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Abstract: Non-Hermitian random matrices with symplectic symmetry provide exam-
ples for Pfaffian point processes in the complex plane. These point processes are char-
acterised by a matrix valued kernel of skew-orthogonal polynomials. We develop their
theory in providing an explicit construction of skew-orthogonal polynomials in terms of
orthogonal polynomials that satisfy a three-term recurrence relation, for general weight
functions in the complex plane. New examples for symplectic ensembles are provided,
based on recent developments in orthogonal polynomials on planar domains or curves
in the complex plane. Furthermore, Bergman-like kernels of skew-orthogonal Hermite
and Laguerre polynomials are derived, from which the conjectured universality of the
elliptic symplectic Ginibre ensemble and its chiral partner follow in the limit of strong
non-Hermiticity at the origin. A Christoffel perturbation of skew-orthogonal polynomi-
als as it appears in applications to quantum field theory is provided.

1. Introduction

The study of orthogonal and skew-orthogonal polynomials in the complex plane is
closely related to the question of integrability of determinantal and Pfaffian point pro-
cesses in the plane.Many of the known examples for such point processes can be realised
as complex eigenvalues of non-Hermitian random matrices, such as the three Ginibre
ensembles of Gaussian random matrices with real, complex or quaternion matrix el-
ements [1–3], or their three chiral counterparts [4–6]. Compactly supported examples
include the truncation of random orthogonal [7], unitary [8] and symplectic matrices [9],
and we refer to [10] for a review on non-Hermitian random matrices. At the same time
these point processes are examples for two-dimensional Coulomb gases in a confining
potential with specific background charge, and we refer to [11] for details. A further
example in this class is the circular quaternion ensemble of random matrices belonging
to the symplectic group Sp(2N ), distributed according to Haar measure, see [12] for
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details. Its joint density of eigenvalues distributed on the unit circle represents a Pfaffian
point process that is also determinantal.

Apart from this direct statistical mechanics interpretation as a Coulomb gas, further
applications of these point processes include dissipative quantum maps [13], dynamical
aspects of neural networks [14], properties of the quantum Hall effect [15] and quantum
field theories with chemical potential [4–6]. In quantum optics the Bergman kernel of
planar Hermite polynomials plays an important role in the construction of coherent
and squeezed states [16]. Notably, in the symplectic symmetry class, that will be our
focus here, there is a map from the symplectic Ginibre ensemble to disordered non-
Hermitian Hamiltonians in an imaginary magnetic field [17]. The circular quaternion
ensemblefinds applications in the computationof thermal conduction in superconducting
quantum dots [18]. The predictions of the non-Hermitian symplectic chiral symmetry
class [5] were successfully compared with data from lattice simulations in Quantum
Chromodynamics with two colours at non-vanishing chemical potential [19]. Here, the
insertion of quark flavours, given in terms of characteristic polynomials in the random
matrix setting, play an important role and were tested in [19]. We will investigate the
effect of these insertions on the underlying skew-orthogonal polynomials (SOP) also
known as Christoffel perturbation.

The real and symplectic Ginibre ensemble differ from the complex ensemble in
the following way. First, in the two former ensembles eigenvalues come in complex
conjugated pairs. Second, the real ensemble shows an accumulation of eigenvalues on
the real axis, while the symplectic ensemble shows a depletion, as the probability to have
real eigenvalues is zero. Let us briefly recall what is known about the symplectic Ginibre
ensemble in the limit of large matrix size (or number of particles). It is not surprising
that the gap probability [20] and all correlation functions at the origin [20,21] differ
from the complex Ginibre ensemble. The same statement holds for the density at weak
non-Hermiticity [17]. Below, we will present a proof that in the limit of strong non-
Hermiticity the correlation functions at the origin of the symplectic Ginibre ensemble
are universal, in the sense that they hold for the elliptic ensemble beyond the rotationally
invariant case. This was conjectured in [17], and the same conjecture [5] for the chiral
ensemble will be shown as well.

In contrast, the distribution of the largest eigenvalue in radius [22] as well as the local
radial density in the bulk away from the real line agree with those of the complex Ginibre
ensemble [23]. Without integration over the angles this agreement has been shown more
recently [24] for all correlation functions (marginals) in the bulk of the spectrum of the
symplectic Ginibre ensemble, away from the real axis. For the same agreement between
the real and complex Ginibre ensemble we refer to [25]. This is in strong contrast with
the Hermitian ensembles of random matrices, corresponding to a so-called Dyson gas
on the real line at inverse temperature β = 1, 2, 4. The local statistics for the latter three
ensembles differs everywhere in the spectrum, see e.g. [11,20] for a summary of results.
It is one of the goals of this article to develop the theory of SOP in the complex plane. This
will allow us to construct further examples of Pfaffian point processes with symplectic
symmetry that are integrable, where this extended universality in the complex plane can
be studied.

What is known for the construction of SOP for general ensembles with symplectic
symmetry? In [21] it was shown that both polynomials of odd and even degree en-
joy a Heine-like representation. It is given as the expectation value of a characteristic
polynomial (times a trace in the case of polynomials of odd degree), that is a mul-
tiple integral representation of the order of the degree of the SOP. Only in a limited
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number of cases have these been used for an explicit construction, using Schur polyno-
mials [26] or Grassmann integrals [6]. A second construction sets up a Gram-Schmidt
skew-orthogonalisation procedure [27] that we will recall below. However, also this is
of limited use for an explicit construction. Current explicit examples for SOP include
Hermite [21] and Laguerre polynomials [5] for the elliptic symplectic Ginibre ensemble
and its chiral counterpart, respectively.

In this article we will exploit the particularly simple structure of the skew-product in
symplectic ensembles. It allows to relate the skew-product to the multiplication acting
on the standard Hermitian inner product. It is well known that on subsets of the real
line orthogonal polynomials (OP) always satisfy a three-term recurrence relation with
respect to multiplication. In the plane this is no longer true, and on bounded domains
we may not expect any finite-term recurrence in general [28]. It was shown much later
on bounded domains with flat measure that if such a recurrence exists, the domain is
an elliptic disc and the depth of recurrence is three, see [29] and references therein.
However, in the weighted case the ellipse is no longer special, as also here OP without
recurrence exist [30]. On the other hand, if we can promote classical OP from the real
line to the complex plane, then the existence of such a recurrence is always guaranteed.

The remainder of this article is organised as follows. In the next Sect. 2 we define the
class of ensembles of complex eigenvalues with symplectic symmetry we consider here,
including their skew-product. We recall the Gram-Schmidt skew-orthogonalisation that
leads to the reproducing polynomial kernel, in terms of which all k-point correlation
functions or marginals are given. In Sect. 3 an explicit construction is provided for
SOP for a general class of weight functions. They are characterised by OP that satisfy
a three-term recurrence relation with real coefficients, orthogonal with respect to the
same real valued weight function. Several new examples of resulting planar SOP are
presented, including a weight of Mittag-Leffler type in the plane and weights on an
elliptic disc that lead to planar Gegenbauer SOP, aswell as a subfamily of non-symmetric
Jacobi polynomials that include Chebyshev polynomials. A realisation of the Chebyshev
polynomials as Szegő SOP on an ellipse is given, too. In Appendix A we recover some
known planar SOP from our construction. Section 4 is devoted to the derivation of the
Bergman-like kernel for Hermite and Laguerre type SOP. These formulas imply the
large-N limit at the origin of the spectrum for all correlation functions at strong non-
Hermiticity in the corresponding ensembles. This confirms their conjectured universality
within these two elliptic classes. In Sect. 5 a Christoffel perturbation of SOP is provided
for general weight functions. As a corollarywe obtain that a Christoffel perturbation does
not preserve the three-term recurrence relation for measures on C. The corresponding
Fourier coefficients are provided in Appendix B. Appendix C contains a collection of
integrals needed throughout the article.

2. Symplectic Ensembles and Skew-Orthogonal Polynomials

The point processes on a subset of the complex plane with symplectic symmetry con-
sidered in this paper are defined by the following joint probability density

dPN (z1, . . . , zN ):= 1

ZN

N∏

k>l

|zk − zl |2 |zk − zl |2
N∏

j=1

∣∣z j − z j
∣∣2

N∏

i=1

dμ(zi ). (2.1)

Here, μ is a positive Borel measure on the domain D in the complex plane. Further con-
ditions on the measure will be specified at the beginning of Sect. 2.1. The normalization
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constant ZN (partition function) is given by

ZN :=
∫ N∏

k>l

|zk − zl |2 |zk − zl |2
N∏

j=1

∣∣z j − z j
∣∣2

N∏

i=1

dμ(zi ) > 0, (2.2)

The joint density (2.1) may result for example from the distribution of the 2N eigenval-
ues (z1, z1, . . . , zN , zN ) of an N × N dimensional quaternionic non-Hermitian random
matrix (or its 2N dimensional complex representation). Examples for such random ma-
trix realisations include the elliptic quaternionic Ginibre ensemble [21] and its chiral
counterpart [5]. When the measure μ is supported on the unit circle, further representa-
tives include the circular quaternion ensemble with a flat measure, see [12, Thm. 3.1].
It is not difficult to see, that for zk = eiθk the first product in (2.1) leads to the Vander-
monde determinant squared in the variables xk = cos θk , and thus to a determinantal
point process. The second product in (2.1),

∏N
k=1 4(1 − x2k ), is then taken as part of

the weight function on (−1, 1). In the same way also the circular real ensembles of the
Haar distributed groups SO(N ) for even and odd N provide examples for this Pfaffian
point process [12, Thm. 3.1], with varying weight functions though. All of these are also
determinantal.

We will be more general here in taking the complex eigenvalue model (2.1) as a
starting point. In general, the ensemble defined in (2.1) is a Pfaffian point process, cf.
[20,21]. Defining the k-point correlation functions (or marginal measures) as

RN ,k(z1, . . . , zk):= N !
(N − k)!

∫

DN−k
PN (z1, . . . , zN )

N∏

i=k+1

dμ(zi ), (2.3)

they can be shown to take the form [21]

dRN ,k(z1, . . . , zk) = Pf
1≤i, j≤k

[
K̂N (zi , z j )

] k∏

i=1

(zi − zi ) dμ(zi ).

Here, K̂N is the 2 × 2 matrix-valued kernel of the corresponding point process. Equiv-
alently, when μ has the density w with respect to the volume element dv on D, we
have

dRN ,k(z1, . . . , zk) = Pf
1≤i, j≤k

[
KN (zi , z j )

] k∏

i=1

(zi − zi ) dv(zi ), (2.4)

where the 2 × 2 matrix-valued kernel KN is defined as

KN (z, u):=√w(z)w(u)

(
σ N (z, u) σ N (z, u)

σ N (z, u) σ N (z, u)

)
. (2.5)

In that case we have KN (z, u) = √
w(z)w(u) K̂N (z, u). The function σ N (z, u) is called

the pre-kernel or polynomial kernel, to be defined in (2.17) in terms of SOP. Compared
with [21] we have taken the pre-factors (z − z)(u − u) out of the Pfaffian, to avoid cuts
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for the square root of these factors. As an example we get for the one-point and two-point
function

RN ,1(z) = (z − z) w(z) σ N (z, z),

RN ,2(z1, z2) = (z1 − z1) (z2 − z2) w(z1)w(z2)
[
σ N (z1, z1) σ N (z2, z2)

− |σ N (z1, z2)|2 + |σ N (z1, z2)|2
]
. (2.6)

The pre-kernel can be expressed in terms of SOP to be defined below, being a partic-
ularly simple choice in a more general construction, see [21]. There, it is given in terms
of the inverse moment matrix, where the de Bruijn integral formula is applied together
with the fact that the joint density (2.1) is proportional to the product

∏N
j=1(z j − z j )

times the Vandermonde determinant of size 2N of all eigenvalues and their complex
conjugates.

2.1. Skew-orthogonal polynomials. From now on let μ be a positive Borel measure on
C, with an infinite number of points in its support D, and such that

∫ |z|m dμ(z) < ∞
for all non-negative integers m. Further we require that D is symmetric about the real
axis, i.e. z ∈ D if and only if z ∈ D. For any f, g ∈ C[z], we define the following
skew-symmetric form

〈 f, g〉s:=
∫

( f (z)g(z) − g(z) f (z)) (z − z) dμ(z). (2.7)

Equivalently, 〈·, ·〉s is an alternating form. In particular, when the polynomials f, g have
real coefficients, 〈·, ·〉s is also a skew-Hermitian form.

Definition 2.1. A family of polynomials (qn)n∈N with deg qn = n is called skew-
orthogonal corresponding to μ, if they satisfy for all non-negative integers k, l ∈ N:

〈q2k, q2l〉s = 〈q2k+1, q2l+1〉s = 0, (2.8)

〈q2k, q2l+1〉s = −〈q2l+1, q2k〉s = rkδk,l , (2.9)

with rk > 0 being their skew-norms.

The SOP are called monic if their leading coefficient is unity, i.e. qn(z) = zn +
O(zn−1). Notice that this choice of the leading coefficient does not make the SOP
unique. The reason is that the odd polynomials q2n+1 can be modified by adding an
arbitrary multiple of the even polynomial q2n , q̃2n+1(z) = q2n+1(z) + dnq2n(z), without
changing the skew-orthogonality relations (2.8) and (2.9). Is it not difficult to see, using
the Heine-like representation of the SOPs given in terms of 2n−fold integrals in [21],
that different transformations do not preserve the skew orthogonality conditions (2.8)
and (2.9). Hence, by imposing the SOP to be monic and the coefficient of z2n in q2n+1(z)
to be zero, we fix this ambiguity andmake them unique, see Lemma 2.2 below. However,
sometimes it is convenient to choose the coefficient of z2n to be non-vanishing, in order to
obtain closed formulas for the oddSOP, see Sect. 3 for various examples. The existence of
the SOP is guaranteed by Gram-Schmidt skew-orthogonalisation to be provided below
in Theorem 2.4. As a consequence of Gram-Schmidt skew-orthogonalisation and the
definition of the skew symmetric form 〈·, ·〉s, the SOP belong to the polynomial ring
R[z]. As usual, we denote by Rn[z] the space of polynomials with real coefficients and
degree at most n.
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Lemma 2.2. Let (qn)n∈N be a sequence of monic skew orthogonal polynomials, such
that the coefficient z2n in q2n+1(z) is zero. Then, the sequence of SOPs in Definition 2.1
is unique.

Proof. Suppose the existence of two monic SOPs of even degree q2n, q̃2n ∈ R2n[z].
Let q := q2n − q̃2n ∈ R2n−1[z]. Hence 〈q2n, zq〉s = 〈q̃2n, zq〉s = 0 (this follows by
expanding zq either in terms of q� or q̃�, and by using the skew orthogonality conditions
(2.8) and (2.9)). But this implies that 0 = 〈q, zq〉s = 〈q, zq〉s, from which we deduce
that

∫ |q(z)|2|z − z|2dμ(z) = 0. Hence q = 0 μ−almost everywhere, and because μ

contains an infinite number of points in its support, we conclude that q ≡ 0.
Now, suppose the existence of two monic SOPs of odd degree q2n+1, q̃2n+1 ∈

R2n+1[z]. Let p := q2n+1 − q̃2n+1 ∈ R2n−1[z]. Since q2n = q̃2n , we obtain −r̃n =
〈q̃2n+1, q̃2n〉s = 〈q̃2n+1, q2n〉s = −rn . The last equality follows after expanding the
q̃2n+1 in terms of the q�, and using the fact that the q̃2n+1 are monic polynomials. Again,
since q2n = q̃2n , we have for the Fourier expansion of zp(z),

z p(z) = λ2nq2n(z) +
2n−1∑

�=0

λ�q�(z) = λ2nq2n(z) +
2n−1∑

�=0

λ̃�q̃�(z). (2.10)

Thus, 〈q2n+1, zp〉s = 〈q̃2n+1, zp〉s = −λ2nrn , therefore 0 = 〈p, zp〉s = 〈p, zp〉s, which
concludes the proof. 	

Remark 2.3. When the measure μ has density w on some domain D, then we talk about
SOP with respect to the weight function w.

A closed expression can be obtained for these SOP in terms of the skew-complex
moments of μ

gi, j :=〈zi , z j 〉s =
∫ (

zi z j − z j zi
)

(z − z) dμ(z) ∈ R (2.11)

and the real skew-symmetric Gram matrix

Gk =

⎛

⎜⎜⎝

0 g0,1 · · · g0,2k−1
−g0,1 0 · · · g1,2k−1

...
...

. . .
...

−g0,2k−1 −g1,2k−1 · · · 0

⎞

⎟⎟⎠

2k×2k

. (2.12)

De Bruijn’s integration formula implies that the Pfaffian of the skew-symmetric Gram
matrix satisfies

�−1:=1, �k := Pf Gk+1 = 1

(k + 1)! Zk+1 > 0, ∀ k ∈ N, (2.13)

with Zk defined in (2.2). In analogy with the OP, the skew-complex moments already
determine the SOP. In terms of these one can give explicit Pfaffian formulae for the
orthonormalised polynomials.
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Theorem 2.4 (Gram-Schmidt skew-orthogonalisation). The skew-orthonormal polyno-
mials of even degree q̂2k are formed by replacing in Gk+1 the (2k +2)nd row and column
by powers of z,

q̂2k(z) = 1√
�k�k−1

Pf

⎛

⎜⎜⎜⎜⎜⎝

0 g0,1 · · · g0,2k 1
−g0,1 0 · · · g1,2k z

...
...

. . .
...

...

−g0,2k −g1,2k · · · 0 z2k

−1 −z · · · −z2k 0

⎞

⎟⎟⎟⎟⎟⎠
, (2.14)

and for the odd degree q̂2k+1, by replacing the (2k + 2)nd row and column by powers of
z except z2k , as well as shifting the index of the Gram matrix in the (2k + 1)st row and
column by one,

q̂2k+1(z) = 1√
�k�k−1

×Pf

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

0 g0,1 · · · g0,2k−1 g0,2k+1 1
−g0,1 0 · · · g1,2k−1 g1,2k+1 z

...
...

. . .
...

...
...

−g0,2k−1 −g1,2k−1 · · · 0 g2k−1,2k+1 z2k−1

−g0,2k+1 −g1,2k+1 · · · −g2k−1,2k+1 0 z2k+1

−1 −z · · · −z2k−1 −z2k+1 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (2.15)

In particular this implies that the SOP have real coefficients. The proof of this theorem
involves properties of Pfaffians. It was presented first in [31] for the case of SOP over the
real line1, and extended to planar SOP in [27]. Here, we emphasise that this construction
holds without specifying the support of the measure μ.

Remark 2.5. We stress that the SOP always exist, under the minimal assumptions on
the measure that we stated at the beginning of this subsection, even without the support
being symmetric about the real axis.

Also note that, by using de Bruijn’s formula, we can easily express the partition
function (2.2) in terms of the skew-norms from (2.9):

ZN = N !
N−1∏

k=0

rk, (2.16)

see also [20, Sec. 15.2] for the symplectic Ginibre case. Given the positivity of ZN
for all N this automatically implies the positivity of the skew-norms rk . Conversely, all
examples in Sect. 3 where we determine these skew-norms explicitly for a givenmeasure
provide instances of Selberg-like integrals.

The representation of the SOP in terms of Gram matrices may be important from a
theoretical point of view, but is not very useful for the actual computation of the SOP
since it involves the evaluation of Pfaffians. In Sect. 3 we will propose a more explicit
construction, given an orthonormal system in L2(dμ) that satisfies certain properties.

Let P2n be the space of analytic polynomials of degree at most 2n − 1 (i.e. p ∈ P2n

with ∂
∂ z̄ p = 0), and we equip P2n with the skew-product 〈·, ·〉s.

1 Here, the skew-symmetric product is 〈 f, g〉4 = 1
2

∫
( f (x)g′(x) − f ′(x)g(x)) dμ(x).



628 G. Akemann, M. Ebke, I. Parra

Lemma 2.6. The polynomial kernel σn(u, v) defined as follows

σn(u, v):=
n−1∑

k=0

q2k+1(u)q2k(v) − q2k(u)q2k+1(v)

rk
, (2.17)

is the reproducing skew-kernel of (P2n, 〈·, ·〉s).
Proof. Let f ∈ P2n and σv(u):=σn(u, v). Without restriction we can assume that f =
q2m or f = q2m+1 with m ≤ n − 1, thus

〈 f, σv〉s =
n−1∑

k=0

1

rk
[q2k(v)〈 f, q2k+1〉s + q2k+1(v)〈q2k, f 〉s]

= f (v).

	

Remark 2.7. Lemma 2.6 tells us that σn reproduces itself, 〈σv, σu〉s = σv(u) = σn(u, v),
and that σn is a skew-symmetric function, σn(u, v) = −σn(v, u). These two properties
are in complete analogy to theHermitian inner product space L2(dμ)with scalar product
〈·, ·〉, where the polynomial kernel

Kv(u):=Kn(u, v) =
n−1∑

k=0

Pk(u)Pk(v) (2.18)

is expressed in terms of the orthonormal polynomials Pn corresponding to μ. It sat-
isfies the reproducing property 〈Kv, Ku〉 = Kn(u, v) and is a Hermitian function,
i.e. Kn(v, u) = Kn(u, v).

The polynomial kernel σn(u, v) is not affected by the non-uniqueness of the odd SOP.
It remains unchanged if we redefine q̃2n+1(z) = q2n+1(z) + dnq2n(z) as the latter terms
drop out in (2.17), due to anti-symmetry.

Remark 2.8. As was shown in [21] the pre-kernel σn(u, v) is the main input of the 2× 2
matrix-valued kernel Kn in (2.5).

Remark 2.9. Let c(u, v) = g(u)g(v), with g a continuous unimodular function, such that
g (u) = 1/g(u). Then, the Pfaffian of a 2k × 2k skew-symmetric matrix (ai, j )1≤i, j≤2k
remains unchanged if we multiply each ai, j by c(ui , u j ), where the u1, . . . , u2k come in
complex conjugate pairs, uk+i = ui . In particular, σ̃ (u, v) = g(u)g(v) σ (u, v) is another
pre-kernel giving rise to the same correlation functions RN ,k . Two such pre-kernels as
well as their corresponding kernels are then called equivalent.

3. Construction of Skew-Orthogonal Polynomials

In this section we reduce the construction of the SOP corresponding to μ to that of OP
corresponding to the same measure μ, that satisfy a (suitable) three-term recurrence
relation. Let us emphasise that, in general, the construction of an orthonormal system in
L2(C, dμ) is straightforward usingGram-Schmidt orthogonalisation, see [32].However,
generic OP do not satisfy such a recurrence, see [28] for a recent discussion. On the
other hand all (polynomial) orthogonal systems in L2(R, dν) do satisfy such a three-
term recurrence with real coefficients, and thus provide many potential candidates. If
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we can thus find a measure μ with support on the complex plane, such that the same
orthogonal system in L2(R, dν) gives rise to an orthogonal system in L2(C, dμ), our
Theorem 3.1 below immediately leads to SOP corresponding to the same measure μ.
Below we will give several examples of such a situation.

Let μ be a measure that satisfies the properties from the previous Sect. 2.1, then by
the Gram-Schmidt process one can construct a unique sequence of polynomials

pn(z) = γnz
n +O(zn−1), γn > 0, (3.1)

that form an orthogonal system in L2(dμ),

〈pn, pm〉 =
∫

pn(z)pm(z) dμ(z) = hnδn,m . (3.2)

Due to the linearity of the Hermitian form 〈·, ·〉 over R we can assume that γn ≡ 1.
In this case we say that the sequence (pn)n∈N of OP is chosen in monic normalisation
(i.e. pn(z) = zn + . . . ). These OP (corresponding to μ) satisfy a three-term recurrence
relation with real coefficients, if

zpk(z) = pk+1(z) + bk pk(z) + ck pk−1(z), bk, ck ∈ R, k = 1, 2, . . . (3.3)

The condition for bk and ck to be real is obviously equivalent to the condition that the
planar OP have real coefficients, pn(z) = pn(z) for all n ∈ N.

Theorem 3.1. Let (μk, j )k, j∈N be a sequence of real numbers such that μk,k = 1 and
μk, j = λk−1μk−1, j , with λk−1 independent of j , for j < k. And let (pn)n∈N be a
sequence of monic OP in L2(dμ). Assume that the sequence of monic polynomials
(qn)n∈N constructed via

q2k(z):=
k∑

j=0

μk, j p2 j (z),

q2k+1(z):=p2k+1(z),

(3.4)

satisfies the skew-orthogonality conditions (2.8) and (2.9). Then, the (pn)n∈N satisfy a
three-term recurrence relation (3.3).

Conversely, if the sequence (pn)n∈N of monic OP satisfies a three-term recurrence
relation (3.3), then, the sequence of monic polynomials defined in (3.4) forms a SOP
system and the μk, j ’s in (3.4) can be explicitly computed:

rk = 2 (h2k+1 − c2k+1h2k) > 0, (3.5)

μk, j =
k−1∏

l= j

λl , λl = h2l+2 − c2l+2h2l+1
h2l+1 − c2l+1h2l

∀ j < k ∈ N. (3.6)

Proof. Assuming that the sequence in (3.4) satisfies the skew-orthogonality conditions
(2.8) and (2.9), we want to show the three-term recurrence relation for the OP. There-
fore consider the following Fourier expansion, starting with the odd polynomials and
expressing zp2m+1(z) in terms of the pl ’s,

zp2m+1(z) = p2m+2(z) + b2m+1 p2m+1(z) + c2m+1 p2m(z) + f2m−1(z), (3.7)
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where we have to show that

f2m−1(z):=
2m−1∑

l=0

a2m+1,l pl(z) (3.8)

is the null polynomial. From p2n+1 = q2n+1 we have for all n,m

0 = 〈p2n+1, p2m+1〉s = 2Re [〈zp2n+1, p2m+1〉 − 〈p2n+1, zp2m+1〉] .
Choosing inparticularn < m, thefirst termvanishes due toorthogonality, 〈zp2n+1, p2m+1〉
= 0. From this we obtain 0 = Re[〈p2n+1, zp2m+1〉] = a2m+1,2n+1h2n+1, for 0 ≤ n ≤
m − 1. Consequently the odd coefficients vanish, due to hk = 0 for all k. Next, let us
show that all even Fourier coefficients vanish too, a2m+1,2l = 0 for 0 ≤ l ≤ m − 1.
For this, we use that 0 = 〈q2l , q2m+1〉s for 0 ≤ l ≤ m − 1, and the fact that q2l is
a linear combination of even polynomials p2 j , see (3.4). Then, by inspection starting
with l = 0, this implies that 0 = 〈p2l , p2m+1〉s for 0 ≤ l ≤ m − 1, and therefore
for any linear combination of the p2l up to degree 2m − 2 as in f2m−1. In particu-
lar 0 = 〈 f2m−1, p2m+1〉s = 2Re[〈z f2m−1, p2m+1〉 − 〈 f2m−1, zp2m+1〉]. The first scalar
product is trivially zero due to orthogonality, and the second term yields 0 = ‖ f2m−1‖2,
the desired result.

Now we turn to the Fourier expansion of the even polynomials zp2m(z) given by

zp2m(z) = p2m+1(z) + b2m p2m(z) + c2m p2m−1(z) + f2m−2(z), (3.9)

with

f2m−2(z):=
2m−2∑

l=0

a2m,l pl(z). (3.10)

By assumption μm, j = λm−1μm−1, j and that λm−1 is independent of j , this implies
that q2m(z) = p2m(z) + λm−1q2(m−1)(z). Using 0 = 〈q2n, q2m〉s for all n,m, we obtain
0 = 〈q2n, p2m + λm−1q2(m−1)〉s = 〈q2n, p2m〉s. Starting with n = 0, by inspection we
have 0 = 〈p2n, p2m〉s. As before (choosing in particular n < m) this implies that all
even Fourier coefficients a2m,2n vanish for n = 0, . . . ,m − 1.

Next we apply the skew-orthogonality 0 = 〈q2n+1, q2m〉s for n < m. In particular
for 0 ≤ l ≤ m − 2, we have 0 = 〈q2l+1, q2m〉s = 〈q2l+1, p2m + λm−1q2(m−1)〉s =
〈p2l+1, p2m〉s. Therefore, any linear combination of the p2l+1 up to degree 2m − 3 (as in
f2m−2) will give zero in the skew-product. Applying the same argument as for the case
of odd polynomials, we conclude that 0 = ‖ f2m−2‖2. This concludes the proof of the
first part of the theorem.

Conversely, let us assume that the OP satisfy a three-term recurrence relation, and
define the (qn)n by (3.4). For any polynomials f, g with real coefficients, the evaluation
of the skew-product (2.7) can be reduced to the evaluation of the scalar product (3.2),
〈 f, g〉s = 2Re [〈z f , g〉 − 〈 f, zg〉]. Thus, for the polynomials with odd indices we can
write

〈q2k+1, q2l+1〉s = 〈p2k+1, p2l+1〉s = 2Re [〈zp2k+1, p2l+1〉 − 〈p2k+1, zp2l+1〉] .
To calculate the two scalar products we use the three-term recurrence relation and the
orthogonality of the polynomials pn . This leads to 〈zp2k+1, p2l+1〉 = 〈p2k+1, zp2l+1〉 =
b2k+1h2k+1δk,l . Hence, 〈q2k+1, q2l+1〉s = 0 for all k and l. Similarly, we obtain
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〈p2i , zp2 j 〉 = 〈zp2i , p2 j 〉 = b2i h2iδi, j , and after expanding the q2n’s in terms of the
p2n’s, we obtain 〈q2k, q2l〉s = 0 ∀k, l.

For the combination of odd and even indices in (2.9) we need to evaluate

〈zp2 j , p2l+1〉 = h2 j+1δ j,l + c2 j h2 j−1δ j,l+1, 〈p2 j , zp2l+1〉 = h2 jδ j,l+1 + c2l+1h2 jδ j,l ,

which leads to

〈q2k, q2l+1〉s =
k∑

j=0

2μk, j Re[〈zp2 j , p2l+1〉 − 〈p2 j , zp2l+1〉]

=
k∑

j=0

2μk, j
[(
h2 j+1 − c2l+1h2 j

)
δ j,l − (h2 j − c2 j h2 j−1

)
δ j,l+1

]
.

Depending on the values of k and l we need to distinguish between 3 cases:

1. Case k < l: Here, we have δ j,l = 0 and δ j,l+1 = 0 for all j ≤ k, and therefore
〈q2k, q2l+1〉s = 0 as claimed.

2. Case k = l: It holds δ j,l = 1 only for j = l = k, and δ j,l+1 = 0 for all j ≤ k,
therefore

〈q2k, q2k+1〉s = 2 (h2k+1 − c2k+1h2k) = rk . (3.11)

3. Case k > l: We have δ j,l = 1 only for j = l < k, and δ j,l+1 = 1 only for
j = l + 1 ≤ k. Then, we want that

〈q2k, q2l+1〉s = 2μk,l (h2l+1 − c2l+1h2l) − 2μk,l+1 (h2l+2 − c2l+2h2l+1)

is zero. This equation is fulfilled if and only if the μk,l satisfy

μk,l+1 (h2l+2 − c2l+2h2l+1) = μk,l (h2l+1 − c2l+1h2l) . (3.12)

Thanks to our monic choice of the leading coefficient μk,k = 1, this recursion can
be solved to obtain the explicit form as claimed

μk, j =
k−1∏

l= j

h2l+2 − c2l+2h2l+1
h2l+1 − c2l+1h2l

∀ j < k ∈ N.

In particular, note that the μk, j satisfy the assumption made in the first part of the
theorem.

	

Remark 3.2. The recurrence coefficientsbk (althoughnon-zero in general) are not needed
to express μk, j (3.6) and rk (3.5). Therefore, in the examples below, we will only give
formulas for ck and hk .

Also note that we can invert (3.4) to get the following representation of the OP in
terms of the SOP for all k ∈ N:

p2k+2(z) = q2k+2(z) − λkq2k(z),

p2k+1(z) = q2k+1(z).
(3.13)

Formula (3.4) and its inverted formwere observed before for the classical SOP on subsets
of the real line based on Hermite, Laguerre and Jacobi polynomials [33, Eqs. (3.29),
(3.28)].
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For radially symmetric weight functionsw(z) = w(|z|), the OP are given bymonomials.
Due to ck = 0 (= bk) for all k ∈ N in that case, the above formulas simplify considerably
(this result is known, see [23, Eqs. (31), (32)]):

Corollary 3.3. If the weight function of the planar OP in Theorem 3.1 is radially sym-
metric, w(z) = w(|z|), we have for the OP and their squared norms:

pn(z) = zn, hn = 2π
∫ ∞

0
r2n+1w(r)χDr dr, (3.14)

where χDr denotes the characteristic function on D in radial direction. For the planar
SOP we obtain:

q2k(z) = z2k +
k−1∑

j=0

z2 j
k−1∏

l= j

h2l+2
h2l+1

, (3.15)

q2k+1(z) = z2k+1, (3.16)

with skew-norms

rk = 2h2k+1. (3.17)

Let us give some examples for planar SOP (and SOP over a weighted analytic Jordan
curve) that are constructed using Theorem 3.1 or Corollary 3.3. These immediately lead
to examples of Pfaffian point processes (2.1) that are integrable, in the sense that the
SOP and thus the corresponding (pre-) kernel is known explicitly. We will only state the
SOP in what follows, and not the pre-kernel.

Example 3.4 (Gegenbauer ensemble). Consider the measure μ supported in the interior
of the standard ellipse ∂E , with semi-axes a > b > 0, such that μ has density function
w with respect to planar Lebesgue measure:

w(z) = (1 + α) (1 − h(z))α , h(z) =
(
Re(z)

a

)2
+

(
Im(z)

b

)2
, α > −1. (3.18)

As shown in [30, Thm. 3.1], the Gegenbauer polynomials (also called ultraspherical)
form an orthonormal basis on the Bergman space with respect to this weight function.
The monic OP, recurrence coefficients and norms read

pn(z) = n!
(1 + α)n

( c
2

)n
C (1+α)
n

( z
c

)
, c =

√
a2 − b2 > 0, (3.19)

cn = n(n + 1 + 2α)

(n + α)(n + 1 + α)

( c
2

)2
, (3.20)

hn = πab
1 + α

n + 1 + α

( c
2

)2n ( n!
(1 + α)n

)2
C (1+α)
n (R) , R = a2 + b2

a2 − b2
. (3.21)

From Theorem 3.1 we obtain

q2k(z) =
k∑

j=0

μk, j
(2 j)! � (1 + α)

� (2 j + 1 + α)

( c
2

)2 j
C (1+α)
2 j

( z
c

)
, (3.22)

q2k+1(z) = (2k + 1)! � (1 + α)

� (2k + 2 + α)

( c
2

)2k+1
C (1+α)
2k+1

( z
c

)
, (3.23)
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with coefficients

μk, j =
k−1∏

l= j

(2l + 1)(2l + 2)c2

4 (2l + 2 + α) (2l + 3 + α)

(2l + 2)C (1+α)
2l+2 (R) − (2l + 3 + 2α)C (1+α)

2l+1 (R)

(2l + 1)C (1+α)
2l+1 (R) − (2l + 2 + 2α)C (1+α)

2l (R)
,

and skew-norms

rk = 2πab
2−2(2k+1)((2k + 1)!)2c2(2k+1)

(2k + 1)(1 + α)2k+1(2 + α)2k+1

×
[
(2k + 1)C (1+α)

2k+1 (R) − (2k + 2 + 2α)C (1+α)
2k (R)

]
. (3.24)

In the special case when α = 0 the weight function is constant and the Gegenbauer
polynomials reduce to the Chebyshev polynomials of the second kind,C (1)

n (x) = Un(x).
Apart from the example with Gegenbauer polynomials, which are symmetric Jacobi
polynomials, for non-symmetric Jacobi polynomials with parameters (α + 1/2,±1/2)
the SOP can also be constructed. In particular they include the Chebyshev polynomials
of the first up to fourth kind, see [30] and references therein.

Example 3.5 (Truncated symplectic ensemble). When b → a = 1 in the above example,
the eccentricity ε of the ellipse takes its critical value ε = 0. In this limit only the
leading coefficient of the Gegenbauer polynomials survives and the monic OP become
monomials. The weight function (3.18), defined on the unit disk, reduces to

w(z) = (1 + α)
(
1 − |z|2

)α

, α > −1. (3.25)

The SOP coefficients and skew-norms take the form:

μk, j
∣∣
a=b=1 =

k−1∏

l= j

2l + 2

2l + 3 + α
, rk |a=b=1 = 2π�(2 + α)

�(2k + 2)

�(2k + 3 + α)
. (3.26)

They also can be obtained directly from our Corollary 3.3, since in this limit the weight
is rotationally invariant.

This weight describes the truncated unitary ensemble [8]: for integer values of α =
N − M − 1 it appears in the eigenvalue distribution of Haar distributed unitary matrices
of size N truncated to the upper sub-block of size M < N . The SOP can be used for the
corresponding symplectic point process, see [9] for further details.

Also, when the weight function includes an extra charge insertion at the origin, that
is, w(z) = |z|2c (1 − |z|2)α, α > −1, c > −1, the μ j,k and rk can be readily obtained.

Example 3.6 (Mittag-Leffler ensemble). The weight function, that leads to a Bergman
kernel in terms of the two-parametric Mittag-Leffler function [34, Thm 1.6], is given by

w(z) = |z|2c e−|z|2λ , λ > 0, c > −1, (3.27)

including a charge insertion at the origin. When setting λ = 1, it reduces to the induced
Ginibre ensemble, see [35] for the OP, and the SOP were determined in [5]. Setting also
c = 0, it reduces to the standard Ginibre ensemble, see [20,21]. The squared norms hn
of the monic OP pn(z) = zn with respect to the weight (3.27) can be easily obtained:

hn = π

λ
�

(
n + 1 + c

λ

)
. (3.28)
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FromCorollary 3.3 we can read off the monic planar SOPwith respect to (3.27) and their
skew-norms. For λ = 1 and c = 0 this leads to the same pre-kernel as in the symplectic
Ginibre ensemble [20].

Example 3.7 (Chebyshev on an elliptic contour). Consider the measure μ supported on
the standard ellipse ∂E , with semi-axes a > b > 0, such thatμ has the density function:

w(z) =
√∣∣∣∣

c + z

c − z

∣∣∣∣, c =
√
a2 − b2. (3.29)

Chebyshev polynomials of the third kind Vn satisfy an orthogonality relation on this
contour [36] (here |dz| stands for the arc length measure):

〈pn, pm〉 =
∫

∂E
pn(z)pm(z)w(z) |dz| = hnδn,m for (3.30)

pn(z) =
( c
2

)n
Vn
( z
c

)
, hn = π

(a + b)2n+1 + (a − b)2n+1

22n
, cn = c2

4
. (3.31)

Similar relations hold for Chebyshev polynomials of first, second and fourth kind for
different weight functions [36]. From Theorem 3.1 we get the following Szegő SOP

q2k(z) =
k∑

j=0

μk, j

( c
2

)2 j
V2 j
( z
c

)
,

μk, j = 1

22(k− j)

k−1∏

l= j

(a + b)4l+4 − (a − b)4l+4

(a + b)4l+2 − (a − b)4l+2
,

q2k+1(z) =
( c
2

)2k+1
V2k+1

( z
c

)
,

(3.32)

and for the skew-norms we obtain

rk = πb

24k

[
(a + b)4k+2 − (a − b)4k+2

]
. (3.33)

Note that in the limit b → a = 1 this example simplifies to the uniformweight on the
unit circle, for which the Pfaffian point process is already well known [12]: it describes
the eigenvalues of the circular quaternion ensemble (matrices of Sp(2N ) distributed
according to Haar-measure). As mentioned already, this point process is determinantal
and can be analysed via OP.

Further examples – including rotationally invariant weights on C – will be provided
in Sect. 4 and Appendix A. The case resulting from products of M rectangular Ginibre
matrices is deferred to the Appendix A as the resulting planar SOP are known [23].

4. Bergman-Like Kernel of Skew-Orthogonal Polynomials

In this section we will derive the Bergman-like kernel for planar skew-orthogonal Her-
mite and Laguerre polynomials in separate subsections. They are given by the limiting
pre-kernel, the sum over orthonormal SOP, hence the terminology. In both cases the cor-
responding weights are given by a one parameter family of elliptic ensembles, see e.g.
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(4.1) below for Hermite and Appendix A. The proofs will be based on the rotationally
invariant limit, that is when the parameter is chosen such that the underlying domain
and weight function have rotational symmetry. In that case the corresponding limiting
pre-kernels are known, see [5,21] respectively. As a consequence, at the end of each
subsection we will present the universality of a one-parameter family of kernels in such
symplectic elliptic Ginibre ensembles, hinting at a much larger universality.

4.1. Bergman-like kernel of skew-orthogonal Hermite polynomials. In random matrix
theory the planar Hermite polynomials appear in the solution of the elliptic complex
Ginibre ensemble [37], with the one-parameter complex potential

Qτ (z) = 1

1 − τ 2

[
|z|2 − τ Re(z2)

]
= Re(z)2

1 + τ
+
Im(z)2

1 − τ
,

0 ≤ τ < 1, wτ (z) = e−Qτ (z). (4.1)

The monic polynomials (here with their third recurrence coefficient cn),

pn(z) =
(τ

2

) n
2
Hn

(
z√
2τ

)
, cn = τn, (4.2)

satisfy
∫

C

pn(z)pm(z) e−Qτ (z) dA(z) = hnδn,m, hn = n! (4.3)

Here, dA(z) denotes the area measure on the complex plane, divided by π
√
1 − τ 2 to

provide a probability measure, i.e. with h0 = 1. We refer to Example A.2 for details,
including a two-parameter complex normal distribution and thematching planarHermite
polynomials. The corresponding Bergman kernel [38] is the standard one of Hermite
polynomials onR [39, 18.18.28], after continuation in the arguments ζ, η ∈ C, 0 ≤ τ <

1:

Kτ (ζ, η) =
∞∑

n=0

1

n!
(τ

2

)n
Hn

(
ζ√
2τ

)
Hn

(
η√
2τ

)

= 1√
1 − τ 2

exp

[
1

1 − τ 2

(
ζη − τ

2
(ζ 2 + η2)

)]
. (4.4)

This identity is also called Mehler-Hermite formula or Poisson kernel.
TheHermite SOP and skew-normswith respect to theweight (4.1) are known [21] and

recollected in Example A.2, as following from Theorem 3.1. We only give the resulting
pre-kernel:

σ τ,N (z, u) =
N−1∑

k=0

1

(2k + 1)!!
(τ

2

)k+1/2 k∑

l=0

1

(2l)!!
(τ

2

)l

×
[
H2k+1

(
z√
2τ

)
H2l

(
u√
2τ

)
− H2l

(
z√
2τ

)
H2k+1

(
u√
2τ

)]
.

(4.5)
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Here, the area measure is normalised by 1
2π(1−τ)

√
1−τ 2

, to achieve r0 = 1 in analogy to

above. Both expressions (4.4) and (4.5) are the sum over (skew-)orthonormal polyno-
mials. We are thus led to consider the following limit which is the first main result of
this section. From now on we use the following notation fN (z) ⇒ f (z) to express that
the sequence of functions ( fN )N converges to f uniformly on any compact subset of C
as N → ∞.

Theorem 4.1 (Bergman-like Hermite kernel). Let 0 < τ < 1 and z, u ∈ C, then we
have that σ τ,N (z, u) ⇒ Sτ (z, u), where the limiting function is given by

Sτ (z, u) =
∞∑

k=0

(τ/2)k+1/2

(2k + 1)!!
k∑

l=0

(τ/2)l

(2l)!!
[
H2k+1

(
z√
2τ

)
H2l

(
u√
2τ

)

−H2l

(
z√
2τ

)
H2k+1

(
u√
2τ

)]

=
√

π√
2(1 + τ)

exp

[
1

2(1 + τ)
(z2 + u2)

]
erf

(
1√

2(1 − τ 2)
(z − u)

)
.

(4.6)

We use the standard notation for the error function, in the form
erf(x) = 2x√

π

∫ 1
0 e−x2s2ds, that can be continued to x ∈ C. The result (4.6) was

already given in [10, Eq. (18.6.53)], without providing any details. In analogy to (4.4)
being the infinite sum over orthonormalised OP, we call the corresponding sum over
orthonormal SOP (4.6) Bergman-like Hermite kernel.

The proof of Theorem 4.1 will be in two steps. First, we recall the rotationally
invariant case τ = 0, see Remark 4.3. In the second step we derive (4.6) by using an
integral representation for the Hermite polynomials together with Lemma 4.2.

Lemma 4.2. For u, v ∈ C define

gN (u, v):=
N−1∑

k=0

u2k+1

(2k + 1)!!
k∑

l=0

v2l

(2l)!! . (4.7)

Then, as N → ∞ we have gN (u, v) ⇒ g(u, v), where the limiting function is given by

g(u, v) = 1

2

√
π

2
e
1
2

(
u2+v2

) [
erf

(
u − v√

2

)
+ erf

(
u + v√

2

)]
. (4.8)

Proof. Let u, v ∈ B(0, r), where B(a, r) denotes the disk of center a and radius r . Then
each summand in (4.7) is bounded by rer

2
r2k/(k!). Hence, by the Weierstraß M-test,

its sum is an analytic function of u and v, being absolutely and uniformly convergent in
each compact subset of the plane. Thus, the limiting function, as N → ∞, is given by
the power series

g(u, v) =
∞∑

k=0

u2k+1

(2k + 1)!!
k∑

l=0

v2l

(2l)!! . (4.9)

Now, we take the derivative term-wise to obtain: ∂ug(u, v) = ug(u, v) + cosh(uv), see
[20, Sect. 15.2 and App. A.34] and [21, Sect. 5.2.1] for details. A convenient initial value
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of this linear inhomogeneous ordinary differential equation is u0 = 0, then g(u0, v) = 0
for every v ∈ C. The solution of the initial value problem is given by (see [40])

g(u, v) =
∫ u

0
exp

[∫ u

t
s ds

]
cosh(vt) dt = 1

2
eu

2/2
∫ u

0

[
e−t2/2+vt + e−t2/2−vt

]
dt

= 1

2

√
π

2
e
1
2 (u2+v2)

[
erf

(
u − v√

2

)
+ erf

(
u + v√

2

)]
. (4.10)

In the last step we have used the definition of the error function provided below (4.6),
as well as its anti-symmetry. 	

Remark 4.3 (Symplectic Ginibre pre-kernel). Note that the right hand side of (4.5) is a
continuous function of the parameter τ in a neighbourhood of τ = 0. Lemma 4.2 tells
us that S0(u, v) is equal to g(u, v) − g(v, u):

S0(u, v) = g(u, v) − g(v, u) =
∞∑

k=0

k∑

l=0

u2k+1v2l − u2lv2k+1

(2k + 1)!! (2l)!!

=
√

π

2
e
1
2

(
u2+v2

)
erf

(
u − v√

2

)
. (4.11)

This is a well-known limiting pre-kernel, first found byMehta in [20] and later calculated
in [21]. As can be seen from (4.1), the parameter τ controls the degree of Hermiticity
of the elliptic ensemble. The case τ = 0 here corresponds to maximal non-Hermiticity,
when real and imaginary part share the same variance. In Theorem 4.1 the limit N → ∞
is taken at fixed τ , which we call strong non-Hermiticity. The case when τ → 1 at a
rate depending on N called weak non-Hermiticity will not be discussed further, and
we refer to [21,37] for details. The kernel in (4.11) is the symplectic analogon of its
Hermitian partner exp[uv] in the holomorphic Fock-space [41] in L2(e−|z|2 dA(z)), as
in Remark 2.7.

Let us turn to the second step, involving double-sums of Hermite polynomials. We
begin with the following Lemma.

Lemma 4.4. Let ζ, η ∈ C, ϕ, φ ∈ [0, 1) and define

fN (ζ, η):=
N−1∑

k=0

(ϕ/2)k+1/2

(2k + 1)!! H2k+1(ζ )

k∑

l=0

(φ/2)l

(2l)!! H2l(η). (4.12)

Then, as N → ∞ we have fN (ζ, η) ⇒ fϕ,φ(ζ, η), where the limiting function is given
by

fϕ,φ(ζ, η) =
√

π

2
√
2(1 + ϕ)(1 + φ)

exp

(
ϕ

1 + ϕ
ζ 2 +

φ

1 + φ
η2
)

× [erf (a(ϕ, φ)ζ − a(φ, ϕ)η) + erf (a(ϕ, φ)ζ + a(φ, ϕ)η)] ,

(4.13)

with

a(ϕ, φ) =
√

ϕ(1 + φ)

(1 + ϕ)(1 − ϕφ)
. (4.14)
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Proof. The Hermite polynomials have the integral representation ( [39, 18.10.10])

Hn(x) = (−2i)n√
π

∫ ∞

−∞
tne(it+x)2 dt , (4.15)

which we use to derive

fN (ζ, η) = 1

π

∫

R2
e(it+ζ )2+(is+η)2

N−1∑

k=0

k∑

l=0

(−i
√
2ϕt
)2k+1 (−i

√
2φs
)2l

(2k + 1)!! (2l)!! ds dt.

(4.16)

A simple estimate of the integrand, as in Lemma 4.2, leads to

| fN (ζ, η)| ≤ eRe(ζ
2)+Re(η2)

∫

R2
|t | e−(1−ϕ)t2−2 Im(ζ )te−(1−φ)s2−2 Im(η)s ds dt < ∞ ∀N .

(4.17)

By Lebesgue’s dominated convergence theorem we obtain

lim
N→∞ fN (ζ, η) = 1

2
√
2π

eζ 2+η2
∫

R2
e−(1+ϕ)t2−(1+φ)s2+2i(tζ+sη)

×
[
erf
(
−i

√
ϕt + i

√
φs
)
+ erf

(
−i

√
ϕt − i

√
φs
)]

ds dt .

For the limit we used Lemma 4.2, with u = −i
√
2ϕt and v = −i

√
2φs. Then, we can

evaluate this integral via (C.3) fromAppendix C, with A = 1+ϕ, B = 1+φ,C = −i
√

ϕ,
D = ±i

√
φ. This leads to the claimed limit (4.13). 	


Finally we can complete the proof of our main result.

Proof of Theorem 4.1. As for (4.16) we can obtain a simple estimate for the sum in (4.6)
with ζ, η ∈ B(0, r). Thus, the sum converges absolutely and uniformly on B(0, r), and
therefore on each compact subset ofC. The absolute convergence allows us to rearrange
the summands and, using Lemma 4.4 with ϕ = φ = τ , we obtain:

Sτ (z, u) = fτ,τ

(
z√
2τ

,
u√
2τ

)
− fτ,τ

(
u√
2τ

,
z√
2τ

)
. (4.18)

	

Remark 4.5. We note that the Bergman kernel Kτ in (4.4) of the analytic space in
L2(e−Qτ dA), and the Bergman-like kernel Sτ in (4.6), both restricted to R × R, are
related by the following differential equation

(1 + τ) e
1
2 (Qτ (x)+Qτ (y))∂x

[
e− 1

2 (Qτ (x)+Qτ (y))Sτ (x, y)
]

= Kτ (x, y). (4.19)
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4.1.1. Universality of the symplectic elliptic Ginibre kernel In this subsection we will
prove the universality of all k-point correlation functions (2.4) in the symplectic elliptic
Ginibre ensemble, in the large-N limit at strong non-Hermiticity close to the origin.
Throughout this article we have considered weight functions that are N -independent.
Therefore, at large-N the eigenvalues condense on a dropletwith N -dependent radius, the
support of the equilibrium measure. We refer to [42] for a discussion of the equilibrium
problem for a general potential. In the case of our elliptic weight (4.1), we have that
([43, Thm. 2.1] applied to the result of [44]) yields

RN ,1(z) ≈
⎧
⎨

⎩
1

2π(1−τ 2)
if
(
Re(z)
1+τ

)2
+
(
Im(z)
1−τ

)2 ≤ 2N ,

0 else.
(4.20)

The fact that in Theorem 4.1 we take the limit of the kernel at arguments independent
of N , implies that we consider the vicinity of the origin. In contrast, to investigate the
neighbourhood of a bulk (or edge) point, we would have to centre the arguments around
this point z = √

2Nz0, with |z0| of order unity, and rescale accordingly. Furthermore,
because we keep τ fixed when N → ∞, this implies that we consider strong non-
Hermiticity.

Let us first quote the known result at maximal non-Hermiticity τ = 0 from [21]2, the
symplectic Ginibre kernel at the origin. In that case, from Remark 4.3 we can read off
the matrix elements of the limiting kernel of KN (z, u) in (2.5), times the normalisation
from the area measure

lim
N→∞

1

2π

√
wτ=0(z)wτ=0(u) σ 0,N (z, u)=e− 1

2 (|z|2+|u|2) 1

2π

∞∑

k=0

k∑

l=0

z2k+1u2l − z2lu2k+1

(2k + 1)!! (2l)!!

= 1

2
√
2π

e− 1
2

(|z|2+|u|2−z2−u2
)
erf

(
z − u√

2

)
.

(4.21)

As a corollary fromTheorem4.1, we can nowprove the following universality statement.

Corollary 4.6. The large-N limit of the matrix elements σN given in (4.5) of the kernel
KN (2.5) with respect to the weight function wτ in (4.1) are equivalent in the sense of
Remark 2.9 to (4.21) for general values of 0 < τ < 1 and thus universal.

Proof. In order to compare the limits of the pre-kernels (4.5) and (4.21) and their pre-
factors, we have to map to the same equilibrium measure (also called macroscopic
density) first, implying the same mean level spacing. This is called unfolding and we
refer to [13] for a standard reference that includes complex spectra, see also [42] for
details about recentering and rescaling. Because the symplectic Ginibre kernel in (4.21)
is given with respect to the limiting density 1

2π , in this case to unfold we simply have

to rescale all arguments z → √
1 − τ 2 z, in view of (4.20). Therefore we consider the

2 Notice, that there the mean level spacing is rescaled to unity, compared to 2π in our case.
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limit

lim
N→∞

(1 − τ 2)
3
2

2π(1 − τ)
√
1 − τ 2

×
√

wτ

(√
1 − τ 2z

)
wτ

(√
1 − τ 2u

)
σ τ,N

(√
1 − τ 2z,

√
1 − τ 2u

)

= 1

2π
(1 + τ) e− 1

2 (|z|2+|u|2)+ τ
4 (z2+z2+u2+u2)

∞∑

k=0

(τ/2)k+1/2

(2k + 1)!!
k∑

l=0

(τ/2)l

(2l)!!

×
[
H2k+1

(√
1 − τ 2z√

2τ

)
H2l

(√
1 − τ 2u√

2τ

)

−H2l

(√
1 − τ 2z√

2τ

)
H2k+1

(√
1 − τ 2u√

2τ

)]

= e
τ
4 (z2−z2)e

τ
4 (u2−u2) 1

2
√
2π

e− 1
2

(|z|2+|u|2−z2−u2
)
erf

(
z − u√

2

)
. (4.22)

The additional factor (1 − τ 2)
3
2 in the first line originates from the rescaling of the

measure dA(z) and the factors (z − z) in the Pfaffian representation of the correlation
functions, eq. (2.4). In the first line we also multiply with the τ -dependent normalisation
of the area measure. After inserting (4.6) on the right hand side, we arrive at (4.21),
apart from two pre-factors. These can be disregarded as they satisfy the condition under
complex conjugation explained in Remark 2.9 to establish an equivalent kernel. Thus
the universality of the kernel (4.21) holds for arbitrary fixed τ , with 0 ≤ τ < 1. 	

After completing this work, the universality we have found at the origin at strong non-
Hermiticity has been extended to the entire bulk (and edge) along the real line [45].
The universality of the elliptic Ginibre ensemble, a one-parameter family of Gaussian
random matrices, strongly suggests a more general universality to hold, when allowing
for a larger class of potentials Q in the weight function (4.1). Despite our progress in
Sect. 3 in the construction of SOP for more general weight functions based on OP, this
is beyond the scope of the current article.

4.2. Bergman-like kernel of skew-orthogonal Laguerre polynomials. The generalised
Laguerre polynomials, denoted by L(ν)

n (x), are orthogonal on the interval (0,∞) with
respect to the weight function xν exp(−x), ν > −1. These polynomials also appear in
the solution of the chiral elliptic complex Ginibre ensemble, which was introduced in [4]
to model Quantum Chromodynamics with a baryon chemical potential μ. The weight
function, defined on the complex plane, reads

w(ν)
τ (z) = |z|ν Kν

(
2

1 − τ 2
|z|
)
exp

[
2τ

1 − τ 2
Re(z)

]
, 0 ≤ τ < 1, (4.23)

where Kν(z) is the modified Bessel function of the second kind. We use the notation
with the non-Hermiticity parameter τ , instead of the chemical potential μ = √

1 − τ as
in [4]. The monic polynomials (with their third recurrence coefficient cn) are

pn(z) = (−1)nn! τ nL(ν)
n

( z
τ

)
, cn = τ 2n(n + ν), (4.24)
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and they fulfil
∫

C

pn(z)pm(z)w(ν)
τ (z) dA(z) = hnδn,m, hn = n! �(n + ν + 1)

�(ν + 1)
, (4.25)

see Example A.3 for details. Here, the area measure is divided by π
2 (1 − τ 2)�(ν + 1),

to achieve h0 = 1. The orthogonality on the complex plane was proven in [46], and
independently in [5]. The Poisson kernel for Laguerre polynomials is given by [39,
18.18.27]

Kτ (ζ, η) =
∞∑

n=0

n! �(ν + 1) τ 2n

� (n + ν + 1)
L(ν)
n

(
ζ

τ

)
L(ν)
n

(
η

τ

)

=
�(ν + 1) exp

[
− τ

1−τ 2
(ζ + η)

]

(1 − τ 2)(ζη)ν/2 Iν

(
2

1 − τ 2

√
ζη

)
, (4.26)

where Iν(z) denotes the modified Bessel function of the first kind. This identity corre-
sponds to the Bergman kernel of the analytic space in L2(w

(ν)
τ dA).

The Laguerre SOP and skew-norms with respect to the weight (4.23) can be con-
structed from Theorem 3.1 (see Example A.3) and agree with [5], with the resulting
pre-kernel

σ τ,N (z, u) = −
N−1∑

k=0

√
π�(ν + 2)(2k)!!τ 2k+1
2k+ν+1�

(
k + ν

2 + 3
2

)
k∑

l=0

(2l − 1)!!τ 2l
2l�
(
l + ν

2 + 1
)

×
[
L(ν)
2k+1

( z
τ

)
L(ν)
2l

(u
τ

)
− L(ν)

2l

( z
τ

)
L(ν)
2k+1

(u
τ

)]
.

(4.27)

The normalising factor for the area measure is 1
π(1−τ 2)2�(ν+2)

, to have again r0 = 1. Ex-
pressions (4.26) and (4.27) are the sum over (skew-)orthonormal Laguerre polynomials.
In analogy to (4.26) we thus call the limiting sum (4.28) below Bergman-like Laguerre
kernel.

The main result of this subsection is the following limit.

Theorem 4.7 (Bergman-like Laguerre kernel) . Let 0 < τ < 1 and z, u ∈ C, then for
N → ∞ we have σ τ,N (z, u) ⇒ Sτ (z, u), where

Sτ (z, u) = −
∞∑

k=0

√
π�(ν + 2)(2k)!!τ 2k+1
2k+ν+1�

(
k + ν

2 + 3
2

)
k∑

l=0

(2l − 1)!!τ 2l
2l�
(
l + ν

2 + 1
)

×
[
L(ν)
2k+1

( z
τ

)
L(ν)
2l

(u
τ

)
− L(ν)

2l

( z
τ

)
L(ν)
2k+1

(u
τ

)]

= �(ν + 2) e
− τ

1−τ2
(z+u)

(1 − τ 2)(zu)ν/2

×
∫ π/2

0
sinh

(
1

1 − τ 2
(z − u) cos(α)

)
Iν

(
2

1 − τ 2

√
zu sin(α)

)
dα.

(4.28)

The proof of the above theorem will proceed in two steps. First, we treat the ro-
tationally invariant case τ = 0, then we apply the integral representation of Laguerre
polynomials to establish a lemma analogous to Lemma 4.4.
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Lemma 4.8. For u, v ∈ C define

gN (u, v):=
N−1∑

k=0

u2k+1

2k�
(
k + ν

2 + 3
2

)
(2k + 1)!!

k∑

l=0

v2l

2l�
(
l + ν

2 + 1
)
(2l)!! . (4.29)

Then, as N → ∞ we have gN (u, v) ⇒ g(u, v), where the limiting function is given by

g(u, v) = 2ν

√
π(uv)ν/2

∫ π/2

0

[
e(u+v) cos(α) Jν

(
2
√
uv sin(α)

)

−e−(u−v) cos(α) Iν
(
2
√
uv sin(α)

)]
dα.

(4.30)

Proof. Let u, v ∈ B(0, r), then the same upper bound as in Lemma 4.2 serves as a
summable upper bound for (4.29), and it only depends r . Hence, by the Weierstraß M-
test, its sum is an analytic function of u and v. The convergence is absolute and uniform
in each compact subset of the plane. The limiting function – as N → ∞ – is given by
the power series:

g(u, v):=
∞∑

k=0

u2k+1

2k�
(
k + ν

2 + 3
2

)
(2k + 1)!!

k∑

l=0

v2l

2l�
(
l + ν

2 + 1
)
(2l)!! . (4.31)

Next we derive a differential equation for this limit. Following the same steps as in
[5, App. B.1], where a differential equation was derived for g(u, v) − g(v, u), we can
be brief. We obtain

u−ν∂uu
ν+1∂ug(u, v) =

∞∑

k=0

u2k

2k−1�
(
k + ν

2 + 1
2

)
(2k − 1)!!

k∑

l=0

v2l

2l�
(
l + ν

2 + 1
)
(2l)!!

=
∞∑

k=0

u2k+2

2k�
(
k + ν

2 + 3
2

)
(2k + 1)!!

k∑

l=0

v2l

2l�
(
l + ν

2 + 1
)
(2l)!!

+
∞∑

k=0

(uv)2k

2k−1�
(
k + ν

2 + 1
2

)
(2k − 1)!!2k� (k + ν

2 + 1
)
(2k)!! .

(4.32)

In the last step we have taken out the l = k term of the inner sum, before shifting the
index k → k + 1. The first sum that we are left with is equal to ug(u, v). In the last sum
we can simplify the denominator, by using the doubling formula for the gamma function
and (2k − 1)!!(2k)!! = (2k)!, leading to

2ν+1

√
π

∞∑

k=0

(uv)2k

� (2k + ν + 1) (2k)! = 2ν

√
π(uv)ν/2

(
Iν
(
2
√
uv
)
+ Jν

(
2
√
uv
))

, (4.33)

where we used the series representations of the Bessel-J and Bessel-I functions ( [39,
10.2.2 and 10.25.2])

Jν(z) =
( z
2

)ν
∞∑

n=0

(−1)n (z/2)2n

n!� (n + ν + 1)
, Iν(z) =

( z
2

)ν
∞∑

n=0

(z/2)2n

n!� (n + ν + 1)
. (4.34)
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In summary, g(u, v) satisfies the following second order linear inhomogeneous differ-
ential equation

(
u∂2u + (ν + 1)∂u − u

)
g(u, v) = 2ν

√
π(uv)ν/2

(
Iν
(
2
√
uv
)
+ Jν

(
2
√
uv
))

. (4.35)

To solve this equation, we may again use u0 = 0 as an initial value, because
g(u0, v) = 0 for every v ∈ C (and we will see later that a second initial condition
is not needed for the uniqueness of the solution). We will solve this initial value problem
in three steps: First, we find two linearly independent solutions γhomA(u) and γhomB(u)

for the homogeneous equation, then we construct a solution γinhom(u) for the inhomo-
geneous equation, finally we set g(u, v) = aγhomA(u) + bγhomB(u) + γinhom(u) where
a, b ∈ C are determined by the initial condition.

A simple computation shows that if f (u) solves u2 f ′′(u)+u f ′(u)−(u2+ν2/4) f (u)=
0, the (modified)Bessel-ODE, then f (u)/uν/2 solves the homogeneousODE for g(u, v).
Therefore we obtain

γhomA(u) = Iν/2(u)

uν/2 , γhomB(u) = Kν/2(u)

uν/2 , (4.36)

where Kα is the modified Bessel function of the second kind. As was shown in [5,
App. B.2], it holds

Iν
(
2
√
uv
)

2ν(uv)ν/2 =
(
u∂2u + (ν + 1)∂u − u

)

(
− 4(

2
√
uv
)ν eu+v

∫ ∞

0

∫ q

0
e−q2−p2 Jν

(
2q

√
2u
)
Jν
(
2p

√
2v
)
dp dq

)
, (4.37)

and similarly via the relation Jν
(
2
√
uv
) = (−i)ν Iν

(
2i

√
uv
) = (−i)ν Iν

(
2
√
u(−v)

)

we get

Jν
(
2
√
uv
)

2ν(uv)ν/2 =
(
u∂2u + (ν + 1)∂u − u

)

(
− 4(

2
√
uv
)ν eu−v

∫ ∞

0

∫ q

0
e−q2−p2 Jν

(
2q

√
2u
)
Iν
(
2p

√
2v
)
dp dq

)
. (4.38)

Hence, a solution for the inhomogeneous equation is

γinhom(u) = − 2ν+2

√
π(uv)ν/2

eu
∫ ∞

0

∫ q

0
e−q2−p2 Jν

(
2q

√
2u
)

×
[
ev Jν

(
2p

√
2v
)
+ e−v Iν

(
2p

√
2v
)]

dp dq. (4.39)

Using the series representations (4.34) of the Bessel functions Jν and Iν , one can see that
γhomA(u) and γinhom(u) are continuous functions in a neighbourhood of u = 0. Since
g(u, v) is continuous around 0, with g(0, v) = 0, we can set b = 0. A simple calculation
using (4.34) for γhomA(u) and (C.4) together with [39, 10.32.2] for γinhom(u) gives

lim
u→0

γhomA(u) = 1

2ν/2�(ν
2 + 1)

, lim
u→0

γinhom(u) = −√
π

2ν/2

�
(

ν
2 + 1

) Iν/2(v)

vν/2 , (4.40)
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and thus

a = −2ν/2�
(ν

2
+ 1
)

, γinhom(0) = √
π2ν Iν/2(v)

vν/2 . (4.41)

By replacing the Bessel-I functions with the integral representations [39, 10.22.52] and
[39, 10.43.24], we can match this term to one of the double-integrals in γinhom(u), then

g(u, v) = 2ν+2

√
π(uv)ν/2

[
eu−v

∫ ∞

0

∫ ∞

0
e−q2−p2 Jν

(
2q

√
2u
)
Iν
(
2p

√
2v
)
dp dq

− eu+v

∫ ∞

0

∫ q

0
e−q2−p2 Jν

(
2q

√
2u
)
Jν
(
2p

√
2v
)
dp dq

−eu−v

∫ ∞

0

∫ q

0
e−q2−p2 Jν

(
2q

√
2u
)
Iν
(
2p

√
2v
)
dp dq

]

= 2ν+2

√
π(uv)ν/2

[
eu−v

∫ ∞

0

∫ ∞

q
e−q2−p2 Jν

(
2q

√
2u
)
Iν
(
2p

√
2v
)
dp dq

−eu+v

∫ ∞

0

∫ q

0
e−q2−p2 Jν

(
2q

√
2u
)
Jν
(
2p

√
2v
)
dp dq

]

= 2ν+2

√
π(uv)ν/2

∫ ∞

0

∫ q

0
e−q2−p2

[
eu−v Jν

(
2p

√
2u
)
Iν
(
2q

√
2v
)

−eu+v Jν
(
2q

√
2u
)
Jν
(
2p

√
2v
)]

dp dq.

(4.42)

In the last step we used Fubini’s theorem, and then we switched the variable names q
and p. Finally, the claimed formula for g(u, v) follows from (C.6). 	

Remark 4.9 (Chiral symplectic Ginibre pre-kernel). Note that the right hand side of
(4.27) is a continuous function of the parameter τ in a neighbourhood of τ = 0.
Lemma 4.8 tells us that S0(u, v) is proportional to g(u, v) − g(v, u):

S0(u, v) =
√

π�(ν + 2)

2ν+1 (g(u, v) − g(v, u))

=
∞∑

k=0

k∑

l=0

√
π�(ν + 2)

(
u2k+1v2l − u2lv2k+1

)

2k+ν+1�
(
k + ν

2 + 3
2

)
(2k + 1)!!2l� (l + ν

2 + 1
)
(2l)!!

= �(ν + 2)

(uv)ν/2

∫ π/2

0
sinh ((u − v) cos(α)) Iν

(
2
√
uv sin(α)

)
dα.

(4.43)

This is the known limiting kernel found in [5,AppendixB] and is expected to beuniversal.
As in Remark 4.3, τ = 0 considered here corresponds to maximal non-Hermiticity of
the underlying ensemble.

The kernel in (4.43) is the symplectic analogon of its Hermitian partner Iν(uv) (in
terms of squared variables) of the generalised Fock-space [47] in L2

(|z|2ν+2Kν(2|z|2)
dA(z)).

We can now turn to the double-sum of Laguerre polynomials.
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Lemma 4.10. Let ζ, η ∈ C, ϑ, θ ∈ [0, 1) and define:

fN (ζ, η):=
N−1∑

k=0

(2k)!!ϑ2k+1

2k�
(
k + ν

2 + 3
2

) L(ν)
2k+1(ζ )

k∑

l=0

(2l − 1)!!θ2l
2l�
(
l + ν

2 + 1
) L(ν)

2l (η). (4.44)

Then, as N → ∞ we have fN (ζ, η) ⇒ fϑ,θ (ζ, η), where the limiting function is given
by

fϑ,θ (ζ, η) = 2ν
√
a(ϑ)a(θ)√

πϑθ(ϑθζη)ν/2
e−ϑa(ϑ)ζ−θa(θ)η

×
[∫ λ

0
e(−a(ϑ)ζ−a(θ)η) cos(t) Jν

(
2
√
a(ϑ)a(θ)ζη sin(t)

)
dt

−
∫ μ

0
e(a(ϑ)ζ−a(θ)η) cos(t) Jν

(
2
√
a(ϑ)a(θ)ζη sin(t)

)
dt

]
,

(4.45)

with

a(θ) = θ

1 − θ2
, λ = 2 arctan

(√
(1 + ϑ)(1 + θ)

(1 − ϑ)(1 − θ)

)
,

μ = 2 arctan

(√
(1 − ϑ)(1 + θ)

(1 + ϑ)(1 − θ)

)
. (4.46)

Proof. We replace the Laguerre polynomials with the integral (compare [39, 18.10.9])

L(ν)
n (x) = 2

n! x
−ν/2ex

∫ ∞

0
t2n+ν+1e−t2 Jν

(
2
√
xt
)
dt. (4.47)

Then, we get

fN (ζ, η) = 4(ζη)−ν/2eζ+η

∫ ∞

0

∫ ∞

0
(ts)1+νe−t2−s2 Jν

(
2
√

ζ t
)
Jν
(
2
√

ηs
)

×
N−1∑

k=0

k∑

l=0

(ϑ t2)2k+1

2k�
(
k + ν

2 + 3
2

)
(2k + 1)!!

(θs2)2l

2l�
(
l + ν

2 + 1
)
(2l)!! dt ds.

(4.48)

This integral is uniformly bounded3 for ζ, η ∈ B(0, r) by

| fN (ζ, η)| ≤ rν

∫

R2
+

(ts)1+2ν

× exp
[
−(1 − ϑ)t2 − (1 − θ)s2 + 2r t + 2rs

]
dt ds < ∞, ∀N . (4.49)

3 We estimate the Bessel-J functions with [39, 10.14.4] and the double-sum with eϑ t
2+θs2 .
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Using Lebesgue’s dominated convergence theorem, we replace the limit of the double-
sum with the double-integral from (4.42) and evaluate the t- and s-integrals with (C.5):

fϑ,θ (ζ, η) = 2ν+4

√
π

(ϑθζη)−ν/2 eζ+η

∫ ∞

0

∫ q

0
e−q2−p2

×
[∫ ∞

0
te−(1−ϑ)t2 Jν

(
2
√

ζ t
)
Jν
(
2
√
2ϑ pt

)
dt

×
∫ ∞

0
se−(1+θ)s2 Jν

(
2
√

ηs
)
Iν
(
2
√
2θqs

)
ds

−
∫ ∞

0
te−(1−ϑ)t2 Jν

(
2
√

ζ t
)
Jν
(
2
√
2ϑqt

)
dt

×
∫ ∞

0
se−(1−θ)s2 Jν

(
2
√

ηs
)
Jν
(
2
√
2θ ps

)
ds

]

= 2ν+2

√
π

(ϑθζη)−ν/2 eζ+η

∫ ∞

0

∫ q

0
e−q2−p2

×
[

1

(1 − ϑ)(1 + θ)
exp

(
−ζ + 2ϑp2

1 − ϑ
− η − 2θq2

1 + θ

)

× Iν

(
2
√
2ϑζ p

1 − ϑ

)
Jν

(
2
√
2θηq

1 + θ

)

− 1

(1 − ϑ)(1 − θ)
exp

(
−ζ + 2ϑq2

1 − ϑ
− η + 2θp2

1 − θ

)

×Iν

(
2
√
2ϑζq

1 − ϑ

)
Iν

(
2
√
2θηp

1 − θ

)]
dp dq.

(4.50)

Applying the substitution p = qr , r ∈ [0, 1], we can calculate the q-integral with
(C.5). In the last step we bring the two resulting one-dimensional integrals into the form
in (4.45). This is achieved by following changes of variables (for the first and second
integral respectively)

r →
√

(1 − ϑ)(1 − θ)

(1 + ϑ)(1 + θ)
tan(α/2), r →

√
(1 + ϑ)(1 − θ)

(1 − ϑ)(1 + θ)
tan(α/2).

	

We can now complete the proof of our main result.

Proof of Theorem 4.7. Lemma 4.8 together with Lemma 4.10 shows that the sum in
(4.44) converges absolutely and uniformly in each ball of center 0 and radius r , and
therefore in each compact subset of C. Due to the absolute convergence of the series we
can rearrange it and, in particular when ϑ = θ = τ , we obtain

Sτ (z, u) =
√

π�(ν + 2)

2ν+1

(
fτ,τ
( z
τ

,
u

τ

)
− fτ,τ

(u
τ

,
z

τ

))
. (4.51)
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4.2.1. Universality of the symplectic chiral elliptic Ginibre kernel In this subsection we
will prove the universality of all k-point correlation functions (2.4) in the symplectic
chiral elliptic Ginibre ensemble, in the large-N limit at strong non-Hermiticity close
to the origin. The comments from Sect. 4.1.1 about scaling and N -dependence of the
weight apply here as well. To derive the macroscopic density and the droplet for our
weight (4.23), we exploit the Bessel asymptotic Kν(z) ∼ √

π/(2z)e−z to construct the
limiting potential. Then, from [43, Thm. 2.1] together with [48, Thm. 1] we obtain

RN ,1(z) ≈
⎧
⎨

⎩
1

4π(1−τ 2)|z| if
(
Re(z)−4τ

1+τ 2

)2
+
(
Im(z)
1−τ 2

)2 ≤ 4N ,

0 else.
(4.52)

For the behaviour at the origin let us first quote the known result at maximal non-
Hermiticity τ = 0 from [5]. In that case we can read off from Remark 4.9 the matrix
elements of the limiting kernel of KN (z, u) from (2.5), times the normalisation from the
area measure

lim
N→∞

1

π�(ν + 2)

√
w

(ν)
τ=0 (z) w

(ν)
τ=0 (u) σ 0,N (z, u)

=
( |zu|

zu

)ν/2 1

π

√
Kν (2 |z|) Kν (2 |u|)

×
∫ π/2

0
sinh ((z − u) cos(α)) Iν

(
2
√
zu sin(α)

)
dα.

(4.53)

We call this end result the limiting symplectic chiral Ginibre kernel at the origin, after
removing the first factor due to Remark 2.9.We can now prove the following universality
statement.

Corollary 4.11. The large-N limit of thematrix elements σN given in (4.27) of the kernel
KN (2.5)with respect to weight functionw

(ν)
τ (4.23) are equivalent to (4.53) in the sense

of Remark 2.9 for general values 0 < τ < 1 and thus universal.

Proof. As explained already in the proof of Corollary 4.6 we have to unfold. In this case
we have to rescale all arguments z → (1 − τ 2)z. Therefore, we take the limit

lim
N→∞

(1 − τ 2)3

π�(ν + 2)(1 − τ 2)2

√
w

(ν)
τ

(
(1 − τ 2)z

)
w

(ν)
τ

(
(1 − τ 2)u

)

× σ τ,N

(
(1 − τ 2)z, (1 − τ 2)u

)

= e−iτ Im(z+u)

( |zu|
zu

)ν/2 1

π

√
Kν (2 |z|) Kν (2 |u|)

×
∫ π/2

0
sinh ((z − u) cos(α)) Iν

(
2
√
zu sin(α)

)
dα.

(4.54)

The pre-factor (1 − τ 2)3 originates from the rescaling of the arguments and the factors
(z − z) in (2.4), times the normalisation from the area measure. Furthermore, we have
multiplied with the τ -dependent factor from the area measure. After inserting (4.28) on
the right hand side we arrive at (4.53), apart from the two pre-factors which lead to an
equivalent kernel, cf. Remark 2.9. Thus the universality of the kernel (4.53) holds. 	
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Once again we expect the universality found for the chiral elliptic Ginibre ensemble to
hold for a more general class of weight functions, that share the same singularity of the
weight (4.23) at the origin.

5. Christoffel Perturbation for Skew-Orthogonal Polynomials

In this section wewill relate the SOP qn with respect to the weight functionw(z) to those
q(1)
n skew-orthogonal with respect to the weight function w(1)(z) = |z − m|2w(z). For
OP on subsets of the real line such a relation between OP with respect to weights w(x)
and (x − m)w(x) (or in fact P(x)w(x) for a polynomial P(x)) is well known under
the name of Christoffel perturbation, and determinantal formulas exist, compare [49].
Such a transformation, including multiplication of the measure by a rational function,
is closely related to the Darboux transformation of integrable systems. In the complex
plane we consider quadratic factors |z − m|2, in order to preserve the non-negativity
of the resulting weight4. For planar OP (and also weighted Szegő polynomials) such a
Christoffel perturbation has already been studied for w(M)(z) =∏M

l=1 |z −ml |2w(z) in
[50], fromwhich we borrow the notation. There, determinantal formulas similar to those
in [49] have been derived for arbitrary M . For SOP, no such formulas were know. Only
the polynomial kernel σ (M)

n ofw(M) was given in terms of the Pfaffian determinant of the
polynomial kernel σ n and odd SOP qn of w, see [51]. We will use these expressions to
provide an explicit representation of the perturbed SOPs q(1)

n in the following theorem.

Theorem 5.1. Let (qn)n∈N be the family ofmonic SOPwith respect to theweight function
w(z), with norms rn and pre-kernel σ n(z, u). Then, the following expressions hold for the
monic SOP q(1)

n (z), their norms r (1)
n and kernel σ (1)

n (z, u) with respect to the perturbed
weight w(1)(z) = |z − m|2w(z), where we assume m ∈ R:

q(1)
2n (z) = rn σ n+1(m, z)

(m − z)q2n(m)
,

q(1)
2n+1(z) = q2n+2(m)q2n(z) − q2n(m)q2n+2(z)

(m − z)q2n(m)
+ dnq

(1)
2n (z),

r (1)
n = rn

q2n+2(m)

q2n(m)
,

(5.1)

where dn ∈ R is an arbitrary constant. Furthermore, it holds

σ
(1)
n+1(z, u) = σ n+1(z, u)q2n+2(m) − σ n+1(z,m)q2n+2(u) + σ n+1(u,m)q2n+2(z)

(m − z)(m − u)q2n+2(m)
.

(5.2)

Notice that for z = m, in eqs. (5.1) and (5.2) both numerator and denominator vanish,
leading to a finite expression after applying the rule of l’Hôpital. For comparison we
state here the corresponding result for OP from [50], where the same statement about
z = m applies.

4 In applications in physics, e.g. in field theory with chemical potential, linear factors (z − m) leading to
signed measures also play an important role, see [4].
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Remark 5.2. (Perturbed OP) Let us assume that μ has density function w on some
domain ⊆ C, m ∈ C. Then it follows from [50], that one can express the sequence
(p(1)

n )n of OP in L2(| ·−m|2w(·)) in terms of the sequence (pn)n of OP in L2(w(·)) as:

p(1)
n (z) = Kn+1(z,m)pn+1(m) − Kn+1(m,m)pn+1(z)

(m − z)Kn+1(m,m)
, (5.3)

where Kn+1(z, u) is the polynomial kernel constituted by the partial sum – up to n – of
the orthonormal polynomials pk/

√
hk . For the norms h(1)

n and polynomial kernel K (1)
n ,

we have

h(1)
n = hn+1

Kn+2(m,m)

Kn+1(m,m)
,

K (1)
n (z, u) = Kn+1(m,m)Kn+1(z, u) − Kn+1(z,m)Kn+1(m, u)

(m − z)(m − u)Kn+1(m,m)
.

(5.4)

The proof of this remark can be found as a special case in [50, Section 3], where both
p(M)
n (z) and K (M)

n (z, u) are given in terms of a ratio of two determinants of sizes M + 1
and M , respectively. Analogously we can express q(M)

n and σ
(M)
n as a ratio of Pfaffians

following [51], but for the proof of the above theorem we will only consider the simplest
case M = 1.

We note that the simple relationship between the odd SOP and odd OP found in
Theorem 3.1 breaks down for q(1)

2k+1(z) and p(1)
2k+1(z), even if the initial OP pn(z) were

to satisfy a three-term recurrence relation.

Corollary 5.3. Let μ be a measure that cannot be made rotationally symmetric under
an affine transformation. The sequence of OP (p(1)

n )n in L2(| ·−m|2 dμ) does not satisfy
a three-term recurrence relation.

For a particular case of p(1)
n (z) given in terms of Gegenbauer polynomials pn(z), this

was indeed shown in [30, Section 5].
Let us present the proof now for Theorem 5.1.

Proof. We start with eq. (5.2). In [51, Eq. (2.14)] the density R(1)
N ,1(z), defined as in (2.3),

was expressed in terms of a ratio of Pfaffian determinants for an arbitrary product of M
characteristic polynomials, which for M = 1 reads:

R(1)
N ,1(z) = (z − z) w(1)(z) σ

(1)
N (z, z)

= (z − z) w(1)(z)
σ n+1(z, z)q2n+2(m) − σ n+1(z,m)q2n+2(z) + σ n+1(z,m)q2n+2(z)

(m − z)(m − z)q2n+2(m)
.

(5.5)

In the first line we started with eq. (2.6) that holds for arbitrary weight functions. For
the second step we used the result in [51, Eq. (2.14)], to establish the claim in eq. (5.2).
From this equation we will recover the skew-norms r (1)

n and the even and odd SOP q(1)
n ,

by taking appropriate limits.
First, we determine the skew-norms. From the definition (2.17), together with the fact

that the SOP aremonic qn(z) ∼ zn , with∼meaning that lim|z|→∞ qn(z)z−n = 1,we can
read off the asymptotic for the pre-kernel with both arguments being large, |z| , |u| � 1:

σ n+1(z, u) ∼ z − u

rn
(zu)2n . (5.6)
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Similarly, we obtain the asymptotic for a single argument being large, |z| � 1:

σ n+1(z, u) ∼ 1

rn
z2n+1q2n(u). (5.7)

Next, we insert this into (5.2) to determine the leading order expansion of σ
(1)
n+1(z, u) for

both arguments being large:

σ
(1)
n+1(z, u) ∼ (z − u)r−1

n (zu)2nq2n+2(m) − r−1
n z2n+1q2n(m)u2n+2 + r−1

n u2n+1q2n(m)z2n+2

zu q2n+2(m)

∼ (z − u)(zu)2nq2n(m)

rnq2n+2(m)
= z − u

r (1)
n

(zu)2n . (5.8)

In the second step we have only kept the leading order, and in the last step we used that
(5.6) also holds for σ

(1)
n+1. Comparing the last two expressions, this leads to r (1)

n as in the
last equation of (5.1).

Likewise, we can use (5.7) together with (5.2) to read off the even SOP:

q(1)
2n (z) = lim|u|→∞

−r (1)
n σ

(1)
n+1(z, u)

u2n+1
= rn

(z − m)q2n(m)
σ n+1(z,m), (5.9)

wherewe have inserted r (1)
n aswell, to express the right hand side in terms of unperturbed

quantities only. This agrees with the first equation in (5.1), upon using the anti-symmetry
of the pre-kernel.

For the odd polynomials q(1)
2n+1(z)we have to go beyond the leading order and use that

they are only determined up to an arbitrary constant times the even SOP of one degree
less, q(1)

2n (z). For that purpose we label the next-to-leading order coefficient in the SOP
as follows

qn(u) = un + knu
n−1 +O(un−2). (5.10)

Next, we expand the definition of the pre-kernel (2.17) to next-to-leading order for one
argument being large, |u| � 1:

σ n+1(z, u) ∼ 1

rn

[
−q2n(z)u

2n+1 + (q2n+1(z) − k2n+1q2n(z))u
2n +O(u2n−1)

]
. (5.11)

It follows that the odd polynomials can be obtained as

q2n+1(z) − k2n+1q2n(z) = lim|u|→∞
rn σ n+1(z, u) + q2n(z)u2n+1

u2n
, (5.12)

and likewise for the perturbed pre-kernel and SOP. Inserting the known expressions for
the skew-norm, pre-kernel and even SOP of the perturbed weight on the right hand side,
we thus obtain

q(1)
2n+1(z) − k(1)

2n+1q
(1)
2n (z) = lim|u|→∞

r (1)
n σ

(1)
n+1(z, u) + q(1)

2n (z)u2n+1

u2n

= 1

(z − m)q2n(m)
[q2n(m)q2n+2(z) − q2n(z)q2n+2(m)]

− (k2n+2 + m)
rn σ n+1(z,m)

(z − m)q2n(m)
.
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Recognising that the last term in the last line is just the perturbed even SOP q(1)
2n (z), this

yields the expression for the odd perturbed SOP in the second equation of (5.1), with
the constant given by dn = k(1)

2n+1 − k2n+2 − m here. Because this constant is arbitrary,
we didn’t specify it in (5.1). 	


In principle, both even and odd perturbed SOP q(1)
n (z) could be expanded in the basis

of the perturbed OP p(1)
n (z). However, these are not as simple as in Theorem 5.1 and

include the full sum of even and odd polynomials down to lowest order. We refer to
Appendix B for details.
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A. Recollection of known planar OP and SOP

In this appendix we collect more planar OP and SOP. In part they are already known,
but for completeness (and because we use some of them in the main text) we state them
here in as much generality as possible. In particular, we can rederive the planar SOP
from Theorem 3.1. In contrast to the main text, in this appendix we will consider the flat
Lebesgue measure d2z = dx dy for z = x + iy.

Example A.1 (Product of Ginibre matrices). When taking the product of M complex
Ginibre matrices we obtain for the weight function and norms [52]

w(z) = |z|2c GM,0
0,M

(

0, . . . , 0

∣∣∣∣ |z|2
)

= GM,0
0,M

(

c, . . . , c

∣∣∣∣ |z|2
)

, (A.1)

hn = π � (n + 1 + c)M . (A.2)

Here, GM,0
0,M is the Meijer G-function, see [39, Chapter 16.17] for the definition, and we

have slightly extended [52] by the insertion of a point charge c > −1 at the origin. From

http://creativecommons.org/licenses/by/4.0/
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Corollary 3.3 we have for the SOP and their skew-norms (also stated in [23])

q2k(z) =
k∑

j=0

z2 j
k−1∏

l= j

(2l + 3 + c)M

=
(
2k�

(
k + 1 +

c

2

))M k∑

j=0

z2 j
(
2 j�

(
j + 1 + c

2

))M ,

q2k+1(z) = z2k+1,

rk = 2π� (2k + c + 2)M .

(A.3)

Two particular cases are worth mentioning. For M = 1, that is a single Ginibre
matrix, it holds that G1 0

0 1

(−
c

∣∣ |z|2) = |z|2ce−|z|2 and we are back to the weight of the
induced Ginibre ensemble, compare Example 3.6 at λ = 1. For M = 2 we obtain
G2 0

0 2

(−−
c,c

∣∣ |z|2) = 2|z|2cK0(2|z|), given in terms of the modified Bessel-function of the
second kind Kν . At c = 0 this corresponds to the weight of the chiral symplectic Ginibre
ensemble at maximal non-Hermiticity, compare [5] where the corresponding SOP were
constructed.

Example A.2 (Elliptic Ginibre ensemble). The weight function of the elliptic Ginibre
ensemble with parameters A > B > 0 is given by the complex normal distribution

w(z) = e−A|z|2+B Re(z2) = e−(A−B)Re(z)2−(A+B) Im(z)2 . (A.4)

The monic OP pn(z), the recurrence coefficients cn and the squared norms hn are given
by

pn(z) = 1

(2C)n
Hn (Cz) , C =

√
A2 − B2

2B
,

cn = nB

A2 − B2 ,

hn = πn!√
A2 − B2

(
A

A2 − B2

)n
.

(A.5)

From Theorem 3.1 we get for the SOP

q2k(z) = k!
(

2A

A2 − B2

)k k∑

j=0

(
B

2A

) j 1

2 j j !H2 j (Cz) ,

q2k+1(z) = 1

(2C)2k+1
H2k+1 (Cz) .

(A.6)

For the skew-norms we obtain

rk = 2π

(A + B)
√
A2 − B2

(2k + 1)!
(

A

A2 − B2

)2k
. (A.7)
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These polynomials reduce to the OP from [37] and to the SOP from [21] when choosing
A = 1/(1 − τ 2) and B = τ/(1 − τ 2) for 0 ≤ τ < 1. The orthogonality relation (4.3)
was proven first in [38] and independently in [15]. For self-consistency we present a
proof for the well-known form of Hermite polynomials depending on two parameters
(A.5) following [10].

Proof. Inserting the following integral representation [39, Table 18.10.1]

Hn(z) = n!
∮

e2zt−t2 t−n−1 dt

2π i
, (A.8)

into the orthogonality relation, where the contour integral is around the origin in positive
direction, we obtain

∫

C

Hn(Cz)Hm(Cz)w(z) d2z

=
∫ ∞

−∞

∫ ∞

−∞
e−(A−B)x2−(A+B)y2

∮ ∮
n!m!

(2π i)2
e−t2−s2+2C(x+iy)t+2C(x−iy)s

tn+1sm+1 dt ds dx dy

= π√
A2 − B2

∮ ∮
n!m!

(2π i)2
e
2A
B st

tn+1sm+1 dt ds

= πm!√
A2 − B2

(
2A

B

)n ∮ 1

sm−n+1

ds

2π i
. (A.9)

Because the integrals are absolutely convergent, the order of integration can be inter-
changed, and using (C.1) we have performed the two real integrations. Cauchy’s integral
theorem for derivatives leads to a single integral that gives δn,m . Making the Hermite
polynomials Hn(x) = 2nx2 +O(zn−1) monic, and using the known recurrence relation
for Hermite we arrive at (A.5). 	

Example A.3 (Chiral ellipticGinibre ensemble). Theweight functionof the chiral elliptic
Ginibre ensemble with parameters A > B > 0 and ν > −1 is

w(z) = |z|ν Kν (A |z|) eB Re(z). (A.10)

The monic OP and their normalisation are given by

pn(z) = (−1)nn!
Cn

L(ν)
n (Cz) , C = A2 − B2

2B
,

cn = n(n + ν)

(
2B

A2 − B2

)2
,

hn = π

A
n! �(n + ν + 1)

(
2A

A2 − B2

)2n+ν+1

.

(A.11)
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Here L(ν)
n denotes the n-th generalised Laguerre polynomial. From Theorem 3.1 we

obtain for the SOP and their skew-norms:

q2k(z) = 22kk!�
(
k +

ν

2
+ 1
)( 2A

A2 − B2

)2k k∑

j=0

(
B

A

)2 j
(2 j)!

22 j j !� ( j + ν
2 + 1

) L(ν)
2 j (Cz) ,

q2k+1(z) = − (2k + 1)!
C2k+1 L(ν)

2k+1 (Cz) ,

rk = 4π

A2 (2k + 1)! �(2k + ν + 2)

(
2A

A2 − B2

)4k+ν+2

.

(A.12)

We use this ensemble in Sect. 4.2 with the convention A = 2/(1 − τ 2) and B =
2τ/(1− τ 2) for τ ∈ [0, 1). Note that the OP for this weight appeared in [4] and the SOP
were derived in [5] (in terms of squared eigenvalues) with A = N (1 + μ2)/(2μ2) and
B = N (1 − μ2)/(2μ2) for μ ∈ (0, 1). For the orthogonality proof we refer to [5,46].

B. Fourier coefficients of the perturbed SOP

In this appendix we compute the expansion of the perturbed SOP q(1)
n from Theorem 5.1,

in the basis of the perturbed OP p(1)
n from Remark 5.2, which are skew-orthogonal re-

spectively orthogonal with respect to the perturbed weight w(1)(z) = |z − m|2w(z).
Furthermore, we assume that the unperturbed OP pn obey a three-term recurrence rela-
tion, and thus Theorem 3.1 applies to determine the qn . As a result we will see that both
even and odd polynomials q(1)

n have Fourier coefficients in even and odd degree of p(1)
n ,

down to the lowest degree.
We begin with the polynomials of odd degree, defining the coefficients β2k+1, j as

q(1)
2k+1(z) =

2k+1∑

l=0

β2k+1,l p
(1)
l (z). (B.1)

It follows from the fact that both perturbed SOP and OP are monic, that β2k+1,2k+1 = 1.
Following the definition we have for the remaining coefficients, with l < 2k + 1, that

β2k+1,l = 1

h(1)
l

∫

D
q(1)
2k+1(z)p

(1)
l (z)|z − m|2w(z) d2z

= 1

h(1)
l

∫

D

q2k+2(m)
∑k

j=0 μk, j p2 j (z) − q2k(m)
∑k+1

j=0 μk+1, j p2 j (z)

q2k(m)

× Kl+1(z,m)pl+1(m) − Kl+1(m,m)pl+1(z)

Kl+1(m,m)
w(z) d2z

= 1

hl+1Kl+2(m,m)q2k(m)

×
⎡

⎣
�l/2�∑

j=0

(
q2k+2(m)μk, j − q2k(m)μk+1, j

)
p2 j (m)pl+1(m)

−δl,2L+1(q2k+2(m)μk,L+1 − q2k(m)μk+1,L+1)K2L+2(m,m)h2L+2

⎤

⎦ . (B.2)
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In the first step we have inserted the perturbed SOP and OP from eqs. (5.1) and (5.3),
leading to a cancellation of |z −m|2. Furthermore, for simplicity we have set dk = 0 in
the former (otherwise this would contribute to the coefficients α2k, j from (B.4) below).
Next, we have used the orthogonality of the unperturbed OP, as well as the projection
property of the kernel,

∫

D
p j (z)Kl+1(z,m)w(z) d2z = p j (m), for j ≤ l, (B.3)

and zero otherwise. In the final result (B.2) the last term is non-vanishing only when
l = 2L + 1 is odd, whereas the previous term is also present for l = 2L even (the sum
runs to �l/2� = L in both cases). Consequently, all even and odd Fourier coefficients
β2k+1,l are non-vanishing in general, down to the lowest degree l = 0, in contrast to
Theorem 3.1.
Let us move to the Fourier coefficients of the even polynomials, defined as

q(1)
2k (z) =

2k∑

l=0

α2k,l p
(1)
l (z) . (B.4)

As for the odd polynomials, we have from the monic property of the two sets of poly-
nomials that α2k,2k = 1. For the remaining coefficients with l < 2k we obtain

α2k,l = 1

h(1)
l

∫

D
q(1)
2k (z)p(1)

l (z)|z − m|2w(z) d2z

= rk

h(1)
l

∫

D

∑k
i=0

1
ri

(
q2i+1(m)

∑i
j=0 μi, j p2 j (z) − q2i (m)p2i+1(z)

)

q2k(m)

× Kl+1(z,m)pl+1(m) − Kl+1(m,m)pl+1(z)

Kl+1(m,m)
w(z) d2z

= rk
hl+1Kl+2(m,m)q2k(m)

∫

D

⎛

⎝
k∑

j=0

k∑

i= j

1

ri
q2i+1(m)μi, j p2 j (z)

−
k∑

i=0

1

ri
q2i (m)p2i+1(z)

)

× (Kl+1(z,m)pl+1(m) − Kl+1(m,m)pl+1(z)) w(z) d2z, (B.5)

where we have followed the same procedure as before, and swapped the summation in
the double sum in the last step, to facilitate the integration. Let us distinguish even and
odd indices l now. For even l = 2L , with L < k we obtain

α2k,2L = rk
h2L+1K2L+2(m,m)q2k(m)

⎡

⎣
L∑

j=0

k∑

i= j

1

ri
q2i+1(m)μi, j p2 j (m)p2L+1(m)

−
L−1∑

i=0

1

ri
q2i (m)p2i+1(m)p2L+1(m) +

1

rL
q2L(m)K2L+1(m,m)h2L+1

]
.

(B.6)
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For l = 2L + 1 odd with L < k it follows that

α2k,2L+1 = rk
h2L+2K2L+3(m,m)q2k(m)

⎡

⎣
L∑

j=0

k∑

i= j

1

ri
q2i+1(m)μi, j p2 j (m)p2L+2(m)

−
L∑

i=0

1

ri
q2i (m)p2i+1(m)p2L+2(m)

−
k∑

i=L+1

1

ri
q2i+1(m)μi,L+1K2L+2(m,m)h2L+2

]
. (B.7)

Once again all even and odd coefficients α2k,l are non-vanishing, down to the lowest
degree l = 0.

C. Some Useful Integrals

For completeness we collect a few simpleGaussian integrals that will be useful in several
places throughout the main part.

1. For all α > 0 and β ∈ C it holds:

∫ ∞

−∞
e−αt2+βt dt =

√
π

α
exp

(
β2

4α

)
. (C.1)

2. For all α > 0, β, γ, δ ∈ C with Re(α + γ 2) > 0 it holds, compare [53, 8.259.1] :

∫ ∞

−∞
e−αt2+βt erf (γ t + δ) dt =

√
π

α
exp

(
β2

4α

)
erf

(
βγ + 2αδ

2
√

α(α + γ 2)

)
. (C.2)

3. Applying (C.2) twice, it follows that for all A, B > 0, C, D, ζ, η ∈ C it holds:

∫ ∞

−∞

∫ ∞

−∞
e−At2−Bs2+2i(tζ+sη) erf (Ct + Ds) ds dt

= πe− ζ2

A − η2

B√
AB

erf

⎛

⎝i
BCζ + ADη√

AB
(
AB + AD2 + BC2

)

⎞

⎠ . (C.3)

In Sect. 4.2 we encounter the following integrals involving Bessel-J and Bessel-I func-
tions.
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1. For Re(ν) > −1, u ∈ C it holds:
∫ ∞

0
e−q2�

(
ν + 1

2
, q2
)
Jν
(
2q

√
2u
)
dq

=
√

π

2
�

(
ν + 1

2

)
e−u Iν/2(u)

− 1

2

(u
2

)ν/2
∫ 0

−1
((1 − t)(1 + t))ν/2−1/2 e−u(1−t) dt,

∫ ∞

0
e−q2�

(
ν + 1

2
, q2
)
Iν
(
2q

√
2u
)
dq

=
√

π

2
�

(
ν + 1

2

)
eu Iν/2(u)

− 1

2

(u
2

)ν/2
∫ 0

−1
((1 − t)(1 + t))ν/2−1/2 eu(1−t) dt.

(C.4)

2. For Re(ν) > −1, Re(c) > 0 it holds (compare [39, 10.22.67] and [39, 10.43.28]):
∫ ∞

0
te−ct2 Jν(at)Jν(bt) dt = 1

2c
exp

(−a2 − b2

4c

)
Iν

(
ab

2c

)
,

∫ ∞

0
te−ct2 Jν(at)Iν(bt) dt = 1

2c
exp

(−a2 + b2

4c

)
Jν

(
ab

2c

)
,

∫ ∞

0
te−ct2 Iν(at)Iν(bt) dt = 1

2c
exp

(
a2 + b2

4c

)
Iν

(
ab

2c

)
.

(C.5)

All three formulas are equivalent because Iν(iz) = iν Jν(z).
3. For Re(ν) > −1, u, v ∈ C it holds:

eu+v

∫ ∞

0

∫ q

0
e−q2−p2 Jν

(
2p

√
2u
)
Jν
(
2q

√
2v
)
dp dq

= 1

4

∫ π/2

0
e(u−v) cos(α) Iν

(
2
√
uv sin(α)

)
dα,

eu−v

∫ ∞

0

∫ q

0
e−q2−p2 Jν

(
2p

√
2u
)
Iν
(
2q

√
2v
)
dp dq

= 1

4

∫ π/2

0
e(u+v) cos(α) Jν

(
2
√
uv sin(α)

)
dα.

(C.6)

Proof. For (C.4) we write the incomplete Gamma function as

�

(
ν + 1

2
, q2
)

= 2

(∫ ∞

0
tνe−t2 dt −

∫ q

0
tνe−t2 dt

)

= �

(
ν + 1

2

)
− 2qν+1

∫ 1

0
sνe−q2s2 ds. (C.7)

Now we can compute the integral over q, with [39, 10.22.52] and [39, 10.22.51] for
Bessel-J , and [39, 10.43.24] and [39, 10.43.23] for Bessel-I . The remaining s-integral
can be simplified with the substitution s = √

(1 + t)/(1 − t).
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For (C.6) we first make the substitution p = qr , r ∈ [0, 1], then we can switch the
integrals and evaluate the q-integral with (C.5). For the first integral we arrive at

1

2

∫ 1

0

1

1 + r2
exp

(
1 − r2

1 + r2
(u − v)

)
Iν

(
4r

1 + r2
√
uv

)
dr, (C.8)

the second integral is analogous with (u + v) in the exponential and a Bessel-J function
instead of Bessel-I . The substitution r = tan(α/2), α ∈ [0, π/2], gets rid of the factor
1/(1 + r2). 	
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