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Abstract: Contextuality is a non-classical behaviour that can be exhibited by quan-
tum systems. It is increasingly studied for its relationship to quantum-over-classical
advantages in informatic tasks. To date, it has largely been studied in discrete-variable
scenarios, where observables take values in discrete and usually finite sets. Practically,
on the other hand, continuous-variable scenarios offer some of the most promising can-
didates for implementing quantum computations and informatic protocols. Here we set
out a framework for treating contextuality in continuous-variable scenarios. It is shown
that the Fine–Abramsky–Brandenburger theorem extends to this setting, an important
consequence of which is that Bell nonlocality can be viewed as a special case of con-
textuality, as in the discrete case. The contextual fraction, a quantifiable measure of
contextuality that bears a precise relationship to Bell inequality violations and quantum
advantages, is also defined in this setting. It is shown to be a non-increasing monotone
with respect to classical operations that include binning to discretise data. Finally, we
consider how the contextual fraction can be formulated as an infinite linear program.
Through Lasserre relaxations, we are able to express this infinite linear program as a
hierarchy of semi-definite programs that allow to calculate the contextual fraction with
increasing accuracy.

Introduction

Contextuality is one of the principal markers of non-classical behaviour that can be
exhibited by quantum systems. The Heisenberg uncertainty principle identified that
certain pairs of quantum observables are incompatible, e.g. position and momentum. In
operational terms, observing one will disturb the outcome statistics of the other. This
is sometimes cited as evidence that not all observables can simultaneously be assigned
definite values. Taking the mathematical formalism of quantummechanics at face value,
that is indeed the case, in stark contrast with classical physical theories. However, one
may wonder whether it is possible to build a (presumably more fundamental) theory
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more in accordance with our classical intuitions, but which still matches the empirical
predictions of quantummechanics. Put briefly, the fundamental question is then whether
such quantum oddities are a necessary property of any theory that accurately describes
nature, and thus have empirical content, or mere artifices of the mathematical formalism
of quantum theory.

This question might be answered by attempting to build a hidden-variable model
reproducing quantum-mechanical empirical predictions but with the further assumption
that it be noncontextual. Roughly speaking, the latter imposes that the model must re-
spect the basic assumptions that (i) hidden variables assign definite values to all the
observable properties, and (ii) jointly performing compatible observables does not dis-
turb the hidden variable. That these apparently simple assumptions are at odds with the
empirical predictions of quantum mechanics is the content of the seminal theorems by
Bell [19] and by Kochen & Specker [52].

Separately to its foundational importance, contextuality also has a more practical
significance. A major application of quantum theory today is in quantum information
and computation. There, one is primarily interested in what can be done with quan-
tum systems and is beyond the capabilities of any classical implementation. So one is
interested in the properties of the correlations realisable by quantum systems when com-
pared to the kind of correlations that could arise from any classical theory. In this sense,
aside from whatever foundational or physical significance one may wish (or not) to as-
cribe to contextuality, it has an undeniable practical significance in relation to quantum
information and computation. In particular, it has now been identified as the essen-
tial ingredient for enabling a range of quantum-over-classical advantages in informatic
tasks, which include the onset of universal quantum computing in certain computational
models [6,7,20,46,74].

It is notable that to date the study of contextuality has largely focused on discrete
variable scenarios and that the main frameworks and approaches to contextuality are
tailored to modelling these, e.g. [8,13,26,33]. In such scenarios, observables can only
take values in discrete, and usually finite, sets. Discrete variable scenarios typically arise
in finite-dimensional quantum mechanics, e.g. when dealing with quantum registers
in the form of systems of multiple qubits as is common in quantum information and
computation theory.

Yet, from a practical perspective, continuous-variable quantum systems are emerging
as some of the most promising candidates for implementing quantum informational and
computational tasks [25,84]. The main reason for this is that they offer unrivalled pos-
sibilities for deterministic generation of large-scale resource states [86] and for highly-
efficient measurements of certain observables. Together these cover many of the basic
operations required in the one-way or measurement-based model of quantum computing
[76], for example. Typical implementations are in optical systems where the continu-
ous variables correspond to the position-like and momentum-like quadratures of the
quantised modes of an electromagnetic field. Indeed position and momentum, as men-
tioned previously in relation to the uncertainty principle, are the prototypical examples
of continuous variables in quantum mechanics.

Since quantum mechanics itself is infinite dimensional, it also makes sense from
a foundational perspective to extend analyses of the key concept of contextuality to
the continuous-variable setting. Furthermore, continuous variables can be useful when
dealing with iteration, even when attention is restricted to finite-variable actions at dis-
crete time steps, as is traditional in informatics. An interesting question, for example, is



Continuous-Variable Nonlocality and Contextuality 1049

whether contextuality arises and is of interest in such situations as the infinite behaviour
of quantum random walks.

The main contributions of this article are the following:
– We present a robust framework for contextuality in continuous-variable scenarios
that follows along the lines of the discrete-variable framework introduced by Abram-
sky and Brandenburger [8] (Sect. 3). We thus generalise this framework to deal with
outcomes being valued on general measurable spaces, as well as to arbitrary (infinite)
sets of measurement labels.

– We show that the Fine–Abramsky–Brandenburger theorem [8,36] extends to con-
tinuous variables (Sect. 4). This establishes that noncontextuality of an empirical be-
haviour, originally characterised by the existence of a deterministic hidden-variable
model [19,52], can equivalently be characterised by the existence of a factorisable
hidden-variable model, and that ultimately both of these are subsumed by a canonical
form of hidden-variable model—a global section in the sheaf-theoretic perspective.
An important consequence is that Bell nonlocality may be viewed as a special case of
contextuality in continuous-variable scenarios just as for discrete-variable scenarios.

– The contextual fraction, a quantifiable measure of contextuality that bears a precise
relationship to Bell inequality violations and quantum advantages [6], can also be
defined in this setting using infinite linear programming (Sect. 5). It is shown to be
a non-increasing monotone with respect to the free operations of a resource theory
for contextuality [4,6]. Crucially, these include the common operation of binning
to discretise data. A consequence is that any witness of contextuality on discretised
empirical data alsowitnesses and gives a lower bound on genuine continuous-variable
contextuality.

– While the infinite linear programs are of theoretical importance and capture exactly
the quantity and Bell-like inequalities in which we are interested, they are not directly
useful for actual numerical computations. To get around this limitation, we introduce
a hierarchy of semi-definite programs which are relaxations of the original problem
and whose values converge monotonically to the contextual fraction (Sect. 8). This
applies in the restricted setting where there is a finite set of measurement labels.

Related work.Note that we are specifically interested in scenarios involving observables
with continuous spectra, or inmore operational language,measurementswith continuous
outcome spaces.We still consider scenarios featuring only discrete sets of observables or
measurements, as is typical in continuous-variable quantum computing. The possibility
of considering contextuality in settings with continuous measurement spaces has also
been evoked in [30]. We also note that several prior works have explicitly considered
contextuality in continuous-variable systems [14,42,50,57,64,71,82]. Our approach is
distinct from these in that it provides a genuinely continuous-variable treatment of con-
textuality itself as opposed to embedding discrete-variable contextuality arguments into,
or extracting them from, continuous-variable systems.

1. Continuous-Variable Behaviours

In this section we provide a brief motivational example for the kind of continuous-
variable empirical behaviour we are interested in analysing. The approach applies gen-
erally to any hypothetical empirical data, including those that do not admit a quantum
realisation (e.g. the PR box from Ref. [72]). But also, in particular, it does of course
apply to empirical data arising from quantum mechanics, in that the statistics arise from
a state and measurements on a quantum system according to the Born rule. Indeed,
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Fig. 1. [Left] operational depiction of a typical bipartite experimental scenario. [Right] Hypothetical proba-
bility density plots for empirical data arising from such an experiment. Cf. the discrete-variable probability
tables of [60,62]

quantum theory provides the main motivation for this study and more broadly for the
sheaf-theoretic approach, because of a feature that may arise in empirical models having
quantum but not classical realisations: which we refer to as contextuality.

Suppose that we can interact with a system by performing measurements on it and
observing their outcomes. A feature of quantum systems is that not all observables
commute, so that certain combinations of measurements are incompatible.

At best, we can obtain empirical observational data for contexts in which only com-
patible measurements are performed, which can be collected by running the experiment
repeatedly. As we shall make more precise in Sects. 3 and 4, contextuality arises when
the empirical data obtained is inconsistent with the assumption that for each run of the
experiment the system has a global and context-independent assignment of values to all
of its observable properties.

To take an operational perspective, a typical example of an experimental setup or
scenario that we consider is the one depicted in Fig. 1 [left]. In this scenario, a system is
prepared in some fixed bipartite state, following which parties A and B may each choose
between two measurement settings, mA ∈ {a, a′} for A and mB ∈ {b, b′} for B. We
assume that outcomes of each measurement live in R, which typically will be a bounded
measurable subspace of the real numbers R (with its Borel σ -algebra). Depending on
which choices of inputs were made, the empirical data might for example be distributed
according to one of the four hypothetical probability density plots in R2 depicted in
Fig. 1 [right]. This scenario and hypothetical empirical behaviour has been considered
elsewhere [50] as a continuous-variable version of the Popescu–Rohrlich (PR) box [72].

2. Preliminaries on Measures and Probability

In order to properly treat probability on continuous-variable spaces, it is necessary to
introduce a modicum of measure theory. This section serves to recall some basic ideas
and to fix notation. The reader may choose to skip the section and consult it as reference
for the remainder of the article.

A measurable space is a pair X = 〈X,F〉 consisting of a set X and a σ -algebra
(or σ -field) F on X , i.e. a family of subsets of X containing the empty set and closed
under complementation and countable unions. In some sense, this specifies the subsets
of X that can be assigned a ‘size’, and which are therefore called the measurable sets
of X . Throughout this paper, we follow the convention of using boldface to denote the
measurable space and the same symbol in regular face for its underlying set.
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A trivial example of a σ -algebra over any set X is its powersetP(X), which gives the
discrete measurable space 〈X,P(X)〉, where every set is measurable. This is typically
used when X is countable (finite or countably infinite), in which case this discrete
σ -algebra is generated by the singletons. Another example, of central importance in
measure theory, is 〈R,BR〉, where BR is the σ -algebra generated from the open sets of
R, whose elements are called the Borel sets.Workingwith Borel sets avoids the problems
that would arise if we naively attempted to measure or assign probabilities to points in
the continuum. More generally, any topological space gives rise to a Borel measurable
space in this fashion.

A measurable function between measurable spaces X = 〈X,FX 〉 and Y = 〈Y,FY 〉
is a function f : X −→ Y between the underlying sets whose preimage preserves
measurable sets, i.e. such that, for any E ∈ FY , f −1(E) ∈ FX . This is analogous to
the definition of a continuous function between topological spaces. Clearly, the identity
function is measurable and measurable functions compose. We will denote byMeas the
category whose objects are measurable spaces and whose morphisms are measurable
functions.

The product of two measurable spaces X1 = 〈X1,F1〉 and X2 = 〈X2,F2〉 is the
measurable space

X1 × X2 = 〈X1 × X2,F1 ⊗ F2〉 , (1)

where the Cartesian product of the underlying sets, X1 × X2, is equipped with the
so-called tensor product σ -algebra F1 ⊗ F2, which is the σ -algebra generated by the
‘rectangles’, subsets of the form E1 × E2 with E1 ∈ F1 and E2 ∈ F2. This is the
categorical (binary) product in Meas.

We shall also need to deal with infinite products of measurable spaces. The general-
isation is analogous to that for products of topological spaces, where the box topology
(generated by ‘rectangles’) is no longer the most natural choice when dealing with infi-
nite families, but rather the topology generated by ‘cylinders’. Let I be an arbitrary index
set. The product of measurable spaces (X i = 〈Xi ,Fi 〉)i∈I is the measurable space

∏

i∈I
X i =

〈
∏

i∈I
Xi ,

⊗

i∈I
Fi

〉
, (2)

where XI = ∏
i∈I Xi is the Cartesian product of the underlying sets, andFI = ⊗

i∈I Fi
is the σ -algebra generated by subsets of

∏
i∈I Xi of the form

∏
i∈I Ei where Ei ⊆ Xi

for all i ∈ I and Ei 	= Xi for only finitely many i ∈ I . This is the smallest σ -algebra that
makes the projection maps πk : ∏

i∈I Xi −→ Xk measurable. It therefore corresponds
to the categorical (arbitrary) product inMeas.

A measure on a measurable space X = 〈X,F〉 is a function μ : F −→ R from the
σ -algebra to the extended real numbers R = R ∪ {−∞,+∞} satisfying:
(i) [nonnegativity] μ(E) ≥ 0 for all E ∈ F ;
(ii) [null empty set] μ(∅) = 0;
(iii) [σ -additivity] for any countable family (Ei )

∞
i=1 of pairwise disjointmeasurable sets,

it holds that μ(
⋃∞

i=1 Ei ) = ∑∞
i=1 μ(Ei ).

Ameasure on X allowsone to integratewell-behaved1 measurable functions f : X −→
〈R,BR〉 to obtain a real value, denoted

∫
X f dμ or

∫
x∈X f (x) dμ(x). The simplest

1 For a comprehensive treatment, we refer the reader to e.g. [21], or to [68] for a beautiful and more concise
introduction aimed particularly at computer scientists.
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example of such a measurable function is the indicator function of a measurable set
E ∈ F :

χE (x) :=
{
1 if x ∈ E
0 if x 	∈ E .

For any measure μ on X , its integral yields
∫

X
χE dμ = μ(E) . (3)

A measure μ is finite if μ(X) < ∞ and in particular it is a probability measure if
μ(X) = 1. We will denote by M(X) and P(X), respectively, the sets of measures and
probability measures on the measurable space X .

A measurable function f : X −→ Y carries any measure μ on X to a measure f∗μ
on Y . This push-forward measure is given by f∗μ(E) = μ( f −1(E)) for any set E
measurable in Y . An important use of push-forward measures is that for any integrable
function g : Y −→ 〈R,BR〉, it allows us to write the following change-of-variables
formula

∫

Y
g d f∗μ =

∫

X
g ◦ f dμ . (4)

The push-forward operation preserves the total measure, hence it takes P(X) to P(Y).
A case that will be of particular interest to us is the push-forward of a measure μ on a

product space X1×X2 along a projectionπi : X1×X2 −→ X i : this yields themarginal
measure μ|X i = πi ∗μ, where e.g. for E measurable in X1, μ|X1(E) = μ(π−1

1 (E)) =
μ(E × X2).

In the opposite direction, given measuresμ1 on X1 andμ2 on X2, a product measure
μ1×μ2 is ameasure on the productmeasurable space X1×X2 satisfying (μ1×μ2)(E1×
E2) = μ1(E1)μ2(E2) for all E1 ∈ F1 and E2 ∈ F2. For probability measures, there is
a uniquely determined product measure.2 The analogous, much more general statement
also holds for arbitrary products of probability measures (see e.g. [83, section 11.2]).

We can view M as a map that takes a measurable space to the set of measures on
that space, and similarly for P. These become functors Meas −→ Set if we define
the action on morphisms to be the push-forward operation. Explicitly we set M( f ) :=
f∗ : M(X) −→ M(Y)::μ �−→ f∗μ, where f : X −→ Y is a measurable function, and
similarly for P.

Remarkably, the set P(X) of probability measures on X can itself be made into a
measurable space by equipping it with the least σ -algebra that makes the evaluation
functions

evE : P(X) −→ [0, 1]::μ �−→ μ(E)

measurable for all E ∈ FX .3 This yields an endofunctor P : Meas −→ Meas, which
moreover has the structure of a monad, called the Giry monad [39]. The unit of this
monad is given by

ηX : X −→ P(X)::x �−→ δx

2 In fact, this holds more generally for σ -finite measures, i.e. when the space is a countable union of sets
of finite measure.

3 More concretely, it is the σ -algebra generated by the sets ev−1
E ([0, r)) = {μ ∈ P(X) | μ(E) < r} with

E ∈ FX and r ∈ [0, 1].
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where δx is the Dirac measure, or point mass, at x given by δx (E) := χE (x). Multipli-
cation of the monad is given by

μX : P(P(X)) −→ P(X)

which takes a probability measure P on P(X) to its ‘average’, a probability measure
μX (P) on X , μX (P) : FX −→ [0, 1], whose value on a measurable set E ∈ FX is
given by μX (P)(E) := ∫

P(X)
evE d P .

TheKleisli category of this monad is the category ofMarkov kernels, which represent
continuous-variable probabilistic maps and generalise the discrete notion of stochastic
matrix. Concretely, a Markov kernel between measurable spaces X = 〈X,FX 〉 and
Y = 〈Y,FY 〉 is a function k : X × FY −→ [0, 1] such that:

(i) for all E ∈ FY , k(−, E) : X −→ [0, 1] is a measurable function;4

(ii) for all x ∈ X , k(x,−) : FY −→ [0, 1] is a probability measure.

3. Framework

In this section, we follow closely the discrete-variable framework of [8] in more for-
mally describing the kinds of experimental scenarios in which we are interested and the
empirical behaviours that arise on these, although some extra care is required for dealing
with continuous variables.

Measurement scenarios

Definition 1. A measurement scenario is a triple 〈X,M, O〉 whose elements are spec-
ified as follows.

– X is a (possibly infinite) set of measurement labels.
– M is a covering family of subsets of X , i.e. such that

⋃M = X . The elements
C ∈ M are called maximal contexts and represent maximal sets of compatible
observables. We therefore require that M be an anti-chain with respect to subset
inclusion, i.e. that no element of this family is a proper subset of another. Any subset
of a maximal context also represents a set of compatible measurements, and we refer
to elements of U := {U ⊆ C | C ∈ M} as contexts.5

– O = (Ox )x∈X specifies a measurable space of outcomes Ox = 〈Ox ,Fx 〉 for each
measurement x ∈ X .

Measurement scenarios can be understood as providing a concise description of the
kind of experimental setup that is being considered. For example, the setup represented
in Fig. 1 is described by the measurement scenario:

X = {a, a′, b, b′} , M = { {a, b}, {a, b′}, {a′, b}, {a′, b′} } , Ox = R , (5)

where R is a bounded measurable subspace of 〈R,BR〉.
4 The space [0, 1] is assumed to be equipped with its Borel σ -algebra.
5 While it is more convenient to specify M, note that the set of contexts U carries exactly the same

information. It forms an abstract simplicial complex whose simplices are the contexts and whose facets are
the maximal context. This combinatorial topological structure is emphasised in some presentations [4,15,16,
29,49].
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If some set of measurements U ⊆ X is considered together, there is a joint outcome
space given by the product of the respective outcome spaces (see Eq. (2)),

OU :=
∏

x∈U
Ox = 〈OU ,FU 〉 =

〈
∏

x∈U
Ox ,

⊗

x∈U
Fx

〉
.

The map E that maps U ⊆ X to E(U ) = OU is called the event sheaf as concretely
it assigns to any set of measurements information about the outcome events that could
result from jointly performing them. Note that as well as applying the map to valid
contexts U ∈ U we will see that it can also be of interest to consider hypothetical
outcome spaces for sets of measurements that do not necessarily form valid contexts, in
particular E(X) = OX , the joint outcome space for all measurements. Moreover, as we
will briefly discuss, thismap satisfies the conditions to be a sheafE : P(X)op −→ Meas,
where P(X) denotes the powerset of X , similarly to its discrete-variable analogue in
[8].

The language of sheaves

Sheaves are widely used in modern mathematics. They might roughly be thought of as
providing ameans of assigning information to the open sets of a topological space in such
a way that information can be restricted to smaller open sets and consistent information
on a family of open sets can be uniquely ‘glued’ on their union.6 In this work we are
concerned with discrete topological spaces whose points represent measurements, and
the information that we are interested in assigning has to do with outcome spaces for
these measurements and probability measures on these outcome spaces. Sheaves can
be defined concisely in category-theoretic terms as contravariant functors (presheaves)
satisfying an additional gluing condition, though in what follows we will also give a
more concrete description in terms of restriction maps. Categorically, the event sheaf is
a functor E : P(X)op −→ Meas where P(X) is viewed as a category in the standard
way for partial orders, with morphisms corresponding to subset inclusions.

Sheaves come with a notion of restriction. In our example, restriction arises in the
following way: whenever U, V ∈ P(X) with U ⊆ V we have an obvious restriction
map ρV

U : E(V ) −→ E(U ) which simply projects from the product outcome space
for V to that for U . Note that ρU

U is the identity map for any U ∈ P(X) and that
if U ⊆ V ⊆ W in P(X) then ρV

U ◦ ρW
V = ρW

U . Already this is enough to show
that E is a presheaf. In categorical terms it establishes functoriality. Our map assigns
outcome spaces E(U ) = OU to sets of measurementsU ∈ P(X), and in sheaf-theoretic
terminology elements of these outcome spaces are called sections overU . Sections over
X are called global sections. For an inclusion U ⊆ V and a section o ∈ E(V ) = OV ,
it is often more convenient to use the notation o|U to denote ρV

U (o) ∈ E(U ) = OU , the
restriction of o to U .

Additionally, the unique gluing property holds for E . Suppose that N ⊆ P(X) and
we have anN -indexed family of sections (oU ∈ OU )U∈N that is compatible in the sense
that its elements agree on overlaps, i.e. that for allU, V ∈ N , oU |U∩V = oV |U∩V . Then
these sections can always be ‘glued’ together in a unique fashion to obtain a section oN
over N := ∪N such that oN |U = oU for all U ∈ N . This makes E a sheaf.

6 For a comprehensive reference on sheaf theory see e.g. [59].
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We will primarily be concerned with probability measures on outcome spaces. For
this, we recall that the Giry monad P : Meas −→ Meas takes a measurable space and
returns the probabilitymeasures over that space. Composing it with the event sheaf yields
the map P ◦ E that takes any context and returns the probability measures on its joint
outcome space. In fact, this is a presheafP◦E : P(X)op −→ Meas, where restriction on
sections is given by marginalisation of probability measures. Note that marginalisation
simply corresponds to the push-forward of a measure along projections to a component
of the product space, which are precisely the restriction maps of E . Note, however, that
this presheaf does not satisfy the gluing condition and thus it crucially is not a sheaf.

Empirical models

Definition 2. An empiricalmodel onameasurement scenario 〈X,M, O〉 is a compatible
family for the presheaf P ◦ E on the cover M. Concretely, it is a family e = (eC )C∈M,
where eC is a probability measure on the space E(C) = OC for each maximal context
C ∈ M, which satisfies the compatibility condition:

eC |C∩C ′ = eC ′ |C∩C ′ .

Empirical models capture in a precise way the probabilistic behaviours that may
arise upon performing measurements on physical systems. The compatibility condition
ensures that the empirical behaviour of a given measurement or compatible subset of
measurements is independent of which other compatible measurements might be per-
formed along with them. This is sometimes referred to as the no-disturbance condition.
A special case is no-signalling, which applies in multi-party or Bell scenarios such as
that of Fig. 1 and Eq. (5). In that case, contexts consist of measurements that are sup-
posed to occur in space-like separated locations, and compatibility ensures for instance
that the choice of performing a or a′ at the first location does not affect the empirical
behaviour at the second location, i.e. e{a,b}|{b} = e{a′,b}|{b}.

Note also that while empirical models may arise from the predictions of quantum
theory, their definition is theory-independent. This means that empirical models can
just as well describe hypothetical behaviours beyond what can be achieved by quantum
mechanics such as the well-studied Popescu–Rohrlich box [72]. This can be useful
in probing the limits of quantum theory and in singling out what distinguishes and
characterises quantum theory within larger spaces of probabilistic theories, both well-
established lines of research in quantum foundations.

Sheaf-theoretically. An empirical model is a compatible family of sections for the
presheaf P ◦ E indexed by the maximal contexts of the measurement scenario. A natural
question that may occur at this point is whether these sections can be glued to form a
global section, and this is what we address next.
Extendability and contextuality

Definition 3. An empirical model e on a scenario 〈X,M, O〉 is extendable (or non-
contextual7) if there is a probability measure μ on the space E(X) = OX such that
μ|C = eC for every C ∈ M.8

Recall that OX is the global outcome space, whose elements correspond to global
assignments of outcomes to all the measurements in the given scenario. Of course, it is

7 In the language of [40], (non)contextuality here—and throughout this article—refers to global
(non)contextuality as opposed to Bell (non)contextuality.

8 Notions of partial extendability have also been considered in the discrete setting in [61,79].
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not always the case that X is a valid context, and if it were then μ = eX would trivially
extend the empirical model. The question of the existence of such a probability measure
that recovers the context-wise empirical content of e is particularly significant. When it
exists, it amounts to a way of modelling the observed behaviour as arising stochastically
from the behaviours of underlying states, identified with the elements of OX , each of
which deterministically assigns outcomes to all the measurements in X independently
of the measurement context that is actually performed. If an empirical model is not
extendable it is said to be contextual. Furthermore, we will say that it is Bell nonlocal
in the special setting of so-called Bell scenarios, where the compatibility structure of
observables is obtained from space-like separation.

Sheaf-theoretically. A contextual empirical model is a compatible family of sections for
the presheaf P ◦ E over the contexts of the measurement scenario that cannot be glued
into a global section. Contextuality thus arises as the tension between local consistency
and global inconsistency.

4. A FAB Theorem

Quantum theory presents a number of non-intuitive features. For instance, Einstein,
Podolsky and Rosen (EPR) identified early on that if the quantum description of the
world is taken as fundamental then entanglement poses a problem of “spooky action at
a distance” [35]. Their conclusion was that quantum theory should be consistent with
a deeper or more complete description of the physical world, in which such problems
would disappear. The import of seminal foundational results like the Bell [18] and Bell–
Kochen–Specker [19,52] theorems is that they identify such non-intuitive behaviours
and then rule out the possibility of finding any underlying model for them that would not
suffer from the same issues. Incidentally, we note that the EPR paradox was originally
presented in terms of continuous variables, whereas Bell’s theorem addressed a discrete
variable analogue of it.

In the previous section, we characterised contextuality of an empirical model by the
absence of a global section for that empirical model. We also saw that global sections
capture one kind of underlying model for the behaviour, namely via deterministic global
states that assign predefined outcomes to all measurements. This is precisely the kind
of model referred to in the Kochen–Specker theorem [52]. Bell’s theorem, on the other
hand, pertains to a different kind of hidden-variable model, where the salient feature—
Bell locality—is a kind of factorisability rather than determinism. Fine [36] showed that
in one important measurement scenario (that of the concrete example from Fig. 1) the
existence of one kind of model is equivalent to existence of the other. Abramsky and
Brandenburger [8] proved in full generality that this existential equivalence holds for
any discrete-variable measurement scenario, and that global sections of P ◦ E provide a
canonical form of hidden-variable model.

In this section,weprove aFine–Abramsky–Brandenburger theorem in the continuous-
variable setting. It establishes that in this setting there is also an unambiguous, unified
description of Bell locality and noncontextuality, which is captured in a canonical way
by the notion of extendability.

We will begin by introducing hidden-variable models in a more precise way. The
idea is that there exists some spaceΛ of hidden variables, which determine the empirical
behaviour. However, elements of this space may not be directly empirically accessible
themselves, so we allow that wemight only have probabilistic information about them in
the form of a probability measure p on Λ. The empirically observable behaviour should
then arise as an average over the hidden-variable behaviours.
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Definition 4. Let 〈X,M, O〉 be a measurement scenario. A hidden-variablemodel9 on
this scenario consists of the following ingredients:

– A measurable space Λ = 〈Λ,FΛ〉 of hidden variables.
– A probability measure p on Λ.
– For each maximal context C ∈ M, a probability kernel kC : Λ −→ E(C),10 satis-
fying the following compatibility condition: for any maximal contexts C,C ′ ∈ M,

∀λ ∈ Λ. kC (λ,−)|C∩C ′ = kC ′(λ,−)|C∩C ′ . (6)

Remark 1. Equivalently, we can regard Eq. (6) as defining a function k from Λ to the
set of empirical models over 〈X,M, O〉. The function assigns to each λ ∈ Λ the
empirical model k(λ) := (k(λ)C )C∈M, where the correspondence with the definition
above is via k(λ)C = kC (λ,−). This function must be ‘measurable’ in Λ in the sense
that k(−)C (B) : Λ −→ [0, 1] is a measurable function for all C ∈ M and B ∈ FC .

Definition 5. Let 〈X,M, O〉 be a measurement scenario and 〈Λ, p, k〉 be a hidden-
variable model. Then the corresponding empirical model e is given as follows: for any
maximal context C ∈ M and measurable set of joint outcomes B ∈ FC ,

eC (B) =
∫

Λ

kC (−, B) d p =
∫

λ∈Λ

kC (λ, B) d p(λ) .

Note that our definition of hidden-variable model assumes the properties known as
λ-independence [31] and parameter-independence [47,78]. The former corresponds to
the fact that the probability measure p on the hidden-variable space is independent of
the measurement context to be performed, while the latter corresponds to the compati-
bility condition (6), which also ensures that the corresponding empirical model satisfies
no-signalling [23]. We refer the reader to [24] for a detailed discussion of these and
other properties of hidden-variable models specifically in the case of multi-party Bell
scenarios.

The idea behind the introduction of hidden variables is that they could explain away
some of the more non-intuitive aspects of the empirical predictions of quantummechan-
ics, which would then arise as resulting from an incomplete knowledge of the true state
of a system rather than being a fundamental feature. There is some precedent for this in
physical theories: for instance, statistical mechanics—a probabilistic theory—admits a
deeper, albeit usually unwieldily complex, description in terms of classical mechanics,
which is purely deterministic. Therefore, it is desirable to impose conditions on hidden-
variable models which amount to requiring that they behave in some sense classically
when conditioned on each particular value of the hidden variable λ. This motivates the
notions of deterministic and of factorisable hidden-variable models.

Definition 6. Ahidden-variablemodel 〈Λ, p, k〉 is deterministic if the probability kernel
kC (λ,−) : FC −→ [0, 1] is a Dirac measure for every λ ∈ Λ and for every maximal
contextC ∈ M; in other words, there is an assignment o ∈ OC such that kC (λ,−) = δo.

9 The alternative term ontological model [81] has become widely used in quantum foundations in recent
years. It indicates that the hidden variable, sometimes referred to as the ontic state, is supposed to provide
an underlying description of the physical world at perhaps a more fundamental level than the empirical-level
description via the quantum state for example.
10 Recall from Sect. 2 that a probability kernel kC : Λ −→ E(C) is a function kC : Λ × FC −→ [0, 1]

which is a measurable function in the first argument and a probability measure in the second argument.
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In general discussions on hidden-variable models (e.g. [24]), the condition above,
requiring that each hidden variable determines a unique joint outcome for each mea-
surement context, is sometimes referred to as weak determinism. This is contraposed to
strong determinism, which demands not only that each hidden variable fix a determinis-
tic outcome to each individual measurement, but that this outcome be independent of the
context in which the measurement is performed. Note, however, that since our defini-
tion of hidden-variable models assumes the compatilibity condition (6), i.e. parameter-
independence, both notions of determinism coincide [23].

Definition 7. A hidden-variable model 〈Λ, p, k〉 is factorisable if kC (λ,−) : FC −→
[0, 1] factorises as a product measure for every λ ∈ Λ and for every maximal context
C ∈ M. That is, for any family of measurable sets (Bx ∈ Fx )x∈C with Bx 	= Ox only
for finitely many x ∈ C ,

kC (λ,
∏

x∈C
Bx ) =

∏

x∈C
kC |{x}(λ, Bx )

where kC |{x}(λ,−) is the marginal of the probability measure kC (λ,−) on OC =∏
x∈C Ox to the space O{x} = Ox .11

Remark 2. In other words, if we consider elements of Λ as inaccessible ‘empirical’
models—i.e. if we use the alternative definition of hidden-variable models using the
map k (see Remark 1)—then factorisability is the requirement that each of these be
factorisable in the sense that

kC (λ)

(
∏

x∈C
Bx

)
=

∏

x∈C
kC (λ)|{x}(Bx )

where kC |{x}(λ) is the marginal of the probability measure kC (λ) on OC = ∏
x∈C Ox

to the space Ox .

We now prove the continuous-variable analogue of the theorem proved in the discrete
probability setting by Abramsky and Brandenburger [8, Proposition 3.1 and Theorem
8.1], generalising the result of Fine [36] to arbitrary measurement scenarios.

In particular, this result shows that the measurable space E(X) = OX provides a
canonical hidden-variable space. The proof that (1) ⇒ (2) in the Theorem below shows
how a global probability measure extending an empirical model e can be understood
as giving a deterministic hidden-variable model with Λ = E(X). Canonicity is then
established together with the proof that (3) ⇒ (1), to the effect that if a given empirical
model admits any factorisable hidden-variablemodel then it admits a deterministicmodel
of the form just mentioned (with E(X) being the hidden-variable space).

Theorem 1. Let e be an empirical model on a measurement scenario 〈X,M, O〉. The
following are equivalent:

(1) e is extendable;
(2) e admits a realisation by a deterministic hidden-variable model;
(3) e admits a realisation by a factorisable hidden-variable model.

11 Note that, due to the assumption of parameter independence (Eq. (6)), we can unambiguously write
kx (λ, −) for kC |{x}(λ, −), as this marginal is independent of the context C from which one is restricting.
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Proof. We prove the sequence of implications (1) ⇒ (2) ⇒ (3) ⇒ (1).
(1) ⇒ (2). The idea is that E(X) = OX provides a canonical deterministic hidden-

variable space. Suppose that e is extendable to a global probability measure μ. Let us
set

Λ := OX

p := μ

kC (g,−) := δg|C
for all global outcome assignments g ∈ OX . This is by construction a deterministic
hidden-variable model, which we claim gives rise to the empirical model e.

Let C ∈ M and write ρ : OX −→ OC for the measurable projection which, in the
event sheaf, is the restriction map ρX

C = E(C ⊆ X) : E(X) −→ E(C).
For any E ∈ FC , we have

kC (g, E) = δg|C (E) = δρ(g)(E) = χE (ρ(g)) = (χE ◦ ρ)(g) (7)

and therefore, as required,
∫

Λ
kC (−, E) d p

= { Λ = OX ; p = μ; kC (−, E) = χE ◦ ρ by Eq. (7) } (8)
∫

OX

χE ◦ ρ dμ

= { change of variables, Eq. (4) } (9)
∫

OC

χE d ρ∗μ

= { marginalisation for probability measures } (10)
∫

OC

χE dμ|C
= { integral of indicator function, Eq. (3) } (11)

μ|C (E)

= { μ extends the empirical model e }
eC (E) . (12)

(2) ⇒ (3). It is enough to show that if a hidden-variable model 〈Λ, p, k〉 is determin-
istic then it is also factorisable. For this, it is sufficient to notice that a Dirac measure
δo with o ∈ OC on a product space OC = ∏

x∈C Ox factorises as the product of Dirac
measures

δo =
∏

x∈C
δo(x) =

∏

x∈C
δo|{x} .

(3)⇒ (1).Suppose that e is realised by a factorisable hidden-variablemodel 〈Λ, p, k〉.
Write kx for kC |{x} as in the definition of factorisability. Define a measure μ on OX as
follows: given a family of measurable sets (Ex ∈ Fx )x∈X with Ex = Ox for all but
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finitely many x ∈ X , the value of μ on the corresponding cylinder,
∏

x∈X Ex , is given
by

μ

(
∏

x∈X
Ex

)
:=

∫

Λ

(
∏

x∈X
kx (−, Ex )

)
d p =

∫

λ∈Λ

(
∏

x∈X
kx (λ, Ex )

)
d p(λ) , (13)

where the product on the right-hand side is a product of finitely many real numbers in
the interval [0, 1], since kx (λ, Ox ) = 1 and so kx (λ, Ex ) 	= 1 for only finitely many
x ∈ X . Note that the σ -algebra of OX is the tensor product σ -algebra FX = ⊗

x∈X Fx ,
which is generated by such cylinders; hence the equation above uniquely determines μ

as a measure on OX .
Now, we show that this is a global section for the empirical probabilities. LetC ∈ M

and consider a ‘cylinder’ set F = ∏
x∈C Fx with Fx ∈ FX and Fx 	= Ox only for

finitely many x ∈ C . Then

μ|C (F)

= { definition of marginalisation } (14)

μ(F × OX\C )

= { definition of F and OU } (15)

μ(
∏

x∈C
Fx ×

∏

x∈X\C
Ox )

= { definition of μ, Eq. (13) } (16)

∫

Λ

(
∏

x∈C
kC (–, Fx )

) ⎛

⎝
∏

x∈X\C
kC (–, Ox )

⎞

⎠ d p

= { kC (λ, −) is a probability measure so kC (λ, Ox ) = 1 } (17)
∫

Λ

(
∏

x∈C
kC (–, Fx )

)
d p

= { factorisability of the hidden-variable model } (18)
∫

Λ

kC (–,
∏

x∈C
Fx ) d p

= { definition of F } (19)
∫

Λ

kC (–, F) d p

= { e is the empirical model corresponding to 〈Λ, p, k〉 }
eC (F) (20)

Since the σ -algebra FC of OC is generated by the cylinder sets of the form above
and we have seen that μ|C agrees with eC on these sets, we conclude that μ|C = eC as
required. ��
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5. Quantifying Contextuality

Beyond questioning whether a given empirical behaviour is contextual or not, it is also
interesting to ask to what degree it is contextual. In discrete-variable scenarios, a very
natural measure of contextuality is the contextual fraction [8]. This measure was shown
in [6] to have a number of very desirable properties. It can be calculated using linear
programming, an approach that subsumes the more traditional approach to quantifying
nonlocality and contextuality using Bell and noncontextuality inequalities in the sense
that we can understand the (dual) linear program as optimising over all such inequalities
for the scenario in question and returning the maximum normalised violation of any
Bell or noncontextuality inequality achieved by the given empirical model. Crucially,
the contextual fraction was also shown to quantifiably relate to quantum-over-classical
advantages in specific informatic tasks [6,63,85]. Moreover it has been demonstrated to
be a monotone with respect to the free operations of resource theories for contextuality
[4,6,32].

In this section,we consider how to carry those ideas to the continuous-variable setting.
The formulation as a linear optimisation problem and the attendant correspondence
with Bell inequality violations requires special care as one needs to use infinite linear
programming, necessitating some extra assumptions on the outcomemeasurable spaces.

5.1. The contextual fraction

Asking whether a given behaviour is noncontextual amounts to asking whether the
empirical model is extendable, or in other words whether it admits a deterministic
hidden-variable model. However, a more refined question to pose is what fraction of
the behaviour admits a deterministic hidden-variable model? This quantity is what we
call the noncontextual fraction. Similarly, the fraction of the behaviour that is left over
and that can thus be considered irreducibly contextual is what we call the contextual
fraction.

Definition 8. Let e be an empiricalmodel on the scenario 〈X,M, O〉. Thenoncontextual
fraction of e, written NCF(e), is defined as

sup {μ(OX ) | μ ∈ M(OX ), ∀C ∈ M. μ|C ≤ eC } .

Note that since eC ∈ P(OC ) for all C ∈ M it follows that NCF(e) ∈ [0, 1]. The
contextual fraction of e, written CF(e), is given by CF(e) := 1 − NCF(e).

5.2. Monotonicity under free operations including binning

In the discrete-variable setting, the contextual fraction was shown to be a monotone
under a number of natural classical operations that transform and combine empirical
models and control their use as resources, therefore constituting the ‘free’ operations of
a resource theory of contextuality [4,6,32].

All of the operations defined for discrete variables in [6]—viz. translations of mea-
surements, transformation of outcomes, probabilistic mixing, product, and choice—
carry almost verbatim to our current setting. One detail is that one must insist that the
coarse-graining of outcomes be achieved by (a family of) measurable functions. A par-
ticular example of practical importance is binning, which is widely used in continuous-
variable quantum information as a method of discretising data by partitioning the out-
come space Ox for each measurement x ∈ X into a finite number of ‘bins’, i.e. mea-
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surable sets. Note that a binned empirical model is obtained by pushing forward along a
family (tx )x∈X of outcome translations tx : Ox −→ O ′

x where O
′
x is finite for all x ∈ X .

For the conditional measurement operation introduced in [4], which allows for adap-
tive measurement protocols such as those used in measurement-based quantum compu-
tation [76], one must similarly insist that the map determining the next measurement
to perform based on the observed outcome of a previous measurement be a measurable
function. Since, for the quantification of contextuality, we are only considering scenar-
ios where the measurements are treated as constituting a discrete set, this amounts to a
partition of the outcome space Ox of the first measurement, x , into measurable subsets
labelled by measurements compatible with x , indicating which will be subsequently
performed depending on the outcome observed for x .

The inequalities establishing monotonicity from [6, Theorem 2] also hold for contin-
uous variables. There is a caveat for the equality formula for the product of two empirical
models:

NCF(e1 ⊗ e2) = NCF(e1)NCF(e2).

Whereas the inequality establishing monotonicity (≥) stills holds in general, the proof
establishing the other direction (≤) makes use of duality of linear programs. Therefore,
it only holds under the assumptions we will impose in the remainder of this section.

Proposition 1. If e is an empirical model, and ebin is any discrete-variable empirical
model obtained from e by binning, then contextuality of ebin witnesses contextuality of
e, and quantifiably gives a lower bound CF(ebin) ≤ CF(e).

5.3. Assumptions on the outcome spaces

In order to phrase the problem of contextuality as an (infinite) linear programming prob-
lem and establish the connection with violations of Bell inequalities, we need to impose
some conditions on the measurement scenarios, and in particular on the measurable
spaces of outcomes.

First, from now on we assume that we have a finite number of measurement labels
i.e. that X is finite.

Moreover, we restrict attention to the case where the outcome space Ox for each
measurement x ∈ X is the Borel measurable space for a compact Hausdorff space,
i.e. that the set Ox is a compact space andFx is the σ -algebra generated by its open sets,
writtenB(Ox ). Note that this includesmost situations of interest in practice. In particular,
it includes the case of measurements with outcomes in a bounded subspace of R or
R
n . This is also experimentally motivated since measurement devices are energetically

bounded. The central missing piece is the case of locally compact spaces, in order to
include the measurements with outcomes in R or Rn , which is theoretically relevant (R
would be the canonical outcome space for the quadratures of the electromagnetic field,
for instance). We address this issue in the next section and show that it reduces to the
compact case.

To summarise we make the following two assumptions here (we will slightly relax
the second one later):

(i) X is a finite set of measurement labels,
(ii) for each x ∈ X , the outcome space Ox is a compact Hausdorff space.
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To obtain an infinite linear program, we need to work with vector spaces. However,
probability measures, or even finite or arbitrary measures, do not form one. We will
therefore consider the set M±(Y) of finite signed measures (a.k.a. real measures) on a
measurable space Y = 〈Y,FY 〉. These are functions μ : FY −→ R such that μ(∅) =
0 and μ is σ -additive. In comparison to the definition of a measure, one drops the
nonnegativity requirement, but insists that the values be finite. The set M±(Y) forms
a real vector space which includes the probability measures P(Y), and total variation
gives a norm on this space. When Y is a compact Hausdorff space and Y = 〈Y,B(Y )〉,
the Riesz–Markov–Kakutani representation theorem [48] says thatM±(Y) is a concrete
realisation of the topological dual space of C(Y,R), the space of continuous real-valued
functions on Y . The duality is given by 〈μ, f 〉 := ∫

Y f dμ for μ ∈ M±(Y) and
f ∈ C(Y,R).

5.4. Linear programming

Consider an empirical model e = (eC )C∈M on a scenario 〈X,M, O〉 satisfying the
assumptions discussed above. Calculation of its noncontextual fraction can be expressed
as the infinite linear programming problem (P-CF). This is our primal linear program;
its dual linear program is given by (D-CF). In what follows, we will see how to derive
the dual and show that the optimal solutions of both programs coincide. We also refer
the interested reader to Appendix A where the programs are expressed in the standard
form of infinite linear programming [17].

(P-CF)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find μ ∈ M±(OX )

maximising μ(OX )

subject to:

∀C ∈ M, μ|C ≤ eC
μ ≥ 0 .

(D-CF)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find ( fC )C∈M ∈
∏

C∈M
C(OC )

minimising
∑

C∈M

∫

OC

fC d eC

subject to:
∑

C∈M
fC ◦ ρX

C ≥ 1OX

∀C ∈ M, fC ≥ 0OC .

We have written ρX
C for the projection OX −→ OC as before, and 1D (resp. 0D) for

the constant function D −→ R that assigns the number 1 (resp. 0) to all elements of its
domain D; in the above instance, to all g ∈ OX (resp. all o ∈ OC ).12 We denote the op-
timal values of problems (P-CF) and (D-CF), respectively, as val(P-CF) and val(D-CF).
They both equal NCF(e) due to strong duality (see Proposition 24 and Appendix B).

12 Note that 1D is just a simplified notation for the indicator function on the whole domain; i.e. 1D =
χD : D −→ R. Similarly, 0D is the indicator function of the empty set; i.e. 0D = χ∅ : D −→ R.
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Analogues of these programs have been studied in the discrete-variable setting [6].
Note however that, in general, these continuous-variable linear programsare over infinite-
dimensional spaces and thus not practical to compute directly. For this reason, in Sect. 8
we will introduce a hierarchy of finite-dimensional semi-definite programs that approx-
imate the solution of (P-CF) to arbitrary precision.

Deriving the dual via the Lagrangian

We now give an explicit derivation of (D-CF) as the dual of (P-CF) via the Lagrangian
method. To simplify notation, we set E1 := M±(OX ) and F2 := ∏

C∈M C(OC ,R) and
their convex cones K1 and K ∗

2 (seeAppendixA). Thismatches the standard formnotation
for infinite linear programming of [17], in which we present our programs in Appendix
A. Hence we introduce |M| dual variables, and one continuous map fC ∈ C(OC ,R)

for each C ∈ M to account for the constraints μ|C ≤ eC . From (P-CF), we then define
the Lagrangian L : K1 × K ∗

2 −→ R as

L (μ, ( fC )) := μ(OX )

︸ ︷︷ ︸
objective

+
∑

C∈M

∫

OC

fC d (eC − μ|C )

︸ ︷︷ ︸
constraints

. (21)

The primal program (P-CF) corresponds to

sup
μ∈K1

inf
( fC )∈K ∗

2

L(μ, ( fC )) , (22)

as the infimum here imposes the constraints thatμ|C ≤ eC for allC ∈ M, for otherwise
the Lagrangian diverges. If these constraints are satisfied, then because of the infimum,
the second term of the Lagrangian vanishes yielding the objective of the primal problem.
To express the dual, which amounts to permuting the infimum and the supremum, we
need to rewrite the Lagrangian:

L(μ, ( fC )) = μ(OX ) +
∑

C∈M

∫

OC

fC d (eC − μ|C )

=
∫

OX

1 dμ +
∑

C∈M

∫

OC

fC d eC −
∑

C∈M

∫

OC

fC dμ|C

=
∫

OX

1 dμ +
∑

C∈M

∫

OC

fC d eC −
∑

C∈M

∫

OX

fC ◦ ρX
C dμ

=
∫

OX

1 dμ +
∑

C∈M

∫

OC

fC d eC −
∫

OX

(
∑

C∈M
fC ◦ ρX

C

)
dμ

=
∑

C∈M

∫

OC

fC d eC +
∫

OX

(
1 −

∑

C∈M
fC ◦ ρX

C

)
dμ .

The dual program (D-CF) indeed corresponds to

inf
( fC )∈K ∗

2

sup
μ∈K1

L(μ, ( fC )) . (23)
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The supremum imposes that
∑

C∈M fC ◦ρX
C ≥ 1 on OX , since otherwise the Lagrangian

diverges. If this constraint is satisfied, then the supremummakes the second term vanish
yielding the objective of the dual problem (D-CF).

Zero duality gap

A key result about the noncontextual fraction, which is essential in establishing the
connection to Bell inequality violations, is that (P-CF) and (D-CF) are strongly dual, in
the sense that no gap exists between their optimal values. Strong duality always holds
in finite linear programming, but it does not hold in general for the infinite case.

Proposition 2. Problems (P-CF) and (D-CF) have zero duality gap and their optimal
values satisfy

val(P-CF) = val(D-CF) = NCF(e) (24)

Proof. This proof relies on [17, Theorem 7.2]. The complete proof is provided in Ap-
pendixB.Here, we only provide a brief outline. Let E1 := M±(OX )×∏

C∈MM±(OC )

and E2 := ∏
C∈MM±(OC ). Strong duality between (P-CF) and (D-CF) amounts to

showing that the cone

K = {( (μ|C + νC )C∈M, μ(OX ) ) | (μ, (νC )C∈M) ∈ E1+}
is weakly closed in E2 ⊕ R, where:

E1+ := {(μ, (νC )C∈M) ∈ E1 | μ ≥ 0 and ∀C ∈ M. νC ≥ 0} ⊂ E1.

We do so by considering a sequence (μk, (νkC )C )k∈N in E1+ and showing that the accu-
mulation point

lim
k→∞

(
(μk |C + νk)C∈M, μk(OX )

)

belongs to K. ��

6. The Case of Local Compactness

We now focus on cases where the outcome space might be only locally compact. These
include most theoretical situations that are of interest in practice. For instance R could
be the outcome space for the position and momentum operators.

For each measurement x ∈ X , Ox is supposed to be the Borel measurable space for
a second-countable locally compact Hausdorff space, i.e. that the set Ox is equipped
with a second-countable locally compact Hausdorff topology and Fx is the σ -algebra
generated by its open sets, written B(Ox ). Second countability and Hausdorffness of
two spaces Y and Z suffice to show that the Borel σ -algebra of the product topology
is the tensor product of the Borel σ -algebras, i.e. B(Y × Z) = B(Y ) ⊗ B(Z) [22,
Lemma 6.4.2 (Vol. 2)]. Hence, these assumptions guarantee that OU for U ∈ P(X) is
the Borel σ -algebra of the product topology on OU = ∏

x∈U Ox . These product spaces
are also second-countable, locally compact, and Hausdorff as all three properties are
preserved by finite products. When Y is a second-countable locally compact Hausdorff
space and Y = 〈Y,B(Y )〉, the Riesz–Markov–Kakutani representation theorem [48]
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says that M±(Y) is a concrete realisation of the topological dual space of C0(Y ), the
space of continuous real-valued functions on Y that vanish at infinity.13 The duality is
given by 〈μ, f 〉 := ∫

Y f dμ for μ ∈ M±(Y) and f ∈ C0(Y ).14 Note that when Y
is compact (as treated above), C0(Y ) = C(Y ) as every closed subspace of a compact
space is compact.

Next, we show that we can approximate the linear program (P-CF)15 by a slightly
modified linear programdefined on the space of finitemeasures on ameasurable compact
subspace of OX . The idea is to approximate to any desired error the mass of a finite
measure on a locally compact set by the mass of the same measure on a compact subset.
This naturally comes from the notion of tightness of a measure.

Definition 9 (tightness of a measure). A measure μ on a metric space U is said to be
tight if for each ε > 0 there exists a compact set Uε ⊆ U such that μ(U \Uε) < ε.

Then we need to argue that every measure we will consider is tight. This is a result of
the following theorem.

Theorem 2 [70]. If S is a complete separable metric space, then every finite measure
on S is tight.

For x ∈ X , Ox is a second-countable locally compact Hausdorff space, thus a Polish
space i.e. a separable completely metrisable topological space. For this reason, the above
theoremapplies.We are now ready to state and prove themain theoremof this subsection.

Theorem 3. The linear program (PC-FCV,ε), defined over finite-signed measures on
a locally compact space can be approximated to any desired precision ε by a linear
program (P-CFCV,ε) defined over finite signed measures on a compact space.

Proof. Fix ε > 0. Let C ∈ M be a given context and x ∈ C a given measurement label
within that context. Because eC is a probability measure on OC , the marginal measure
eC |{x} is a finite measure on Ox . Following Theorem 2, eC |{x} is tight and there exists
a compact subset K ε,C

x ⊆ Ox such that: eC |{x}(Ox \ K ε,C
x ) ≤ ε. Importantly there

exist proofs that explicitly construct the approximating sets K ε,C
x (see [67]) based on

the separability of the underlying spaces. It makes this construction feasible in practice
and justifies this approach.

We apply this procedure for every context and for all measurements in a context. We
now define the compact set

Oε
x :=

⋃

C|x∈C
K ε,C
x .

The previous definition is essential to ensure a noncontextual cut off of the outcome
set which ensures the good definition of a compact subset for each measurement label
independent of the context. For some subset of measurement labels U ⊆ X , we define

13 A function f : Y −→ R on a locally compact space Y is said to vanish at infinity if the set
{y ∈ Y | ‖ f (x)‖ ≥ ε} is compact for all ε > 0.
14 This theorem holds more generally for locally compact Hausdorff spaces if one considers only (finite

signed) Radon measures, which are measures that play well with the underlying topology. However, second-
countability, togetherwith local compactness andHausdorffness, guarantees that everyBorelmeasure is Radon
[37, Theorem 7.8].
15 Here we will still use the form of the program (P-CF) though throughout this subsection one has to keep

in mind that it is defined over finite-signed measures on a locally compact space rather than a compact space.



Continuous-Variable Nonlocality and Contextuality 1067

the compact set Oε
U := ∏

x∈U Oε
x . For every contextC ∈ M and for everymeasurement

label x ∈ C , we now have that K ε,C
x ⊆ Oε

x and thus eC |{x}(Ox \ Oε
x ) ≤ ε. Note that due

to the compatibility condition, we can write eC |{x} as e{x} for any context.
Let μ be any feasible solution of (P-CF) defined over finite-signed measures on a

locally compact space. Due to the constraints of (P-CF) we have that ∀x ∈ X, μ|{x} ≤
e{x}. Then:

μ(OX \ Oε
X ) = μ

(
∏

x∈X
Ox \

∏

x∈X
Oε
x

)
(25)

= μ

(
∏

x∈X
(Ox \ Oε

x )

)
(26)

=
∏

x∈X
μ|{x}(Ox \ Oε

x ) (27)

≤
∏

x∈X
e{x}(Ox \ Oε

x ) (28)

≤ ε|X | . (29)

We now define the linear program (P-CFCV,ε) which has the same form as (P-CF)
though the unknown measures are taken from M±(Oε

X ) where Oε
X = 〈

Oε
X ,B(Oε

X )
〉
.

We would like to state that (P-CFCV,ε) approximates (P-CF) up to ε; i.e. that their
values are ε-close. The missing ingredient from the previous chain of inequalities is that
given an optimal measure μ∗ satisfying (P-CF), we do not know whether an optimal
solutionμ∗

ε of (P-CF
CV,ε) is necessarily the restriction ofμ∗ to Oε

X . In fact, it is possible
that we do not even have a unique optimal solution. However we only need to prove
that they have the same mass on Oε

X , i.e. μ
∗
ε(O

ε
X ) = μ∗|Oε

X
(Oε

X ). For a contradiction,

suppose this does not hold. Then because μ∗
ε is an optimal value of (P-CFCV,ε), we

must have μ∗
ε(O

ε
X ) > μ∗|Oε

X
(Oε

X ). From this we construct a new measure μ̃ on OX

which equals μ∗
ε on Oε

X and μ∗ on OX \ Oε
X . It satisfies all constraints and furthermore

μ̃(OX ) > μ∗(OX ). This contradicts the fact that μ∗ is an optimal solution of (P-CF).
Thus necessarily μ∗

ε(O
ε
X ) = μ∗|Oε

X
(Oε

X ).

The linear program (P-CFCV,ε) defined on a compact space has indeed a value ε-close
to the original program (P-CF). ��

In conclusion to this section, we can approximate the problem of finding the noncon-
textual fraction in measurement scenarios whose outcome spaces are locally compact
by the same problem defined on compact subspace. It thus suffices to restrict the study
to the case of compact outcome spaces.

7. Continuous Generalisation of Bell Inequalities

The dual program (D-CF) is of particular interest in its own right. As we now show, it can
essentially be understood as computing a continuous-variable ‘Bell inequality’ that is
optimised to the empiricalmodel.Making the changeof variablesβC := |M|−11OC − fC
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for each C ∈ M, the dual program (D-CF) transforms to the following.

(B-CF)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (βC )C∈M ∈
∏

C∈M
C(OC )

maximising
∑

C∈M

∫

OC

βC d eC

subject to:
∑

C∈M
βC ◦ ρX

C ≤ 0OX

∀C ∈ M, βC ≤ |M|−11OC .

This program directly computes the contextual fractionCF(e) instead of the noncontex-
tual fraction. It maximises, subject to constraints, the total value obtained by integrating
these functionals context-wise against the empirical model in question. The first set of
constraints—a generalisation of a system of linear inequalities determining a Bell in-
equality — ensures that, for noncontextual empirical models, the value of the program
is at most 0, since any such model extends to a measure μ on OX such that μ(OX ) = 1.
The final set of constraints acts as a normalisation condition on the value of the program,
ensuring that it takes values in the interval [0, 1] for any empirical model. Any family
of functions β = (βC ) ∈ F2 satisfying the constraints will thus result in what can be
regarded as a generalised Bell inequality,

∑

C∈M

∫

OC

βC d eC ≤ 0 , (30)

which is satisfied by all noncontextual empirical models.

Definition 10. A formβ onameasurement scenario 〈X,M, O〉 is a familyβ = (βC )C∈M
of functions βC ∈ C(OC ) for all C ∈ M. Given an empirical model e on 〈X,M, O〉,
the value of β on e is16

〈β, e〉2 :=
∑

C∈M

∫

OC

βC d eC .

The norm of β is given by

‖β‖ :=
∑

C∈M
‖βC‖ =

∑

C∈M
sup {βC (o) | o ∈ OC } .

Definition 11. An inequality (β, R) on a measurement scenario 〈X,M, O〉 is a form β

together with a bound R ∈ R. An empirical model e is said to satisfy the inequality if
the value of β on e is below the bound, i.e. 〈β, e〉2 ≤ R.

Definition 12. An inequality (β, R) is said to be a generalised Bell inequality if it is
satisfied by all noncontextual empirical models, i.e. if for any noncontextual model d
on 〈X,M, O〉, it holds that 〈β, d〉2 ≤ R.

16 The notation 〈·, ·〉2 is further discussed and explained to be a canonical duality in Appendix A.
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A generalised Bell inequality (β, R) establishes a bound 〈e, β〉2 amongst noncontextual
models e. For more general models, the value of β on e is only limited by the algebraic
bound ‖β‖. In the following, we will only consider inequalities (β, R) for which R <
‖β‖ excluding inequalities trivially satisfied by all empirical models.

Definition 13. The normalised violation of a generalised Bell inequality (β, R) by an
empirical model e is

max{0, 〈β, e〉2 − R}
‖β‖ − R

,

the amount by which its value 〈β, e〉2 exceeds the bound R normalised by the maximal
‘algebraic’ violation.

The above definition restricts to the usual notions ofBell inequality and noncontextual
inequality in the discrete-variable case and is particularly close to the presentation in
[6]. The following theorem also generalises to continuous variables the main result of
[6].

Theorem 4. Let e be an empirical model. (i) The normalised violation by e of any
generalised Bell inequality is at most CF(e); (ii) if CF(e) > 0 then for every ε > 0
there exists a generalised Bell inequality whose normalised violation by e is at least
CF(e) − ε.

Proof. The proof follows directly from the definitions of the linear programs, and from
strong duality, i.e. the fact that their optimal values coincide (Proposition 2 below). ��
Item (ii) is slightly modified compared to the discrete analogue because there is no
guarantee that there exists an optimal solution for the dual program (D-CF). In particular,
its optimal valuemight be achieved by a discontinuous function that can be approximated
by continuous ones. Hence the modification of (ii) with a normalised violation ε-close
to CF(e).

8. Approximating the Contextual Fraction with SDPs

In Sect. 5, we presented the problem of computing the noncontextual fraction as an
infinite linear program. Although this is of theoretical importance, it does not allow one
to directly perform the actual numerical computation of this quantity. Herewe exploit the
link between measures and their sequence of moments to derive a hierarchy of truncated
finite-dimensional semidefinite programs which are a relaxation of the original primal
problem (P-CF).Dual to this vision,we can equivalently exploit the link between positive
polynomials and their sum-of-squares representation to derive a hierarchy of semidefinite
programs which are a restriction of the dual problem (D-CF). We further prove that the
optimal values of the truncated programs converge monotonically to the noncontextual
fraction. This makes use of global optimisation techniques developed by Lasserre and
Parrilo [54,69] and further developed in [55]. We introduce them in Appendix C and
strongly recommend reading this appendix to readers unfamiliar with these notions. We
will use the same notation throughout this section. Another extensive and well-presented
reference on the subject is [56]. We start by deriving a hierarchy of SDPs to approximate
the contextual fraction and then show that it provides a sequence of optimal values that
converge to the noncontextual fraction.
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Notation and terminology

Wefirst fix some notation that is also used inAppendixC. LetR[x] denote the ring of real
polynomials in the variables x ∈ R

d , and let R[x]k ⊂ R[x] contain those polynomials
of total degree at most k. The latter forms a vector space of dimension s(k) := (d+k

k

)
,

with a canonical basis consisting of monomials xα = xα1
1 · · · xαd

d indexed by the set

N
d
k := {

α ∈ N
d | |α| ≤ k

}
where |α| := ∑d

i=1 αi . Any p ∈ R[x]k can be expanded in
this basis as p(x) = ∑

α∈Nd
k
pαxα and we write p := (pα) ∈ R

s(k) for the resulting
vector of coefficients.

8.1. Hierarchy of semidefinite relaxations for computing NCF(e)

We fix a measurement scenario 〈X,M, O〉 and an empirical model e on this scenario.
We will restrict our attention to outcome spaces of the form detailed in Sect. 5.3. Let
d = |X | ∈ N>0 so that OX is a Borel subset of Rd . As a prerequisite, we first need to
compute the sequences of moments associated to measures (eC )C∈M derived from the
empirical model. For C ∈ M, let ye,C = (ye,Cα )α∈Nd be the sequence of all moments
of eC . For a given k ∈ N, which will fix the level of the hierarchy, we only need to
compute a finite number s(k) of moments for all contexts. These will be the inputs to
the program.

Below, we derive a hierarchy of SDP relaxations for the primal program (P-CF) such
that their optimal values converge monotonically to val(P-CF) = NCF(e). We start by
discussing the assumptions we have to make on the outcome space. Then we derive
the hierarchy based first on the primal program and then on the dual program and we
further show that these formulations are indeed dual. Finally, we prove convergence of
the hierarchy.

Further assumptions on the outcome space?

We already made the assumptions mentioned in Sect. 5.3 for the outcome spaces O =
(Ox )x∈X noting that they are not restrictive when considering actual applications. How-
ever we would like to meet the assumptions detailed in Assumption 1 for the global
outcome space OX so that both Theorems 6 and 8 apply in our setting (see Appendix C).

Assumption 1 (ii) is alreadymet becausewe have assumed that for all x ∈ X , Ox ⊂ R

is compact. Recall that the more general case of locally compact can be reduced to the
compact case, as seen in Sect. 6.

Let us discuss Assumption 1 (i). We have that OX = ∏
x∈X Ox with Ox ⊂ R

compact. If Ox is disconnected, we can always complete it into a connected space
by attributing measure zero to the added parts for all measures eC whenever x ∈ C .
Then because Ox is compact, it is bounded and it can be described by two constant
polynomials: there exists ax , bx ∈ R such that Ox = [ax , bx ]. Thismakes OX a polytope
so in particular, it is semi-algebraic. We write it as

OX =
{
x ∈ R

d | ∀ j = 1, . . . ,m, g j (x) ≥ 0
}

(31)

for some polynomials g j ∈ R[x] of degree 1.
As noted in [54], Assumption 1 (iii) is not very restrictive. For instance, it is satisfied

when the set is a polytope. This is the case for OX .
Thus there is no need for further assumptions beyond those already assumed in

Sect. 5.3 in order to apply the results presented in Appendix C.
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Relaxation of the primal program

The program (P-CF) can be relaxed so that a converging hierarchy of SDPs can be
derived. The program (P-CF) is essentially a maximisation problem on finite-signed
Borelmeasureswith additional constraints such as the fact that these are propermeasures
(i.e. they are nonnegative). We will represent a measure by its moment sequence and use
conditions for which this moment sequence has a (unique) representing Borel measure
(see Appendix C.2). We recall the expression of the primal program (P-CF):

(P-CF)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find μ ∈ M±(OX )

maximising μ(OX )

subject to:

∀C ∈ M, μ|C ≤ eC
μ ≥ 0 .

From Appendix C.2 which culminates at Theorem 8, it can be relaxed for k ∈ N>0 as:

(SDP-CFk)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find y ∈ R
s(2k)

maximising y0
subject to:

∀C ∈ M, Mk( ye,C − y|C ) � 0,

∀ j = 1, . . . ,m, Mk−1(g j y) � 0,

Mk( y) � 0 .

The moment matrices Mk( y) and the localising matrices Mk−1(g j y) are defined in
Appendix C. We consider localising matrices of order k − 1 rather than k because
all g j ’s are of degree exactly 1. In this way, the maximum degree matches with that
of the moment matrices. In general we have to deal with localising matrices of order

k−� deg(g j )

2 �. Ifμ is a representingmeasure on OX for y then for all contextsC ∈ M, y|C
can be defined through y by requiring that y|C has representing measure μ|C . The two
last constraints state necessary conditions on the variable y to be moments of some finite
Borel measure supported on OX . The first constraint is a relaxation of the constraint
μ|C ≤ eC for C ∈ M. As expected, (SDP-CFk) is a semidefinite relaxation of the
problem (P-CF) so that ∀k ∈ N>0, NCF(e) = val(P-CF) ≤ val(SDP-CFk). Moreover
(val(SDP-CFk))k is a monotone nonincreasing sequence because more constraints are
added as k increases (so that the relaxations are tighter and tighter).

Restriction of the dual program

The program (D-CF) can be restricted so that we can derive a converging hierarchy of
SDPs. It is essentially the minimisation of continuous functions for which we require
additional constraints such as the fact that they are nonnegative. We will exploit the
link between positive polynomials and sum-of-squares representation that is presented
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in Appendix C.1. We recall the expression of the dual program (D-CF):

(D-CF)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find ( fC )C∈M ∈
∏

C∈M
C(OC )

minimising
∫

OC

fC d eC

subject to:
∑

C∈M
fC ◦ ρX

C ≥ 1OX

∀C ∈ M, fC ≥ 0OC .

As this point we could derive the dual of program (SDP-CFk) and show that this is indeed
a restriction of the above program. For a more symmetric treatment, we restrict the dual
program building on Appendix C.1 and Theorem 6. Instead of optimising over positive
continuous functions, we restrict them to belong to the quadratic module Q(g) and then
further to Qk(g) for some k ∈ N>0. This requires that the degrees of SOS polynomials
are fixed. For k ∈ N>0, we have

(DSDP-CFk)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (pC )C∈M ⊂ Σ2
R[x]k and (σ j ) j=1,...,m ⊂ Σ2

R[x]k−1

maximising
∑

C∈M

∫

OC

pC d eC

subject to:

∑

C∈M
pC ◦ ρX

C − 1OX =
m∑

j=0

σ j g j .

(DSDP-CFk) is a restriction of (D-CF) so that for all k ∈ N>0, we have that NCF(e) =
val(D-CF) ≤ val(SDP-CFk). Furthermore, (val(SDP-CFk))k is a monotone nonincreas-
ing sequence.

Problems (SDP-CFk) and (DSDP-CFk) are indeed dual programs (see Proposition 5
in Appendix D).

8.2 Convergence of the hierarchy of SDPs

Finally, we prove that the constructed hierarchy provides a sequence of objective values
that converges to the noncontextual fraction NCF(e).

Theorem 5. The optimal values of the hierarchy of semidefinite programs (SDP-CFk)
(resp. (DSDP-CFk)) provide monotonically decreasing upper bounds converging to the
noncontextual fraction NCF(e) which is the value of (P-CF). That is

val(SDP-CFk) ↓ val(P-CF) = NCF(e) as k → ∞ , (32)

val(DSDP-CFk) ↓ val(D-CF) = NCF(e) as k → ∞ . (33)

Proof. Because of the strong duality between the original infinite-dimensional linear
programs we have

val(P-CF) = val(D-CF) = NCF(e). (34)
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Moreover, for all k ≥ 1 (SDP-CFk) is a relaxation of (P-CF):

val(SDP-CFk) ≥ val(P-CF). (35)

And for all k ≥ 1, (DSDP-CFk) is a restriction of (D-CF):

val(DSDP-CFk) ≥ val(D-CF). (36)

Also for all k ≥ 1, we have weak duality between (SDP-CFk) and (DSDP-CFk) (see
Proposition 5):

val(DSDP-CFk) ≥ val(SDP-CFk). (37)

Thus for all k ≥ 1:

val(DSDP-CFk) ≥ val(SDP-CFk) ≥ NCF(e). (38)

We already saw that (val(SDP-CFk))k and (val(DSDP-CFk))k form monotone nonin-
creasing sequences. We now show that (val(DSDP-CFk))K converges to NCF(e). This
is equivalent to showing that we can approximate any feasible solution17 of program
(D-CF) with a solution of (DSDP-CFk) for a high enough rank k.

Fix ε > 0 and a feasible solution ( fC )C∈M ∈ ∏
C∈M C(O) of (D-CF). Then for

all C ∈ M, fC + ε
|M| is a positive continuous function on OC . Because OC is compact

(see Sect. 5.3) by the Stone–Weierstrass theorem, fC + ε
|M| can be approximated by a

positive polynomial. Thus there exist positive polynomials pε
C ∈ R[x] such that for all

contexts C ∈ M we have (in sup norm) that
∥∥∥∥ fC +

ε

|M| − pε
C

∥∥∥∥ ≤ ε

|M| (39)

and also
∥∥∥∥

(
fC +

ε

|M| − pε
C

)
◦ ρX

C

∥∥∥∥ <
1

|M| min
x∈OX

(
∑

C∈M

(
fC +

ε

|M|
)

◦ ρX
C (x) − x

)
, (40)

where the minimum is strictly positive as
∑

C ( fC + ε
|M| ) ◦ ρX

C > 1OX .
From Eq. (39), the objective derived with (pε

C )C is ε-close to the original objective:
∣∣∣∣∣

∑

C∈M

∫

OC

fC d eC −
∑

C∈M

∫

OC

pε
C d eC

∣∣∣∣∣ ≤
∑

C∈M

∫

OC

∣∣∣∣ fC +
ε

|M| − pε
C

∣∣∣∣ d eC (41)

≤ ε . (42)

Also from Eq. (40):
∑

C∈M
pε
C ◦ ρX

C − 1 (43)

17 Note that program (D-CF)might not have an optimal solution in which case it only has an optimal solution
in the closure of the feasible set. In that case, we can always find a sequence of feasible solutions converging
to an optimal solution.
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>
∑

C∈M

(
fC +

ε

|M|
)

◦ ρX
C − min

x∈OX

(
∑

C∈M

(
fC +

ε

|M|
)

◦ ρX
C (x) − x

)
− 1

(44)

≥ 0, (45)

so that
∑

C∈M pε
C ◦ ρX

C − 1OX is a positive polynomial on OX . Next, because OX is
of the form required in Assumption 1, by Putinar’s Positivellensatz (see Theorem 6),∑

C∈M pε
C ◦ ρX

C − 1OX belongs to the quadratic module Q(g). Therefore, for a high
enough rank k ∈ N, it is a feasible solution of (DSDP-CFk) and thus:

|NCF(e) − val(DSDP-CFk)| ≤ ε . (46)

��

Outlook

Logical forms of contextuality, which are present at the level of the possibilistic rather
than probabilistic information contained in an empirical model, remain to be considered
(e.g. [2,8,38,62]). In the discrete setting, these can be treated by analysing ‘possibilistic’
empirical models obtained by considering the supports of the discrete-variable proba-
bility distributions [8], which indicate the elements of an outcome space that occur with
non-zero probability. In general, the notion of support of a measure is not as straightfor-
ward, and the naïve approach is not viable since typically all singletons have measure
0. Nevertheless, supports can be defined in the setting of Borel measurable spaces, for
instance, which in any case are the kind of spaces in which we are practically interested,
in Sects. 5 and 8.

Approaches to contextuality that characterise obstructions to global sections using
cohomology have had some success [5,11,27–29,65,66,75,77] and typically apply to
logical forms of contextuality. An interesting prospect is to explore how the present
framework may be employed to these ends, and to see whether the continuous-variable
setting can open the door to new techniques that can be applied, or whether qualitatively
new formsof contextual behaviourmaybe uncovered.A related direction to be developed
is to understand how our treatment of contextuality can be further extended to continuous
measurement spaces as proposed in [30].

Another direction to be explored is how our continuous-variable framework for con-
textuality can be extended to apply to more general notions of contextuality that relate
not only to measurement contexts but also more broadly to contexts of preparations and
transformations as well [63,81], noting that these also admit quantifiable relationships
to quantum advantage [43,63].

Indeed, a major motivation to study contextuality is for its connections to quantum-
over-classical advantages in informatic tasks. An important line of questioning is to ask
what further connections can be found in the continuous-variable setting, and whether
continuous-variable contextuality might offer advantages that outstrip those achiev-
able with discrete-variable contextual resources. Note that it is known that infinite-
dimensional quantum systems can offer certain additional advantages beyond finite-
dimensional ones [80], though the empirical model that arises in that example is still a
discrete-variable one in our sense.
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Thepresentwork sets the theoretical basis for computational explorationof continuous-
variable contextuality in quantum-mechanical empirical models. This, we hope, can pro-
vide new insights and inform other avenues to be developed in future work. It can also
be useful in verifying the non-classicality of empirical models. Numerical implementa-
tion of the programs of Sect. 8 is of particular interest. The hierarchy of semi-definite
programs can be used numerically towitness contextuality in continuous-variable experi-
ments. Even if the time-complexity of the semi-definite programmay increase drastically
with its degree, a low-degree program can already provide a first witness of contextual
behaviour.

Since our framework for continuous-variable contextuality is independent of quan-
tum theory itself, it can equally be applied to ‘empirical models’ that arise in other,
non-physical settings. The discrete-variable framework of [8] has led to a number of
surprising connections and cross-fertilisations with other fields [3], including natural
language [12], relational databases [1,16], logic [5,10,51], constraint satisfaction [7,9]
and social systems [34]. It may be hoped that similar connections and applications can be
found for the present framework to fields in which continuous-variable data is of central
importance. For instance probability kernels of the kind we have used are also widely
employed in machine learning (e.g. [45]), inviting intriguing questions about how our
framework might be used or what advantages contextuality may confer in that setting.
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Appendices

A. Linear Programs in Standard Form

This appendix may be of particular interest to readers familiar with global optimisation.
We express the problems (P-CF) and (D-CF) in the standard form of infinite linear
programming [17, IV–(7.1)]. We recall them below:

(P-CF)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find μ ∈ M±(OX )

maximising μ(OX )

subject to:

∀C ∈ M, μ|C ≤ eC
μ ≥ 0 .
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(D-CF)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find ( fC )C∈M ∈
∏

C∈M
C(OC )

minimising
∫

OC

fC d eC

subject to:
∑

C∈M
fC ◦ ρX

C ≥ 1OX

∀C ∈ M, fC ≥ 0OC .

Problems (P-CF) and (D-CF) are indeed infinite linear programs as both the objective
and the constraints are linear with respect to the unknown measure μ ∈ M±(OX ). To
write (P-CF) in the standard form [17], we introduce the following spaces:

– E1 := M±(OX ).
– F1 := C(OX ), the dual space of E1.
– E2 :=

∏

C∈M
M±(OC ).

– F2 :=
∏

C∈M
C(OC ), the dual space of E2.

The dualities 〈−,−〉1 : E1 × F1 −→ R and 〈−,−〉2 : E2 × F2 −→ R are defined as
follows:

∀μ ∈ E1, f ∈ F1, 〈μ, f 〉1 :=
∫

OX

f dμ

∀(νC ) ∈ E2, ( fC ) ∈ F2, 〈(νC ), ( fC )〉2 :=
∑

C∈M

∫

OC

fC d νC ,

where, for simplicity,we have omittedC ∈ M as a subscript for the families of functions.
We fix K1 to be the convex cone of positive measures in E1 = M±(OC ) and K2 to be
the convex cone of families of positive measures in E2 = ∏

C∈MM±(OC ). Then K ∗
1

is the convex cone of positive function in F1 = C(OX ) and K ∗
2 is the convex cone of

families of positive functions in F2 = ∏
C∈M C(OC ).

Let A : E1 −→ E2 be the following linear transformation: for μ ∈ E1

A(μ) := (μ|C )C∈M ∈ E2 .

We also define the linear transformation A∗ : F2 −→ F1 as follows: for ( fC ) ∈ F2,

A∗(( fC )) :=
∑

C∈M
fC ◦ ρX

C ∈ F1 .

We can verify that A∗ is the dual transformation of A: given μ ∈ E1 and ( fC ) ∈ F2, we
have

〈A(μ), ( fC )〉2 = 〈(μ|C ), ( fC )〉2 (47)

=
∑

C∈M

∫

OC

fC dμ|C (48)
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=
∫

OX

∑

C∈M
fC ◦ ρX

C dμ (49)

= 〈μ,
∑

C∈M
fC ◦ ρX

C 〉1 (50)

= 〈μ, A∗(( fC ))〉1 . (51)

Now fixing the vector function in the objective to be c := −1OX ∈ F1 and the vector in
the constraints to be b := (−eC )C∈M ∈ E2, the program (P-CF) (resp. (D-CF)) can be
expressed as in the standard form given in [17]:

LP

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find e1 ∈ E1

minimising 〈e1, c〉1
subject to:

A(e1) ≥K2 b

e1 ≥K1 0 .

(D-LP)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Find f2 ∈ F2
maximising 〈b, f2〉2
subject to:

A∗( f2) ≤K ∗
1
c

f2 ≥K2 0 .

Note that the minus sign in the vectors c and b was added because we chose the
primal program in the standard form to be a minimisation problem while the primal
program (P-CF) at hand is a maximisation problem.

B. Proof of Proposition 2: Zero Duality Gap

In this appendix we give a full proof of Proposition 2; i.e. that strong duality holds
between problems (P-CF) and (D-CF).

Proof. To show strong duality, we rely on [17, Theorem 7.2]. Because μ0 = 0OX—the
measure that assigns 0 to every measurable set of OX— is a feasible solution for (P-CF)
and the noncontextual fraction lies between 0 and 1, (P-CF) is consistent with finite
value. Thus it suffices to show that the following cone

K = {(A(μ), 〈μ, c〉1) | μ ∈ K1} = {( (μ|C )C , μ(OX ) ) | μ ∈ K1} (52)

is weakly closed in E2 ⊕R (i.e. closed in the weak topology of K1) where we recall that
K1 is the convex cone of positive measures in E1 = M±(OX ).
We first notice that the linear transformation A is a bounded linear operator and thus
continuous. Boundedness comes from the fact that for all μ ∈ K1,

‖A(μ)‖E2
= ‖(μ|C )C‖E2

(53)

=
∑

C∈M
‖μ|C‖M±(OC ) (54)
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≤
∑

C∈M
‖μ‖E1

(55)

= |M| ‖μ‖E1
, (56)

wherewe take the strong topology—i.e. the norm inducedby the total variationdistance—
on finite-signed measure spaces. It is defined as:

‖μ‖M±(U) = |μ|(U ) .

We also equip the finite product space E2 = ∏
C∈MM±(OC ) with the norm obtained

by summing18 the individual total variation norms. The inequality in Eq. (55) is due to
the fact thatμ ∈ K1 so this is a positive measure and thus ‖μ|C‖M±(OC ) ≤ ‖μ‖E1

. This,
of course, extends to the weak topology.

Secondly, we consider a sequence (μk)k∈N in K1 and we want to show that the
accumulation point ((ΘC )C , λ) = limk→∞

(
A(μk), 〈μk, c〉1

)
belongs toK, whereΘ =

(ΘC )C ∈ E2 and λ ∈ R. If we consider the product of indicator functions (1OC )C ∈ F2
then 〈A(μk), (1OC )〉2 = ∑

C∈M μ|kC (OC ) −→k
∑

C∈M ΘC (OC ) < ∞ as ΘC is a
finite measure for all maximal contexts C ∈ M. Then, becauseM is a covering family

of X , we have that, for all k ∈ Nμk(OX ) ≤ ∑
C∈M μk |C (OC ) < ∞. Since (μk) ∈ KN

1
is a sequence of positive measures, this implies that (μk) is bounded. Next, by weak-∗
compactness of the unit ball (Alaoglu’s theorem [58]), there exists a subsequence (μki )i
that converges weakly to an element ω ∈ K1. By continuity of A, we obtain that the
accumulation point is such that ((ΘC )C , λ) = (A(ω), 〈ω, c〉1) ∈ K. ��

C. The Lasserre–Parrilo Hierarchy

Below we introduce the Lasserre–Parrilo hierarchy for relaxing infinite-dimensional
linear programs known as GeneralisedMoment Problems [53,54,69].We start by giving
insightful results: Sect. C.1 provides results concerning the representation of positive
polynomials while Sect. C.2 provides results to understand when a sequence can be
represented by a Borel measure.

Notation, terminology
We work in R

d for d ∈ N
∗. We fix K to be a generic Borel measurable subspace

of Rd . Below we fix some multi-index notations. Let R[x] denote the ring of real
polynomials in the variables x ∈ R

d , and let R[x]k ⊂ R[x] contain those polynomials
of total degree at most k. The latter forms a vector space of dimension s(k) := (d+k

k

)
,

with a canonical basis consisting of monomials xα := xα1
1 · · · xαd

d indexed by the set

N
d
k := {

α ∈ N
d | |α| ≤ k

}
where |α| := ∑d

i=1 αi . For k ∈ N, x ∈ R
d , we define

vk(x) := (xα)|α|≤d = (1, x1, . . . , xn, x21 , x1x2, . . . , x
k
n )

T the vector of monomials of
total degree less or equal than k.

Any p ∈ R[x]k is associated with a vector of coefficients p := (pα) ∈ R
s(k) via

expansion in the canonical basis as p(x) = ∑
α∈Nd

k
pαxα .

18 Categorically, this is a coproduct.
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Moment problem in probability

Given a finite set of indices Γ , a set of reals {γ j : j ∈ Γ } and functions h j : K −→ R,
j ∈ Γ , that are integrable with respect to every measureμ ∈ M±(K ), the corresponding
Global Moment Problem (GMP) can be expressed as:

(GMP)

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Find μ ∈ M±(K )

maximising μ(K )

subject to:

∀ j ∈ Γ,

∫

K
h j dμ ≤ γ j .

It dual program can be expressed as:

(D-GMP)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find λ ∈ R
Γ

minimising
∑

j∈Γ

γ jλ j

subject to:

∀x ∈ K ,
∑

j∈Γ

λ j h j (x) − x ≥ 0

∀ j ∈ Γ, λ j ≥ 0 .

C.1. Positive polynomials and sum-of-squares

Here we present the link between positive polynomials and sum-of-squares represen-
tation so that we can derive a converging hierarchy of restriction problems for pro-
gram (D-GMP).

Definition 14. A polynomial p ∈ R[x] is a sum-of-squares (SOS) polynomial if there
exists a finite family of polynomials (qi )i∈I such that p = ∑

i∈I q2i .

SOS polynomials are widely used in convex optimisation. We will denote byΣ2
R[x] ⊂

R[x] the set of (multivariate) SOS polynomials, andΣ2
R[x]k ⊂ Σ2

R[x] the set of SOS
polynomials of degree at most 2k. The following proposition hints towards the reason
why it is desirable to be able to look for a sum-of-squares decomposition: it can be cast
as a semidefinite optimisation problem.

Proposition 3 (Prop. 2.1, [54]). A polynomial p ∈ R[x]2k has a sum-of-squares de-
composition if and only if there exists a real symmetric positive semidefinite matrix
Q ∈ Syms(k) such that ∀x ∈ R

d , p(x) = vk(x)T Qvk(x).

Then we will be looking at conditions under which a nonnegative polynomial can be
expressed as a sum-of-squares polynomial. This is in essence the question raised by
Hilbert in his 17th conjecture [44].

Definition 15. For a family q = (q j ) j∈{1,...,m} of polynomials, the set:

Q(q) :=
⎧
⎨

⎩

m∑

j=0

σ j q j | (σ j ) j∈{0,...,m} ⊂ Σ2
R[x]

⎫
⎬

⎭ (57)
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is a convex cone in R[x] called the quadratic module generated by the family q with,
for convenience, q0 = 1 added. For k ∈ N, we define Qk(q) to be the quadratic module
Q(q) where we further impose that (σ j ) j∈{0,...,m} ⊂ Σ2

R[x]k i.e. we limit the degree
of SOS polynomials.

In the family of polynomials (g j ) j∈{1,...,m} we add g0 = 1 for convenience.

Assumptions 1. Let K ⊂ R
d . We make the following three assumptions on K .

(i) Suppose K is a basic semi-algebraic set i.e. there exists a family of polynomials
g = (g j ) j∈{1,...,m} ∈ R[x]m of degrees deg(g j ) respectively such that:

K :=
{
x ∈ R

d | ∀ j = 1, . . . ,m, g j (x) ≥ 0
}

. (58)

(ii) Further suppose that K is compact.
(iii) Finally suppose that there existsu ∈ Q(q) such that the level set

{
x ∈ R

d | u(x) ≥ 0
}

is compact.

The following theorem is the key result that wewill exploit for deriving the hierarchy
of SDP restrictions for the dual program (GMP).

Theorem 6 (Putinar’s Positivellensatz [73]). Let K ⊂ R
d satisfy Assumptions 1. If

p ∈ R[x] is strictly positive on K then p ∈ Q(g), that is

p =
m∑

j=0

σ j g j (59)

for some sum-of-squares polynomials σ j ∈ Σ2
R[x] for j = 0, 1, . . . ,m.

A proof can also be found in [56].
Using the results above and Assumption 1, one can derive a hierarchy of SDPs

[54] which provide a converging sequence of optimal values towards the value of pro-
gram (D-GMP):

D-(GMPk)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find λ = (λ j ) j∈Γ ∈ R
Γ and ∀ j = 0, . . . ,m, f j ∈ Σ2

R[x]
k−� deg(g j )

2 �
minimising y0
subject to:

∑

j∈Γ

λ j h j − 1K =
m∑

j=0

f j g j

∀ j ∈ Γ, λ j ≥ 0 .

C.2. Moment sequences and moment matrices

In this subsection, we want to understand why the program (P-CF) can be relaxed so
that a converging hierarchy of SDPs can be derived. The program (P-CF) is essentially a
maximisation problem on finite-signed Borel measures with additional constraints such
as the fact that these are proper measures (i.e. they are nonnegative). We will represent
a measure by its moment sequence and find conditions for which this moment sequence
has a (unique) representing Borel measure.
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Definition 16. Given a sequence y = (yα)α∈Nd ∈ R
N
d
, we define the linear functional

L y : R[x] −→ R by

L y(p) :=
∑

α∈Nd

pα yα . (60)

Definition 17. Given a measure μ ∈ M(K ), itsmoment sequence y = (yα)α∈Nd ∈ R
N
d

is given by

yα :=
∫

K
xα dμ(x) . (61)

We say that y has a unique representing measure μ when there exists a unique μ such
that Eq. (61) holds. If μ is unique then we say it is determinate (i.e. determined by its
moments).

The linear functional L y then gives integration of polynomials with respect to μ i.e. for
any p ∈ R[x]:

L y(p) =
∑

α∈Nd

pα yα =
∑

α∈Nd

pα

∫

K
xα dμ(x) =

∫

K

∑

α∈Nd

pαxα dμ(x)

=
∫

K
p(x) dμ(x)

=
∫

K
p dμ,

(62)

where we reversed summation and integration because the sum is finite since p is a
polynomial.

The following theorem is often used in optimisation theory over measures as it
provides a necessary and sufficient condition for a sequence to have a representing
measure.

Theorem 7 (Riesz-Haviland [41]). Let y = (yα)α∈Nd ∈ R
N
d
and suppose that K ⊆ R

d

is closed. Then y has a representation (nonnegative)measure i.e. there existsμ ameasure
on K such that:

∀α ∈ N
d ,

∫

K
xα dμ = yα

if and only if L y(p) ≥ 0 for all polynomials p ∈ R[x] nonnegative on K .

We recall that for k ∈ N, s(k) = (d+k
k

)
.

Definition 18. For each k ∈ N, the moment matrix of order k, Mk( y) ∈ Syms(k), of
a truncated sequence (yα)α∈Nd

2k
is the s(k) × s(k) symmetric matrix with rows and

columns indexed by N
d
k (i.e. by the canonical basis for R[x]k) defined as follows: for

any α,β ∈ N
d
k ,

(Mk( y))α,β := L y(xα+β) = yα+β . (63)
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Definition 19. Given apolynomial p ∈ R[x], the localisingmatrix Mk(p y) ∈ Mats(k)(R)

of a moment sequence (yα)α∈Nd ∈ R
N
d
is defined by: for all α,β ∈ N

d
k ,

(Mk(p y))α,β := L y(p(x)x
α+β) =

∑

γ∈Nd

pγ yα+β+γ . (64)

The localising matrix reduces to the moment matrix for p = 1. For well-defined mo-
ment sequences, i.e. sequences that have a representing finite Borel measure, moment
matrices and localising matrices are positive semidefinite, which provides insight on the
reason why problem (P-CF) can be relaxed to a problem with positive semidefiniteness
constraints.

Proposition 4. Let y = (yα)α∈Nd ∈ R
N
d
be a sequence of moments for some finite Borel

measure μ on K . Then for all k ∈ N, Mk( y) � 0. If μ has support contained in the set
{x ∈ K | g(x) ≥ 0} for some polynomial g ∈ R[x] then, for all k ∈ N, Mk(g y) � 0.

Proof. Let y = (yα) be the moment sequence of a given Borel measure μ on K . Fix
k ∈ N. For anyvectorv ∈ R

s(k) (noting thatv is canonically associatedwith a polynomial
v ∈ R[x]k in the basis (xα)):

vT Mk( y)v =
∑

α,β∈Nd
k

vα yα+βvβ (65)

=
∑

α,β∈Nd
k

vαvβ

∫

K
xα+β dμ (66)

=
∫

K

⎛

⎜⎝
∑

α∈Nd
k

vαxα

⎞

⎟⎠

2

dμ (67)

=
∫

K
v2(x) dμ ≥ 0 . (68)

Thus Mk( y) � 0.
Similarly we can prove that the localising matrix Mk(g y) is positive semidefinite

when g is a nonnegative polynomial on the support of μ. Indeed for all v ∈ R
s(k):

vT Mk(g y)v =
∫

K
v2(x)g(x) dμ ≥ 0 , (69)

which concludes the proof. ��
The following theorem, which is the dual facet of Theorem 6, is the key result for

deriving the hierarchy of SDP relaxations for the primal problem (P-CF). It provides a
necessary and sufficient condition for a sequence to have a representing measure.

Theorem 8 (Theorem 3.8 [54]). Let y = (yα)α∈Nd ∈ R
N
d
be a given infinite sequence

inR. Let K ⊂ R
d satisfy Assumptions 1. Then y has a finite Borel representing measure

with support contained in K if and only if:

Mk( y) � 0, ∀k ∈ N, (70)

Mk(g j y) � 0, ∀ j = 1, . . . ,m, ∀k ∈ N. (71)
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Using the results above and Assumption 1, one can derive a hierarchy of SDPs
[54] which provide a converging sequence of optimal values towards the value of pro-
gram (GMP):

(GMPk)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find y = (yα)α∈Nd
2k

∈ R
s(2k)

maximising y0
subject to:

∀ j ∈ Γ, L y(h j ) ≤ γ j

Mk( y) � 0

∀i ∈ 1, . . . ,m, M
k−� deg(gi )

2 �(gi y) � 0 .

We refer readers to [54] for the proof of convergence of the hierarchies given by programs
(GMPk) and (D-GMPk).

D. Duality between programs (SDP-CFk) and (DSDP-CFk)

As mentioned above, we chose to derive programs (SDP-CFk) and (DSDP-CFk) using
dual arguments. These programs should therefore be dual to one another, which will
immediately provide weak duality. We prove this for completeness.

Proposition 5. The program (DSDP-CFk) is the dual formulation of the program (SDP-
CFk).

Proof. We start by rewriting Mk( y) as
∑

α∈Nd
k
yαAα and Mk−1(g j y) as

∑
α∈Nd

k
yαB

j
α

for 1 ≤ j ≤ m and for appropriate real symmetric matrices Aα and (B j
α) j . For instance,

in the basis (xα):

(Aα)s,t =
( {

1 if s + t = α

0 otherwise

)

s,t
.

From Aα , we also extract AC
α for C ∈ M in order to rewrite Mk( y|C ) as

∑
α∈Nd

k
yαA

C
α .

This amounts to identifying which matrices (Aα) contribute to a given context C ∈ M.
Then (SDP-CFk) can be rewritten as:

(SDP-CFk)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find y ∈ R
s(2k)

maximising y0
subject to:

∀C ∈ M, Mk( ye,C ) −
∑

α∈Nd
k

yαA
C
α � 0,

∀ j = 1, . . . ,m,
∑

α∈Nd
k

yαB
j
α � 0,

∑

α∈Nd
k

yαAα � 0 .
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Via the Lagrangian method, this is equivalent to:

sup
y∈Rs(k)

inf
(XC ),(Y j ),Z
SDP matrices

L( y, (XC ),Y, (Z j )), (72)

with

L( y, (XC ), (Y j ), Z) = y0

+
∑

C∈M
Tr(Mk( ye,C )XC ) −

∑

C∈M

∑

α∈Nd
k

yαTr(A
C
α XC )

+
m∑

j=1

∑

α∈Nd
k

yαTr(B
j
αY j )

+
∑

α∈Nd
k

yαTr(AαZ) .

(73)

The dual program corresponds to

inf
(XC ),(Y j ),Z
SDP matrices

sup
y∈Rs(k)

L( y, (XC ), (Y j ), Z) . (74)

We rewrite the Lagrangian as:

L( y, (XC ), Y, (Z j )) =
∑

C∈M
Tr(Mk( ye,C )XC )

+
∑

α∈Nd
k

yα

⎛

⎝δα,0−
∑

C∈M
Tr(AC

α XC )+
m∑

j=1

Tr(B j
αY j )+Tr(AαZ)

⎞

⎠ . (75)

Then the dual program of (SDP-CFk) reads:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (XC )C∈M, (Y j ) j=1,...,m and Z SDP matrices

maximising
∑

C∈M
Tr(Mk( ye,C )XC )

subject to:

∀α ∈ N
d
k ,

∑

C∈M
Tr(AC

α XC ) −
m∑

j=1

Tr(B j
αY j ) − Tr(AαZ) = δα,0 .

We finally show that the above program exactly corresponds to (DSDP-CFk). We start
with the objective. For all C ∈ M, with XC a positive semidefinite matrix:

Tr(Mk( ye,C )XC ) =
∑

α

∑

β

(Mk( ye,C ))αβ(XC )βα (76)

=
∑

α

∑

β

ye,C
α+β

(XC )αβ (77)
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=
∑

α

∑

β

∫

OC

xα+β d eC (XC )αβ (78)

=
∫

OC

vk(x)T XCvk(x) d eC (79)

=
∫

OC

pC d eC , (80)

with for allC ∈ M, pC ∈ Σ2
R[x]k a sum-of-squares polynomial via Proposition 3 and

where we used vk(x) the vectors of monomials of maximal total degree k.
Now, to retrieve the constraint, we multiply each side by xα and we sum for all α:

∑

C∈M
Tr(

∑

α

xαAC
α XC ) − 1 =

m∑

j=1

Tr(
∑

α

xαB j
αY j ) + Tr(

∑

α

xαAαZ) (81)

Recalling the definition of moment and localising matrices:

∑

α

AC
α x

α = vk(x)vk(x)T (82)

∑

α

B j
αvk(x)vk(x)T = g j (x)vk−1(x)vk−1(x)T , ∀ j = 1, . . . ,m (83)

Thus, by Proposition 3, for appropriate sum-of-squares polynomials (σ j ) j=0,1,...,m ⊂
R[x]k−1:

Tr(
∑

α

xαAC
α XC ) = pC ◦ ρX

C (x) (84)

Tr(
∑

α

xαB j
αY j ) = g j (x)σ j (x) (85)

Tr(
∑

α

xαAαZ) = σ0(x) (86)

This is exactly the constraint in (DSDP-CFk) with, for convenience, g0 = 1. ��
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