dominated Lebesgue theorem, it remains to check the convergence almost everywhere
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in 0 as ¢ goes to zero. This can be done through the first-order Taylor expansion around
zero. First one has the expansion

ro(¢0) = copl + pOe(90); R($, $0) = cip> (1 +6 +6e(¢6))’,

with ¢9 = r((0) and lin}) €(x) = 0. Thus, from the definitions (3.2) and (4.8) it is
xX—
straightforward that

13 -
. G @) gl
dm lim H19-90) = 7o 0 R 00) ~ (1+0) (4:29)
Hence
—1 3
A Tim r6(¢)¢r0(¢)%(¢’¢9) (1 +2r0(¢9)(r0(¢) +ro(¢9))> _ % 6-(1+36)
¢—0 R(¢, ¢0) R(¢, ¢0) (1+6)5

(4.30)
Similarly we get

47 lim 1, ¢6)

Sim 6. 60) sin ¢ ro(¢)ro(¢0)(cos ¢ — cos(¢h)) = 0, (4.31)

and

47 (;1310 % sin(¢)(cos ¢ — cos(¢0)) = 0. (4.32)
Standard computations yield
410y H1(9, @)
= —3R73 ¢, 9)sin(@) 13 () (@) 10(®) + 10(9)) +5in(g) (cos § — o3 )

 €05(9) r3 () + 2sin(@)ro(@) rj (@)

3 (4.33)
R2(¢, ¢)
Thus
63 362 62
. | eS|

4 ;Ln%)¢8¢%(¢, $0) = (—3 d+6)7 + s 9)3> = 3¢, —(1 T (4.34)

Therefore

3

ro(@)ro(¢0) 30 0 4.35)

A lim ¢, H1 (9, $0) =5 ey =30 1196

Plugging (4.30), (4.31), (4.32) and (4.35) into (4.24)
—1 93

47 li 6) = — 2909 (443
T, o0, ¢ )__(1+9)6( )




646 C. Garcia, T. Hmidi, J. Mateu

Using Lebesgue dominated theorem we deduce that

3 oo 3 4
4 lim / ? oo, p0)dO = —3c! 4074307 19
o0y O e T
Computing the integrals we finally get
47 lim ¢ () et (4.36)
JT 11m = —= . .
$—0 2 5

Let us now move to the regularity of the function ¢, defined in (4.23) through
m
b0, 0@ = [ 2@ (R0 - 1.

where 1 is defined in (4.22). From direct computations using |94 R| < R%, the bound-
edness of 71, the assumption (H2) and (4.33) one can check that

18R (¢, )| 71 (0. 0)
R(&.9)
SR, 9).

|1(0, 9 S

+10p71(9, )

Using Proposition A.1 we get

|F1(o(¢. 9)) = 11 S 0(d, ) (1 +|In(1 — 0(¢, ))])

_ ro@)ro(e) (1 o ( (ro(@) + ro(¢))* + (cos(9) — cos())’ ))

~ R, 9) (ro(9) — ro(9))? + (cos(¢p) — cos(p))?
(4.37)

Thus

|21(¢, )L F1(0(¢. ¢)) — 11|

< "0(@)ro(p) (1 i < (ro(@) +ro(9))? + (cos(¢p) — cos(p))? ))
~ R3 (@, 0) (ro(@) — ro(9))? + (cos(¢p) — cos(p))? ) )

Hence using the arc-chord property (2.18) we find

|5¢1(0. @) [Fi(e(, ) — LI S M (C +1n < R, (p)2>> . (438)
R2(¢, ¢) 9 — ¢l

for some constant C > 0. In addition, using (4.27) we get

inf  R(¢,p) >0, (4.39)
$el0. 31,
pel7.7]

which leads to

Vé €[0,7/2], p €[n/2, ], |5a($, @)[Fi(e(@, 9) — 11| S 1+]In|¢ — o]
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This implies that

pel0,n/21) %

T
<1+ sup / [In|¢p — @llde < oc. (4.40)
$€[0,7/21J0

Now in the region ¢, ¢ € [0, /2], we use the estimate (H2) leading to
@+9)* SR 9) S (@+9).

Plugging this into (4.38) we find

T

2
sup / |21(¢, @) [F1(0(. ¢)) — 1]lde
0

$€l0,7/2]

%
<1+ sup ¢ 3 1n< o+y >‘d<p
pelor/2l Jy (@ +9) ¢ — ol

Making the change of variables ¢ = ¢0 we obtain

: 5
f ¢(P31n<¢+¢>‘d(p:/ 0 31n<1+t9 )d@
b, @+9) ¢ — ol ,  (1+0) I1—0|

g 146
< ln( A )d@ < 00,
A (1+46)>3 [1—6]
which implies that

T

sup / 1. @) Fi (0(@. 9)) — 11ldg < oo,
$el0,7/21J0

Therefore we obtain by virtue of (4.40)

sup / [51(d, ©)[F1(0(¢, 9)) — 1]ldp < oo.
$<[0,7/2]1J0

By symmetry we get similar estimate for ¢ € [%, 7] and hence

sup [£2(¢)] < oo. (4.41)
$e(0,7)

Let us now calculate the limit when ¢ goes to 0 of . We shall proceed in a similar
way to 1. Let 0 < § < 1 be enough small, then using (4.38) combined with (4.28) we
obtain

hm/ 51 (@ )| F1 (p(b. 0)) — 1jdg = 0.
¢—0 S
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Hence

b
lim 62(6) = lim /0 (6. 9)(F1 (. 0)) — 1)dg.

Now we make the change of variables ¢ = ¢6 and then

lim £5(¢) = lim /$ p1(9, $0)(F1(p(h, ¢0)) — 1)db.
¢—0 9—0 Jo

According to (4.22) one has
3¢3yR(@. ¢0)
2 R(¢.90)
From the differentiating of the expression of R stated in (3.2) we get
Py R(¢, $0) 2¢r(’)(¢)(ro(¢) +70(¢9)) + ¢ sin ¢ (cos(¢f) —cos¢)
R(¢, $9) (ro(@) +ro(¢6))* + (cos ¢ — cos(¢0))?
Taking Taylor expansion to first order we deduce the pointwise convergence,

m Py R(P. ¢0) 2
»—0 R(p,00)  1+06

¢x1(9, 90) = H1(D, 90) + ¢0, 71 (9, $0).

Combined with (4.29) it implies that

3 0dR(®, 90) __3q0°
i = TR, 60) K@ 89) =~ 5y

Plugging (4.34) and the preceding estimates into the expression of ¢ given by (4.22)
we find

e tim g1 (8,90) = — S0 351 O
m , =—
Fav el 1+0)* 770 (T4p)
0%(1 -6
:3061¥.
1+6)%

From the result

ro(@)ro(¢0) 0
im = ,
p—0 R(¢p, p0) (1+6)?

we deduce the point-wise convergence

. _ 40
;Lm() Fi(p(¢, 90)) = Fi <m) .

Consequently,

4z 1 0| F 9)) — 1 —3—192(1_9) F 40 1
n¢1_1)1})¢%1(¢7¢ )[ 1(p(@, #9)) — ]— € (1+06)4 ( 1((1+9)2)_ )
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Therefore,

, Y 0%(1 — 0) 40
_ .1 _
4 (;m%) 2(p) = 3¢, f 107 <F1 <(1 N 9)2) 1>d6?. (4.42)

0

Note that we can apply the dominated convergence theorem in the previous integral

since
% L+In 1+6 ’
(1+6)3 [1—06]

which is integrable. Next, we shall implement a similar study for ¢3 defined in (4.23).
Straightforward computations yield

0p0(@, ) +3p0(d, 9) = 01(P, ©) +02(P, @), (4.43)

|ps21(p, PO F1(p(¢, 90)) —1]| = C

with

re(p) — ri(¢)

,0) =4
01(¢,¢) R 6. 0)

ro@) (ro() — ro(9)), (4.44)

and

r3(p) = g ($)
R%(¢, 9)
ro(@)ro(9)
R2(¢, 9)
(cos ¢ — cos (p)2
R%(¢, ¢)

Since r is Lipschitz then using the mean value theorem we get

020, ¢) =4 0@ (r6) — @)
(cos¢ — cosg)(sing — sing)

+4 (r@rb@) +ro@)roie)).  @43)

(¢ — 9)?
Vo, €(0,m), lo1(d,9)|+]02(0,0) S ——— (4.46)
R2(¢, @)

From Proposition A.1 combined with (2.18) we get

3
|F{(o(¢, @) —3/4] = 2V (5/2,5/2:4 p(¢, 9)) — 1|

(¢, 9)R(9, ¢)
~ (ro(¢p) — ro(p)? + (cos ¢ — cos ¢)2
< To(@)ro(yp)
Y@ -)?

(4.47)

In addition
[s02(d, )| = |£1(d, ©)le1(, @) + 02(¢, @)
L singri(e) @ —¢)°
T ORI, 9) RI($,9)
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o sing (9 —¢)*
R*(¢, ¢)

Consequently, we obtain in view of (H2)

sin(g)ro(@)ro(¢) . sing
R* ¢, 9) T R(9,9)

As before, we can assume without any loss of generality that ¢ € [0, 7 /2], then by (H2)

I522(¢, @)F{(0(®, ) = 3/41] < (4.48)

sin ¢

—d
(sin ¢ + sin )2 ¢

5/’2’ ¢ do.
0 (p+¢)’

/0 |%2(¢,¢>[F{<g(¢,¢)>—3/4]|dw5/07

By the change of variables ¢ = ¢0 we get

i

/2 ¢ d—/2¢ ! d0</+oo L 49 <o
0o @re) ¢ o (we" Tl (ve) |

Therefore
T
sup / |702(¢, @)[F{(0(9, 9)) — 3/41ldg < <.
¢€[0,7/2] J0
Consequently
sup [£3(¢)| < oo. (4.49)
¢€[0,7]

Now, we shall calculate the limit of ¢3 at the origin. Let 0 < § < 1 be enough small,
then using (4.48) combined with (4.28) and (H2) we obtain

lim /8 22, 9)LF| (0. 9)) — 3/4ldg = O.
It follows that
)
lim &) = lim [ 0. 0 (0@, 0) = 3/4lidp,
Making the change of variables ¢ = ¢6 yields
5
lim £3(9) = lim / ? b SOV F|(p(6. 60)) — 3/4]d0.
»—0 ¢—0 0

Using Taylor expansion to first order one in (4.44) and (4.45) we can check that

0 — 1)
(1+6)3°

(;Ln% bo1(p, pO) =4 q}iinocbgz(dn $0) = 0.
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Hence we get in view of the definition of sx and (4.29) the point-wise limit

47 i 0) =4 lim .71 (p, ¢ 0 6)) =1 O’
m lim 09, 90) =4w lim 6.71(9. 60 (01(9, 90)+02(6, 66) ) =dey '~ o

It follows that

63 —1)> 40
4 lim §2(6. 9)(F{ (0(9. 90))—3/4) = ey (i 0)6) (Ff((1+9)2)—3/4>.

Moreover, by (4.48)
2

9229, 90)(F{(0(®, 900 = 3/4)| = C g

so we can apply dominated convergence theorem obtaining

477 i = 4c;! ey F(-2 3/4)d6.  (4.50
T g 3(@) =4c SRR (‘((1+9)2>_ /) - (450)

Putting together (4.23), (4.36), (4.42) and (4.50) we find
4 030 — 1) 49
N _ A —1 - / _
dm lim vo(@) = =3¢y +4< [ (1+6)5 <Fl<(1+9)2) 3/4)d9

[T era -0 49 B
1 o o 1
/ L Y G o Pl

Notice that the real number 7 is well-defined since all the integrals converge. This shows
the existence of the derivative of v at the origin. It is important to emphasize that number
n is independent of the profile ry and we claim that the number 7 is zero. It is slightly
difficult to check this result directly from the integral representation of 1, however we
shall check it in a different way by calculating its value for the unit ball

{(i’eie,z), P+t <1,0€ R}

whose boundary can be parametrized by (¢, 0) — (rg (9)e'?, cos ¢) with ro(¢) = sin .
Now according to the identity (3.5) one has

I
/ Hi(¢, p)dp = (¢)3 rWo(re’?, cos(@)) | r=ro@) -

However it is known [32] that the stream function v is radial and quadratic inside the
domain taking the form

0<r<sing, Yo(re?, cos(e)) = (r + cos ¢)
Consequently, with this special geometry the function vg is constant and therefore

v (0) = v () = 0.
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e Step 2: v, € €*(0, ). We shall prove that vg, is (0, 7r) and for this purpose we
start with the first term in (4.23), i.e., ¢1. According to (4.24) it can be split into several
terms and to fix the ideas let us describe how to proceed with the first term given by

"4 T
o arr @@ [ LDy = i) / Sn@5@)
| R0 | e

and check that it belongs to 4*(0, ). The remaining terms of ¢; can be treated in a
similar way and to alleviate the discussion we leave them to the reader.

From the assumptions (H) on ry we have r(’), ¢ — rg?ff; € €“(0, ) , then using the
fact that €* is an algebra, it suffices to verify that

T . 2
b f sin(¢) 5Sm((ﬂ)ro (@) dp € €%, ).
A R2(¢, ¢)

This function is locally ¢! in (0, ) and so the problem reduces to check the regularity
close to the boundary {0, 7}. By symmetry it suffices to check the regularity near the
origin. Decompose the integral as follows

T . 2 7 : 2 T . 2
/ sin(¢) iln(t/))ro (w)d(pZ/ sin(¢) :m(<ﬂ)r0 (w)d¢+f sin(¢) :ln(</))r0 ((/J)d(p
0 Ri((lba‘/’) 0 R§(¢s(p) % Rj(d’;(P)

Since we are considering ¢ € (0, /2), it is easy to check that the last integral term
defines a ¢! function in [0, 7/2]. Since sin(¢)/¢ is €*(0, 7/2), then the problem
amounts to checking that the function

:
. :‘i’“}f psin@i@)
L R0, 9)

is €“ close to zero. Making the change of variables ¢ = ¢6 we get

Ea _ 73 sin(g0) (ro(¢0) )2
' $2 sin(¢0)rd (0 9 U
Q’M,):/ # 003 00) 2 (57) .
0

R2 (¢, 90) ((ro(¢)-'(-bro(¢9) )2 + (COS(¢)—¢COS(¢9) )2)

[l

0
Let us now define the following functions

5 2
Vs €lg, /2], Tig(s) ::f M
0 R2(¢ ¢0)

and

SE

sin(s0) ( ro(s@) 2
s s

Vs €(0,0], Tre(s):= do. (4.51)

((ro(s)-i;r()(sﬂ))z + (cos(s)fscos(s(?))2>%
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We will show that Ty 4 € €%[¢, 7/2] and T2, 4 € €*(0, ¢] uniformly in ¢ € (0, 7).
Thus we get in particular a constant C > 0 such that for any 0 < ¢1 < ¢ < %,

IT1,6, (@1) — T1.9, ($2)] < Clp1 — ¢o|* (4.52)

and

[T2.4,(#1) — T2.4,(#2)| < Clep1 — ¢p2|“. (4.53)
By combining (4.52) and (4.53), since T7 4, (¢2) = T2,4,(¢1) we get

[¢1,1(01) — C1,1(P2)]
S |T1,¢1(@1) — T1,9, (D) | + T2, (1) — T2, ($2)| < Clp1 — 2]*.
This ensures that ¢; 1 € €%(0, 7/2).

It remains to show that 71 ¢ € €“([¢, w/2]) and T> ¢ € € ((0, ¢]) uniformly in
¢ € (0, 5). We start with the term 7} 4. Then straightforward computations imply

2 o 2
Vs e lp, /2], |85T1p(s) = 2”_2¢> Sin(@7/29)r(47/25)
$ R2(¢p, ¢ /2s)
1 @’
< cs—sd)s(l—Jr%)5 <

bl

forany ¢, s € (0, /2]. Notice that we have used in the last line the following inequalities
which follow from the assumptions (H2),

¢ Sro@) S, Vo el0,m/2]
and

6 < m;ﬁ <0, Y0 el0,7/2¢]. (4.54)

Hence T7,4 € Lip([¢, w/2]), uniformly with respect to ¢ € (0, 7/2).
Let us move to the term T3 4. First, we write

sin(¢0)
¢

and taking the derivative with respect to ¢ we obtain

) 1
% (smi}(b@) _ _92[) sin(¢01)T dr.

1
=0/ cos(¢pft)dr,
0

Hence,

in(¢0

25 (Sm(‘b )) | <62 4.55)
¢

By the mean value theorem we infer

sin(s10)  sin(s260)

< |s1 — 52167 (4.56)

S s
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Interpolating between (4.54), which is also true for ry = sin, and (4.56) we obtain

in(s;6)  sin(s20
sin(s10) _ sin(s )‘ < Clsi — 2|%0'790% = Cls; — 55|01 (4.57)
52

S1

Using Taylor’s formula

1
ro(¢0) = ¢9/ ro(tb)dr,
0
one finds that if 0 < ¢0 < /2 then

‘a¢ (%ﬁ)‘ < Co. (4.58)

As before, one gets that if 0 < 516, 526 < /2 hence

ro(s10)  ro(s260)
51 52

< Cls) — s2|%01*. (4.59)

Now, let us check that 75 4 is (0, ¢] uniformly in ¢ € (0, w/2). Let 51, 52 € (0, ¢1,
then using the estimates (4.56) and (4.54), we achieve for any s € (0, ¢],

% (sin(:nQ) . sin(:rze)) (ro(:nB))z 7 gl g2
S1 82 S1 a
5d9 < Cls1 — 53| 1 esde
b (("0(51)‘;:’0(519))2 + (COS(SI);ICOS(SIQ))Z)E ,  d+9
< Cls1 — 52|",
for @ € (0, 1). In the same way
% sin(s,0) (ro(S19) _ ro(S29)) (ro(sle) + ro(sze)) P pisag?
52 S1 52 S1 852 a
(AGHG10) )2 | (coslon)—cos(s10) 12,3 46| = Clst = 5| a+op??
0 S1 S 0

< Cls1 — s2/*.

To analyze the difference of the denominator in 7> ¢ we first write that for any 0 < s6 <

7
_3
SRl s ((M) <M)) <o
Ky N

Using an slight variant of the argument in (4.55) one gets

[1 —cos(®)| < [¢] (4.60)

and

‘345 <C°Sw)¢¢) ’ <62, 4.61)
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By differentiation, and using (4.61) and (4.58), we find that if 0 < 56 < % hence

9 (SSR*%(s, s@))‘ <1+6)7
This implies in view of the mean value theorem

T 5
VO < 510,526 < 3. ‘sz_%(sl,sle) —ng—%(sz,sze)‘ < (1 +6) st — 52l

Moreover

s 5,3 5,,—2 < =5
VO < 516,520 < 3. ’is 2(s1,510) — 53R z(sz,sQe)) < (1+0)75.
Then by interpolation we get

VO < 510,50 < % \s?R—%m,sle) - sSR—%(sz,szO)\ < (146)"5s; — 52|
(4.62)

Therefore we obtain

’ sin(s29) <r0(s29)

52 52

2 5 -3 5 5—3
‘S]R 2(s1,510) —s5 R 2(s2, 520)| d6

e¢]

< Isp — s2|* (1+6)*72de,
0

which converges since o € (0, 1).
Combining the preceding estimates one deduces that

V1,50 € (0,9], |T2,4(s1) — Tr4(s2)| < Cls1 — 52/%,

uniformly in ¢ € (0, 7/2). Hence, we conclude that ¢ 1 is €*(0, 7/2), for any o €
O, 1).

The argument used to prove that the other terms in (4.24) are in €% (0, 7 /2), for any
o € (0, 1), are quite similar, but for the reader convenience we will sketch some details.
The second term in the sum is

PRRTINLI) / " sin@) sint)ri@)
0

Let us consider the functions
E o,
Vs e [¢’ 7-”’/2]3 T],¢(S) = / Md@
0 R2(¢, ¢0)

and

SH

sin(s0) (ro(SG))4
Vs €0, 9], Trpls) = ’ : —db.
(5)+ro(s6) \2 cos(s)—cos(s8) 2\ 2
((rossr()A )+( bs K ))
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To prove that this second term is in °* (0, 7 /2) we will see that 71 4 € Lip([¢, 7/2])
and 7> 4 is in €*(0, ¢). Using the mean value theorem and the estimate

1 ¢’
Vs elp, /2], |8,T <C—=————<C,
s€le,m/2], 105sT1,4(s)] T+ Ly

we can easily see that 77 4 is in the desired space. Now we will check that 75 4 is
©*(0, ¢] uniformly in ¢ € (0, w/2). Let s1, s € (0, ¢], then using the estimates (4.54)
and (4.56), we achieve for any s € (0, ¢],
% (sin(sle) B sin(sze)) (r0(519))4 %
S 52 S1
do| < Clsi — 52|

S

91+a04
——=df
(1+0)7

-
((ro(s1)+ro(s10))2 + (cos(sl)—cos(519))2)7

S1 S1
< Cls1 — 52/,
for @ € (0, 1). In the same way

bid
2%

sin(s20) (- ro(s10)\3, ro(s10)2 ro(s26) ro(s10)\ ro(s20)\2 , ro(s20)\3) (rols10) _ ro(s26)
(020) (010034 (0102106200 4 (10619) (1082902, (20052003 (0l - )de

7
((rO(Sl);rlo(519) )2+(cos(sl);<]:os(s10) )2)2

z
2

S

0 l+0t02

< Cls; —5|* do < Clsy — s2|“.

(1+6)>5
0

Now by differentiation, and using (4.58) and (4.61) we find that if 0 < 50 < % then

3 <s7R—%(s, 59))‘ < (1+6)7°. (4.63)

Therefore, using interpolation argument we obtain

I
2

52 52

. 9 o\ 4
sin(sy )(70(32 )> ‘SZR*%(sl,sle)—s;R’%(S2,S29) do

o]

< Is1— s2l” (1+6)*72d8,
0

and the last integral converges since o € (0, 1).
Another term to consider in (4.24) is given by

b 1) ( (@) )2 f TS @) sin@rg (@),
0

sin(¢) R3 (. 9)
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which will be treated exactly in the same way as the previous one. For this reason we
will not repeat again the arguments. The next term in (4.24) can be written as

_, 10(@) " sin?(¢) sm(go)rg(go)(cos@) - COS((p))
sin(@) R (9. ¢)

As in the previous cases we can consider the auxiliary functions

b4

2s 5 5
Vselp, /2], Tig(s):= 4 Sm(¢9)ro(¢9)((1 cos(¢)—(1— cos(9¢,)))
and 0 R3 (. $6)

(sinist)) ((r0(59)>3 ((U=costsh—(—costst))
S S s

de.

Vs €0, 4], Tapls):=

7
((ro(s)+r0(s9))2 N (cos(s)—scos(se))2>7

0 s

For this term it is enough to check that the auxiliary functions are in the 6* space. For
11,4 we will use the mean value theorem. Thus the inequality

1 ¢’
Vs €lp,m/2], 05T ()] < Cs—ﬁm <C,

will be enough. To estimate 7> 4 we will follow the same arguments developed in the
previous cases. Hence, using inequalities (4.58), (4.59), (4.55), (4.56), (4.54), (4.61) and
(4.60) one gets the following estimates for o € (0, 1).

T

2 <sin(s10) _ sin(s29)> (ro(sle))3 ((1—cos(s1))—(1—cos(s19))

51 52 51 51

. do
0 ((ro(m):lro(sw))z + (COS(Sl)SICOS(S19))2)7
» 91+a93
<Clst — 52|® ———db
(1+6)°

< Cls; — 52|*

and

sm(sze) <((r0(s19)) ((ro(s29)) )((1—cos(sz))—(1—cos(sze))
52 52

7 do
0 VO(A2)+FO(529) n (cos(sz);zcos(se))2> 2
» 91+a93
< Cls1 — $|* ——df
< Cls1 — 52| 110)6

< Cls1 — s2|”.
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On the other hand, using (4.61), (4.60) and interpolation, one obtains

< CO™|5y — 52|*. (4.64)

1 —cos(s1f) 1 —cos(s20)
S1 52

Then, by (4.64) we obtain

2% sin(sz0) ro(s20) 3 ((l—cos(sl))—(l—cos(s19)) _ (1—cos(sz))—(l—cos(szé)))
$2 52 S1 52

do

A
2

0 ((ro(‘¥1)+ro(‘v19))2 + (COS(Sl)—COS(M@))z)

S1 S1

y g

% 1+a\p4
1+67)6
< Cl|s; — s2|* ——db
= Cls1 — 5| 110)

< Cls1 — 52|,

To estimate the last term of 73 4, using (4.63)

.

’ sin(s720) (ro(sz9)>3 (1 — cos(s2)) — (1 — cos(s20)
82

52 52

0

7 5—1 7 5—1
(is 3(s1,510) — sIR z(sz,sze))de(

o0

< |s1 — 5" 6*(1 +6)*°do

S lst—s2”.

The next function to analyze in (4.24) is

" sin(¢) sin(@)r (@) (cos(¢p) — cos())
¢ — S de.
0 R> (¢7 (/7)

We will not repeat the arguments for this function because they are quite similar to the
preceding case. The last function to consider in (4.24) is given by

ro@)ro(@) _ 2ro<¢)r3(go>ra<¢) sing) ro(@)rg (@) cos(®)
R(¢. ) (R(¢, )32 (R(¢, ¢))%/?
_ 0@ (@) sin(p)
(R(p, )72
((ro(@) + ro(@))ro(e) + (cos(¢) — cos(p)) sin(p))

a(p% (¢’ (p)
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This term generates several functions. Some of them are similar to the functions estimated
in the previous cases and the others are similar between them. For this reason we will
only check the first one. Let us prove that the function

’

n . .

ro(9) / sin(¢) sin(¢)r2 ()7} (@)

= — S do
sin(¢) J, R2(¢. )

isin €*(0, 7 /2), for any @ € (0, 1). Since the integral in the interval [%, 7] provides a

function in €™, as in the above cases we can reduce the integral to the interval [0, 7 /2].
Now the strategy is again to consider the auxilary functions

* ¢ sin(@0)rd (90)r)(¢0) ”

Vs elp, /2], Tie(s) = /
0

5
R2(¢, ¢0)
and
o . 2
2¢ sm§s9) (ro(;v@)) r(/)(se)
Vs € (07 ¢]1 T2,¢(s) = 5 d9
b ((ro(s)-i;m(x@))z + (cos(s);cos(se))z)f
Since

El

1 ¢
Vs €lp, /2], 10:T1¢(s)| < Cs_5¢’5(1—+2%)5 -

the function 77 4 is in €', for any o € (0, 1). To establish that 75 4 is in the same space
we need the following estimates.

LA . 2
26 (sm(s10) . smgzé)) (ro(sle)) r(/)(sle)

S 81

do

5
0 ((r0(31)+r0(s10) )2 + (cos(sl)fcos(s19) )2) 2

S1 S1

o0

< Ist — 52 03+ (1+0)7do
S Is1 =2/,
in the first inequality we have used that r{, is a bounded function. The next estimate is

A 2 2
2 (s1n§;2(9)) <<ro(;I19)) B (ro(;;@)) ) I’(/)(Sle)
do

5
((ro(sl)+ro(s10))2 + (cos(sl)—cos(sle))z)f

51 51

o0

< Is; — s|® 03+ (1+60)7do
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S lst—s2|”.

Using the inequality |ry(s10) — ry(s20)| < CH%[s1 — 52|* we get

I

2 (10)\2
(s1n§s119)) (@) (r(/)(sle) - ré(sze))de

5
((ro(S1)+ro(S10) )2 + (Sosts1)—cos(s10) )2) 2

0 N N
o0
< sp —sl® 0 (1+0)7do
0
S st — 2%

The last term to estimate is

2¢
sin(s20) (ro (520)

? / 5p—3 5p—3
ro(520) |sTR™2(s1, 510) — s5 R™ 2 (52, 520)| dO

52 852
0
o0
< ls1 — 5% (1+6)*%do
0
S Ist — 521

Hence, we obtain the announced result. The remaining terms can be studied using the
same inequalities and for this reason we will avoid them.
Let us now move to the regularity of ¢, defined in (4.23) which takes the form

3
0(p) = —542,1(¢) +82.2(9),

dpR(, .
01(9) = M sin(@)rd (@) [F1(p(¢, ) — 11de,
R2(¢, ¢)
and
0.2(¢) == 31 (B, ) (Fi(p($. @) — 1)de.
0

The first function can be split into two parts as follows
7
dpR(, )
5

: sin()rg (@) [Fi(p(¢, 9)) — 11dg
R2(¢, @)

0,1(9) =
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s R 5 .
o BROD G R @IF(p6. 9) — 1de
. R2(¢,9)

=: 11(¢) + ().

[S1E]

As before, by evoking the symmetry property of r we can restrict the study to ¢ € [0,
The second term is the easiest one and we claim that I, € W1 Indeed,

3RS, 9)\ .
B@ey= [ 9 (M) sin(@)rd @I F1 (p(@. 9)) — 11dg
. R3(¢. ¢)

R (D, ) . )
+ M sin()rd () Fi (p(¢, 9))pp (¢, 9)do.
- R2(¢,9)

It can be transformed into

T (0RG.9)
L(¢) = f 3y (M> sin(@)r () (Fi(p (@, 9) — 1)dg
s Ri(d’a‘p)

2

T 9sR(b, 0) . ,
+/ Msm(fp)ré(w)Fl(p(«b,w))(8¢p(¢,¢>)+8¢p(¢,<p))d¢
= R2(¢,9)

" 9oR(b. 0) .
- / ¢5 ©.9) Sm((p)r(%((ﬂ)aw(Fl (0(@, @) — Ddo.
= R2(¢,9)

Integrating by parts yields

T (0RG.9)
B = / s (M) sin(@)3 @) (Fi(0(@. )~ 1)de
. \Rig.p)

" 95 R(, 0) /
+/ YR@.¢) sin(@)rg (@) F{(0($, 9)) (g0 (@, 9) + 00 (¢, 9))dp

R3g.9)
T (0sR(,
+/ 9 <M sin(w)rg(fp)) (Fl(p(¢,<p) - l)dw
s \R@.9)
20802 ) (Fy o 6.7/20) 1),

5
R2(¢, %)
Notice that the last term is bounded uniformly on ¢ € [0, 7r/2]. In fact, one has from
the definition of R in (3.2)
1
7~ = 2 '
R@.%3) ~ R(x/2)

V¢ € [0, /2],
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Using (4.13) we get
g R(p, 7w/2) = 2ry(¢)(ro(p) + ro(7w/2)) — 2 sin ¢ cos ¢.

Moreover, since rg is symmetric with respect to 77/2 then we get r(, (%) = 0, which
implies that 94 R(7 /2, 7 /2) = 0 and by the mean value theorem,

Vo e O.m), |@sR) @7/ | S0 - T
Hence, combining (4.37) and (4.10) we find
we(0.3) [n(e(e3) =150 (0.3) (em[1-0(s.3)])
<ofn(5 o)

Consequently

05R(®. 3)

vo e (0.5). o " (3)A (e 3) -]

HEAE

, (4.65)

which ensures that this quantity is bounded in the interval (0, 7).
Next, let us check the boundedness of the integral terms of 1. Inequality (4.39) allows

to get
w o (M)‘ wr@.9)| [, (M Sin(@m(@z) .
;’5{275/,2,]] R(¢, )2 R(¢p, ¢)2 R(¢, )2

which implies

L@ S 1 +/ |Fio@. o) —1|do

2

+ / |F{(0(@. 0) (g0 (., @) + 0,0 (¢, 9))|de.
%

Therefore, (4.10) combined with (4.19) and (4.46) yield

Ve €10, /2], |1£<¢>|5C+cf 1n<¢+¢’)d¢
%

¢ — ¢l

T N2

L C R(¢,</>)2 (<1>3 2] do < C.
« @ =9 R3¢, ¢)
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Let us move to I7. First, we do the change of variables ¢ = ¢6 leading to

% I R) (P, O
h@) = / PORC0) Gniporrd o) (Fiow. o6y —1)as.
0 RIG.90)

We will check that 1} is €% (0, 7 /2), for any @ € (0, 1). Indeed, take ¢; < ¢ € (0, %),
then

21

R ,$10) .

1) — g = f DR DD 016313 16) (Fi 0 1. 160 — 1)
kS R2(¢1, ¢10)

262

9y R) (b1, $10) .

+ f DRG0 i1 4163 (616) (Fr(o(@1. 916) — Fi (o, 6260 )
0 R2(¢1, ¢10)

2

dp R ,$10) . R , $20) .

. (d"(f JB1010) i) — LR @2 2 )s1n(¢ze>r§(¢29))
A R3(¢1. 416) RE (42, $26)

x (Fip (92, 920) — 1)de
=L +hay+13, (4.66)

where

%
0y R ,910) .
o= | PORCRPD G012 06 (Fi (o1, 9160 — 1),
. RigLo)

262

We follow the ideas done for ¢;. In order to estimate /; 1, define

5 0y R) (¢, 9O
G1g(s) = / PORDID) Gingorrz 96 (Fi(o(o. 66)) — 1)de.
0

R2 (¢, $0)
Then
¢
7 (%)

T $@R@. 5D @)
2 R0, 5D) 2

(e (e30)) 1]

for ¢ € (0, 7/2). Taking the derivative in ¢ of the function R

(3 R) (¢, ¢0) = 2r((9)(ro(¢) +ro(¢0)) +2sin($)(cos(¢d) — cos(¢)),

Vselp.m/2), 9;Grg(s) =—

we get

[y R) (¢, $0)| = C(p(1+0) +p[1 —0]). (4.67)
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Moreover, proceeding as before in (4.37) combined with the assumptions (H) we find

1 140
|F1(p(¢,¢9))—1|,§—<1+1n' i ‘) (4.68)

1+6 1-6

Putting together the preceding estimates allows to get

plo(1+ L)+l — L1} o3 1 <1+ln‘11+% )

$3(1+ £)3 S+ L

Vs e (0.7/2), sup |0,Gry(s)| S 1+ ‘m (Z —s)‘.
$e(0,5] 2

1
105G 1,6()] < 2

s+E)+|s—Z% =
G E (108
(S+7) I_Z

It follows that

Now using this estimate combined with the mean value theorem we get for 0 < ¢; <
¢ <%

P2
I 5/ 19:G1.6, ()| ds
1

(39

Using Holder inequality yields for any o € (0, 1),
1

x l—a
/: In (% —s)|ds <l¢r - gl (/0 n (% —s))‘“ds> < Calpr — ol

Notice that the constant C,, blows up when « approaches 1. Thus
Vo1, ¢2 € (0,7/2), |11l < Coldr — 2|
Next, let us move to the estimate of /1 ». Using (4.19) we arrive at

R(@.¢0) . (1+6)
2a—o7 = Cua—op

2
<Cl¢1 — ¢2] +/
é1

|Fi(p(¢,p0))| < C (4.69)

Set

4ro(@)ro(¢0)
R(¢, ¢0)

3

20, 9) = p(p, Pp0) =

then differentiating with respect to 6 we get

WA 0. 9)
= —% ((r0(@) + ro(@0))¢r5(60) + (cos(@) — cos(@0)g sin(¢0))
 4r0@)ry(90)
R, 90)
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Using the assumption (H2) we may check that

VO <ot <m/2, [0%(0.9)| < 1+ < a+072

where C depends only on |||l .o<. Now by rewriting

4o@)
ro(#0)
W #0, ¢) =

(ro@);)ro(qbe)) + (cos<¢)—¢cos<¢9) )2

8 ro(¢) ro(¢0)
¢ ¢

+r 2 COos —COS 2 :
{( 2000) ), ((cotg)—conigh) }
[(Vo(¢) +10(40)) ) ($0) + (cos(d) — co (¢9))Sln(¢9)]
¢ o I

and differentiating in ¢ we get the estimate

C
VO < @0 <m/2, [0409Z (0, )| < (1 5’

where C depends only on ||rg|| 2. Taylor’s formula

Z
2, ¢) =9?(1,¢)+/ (T, p)dt
!

combined with Z(1, ¢) = 1 yields

0
0 R0, ) = / 309 %(z, p)d.
1

1+6
ln( 3 )’ (4.70)

Combining this estimate with (4.69) we deduce that
( 1+ 9> ‘
In .
2

Following an interpolation argument combining the preceding estimate with (4.68) yields
for anyx € [0, 1] and for 0 < ¢ < ¢ < l

This implies in turn that

sup [0 Z(0,¢)| < C
$€(0, %)

(1+6)2
sup [ F1(p(¢.90))]| = C -
$e(0. %) (1-0)

|Fi(o(¢1, ¢10)) — Fi(p(¢2, $20))|

(1+9)3a—11 1+6
m—op | "\ 2

< Clp1 — ¢ |*

0 l—«
- D . @71

o
(1+ln
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Plugging this estimate into the definition of I > given in (4.66) implies

1+6\]% 1+6 [\' ™
n 1+1In do.
2 1-6

This integral converges, close to 1 and at oo, provided that 0 < o < 1. We mention that
to get the integrability close to 1 we use the approximation

146\ 1 6—1
In(—")~"—.
(5945

As to the estimate of the term [ 3 described in (4.66) we roughly implement similar
ideas. For that purpose, we introduce the function

o0
03 (1+6)*
(1+6)% |1 — 0%

[112] < Clg1 — 2]

VO<s=<¢=

% 504 R)(s. 50
= / SO RSSO Gin(s0)r2 (s6)LF1 (0, $6)) — 116
0 R2 (s, s0)

20 (94 R)(s,50)

_ ) (") (Fio6, 900 — 1)ao.

5
R2 (s,50) s
0 Pa

Then combining (4.56), (4.67) and (4.68), we deduce that

br 109 R (5.50)|
s

sin(s10) _ sin(sz0) ( 9)2
ro(s
1 T | Filp(9. 96)) — 1]d0

0 <<r0(s)+ro(s(-)) )2 + (cos(s)fcos(se) >2> 2
s s
1+6
D do
0

o0
1+6 1
<Clsi — 52|* gl p? 1+1n
| d+0) 1+0 1

< Cls1 — $21%,

provided that o € (0, 1). Implementing the same analysis for the remaining terms and
using (4.59) and (4.62) as for ¢, we find

VO <s1,8 < ¢, [Gag(s1) —Gag(s2)| < Clsy — 521,

uniformly for ¢ € (0, 7/2). Therefore from the definition (4.66) we obtain for any
0<¢1<¢ =<7,

11131 = |G2.4,(91) — G2,4,($2)| < Clep1 — $2|*.

Now let us consider the next term in &3 (¢)

$2,2(¢) =/ A H1($, ) (F1(p(@, 9)) — Ddg
0
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T

2 / .
—on(gy | D@D o6 )~ g
A R(.¢)}

b4

3
i) | D) g o6, 0)) — Dy

. R0}

T

2 .
—3ro(e) M ((ro(@) +ro(@)ro(@)
, R, 9)2

— (cos(gp) — cos(¢)) sin(@)) (F1(p(, 9)) — Ddeg.

The first function that we intend to study is

T 2 / :
5 0@ f PEOGD D ()~ = D g,
¢ Jo R($.¢)? ¢

Since the function rof% has bounded derivatives, it is enough to estimate the function
I. Thus,

5 (Fi(p(¢, ) — Ddg
R(9. )2

. / " or2 ()l (@) sin()

/2 2 , .
L / 913 (©)rp(@) sin(y)
0

5 (Fi(p(¢, ) — Ddg
2 R(¢,¢)2

= 11(¢) + ().

The arguments to estimate the terms I1(¢) and I>(¢) are similar to the case of the
function ¢1, but we will repeat them for the reader convenience. First we will prove that
I;(¢) is a bounded function. By direct computations we infer

T 2 / .
I(¢) = f D@IDSNGD o6, 0)) = Dy
72 R(¢p, ¢)2
E / " 3R (. )b (@)rg(@) sin(g)
7/

7 7 (Fi(p(¢,9)) — Ddy
2 R(¢a ‘P)z

/ " o2 ()r)(p) sin(p)

R )} F{(p(p, 9)dpp (¢, p)dg
/2 , )2

=Dhi1+hay+1D3.

The estimate of 15 5 can be done using (A.10), (4.39) and (4.12), leading to

|d<p <C.

T
+
|12,2|<C+/ |2+
/2 -0



668 C. Garcia, T. Hmidi, J. Mateu

For the term /> | we may apply (4.46), (2.18) and (4.39) in order to get

T R(¢.,9)|p — ¢]?
I < ——————dp <
2.1 fn/z 6 — 2R, o) "

To estimate the term /5 3 we decompose it in different terms.

4 2 / .
L= f PO @VIND) 15 00 @506 0) + 0,0 )0
2 R(¢, ¢)2

B / " 3 (@)ri(p) sin(e)
7/

5 F(p(¢, 9))dpp(d, p)dep.
2 R(¢, €0)§

Since r(y(7/2) = ro(r) = 0 then integration by parts allows to get

- F{(p(¢, ) (Bgp(@, @) + 0y p(d, ))de
2 R(¢p, ¢)2

T 2 / .
_ / 3, ¢y (@)ry(e) im((p))(ﬂ(p(d), o) — Ddydo.
)2 R(¢p, ¢)?2

L / " $r2(@)rg(p) sin(y)
2,3 =

We can then proceed similarly to the terms />; and /> in order to get that /7 is
bounded. The next step will be to check that the function /; is in €% (0, 7 /2), for all
o € (0, 1). If we do the change of variable ¢ = ¢6 we find

o422 / .
) = [ ERELELED 156,60 - 1.

R(¢,0¢)3
If ¢1 and ¢, are in (0, 7 /2), then

b
7301 (0¢1) sin(@¢1)
: R(¢1.0¢1)3

247

[11(¢1) — I1(P2)| =

(F1(p(¢1,001) — Ddo

32O (0¢1) sin(O1)

(F1(p(¢1,001) — F1(p(¢2, 0¢2))dO

, R(@1,001)
P 2060 01) sin(® 315 (0¢2)r(O¢2) sin(0
. ( 170 Oy ( ¢1)§m( P P31 (0h2)rp(042) im( ¢2))
0 R(¢1,061)2 R(¢2,062)2

(F1(p (2. 0¢2)) — 1)dO

=ha+ha+113.
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To estimate the function /; 1, let us consider the auxiliary function

% 2.2 / :
G1g(s) = / 9750909 SnOD) - 5, 06)) — 1)de.
0

5

R(¢,00)2

First we may write for 0 < ¢1 < ¢ < /2,
()

11,11 = |G1,¢,(¢2) — G1,9,(P1)] < / [05sG 1,4, (5)|ds.

1

Hence, it is enough to obtain an appropriate bound for 9;G ¢, . Taking the derivative in
s, applying (4.68) and some standard estimates used before we have

18,G1.4(s)] < C (1 + (m (% - s) D ,
and so by Holder inequality

¢
I SC/ 2(1+\1n(%—s) ) ds = Cln = gal”,

?1

forall @ € (0, 1). Let us now move to the estimate of the term /; ». By (4.71) and some
standard estimates used along the work we obtain, for any @ € (0, 1)

= 03(1 +0)%! 146 140 \'™
2] < Clgr — ¢2|* In*( ) <1 +In| |> do
0

(1+60)5(1 — )2 2 1—-6
< Cl¢1 — 2%,
where in the last inequality we have used that ln(%) ~ % if 6 is enough close to 1.
To estimate the term /; 3, let us take the function
%
521§ (0s)r((0s) sin(0s)
Gop(s) = 3 (Fi(p(¢,09)) — 1)do
R(s,0s)2
0
% (FO(QS))Zr/(GS)(Sin(QS))
= S (Fi(p($, 0¢)) — Db
R(s,0s5)2
0 -3

Now, |12 3] = |G2,4, (1) — G2,¢, (¢2)]. As in the case of the function {1 we will get
the desired estimate through decomposing the integral in several terms. The first term to
consider is

f (o2 (022 () (S
0

5
R(s1,0sD)2
3
Si

(Fi(p(¢.0¢)) — 1db.
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Using (4.59) and (4.68) one can see that this term is bounded by

Clsy —s do Clsi — s .
1 2 ( 9)6 Q = 1 2

For the next adding term, using (4.56) and (4.68) we obtain

75 (ro(fsz))zr/ ©s, )(sin(031) _ singesz))
- 2" (Fi(p(¢,6¢)) — 1)db
0

R(s1, 931)2
Y1

o gt 1+6
§C|s1—sz|°‘/ 1+In| | )46
o (1+6)8 1—0

< Cls1 — s2|*.

For the next term we will use the regularityof ry and (4.68), obtaining

/2¢ (r0(9s2)) (ro(esl) _ro(esz))(sm(Qsz))
0

3
R(s1, 9S1)7
Y1

RER 1+0
<Clsi -0 [ ——(1+In]+——|)d0
| @0y -0

< Cls1 — s2|*.

(Fi(p(¢,0¢)) — 1)do

Let us move to the last term in /1 3. By (4.68) and (4.62)

I

5 5
Sin(326) (r0(559)> (ro(s20)) (SfR_%(sl,mQ) — SSR_%(Sz, 529))

A 52
(Fi(p(¢,09¢)) — 1)do|
<~
S lst—sf* 17075 Z(L+1In|——>)do

< st —s2l”.

The two remaining terms in ¢, are left to the reader because they are very similar to the
first one. It remains to estimate the term ¢3 defined by (4.23). It can be split as follows,

T . 2 3
03(9) = w(%p(aﬁ,w)ww(&w)) [F{(p(rb,@)) - —} do
4 R2($, 9) 4
1 gM@%@)

3
=i 3 (Opp (P, @) +0y0(¢, ) [F{(p(qb,(p))— Z]d
7 0 R2(¢1 (p)
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1 [ sint)rd :
+_f W(%p@,wﬂ%p(qxw)) [F{(p(tﬁmp))——}dﬁ"
A |, R, ) )

=13+ 4.

Recall that we restrict to check the regularity for ¢ € (0, 7/2) without loss of generality
and later we extend it to ¢ € (0, 7). Then, we will show that I3 belongs to (0, %).
We will skip here the details for the regularity of /4 since this term is less singular and
the same procedure works, see the estimates for I, previously done. To estimate I3 we
proceed as before through the use of the change of variables ¢ = ¢6,

b g

1 » 0 0)2
13(@:5 M(@ p)(@,00)

R(¢. $6)?
+ (3,0)(@, $0)) [F{ (p(@, $0)) — Z} d6.

Define the functions

. 4
Hip(s) = / PGSO (3,0(5.66) + 30016 96))
R3($, 90)

Fl(/)(¢ ¢0)) — —] do,

&=

0 0
Ha.(s) = f ) 2500 kg, 60) (3500 6. 09) + By 6.9

[Fl(p(cb $0)) — —] do,

% 0)rg (¢0
Hy (5) 1= / ¢S$§?¢)%p IIDTo DD k(5,56 ((0p) (5. 05) + (0,5, 30))

3
[F{(/O(¢,¢9)) - Z] de,

% 0)r2 (0
Hy (s) :=/ %R (¢, ¢9)((3¢p)(¢ 0¢) + (9,0) (9, ¢9))
O 9

3
[F{(p(s, 50)) — Z} de.

In order to check that I3 belongs to €™* (0, %), it suffices to prove that each function H; ¢
is in €“(0, %) uniformly in ¢ € (0, w/2), forany i =1, ..., 4. Let us start with Hy ¢
showing that its derivative is bounded.

From straightforward calculus it is easy to check that forany 0 < ¢ <s < %

27
lHL(p(S)l = 2]‘:2 R;2(¢’ js)

(959 (9, 67/25) + (3p) (8. 67/25)
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3
F{ (o6, $/25)) — Z"

Hence, we obtain

4
|H{ ()] < %ﬁ‘(%ﬂ) (¢, pm/25)
2s

F (plg.9m/25)) — 3

+0p) @, 67/25) | .

Using (4.43)—(4.46)—(4.47) allows to get

1 4 2(1 - x)? 27
|H1/¢(S)| < ¢ ¢ ( 23) ¢ 2s <1

B R (R T (S Y

’

which is uniformly bounded on 0 < ¢ < 5 < % We shall skip the details for Hj ¢
which can be analyzed following the same lines of the term 7> 4 introduced in (4.51).
Let us now focus on the estimate of H3 4. Set

T@0,s) = R%(s, s@)((8¢p)(s, 560) + (9p0) (s, s@)),
then using (4.46), we deduce

1 —6)2
.70, )] < Cﬁ- 4.72)

By ranging the expression of .7 as follows

r%(s@) . rg(s)

T©,5) =42 S_zr{)(s)<

ro(sf) ro(S))
S

R2(s,50) y
S3
r&(s@) . rg(S) ro(s)
L4 i 52 10 (r(’)(S) — ré(s@))
R2(s,50) s
S3
ro(ss€) ’OS(-‘) (coss —cossf) (sins  sinsé
+85 —% B
R2(s,50) § § s
S3

+4

" ro(s) + . ro(s0)

o 012
(cos s sc;osw) <r0(59) / Vo(S) / )

3
R2 (s,s0)
53

and differentiating with respect to s we find

1—06
19,70, )] < c =01
1+6

(4.73)
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We will not give the full details for this estimate because the computations are long and
tedious, but to get a more precise idea how this works we shall just explain the estimate
of the first term in d;.7 given by

N

3 (Fo(s9)—r0(S)) ro(s6)+r(s)

VO<6s<z,s<z, 710,s) =4 =
2 2 R (5.50)
53

r(,)(s)ro(w)s— ro(s)

Note that the other terms can be treated similarly and we use similar estimates but with
sin, cos and r(/) instead of rg. In particular, here we use rg € %2 in order to bound r(’)’ .
Define
T T ro(s@) —ro(s
VO0<08s < E’S < 0} g(0,s) = M-
S

Then, one has dgg (6, s) = r|,(s0) and then
105098 (0, 5)| = 0r( (s6)| < C6. (4.74)
Since g(1, s) = 0, we can write by Taylor’s formula
0
g0,s) = / dg(z, s)dr,
1

and hence

6
0.5) = [ ditng(r.sydr.
1
Using (4.74), we achieve
VO0<0s < %, |05g(0,s)] < C|1 —0|(1+0).

Plugging this into the the definition of .77 and using the mean value theorem yields to
the estimate

11 —0[(1+6)%1 —0| _ . —0)?

|71l <C < .
(1+6)3 (1+6)
Now, interpolating between (4.72) and (4.73), we find that for any o € (0, 1)
7 7 «ll = 0P
|70, 51) = 70,52 = Cls1 — 5] Tze—" (4.75)
Using (4.47) we get
b4 3 0
YO<¢d <=, |F| ,p0) — —-| < C———. 4.76
<90 <> ‘1<p<¢¢>) 4‘_ T=or (4.76)

Combining this estimate with (4.75) and (4.47), we conclude that for any 0 < 51, 52 <
=<7

¢493 (1 _ 9)270( 0

(1+6)* (1+6)2 (1 — G)Zd(9

+00
|H3,4(s1) — H3,4(s52)] < Cls1 — s2|°‘/ pE
0
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< Cls1 — 52|*, 4.77)

for any a € (0, 1). Let us finish working with Hy 4. Using (4.54) and the standard
inequality

’cos(9¢) — 1) <o,
®
one gets
1 1+6)°
| < Lo 478)
L—p(@0,9)! — (1-0)
As a consequence of (A.9), (4.70) and (4.78) one has
3
05 <F{(p(s, 50)) — Z) < C|F{ (p(s,50))||05(p (s, s0))]
1+6)* 1
<O (1RO (4.79)
(1 —6)4 2
Interpolating between (4.76) and (4.79) we achieve
|F(p(s1.510)) — F{(p(s2, 520))|
-c o (1+0)% | 1460\ ol
= |S] - S2| (1 — 9)40{ n 2 (1 — 9)2(1_0[)
<] @ (1+6)1+3 (e « (4.80)
S1 — & n .
- 1 2 (1— 9)2+2a 2

Finally, using (4.72) and (4.80) we obtain for any 0 < 51,50 < ¢
|Hy,p(s1) — Ha,(52)]

o
93 1_92 1 9]+30¢
§C|s1—s2|°‘/ (1=6)7 d+0) |,
0

o

do

()
(1)

(1+6)* (1+6)2 (1 — )2+«

do

o0
< Clsy —sz|°‘/ (1+0)* 2|1 — g
0

< Cls1 — s21%,

the convergence of the integral is guaranteed pro
in(¢6
3 <Smfﬁ#> <6 4.81)

vided that @ € (0, 1). This achieves the proof of vg € €12 (0, ) for any a € (0, 1).
(4) Since the function vg reaches its minimum at a point ¢9 € [0, 7], we have that if
this point belongs to the open set (0, ) then necessary vg,(¢o) = 0. However when
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¢o € {0, '} then from the point (3) of Proposition 4.1 we deduce also that the derivative
is vanishing at ¢9. Using the mean value theorem, we obtain for any ¢ € [0, ]

Vo (#) = va(do) + va(P) (@ — ¢o) = va(do) + (o (@) — va(4))(@ — ¢o).

for some ¢ € (o, ¢). Since vy, € € then

[v6(8) — via(90)| = Ivgllipeld — gol*.
Notice that ||vg, ||z« is independent of Q. Consequently

V¢ € [0.7], 0<va(9) —va(bo) < Clp — ol ™,
for some absolute constant C. In the particular case 2 = x we get from the definition

(4.5) that v, (¢9) = 0 and therefore the preceding result becomes

Vo €[0,7], 0<wc(p) <Clp—ol'™, ve(ho) =0.

4.3. Eigenvalue problem. In Sect. 4.1 we have checked that the operator L,? defined in
(4.1) is of integral type. Then studying the kernel of this operator reduces to solving the
integral equation

Kithn (@) = /0 K (¢, )hn(9)dpa(e) = (), Vo €[0,7m],  (4.82)

where the kernel K,, and the measure d g are defined successively in (4.2) and (4.4).
The parameter €2 ranges over the interval (—oo, k). This latter condition is imposed to
guarantee the positivity of the measure d g through the positivity of vg according to
Lemma 4.1. We point out that studying the kernel of ﬁ,gf amounts to finding the values
of © such that 1 is an eigenvalue of IC,E2 . To investigate the spectral study of IC,? we need
to introduce the Hilbert space Li o of measurable functions f : [0, 7] — R such that

1
1 fllpng = <f0 If(fﬂ)lzdlm(cp))2 < o0. (4.83)

Notice that the space lel ., 1s equipped with the usual inner product:

(f. )= fo f@g@dualp). Yf.gel, . (4.84)

Remarks 4.1.(1) Since djuq is a nonnegative bounded Borel measure for any Q2 €
(—o0, k), then the Hilbert space lem is separable.

(2) For any © € (—o0, k), the space L,ZLQ is isomorphic to the space Li where

du(p) = sin(p) rd (¢) dg.

This follows from Proposition 4.1-(2) which ensures that vg is nowhere vanishing.
However this property fails for the critical value 2 = « because v, is vanishing at
some points.
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The next proposition deals with some basic properties of the operator IC,?.

Proposition 4.2. Let Q € (—o00, k) and rq satisfies the assumptions (H1) and (H2).
Then, the following assertions hold true.

(1) For any n > 1, the operator K L;2m — L;Zm is Hilbert—Schmidt and self-adjoint.

n
(2) For any n > 1, the eigenvalues of ICfl2 form a countable family of real numbers. Let
A (R2) be the largest eigenvalue, then it is strictly positive and satisfies

T T H,(¢. .1
f / @.9)sint OO WeD 11 5,0
0o Jo v (@)vg (@) sin2 (9)ro(@)

T T %
< { / / K2(¢, 9)dua(@)dua(@) {
0 0

T
for any function o such that / Qz((p)d(p =1.

0
(3) We have the following decay: for any o € [0, 1) there exists C > 0 such that
VQR e (—00,k), Yn>1,

/ / K2($, )duq(@)dug(@) < Clk — Q)" *n~ 2.
0 0

(4) The eigenvalue ),(2) is simple and the associated nonzero eigenfunctions do not
vanish in (0, ).

(5) For any Q € (—00, k), the sequence n € N* — 1, () is strictly decreasing.

(6) For any n > 1 the map Q € (—o0,k) +— 7, () is differentiable and strictly
increasing.

Proof. (1) In order to check that ICfl2 is a Hilbert—Schmidt operator, we need to verify
that the kernel K, satisfies the integrability condition

1
1K g = </0 /o IKn(¢,<p)|2d/m(<p)dusz(¢)>2 < +00.

Indeed, by (4.2) and (3.3), one gets
K22 =C, / ! f i Si,?z(fﬂsm@) O <4r0(¢)1’0(€0)> dods,
L, ¢, 9) valP)vo(@) R, ¢)

for some constant C,, and R was defined in (3.2). Remark that

aro@rote) | _ |
R@.¢) |~

Moreover, according to Proposition 4.1 the function vg (¢) is not vanishing in the interval
[0, 7] provided that 2 < k. Therefore we get

ap < sin(g) sin(@) <4Vo(¢)ro(<ﬂ)> dodd.
|| ,1||MQN/O fo Ro.0) "\ TR )90
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By (A.7) and the assumption (H2) we deduce that

22 T L @)
1S ||M95C+c-[ Z In (1 “RGo )d¢d¢

5C+C/”/”ln2((m(qs)_m(w))u(cosqs—cosgo)z)dwdd)_
) R@.9)

It suffices now to use the inequality (4.10) to get

+
IIKQIIMQ§C+Cf / In? SM’ SIT¢>d¢d¢<oo.

This concludes that the operator IC,SI2 is bounded and is of Hilbert—Schmidt type. As
a consequence from the general theory this operator is necessarily compact.

On the other hand, as we have mentioned before the kernel K, is symmetric in view
of the formula (4.6) and the symmetry of R defined in (3.2). Therefore we deduce that
IC,i2 is a self-adjoint operator
(2) From the spectral theorem on self-adjoint compact operators, we know that the
eigenvalues of KC$? form a countable family of real numbers. Define the real numbers

m=inf (K$h h)q and M= sup (K3h, h)g.
Allpg=1 Al pg=1

Since K is self-adjoint, we obtain o (K}) C [m, M], withm € o (K$) and M € o (K),
where the set o (IC,SE) denotes the spectrum of ICf,Z. Since A, (€2) is the largest eigenvalue,
then

M(Q) =M= sup (KSh, h)g. (4.85)
Illug=1

We shall prove that M > 0 and |m| < M. Indeed, forany h € L> e

|| belongs also to L/%LQ with the same norm and using the positivity of the kernel K,
we obtain

the positive function

sup (K%h,hyg = sup  (K3h, h)q.
Illug=1 120, (1]l =1

Using once again the positivity of the kernel one deduces that
Vh >0, Al =1 = (K$h, h)g > 0.

Consequently, we obtain that M > 0. In order to prove that |m| < M, we shall proceed
as follows. Using the positivity of the kernel, we achieve

im| < (IGHAL hl)o < M, ¥ [[h]lug = 1.

This implies that M is nothing but the spectral radius of the operator 2, that s,

n?

M = K3z, ).
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From the Cauchy—Schwarz inequality, one deduces that

K2, < [ [ 16060 Pdua@duato)

which implies that

kﬁ(Q)S/O /0 |Kn($, 9)Pdpa(@)dus(p).

For the lower bound, we shall work with the special function

fl@) = Q) g e 0,1,

sin(go)%ro(fp)vsz (p)2

with the normalized condition || f ||, = 1 which is equivalent to

/ 0’ (p)dy =1
0

and

1
" o
In(@) = (K2f, flo = / f ©@.9) SD0D) o @)dpds.
vg ((p)vQ (¢) sin? (¢)ro ()

This gives the announced lower bound for the largest eigenvalue.
(3) From the expression of K,, given by (4.2) we easily get

ICRZ, < f / K (¢, 9)dpa(e) dua(d)
0 0
_ / " / G @),
L Jy ve@ve(@) sin(e)rd(e)

Using the definition (4.5) of k¥ we infer

V¢E[O,7T], UQ((p)ZK_Q

and we obtain

i B 2. o D@
K212, S (c — @)~ /fH(¢  sintor@

Applying Lemma 3.1 combined with the assumption (H2) yields forany0 <o < 8 < 1

1K g < (e — )70 2“/ / 6 — ol Pdpde.

By taking B < 5 we get the convergence of the integral and consequently we obtain the
desired result,

22, < (e — ) 2n 2. (4.86)

ne S
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(4) First, let us check that any nonzero eigenfunction associated to the largest eigenvalue
A, (£2) should be with a constant sign. Indeed, let f be a nonzero normalized eigen-
function and assume that it changes the sign over a non negligible set. From the strict
positivity of the kernel in the interval (0, i), we deduce that

K2f(¢) < K2If1(#), V¢ € (0,7).

First, by the assumption on f we get

/O K2(F) (@) f @)dus (@) = () /O @) dpa(d) = ().

Second, from (4.85) we have that

/ K2\ (@) £ (@) dia(@) < hn(S).

Consequently,

M (Q) = /O KE(f) (@) f(@)duale) < fo KD @)dua(@) < (),

achieving a contradiction. Hence, any nonzero eigenfunction of X, (£2) must have a
constant sign. Now let us check that f is not vanishing in (0, 7). First we write

I o /
—— [ H, d
() = Q) Ko f() = " (Q) @ (@, 9) f(p)do.

From (3.3) and Proposition 4.1 we get
Vo, 9 € (0,m), Hu(p,9) >0, va(p)>0.

The first assertion follows from the strict positivity of the associated hypergeometric
function. Combined with the positivity of f we deduce that

Vo € (0, ), f(¢)>0.

Finally, we shall check that the subspace generated by the eigenfunctions associated
to A, (2) is one-dimensional. Assume that we have two independent eigenfunctions fj
and f1, which are necessarily with constant sign, then there exists a, b € R such that
the eigenfunction afy + bf1 changes its sign. This is a contradiction.

(5) Using (4.2) combined with Lemma 3.1, we get that n € N* — K, (¢, ¢) is strictly
decreasing for any ¢ # ¢ € (0, 7). Then, for any Q € (—o0, «) and for any nonnegative
function f, we get

Vo e (0,m), KIf(p)> KL, f(o),

which implies in turn that

/OKf(f)(¢)f(¢)dMsz(¢)>fo K ()(@) f(@)dna(@).
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Since the largest eigenvalue X,4+1(2) is reached at some positive normalized function
JSn+1 = 0, then

o1 (€2) = /0 K2\ e (@) fust @)d o (@)
< /0 K fua1) (@) frr1 (9)d 1 ()

< s /O K2(F) (@) f @)dua(d)

1 llpg=

< ().

This provides the announced result.
(6) Fix Qp € (—o0, k) and denote by an the positive normalized eigenfunction asso-
ciated to the eigenvalue 1, (€2). Using the definition of the eigenfunction yields

<]C;§2fn9’ nQO)Qo
(f2, 12

The regularity follows from the general theory using the fact that this eigenvalue is
simple. However we can in our special case give a direct proof for its differentiability in
the following way. From the decomposition

A (2) = 1 g, = 1. (4.87)

1 _ 1 N Q- Qo
va(@) vy (@) va(@)ve, (@)’

we get according to the expression of ICEE

1 g " Hu(¢. )
K = / H, (¢, do+ (2 —Q — 7 f(e)d
@)= s | (@ o) f @)y ( 0) /O g @y
= K0 £(¢) + (2 — Q) Z2 £ (¢) (4.88)
with

" Hu(¢. )
RS0 = _ d
208 f () /0 m(mmo(qs)f("’) @

1
- ce . 4.89
N f(®) (4.89)

Therefore we obtain

Q0,2 Q
<<@n0 an, n0>QO

<an7 nQO)QQ

<IC7§20anv nQ())QO

() =
(£2, [0 g,

+ (2 — Qo)

As IC,S,2 % is self-adjoint on the Hilbert space LIZL % then

o it ey _ U2 KR a0 5 o)

(f;‘LQ» nQ())Qo (ans nQO>SZO
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Let us assume for a while that

Q0,2 Q
<%n0 ans n 0)520 _
S =
Q—Qp <an’ - 0>QO

(00 plo | g0y (4.90)

Then we deduce that Q +— A, (R2) is differentiable at ¢ with
" H(9, .
2 (Q0) = (BFOWf, fi00) g = / @ 9) ysi ) 104 sin()rd (¢)dpd.
b V(@)
Since
Vp.¢ € (0,7), Hu($, @) >0, [;2(@) >0, vay($) >0,

we find that A/, (€20) > 0, which achieves the proof of the suitable result.
It remains to prove (4.90). First, for the numerator of the left hand side we first make
the splitting

(G s fi )0 = (52 fas fi¥) o + (1 = ) 2, fi¥) g

=T71(Q) +1H(Q). 4.91)
To estimate the second term Z, we use the identities (4.88) and (4.89) leading to
R
V5, ()

It follows that
() = (2 — Qo) {vg, K2 )0

Hence, applying Proposition 4.1-(2) combined with Cauchy-Schwarz inequality and the
normalization assumption of the eigenfunctions in (4.87) we infer

72| S 12 = QK £l 1g, - (4.92)
From Remarks 4.1-(2), (4.86) and (4.87) we may write for 2 close to €29
T2(@)] S 12 = QKT £l g

S 12— Qol.

This obviously gives
lim Zp(2) = 0. 4.93
o, 2(82) (4.93)

Let us move to the term 7Z; introduced in (4.91). Then combining (4.89) with the fact
that IC,E2 % is self-adjoint on the Hilbert space Li 20 allows to get

TIQ) = (f g)a, with g:=KP(vgy! £). (4.94)

ovn

. I . 2 .
Applying Proposition 4.1-(2) we easily get that g € Ly, 20" Now we claim that

. Q Q
Jim 1 = £ llug, = 0. (4.95)
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Before giving its proof, let us see how to conclude. It is easy to check from (4.94) and
(4.95) that

lim Z,(Q) = Z,(Q) and (f2, fR0y, = 1.
Q—>Qo

lim
Q—>Qo
Thus combining this result with (4.91) and (4.93) yields (4.90). It remains to check
(4.95) which is a consequence of classical results on perturbation theory. One can use
for instance [42] or [38, Chapter XII], where the analytic dependence of the eigenvalues
and the associated eigenfunctions is analyzed. Let us briefly discuss the main arguments
used to get the continuity of the eigenfunctions with respect to the parameter 2. First
we set

A(Q) =K.
Then using (4.3) we finds

1L @-)"
va(d) 2 Vet ()

meN
Then similarly to (4.88) we obtain the decomposition
AQ) =) (Q=Q0)"An.  with A, =v5" (@)K, (4.96)
meN

By applying the lower bound of Proposition 4.1-(2) we get that A,, is bounded with
||Am||L(L§QO) S (e = Qo)™
This shows that A(£2) is analytic for €2 close enough to 2. Now define the sets
P(A(RQ)) = {z € C, A(R) — zId is invertible ] and
ri= {(Q,z,) eCze p(A(sz))}.

Then it is known that the resolvent set A(€2) and I are open, see Theorem XII.7 in [38].
Now, since A,(€20) is an isolated simple eigenvalue and I' is open then we may find
6 > 0 such that the oriented circle y := {z, |z — X (R0)| = 8} is contained in p (A(S2))
for all |2 — Q| < §. Thus, for |2 — Qp| < § the operator

P(Q) = —ﬁ/ (A(Q) — z1d) 'dz
Y

is well-defined and it is analytic in view of (4.96). Notice that one may get the estimate

1Pa(2) = PRz ) S 12 = l. (4.97)
0

Then from classical results on spectral theory, see for instance Theorems XII.5-XII.6-
XII.8 in [38], P,(S20) is a projection on the one dimensional eigenspace associate to
An(L20). In addition, A, (£2) admits only one eigenvalue inside the circle I" which neces-
sary coincides with A, (£2). Notice that this latter claim can be proved using the continuity
in Q of the largest eigenvalue which can be checked from (4.85). Furthermore, P, (2) is
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still a one dimensional projection on the eigenspace associated to the A, (€2). As a conse-
quence, if f,,QO is a normalized eigenfunction of the operator A(2g) = ICf,2 0 associated
to A, (£20), then P,,(Q)fnQO is an eigenfunction of A(£2) associated to A, (€2). Applying
(4.97) yields

. Q Q
Qli>nSl20 ”Pn(Q)fn 0 — fn 0”“90 =0,

where we have used the fact that P, () an" = nQO. Now, by taking

2. P
PR g

we get anormalized eigenfunction in the sense of (4.87) and the family Q - f € L,12,L 2
is continuous at €2, which ensures (4.95). This ends the proof of the desired result. O
Next we shall establish the following result.

Proposition 4.3. Let n > 1 and ry satisfies the assumptions (H1) and (H2). Set
Sy = {sz € (—00, k) St An(R) = 1}. (4.98)

Then the following holds true

(1) The set ., is formed by a single point denoted by 2, .
(2) The sequence (2,),>1 is strictly increasing and satisfies

lim Q, =«.
n—00

Proof. (1) To check that the set .#, is non empty we shall use the mean value theorem.
From the upper bound in Proposition 4.2-(2) and (4.2) we find that

0 < (@ < @ DSI5B)
= An(38) = i A va(@)valp) sin(p) rd (@)

Thus by taking the limit as 2 — —oo we deduce that

=

Iim A,(R2) =0. (4.99)
Q—>—00
Next, we intend to show that
lim A, (R2) = oo. (4.100)
Q—k

Using the lower bound of A, (€2) in Proposition 4.2-(2), we find by virtue of Fatou
Lemma

/ f 1H - (¢’fp) S%nj(qj)m(ma(cbm(w)d(pw < liminf 4, (),
0 0 1),(2 ((p)])Kz () sin2 (@)ro(p) Q—k
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T
for any nonnegative o satisfying f 92(¢)d¢ = 1. According to Proposition 4.1-(4),
the function v, reaches its minimum at a point ¢g € [0, 7] and
Vo el0, 7], 0<ve(@) < Clp—¢ol"*.

There are two possibilities: ¢g € (0, w) or ¢g € {0, w}. Let us start with the first case
and we shall take ¢ as follows

= gl

with 8 < % and the constant cg is chosen such that ¢ is normalized. Hence using the
preceding estimates we get

e T .1
C/ / Hn(d)v (0) sin? (¢)r0(¢)) d(ﬂd(b < 11Sr2n inf )\,n (Q)
0 0 )

I+a l+a L1
lp — ol 2 Plo — ol 2 *F sin2 (p)ro(p)
(4.101)

Let ¢ > 0 such that [¢g — ¢, ¢po + €] C (0, ). According to (3.3) the function H, is
strictly positive in the domain (0, 77)?, hence there exists § > 0 such

Hy(§ . ¢)sin? @)ro@) _
sin?(@ro(@)

VY (¢, 9) € [¢o — &, ¢o + ],
Thus we obtain

po+e po+e Ao dy o
C 0 —— < liminf A, (£2).
bo—c Jog_e |0 —ol 2 Plo—go| 2 F  9ox

By taking HT“ + B > 1, which is an admissible configuration, we find

lim A, () = +00.
Q—>k

Now let us move to the second possibility where ¢g € {0, 7} and without any loss of
generality we can only deal with the case ¢9 = 0. From (3.3) and using the inequality

Vx el0,1), F,(x)>1,

we obtain

sin(@)rg (@) rit (g)

V.9 € (0.7), Hu(d,9) =cy 1
[R(¢, )]""2

Combined with the assumption (H2), it implies

sin™*2 () sin "1 (¢)

Vo,9 € (0,m), Hu(d,9) >cn 1
[R(¢, )]""2
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Plugging this into (4.101) we find

.+l -+l
/ f Ta sin"*2 (¢) sin T(¢)d(pd¢§nminf1n(9).
+/3(p P [R(g, 9)]"2 o

Let ¢ > O sufficiently small, then using Taylor expansion we get according to (3.2)

0<¢,p<e=> R(p,p) <C(p+¢)>

n+%¢n+%
d¢ < liminf A,,(Q2).
1§a+ﬁ(pl+a+'3 (¢ +(p)2n+1 (/7 ¢ = lgIle_H(l n(£2)

which gives after s1mp11ﬁcat10n

”—*—ﬁ(ﬁn—f—ﬂ
TGrpr OO SIR ),

Making the change of variables ¢ = ¢ we obtain

n 2 /3¢n 7 -8B e anff
/ f ¢+¢)2n+1 ded$ = /¢ Zﬂf 9)2n+1ded¢'

This integral diverges provided that o + 28 > 1 and thus under this assumption

Thus

lim A, (2) = +o0.
QK

Hence we obtain (4.100). By the intermediate mean value, we achieve the existence of
at least one solution for the equation

A (2) = 1.

Consequently, using Proposition 4.2 we deduce by the mean value theorem that the set
%, contains only one element.
(2) Since €2, satisfies the equation

A (82,) = L.

According to Proposition 4.2-(5) the sequence k +— Ax(€2,) is strictly decreasing. It
implies in particular that

A1 (82,) < Ap(£2,) = 1.

Hence by (4.100) one may apply the mean value theorem and find an element of the
set .%,+1 in the interval (€2, ). This means that Q2,1 > €, and thus this sequence
is strictly increasing. It remains to prove that this sequence is converging to x. The
convergence of this sequence to some element Q < « is clear. To prove that Q = k we
shall argue by contradiction by assuming that < «. By the construction of £2,, one has
necessarily

Von>1, 2(Q) > 1.
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Using the upper-bound estimate stated in Proposition 4.2-(2) combined with the point
(3) we obtain for any o € (0, 1)

V=1, 0<1,(Q) < (k—Q) 'n. (4.102)
By taking the limit as n — +oo we find
lim 1,(Q) =0.
n—0o0o

This contradicts (4.102) which achieves the proof. O

4.4. Eigenfunctions regularity. This section is devoted to the strong regularity of the
eigenfunctions associated to the operator IC,E2 and constructed in Proposition 4.2. We
have already seen that these eigenfunctions belong to a weak function space Li .- Here
we shall show first their continuity and later their Holder regularity.

4.4.1. Continuity The main result of this section reads as follows.

Proposition 4.4. Let Q € (—o0, k), n > 1, rg satisfies the assumptions (H1) and (H2),
and f be an eigenfunction for ICfZ2 associated to a non-vanishing eigenvalue. Then f is
continuous over [0, ], andforn > 2 it satisfies the boundary condition f(0) = f(x) =
0. However this boundary condition fails for n = 1 at least with the eigenfunctions
associated to the largest eigenvalue A1(£2).

Proof. Let f € Li ., be any non trivial eigenfunction of the operator KS! defined in
(4.82) and associated to an eigenvalue A # 0, then

() = (¢)/ Hu (¢, 9) f(p)de, Vo € (0,m)ae. (4.103)

3
Since f € Liﬂ,theqthefunctiong Tp € [O, n] > 1 (@) f (p)belongs to L%((0, ); do).
Therefore the equation (4.103) can be written in terms of g as follows

T s
g(@) = / ro 2 (@)rg (9 Hu(¢, 9)g(9)de, V¢ € (0,7)ae.
0

Ava(e)

Coming back to the definition of H,, in (3.3) we obtain for some constant ¢, the formula

-3 ny
s o ) Hu ) = o S0~ 2O P (TREe )

[R(¢. 9)]"*2 R(¢. )
Using (A.7) and the assumption (H2) yields

+2 n+2 . .
2 o @) Hy9, ) 5 DN @) (1 ohn (M))
R (¢, ¢) 19—l

<1+In (M> (4.104)
¢ — ¢l
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This implies, using Cauchy—Schwarz inequality and the fact that vg is bounded away

from zero
8@ S f (1 +1n (W)) g(@)do
0

bd ] . !
S ||g||L2(d(p) (1 +/ In2 (W) dgﬁ)
0

S fllug, Vo € (0,7)ae.

It follows that g is bounded. Now inserting this estimate into (4.103) allows to get

T3
1F @) < ||g||Loo/O ro 1) Hy(, 9)do.

g

S I lue
0

sin@)rg > (@)rg”'@) <4’”0(¢)’0(¢’)>d(p_ (4.105)

[R(¢, )] R(¢. )

Using once again estimat-1 and the assumption (H2) we deduce that

T

sin"~1 () sin™*2 ()
| ((sin(@) +sin(¢))2 + (cos ¢ — cos p)2)"*2

(1 +In (Sm(g—iz'ﬂ(‘p)))w

By symmetry we may restrict the analysis to ¢ € [0, 5]. Thus, splitting the integral
given in (4.105) and using that

WACOISE (A [

inf  R(¢, 0,
we[;n/z’n] (@, 9) >

¢€l0,7/2]
we obtain
z - n—1 . 4l . .
< sin” ™" (@) sin”"2 () L+l sin(¢) + sin(¢) J
|f(¢)| ~ ||f||/49 A (sin(¢)+sin((0))2n+l ( n( ¢ — ol ))
sin(¢) + sin(g)

(SE]

It follows that

T

¢n—1(pn+% o+¢
LF@ S IS g W(l-ﬂn(kﬁ—ﬂ

orv ))de+ 1 fllue-
0



688 C. Garcia, T. Hmidi, J. Mateu

Using the change of variables ¢ = ¢6 we get

s
2¢ 1

6n+7 1 9
F@ SN f luad™? —2(1 +1n ( *
0

(1+6)™! 1 —9|))d9+”f”“9

1
S llpgd™ 2.

Consequently we find

1
sup 15 DIf (D] SN fllpg-

¢€(0,m)

Inserting this estimate into (4.103) and using (4.104) yields

AL IIfIIMQf ro > (@) Hu (¢, 9)dg
0

T

3 n—1 . )
Slflg | D0 @ <1 tin (M)) i

R™3 (¢, 9) ¢ — ¢l
As before we can restrict ¢ € [0, 5] and by using the fact

inf  R(¢, ) >0,
wet™h (@, )
¢€l0,7/2]

we deduce after splitting the integral

T
NACOIS Ilfllmf ro * (@) Hu($, @)dg
0

T

: n+3 in—1
U™ @ + 1l | 2 (1+ln( o+¢ ))dw
0

(¢ + @)1 o — ol

Making the change of variables ¢ = ¢6 leads to

Vo € [0,7/21, 1] S Fllugrs (¢
9n+§

1 0+1
1 f g W(‘”“<|9—1|>>d9

0

S f g @ +02).

Consequently we get

Vo € 0.7), |f @SS luarg™ (@) +14 (@),
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This shows that f is bounded over (0, &) and by the dominated convergence theorem
one can show that f is in fact continuous on [0, 7] and satisfies for n > 2 the boundary
condition

f0) = f(@) =0.

Last, we shall check that this boundary condition fails for n = 1 with the largest eigen-
value A1(€2). Indeed, according to (4.103) we have

1 T
)= MMO)/O H1(0, ¢) f(p)dg.
However, from (3.3) we get
2 .
Vo €(0,m), Hi(0,¢) = Clw > 0.

R2(0, ¢)

Combining this with the fact that f does not change the sign allows to get that
f0)#0. O

4.4.2. Holder continuity The main goal of this section is to prove the Holder regularity
of the eigenfunctions.

Proposition 4.5. Assume that rq satisfies the conditions (H) and let Q € (—o0, k), then
any solution h of the equation

1
Avq(9)

with . # 0, belongs to €V%(0, 7r), for any n > 2. The functions involved in the above
expression can be found in (3.3)—(4.2)—(4.3).

h(¢) = /0 Hy (¢, )h(p)dep, V¢ € (0, 7), (4.106)

Proof. From the initial expression of the linearized operator (3.1) in Proposition 3.1 and
combining it with Proposition 3.2, one has

b4 1 1 T 2w
Fan @)= [ g o= [* [ 6. 0. mbrands.
0 4r ro(@) Jo Jo
(4.107)
with
R(¢.¢.m) = (ro() — ro(9))” + 2ro(¢)ro(@) (1 — cos ) + (cos ¢ — cos ¢)?,
Mo . 17) = Sin(wA)lro((p) COS(nn)_
R2(¢.¢.m)
It is clear that any solution % of (4.106) is equivalent to a solution of
_ Fal@)
Vo €(©,m), hip)= (@)

From Proposition 4.1 we know that vo € %1*(0, ) and does not vanish when Q €
(—00, k). Therefore to check the regularity 7 € €% (0, ) it is enough to establish that
Fn(h) € €140, ), due to the fact that € is an algebra. Since & is symmetric with
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respect to ¢ = 7, then one can verify that 7, (h) preserves this symmetry and hence
we shall only study the regularity in the interval [0, Z] and check that the left and right
derivative at /2 coincide. Notice that Proposition 4.4 tells us that % is continuous in
[0, ], for any n > 1.

In order to prove such regularity, let us first check that

R, 9. = C{@ —9) + Gin’(@) +sin’ () sin’(n/2) |
Vo,p € (0,m),n € (0,2m), (4.108)
which is the key point in this proof. In order to do so, recall first from (2.18) that
R@.¢.m) = C¢—9). (4.109)
On the other hand, define the function

g1(x) = x2 +70(9)? — 2x70(¢) cos(n) + (cos(g) — cos(¢))?,

which obviously verifies g1 (ro(¢)) = R (¢, ¢, n). Such function has a minimum located
at

Xe = ro(@) cos(n).

Now we shall distinguish two cases: cosn € [0, 1] and cos n € [—1, O]. In the first case
we get

g1(x) = g1(xe) = rg () sin’ () + (cos(p) — cos(¢))?
> rj (¢) sin’ ().
From elementary trigonometric relations we deduce that
sin® n = 2sin?(n/2)(1 +cos(n)) > 2sin*(n/2).
This implies in particular that, for cos € [0, 1]
R(¢, . n) = 213 (¢) sin’(1/2).

As to the second case cosn € [—1, 0], we simply notice that the critical point x. is
negative and therefore the second degree polynomial g1 is strictly increasing in R,. This
implies that

R(p. 9. n) = g1(ro(¢)) = g1(0) > 13 () = rd(¢) sin’(n/2).
Therefore we get in both cases
R(¢. 9. 1) = 1§ (@) sin’(n/2). (4.110)
By the symmetry property ﬁ(qﬁ, @, n) = I/?\(gp, ¢, n) we also get
R(@, ¢, n) = rg(¢) sin® (1/2). (4.111)
Adding together (4.109)—(4.110)—(4.111), we achieve

3R(¢, 9, m) = C(p — 9)* + (13 (¢) + 13 (9)) sin*(n/2). (4.112)
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It suffices now to combine this inequality with the assumption (H2) on ry in order to get
the desired estimate (4.108).

Let us now prove that %, (h) € € and for this aim we shall proceed in four steps.
o Step 1: If 1 € L™ then F,,(h) € €*(0, 7).

Here we check that F;,(h) € €%(0, m) for any n > 1. In order to avoid the singularity
in the denominator coming from rp, we integrate by parts in the variable

T 2
Fy(h) (@) = — 1 sin(g)rg ((/2351n(nn) Sm(n)h((p)dnd(p.
e ), RX@. 0. m)

Introduce

sin(g)rg () sin(nn) sin(n)h(p)
RE@.0.m)

and according to Chebyshev polynomials we know that

K1(¢v ®, 77) =

)

sin(nn) = sin(n) U,,—1 (cos n), 4.113)
with U, being a polynomial of degree n. Thus
sin()rg (¢) Un—1(cos n) sin” (mh(g)
=3
Rz (¢, ¢, 1)

Using the assumption (H2) combined with the estimate (4.108) for the denominator
R(¢, ¢, n), we achieve

K1(¢a @, 77) =

1K1 (¢, 0, | < 1| oo sin® (g) sin®(n/2)

((¢ — @)% + (sin*(¢) + sin*(¢)) sin*(n/2))
< sin(g)

(@ — 9% + (in2(¢) + sin(g)) sin®(n/2)

Interpolating between the two inequalities

sin(g) -1
T =ly—¢l
((¢ — 9)2 + (sin*(¢) +sin(p)) sin®(n/2))
and
sin(g)
(@ — 9)? + (sin2(@) +sin(¢)) sin?(5/2))
we deduce that for any 8 € [0, 1]

< sin~'(n/2),

(@) - Sle— ol P sin P (n/2). (4.114)
((9 — 9)2 + (sin*(¢) +sin(p)) sin®(n/2)) >
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Then,
1
lp — p|'=F sinf (1/2)

Let us now bound the derivative d4 K1 (¢, ¢, n). For this purpose, let us first show that

[K1(¢, 0. M| <

06 R(®. 0. | S R2($. 0. ). (4.115)
Indeed
9 R(@. ¢, )
R:@.0.m)
_ 2ro (@) (ro(@) — ro(9)) +2ry(@)ro(p) (1 — cos(i)) +2sin(¢)(cos(p) — cos(¢))
R:@.0.1)

Using the identity 1 — cos(n) = 2 sin®(5/2) and (4.108), we get a constant C such that

9pR@. 0. )| _ ¢ — ¢l +sin() sin® (1/2) —c
Rip.om) ((¢ — 9)2 + (sin*(¢) +sin(p)) sinz(n/Z))% -
achieving (4.115). Therefore, taking the derivative in ¢ of K yields
. 3 . 2
|96 K1(8, 9, )| < CllhllL= anz(‘”) S‘“.(Z/Z) —
((¢ — @)% + (sin*(¢) + sin*(p)) sin*(n/2))
< sin(g)
~ (¢ — 9)? + (sin? (@) + sin? (¢)) sin?(1/2)
- |6 — ¢~ sin(y)

(¢ — 0% + sin* (@) + sin(g)) sin’(1/2))?
Hence (4.114) allows to get or any 8 € (0, 1),

1
6 — @>~F sinf(n/2)

Here, we can use Proposition C.1 to the case where the operator /C depends only on one
variable by taking g1 (0, n) = g3(0,n) = sin—# (n/2). Then, we infer F, (h) € €P(0, )
forany g € (0, 1).

e Step 2: For n > 2, if h is bounded then £ (0) = k() = 0.

Notice that this property was shown in Proposition 4.4 and we give here an alternative
proof. Since vg is not vanishing then this amounts to checking that 7, (h)(0) = 0. By
continuity, it is clear by Fubini that

T 2
L ,
Fah)(0) = ——— (sin(p)rg (¢) sin(ny) sm(nzh(go)dnd(p
mn J (r2(@) + (1 — cos 9)?)?

|0pK1(d, 0. 0)| S
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2

1 i 2(@)h(p)d

_ _m zln(@)ro (‘i) () (2P % / sin(nn) sin(n)dn,
0 (r0 () + (1 — cos @) )

which is vanishing if n > 2. Hence, h(0) = 0, for any n > 2. In the same way, we
achieve h(wr) = 0.
e Step 3: If h € €*(0, ) and h(0) = h(x) = 0, then F,,(h) € W1(0, 7).

We have shown before that 7, (h) € € B (0, ) for any B € (0, 1). Then it is enough
to check that F,, (h)’ € L°(0, 7). For this aim, we write

f f Sln(fp)ro(w)zsm(nn)sm(n)h(w)aqu(fP o),

Fulh) ($) = dnde.
R 0.
(4.116)
Adding and subtracting some appropriate terms, we find
Fulh) ($)
f / sin(¢)rd (¢) sin(nr) Sln(n)(h(w) h($))dsR(@, ¢, n) inde
8 R3¢, 0.m)
L 3h@) / f Sin(g)rd (¢) sin(nn) Sln(n)[3¢R(¢ o0+ R@ 9],
8rn R34, 0.7
_ 3h(9) / " f " Sin(@)rd (@) sin(un) sin()d, R, ¢, D inde
Bmn R .0,
3
= 8—(11 + 1, — 13)(¢). “4.117)
on

Let us bound each term separately. Using (4.108), (4.113) and (4.115) we achieve

b4 27 . 3 . 5 — $l%dnd
I1@)] < Cllhllg / / ) sy —ofdndy
o ((¢ — @)% + (sin*(¢) + sin*(p)) sin*(n/2))

T 2
sin(p)|p — ¢|*dnde
=l .[ [ (¢ — )% + (sin®(¢) + sin*(g)) sin®(n/2)”

We write in view of (4.114)

sin(¢)
(¢ — @)% + (sin? (¢) + sin*(¢)) sin?(1/2)
- ¢ — o]~ sin(p)
((6 — 02 + sin®($) + sin()) sin?(1/2))?
1

~ g — 2 Fsinf(n/2)
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Therefore by imposing 1 —a < 8 < 1 we get

k4 2 dnd

nay
1 < C||h]|| g« < C|h||g«,
L) < C] ||<gf0 fo Tomeramey = Cltlle

which implies immediately that /; € L®. Now let us move to the boundedness of I5.
From direct computations we get

(89 + ) R@. 0.1 = 200(®) = ro (@) 159 = rj())
+2(cos¢ — cos @) (sin g — sin ¢)

+2(1 = cos ) (ro(@)ro(g) + rg(9)ro(@)) ‘ (4.118)
Combining the assumption (H2) with | € W 1% and the mean value theorem yields
)(a¢ +0,)R(@. ¢. n)) < C<|¢ — o|? + (sin ¢ + sin ¢) sinz(n/2)>. (4.119)
Hence, using (4.108) and (4.113) we obtain
112(9)| = Clh(¢) — h(0)]

/ / sin3 () sin?(y) (I¢ — <p|2+(smg0+sm¢)s1n2(n/2))
((¢ — )2 + (sin*(¢) + sin? (9)) smz(n/Z))

dnde

*dnd
SCIIhII%a/ f P dnde -
0 Jo  ((¢ —¢)?+ (sin’(¢) +sin?(p)) sin’(n/2))>

Interpolation inequalities imply
1

((¢ — 9)2 + (sin?(p) + sin’(¢)) sm2(n/2))

- < l¢ —o|* " sin () sin "% (1/2).

(4.120)
Therefore we get for any ¢ € (0, 7/2), ¢ € (0, ) and n € (0, 27),
¢(X
(9 — 9)% + (sin() +sin(9))? sin’(1/2))
It follows that

b4 2w
L(@)| = Clhl dnde Clial
2 = % =< 3
“ )L e emesinty <

which gives the boundedness of 1. It remains to bound the last term /3. Then integrating
by parts we infer

T 2 X
156) = 2h(o) f / 8¢(sm(¢)ro(<p)) sin(nn) sin(n) | dndo.
3 o Jo R3¢, 0. 1)

Slp —l“ 'sin™*(n/2).  (4.121)
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To make the previous integration by parts rigorously, we should split the integral in
pe(e,¢—¢)and ¢ € (m + ¢, m — ¢) and later taking the limit as ¢ — 0.

Then, since #(0) = 0 and h € €% we find according to the assumptions (H), (4.108)
and (4.113)

|13(9)] < Cllhll4 / / ¢ sin (@) sin® (n)dnde
— o .
0 0 [(¢’ — )2 + (sin’ () + sin’(¢)) sm2(,’/2)]7

T 2
*dnd
scnhucga/ / Pdndy :
o Jo  [(@—@)?+in* () +sin(p)) sin®(n/2)]

Applying (4.121) yields

T 2
dnde
[13(¢)| < Cllh]lge < Cllhllg«.
¢ v [ /0 6 — o= sin (1/2) “

That implies that h € W1°°(0, 7/2).

Moreover, since r(/2) = 0 (this comes from the symmetry of ro with respect to
7/2) and using (4.116) we find that #’(7/2) = 0, which justifies why we can check
the regularity only on ¢ € (0, w/2). Finally, we get the desired result, that is, h €
w0, ).

e Step 4: If i/ € L>(0, ) and h(0) = h(w) = 0, then F,(h) € €#(0, ) for any
B e (O,1).
Coming back to (4.117) and integrating by parts in the last integral we deduce

Fu(h) (#)

81n(<0)r0 (@)h(@) sin(nn) sin(n) [0 R(¢. 0, n) + 8, R, 9. 1)]
" 8n R3@.0.m)

b4 2
« dndg — e 8¢(sin(<p)r0(g0)h(<p)) sin(nn) sm(r;) dnde
R Ri 9. 0.m)
2
R y— f / (Ti = 3T) (9, ¢, Mdnde, (4.122)
T 3

with

3, (sin(@)ro(¢)*h(p)) sin(un) sin(n)
Ri@..m)

As in the previous step, integration by parts can be justified by splitting the integral in
pe(e,p—¢)and e € (¢ + ¢, m — ¢) and later taking limits as ¢ — 0.

(¢, 9. ) =
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We want to apply Proposition C.1 to each of those terms. First, for 71 we use (H)
and (4.119) combined with (4.108), we arrive at

sin’ ()1 (@) | sin () (I¢ — @I + (sin ¢ + sin @) sin®(/2))

{(¢ — )2 + (sin®(¢) + sin?(p)) sinz(n/Z)}%
- 1h(p)]

T (6 — 02 + Gin?(@) +sin’(9)) sin’(n/2) )2

Since h' € L* and h(0) = h(zw) = 0 then we can write h(p) = sin(rp)ﬁ(w), with
h e L, ).
Consequently,

IT1(d, 0. M| S

sin(gp)

(6 — ¢)? +sin’(¢) sin’(/2))
1

IT1 (¢, @, M| < IRz

< .
{6 — @2 +sin2(n/2))?
Interpolating again, we find that for any 8 € [0, 1]

1
¢ — ¢!~ sinP (/2)
Let us mention that we have proven that

|h ()] _<c 1 . ’
{(@ — )2 + (sin?(¢) + sin(p)) sin®(n/2)} 9= ¢l sin(n/2)

IT1(d. 0. M| <

(4.123)

forany g € (0, 1),¢ € (0,7/2),¢ € (0, ) and n € (0, 27), which will be useful later.
Now we shall estimate the derivative of 77 with respect to ¢. We start with

105 {(2 + 3, R@. 0.} | = [2r6@) r5.6) = 1@ + 20r0(9) = ro())r (9)
— 2sin(¢)(sin g — sin ¢) — 2(cos ¢ — cos @) cos(¢p)
+2(1 = cos ) (1§ @)ro(@) +ri(@Irg(@) | (124)

Using that rj’ € L*°, we find

(ad, {05+ 0,)R(¢, 0. 1)) ‘ <cC (|¢ — |+ sinz(n/Z)) . (4.125)
Thus,
sin® (@) ()] sin* ()| 0 { (9 + 3, R@. 0. )} |

RE (¢, 0.m)
, S @R sin’ () | (3 + )R, ¢, )| [9R (@, 9. 1]

R2(, 9. 1)

05 T1(d, 0, M| S
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Using (4.108)—(4.119)—(4.125), we find

sin® () |1 (@) | sin® () {I¢ — | +sin*(n/2)}
5
2

{(@ — )2 + (sin®(¢) + sin? (9)) sin®(1/2) }
. sin® () |1 (@) | sin? () {I¢ — @I + (sin(p) + sin()) sin*(/2)}
[ — 9)? + (sin?(¢) + sin2()) sin?(5/2)}

10 T1 (P, @, M| S

It follows that
sin()|h(@)] {I¢ — @] +sin?(n/2)}
{(@ — )2 + (sin*(§) +sin* (p)) sinz(n/Z)}%
, Sin@h@)l {1¢ — @[? + (sin(g) + sin(¢)) sin? (n/2) }
[(@ — ) + sin?(9) +sin?(¢)) sin2(/2) )’

- |h(9)]
~ {(¢ — @)% + (sin’(¢) + sin® () sin®(n/2) }

Putting together this estimate with (4.123) we infer
6 — ¢l 1h(p)]

{(@ — @)% + (sin®(¢) + sin? () sinz(n/2)}%
< Clp — 9" P sin P (n/2),

[0gT1(d, 0, M| S

105 T1(P, @, M| S

for any g € (0, 1).
Concerning the estimate of the term 75, we first make appeal to (4.108) and (4.113)
leading to

(sin* (¢) + sin (@) [ (@) ]) sin (1/2)

{(@ — @)% + (sin®(¢) + sin?(p)) sin*(/2) }
- (sin(g) + |h(p)])

T (6 — )2 + Gin2(@) +sin’ () sin®(n/2) )2
Applying (4.114) and (4.123), one finds

IT2(d, 0. M| S

3
2

IT2(¢, 0, M| < Clp — @lP~'sin P (3/2),

for any B € (0, 1). The next stage is devoted to the estimate of d4 7> and one gets from
direct computations

(sin’ () + sin’ () |h (¢)|) sin® (n/2) |9 R (@, 9. )|

105 T2(p, 0, M| S —
R2(¢, 0, m)

Using (4.115) and (4.108), it implies

(sin®(p) + sin? (@) | (g) ) sin®(n/2)
[ — 9)? + (sin?(¢) + sin?()) sin?(5/2)}

105 T2 (b, 0, M| S
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_ (sin(p) + [ ()] ,
™ (@ — )%+ (sin* (@) +sin’ () sin*(17/2)
Therefore (4.114) and (4.123) allows to get

106 T2(0, 0. M| < 16 — oI~ F P sinf (3/2),

for any 8 € (0, 1). Hence, by Proposition C.1, adapted to a one variable function, we
achieve that F;, (h)’ € €#, forany B € (0, 1), which achieves the proof of the announced
result. 0O

4.5. Fredholm structure. In this section we shall be concerned with the Fredholm struc-
ture of the linearized operator d7 F (€2, 0) defined through (3.4) and (4.1). Our main
result reads as follows.

Proposition 4.6. Let m > 2, a € (0, 1) and Q € (—o0, k), then 3;F(R2,0) : X% —
X% is a well-defined Fredholm operator with zero index. In addition, for Q@ = Q,,, the

kernel of 0 fﬁ (2, 0) is one-dimensional and its range is closed and of co-dimension
one.
Recall that the spaces X, have been introduced in (2.15) and 2, in Proposition 4.3.

Proof. We shall first prove the second part, assuming the first one. The structure of the
linearized operator is detailed in (3.4) and one has for (¢, 6) = an 1 B (@) cos(nB)

0, F(Q.0)h(@.0) = cos(nf) LG (n) ().
n>1

where
L) () = va($)ha($) —/0 H, (¢, p)hn(p)de, ¢ €0, 7]

In view of (4.1) and (4.82), Cff (h) = 0 can be written in the form
K%h = h.
We define the dispersion set by
S={Qe(—00,k), KerdsF(Q,0) # {0}
Hence Q € S if and only if there exists m > 1 such that the equation

Vo € [0, 7], KS(hm)(@) = hw(),

admits a nontrivial solution satisfying the regularity /,, € € (0, ) and the boundary
condition h,,(0) = h,,(r) = 0. By virtue of Propositions 4.4 and 4.5 the foregoing
conditions are satisfied for any eigenvalue provided that m > 2. On the other hand, we
have shown in Proposition 4.2-(4) that for Q2 = €2,,, the kernel of £,,, is one-dimensional.
Moreover, Proposition4.2-(5) ensures that forany n > m wehave A, (2,) < A () =
1. Since by construction A, (€2,,) is the largest eigenvalue of IC,E2 ", then 1 could not be
an eigenvalue of this operator and the equation

KSnh = h,
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admits only the trivial solution. Thus the kernel of the restricted operator 9 fl:" (£2;,,,0) :
X5 — X7 is one-dimensional and is generated by the eigenfunction

(¢,0) — hy,(¢) cos(mb).

We emphasize that this element belongs to the space Xj, because it belongs to the
function space € ((0, 7) x T) since ¢ > h,, () € €1%(0, ). That the range of
o F (2, 0) is closed and of co-dimension one follows from the fact this operator is
Fredholm of zero index. B

Next, let us show that 7 F (€2, 0) is Fredholm of zero index. By virtue of the com-
putations developed in Proposition 3.1 and the expression of (4.1), we assert that

~ 1
0 F($2,00h(¢.0) = va($)h(@.0) — 7—G(h)(¢.0),

with
b4 2
G(h)(¢.0) = b f / sin(@)ro(@)h (e, ﬂ)ldr)dg07
0@ Jy S A 0. 0.1
A9, 0, 0. 1) = (ro(9) —ro(@))*+2r0(¢)ro(e) (1 —cos (0 — 1)) +(cos(¢) —cos())*.

(4.126)

Since 2 € (—o00, k), the function v is not vanishing. Moreover, by Proposition 4.1 one
has that vy € €18, for any g € (0, 1).
Define the linear operator vold : X5, — Xi, by

(eld)(h) (¢, 0) = va(P)h(e, 6)-

We shall check that it defines an isomorphism. The continuity of this operator follows
from the regularity vg € €% (0, ) combined with the fact that G120, ) x T) is
an algebra. The Dirichlet boundary condition, the m-fold symmetry and the absence of
the frequency zero are immediate for the product voh, which finally belongs to X§.
Moreover, since vg is not vanishing, one has that vold is injective. In order to check
that such an operator is an isomorphism, it is enough to check that it is surjective, as a
consequence of the Banach theorem. Take k € X7, and we will find & € X}, such that
(vld)(h) = k. Indeed, A is given by

d(¢.0)
va(9)

Using the regularity of vg and the fact that it is not vanishing, it is easy to check that its
inverse % still belongs to 1% (0, 7). Similar arguments as before allow to get h € X o
Hence vgld is an isomorphism, and thus it is a Fredholm operator of zero index. From
classical results on index theory, it is known that to get 9 fl:" (€2, 0) is Fredholm of zero
index, it is enough to establish that the perturbation G : X, — X5 is compact. To do
so, we prove that for any 8 € («, 1) one has the smoothing effect

h(e.0) =

VheXs [IGWlgs < Clihlige.

that we combine with the compact embedding ¢’'# ((0, ) x T) < €"%((0, 7) x T).
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Take /1 € X2 and let us show that G(h) € €"#((0, ) x T), for any B € (0, 1). We
shall first deal with a preliminary fact. Define the following function

"
Voel0,r],0,neR, golp,n) = / h(p, t)dr. 4.127)
6

By (2.17) we infer

1go (@, M| < CllhllLipl® — 1l sin(g),
According to the definition of the space Xy, the partial function T — h(p, 7) is 27-
2
periodic and with zero average, that is, h(p, t)dt = 0. This allows to get that

0
n — go(p, n) is also 2w -periodic, and from elementary arguments we find
186 (@, M| = CllllLip | sin((6 — 1)/2)|sin(gp), (4.128)

forany ¢ € [0, r]and @, n € [0, 27 ].Inaddition, itisimmediate that gy € ‘51’“((0, T)X
T) and

n
380 (p. 1) = / d,h(p. T)d.
%

The same arguments as before show that the partial function t +— d,h(g, T) is 27-
periodic and with zero average. Moreover, n — 0,86 (@, 1) is also 2 -periodic and

1880 (9. M| = ClihllLip | sin((0 —n)/2)], (4.129)

forany ¢ € [0, 7] and 6, n € [0, 27]. Using the auxiliary function gg, one can integrate
by parts in G (k) in the variable n obtaining

b4 27 5 .
G(h)($.0) = / / sin(@)ry (@) sin(n — 9;ge(¢, n)dnd(p. (4.130)
0 0 A((b’ 97 @, TI) 2

We can justify the integration by parts by splitting the integral in n € (0,0 — ¢) and
n € (0 + ¢, 2m) and later taking limits as ¢ — 0. The boundary term in the above
integration by parts is vanishing due to the periodicity in 5 of the involved functions. It
follows from (4.108),

A, 0, 0,m) 2 (¢ — 9)? + (sin(¢) +sin’(p)) sin®((6 — n)/2),  (4.131)

forany ¢, ¢ € (0, ) and 6, n € (0, 277), and this estimate is crucial in the proof.
The boundedness of G (k) can be implemented by using (4.128) and (4.131). Indeed,
we write

T 27 ) 2 . _ . .
. / / sin? (¢)r2(¢)] sin(@ — )| sin((0 n>/2>|dnd<p§
0 Jo  ((¢ —¢)?+ (sin’(p) +sin(¢)) sin®((6 — ) /2))>

[T rg (¢) sin® () sin((6 — ) /2)dndg
S hlip -
0 Jo (¢ — )2+ (sin?(g) +sin?($)) sin>((6 — 1)/2))>
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Therefore, we obtain

" 2(0)dnd
G (h) (¢, 0)] < ||h||upf / o(p)dndy .
0 Jo  ((¢ —¢)?+ (sin’(p) +sin?(¢)) sin®((0 — n)/2))>

From the assumption (H2) on ro combined with (4.114) we get for any 8 € (0, 1), and
then

IG(h)(¢.0)] < ||h||Lip/ / 6 — @lP~ Isin((® — )/2)|Pdndg < IlhlLip.
0o Jo

Therefore
IGh)|ILee S g (4.132)

The next step is to check now that dyG (h) € %P by making appeal to Proposition C.1.
From direct computations using (4.130) we find

T 2
3 sin(e)rg (¢) sin(0 — n)ga (¢, n)8 A9, 0, ¢, n)
9pG(h)(¢. 0) = 5/ / 0 2 dndyg.
0 A(p,0,0,1) ;
Note that we can insert the derivative inside the integral, to make this rigorous, cut off
the integral in n away from 6 and take a limit. Adding and subtracting in the numerator
d,A(¢, 0, @, n), it can be written in the form

dpG (h) (¢, 0)

T L2
3 / f Sin(p)r3(¢) sin(® — ga (e, 1) BpA@. 0.9.1) + 9 A@.6.9.1)

dndg
A9, 0,0, 77)2
T 2
3 f / SR )00~ (o A G0
2D o A@.0.0.0)3
Integrating by parts in ¢ in the last term yields
9y G (h) (¢, 0)
w
3 f / Sin(@)r3 ) sin® — o (0. 1) (ApAG. 0. 0.1 +0pAG.0.0.m) |
A@.0.9.)3

0 JO
/ T / by (sin@)rg @)oo, n)) sin(@ — )
- dnde
0 Jo Ao, 0, ¢, n)7

3
= 5%(¢.0) - 92(¢.9).

The goal is to check the kernel assumptions for Proposition C.1 in order to prove that
%, and % belong to €P, for any g € (0, 1). For this aim, we define the kernels

sin(g)rg (¢) sin(6 — n)go (¢, 77)(8¢+8(p)A(¢ 2 77)
A¢.0.9.1)3

Kl (¢’ 93 @, 77) =
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and

3y (sin(¢)rg (@)go(p. m) sin(® —n)
A@.0,0,m)

Let us start with K| and show that it satisfies the hypothesis of Proposition C.1. From
straightforward calculus we obtain in view of the assumptions (H) and the mean value
theorem

|3 +8,) A, 0, 9. M| = 1207(@) = 16()) (r0(¢) — ro(9))
+2(ro(@)ro(@) + ro(@)rg(#)) (1 — cos(6 — 1))
— 2(sin(¢) — sin(g))(cos(¢) — cos(¢))
< (@ — @)+ (sing +sing) sin® (0 — n)/2).  (4.133)

K2(¢, 97 @, 77) =

Using the inequality |ab| < %(a2 +b?) allows to get

sing| (3 +9) A, 0, . M S (¢ — 9)” + (sin® ¢ +5in® §) sin (0 — n)/2).
Thus, applying (4.131) we deduce that
sing[(Bp +9p) A, 6, 9, m| S1A(¢. 6, 9, 7). (4.134)
Then, putting together (4.128), (H2), (4.131) and (4.134) we find
sin(g)rg (¢) sin®((0 — n)/2)

((¢ — 9)2 + (sin®(¢) + sin?(p)) sin®((6 — n)/2))%
sin(¢)

((¢ — 9)2 + (sin*(¢) + sin®(p)) sin® (6 — n)/z))%

As a consequence of (4.114), we immediately get

IK1(¢, 6,0, m| < IhllLip

S N AdlLip

[K1(9.6, 0. M| < lIhliLiple — @IP ™ sin(® — m)/2)|7F, (4.135)
for any 8 € (0, 1). Let us compute the derivative with respect to ¢ of K1,

pK1(9, 0,90, 1)
_sin(@)rg () sin(0 — 1)go (9. 1) ((0p + 0,) A($, 6, @, 1))

A, 0, 9,17
_5sin(@)rd (@) sin(@ — m)go(p. )0 +0,) A, 6. 9. ) A, 6. 9. 0)
2 A(g. 0. . n)?

From direct computations, we easily get

105((3p + 0,) A, 6, 0, M| < |6 — @] +sin* (6 — 1)/2) (4.136)

and

105A(¢, 6,9, )| S 16 — ¢l +sin(p) sin® (6 — 1)/2). (4.137)
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Then, it is clear from (4.131) that

1
[0p AP, 0,0, M| S A2($, 0, ¢, ). (4.138)

In addition, one may check that

(3 + 3) A, 0, 0, )| S (¢ — @)* + (sing +sing) sin®((0 — 1)/2)
S A, 0,0, m(lp — ¢l +|sin(@ — n)/2)]).  (4.139)

By using (4.128), (H2), (4.131), (4.136), (4.138) and (4.139), one achieves
95K (620.9.m)] S Ml ——— O (@ e+ s O~ /D)
((¢ — 9)2 + (sin*(¢) + sin(p)) sin®((6 — 1) /2))>
sin?(¢) (¢ — ¢ + | sin((0 — n)/2)])

+ 12 llLip 3
((¢ — 9)2 + (sin®(¢) +sin(p)) sin? (6 — 1)/2))>
sin’ () (19 — ¢ +sin((8 — n)/2)]) .

3

(¢ — )% + (sin* () +sin () sin* (6 — 1)/2))*

Therefore, using some elementary inequalities allow to get

S lRllLip

sin ¢
(¢ — ¢)2 + (sin®(¢) + sin?(p)) sin*((0 — ) /2)
6 —¢l~" sing _
((¢ — 9)? + (sin’(¢) + sin? (¢)) sin* (6 — n)/2))%
Applying (4.114) implies for any B € (0, 1)

10pK1(#, 6,0, m| < [InlLip

S lIAllLip

105K 1(¢, 0, ¢, M| < ClihlLiplg — @I~ P |sin((® — n)/2)|7F.

Now, let us move to the estimate of the partial derivative dg K, given by

0 Ki(p,0,¢,n)
sin(e)rg ()99 (sin(@ — n)go (9. M) (3 + dx) A, 0, ¢, 1)
A.6.9.1)3
.\ sin(@)rd (¢) sin(0 — n)go (. M) {0y + ) A($. 0., 0. m)}

A$.0, 0,73
5sin(@)rd (@) sin(@ — m)go (9. )3 +8,) A, 6. 9. ) D A@. 6. 9. 1))
2 A(¢. 0,9, 1)?

By definition of gg in (4.127) and (4.128), one concludes in view of (2.17) and (4.131)
that

109 (sin(@ — 1) ga (@, M| S hllLip sin(e)| sin((@ —n)/2)| S IIhIILipA%(qﬁ, 0,9,1m).
(4.140)
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Moreover, one gets

106 { (3 + ) A9, 0, 0, M} | < (sin(g) +sin(e))| sin(@ — n)| < A%(¢, 0,9, m).
(4.141)

Using also the definition of A, we obtain

1094, 0,9, )| < Csin(@) sin(@)|sin(@ — )| S sin(@)A (@, 0, ¢, 1).(4.142)
Then, with the help of (4.128), (4.131), (4.133) (4.140), (4.141) and (4.142), we can
estimate dg K| as
sin () ((¢ — @) + (sin(p) +sin(@)) sin®((6 — 1) /2))

(¢ — )% + (sin?(¢) + sin(¢)) sin? (6 — n)/2))’
sin?(¢)
(¢ — ¢)2 + (sin®(¢) + sin? (p)) sin*((0 — n)/2)
sin’ () ((¢ — 9)? + (sin(p) + sin(®)) sin® (0 — 1)/2))

+ |2 llLip )

(¢ — )2 + (sin() + sin® () sin?((0 — 1)/2))°

106 K1(¢, 0, 0, M| < llAllLip

+ [ AllLip

Consequently we get

I lLip sin®(g)
(¢ — ¢)2 + (sin®(¢) + sin? (p)) sin*((0 — n)/2)
- 12 llLip | sin((© — 1)/2)| " sin(p) ,
T (¢ — 90 + (sin?(@) + sin? () sin((6 — n)/2))%
Therefore we obtain by virtue of (4.114)

106 K1(¢, 0, 0, M| <

199 K1(, 6, 9, M| < CllihliLipld — @] 7P| sin((@ — n)/2|7@ P, (4.143)

forany B € (0, 1). Hence, all the hypothesis of Proposition C.1 are satisfied and therefore
we deduce that ¢, belongs to €# ((O, ) X T), for any B € (0, 1). The estimates of the
kernel K, we are quite similar to those of K1 modulo some slight adaptations. We shall
not develop all the estimates which are straightforward and tedious. We will restrict this
discussion to the analogous estimate to (4.135) and (4.143). First note that thanks to
(4.128) and (4.129) one gets

|3, (sin(@) g () g6 (9, )| < IllLip sin® ()| sin((@ — 1) /2)].

This implies that

sin(g) sin®((8 — 1)/2)

A($,0,9,m)?
sin(p)

LA
A(g,0,0,1m)2

|K2(9., 60, 0. m)| < IRlLip

S lhlluip

It follows from (4.131) and (4.114) that

1K2(¢, 0, 0, M| < IRllLipl — @l P Isin((@ — n)/21797P), (4.144)
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which is the announced estimate. As to the estimate of dy K, we first write

3y (sin(@)rd(@)h(p, 0)) sin(@ — n)

Ap.0,¢.1)3
, % (Sin@)rg (@)ga(p, m) cos(® — 1)

3
A(g,0,9,1m)2

89K2(¢’ 07 (ps T}) = -

3 89A(¢’95 @, 77)
- K29, 0,0, 0)————F—— (4.145)
2 Ag.0,9,1)
Straightforward calculations using (H2) and (2.17) show that
|3, (sin(@)r5 (@)h(p. 0)) sin(@ — )| _ il sin’ ()| sin((6 — )/2)|
3 ~ 1p 3
A(}.0,9,1)2 A(®.0,¢9,1n)2
sin’(¢)
Slallvp—r———-
A(g,0,9,1)

Putting together (4.131) and (4.114) implies

sin? (p) < L 1 sin(¢)

7 6 — 2 I A

A6 0. S 5@ —n/2) 000
< ! . (4.146)
~ ¢ — lPlsin((0 — n)/2)|>F '

Therefore we find
|8, (sin(@)r5 (@)h(p. 0)) sin(@ — )| _ I ILip _
A, 0,0,1)> ~ ¢ — olP|sin((@ — n)/2) PP

As to the second term of the right-hand side of (4.145), we get in view of (H2), (4.128)
and (4.129)

|3, (sin(@)r (9)ga (. 1) cos® —m)| _ il sin’ ()| sin((6 — n)/2)|
~ 1p
A$.0.¢.1)3 A$,0, 9,12
sin®(g)
< |1h||Lip ———————
~ Wl 268, 0.
It follows from (4.146) that
|3, (sin(@)r2 (@) go (¢, m)) cos(® — n)| 1
3 /S ”h“Lip Bl i Z—ﬂ'
A, 6,9, 10)3 ¢ — @lP|sin((6 — 1)/2)]

Concerning the last term of (4.145), we put together (4.142), (4.144), (4.131) and (4.114)
that

|09 A, 0, @, n)
A(p,0,¢0,1m)

S lAliLipld — @ 7P|sin((@ — n)/2)|" 1P

|K2(,0, 9,1l
sin ¢
-
A2(¢,0,9,m)
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S lhliipld — @7 P|sin((6 — n)/2)|~ P,
Therefore collecting the preceding estimates allows to get the suitable estimate for d K>,
|39K2(¢7 0, @, T))| ,S ”h”Llp|¢ — ¢|_/3| sin((0 — n)/2)|_(2_ﬂ)

The estimate for dy K> can be done similarly in a straightforward way. Consequently
the assumptions of Proposition C.1 hold true and one deduces that % € ¢*# ((0, ) X T).
Hence we obtain d4G € &P ((0, T) X ']I‘), with the estimate

19sG(Mlgs S Nhllgra. (4.147)

The next stage is to show that dg G (h) € ¢h ((0, T) X T) following the same strategy
as before. From (4.126), we get

sin(@)ro(p)h(p, 1) AP, 0, @, n)
G (h)(p,0) = —5—(@[ / 4.0 0. .

Direct computations show that

¥ AP, 0,9, m) = 2ro(P)ro(p) sin(0 —n) = =0, A($.0, ¢, n).

It follows

sin(@)ro(p)h(p, 1)0, A9, 0, ¢, n)
dG(h)(¢,0) = 37 (¢)/ f AG.0.0 "3

On the other hand, integration by parts in 7 (this can be done by cutting off the integral
in n away from 6 and taking a limit) yields

kg 2w
/ f IOk OWAG b0 1
o Jo A0, 9.1)

Thus we deduce by subtraction

¥ G (h) (9, 0)

T sintyro(e) (k. ) — (e, 9))8 AG.6.9.m)
S dnde
2 70()

A$,0,9, )7
T 2
:f / sin()rg () (h(g. n) — h(p, 0)) sm(n—9) do. (4.148)
A9, 0, 9, r/)2

Since h € €12, then the mean value theorem implies

lh(p,0) — h(g. m| < IhlLipl® — nl.

Moreover, by the 2 -periodicity of & in 1 one obtains

h(9,0) — h(p, M| < Ihllgre|sin (6 —n)/2)|. (4.149)
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Define the kernel
sin(@)rd () sin(n — 0) (h(g, n) — h(g,0))
A($,0, 9,12

and let us check the hypothesis of Proposition C.1. First using (4.131), (H2) and (4.149)
we obtain

K3(¢’ 93 @, 77) =

bl

sin’ (@) sin?((0 — 1)/2)

((¢ — 9)2 + (sin®(¢) + sin®(p)) sin®((6 — n)/2))%
sin(p)

(6 — @) + (sin’($) + sin(¢)) sin((6 — 1)/2))*

1K3(#.6, 0. M| S Ihllga

S hllgre

Applying (4.114) yields

K3(9.6, 0. M| < llhllgralg — oI~ 7P sin(@ —m/2)17F, (4.150)
for any B € (0, 1). Let us estimate dy K3 which is explicitly given by,
§Sin(<p)r§(¢>) sin(n) (h(g, 1) — h(g, 0))dpA(¢, 0, ¢, n)

2 5
A(p,0,9,1m)2

3 0pA(h, 0,0, m)
=—-K ,0,p, ) ——MM8M88M -
R K300 G o)

By virtue of (4.138) and (4.150), we achieve

8¢K3(¢’ 09 @, ’7) = -

105K3(¢, 0, 0, M1 < hllgrald — oI~ sin (0 — ) /2)| PA~2 (@, 0,0, ),
1Al 1.0
~ g — @2~ sin((@ —n)/2)|F’

for any B € (0, 1). It remains to establish the suitable estimates for dy K3. First we have

3 99 A, 0, ¢, 1)
89K3(¢9 97 7)7) =__K3(¢9 97 7)7)—
¢ 2 TN

_sin()rg (9) sin(n — 0)dph(p, 6)

A@.0,9.m}
_sin(@)rg (¢) cos(y — ) (h(p. n) — h(g.0))

3
A(g,0,9,m)2
Using (4.142) and (4.150) (where we exchange 8 by 1 — ) we get

|K3(.60,0,1) [00A@.6, 9. ) < 72110 sin ¢
U A@ 0 Y He = elPLsin(@ = m/DIF Az (g, 6,0,
Il

~ ¢ — lB|sin((@ — n)/2)>F
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For the second term of the right-hand side of dg K3 we write in view of (H2)

i) @) sin = Ollaoh(e. O | sin' @)l sin(@ — /)
A0, 9. 1) M A0,
Sinz(go)
SHhHLIPW

Applying (4.146) yields

sin(g)rg (¢)| sin(n — 0)|18ph (¢, )| _ 172 Lip .
A9, 0, o, ;7)% ~ ¢ — @lP|sin((® —n)/2)|>~F

Concerning the last term of the right-hand side of dg K3, it is similar to the foregoing
one. Indeed, using (4.149) and (H2) we get

sin(@)r3 (@)l cos(n — )|, m) — hg, 0)| _ il sin3 ()| sin((n — 0)/2)]
A(¢, 0,9, 1)? ~ A(¢, 0,9, 1)
2
< hllogre —A(;ne“(’;) ~

It suffices to use (4.146) to obtain

sin(¢)rg (¢)| cos( — O)| (g, 1) — h(g.0)| _ il sin’ (¢) | sin((n — 6)/2)|
A0, 9.1 h A@.0,9.m}
”h”(gl,a

~ e —¢lPlsin(@ —m/2)PF
Therefore we get from the preceding estimates

Iallgra

WK3(p.0, 90,1 < - '
196 K30 0. 0. DI S B sin(@ = m/2) P

Consequently, all the assumptions of Proposition C.1 are verified by the kernel K3 and
thus we deduce that 3G (h) € € ((0, ) x T) for any B € (0, 1), with the estimate

196G (M) llgs < Nhllgre.
Putting together this estimate with (4.147) and (4.132) yields
IGMW)llgrs S Nhllgre,

and this achieves the proof of the proposition. O
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4.6. Transversality. We have shown in Proposition 4.6 that when 2 belongs to the
discrete set {€2,,, m > 2} then the linearized operator o F(S, 0) is of Fredholm type with
one-dimensional kernel. This property is not enough to bifurcate to nontrivial solutions
for the nonlinear problem. A sufficient condition for that, according to Theorem B.1, is
the the transversal assumption which amounts to checking

0% 1 F (2, 0) fr ¢ I3 F (R, 0)),

where f, is a generator of the kernel of afF (2, 0). Note that as a consequence of
(4.1) and (4.2), for a function & : (¢, ) — anl hn(¢) cos(nf) € Xy, we get

0 F(Q,00h(¢.0) =Y LiTha(¢) cos(nd),

n>1

with
L, () = va(@)hn(d) — / Hy (¢, 9)hn (@, p)de
0

=) (hn (@) — K hn ().
where ICE2 is defined in (4.82). Hence, the second mixed derivative takes the form,
3 F(Q,00h(@,0) = —h(@,0).
Our main result of this section reads as follows.
Proposition 4.7. Let m > 2, then the transversal condition holds true, that is,
03 1 F(Qun, 0) fry ¢ Tm(d 5 F (R, 0)),
where f,, is a generator of the kernel of 0y F(Qm, 0).
Proof. Recall from the proof of Proposition 4.6 that the function f; has the form
(@, 6) = h}, () cos(mb)
and h}, is a nonzero solution to the equation
K iy, () = I, ().
It follows that

304 1 F(Qun, 0) f5(.0) = —h}, () cos(mb).

Assume that this element belongs to the range of 9 F (2, 0). Then we can find £,
such that

(@) = v, (@) (hn (@) — Ky b ().

Dividing this equality by vg,, and taking the inner product with 4},, with respect to
(-, "), defined in (4.84) yields by the symmetry of IC,S,E'"

<%’ h’*")szm - <hm’ h21>sz,,, B <K2m fim, h:”)sz

m
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_ <hm, h:n>9 - <hm, /cf;mmg

m m

m

= {1, 1y = K523, )
=0,

Coming back to the definition of the inner product (4.84) and (4.4), we find

/ (12, (@) sin(g) rg (@)dg = 0.
0

From the assumption (H) we know that ro does not vanish in (0, 7). Then we get from
the continuity of 4}, that this latter function should vanish everywhere in (0, ), which is

a contradiction. Hence, we deduce that f;» does not belong to the range of 9 F(Qp, 0)
and then the transversal condition is satisfied. O

5. Nonlinear Action

This section is devoted to the regularity study of the nonlinear functional F defined in
(2.13) that we recall for the convenience of the reader,

- 1 Q
F(2, f)(¢.0) = 0@ {I(f)(¢, 0) — Erz(d), 0) —m(L, f)(¢)} ,

for any (¢, 0) € (0, ) x (0, 27) and where

T 2 r(p,n) .
I(f)(¢,9):_4if / / - rsm(fﬂ)drdndﬁﬂm 7
Tt b b [(re'h, cos(p)) — (r(¢, 0)e'’, cos())|

the mean m is defined in (2.11) and

r(¢,0) =ro(@) + f(¢,0).

We would like in particular to analyze the symmetry/regularity persistence of the
function spaces X, defined in (2.15) and (2.16) through the action of the nonlinear

functional F.

5.1. Symmetry persistence. The main task here is to check the symmetry persistence of
the function spaces X% defined in (2.15) through the nonlinear action of F. Notice that
at this level, we do not raise the problem of whether or not this functional is well-defined
and this target is postponed later in Sect. 5. First recall that

X% = if:[O,n]x [0,27] > R : [ €€, £(0,0) = f(x,6) =0,
F(53-0.0)=r(5+6.0). 1 @.0)
=>_ fu(@) COS(an)].

n>1
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Proposition 5.1. Let @ € R, f € X;, with m > 1 and assume that r( satisfies the
conditions (H). Then the following assertions hold true.

(1) The equatorial symmetry:

F(Q, f)(m —$,0) = F(Q, f)(¢,0), Y($,0) [0, 7]xR.

(2) We get the algebraic structure,

F(Q, )(@,0) = fu(¢)cos(nd),

n>1

for some functions f, and for any (¢, 0) € [0, 7] x [0, 27].
(3) The m-fold symmetry: F(Q o, 0 + 27T) = F(SZ @, 0), for any (¢,0) €
[0, 7] x R.

Proof. (1) From the expression of F in (2.13), it is suffices to check the property for
I(f). One can easily verify using the symmetry of the functions cos and r combined
with the change of variables ¢ > 7 — ¢

1(f)(r —¢.0)

A N RACR) .
_ _L rsin(p)drdnde
= A7 [ ‘[ /O‘ |(rei'7, COS((O)) — (r(mw — o, Q)eiﬁ’ cos(w — ¢))|
- _i b4 2 r(w—g,n) rsin(r — @)drdnd
IR S S |(ref, —cos(p)) — (r(¢. 0)e’®, —cos(¢))]
_ _i " ” e rsin(g)drdnde
IS S S |(rein, cos(g)) — (r(¢, 0)ei?, cos(¢))]

=1(f)(0.0).

(2) In order to get the desired structure, it suffices to check the following symmetry

1(f)(¢,=0) =1()(#.0), V(,0)€[0,n]xR.

To do that, we use the symmetry of r, that is r (¢, —0) = r(p, 6), combined with the
change of variables n — —n allowing one to get

T[T rsin()drdnde
I(f)(¢,—0)=—— l_ -

ar oS lrel cos(e) — (r(@, —B)ei?, cos())]
. _L " " rmm rsin(p)drdnde
o An o Jo 0 [(re=in, cos(p)) — (r(¢, 0)e?, cos(¢))|

T I rrien) .

_ rsin(@)drdnde
A /o Z _[ |(refn, cos(p)) — (r(¢, 0)e'?, cos(¢))|

=1(f)(¢.0).
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(3) First, since r belongs to X}, then it satisfies r (¢, 6 + zn—’l’) = r(gp, 0). Thus we get by
the change of variables n — n + 27”

2
1(f) <¢,9+%)
1 / i f o f ren r sin(@)drdndg
Th b h |(rei, cos(g)) — (r(, 6 + Z2)el O+30 cos(¢))]
ris T r +2l
1 / / . f @) rsin(@)drdyde
O S A 8 (re! ), cos(9)) — (r(, 0)el O+, cos(¢))]
T 2 r(p,n) .
_L rsin(@)drdnde
n[ [ [ [(rein, cos(p)) — (r(¢, 0)e'?, cos(¢))|

=1(f)(¢.0).

Notice that we have used the fact that the Euclidean distance in C is invariant by the
rotation action z > ¢! m z. O

The next discussion is devoted to the symmetry effects of the surface of the vortices
on the velocity structure. We shall show the following.

Lemma 5.1. If rg satisfies (H) and f € X&, withm > 2, then
VzeR, / / sin(@)dy (r (¢, n) cos(n))dncfw 0.
2(<p, ) + (z — cos ¢) )

VzeR, / / sin() 0, (r (¢, n) s1n(;7))d,7[i(p N
2(‘/% n + (Z — COSgo) )2

As a consequence, the velocity field defined in (2.4) is vanishing at the vertical axis, that
is,

U(0,0,2) =0,
forany z € R.
Proof. Set for any z € R,

sm(<p)8 (r (¢, n) cos(n))dndy
Ii(z) = T
2(¢, n) + (2 — cosg) )2

_ Sln(fp)8 (r(p,n) Sln(n))dnd¢
h(z) = T
2

z(w, ) + (z — cos ) )
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Observe that from the periodicity in n we may write
sm(¢)(8 r) (g, n) cos(n)dndg
Ii(z) = T
2(<p, )+ (z — cos p) )2
f / sin(@)r (¢, n) sin(n)dndg
T
o 2(('0, n) + (z — cos ) )2
Since f € Xj,, thenr(p, —n) = r(p, n) and so (9,r)(¢, —n) = —(9,r)(¢, n). There-
fore making the change of variables n — —n allows to get I;(z) = 0.
To check 1>(z) = 0 we shall use the m-fold symmetry of r. In fact by the change of

variables n = n + 2’7” and using the 2m-periodicity in  and some elementary trigono-
metric identity, we find

Dh(z) = / f Sln(‘ﬂ)an r(p, n) sin(n + _))d y
(r(¢. )2 + (z — cos()2)?

= cos(2m /m)I>(z) +sin(2w /m) 11 (z).

Since m > 2 and I1(z) = 0 then we get I>(z) = 0.
Coming back to (2.4) and following the change of variables giving (2.8) we easily
get

U(0,0,2) = (11(2), 2(2), 0),

which gives the announced result. O

5.2. Deformation of the Euclidean norm. The spherical change of coordinates used to
recover both the velocity and the stream function from the surface geometry of the patch
yields a deformation of the Green function. Notice that in the usual Cartesian coordinates
the Green kernel is radial and thus it is isotropic with respect to all the variables. In the
new coordinates we lose this property and the Green kernel becomes anisotropic and
the north and south poles are degenerating points. To deal with these defects one needs
refined treatments in the behavior of the kernel or also the adaptation of the function
spaces which are of Dirichlet type. The following lemma is crucial to deal with the
anisotropy of the kernel.

Lemma 5.2. Letm > 1, a € (0, 1), rg satisfies (H), f € X, such that | fllxe < &with
& small enough and setr = ro+ f. Define for any ¢ € [0, 51, ¢ € [0, 7], 0, n € [0, 27]
and s € [0, 1]

Js(9, 6,0, 0) = (r(p, n) — s7($, )
+257 (¢, O)r (g, n)(1 — cos(@ — n)) + (cos(p) — cos(g))>.

Then

1Jo(¢, 0, ¢, m)| > C sin*(p), (5.1)
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(@, 0,0, = C((sin(9) +529%)sin (0 — m)/2) + (9 + 929 — 9)?), (52)

with C an absolute constant. Remark that we have restricted ¢ to € [0, 7 /2] instead of
[0, ] because of the symmetry of r with respect to 7.

Proof. Since f € Bxe (¢), for some ¢ < 1, and ro verifies (H2) then

r(@,n) =ro(p) + f(@.n) = 2Csing — [ f (g, n)l.

In addition f satisfies (2.17) and in particular

[f (@, n)l

<C in-
sin(go) = 1||f||L1p

It follows that,
r(@,m) = (2C = C1l flILip) sin(g).
By imposing || flLip < € = C%’ we infer
r(p,n) = Csin(g). (5.3)
Consequently, we obtain

Jo(#,0, 9. 1) = (g, n) + (cos(p) — cos(¢))? > C sin*(p),

which gives the estimate (5.1). Let us now check the validity of (5.2). First, we remark
that

Js(#,0,9,1m) = r*(@,n) +s2r (¢, ) — 2sr(p, n)r(p, ) cos(d — n)
+(cos(p) — cos(¢))>.

Denote
g1(x) := (@, ) +x% — 2x7 (¢, ) cos(f — 1) + (cos(p) — cos(¢))?,

and therefore we get the relation g1 (sr(¢, 0)) = Js(¢, 6, ¢, n). From variation argu-
ments we infer that the function g; reaches its global minimum at the point

xe =r(p,n)cos(@ —n).

Let us distinguish the cases cos(8 — 1) € [0, 1] and cos(6 — n) € [—1, 0]. In the first
case, one has according to (5.3)

Js(@,6,0,n) = gi(sr(¢,0))
> g1(xc) = r’ (@, ) sin®(@ — ) + (cos(p) — cos(p))?
> C(sin(p)sin® (6 — 1) + (cos(p) — cos($))?).

Using that cos(6 — n) € [0, 1], one gets

sin?(0 — 1) = 2sin?((0 — 1)/2)(1 +cos(@ — 1)) > 2sin’((0 — 1)/2).
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Moreover, since ¢ € [0, %] and ¢ € [0, ], we obtain

| cos(@) — cos(¢)| = |(1 — cos(¢)) — (1 — cos(¢))]
= 2|sin’(¢/2) — sin*(p/2)|
= 2|sin(¢/2) — sin(p/2)|(sin($/2) + sin(¢/2))
> Clp — ¢llg +ol. (5.4)

Hence
Js(@.0. 9.1 = C(sin(@)sin®(@ =/ + @+ @ = 9)?).  55)

In the second case where cos(@ — 1) € [—1, 0], the critical point is negative, x, < 0,
and one has from the variations of g1, the estimate (5.3) and (5.4)

Js(p, 0,9, 1) = g1(s7(¢, 0))
> g1(0) = (¢, n)* + (cos(¢) — cos(¢))?
> C(sin®(p)sin®((0 — n)/2) + (¢ + ) (¢ — 9)?). (5.6)

Putting together (5.5) and (5.6), one deduces that

J@.0,.1) = C(sind(@)sin®(0 = /) + @ +9)* @~ 9)?). (5D

forany ¢ € [0, /2], ¢ € [0, 7] and 6, 5y € [0, 27].
Following the same ideas, we introduce the function

g2(x) 1= x> +5%r%($, 0) — 2sxr($, 0) cos(6 — n) + (cos(p) — cos(¢))’,
which satisfies g>(r (¢, n)) = Js(¢, 0, ¢, n). Then as before we can check easily that
the function g, reaches its minimum at the point X, = sr(¢, 6) cos(6 — n). Similarly

we distinguishing between two cases cos(6 — ) € [0, 1] and cos(8@ — ) € [—1, 0]. For
the first case, using (5.4), we have

Ts(#.0,0,1) = C(s*sin*(¢)sin® (0 — n)/2) + (¢ +¢)*(¢ — 9)°).
Since ¢ € [0, /2], we have that sin(¢) > 2¢, and then
Js(@.0.9.1m) = C(s*¢>sin® (0 — 0)/2) + (§ + 9)* (¢ — 9)7). (5.8)
In the other case, i.e. cos(§ — i) € [—1, 0], one has that ¥ < 0 and then
Js(@.0.9.1) = g2(r(p. M) = g2(0) = s7r (¢, 6)* + (cos(g) — cos(¢))*
> 57 sin’ () sin® (0 — n)/2) + (¢ + ) (¢ —(;9))2.

By summing up (5.7)-(5.8)—-(5.9) we achieve (5.2). O
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5.3. Regularity persistence. In this section we shall investigate the regularity of the
function F introduced in (2.13). The main result reads as follows.

Proposition 5.2. Letm > 2, « € (0, 1) and ro satisfy (H). There exists ¢ € (0, 1) small
enough such that the functional

F : R xBxx (e) > X2,
is well-defined and of class €. The function spaces X * are defined in (2.15) and (2.16).

Proof. First we shall split the functional F into two pieces

- Q
F(Q, /)(¢.0) = Fi1(f)(¢,0) — EFz(f)(tb, 0)

2
1 Q
_2_/ |:F1(f)(¢>,9)——Fz(f)(¢,9):|d6’,
T Jo 2

with
I(f)(¢,0)
F o) = IS8T
1)@, 0) &)
2(¢, 0
Fa(f)(@.0) =2/ (. 0)+ =22,
ro(p)
Define also

2
1
F1(f)(@,0) :== Fi(f)(¢,0) — E/ Fi(f)(¢,0)do,
0

2
1
F2(f)(@,0) := F2(f)(¢,0) — Ef F2(f)(¢,0)do.
0

Note that I (f) is defined (2.14) and it is nothing but the stream function vy associated
to the domain parametrized by

(®,0) € [0, 7] x [0, 27] > ((ro(¢) + F(¢.0))e'? cos ¢) :
Thus

Yo ((ro(@) + f (¢, 0))e'®, cos ¢
Fi(f)(¢.0) = ( ) ) (5.10)
ro(¢)

We point out that according to the general potential theory the stream function ¥y belongs

at least to the space €% (R?). The proof will be divided into three steps.

Step 1: f — Z(f) is €. In this step, we check that .%, is well-defined and of class

%. Note that checking the regularity for .%; is equivalent to do it for F>. The first term

of F> is trivial to check. As to the second one, it is clear by Taylor’s formula using the
2

boundary conditions and (H2) that the function {—0 is bounded and vanishes at the points

¢ = 0, . For the regularity, we differentiate with respect to ¢,

f2<¢,9)> , <f<¢,e>>2 f(@,0)
9, (=220 ) = — 2 3y f (9, 0).
"’( ro(@) O\ ) T @9
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Using again Taylor’s formula and the assumptions (H) on rp we deduce that the functions

(¢,0) —> < s(l‘f:g) and (¢, 0) — :(1)'(‘¢‘f’) belongs to €’*. Thus using the algebra structure
f(.0)

of this latter space we infer that (¢, 0) — )

2
gebra structure allows to get dy (5—0) € ¢*“. Following the same argument we obtain

belongs also to €*. The same al-

dp F> belongs to ¢’“. Concerning the symmetry; it can be derived from Proposition 5.1
combined with the fact that frequency n = 0 is eliminated in the definition of .%, by
subtracting the mean value in 6.

Now let us check the ! dependence in f of F». First we can check that its Frechet
derivative takes the form

[ (¢, 0h(¢,0)

A Fa(f)h(,0) = 2h(¢,0) +2
rE2(f)h(9, 0) (9.0) + —

Using similar ideas as before, we can easily get that

07 F2(f)h — 0 F2(f)hlixe < Cllfi — fallxg IAllxg -

This implies that f +— 0.2, (f) is continuous and therefore .7, is of class ¢!

Step 2: f +— Z1(f) is well-defined. This is more involved than .%,. According to
Proposition 5.1 the functional .%; is symmetric with respect to ¢ = 7 and therefore
it suffices to check the desired regularity in the range ¢ € (0, w/2) and check that
the derivative is not discontinuity at /2. Let us emphasize that we need to check the
regularity not for F| but for .# First, we shall check that .% is bounded and satisfies
the boundary condition .%1(0, 8) = 0, for any 6 € (0, 27). The remaining boundary
condition .%| (7, ) = 0 follows from the symmetry with respect to the equatorial. For
this purpose, we write by virtue of Taylor’s formula

1
Vxy, € Rz, Yo(xp, cos @) = ¥o(0, 0, cos @) + xp f Vhl/f()(‘th, cosqb)dt. 5.11)
0

Making the substitution x;, = (ro(¢) + f (¢, 6))e'? and using (5.10) we infer

¥ (0, 0, cos ¢) . <1 . f(¢,9)> i
ro(¢P) ro(¢)

1 .
[t (0@ + 7@, 006”. cos0) ar

. ¥(0,0, cos¢)
)

We observe that the - denotes the usual Euclidean inner product of R?. Consequently,
we obtain

Fi(f)(¢.0) =

+.71,1(,0).

F1(@,0) = F11($,0) — (F1,1)0- (5.12)

Let us analyze the term .# | and check its continuity and the Dirichlet boundary
condition. First we observe from the assumption (H2) that O is a simple zero for ro and
we know that f(0, ) = 0, then one may easily obtain the bound

| Z1,1(9, D] = CA + 1106 [l o) IV Yoll oo r3)-
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Furthermore, according to Lebesgue dominated convergence theorem we infer

dg f(0,6)
ro(0)
and this convergence is uniform in 6 € (0, 27). Notice that the same tool gives the

continuity of .#; 1 in [0; /2] x [0; 27 ].
Now, applying Lemma 5.1 we get V¥ (0, 0, 1) = 0, and therefore

dl)irno%,l(qw) = <1+ )e”-vhx/fo (0,0, 1),

A 2 lim .% =1l F =0.
0 € (0,2m), ¢1gba‘1,1(¢,9) ¢%<J1,]>6 0

This implies that % is continuous in [0, 77 ] x [0, 277 ] and it satisfies the required Dirichlet
boundary condition .71 (0, ) = .%(, 6) = 0.

The next step is to establish that dg.%1 and 94.%1 are €*. We will relate such deriva-
tives to the two-components velocity field U = VhL Y. Differentiating (5.10) with
respect to 0 leads to

% F1(.0)
=0 F1(f)(¢.0)

=1y (@) Vio(r (¢, 0)e', cos(9)) - (r(¢>, 0)ie® + 0pr (6, 9)ei9>

i0
r(¢ 0) 227 ueo, 9)8’0 cos()) - e’0+89r(¢ 0) U(r(¢,0)e'”, cos(¢)) iel?

r0(®) r0($) o
(5.13)

where r(¢, 0) = ro(¢) + f (¢, 6) and recall that - is the usual Euclidean inner product
of R2.
Concerning the regularity of the partial derivative in ¢, we achieve

dp F1(f) (9, 0)

r0(9) i pr (¢, 0)
- 0
rg(¢)‘/’ o(r(¢, 0)e”, cos(¢)) + ———— (@)

Vo (r (¢, 0)e'?, cos(¢)) - €'

- S::(f)) 8.90(r(@. 0)e”, cos(e))
(@) i B U(r(¢.0)e"”, cos(@) . i
) V0@ O cos@) = 0yr(6.0) s ie
_ @)y o6, 0)e®, cos(e)). (5.14)
()
Define
J1($,0 O(z) Yo(r(p, 0)e?, cos(9)),
and

Ur(¢,0)e™, cos@)) . 5.

,0) = 04r (¢, 0
S2(9,0) = yr(,0) @)
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Then from (5.14) we may write

sin(¢) i
0 F1(f)(@,0) = —_71(¢,0) — 72(¢,0) — W&%(V@, 0)e', cos(¢)).
Let us justify why we can restrict ourselves to prove the regularity for ¢ € [0, /2] by
symmetry. Indeed, since r (7 — ¢, 0) = r(¢, 0) and ro(wr — ¢) = ro(¢), then we obtain
that

r0(m = @) = —ro(¢), pr(w — ¢, 0) = dpr (e, 6).

That implies that rj(7r/2) = 0 and dyr(17/2, 6) = 0. By this way, it is easy to check that
H1(/2,0) = _Zr(n/2,60) = 0 yielding that there is not any jump at 7 /2. Moreover,
note that the last term belongs to €’* for any ¢ € [0, 7] (here we do not need to
resctrict ourselves to ¢ € [0, w/2]) and then, by symmetry, we can extend it to (0, ).
Indeed, as (¢, 0) — (r (¢, 0)e'?, cos(qb)) belongs to ¢ and 9,y € €“ (R3) then by
composition we infer (¢, 0) — 8Z¢0(r(¢, 0)e'?, cos(¢)) isin €*((0, ) x T). On the
other hand, the function % belongs to ¥* and thus by the algebra structure of €* we
obtain the desired result.

Concerning the term _¢7, we use Taylor’s formula for the stream function v as in

(5.11) finding that

r6(@)¥0(0, 0, cos ¢)

,0) =
J1(9,6) 2@

,0
ey (14200

ro(¢)
1
f Vio(s r (. 0)e', cos ¢)ds - e
0

_ 76(¢)1ﬂ0(0, Ov COS¢) ’ < f(d)ve)) —1
- 2) @1+ gy ) o @)

1
f U(s r(o, Q)eie, cos ¢)ds iet?.
0

We observe that the first term is singular and depends only on ¢ and therefore it does
not contribute in _#; — (_#1)s. Since (¢, 0) — rr(oqu)) belongs to ¢ then to get _7| —
(1) € € it suffices to prove that

1 i0
@.0) > | ULr@0.00e7.cos@) ey pu (5.15)
b ro(¢)

On the other hand to obtain _#> € € it is enough to get

U(r(¢,0)r", cos(@))
ro(¢)

From (5.13) we get that dg F1(f) € € provided that (5.15) and (5.16) are satisfied
together with

(¢,0) — iel? e €. (5.16)

(#,0) = Ur(p, 0)r'?, cos(p)) - €'? € €°. (5.17)
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By virtue of (2.10) and the fact that U = V,fw//, we find that

U(r(¢,0)e?, cos(¢))
in in
/ / sin(@) (3yr (@, e +ir (g, me) dndg (5.18)

|(r (¢, 0)ei? . cos(@)) — (r(p. mein, cos(p))|

Next we intend to prove (5.15), (5.16) and (5.17).
e Proof of (5.17). Using (5.18), we deduce that

U(r(¢, 0)e'?, cos(¢)) - €'
T[T sing)ay(r(p. mycosty — ) dndg
T Jo b |(r (¢, 0)e'?, cos(¢)) — (r(p, n)ei, cos())|

Using the notation of Lemma 5.2 we find that

, . 1
(r(¢, 6)e'”, cos(¢)) — (r(g, me', cos(e))| = 7 (¢, 6, 9, 1),

and therefore we may write

b4 2
i o 1 sin(@)dy (r (¢, 1) cos(y — 6)) dndg
U(r(¢,0)e"”, cos(9)) - e _E_/ / T '
0 0 Jl (d)v es 90’ 77)

This can be split into two integral terms

kg 2,
UGr(@.0)e cos(@)) - ¢ = f / I oty Oy
0 0 J12(¢, 97 (07 77)

_f”/”mwmmmmm—mmw
1
0 0 J]2(¢a 95 (pa 7))

=T1(¢,0) —12(9, 0). (5.19)

Next, we shall prove that 7 is €’“. Notice that the second term 7 is easier to deal with
than 7| because its kernel is more regular on the diagonal than that of Z;. To get Z, € €
it suffices to use in a standard way Proposition C.1. We shall skip this part and focus our
attention on the proof to the delicate part Z;. For this aim let us define the kernel

sin(¢)d,r (¢, n) cos(n —6)
1
Ji (9, 0,9,m)

We shall start with checking that .#] is bounded. For this goal we use Lemma 5.2 which
implies

'%/l(qbs 0, @, 77) =

C sin(p) |37 (¢, n)| .
{(@ +$)2(p — )2 + (sin?(p) + ¢2) sin® (0 — 1)/2))2

[21(h, 0,0, )| <
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It is easy to check the inequality
sin(g)

(0 +8)26 — )2 + Gin2(p) + 6 sin(0 — )/2))°
1

< T (5.20)
(@ =02 +sin(@© - n/2)’
By interpolating between
1
(@ =@ +sin2@ —m/2)" =16 - gl,
and
1
(@ =@ +sin’(©@ = m/2))" = |sin(@ = n)/2).
one finds that for any 8 € [0, 1] and ¢ < /2
sin(p)
(@+82@ - 9+ Gin*(9) + 62 sin>(0 = 1)/2))°
1
, 5.21
= 16— ol Plsin(@ — /21 20
implying that
C
| H1(¢. 0, 9. )| < (5.22)

¢ — @|1=P|sin((O — n)/2)F

Therefore, we easily achieve that 7; € L°°. To establish that 7| € ¢’*, we proceed in
a direct way using the definition. Before that we remark that to get the ’* regularity
in both variables (¢, 0) it is enough to check the ¥'“-regularity separately in the partial
variables. Thus we shall check that ¢ +— Z; (¢, 6) is €*(0, ) uniformly in 6 € [0, 27].
Take ¢, ¢p2 € [0, %] with 0 < ¢1 < ¢, then it is easy to check from some algebraic
considerations that

Zi(¢2,0) — Li(¢1,0)

b4 2
- / f Sin(@)3,r (¢, n) cos(n — 0)(Ji($1.6. ¢, n) = J1(d. 6. . n)dndg
- 1 1 1 1

0 0 J12(¢2707 (p7 77)-]12((151’9, wv n)(J]2(¢1597 (pv 77)+J]2(¢2’93 (pv 7]))
Coming back to the definition of J; seen in Lemma 5.2, we can check that
Jl(d’lae’ @, T}) - J](¢27 9’ @, 7))
= (r(¢17 9) - r(¢27 9))(7’((}5], 9) - r(‘pa 7)) + r(¢27 9) - r(‘/)’ n))
+2r (¢, m)(r(@1,0) — r($2,0))(1 — cos(6 — 1))

—(cos<p — CcoS ¢ +cosp — cos¢2)(cos¢1 — cos¢2).
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Since r € Lip we infer by interpolation
|r(¢1,6) —r($2.,06)]
= Clgr — 2l (Ir@1,0) = rig, mI' ™ + I (@2, 0) = (0, '),
and
[r(@1.6) = r@2.0)| = Clg1 = 2l (r' = (@1.0) +7'~(62.0)).
Consequently we find
[J1(¢1,0, 0, 1m) — J1(¢2, 0, ¢, n)l
= Clgr = 2l (Ir@1,0) = rg, P~ + (2, 6) — (@, )P~
+r(. ) (r' (1. 0) + ' 7 ($2.0)) (1 — cos(n — )
+|cos(p) — cos(@p) >~ + | cos(p) — COS(¢2)|2_“).
From straightforward calculus we observe that

Ir (¢, 0) = (@, I +r(p, mr(@i, 0)' (1 — cos(n — 6)) + |(cos(p) — cos(¢)|**

P <C,
Ji(¢i, 0, 0,m) 2
and then we find
[J1(¢1,0, 0, m) — Ji(d2,0, ¢, n)|
< Clpr = ol (1 @10, 0.+ 0, 9.0, 0.m).
It follows that
1(1.6.9. 1) — Ji (.6, 9. )]
TE (2.0, 0. I G1. 0,0, 1 (1. 6. 9,13 + 1 2,6, 9. 1)
< lp1 — ¢al® N |1 — 2| (5.23)

~ g 1 1 13
le (¢27 9’ (p’ )7)‘]]2 (¢l ) 09 (P, r}) J]Z (¢25 97 (pa 77)‘]]2 (¢] k] 97 (pa 77)
Using (5.23), one finds

T 2
i ) ,mMldnd
T1(62.0) = 11 (1. 0)] S 91 — 421" / / Selhrte: nidnde
0 0 J12(¢25 gawv 77)J12(¢1»9, (pa T’)

T sin@)ayr (e, mldnd

sin(¢ r(g,n)lanage
+|¢1—¢2|“f / : T :
0 0 le(¢2797 ()07 77)-]12(¢1»9a ()07 rl)

By virtue of (5.21), for any 8 € (0, 1) we obtain

k4 2w .
/ f sin(@) |87 (¢. )ldndg
o 1
0 O J]2 (¢2767 (p? n)‘llz(¢1597 (p7 77)
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T 2 _a
- |9y (. M J; *($2.0. 9. m)dnde
/. lp1 — @1 = sin((0 — n)/2)|P

Hence, we get in view of Lemma 5.2 and (2.17)

197, Ml @
D10, 0,0.m7 ™ (9 +¢0)2(i — )2 + (sin () + §2) sin? (0 — n)/Z))%
Sloi —el™

for any i = 1, 2. This implies that
k4 2 .
/ / sin(g) 3,7 (¢, )ldnde
@ 1
o Jo T (¢2,0,0,m)J7(¢1,0, 9, 1)
b4 2 o
< l$2 — p|""dndg
S 18— el Flsin(@ — /)P
T
|2 — 9| *dg
e — el P

bl
2 — 1™ ,
e o Qi Bl¥ =
$r.oeO.m) Jy 11—l

provided that 0 < o < 8 < 1. Similarly we prove under the same condition that

/ / $in(@) |3, (0, n>|dnd¢
< 0
¢1. ¢26(0 n/2> J (2.0, ¢, n)J (¢1,0,9,1)

Putting together the preceding estimates yields forany 0 <o < 8 < 1

VO € (0,2m), ¢1,¢2 € (0,7/2), |T1(¢2,0) — L1 (1, 0)| < Clg1 — ¢a|*,

where the constant C is independent of 6, ¢; and ¢,. Let us move on the regularity
of Z7 in 6. Here we shall use the estimate later proved (5.34) for s = 1, that is, for
01,6, € [0, 2r] we have

|J1(¢)7927 @, ’7) - J1(¢’017 @, ’7)|
1 1
J12 (¢7 927 (p7 77) + J12 ((;bv 91a goa 77)

Lo Lo
S 16— 92|“¢°‘2(11 (.0 o.m+ T 7 (@02, 0.1)). (5.24)

A

It is classical that

Note that

T 2 _ _ B
Ti(o, 01) — T1 (¢, 6) :/ f sin(g)d,r (e, U)(COS(U 01) — cos(n 92))
o J] (@,01,9,1)
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+/” /Zn sin()dyr (@, n) cos(n — 02)(J1(9, 62, 9. ) — J1(9, b1, ¢, 1) dndg
0 Jo J

1 i 7 :
29,01, 0. I @01, @B, 01,01 + I 9,61, 0.1)
iV 4
:// (H1,1+712)(®, 0, ¢, Mdndg
0 0

On the one hand, using (5.21) we easily get

Cl01 — 6]
¢ — @|'=Psin((® —n)/2)IF

for any g € (0, 1). On the other hand, we use (5.24) to estimate the second term:

[41.1(9, 0,9, )| <

. 2 Loe Lo
sin(@) "¢ (J, 2 (¢, 01,0, M) +J; 2 (.02, 0, 1))

1 1
‘]]2 (¢v 915 (p7 77)]12 (¢v 915 (ps 77)

| #12(¢, 6,0, m| < Clo1 — 62]"

: I+ po
< Cloy — 0" sne) 9
J]2 (@,01, 9, 77)112 (¢, 601, 9,1m)
: I+ po
+Cl6) — 6] sin(g) ¢ .

1 a

Jlj (d)s 917 §07 7])le (¢a 917 (p7 77)

By virtue of Lemma 5.2, we arrive at

|#1,2(¢. 60, ¢, 1)
: l+a
< Cloy — 0ol ——= ___ siny) :
sin(@) ¥ (|¢ — ¢| +|sin((61 — 1) /2)D* (1P — ¢l + | sin((62 — n)/2)])
o sin(p) 1+
+Clo) — O] —= . .
sin(@) (¢ — @l + [ sin((62 — ) /2)D* (I — | + [ sin((O1 — n)/2)])
< Cloy — 621" :

sin(@) "] sin((6; — 1)/2)72| sin((6; — n)/2)[73”

for y1, 2,3 € (0, 1) and y» + y3 < 1.
At the end, we can find that

IZ1(¢, 62) — L1 (¢, 01)| < ClO1 — 62|

Finally, this allows to get that Z; is €% ((0, w) x T).
e Proof of (5.16). In fact we shall establish a more refined result:

U(sr((P, 0)e'?, COS(¢))
ro(@)

uniformly with respect to s € [0, 1]. This allows to get the results (5.16) and (5.15).
Coming back to (5.18) and using J; introduced in Lemma 5.2 we find the expression

(¢,0) — iet? € €*([0, 7] x [0, 27]).

U(sr(¢, 0)e', cos(¢)) ioif
ro(¢)
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sm(w)&n r(so 1) sin(n —9)) dnde (5.25)
47rro(¢) J (¢,60,9,1) | |

Moreover, by Lemma 5.1 we have

b4 27 .
Y ($,0) € (0, 7) x (0,27), / / sin(¢)dy (r (¢, ) sin(n - 0))dndg _o,
0 0 J0(¢79! @, 77)7

and then we can subtract this vanishing term obtaining

U(sr(g, 0)e?, cos(¢)) el — r(¢,0)

r0(9) T Tann)
f / sin(y)?, (. ) sin(n—e)) (sr(qb 0) — 2r (p. n)cos(e—m)
J (9.6, w,n)Jo (9. 9. n)(J (.6, 0, n)+Jo (. 0.m)

Notice that we eliminate .the variable 6 from the definition of J because it is independent
of this parameter. Since (¢, 0) — rr(odiff is €%, then to get the desired regularity it is
enough to check it for the the integral term. Denote

K5, 9.6, 0.1) = sm(cp)a (rg.m sin(n—G)) (sr(¢ 6) — 2r (g, n)COS(G —n))’
J (.6, 0, n)JO (¢, 0. n)(J (9.6, 0, n)+Jo(¢ @, M)
(5.26)

dnde.

and let us show first that

T 2
(¢,0) — f / JH(s,¢,0,9,n)dnde,
0 0

belongs to L*°. It is plain that
sin(p) (r (¢, 1) + 13yr (. || sin(n — O)1)s(sr(§. 0) +r(p. m)

1
JSZ (¢v 9: (pa 77)J0(¢, (pv 77)
Combined with the estimate (5.1), it yields

(r(g, m) + 13,7 (¢, Ml sin(n — O)D)s(s7(p, 0) + (@, )
[l
sin() Ji* (¢, 0, ¢, 1)

As we have mentioned before at different stages, the symmetry allows us to restrict
the discussion to the interval ¢ € (0, 7/2). Then using Lemma 5.2 and (2.17) we achieve
that

sr((p 0) +r(p, 17) S +sin @

Js (9.6, 9.m) {(90 +9)2(¢ — @)% + (5in*(9) +52¢?) sin*((0 — n)/2)}%

1
S T (5.27)

((9 — )2 +sin*((0 — 1) /2))?

| A2(s, .60, 0, M|

| (s, .0, 0, M| S
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Hence, the estimate of (2.17) allows to get
sin(¢) + sin® ()| sin(@ — n)|

sin(g) (9 — )% +sin2((8 — 1)/2))?
< 1 1

S N
((¢ — 9)? +sin?((0 — 77)/2))% sin! =% (¢)

|H2(s, 0,0, 0. 0| S

By interpolation we deduce for any 8 € (0, 1),
1

ca—1
6 — el Plsin(@—nyp TS @

| A2(s, 9,0, 0, M| <

It follows that

Ed 2w
(¢,0) — / / (s, $.6, @, mdnde € L=((0, ) x T).
o Jo

Let us move to the ¥’*-regularity of this latter function. This amounts to checking the
partial regularity separately in ¢ and 6. The strategy is the same for both of them and
to alleviate the discussion, we shall establish the regularity in the variable 8, contrary to
the preceding section where it was established for 7 in the direction of ¢. The goal is
to get a convenient estimate for the difference

k4 2w
/ / (%(Sa ¢7919 @, n)_%(S, ¢a 927 @, n))dnd(%
0 0

where 0 < 01 < 6, < 27. Coming back to the definition of the kernel %5 in (5.26) one
deduces through straightforward algebraic computations that

%(Sa ¢7 917 (78 77) - %(Sa ¢’ 627 @, T]) = I3 +I4 +1-5 +1.6'
with
I= sin(g) oy [r (@, n) (sin(n—61) —sin(n—62)) |s[sr (¢, 61)—2r (¢, n) cos(61 —n) |

1 1 1 1
JS2 (¢’ 917 (p7 7))-]02 (¢’ (p’ U)(Jsz (¢7 9], (p’ 7’)"‘-]02 (¢7 (p7 77))

s

sin(@)dy [ (@, n) sin(n — 62)]s[s7 (8, 61) — 2r (@, 1) cos (61 — )]

1 1 1 1
JS2 (¢v 919 Y, 77)-]02 ((pv Y, 77)(‘152 (¢9 91, v, 77) + ‘]02 (¢9 v, 77))
JS(¢1 921 ¥, 77) - JS(¢’ 917 Y, 17)

1 1 T 1
[‘152 (¢7 927 (ﬂ7 n) + ‘I()z (¢7 §07 n)][JSZ (¢7 019 (P9 77) + ‘,Sz (¢» 929 (p9 77)]
_sin(@)dy[r (@, n) sin( — 62)]s[sr(p, 01) — sr(¢, 62) — 2r(p, n)(cos(61 — 1) — cos(B2 —n))]
- 1 1 1 1
I (9,01, 0. MIF (@, 0, M (I3 (D, 62, 0, 1) + ] (@, 9. 1))

4 =

X

El

and
_sin(@)dy (r(g, ) sin(n — 02))s[s7(9. 62) — 2r(p, 1) cos(®2 — )]
Ts(@. 01, 0. M2 Jo(d. 0. )2 (Js(¢. 62, 0. )2 + Jo(. 0. 1))
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JS(¢7 927 ¢7 r}) - JS(¢’ 9]5 (p5 n)
1 1 1
JSZ (¢9 923 (ps n)(JS‘z (¢5 62’ (p’ 7)) + JS2 (¢’ 61’ (ﬂ, Tl))

We shall estimate independently each one of those terms. Concerning the term Z3 it can
be estimated using (5.1)

sin(@) (r (@, n) + 9yr (@, m))s(sr (¢, 01) +r(p, n)

T
sin?(¢)J2 (¢, 61, ¢, )

(r(@.n) + 19,7 (0, m)s(sr(@, 61) +r (e, n)
<161 — 62 1 ’
sin(p) Ji* (¢, 01, ¢, 1)

Then by virtue of (5.27) and (2.17), we find
|61 — 621 (sin(p) +sin®(p))
sin(@) (6 — ¢)? +sin (01 — )/2)?
61 — 6xlsin" " (p)
(6 — )2 +sin?((61 — m)/2)?
Combining this estimate with the interpolation inequality: for any 8 € [0, 1]
1 1

<
T =

(@ —r+sin(@ -}t o= P lsin(@ =002

Z3] < 161 — 62

73] <

<

~

we infer
|01 — 62|
|I3| 5 P Bl o 17/3'
sin' Y (@)|g — @|P|sin((n — 61)/2)|
Thus
n o i 16, — 62|dnd
1 — oaldnage
f / T3ldndg < __ e, -
0 Jo o Jo sin TY(@e — ¢l sin((n —61)/2)]

S 161 — 62|,

uniformly in ¢ € (0, 7/2) and 61, 6> € (0, 27), provided that 0 < 8 < o < 1.
Concerning the term 74, we first use the definition of J; in Lemma 5.2 and one may
check

[Js (@, 02, 0, ) — Js(&, 01, ¢, 0|
< |sr(¢, 01) — sr(@, 2)|(Isr (P, 01) — r(p, n)l
+|sr(¢, 62) — (e, n)
+2(sr (¢, 01) — sr(, 62))r (@, n)(1 — cos(6 —n))
+2sr (¢, 02)r (@, )| cos(@2 — n) — cos(®1 — n)|. (5.28)

Using the trigonometric identity

1 — cos(0 —n) = 2sin’((6 — 1)/2), (5.29)
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we get
s (@, 02, 0, m) — Js(, 01, ¢, 0|
< 1sr(@. 00) — 576, 01 (1 @. 62, 0. + 7 . 61,9, )
+25r (¢, 02)r (@, )| cos(@2 — n) — cos(@ — ). (5.30)

From (2.17) combined with Taylor’s formula we find

02
|r<¢,ez>—r(¢,91)|sf9 anr<¢,n)dn'

S 162 — 01 sin®(¢).

Therefore we get by interpolation inequality
57 (@, 60) = 57 (@, 02)] S 101 = 021”576 76, 61) = (9, )|~
+15r (@, 02) = r(p. ] ™.
Hence

o e 1
[57(@. 6 = 5@, 02| S 161 = 0215 T @019 + 057 (9,62, 0.m)].

(5.31)
Combining (5.31) together with (5.30) implies
[ Js(#, 02, 0, m) — Js(&, 01, ¢, 0|
S 101 =01 (1 @ 0 0. + 1 (6.0 0.m)
+2s7(¢, 02)r (@, )| cos(62 — 1) — cos(@1 — n)|. (5.32)

Define

§ 1= |cos(62 —n) —cos(0r —n)l.

Using once again (5.29) we get

£ 5 [VT=cos@ = m) — VT = cos@ — m]|[y/T=cos(@ — n) + /T = cos@ — )|
< (Isin(@ = m/2)1 = Isin(@ = m/2)1)(1sin(@ = m)/2)| + |sin((@ = n)/2)])-
Note that using the inequality
Isinx| = [sinyl| < x = I
and interpolating, one achieves
(1sinc@ — m/2)] = Isin(©: — )/2)1)

1—a
< Cloy — 01" (| sin(©1 = m)/2)| + | sin(@: = m/2)l)
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for any o € (0, 1). Putting everything together, one finds
& 5 161 — 6217 (|sin(01 — /22~ + |sin((62 = /277, (5.33)
Now using the assumption (2.17) and (5.2) we find
S7(. 0207 (9. E S sro(9)161 = 021 (| sin (01 = m)/2IP~ + [sin((62 = m)/2) )
<50 — [ 17 @09 + 1.7 9,820
Inserting this inequality into (5.32) implies

|JS(¢7 921 @, 77) - JS(¢’ 91’ @, 77)|

<10 = 021576 (177 @, 02 0. + I 9,01, 0,m))-
It follows that

[Js(p, 02, 0, m) — Js(9, 01, ¢, n)l

162 0.) + I2 (.61, . 1)

2/ L l—a
SIo =0 ™ (L7 @0 p + L7 @0 em). (534

Thus we get

(r (. m+dyr (. )| sin@2 = n)|)s (57 (. 61) +r (g, )s*$*
1 1 1
JSZ (¢’ 917 @, 77)( Sin(¢)+‘ls‘2 (¢’ 917 ®, ﬂ))a(SIHW’) + JSZ (¢7 927 ®, 77))

(r(@. m) + Byr(p. )| sinBy — s (7($. 1) + (g, )s ¢ .
1 1 1
"Sz (¢7 915 o, ﬂ)(SIH((ﬂ) + ‘Isz (d)’ 91’ @, U))(Slﬂ(@ + JS2 (¢7 927 ®, r/))a

|Z4] S101—621%

+101 — 62*

Applying (5.27) combined with (2.17) we arrive at

61 — 62]%(sin(p) + sin® ()| sin(6y — 77)|)SS°‘¢°‘2
1 T T
{(@ — )2 +5sin?((01 — 0)/2)} 2 (sin(e) + I (@, 01, @, M)* (sin(p) + J§ ($, 62, ¢, 0))
|61 — 62\"‘(sin((p) + sin® (@) | sin(6, — n)|)ss‘)‘<;5"‘2

1 1
{(@ — )? +sin?((6) — n)/2)}% (sin(@) + J ¢ (@, 01, 9. M) (sin(p) + J (¢, 62, 0, 1)*
< D+ (5.35)

IZ4] <

+

The right hand side terms J; and > are treated similarly and we shall only focus on the
first one. We find that

|61 — 62]*
1
{(@ — )2 +5sin?((01 — 1)/2)}? sin(p)
161 — 621%] sin(@2 — )| 5%

: .
{(¢ — 9)? +sin*((6) — 77)/2)}% (sin(g) + J¢ (¢, 02, . 1))

MRS

+
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Using (5.2) we deduce, since o € (0, 1), that

|sin(@ — )| s%¢*" < [sin(@ — n)|* s* ¢’
2

S U (@020 ). (5.36)
Thus
Tl < |6y — 621" 1
{(@ — @)% +sin® (01 — 1)/2)}? sin®(p)
+ 101 — 2%

{(¢ — @)% +sin*((6) — 77)/2)}% sin!—*” (‘P)'
The same estimate holds true for 7;. Therefore we find

sin~%(¢p) + sin®’~1 (o) '
{6 — 912 +sin2(@) — m/2))?

Hence by interpolation inequality we get for all y € (0, 1)

|Z4] S 161 — 621

sin~%(¢p) + sin®’~1 (o)

T4l < 161 — 621 . :
e PR g o sin(@r — m)/2)[177

It follows that

morlm i sin™%(¢p) + sin"‘z_l((p)
Zsldnde < 161 — 621" . dedn
/o /o L 16— el Isin(@ — /2

S 161 —621%,

uniformly in ¢ € (0, ) and 61, 6> € (0, 27), provided that 0 < y < min(1 — «, o?).
Let us focus on the estimate of the term Zs. First we make the decomposition

Is = J3+ Ja,
with
__sin(@)dy[r(p, m) sin(y — 02) Js[s7(@, 01) — 57(0, 6))]
T2, 01, 0. )IG @, 0. (I .02, 0,1 + IE @, 9, 1)
and
7= _,Sin@)dy [r(p. m) sin(n — 62)Jsr (@, m)[ cos(B1 — ) — cos(@ — )]

1 1 1 1
JS2 (¢5 017 g07 77)-]()2 (¢5 (pa T])(JS2 ((p’ 927 (,0, 77) + J()2 (¢7 (,0, 77))

Let us start with the last term 7. Using Lemma 5.2 combined with (5.33) and (2.17)
yields

[simp + sin® ()| sin ((n — 92)/2)|] sin ¢
|Jal S 161 — 62]" = 1 '

JS7 (¢» 911 @, T/)(-]s7 (¢, 92, @, 7]) + Singo)
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From (5.2) we infer

1
-2 oA 2
sin“ () +sin“ (@) Jy" (¢, 62, ¢, n)|
T4l S 161 — 621 — —

JS7 (¢a 917 907 T])(‘]S7 (¢v 927 (pv 77) + singo)
sin® (@)
1

JS7 (¢9 915 (pa 7))

S 161 — 621

Applying (5.27) leads to

wa—l
| T4l S 161 — 621 T
((¢ — )2 +sin*((6; — 1)/2))2
wa—l
S 161 — 621% : .
lp — @lB|sin((61 — n)/2)|'—#
Therefore
™[ S ¢ dnde
|Jaldnde < |61 — 621" :
/0 /0 b Jo 19— @|P|sin((6y —n)/2)|' P

< 161 — 6217,

uniformly in ¢ € (0, ) and 61, 6> € (0, 27) provided that 0 < 8 < @ < 1. Next we
shall deal with the term J5. Then by virtue of (5.31) combined with (2.17) we may write

sin(g) + sin® ()| sin(62 — n)|
1 1 .
JS(¢7 617 (pv 77)5(-]?((?’ 92’ (0, 77)5 + Sln(p)
o lze Lo
x (5" [ L7 (@019 + 0T (@629,

|31 S 1601 — 621

It follows that
2
sin(g) + sin® (p)| sin(6; — n)|)s'**¢*
IS 10— oL T ) —
JSZ (¢7 917 (p? 7’)(-]52 (¢a 925 (p’ 77) + Sin ()0)

(sin(p) +sin®(g)| sin(6s — n)|)s**¢*"

JS7 (¢v 91’ §0, n)(‘lsj (¢7 927 907 ’7) + Sin(p)
S 10— 602|“T3.1 + 161 — 621" T5.2.

According to (5.36) and since @ € (0, 1) we find that

+101 — 02]%

2 2 2
sin(g) +sin® ()| sin(fy — n)|* s* ¢*
|31l S — 0

I3 (.01, 0.0 (I3 (¢, 02, 0, n) +sing)”

2

sin(g) + sin® (@) J; 2 (¢, 02, @, )
~ 1 1
I3 (.01, 0.0 (I3 (¢, 02, 0, n) +sing)”
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and similarly we obtain

2

sin(g) + sin® (@) J,* (. 62, ¢, )
|J32l S — :

Jsj (¢7 917 ()07 77)(-]; (¢7 925 (p’ 77) + Sin (p)

Consequently, we get from (5.27)

sin~%(¢p) + sin® ! (9)

(@ — @) +sin®(©) —m)/2)?
sin”™%(¢) + sin®’ -1 (¢) .
~ o — @l7|sin((01 —n)/2)|1 Y

VERTDS

By integration, we obtain

m plm i a sin’“(¢)+sin°‘2’l(<p)
|T3.1ldnde < : dnde
/0 /0 s ) 16— el Tsin(@ — m/2
<1

uniformly in ¢ € (0, ) and 6; € (0, 27) provided that 0 < y < min(a?, | — @).
Following the same ideas as before and using (5.27) we get
o
sin ¢ . 3 . 21
ol S| ——— (sm @)+ (J7 (. 62, 9. ) +5in ) )
JSZ (¢7 917 §0’ 77)
< sin~%(¢) + sin®’~! (p)
(@ — @)% +5in*((O1 — 1)/2))

It follows that

a
2

sin~%*(¢) + sin‘)‘z_1 (o) '

<
|J3.21 S | sin((6) — n)/2)|*

By integration, we deduce that
T T sin~%(¢p) + sin“z_l(go)
|T3,2ldnde S . dndg.
fo ./0 L Isin(@ —m/2)e
<1

uniformly in ¢ € (0, 7) and 61 € (0, 27) provided that 0 < o < 1. Putting together the
preceding estimates allows to get

T 27
f / \Tsldndg < 161 — 61°.
0 0
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Let us finish estimating the term Zg, which is quite similar to Z4. Applying (5.34),
Lemma 5.2 and the ideas done for Z4 we obtain

L SIN()57 87 Sin(p) +sin(g)®] sin(n — B2)])(sb +sin(g)
Sin(@)2 13 (6. 61, 0. 1) I3 (6. 62, 0. 1)

X (T G0+ T G620 1))

590 (sin(p) + sin(@)* | sin(y — 6)]) (s + sin(p))

[:2 1
Sin(‘p)-]sz (d’a 917 (p’ n)JSZ (¢5 925 (pa 77)
o390 (sin(p) + sin(@)°| sin(n — 62)) (s + sin(g))

1 a
sin(p)Jyi (¢, 01, 0, M Iy (9, 02, ¢, 1)

Using again Lemma 5.2 we achieve

IZs| < 161 — 62

<101 — 6]

+ |01 — 02|

5% (sin(p) + sin(p)® | sin( — 62)]) (s + sin(g))
sin() (sin(@) + s¢) 1 (| — @] + [ sin((@1 — 1)/2))* (¢ — @l + [ sin((62 — n)/2)])
s“¢°‘2 (sin(p) + sin(@)“| sin(n — 62)|)(s¢p + sin(¢))
sin() (sin(@) + s¢) 1 (| — @] + [ sin((2 — 1)/2))* (¢ — @| + | sin((B1 — n)/2)])
1
sin(@)*=2* (I — @] + | sin((O1 — 1)/2))* (I — @| + | sin((B2 — n)/2)])
1
sin(@)! =% (|¢ — o] + | sin((61 — n)/2)])*
1
sin(@)*=2* (I — @] + | sin((2 — 1)/2))* (¢ — @| + | sin((B1 — n)/2)])
1
sin(@)! =% (|¢ — o[ + | sin((62 — n)/2)])
1
sin(p)?1 ¢ — @[72] sin((62 — n)/2)[73 [ sin((G2 — ) /2) |7+

|Zs| < 161 — 621"

+101 — 621"

S 161 — 621"

+61 — 62"

+101 — 62"

+01 — 62"

S 1601 — 621%
for some y1, y2, 3, v4 € (0, 1) with y; + y» < 1 and y3 + y4 < 1. Notice that this is

possible since 1 + 2o — > < 2 forany « € (0, 1).
Therefore, we obtain

T p2m
/ [ (:%/Z(S, ¢5917 @, 77) _%(Sv ¢,92, Y, n))dnd(p = Clel _92|a’
0 0

uniformly in ¢ € (0, ). This concludes the proof of the stability of the function spaces
by F.
Step 3: F} is €. In this last step, we check that Fj is €.

More precisely, we intend to prove the following

18 F1(fOh = dp Fi(f)hllee S Ihlgral fi = 2l (5.37)
190 (37 Fi (f)h = 35 Fi(f2)h)llga S Ihllgrall fi = 2l (5.38)

and

186 (3f F1 (fOR = 37 Fi(f2)h)llge S Ihlllgrall fi = follipras (5.39)
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for some y > 0, and where fi, f» € Bxa (¢), for some ¢ < 1.

Notice that (5.37)—(5.38)—(5.39) will imply the ¢’ 1 -regularity of F.Denoter; (¢, 0) =
ro(¢) + fi(¢,0), fori = 1, 2. We will check directly the estimates for the derivatives,
i.e., (5.38)—(5.39) and leave the first estimate which is less delicate. From the expressions
(5.13) and (5.14), it is enough to check the estimates for the terms: U - ¢'? and % iel?.

As we can guess the computations are very long, tedious and share lot of similarities.
For this reason we shall focus only on one significant term given by (5.19) to illustrate
how the estimates work, and restrict the discussion to some terms of Z,. Notice that
the Frechet derivative of each of the previous terms will correspond again to a singular
integral where the kernel has the same order of singularity and then the estimates work
similarly, even if the computations are longer.

Then, let us show the idea for 7, and note that

b4 2 .
T P 6) = f / sine)hie. 1) siny = 0)dnd
o Jo I ()9, 0,9, 1m)

T 2

1 . o

- / / MO DNy 1)1, 6. 0. dndy
0o Jo I @,0,0,1)

= Ti(Nh($. 0) — T(HH.0),

where

[(r (¢, 0)e', cos(p)) — (r(g, me'™, cos(p)? = L1 ()b, 0, 0,m), 7 =ro+f,

and

1
S (PR, 0. 0.m) = (r(g.n) —1(¢.0))(h(g. n) — h(8.0))

+(r(p, Mh(¢,0) + h(p. mMr(¢,0))(1 — cos(n —6)).
(5.40)

Let us exhibit the main ideas of the term 77. The goal is to check

171 (fOh = Ti(fhllge S Ihllgrall fi = f2llEa

for some y > 0. We observe that

1) = D)@, 0,9, 1) = (ri(, n) — r1($, 0)> = (ra(p. n) — r2($, 0))°
+2(r1 = r2) (¢, O)r1(p, (1 —cos(0 —n))
+2r2(¢, 0)(r1 — r2) (@, (1 —cos(@ —m)). (5.41)

Now we write for any ¢, ¢ € (0, 7) and 0, n € (0, 27)

Ir(¢,0) —r(p, M| < |r(¢,0) —r(p,0)|+|r(p,0) —r(p,nl,

By the ¢ regularity of r one has

Ir(¢,0) —r(e, 0] < |9 — ¢llrilLip.
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In addition, we claim that

(. 60) —r(@,m| < [sin((@ —m)/2)|lIrllLip- (5.42)

Indeed, and without any restriction to the generality we can impose that0 < n < 6 < 2m.
We shall discuss two cases: 0 <6 —n <mwand 7 < 6 —n < 2m. In the first case, we
simply write

Ir(p,0) —r(p.m| _ Ir(p,0) —r(p,n)l 16 —nl

: = . = ClirliLip,

| sin((6 —n)/2)| 16— n | sin((6 —n)/2)|
with C a constant. As to the second case 7 < @ — 5 < 27, by setting 7 = n + 27 we
get

7—0€l0,m], sin((0 —n)/2) = —sin((® —7)/2).
Since n +— r (¢, n) is 2w -periodic then using the result of the first case yields

r(p. 0) —r(g.m| _ Ir(g,0) —re,m)
Isin((0 —n)/2)] | sin((€ —1)/2)|

= ClIrllLip-

This achieves the proof of the (5.42). Consequently we find

Ir(@,60) —r(g, M| < Irlip(I¢ — ¢l +1sin(@ — n)/2)]). (5.43)

From algebraic calculus we easily get

[(r1 (¢, ) — 119, 0))? — (2 (@, 1) — r2(, 0))?|
= [((r1 = r) (@, ) — (r1 — 12)(9, )|
x [((r1 + 1) (@, 1) — (r1 +12) (9, 0))].

Therefore we deduce successively from (5.43)

[(r1 (g, ) — 119, 0))* — (a9, ) — r2(, 0))°
< irt = r2lluip(1¢ — @l + [ sin(@ — 1)/2)))

x (I, m) = 1@, 0)] + Ir2(g. 1) — 26, 0)1),
and

[(r1 (¢, ) — 119, 0))* — (2 (@, 1) — r2(, 0))?|
S (e, m) —r1(, O + ra2(p, 1) — ra(g, O)I2.

By interpolation, we infer for any y € [0, 1],
(161 = 1@, = G2t 1) = 726, 00|
S liry = rallfip (19 = 917 + [sin(©@ — m/2)171)

x (It m —ri@. 0P +Inte,n —n@.0F ), (5.44)
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On the other hand, coming back to the definition of J; we get

D@, 0. 9.1) = In(d.6) —ri(p. ).
Thus, putting together this inequality with (5.44) and (5.41) yield
|(J1(fD) = J1(2) (.0, ¢, n)]
JE @0, 9.0 + JF (£)(@.0.0.1)
< e =rallL, {(|<P —@I” +sin((® —n)/2)[")

1—

V4 1y
x [J1 7 (f)@.0.0.m)+ 7 (f2)($.6. 0, n)]+¢|sin((9—n)/2)|]- (5.45)

Now, we shall give an estimate of 71 (f1) — 71(f2) in L. For this purpose, define the
quantity

sin(p)h(p, n) sin(n — 0)
1
I ()9, 0,9, 1)

f%é(f)(d)v 0, Y, 77) =

’

then one can easily check that

i h(p, n) si —0
T1(.0. 9. 1) = H5(f1)(@. 6. 0. 1) — Ha(f2)(D. 8. p. 1) = ——n@I(@. 1) Sinr —6)

JE(D(D, 0,0, MIF(f2)(@,0,9,1)

o N1(2)(9.0,9,m) = J1(f1)(@.0,9,1)

T T (5.46)
JE(D)(@@,0,0,m)+ T ()@, 6,9,1)
From this definition, it follows that
T 2
(Ti(f) — Ti(f2) (6. 6) = /0 /0 T2, 0. ¢, n)ddn.
According to (5.2) we get
¢l sin((@ —n)/2)| < Isin((@ — n)/2)1Y ¢V sin((® — n)/2)|'
< Isin(@ — )/ 1,2 (F)@. 0. ¢, 1)
Combining this inequality with (5.45) and (5.46) leads to
1Z7(¢, 0, ¢, 1)
i h — ) in((8 —n)/2)”
< —ral sm(go>|l @, M(le — ¢)| l+ Isin((@ —1)/2)|")
JE(f1)(@, 0,0, MIZ ()P, 0,9, 1)
I-y 1-y
< (17 D@ 0.0+, (1).0,9.1)). (5.47)

Applying Lemma 5.2, we infer

|I7(¢, 0, P, Tl)|
sin()|h(e, MI(le — $)I” +|sin((@ —n)/2)[")

1 )4
J]2 (fl)(¢a 99 <p9 77)112 (fZ)(¢a 9’ (pv 7))

Slirt=rallZ.
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sin(@) [k (@, M|(l¢ — @)I” +[sin((® —n)/2)[")

V4 1
I ()@, 0, 0. mI7 (f2)(9, 0,0, 1)

< y sin()|h(g, Mg — )Y +[sin((® —n)/2)[”)
S llrr =72l e T

{(@+$)2(¢ — @)% + (sin®(p) + $2) sin®((0 — ) /2)} =

Y
llr =l

Using the inequality > > sin?(¢) for any ¢ € R, one achieves

sin()|h(p, M — )I” +[sin((® —n)/2)|")

(sin(@) + )+ {(@ — ¢)% +sin*((0 — 77)/2)}I+Ty
(@, mllr =2l .

sin’ (p) {9 — @) +sin2((8 — n)/2))

The boundary conditions /(0, ) = h(w, n) = 0 allow to cancel the singularity and one
gets

1Z7($, 6,0, m S lrt =2l

<

Ihllgralirs — r2ll
T
{(@ — )2 +sin?((0 —n)/2)}?
Interpolating we find that for any g € (0, 1),

1Z7(. 0. 0. 0| S

lAllgrellrn — rzlli;m,u
lp — @|'=P|sin((n — 6)/2)|
Thus, we have that 77 is integrable in the variable (¢, n) uniformly in (¢, 6), and then

171 (fOh = Ti(f)hlle S llhllgrell fi = ol

The next purpose is to establish the partial €’“-regularity in ¢, and the partial regularity
in 6 can be done similarly. We want to prove the following

I(T1(f1) = Ti(f2)h(e1, 0) — (T1(f1) — Ti(f2)h(2, )|
S llgrell fi = f2llZaln — g2l (5.48)

For this goal we need to study the kernel |Z7(¢1) — Z7(¢2)|. To alleviate the notation

we simply denote Z7(¢, 6, ¢, n) by Z7(¢) and Ji (fi) (i, 0, ¢, n) by J1(fi)(¢i). Adding
and subtracting some appropriate terms, one finds

1Z7(¢,0, 0. M| <

1Z7(p1) — Z7(Pp2)| S Zg +Zo + Lo+ I11 + 112

with
Ty = sin(g) [k (@, n)| [N1(f2)(@1) — Ji(f1)(@1)]
=1 T T T T
JED@DI] (f1) @) I (f2)(@1) I (f1) (o) + )7 () (@1)
y [J1(f1D)(P1) — J1(f1)($2)]
JED@D) + T2 (f1)($2)
Ty = sin(@) (g, n)] 1(f2) (@) — Ji(fD (9D

- . 1 1 1 1 1 1
S22 J1(2)@D2 (JZ (f1) (1) + IZ (L)@ (F)(1) 7 + J1(f2)(¢2)?)
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IJl (f2) (1) — Jl (fz)(¢2)|
J1 (fz)(¢>1)+J1 (fz)(¢2)

sin(g) |h (e, )| I(J1(f2) = /i (fl))(¢1) - (J1 (f2) = Ji (fl))(¢>2)|

T =— T
JE (D)) I (f2) (1) J1 (fl)(¢1)+11 (f2)(#2)

Ty = sin(p)|h(gp, )| [J1(f2)(92) — J1(f1)(92)]
JESD@DIE (L)1) TE (1) (@2) + T2 (L)) TE (D@1 + T2 (f2)(2)
IJl(fl)(¢1) - J1(f1)(¢2)|
J (fl)(¢1)+f (f1)(¢2)

and
Tpp = sin(@)|h(p, n)l [J1(f2)(P2) — J1(f1)($2)]
- 1

JE (fD@)I7 () @D)IF (f2)(@2) 7 (f1)(¢2) + I (f2)(¢2)
|J1(f2)(¢1) - J1(fz)(¢z)|

J] (fz)(¢1)+11 (f2)(¢2)

The estimate of those terms are quite similar and we shall restrict the discussion to the
term Z1¢ which involves more computations. The analysis is straightforward and we will
just give the basic ideas. First one should give a suitable estimate for the quantity

[(N1(f2) = (S @) — (Ji1(f2) — Ji(f1))(P2)].
By using (5.41)—(5.44), one finds
[(J1(f2) = Ji(f) (1) — (Ji1(f2) — J1(f1))($2)]

S =r2)(@1,0) = (r1 = r2) (92, O)|(r1 +1r2) (91, 0) — (r1 +r2) (9, M)
+|(r1 = 12)(92.0) — (r1 = r2)(@, MI[(r1 +12)(¢1,0) — (r1 +712)(¢2, 0)]

+1(r1 = r2) (@1, 0) — (r1 — r2) (2, ) |r1 (g, n) sin*((6 — n)/2)
+|r2(e1, 0) — ra(ga, N1(r1 — r2) (g, )| sin®((O — 1) /2).

Moreover,

[(r1 = r2)(¢1.0) — (r1 = r2)($2.O)| < lIrt = 2] ¥ 1p1 — p2l” <|r1(¢>1, 0) —ri(p, mI' ™
Hra(@1,60) = 20, M+ 182, 0) = r1 o I T+ 112(62,0) — ra(e, ')
and

(11 +712)(¢1,0) — (r1 +72) (B2, )| < 11 — Pol®(r1(h1, 0) — 1 (0, M
+1r2(¢1,0) — ra(p, I + 1712, 0) — r1 (e, M|
+ |2 (2, 0) — r2(, )| 79).

In a similar way, we deduce first by triangular inequality

[(r1 +72)(91,0) — (r1 +r2) (@, )| < [r1(¢1,0) — ri(@, )|+ |r2(h1,0) — r1(p, n)|
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and second from (5.44)

|(r1 = r2)(¢2,0) — (r1 —r2) (@, 0
S llre = r2l 17 (2 — @l + Isin((0 — n)/2)[")

x (Ir192.0) = r1(@. I +1r2(62.0) = ralp, )7 ).
Combining the preceding estimate we achieve
[(J1(f2) = i(fi)(d1) = (J1(f2) = [i(f1)) (¢2)]
S o = a2l fr = f2ll” (|r1(¢1, 6) = ri(o, > +1r2(1,0) — ral, >~
+Hr1(92.0) = ri(g, WP + 1122, 6) = 1200, )

S o1 — Gl fi = LI (EF7% + &+ E + 657,

where we use the notation
6.5 = 1ri(9;.0) = rilp. s i, € (1.2)

Hence,

2 éaz a
Tiol S 161 = 2l i — fall? ——eA20 D) Xl
JP (fl)((bz)J1 (2)(¢1) J] (f])(¢])+]l (fz)(d)z)

By using the definition of J; in Lemma 5.2, we immediately get

1
&j < I (f)(9)),
that we combine with (5.43) in order to get
&ij S o — @l +1sin((@ —n)/2)].

We shall analyze the term associated to &7,1 and the treatment of the other ones are quite
similar. First we note

&
T @I @D (I D@1 +IE () (@)
< o1 =o' +sin(@ — /)"
T @I ()@
Making appeal to (5.27) and (2.17), we infer
sin(p)|h(p)|

T T
JE (@) I (f2) (1)
<

I172]lLip
{(¢1 — ¢)2 +5sin?((0 — n)/2)}% {(¢2 — ¢)2 +sin?((0 — n)/2)}%
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By interpolation we obtain for any y, 8 € [0, 1],

sin(p) |1 (p)| o1 — @l 2 — 9P
3 3 < Ilip |sin((@ —n)/2)27—F
TP (D@2 ] (1) (@)

Combining the preceding inequalities gives for any yi, y2, B1, B2 € [0, 1]

sin(@)|h (g, )| &
TD@) 2 T(H) @) T (fD)(@)? + T () ()2
g — el gy — P
S Wl G @ = A
11—l gy — | P
+ "h”Llp | sin((@ — n)/2)|1+¢1*)/2*ﬂ2 .

The majorant functions are integrable in the variable (¢, ) uniformly in ¢, ¢2, 6 pro-
vided that

l<y1+B1<2—a and a <y+ B <1,

and under these constraints one can find admissible parameters. Consequently,

T 2
/ / Tuodedn < Wllgrall fi — ol 101 — oI,
0 0
They, we are able to find that

Z7(@1) = Z1(b2)| S MIhllgrall fi = follla 1 — d21%,

for some y € (0, 1).
Let us now move on 75( f)h(¢, 0) and show the main ideas. Define

sin(@)r (¢, n) sin(n — )
3
J12 (#,0,9,m)

K4(f)(¢70’ Y, n) = afjl(f)h(¢99’ P, n,

and then

sin(@) (11 — r2) (@, 7) sin(y — )
JZ ()@, 0.9, 1)

iR, 0,0,m) 311 (f2)h($, 0, 0, n))

TG, 0.0.m) ()i, 0,9, 1)
= (Z13+714)($, 0, 0, V). (5.49)

Ka(f1)(@.0,9,0) — Ka(2)(@,6, 0, 1m) = A Ji(fDh(, 6, ¢, 1)

+sin(@)r2(g, n) sin(n — 6) (

Let us analyze 713 and note that Z14 is more involved (it includes more computations)
but has same order of singularity. Moreover, recall the expression of d/J; in (5.40).
Define also

T 27
T5.1(6,6) = /0 /0 T13(6. 6. 0. mdgdn.
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Let us begin studying the L norm of 73 ;. Indeed, by (5.40) and (5.43) we are able to
find that

[0rJ1(fIR(P, 0, @, n)l

3
JE(f)(b.0,90,1)
y Iri(p, n) — r1(d, 0)I(Ip — @] +1sin((® — n)/2)]) + sin(¢) sin(e) sin*(© — n)/2))

JZ() @, 0,9, 1)

= CllhllLip

|1721]Lip
|sing + @17 (f)(¢. 6, 9.1

Then, using Lemma 5.2 we achieve

<C

(5.50)

sin® ()| sin(n — 0)|
1
(sing + ) J{ (9,6, ¢, 1)
sin?(g)| sin(n — 0)|

e G o ¥ )26 — ¢l + 1 5in(@ = n)/2)])
< Cllhllplir = 2l L, (5.51)

[Z13(¢, 0, @, M| < Cl|hllLipllrt — r2llLip

= ClIhllLipllry

finding that 75 ; is bounded.
Since we showed the estimates in ¢ of 77 (see (5.48)), let us work here with the
variable 6. Indeed, our purpose will be showing

(T2(f1) = T2(f2)h(9, 01) — (T2 (f1) — Ta(f2)h(, 62)]
S lhllgrall fr = f2ll70 1610 — 621%, (5.52)

for any 61, 6, € [0, 2] with 6] < 6,. Since we have decomposed 75 (f1) — 72(f2) in
two terms in (5.49), let us work with 73 ; and show

72,1, 00 = T2,1(8, 0)| S Ihllgrall fi = fallLpial01 — 621 (5.53)

Here, we will use Proposition C.1 by fixing ¢. The kernel of 7> 1, i.e. Z;3, has been
already bounded in (5.51). That gives us hypothesis (C.2) of such proposition and it
remains to estimate dypZ3 (see hypothesis (C.4)). By using the expression of 713 we get

[06Z13(9, 0, @, )]

sin?()|0 ¢ J1 (fDR(@. 0. ¢. )|
JI% (D@, 6,9,m)
sin(¢)| sin(n — 0)11999 7 J1 (f1)A($, 0, 9, )]
Jlg(f])(ff’, 0, ¢,n)
sin? ()| sin(y — 0)110 ¢ J1 (SR, 0. 0. )39 J1 (f1)R($. 0. 0. )|

5
JP (1)@, 60,9, 1)
=: Cllry = n2llLip(T13,1 + T13,2 + 113,3). (5.54)

=< Cllr1 = r2llLip

+Cllry — r2llLip

+Cllry — r2llLip
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For 73,1 we use (5.50) and Lemma 5.2 finding

sin’(¢)

1
Ising + 912 ()., 0. )
1
= Cliklie G ST i@ = m72)D

Zi3,1 < CllAlILip

=CllhlILip S

1
n(@ —n/2)|

That gives us hypothesis (C.4) for the first term 73 . In order to work with 73 », using
(5.43) note that
10905 J1 (f1)R(9, 0,0, n)

3
T2 (f1)($.6.9.m)
| 1SIN@)[* (@ — ¢l + |sin((® = n)/2)])) + sin(g)¢” sin® (6 — m)/2) + sin(p)¢| sin((® — m)/2)]

3
TED@.0.0.1)

< ClihllLip

1Al ILip

<
(@ +sing) =@ J1(f1)($. 6. 0,m)

and then Z;3 » follows as

! sin(¢)| sin(n — 6)|
— r i N 1
21ILip (¢ +sinp)3=2(|¢p — ¢| + | sin((0 — n)/2)|)2
1
— r2||L1p (¢ + sin (p)lfa(lqﬁ —_ §0| +| Sil‘l((@ — 77)/2)|)
1
—r2|lLip (¢ +sin @)1= sin((6 — n)/2)|’

Th32 < CllhllLipllr

< Cl|hllLipllr

=< Cllh|Lipllr1

Similarly, we can work with 73 3. First note that

|99 J1 (SR (¢, 0, 0, M| _ c P
Jl(fl)(‘Psey @, 77) a Jlé(fl)(d”@,‘ﬂ’ 7’})’

which, together with (5.50) implies

sin®(g)| sin(n — 0)|¢*
n(p) + ¢1J1(f1) (@, 0, 9, 1)

1
< CllhllLipllr1 — r2llLip S

n(@ —m/2)|

T13,3 < CllhllLipllr1 — r2llLip S

Putting everything together we achieves that dpZ;3 satisfies hypothesis (C.4) of Proposi-
tion C.1. Then, such proposition can be applied to find (5.53) concluding the
proof. O
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6. Main Result

In this section we shall provide a general statement that precise Theorem 1.1 and give
its proof using all the previous results. Recall that the search of rotating solutions in the
patch form to the equation (1.1), that is, solutions in the form

q(t, x) = qo(e™*¥ (x1,x2), x3), qo = 1p,

where D is a bounded simply-connected domain surrounded by a surface parametrized
by

(#,60) € [0,7] x [0,27] = ((ro(¢) + £ (@, 6))e’, cos()),

reduces to solving the following infinite-dimensional equation
F(Q,f)=0

with f in a small neighborhood of the origin in the Banach space X, and F is introduced
in (2.13). Notice that a solution is nontrivial means that the associated shape is not
invariant by rotation along the vertical axis. Looking to the structure of the elements
of space X7, one can easily see that a nonzero element guarantees a nontrivial shape.
Our result stated below asserts that solutions to this functional equation do exist and are
organized in a countable family of one-dimensional curves bifurcating from the trivial
solution at the largest eigenvalues of the linearized operator at the origin. More precisely,
we have the following.

Theorem 6.1. Let m > 2 be a fixed integer and rg : [0, w] — R satisfies the conditions:

(HI) ro € €*([0, 1), with ro(0) = ro() = 0 and ro(¢) > 0 for ¢ € (0, ).

(H2) There exists C > 0 such that

Vo €l0,7], C'sing <ro(¢) < Csin(g).
(H3) ro is symmetric with respect to ¢ = 7, i.e., rg (% — q)) =79 (% + qb), for any
¢ €10, 51
Then there exist 8 > 0 and two one-dimensonal €' -curves s € (=38, 8) — fm(s) €
X% ands € (—8,8) — Q2 (s) € R, with
fm(©) =0, fn(s) #0, Vs #0 and 2,(0) = Qp,

where 2, is defined in Proposition 4.3, such that

Vs e (=8,8), F(Qu(s), fuls)) = 0.

Proof. The main material to prove this result is Crandall-Rabinowitz theorem, recalled
in Theorem B.1. First the well-possednes and the regularity of F : X, — X; were
discussed in Proposition 5.2. Thus it remains to check the suitable spectral properties
of the linearized operator at the origin. The expression of this operator is detailed in
Proposition 3.2 and it is a of Fredholm type of zero index according to Proposition
4.6. In addition for Q2 = 2, the kernel is a one-dimensional vector space. Finally, the
transversal condition is satisfied by virtue of Proposition 4.7. O



744 C. Garcia, T. Hmidi, J. Mateu

6.1. Special case: sphere and ellipsoid. In this section we aim to show the particular
case of bifurcating from spherical or ellipsoidal shapes. The main particularity of these
shapes is that their associated stream function is well-known in the literature, see [32].
More specifically, let & be an ellipsoid inside the region

x2 )C2 )C2
1 2 3
a b c

The associated stream function given by
1 [ dAQ)
el R
4 Jg lx =yl
can be computed inside the ellipsoid as

o) abc [* | x? N x3 N x3 1 ds
0(x) = — - :
4 Jo |a?+s b2+s c+s J@+5) (B + ) +5)

In the case that @ = b we have that the ellipsoid is invariant under rotations about the
z-axis and then it defines a stationary patch, see Lemma 2.1. Moreover and without loss
of generality we can take ¢ = 1. Note that in this case

Yo(x) = a1(@)(x7 +x3) + oz (a)xF +a3(a),

where
_ a? [*® ds
“@=7 |, e
. a? [*® ds
(@) _ZA (a2+s)\/m’
and

@ a? /oo ds
az(a) = —— - .
: 4 Jo (@%2+5)2V1+s

The sphere coincides with the case a = 1 having a1 (1) = az(1) = % and a3(1) = %
The above expression of the stream function together with Remark 3.2 gives us that

fo Hi(¢. 9)do = 201 (a),

for any ¢ € [0, ]. Recall that H,, is defined in (3.3). Now, by virtue of Proposition 3.2
one has

0 F(Q,0)h(¢,0) =Y cos(nd) L3} () ($),

n>1

where

L3 () (@) = ha () 201 (a) — Q] — f Hy (¢, 9)hn(@)de, ¢ € (0, 7).
0
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Moreover, the function vg used in the spectral study and defined in (4.3) agrees with
ve(¢) =2a1(a) — 2,

which now is constant on ¢. Also the constant « in (4.5) equals now to 2« (a). Hence,
the key point in Sect. 4.1 is the symmetrization of the above operator. For that reason,
we have defined the signed measure d g as

dpa(p) = sin(@)rd (p)va(p)de,

in (4.4) and the operator IC,SI2 in (4.82). However, since in this case vq(¢) is constant
on ¢, there is no need to introduce it in the measure with the goal of symmetryzing the
operator. Following the ideas developed above, we deduce that the kernel study of the
linearized operator agrees in this case with the following eigenvalue problem

Kn (@) = Qa1 (a) — Qh(g).

Here, we define
Kn(¢) = Qai(a) — DKL),

which does not depend now on €2 by definition of IC,? . Note that both operators have

similar properties. Hence K, sets the properties given in Proposition 4.2 taking the
Lebesgue space L%m with

diiq(p) = sin(p)rg (p)de.

Denote by S, ; the eigenvalues of I@n (for each n we have a family of eigenvalues). Then,
we have necessary that

Q, = 2a1(a) — Bn.i-
In Theorem 6.1, bifurcation occurs from 2 given by
Q= 201(a) — B,
with
By = mlfdx Bu.i-

Moreover, we know that B is positive and then 2 < 2o (a). In particular, by Proposi-
tion 4.3, we have that €, tends to ¥k = 2« (a). Furthermore, €2}, increases in n and then
we can bound it below by 7. Using the equation for 87, that is

fo Hi(g. $)h(@)de = BHh(),

one finds that 8} < 2« (a) and then 7 is positive. This implies that €2}, is positive for
any n. Then, in Theorem 6.1 bifurcation holds at some 2} € (0, 2«1 (a)). Let us remark
that in the case of the sphere, meaning @ = 1, one has 2« (a) = %

There is an interesting open problem concerning, first the spectral distribution of
the eigenvalues S, ; (whether or not they are finite, simple or multiple), and second if
bifurcation occurs at the eigenvalues 2, = 2a(a) — B,,; (which is shown to happen
only for the largest eigenvalue §))). Notice that the simplicity and the monotonicity of the
eigenvalues is a delicate problem and could be related to the geometry of the revolution
shape. Finally we observe that since 8, ; < B then @, = 2 (a) — Bn,i > % - By >0.
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Appendix A. Gauss Hypergeometric Function

We give a short discussion on Gauss hypergeometric functions and illustrate some of
their basic properties. The formulas listed below were crucial in the computations of the
linearized operator associated to the V-states equation and in the analysis of the main
feature of its spectral properties. Recall that for any real numbers a, b € R, ¢ € R\(—N)
the hypergeometric function z — F(a, b; c; z) is defined on the open unit disc D by the
power series

o0

(@)n(b)y 2"
F(a,b;c;z) = ———— VzeD. (A.1)
nX::O @) n!

The Pochhammer’s symbol (x), is defined by

(x)n={1’ n =0,

xx+1)---(x+n—-1), n>1,
and verifies

On =x A +x)p-1, (ODps1 = (x +1) (X

The series converges absolutely for all values of |z| < 1. For |z] = 1 we have the
absolute convergence if Re(a + b — ¢) < 0 and it diverges if 1| < Re(a +b — ¢). See [2]
for more details.

We recall the integral representation of the hypergeometric function, see for instance
[37, p. 47]. Assume that Re(c) > Re(b) > 0, then

I'(c)
F(a,byc;2) = m——————
NN ()

1
/ X711 =) PN = zx) "% dx, Vz e C\[1, +00). (A.2)
0

Notice that this representation shows that the hypergeometric function initially defined
in the unit disc admits an analytic continuation to the complex plane cut along [1, +00).
Another useful identity is the following:

Fla,biciz) = (1 —7)°F <a,c—b; ¢ —2 1), (A3)
-

for Re(c) > Re(b) > 0. The function I" : C\{— N} — C refers to the gamma function,
which is the analytic continuation to the negative half plane of the usual gamma function
defined on the positive half-plane {Rez > 0}, and given by

+00
I'(z) = f i le T dr,
0
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and satisfies the relation I'(z + 1) = zI'(z), Yz € C\(— N). From this we deduce the
identities
I'(x +n) r'a—x)
(X)p = (="

@ = =105 T(l—x—n)

)

provided that all the quantities in the right terms are well-defined.
We can differentiate the hypergeometric function obtaining

d"F(a,b;c;z) (@b
dzx G

Fla+k,b+kic+k;z), (A.4)

fork € N.Depending on the parameters, the hypergeometric function behaves differently
at1. WhenRe(c) > Re(b) > 0andRe(c—a—>b) > 0,itcan be shown thatitis absolutely
convergent on the closed unit disc and one finds the expression

I'e)l'(c —a—>b)

Flabie ) = s ore b’

(A5)

see for example [37] for the proof. However, in the case a + b = c, the hypergeometric
function exhibits a logarithmic singularity as follows

. F(a,b;c;2) I'(a+b)
lim =

= , (A.6)
>l- —In(1—z)  T(a)(b)

see for instance [1] for more details. Next, we shall give a proof of the following classical
result.

LemmaA.l. Letn € N, 8 > 0and A > 1, then
B

2 BY on (l)
cos(nb) 2 2), 2)n B 1 2
do= Fln+—,n+=;2n+1; —— | .
0

(A—cos(d) (144 Cn)! 2772 1+A

Proof. By a change of variables and using cos(26) = 2 cos2(9) — 1, we arrive at

2w T
f cos(n6) i 40 — 2 i / cos(2n6) i 40,
b (A —cos()2 1+A)7 Jy (- 1 cos2(9))2

. 2 .. .
Since =7 < 1, we can use Taylor series in the following way,

i
R T ) B R
(l—mcos (9)) =y T < ©).

m=>0

[Sh=N

Then,

27 B b
cos(nf) _ 2 <7>m am 2m
/(; do E (1A /(; cos(2n6) cos" (0)d6.

(A—cos@®)?  (1+45 5
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At this stage we use the identity, see [43, p. 449],

al'(x +1)
2T(1+ 550+ 2552’

/n cos™ (0) cos(y0)do =
0

for x > —1 and y € R. That identity For x = 2m and y = 2n, we obtain

2
/ cos(nb) Bd@
0o (A —cos®))?
B
o (2)m 2m rQ2m+1)
1+ A mZ;; m! (1+A)" 22T (1+m+mn)(1+m —n)

B
2z (7)m+n 1 rCm+2n+1)

T A+ Ay ) (L A 2T (L + 20 (L4 m)|

We can use some properties of Gamma functions in order to find

C(m+1+20)C(m+1) = 2n)!m!2n + Dy,
PQm+2+ 1) _ oo (1)
m+n ’

(m+n)! 2
(3),. 7 (5),(+5),
2 m+n 2 n 2 m
which implies
B
2 (2>m+n 1 rCm+2n+1)

(Lt A)% 2=t Gmm)! (14 Ay 270D (L + 2n)T (1 + m)
2 (E)nz" (), 3 <”+§)m (n+3),, ( 2 )’”

Q4 a)sm @) o mlQn+ Dy 1+A

0w (5) 27() g1 2
= il L nF<n+E,n+§;2n+1;—).

1+A

O

Now we propose to describe the boundary behavior of the Hypergeometric functions in
some suitable cases that were very useful in the preceding sections.

Proposition A.1. The following assertions hold true.
(1) Bound for F(a, a; 2a; x) : for a > 1, there exists C > 0 such that

[In(1 — x)|
Vx €[0,1), F(a,a;2a;x) <C—— <C+C|In(1 —x)|. (A7)
X
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(2) Bound for F(a,a;2a — 1, x) : fora > 2, there exists C > 0 such that

Vx € [0, 1), F(a,a;Za—l;x)fC|1 |~ (A.8)
—X
(3) Bound for F(a, a;2a — 2, x) : for a > 3, there exists C > 0 such that
Vxel[0,1), F(a,a;2a—2;x)<C (A.9)

1= x]?
(4) For a > 1, there exists C > 0 such that
Vx €[0,1), 0<F(a,a;2a;x)—1< Cx(l + | In(1 —x)|). (A.10)

(5) For a > 2, there exists C > 0 such that
Vx €[0,1), |F(a,a;2a—1;x)—1|< CIL.
—X

(6) For a > 1, there exists C > 0 such that any o € [0, 1]

. o lx1 —x2|*
Vxy =x; €[0,1), [F(a,a;2a;x1) — F(a,a;2a; x)| < C—|1 o (A.11)
—x

(7) For a > 2, there exists C > 0 such that any o € [0, 1]

Vx, <x1€l0,1), |F(a,a;2a —1;x1)—F(a,a;2a — 1; x)]
|xg — x2]¢
<C

_ A.12
ST (A12)

Proof. The main tool is the integral representation of the Hypergeometric functions
(A.2).
(1) From the integral representation (A.2), it is easy to get

1
tu—l 1—¢ a—1
|F(a,a,2a,x)| <C édt
b (1 — xt)

1
—c tA—0\"" 1 0.
- A 1 —xt 1 —xt

Because 1 (1 — ) < 1 — tx for any ¢, x € [0, 1], then we deduce

L dy
|ﬂmthNSC/
o 1 —xt
_ el —x01
X

(2) As for (1), we find

! l‘a_l(l _ t)a—2
|Fa,a,2a—1,x)|<C | ——" &
b (1 —xn)@
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1 a—2
t(l—1) dt
<C .
- [ (1—xt> (1 — xt)?

Consequently, we infer from direction calculation

1

1
F(a,a,2a = 1,x)| <C | ———dt
|F(a,a,2a x)] /(; T =12

C
1 — x|

(3) We omit here the details of the proof by similarity with (1) and (2).
(4) First note from the integral representation that F(a, a; 2a; x) > 0 provided that
a > 0and x € [0, 1). Moreover, it is strictly increasing function since from (A.4)
F'(a,a;2a;x) = gF(a+ l,a+1;2a+1;x) >0, Vx € [0, 1).
According to (A.1) one may check by construction that F'(a, a; 2a; 0) = 1 and therefore
F(a,a;2a;x)—1>0.

By the mean value theorem, we achieve
a 1
F(a,a;2a;x) — 1= Ex/ Fa+1,a+1,2a+1, tx)dr.
0

Combining this representation with (A.8), where we replace a by a + 1, we achieve

1
d
F(a,a;Za;x)—ISCx/ 7 ! < Cx(1+|In(1 —x)).
— X
0

(5) By using similar arguments as the previous point, we obtain

1
O§F(a,a;2a—1;x)—1§Cx/ Fa+1,a+1;2a;tx)dr.
0

Applying (A.9) by changing a with a + 1 allows to get

C
|[Fla+1,a+1;2a;x)| < —,Vx €[0,1).
(1—x)?

Then,

dt <C X
(1—1x)2 = 1—x

1

Fa,a;2a —1;x) — 1< Cx/

0

(6) Lett € [0,1) and set g;,(x) = (1 —tx)™%. Take 0 < xp < x; < 1, then direct

computations, using in particular the mean value theorem, show that

lgr(x1) — gr(x2)] <2(1 —1x1)™¢
lgr(x1) — gr(x2)| <C(1 — tx) ™ xy — xa.
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Let @ € [0, 1] then by interpolation between the preceding inequalities we deduce that

lgr(x1) — gr(x2)| = |gr (x1) — gr(x2) "1 gr (x1) — g1 (x2)”
<C( —tx)) 7 %|x; — x2]%.

It follows that

1
|F(a,a,2a,x1)—F(a,a,za,xznsc/ A =0 (g (1) — g (x2)) dt
0

1
ta—l 1—1¢ a—1
< Clx; — x2|* LA Chd DA
g (1 — xj1)a+e

Since a > 1 and for any 7, x1 € [0, 1),

tafl 1—¢ a—1
# < _xlt)*lf"f,

0<
— (1 —xjp)are

then

|F(a,a,2a,x))— F(a,a,2a,x)| <Clx; — x|

1
/ (1= x0)" "t
0

lxg — x2]*
T l=xge

(7) This is quite similar to the proof of the preceding one. Indeed,

|F(a,a,2a —1,x1) — F(a,a,2a — 1, x2)|

1
<c /0 11— 1972 (g, (x1) — ge(x2)) dit

1
/ (1 —x0)" 2%t
0
lx1 — x2|*

- |1—x1|1+“

< Clx; —x2|*

Appendix B. Bifurcation Theory

We shall briefly recall some basic facts around bifurcation theory which mainly focuses
on the topological transitions of the phase portrait through the variation of some pa-
rameters. A particular case is to understand this transition in the equilibria set for the
stationary problem F'(A, x) = 0, where F : R xX — Y is a smooth function between
Banach spaces X and Y. Assuming that one has a trivial solution, F (X, 0) = O for any
A € R, we would like to explore the bifurcation diagram in the neighborhood of this
elementary solution, and see whether multiple branches of solutions may bifurcate from
a given point (Aq, 0), called a bifurcation point. When the linearized operator around this
point generates a Fredholm operator, then one may use Lyapunov—Schmidt reduction
in order to reduce the infinite-dimensional problem to a finite-dimensional one, known
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as the bifurcation equation. For this latter problem we need some specific transversal
conditions so that the Implicit Function Theorem can be applied. For more discussion
in this subject, we refer to see [31,33]. Notice that Theorem B.1 below is one of those
interesting results that can cover various configurations and it is used in this paper to
prove our main result. Before giving its precise statement, we need to recall some basic
results on Fredholm operators.

Definition B.1. Let X and Y be two Banach spaces. A continuous linear mapping 7 :
X — Y, is a Fredholm operator if it fulfills the following properties,

(1) dim Ker T < o0,
2)ImT isclosedin Y,
(3) codimImT < oo.

The integer dim Ker 7 — codim Im 7 is called the Fredholm index of T'.

Next, we shall discuss the index persistence through compact perturbations, see [31,33].

Proposition B.1. The index of a Fredholm operator remains unchanged under compact
perturbations.

Now, we recall the classical Crandall-Rabinowitz Theorem whose proof can be found
in [12].

Theorem B.1 (Crandall-Rabinowitz Theorem). Let X, Y be two Banach spaces, V be
a neighborhood of 0 in X and F : R x V — Y be a function with the properties,

(1) F(A,0) =0forall » e R.

(2) The partial derivatives 0, F, ¢ F and 0,0 F exist and are continuous.

(3) The operator 37 F(0,0) is Fredholm of zero index and Ker(F¢(0,0)) = (fo) is
one-dimensional.

(4) Transversality assumption: 0,0 F (0, 0) fo ¢ Im(97 F (0, 0)).

If Z is any complement of Ker(d7F(0,0)) in X, then there is a neighborhood U of
(0,0) in R x X, an interval (—a, a), and two continuous functions ® : (—a,a) — R,

B :(—a,a) - Z such that (0) = B(0) = 0 and

F7](O) NU = {(D(s), sfo+sB(s)) : Is] <alU{(A,0):(A,0) e U}

Appendix C. Potential Theory

This last section is devoted to some results on the continuity of specific operators with
singular kernels, taking the form

1 1
K(F) (i, x2) = /O /0 Kt 2 y1, ) £t y2)dyidy, .1

with (x1, x2) € [0, 11 and the kernel K : [0, 1]? x [0, 11> — R is smooth out the
diagonal.
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Proposition C.1. Let K : [0, 1]* x [0, 11> — R be smooth out the diagonal, satisfying

|K (x1, X2, y1, y2)| < P g1(x2, y2), (C2)
0

|K (x1,x2, y1, y2)| < - g2(x1, y1), (C3)
Co

[0x, K (x, y)| < W&(XL y2) (CH
Co

10, K (x, y)| = mgzt(xl, i), (C.5)

with o € (0,1) and g1. g2, g3, g4 € L*([0, 11, L'([0, 11)). Then K : L>®([0, 1] x
[0, 1]) — €*([0, 1] x [0, 1]) is well-defined and

K llge = CColl fliree,

with C an absolute constant.

Remark C.1. We give here this general proposition for a function of two variables, but
let us remark that this can be also done for /C depending only on one variable. Moreover,
note that condition (C.4) (and also (C.5)) can be replaced by

|K (x1,x2, y1, y2) — K (X1, x2, y1, y2)| < Clx1 — x11%g(x1, X1, x2, y1, ¥2),

for x; < x1 and 3|x; — x| < |y; — x1|. The function g must satisfy

g(x1, X1, y1, x2, y2)dy1dy>| < C,

[y1—x1]>3]x1—x1]
uniformly in xp, X7, X2.

Proof. The L°° norm of /C( f) can be estimated as
1,1
K@= Clfles [ [ Ky,

1
< CColl flli fo W / 191020 ¥2) v
< CCol il

The convergence follows from the assumptions «, y € (0, 1). Hence,

Iz = CColl fllLee-

For the Holder regularity, take x1, X1 € [0, 1] with x; < x|. Define d = |x; — X1|,
By (r) = {y1 €[0, 1] : [y1 — x1| < r}and By, (r) its complement set. Hence

K@ x) =K, )
1 pl
:/0 /(; K (x1, x2, y1. y2) f (y1. y2)dy1dy>

1l
—f / K (1, x2, y1, y2) f (y1, y2)dyidy>
o Jo



754 C. Garcia, T. Hmidi, J. Mateu

1
=// K (x1, x2, y1, y2) f (1, y2)dy1dy>
0 [0, l]ﬁBx1 (3d)
1
—/ / K1, x2, y1, y2) f(y1, y2)dyidy?
0 [O,I]OBX] (3d)

1
+/ / (K (1, %2, v, 2) — KGR 22 v15 ) £t y2)dy1dys
0 Jio.1n8g, Ga)

= 11+12+I3.

Using (C.2), we arrive at

1
I < CCol Fll / dy, /O 181 (2. y2)ldya

[0,110By, Gd) |¥1 — Y117

1
< CC0||f||L°°/ i
B, 3d) 1X1 = 1l
=< CColl fllzood®

= CColl fllLeelxr — %1%,
In order to work with I, note that By, (3d) C By, (4d). Thus,

1
|| < CCoIIfIILOO/ dyl/o [g1(x2, ¥2)ldy>

[0.110By, Gd) 11 — yi|17¢

1
< CC0||f||L00/

By, (4 1¥1 — yi]17
< CColl fllzelxr — X11%.

dy

For the last term /3 we use the mean value theorem and (C.4) achieving

1l

(x1 _fl)/ / / (0 K)(x1 + (1 = 5) (X1 — x1), X2, Y1, y2)
0 Jo Jio.1nBe, Ga)

S, y2)dyi1dyrds|

3] <C

< CCollf 1] ”|f1f dnds
< CColl fliLelxr — X =
0 Jio.1nBe, Gay X1+ (1= —x1) =y >

1
/ lg3(x2, y2)ldy>.
0

Note that if y; € By, (3d), then

Ix1+ (1 =) —x) — yil = lx1 = yil = (1 —9)d
(I—-s)

3

2
> |x1 —y1l — |x1—y1|Z§|X1—)’1|,

which implies

dy

|I3] < CColl fliLelxr — X1l T 4
[0.11nB¢, 3d) X1 = 1l
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1
|xp — £ [~
< CColl flireelxr — X11%.

< CColl fliLelxr — x1]

Putting together the preceding estimates yields

IK(f)Er, x2) = K(f)(xr, x2)| < CColl fllpoelxr — x7]*.

The same arguments enables to obtain

[IC(f)(x1, x2) — K(f)(x1, X2)| < CColl fllLoe|x2 — X2]“.

Then, we conclude that

(D lge = CColl fllre.
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