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Abstract: The main result is that given a self-similarly expanding configuration of 3
point vortices that start sufficiently far out, we can instead take compactly supported
vorticity functions, and the resulting solution to 2D incompressible Euler will evolve
like a nearby point vortex configuration for all time, with the size of the patches growing
at most as t1/4+ε and the distance between them growing as

√
t .

1. Introduction

We study the 2D Euler equation for u : R2 → R
2

∂t u + u · ∇u + ∇ p = 0,∇ · u = 0

The equation can be rewritten in terms of the vorticity

ω = ∂1u2 − ∂2u1

as follows:

∂tω(x) = u(x) · ∇ω(x)

u = K ∗ ω

where, by rescaling time to avoid factors of 2π , we can take

K (x) = x⊥/|x |2.
Thus the vorticity is transported by u, which is generated as a singular integral of the
vorticity. In this paper, we construct solutions that consist of three vortex patches (not
necessarily smooth), each growing slowly in time, with the distance between the patches
growing as

√
t . Wewill obtain that the trajectories of the centers of mass of these patches

behave approximately like point vortices, so we will first discuss what is known about
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point vortex systems. A point vortex system consists of n point vortices, with masses �i
and positions ζi , whose motion is described by the ODE system

d

dt
ζi =

∑

j �=i

� j
(ζi − ζ j )

⊥

|ζi − ζ j |2 .

In the present paper, we will always assume �i �= 0. Here, as with the vorticity formu-
lation of 2D Euler, we rescaled time to avoid factors of 2π . This ODE is meant to model
a fluid in which vorticity is highly concentrated around a few points. Some information
about the behavior of solutions to this ODE can be found in [1]. While there are specific
solutions in which vortices collide, for generic initial data, this does not happen [7,24].
Rigorous justification of the point vortex model is provided in [23]. They show that
if one replaces point vortices by signed L∞ localized vorticity, the solution to Euler
will approximate the solution to the ODE over a fixed time interval. The assumptions
on the L∞ bound of the solution are then significantly weakened in independent and
simultaneous works by Marchioro in [22] and by Serfati in [27], with [27] giving better
approximation of point vortices. One can view these as being almost L1 results. Both
the assumptions on the L∞ bound on vorticity and the conclusion are further improved
by Serfati in [28].

There are several observations about the long-term behavior of solutions to point
vortex systems. First, if all masses are positive, then the solution will remain bounded.
Second, it is easy to obtain solutions of two or more point vortices where a pair of
point vortices with masses � and −� go off to infinity with their velocity approaching
some nonzero limit. Third, there are point vortex systems that expand and spiral in a
self-similar way so that the distance between the point vortices grows as

√
t , specifically

vortex i has trajectory

√
t Rκ log tηi

for some κ and η1, . . . , yn . An analysis of such self-similarly evolving 3-vortex systems
can be found in [1]. Some self-similarly evolving 4 and 5 vortex systems are constructed
and analyzed in [25]. Some numerics for self-similarly evolving systems with more
vortices may be found in [18].

The main theorem we prove can be stated roughly as follows:

Theorem 1 (Rough version, see Theorem 4 for a more precise statement). Given a self-
similarly expanding solution

√
t Rκ log tηi ,

and a small parameter ε, we can replace each of the point vortices with any vortex patch
of constant sign and the same total vorticity, subject to certain bounds. Then at later
times, the centers of mass of each of the vortex patches will be at

γ (t)Rβ(t)ξi (t),

where γ = √
t(1 + O(ε)) and |ξi (t) − ηi | < ε, and each of the three patches will have

diameter O(t1/4+ε).
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Fig. 1. An example of a self-similarly expanding 3-vortex system and a corresponding solution involving
three vortex patches

The centers of mass of the patches we construct will behave approximately like a
self-similarly expanding 3-vortex system, see Figure 1 (for the precise statement, see
Theorem 4 below). This is the first construction where the support of the vorticity is
known to go off to infinity that does not rely on symmetry.

Before understanding the behavior of the three vortex patches, we first need to under-
stand a single vortex patch, so we will now discuss the previously known results regard-
ing vortex patches. Yudovich [29] showed global well-posedness for solutions with
ω ∈ L1∩ L∞. Given global well-posedness, it is natural to study the long-term behavior
of vorticity. It was shown by Kirchhoff that elliptical patches will rotate uniformly [17].
Other rotating solutions withm-fold symmetry bifurcating from the disk, calledV-states,
were found numerically by Deem–Zabusky [6] and proved to exist by Burbea [3]. For
other results about rotating solutions, see [9] and results they cite. Aside from such
special solutions, it is known that if the vorticity is the indicator function of a set with
Ck,γ boundary, then this regularity of the boundary will continue for all time, as shown
by Chemin [4], Bertozzi–Constantin [2], and Serfati [26]. For other results concerning
regularity and long-term behavior of vortex patches, see [8] and results they cite.

However, very little is known if no additional regularity is assumed. In particular,
one can ask what happens if vorticity is initially compactly supported and L∞. We
will go over some results bounding the expansion of the support, known as vorticity
confinement results. It is easy to see that the radius of the support can grow at most
linearly, since u is bounded. If vorticity is of a definite sign, then the radius of the support
grows more slowly. In fact, it is not known whether it ever goes to infinity. Marchioro
[20] showed an upper bound of t1/3 by using conservation of the second moment of
vorticity. This was independently improved to (t log t)1/4 by Iftimie–Sideris–Gamblin
[16] and to t1/4 log ◦ · · · ◦ log t by Serfati [27], with the improvement coming largely
from using conservation of the center of mass of the vorticity. Compare this with the
present work, in which we get the slightly worse bound of t1/4+ε for each of the vortex
patches. There are also several other vorticity confinement results, including getting
similar confinement bounds, but depending on the Lq norm rather than the L∞ norm
of vorticity [19]. Compare this to the result in [27], which requires an L∞ bound, but
the constant in the confinement bound has very weak dependence on the L∞ norm (it is
linear in log ◦ · · ·◦log ||ω||L∞), dependingmostly on the L1 norm. There are also various
bounds on confinement of positive compactly supported vorticity in other domains. In
particular, on the upper half-plane, the x coordinate of the center of mass of vorticity is
at least ct and the y coordinate of points in the support is bounded by C(t log t)1/3 [10],
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while the x coordinate of points in the support is at least −C(t log t)1/2 [12]. The latter
work also analyzes what possible weak limits a positive vorticity solution can have on a
half-plane (under appropriate rescaling). In exterior domains, the radius of the support
is bounded by Ct1/2, with further improvements in the exponent when the domain is the
exterior of a disk [14,21]. OnT×R, the y coordinate of points in the support is bounded
by Ct1/3 log2 t [5]. A survey of various related results can be found in [11]. However,
things are very different if you allowmixed-sign vorticity. [16] contains a construction of
a compactly supported positive vorticity vortex patch in the first quadrant of the plane,
reflected into the other quadrants with changing sign, whose support grows linearly.
However, the proof relies heavily on the symmetry, so it is very unstable and can only
give this result for a system with total vorticity 0.

Returning to the plane, but nowwithout a definite sign, there is a vorticity confinement
result by Iftimie–Lopes Filho–Nussenzveig Lopes that addresses the question of weak
limits under appropriate rescaling [13]. This result states that if we define

ω̃α(x, t) = t2αω(tαx, t)

for α > 1/2, then

ω̃α −−−⇀
t→∞ mδ0

in theweak-* sense formeasureswherem = ∫
ωdx and δ0 is theDirac delta. The authors

interpret this as showing confinement of net vorticity to a radius of
√
t , but this result

still allows for strange examples like having both positive and negative vortex patches
moving away from the origin in different directions and being at distance t2/3 log t . Our
result shows that we cannot take α = 1/2 in the statement of [13] and thus, in a sense,
net vorticity is moving off to infinity. In fact, the solution given here should, modulo a
rotation by a logarithmically growing angle, weakly converge to a sum of three delta
masses under the rescaling with α = 1/2.

The last previous result we discuss is a paper by Iftimie–Marchioro [15], which
looked at a toy model of the construction given here and showed confinement of the
vortex patches. The toy model consists of taking a self-similarly expanding point vortex
system, replacing only one of the point vortices with a patch, assuming that the trajectory
of the other point vortices is fixed, and seeing how the patch evolves. The purpose of
looking at the toy model was to sidestep the issue of stability for self-similar point vortex
systems and only worry about confinement of vorticity. For some configurations, they
bound the radius of the support of the patch as growing no faster than t (1+α)/3 for α some
constant that depends on the configuration, is always positive, and is less than 1/2. This
means that the vortex patch size grows slower than the distance between patches.

The improvements of the present paper over [15] are replacing each of the three
vortices with vortex patches, allowing a generic self-similarly expanding configuration
of 3vortices, taking an actual solutionof 2DEuler, andobtaining that the radius of support
grows at most as t1/4+ε for any given ε > 0 instead of t (1+α)/3. The improvement in the
exponent from 1/3 to 1/4 comes from actually analyzing the stability and keeping track
of the center of mass, in the same way that using conservation of center of mass gives the
same improvement for a single vortex patch. To get rid of α, we obtain a better bound on
moment growth by noticing that one of the expressions that shows up in the expression
for moment derivatives is the approximate derivative of another expression and thus
obtaining some cancellation in the most troublesome term (one can also think of this as
a renormalization of the moments). Our result is limited to 3 vortex systems due to the
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stability analysis, and if one found stably growing systems of 4 or more vortices, the
confinement result would most likely carry over with little modification. However, one
needs sufficiently good stability results; orbital linear stability, which may not be hard
to obtain for some systems, is not enough. Our assumptions on the patches, same as in
[15], will be that the vorticity ω is compactly supported and Lq for q > 2. Technically,
we assume that ω ∈ L∞ to make use of the well-posedness theory, but all constants in
the proof will only depend on the Lq bound. We need this bound in many places in the
proofs in order to bound integrals of 1

|x−a|ω(x) using Holder’s inequality.

2. Preliminary Lemmas

In order to state the main result, we first need to analyze some properties of expanding
systems of three point vortices. Take any three vortex system. It has four conserved
quantities, each of which is easy to check.

1. X = ∑
i �iζi (this has two components)

2. I = ∑
i �i |ζi |2

3. E = ∑
i< j �i� j log |ζi − ζ j |.

Now suppose we take a self-similarly expanding solution with three point vortices and
nonzero totalmass.Bymoving theorigin,we can assume that X = 0.Then self-similarity
ensures that I = Ct for some constant C . Then conservation of I and E ensure that

�1�2 + �1�3 + �2�3 = 0 (1)

I = 0 (2)

We move the rest of the analysis to the following lemma, proved in the appendix:

Lemma 2. Suppose we have a point vortex system (ηi ,�i ) satisfying X = 0, (1), and
(2). such that

(
√
t Rκ log tηi )

is a point vortex solution. Then

1. The point vortices are not collinear and not the vertices of an equilateral triangle.
2.

∑
�i �= 0.

3. Take the subspace V of vortex locations that satisfy X = 0. There exists some
neighborhood U ⊂ V of (η1, η2, η3) and some two-dimensional surface S through
(ηi ) so that I and E are coordinates on S∩U. Furthermore, S and U may be chosen
so that for ζ ∈ U, we have unique γ ∈ R

+ and β ∈ (−π, π) satisfying ξ(ζ ) =
1
γ
R−βζ ∈ S. Furthermore, S and U may be chosen so that β, γ, I (ξ(ζ )), E(ξ(ζ ))

give coordinates on U.

Note that for the second part of the lemma statement, it is important that I is evaluated
at the point ξ(ζ ) ∈ S, not at the original point ζ .

The conditions in the lemma statement are generic for self-similarly expanding 3-
vortex configurations; one system satisfying the hypotheses of the lemma is the following
example, taken (up to sign reversal) from [24]. Let �1 = −2, �2 = −2, �3 = 1 and
η1 = (−1, 0), η2 = (1, 0), η3 = (1,

√
2). Then translate to achieve X = 0. This

example is shown in Figure 1.
We also have the following result about Taylor expanding the kernel K , which we

use multiple times.
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Lemma 3. If z1 ∈ R
2\{0} and |z2 − z1| < |z1|/2, then

K (z2) = K (z1) + Az1(z2 − z1) + O

( |z2 − z1|2
|z1|3

)

where

Az1(z2 − z1) = −(z2 − z1) · z1 z⊥1
|z1|4 − (z2 − z1) · z⊥1

z1
|z1|4

is linear in z2 − z1.

Proof. If z1 = (1, 0), then we apply Taylor’s formula. A direct computation gives us
the linear term in the lemma statement and Taylor’s theorem gives us an error of

|z2 − z1|2
2

|∇2K (z)|
for some z on the line segment between z1 and z2. Since z is constrained to be on a
fixed disk away from the origin and ∇2K is bounded on that disk, we obtain the lemma
statement for z1 = (1, 0).

For any other z1 �= 0, we have that z1 = |z1|Rφ(1, 0) for some angle φ and z2 =
|z1|Rφ z̃2 for some z̃2. Then we apply the lemma statement to z̃2 and z̃1 = (1, 0) and
take advantage of the scaling of K to obtain

K (z2) = |z1|−1RφK (z̃2) = |z1|−1RφK (z̃1) + |z1|−1Rφ Az̃1 (z̃2 − z̃1) + |z1|−1RφO

( |z̃2 − z̃1|2
|z̃1|3

)

= K (z1) + Az1 (z2 − z1) + O

( |z2 − z1|2
|z1|3

)
.

�

3. Result Statement and Stability of Centers of Mass

We can now state the main result precisely.

Theorem 4. Take an arrangement of three points (ηi ,�i ) satisfying the conditions of
Lemma 2. Let ε > 0, be arbitrary and small, M > 0, ρ > 0 be fixed and sufficiently
large. Then there exists some T > 0 so that for t0 > T , if we take the solution and
replace each point vortex {(√t0Rκ log t0ηi ,�i )} with an L∞ vorticity function ωi (t0, ·)
such that:

1. The center of mass of the whole system is still 0.
2. suppωi (t0, ·) ⊆ B(

√
t0Rκ log t0ηi , ρ).

3. ||ωi (t0, ·)||Lq ≤ M.
4. ωi (t0, ·) has definite sign.
5.

∫
ωi (t0, ·) = �i .

then at each later time t, there exists some {(ξi (t))} ∈ S with |ξi − ηi | < ε, some angle
β(t), and some real factor γ (t) = (1 + O(ε))

√
t such that, letting ζi = γ Rβξi , the

solution at time t is
∑

ωi with:

1. ζi = 1
�i

∫
ωi (x)xdx.
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2. suppωi ⊆ B(ζi , εt1/4+ε).
3.

∫
ωi = �i .

4. ωi has definite sign.

There are a couple of comments about the statement. First, note that it is possible to
have limt→∞ ξi (t) �= ηi . Since the L∞ vorticity follows a rescaled copy of ξi , this is
saying that a small amount of drift in the configuration is possible. Second, because of
how we defined ζi and S, we have that β and γ are uniquely defined by the arrangement.
Finally, condition 1 in the theorem statement is simply for convenience–since

∑
�i �= 0,

we could restate the theorem without this condition, but adding a translation to move
the center of mass to 0.

Proof. k > 2 will denote an even integer and δ will denote some sufficiently small
constant that can depend on k and ε and R will denote some large constant that depends
on δ. At the end of the proof, we will choose k, then δ, then R depending on the initial
configuration of point vortices, aswell as q, ε, ρ, M .Wewill then choose T large enough
depending on q, ε, ρ, M, k, δ. All constants C in the statement and proof (including
implicit constants hidden by O notation) can depend on the initial configuration of point
vortices, aswell as q, ε, ρ, M, k, but not on R or δ. The lettersC may be used for different
constants on different lines. We will use Ô if we’re allowing the implicit constant to
depend on the initial configuration of point vortices and on nothing else. At any time t ,
let

ζi (t) = 1

�i

∫
xωi (x)dx

Ik,i (t) =
∫

|x − ζi |kωi (x)dx .

We will have the following bootstrap assumptions:

1. ζi = γ Rβξi with |ξi −ηi | < ε2 for some angle β(t), and some factor γ (t) satisfying
| γ√

t
− 1| < ε

2. I2,i < tε/2

3. Ik,i < tk(1+ε)/4

4. ω1, ω2, ω3 are three Lq compactly supported functions of definite sign, ‖ωi‖Lq ≤ M
5. suppωi ⊆ B(ζi , εt1/4+ε), that is |p − ζi | < εt1/4+ε for any p ∈ suppωi .

These assumptions hold at initial time t0 as long as T is big enough. If they always hold,
we are done, so we can assume that the first time when one of them fails is T∗ < ∞.

First, we want to understand the ODE satisfied by the triple (ζ1, ζ2, ζ3) of centers of
mass of the patches in order to verify bootstrap assumption 1. First note that from the
conservation of the center of mass of the vorticity, we get that

∑
�iζi = 0, so the center

of mass of ξi stays at 0. We will use the notation Iζ = ∑
�i |ζi |2 and Iξ = ∑

�i |ξi |2.
We similarly define Iη, Eζ , Eξ , Eη. For this calculation, we note that from the bootstrap
assumptions, for x ∈ suppωi , y ∈ suppω j with j �= i , we use Lemma 3 (essentially,
Taylor expand) to obtain

(x − y)⊥

|x − y|2 = (ζi − ζ j )
⊥

|ζi − ζ j |2 +A1(x − ζi ) +A2(y − ζ j ) + O

( |x − ζi |2 + |y − ζ j |2
|ζi − ζ j |3

)



714 S. Zbarsky

where A1,A2 are some linear functions dependent on t . Then, in order to track the
centers of mass, we use

ζi = 1

�i

∫
xωi (x)dx .

Since the vorticity of patch i is advected by the velocity arising from patch i and the
velocity arising from other patches, we obtain

d

dt
ζi = 1

�i

⎡

⎣
∫∫

ωi (x)ωi (y)
(x − y)⊥

|x − y|2 dxdy +
∑

j �=i

∫∫
ωi (x)ω j (y)

(x − y)⊥

|x − y|2 dxdy

⎤

⎦

= 1

�i

[
1

2

∫∫
ωi (x)ωi (y)

(
(x − y)⊥

|x − y|2 +
(y − x)⊥

|y − x |2
)
dxdy

+
∑

j �=i

�i� j
(ζi − ζ j )

⊥

|ζi − ζ j |2 + O

⎛

⎝
3∑

j=1

I2, j
t3/2

⎞

⎠
]

=
∑

j �=i

� j
(ζi − ζ j )

⊥

|ζi − ζ j |2 + O(tε/2−3/2). (3)

This means that the system (ζi ) evolves as point vortices, up to some error. We now
look at the nearly-conserved quantities Iζ , Eζ . By bootstrap assumption 1, we have that
|ζi | = O(

√
t). We use (3) and to calculate

∣∣∣∣
d Iζ
dt

∣∣∣∣ =
∣∣∣∣∣
d

dt

∑

i

�i |ζi |2
∣∣∣∣∣ =

∣∣∣∣∣∣

∑

i

2�iζi ·
⎛

⎝
∑

j �=i

� j
(ζi − ζ j )

⊥

|ζi − ζ j |2 + O(tε/2−3/2)

⎞

⎠

∣∣∣∣∣∣

=
∣∣∣∣∣∣

∑

1≤i≤3

∑

j �=i

2�i� jζi ·
(

(ζi − ζ j )
⊥

|ζi − ζ j |2
)∣∣∣∣∣∣

+ O(tε/2−1)

=
∣∣∣∣∣∣

∑

1≤i< j≤3

2�i� j

(
(ζi − ζ j ) · (ζi − ζ j )

⊥

|ζi − ζ j |2
)∣∣∣∣∣∣

+ O(tε/2−1)

= O(tε/2−1)

where the cancellation is the same cancellation that gave us the conserved quantity I in
the first place. Furthermore, at time t0, we have Iζ = O(t1/20 ). Integrating in t , we get

Iζ = O(t1/20 + tε/2). This then gives us that

Iξ = O(Iζ /t) = O

(
t1/20

t
+ tε/2−1

)
= O(t−1/2) = O(T−1/2). (4)

Finally, from (1), we have that Eζ = Eξ , so

∣∣∣∣
dEξ

dt

∣∣∣∣ =
∣∣∣∣
dEζ

dt

∣∣∣∣ =
∣∣∣∣∣∣
d

dt

∑

i< j

�i� j log |ζi − ζ j |
∣∣∣∣∣∣
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=
∑

i< j

�i� j
ζi − ζ j

|ζi − ζ j |2 ·
∑

� �=i, j

��

(
(ζi − ζ�)

⊥

|ζi − ζ�|2 − (ζ j − ζ�)
⊥

|ζ j − ζ�|2 + O(tε/2−3/2)

)

= �1�2�3

(
(ζ1 − ζ2) · (ζ1 − ζ3)

⊥ + (ζ1 − ζ3) · (ζ1 − ζ2)
⊥

|ζ1 − ζ2|2|ζ1 − ζ3|2

+
(ζ2 − ζ1) · (ζ2 − ζ3)

⊥ + (ζ2 − ζ3) · (ζ2 − ζ1)
⊥

|ζ2 − ζ1|2|ζ2 − ζ3|2

+
(ζ3 − ζ1) · (ζ3 − ζ2)

⊥ + (ζ3 − ζ2) · (ζ3 − ζ1)
⊥

|ζ1 − ζ2|2|ζ1 − ζ3|2
)
+ O(tε/2−2)

= O(tε/2−2)

where once again the non-error terms canceled precisely. Integrating in t , and recalling
that t0 > T , we get that

|Eξ (t) − Eξ (t0)| =
∫ t

t0

dEξ

dt
(s)ds = O(tε/2−1

0 ) = O(T ε/2−1). (5)

From (1), (2), and the initial conditions, we have |Eξ (t0)− Eη| = O(t−1/2
0 ) and Iη = 0,

so by choosing T sufficiently large, we can guarantee that both Iξ − Iη ≤ ε3 and
Eξ − Eη ≤ ε3. Since E and I are coordinates locally, we get that for ε small enough,
|ξi − ηi | < ε2, so that part of bootstrap assumption 1 is maintained.

Now we use (3) and the fact that ξi = γ Rβξi to obtain that

d

dt
|ζ1|2 = 2ζ1 ·

∑

j �=1

� j
(ζ1 − ζ j )

⊥

|ζ1 − ζ j |2 + O(tε/2−1) = 2ξ1 ·
∑

j �=1

� j
(ξ1 − ξ j )

⊥

|ξ1 − ξ j |2 + O(tε/2−1)

= 2η1 ·
∑

j �=1

� j
(η1 − η j )

⊥

|η1 − η j |2 + Ô(ε2) + O(tε/2−1).

The principal term here can also come from the self-similarly expanding solution√
t Rκ log t y at time t = 1, so

d

dt
|ζ1|2 = d

dt

∣∣∣
√
t Rκ log tη1

∣∣∣
2
+ Ô(ε2) + O(tε/2−1) = d

dt
(t |η1|2) + Ô(ε2) + O(tε/2−1)

= |η1|2 + Ô(ε2) + O(tε/2−1).

From this, we get that

∣∣∣γ (t)2 − t
∣∣∣ =

∣∣∣∣
|ζ1|2
|ξ1|2 − t

∣∣∣∣ =
∣∣∣∣
|ζ1|2
|η1|2 − t − Ô(tε2)

∣∣∣∣ = Ô(ε2t) + O(tε/2).

From this, and assuming that ε is sufficiently small while T is sufficiently large, we get
that

∣∣∣∣
γ√
t

− 1

∣∣∣∣ < ε

which is the last remaining part of bootstrap assumption 1. Bootstrap assumption 4
is simply a consequence of the vorticity being transported by an incompressible flow
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(generated by divergence-free vector field u). For the other bootstrap assumptions, there
are two cases: T∗ < t0 + t9/100 and T∗ ≥ t0 + t9/100 . We will handle the latter case first,
since the former case uses weaker versions of estimates that we’ll need to derive along
the way. �

4. Long Time Behavior

In this section, we assume that T∗ ≥ t0 + t9/100 .
We first prove that bootstrap assumptions 2 and 3 are maintained by bounding d

dt Ik,i .
We will mostly treat them together, as many of the calculations can be done for any k,
and we will simply plug in 2 for k when we need to. For definiteness, we will take i = 1
below, and we assume that ω1 ≥ 0. The proof for ω2 and ω3 and for negative vorticity is
identical. We want to bound the growth of Ik,1. Let v j be the velocity field generated by
ω j . Then for x ∈ supp(ω1), we apply Lemma 3 (that is, we Taylor expand the kernel)
to get that for some linear function Aζ1−ζ2 ,

v2(x) =
∫

K (x − y)ω2(y)dy

= (ζ1 − ζ2)
⊥

|ζ1 − ζ2|2
∫

ω2(y)dy +
∫

−Aζ1−ζ2 (y − ζ2)ω2(y)dy

+

(
−(x − ζ1) · (ζ1 − ζ2)

(ζ1 − ζ2)
⊥

|ζ1 − ζ2|4 − (x − ζ1) · (ζ1 − ζ2)
⊥ ζ1 − ζ2

|ζ1 − ζ2|4
) ∫

ω2(y)dy

+ O

( |x − ζ1|2
|ζ1 − ζ2|3

∫
ω2(y)dy

)
+ O

(∫ |y − ζ1|2
|ζ1 − ζ2|3 ω2(y)dy

)

= �2

(
(ζ1 − ζ2)

⊥

|ζ1 − ζ2|2 − (x − ζ1) · (ζ1 − ζ2)
(ζ1 − ζ2)

⊥

|ζ1 − ζ2|4 − (x − ζ1) · (ζ1 − ζ2)
⊥ ζ1 − ζ2

|ζ1 − ζ2|4
)

+ O

( |x − ζ1|2
|ζ1 − ζ2|3

)
+ O

(
I2,2

|ζ1 − ζ2|3
)

= �2

(
(ζ1 − ζ2)

⊥

|ζ1 − ζ2|2 − (x − ζ1) · (ζ1 − ζ2)
(ζ1 − ζ2)

⊥

|ζ1 − ζ2|4 − (x − ζ1) · (ζ1 − ζ2)
⊥ ζ1 − ζ2

|ζ1 − ζ2|4
)

+ O
(
t−3/2|x − ζ1|2

)
+ O

(
tε/2−3/2

)
. (6)

where we used that ζ2 is the center of mass of ω2 to eliminate one of the terms and then
used the bootstrap assumptions to bound the error terms.

We have a similar expression for v3(x). One consequence is that, plugging in x = ζ1
and combining with (3), we obtain

dζ1

dt
= v2(ζ1) + v3(ζ1) + O(tε/2−3/2). (7)

From (7), we then have (using Holder’s inequality for the last step)

d

dt
Ik,1 = d

dt

∫
|x − ζ1|kω1(x)dx

=
∫∫

k|x − ζ1|k−2 (x − ζ1) · (x − y)⊥

|x − y|2 ω1(x)ω1(y)dxdy

+
∫

k|x − ζ1|k−2(x − ζ1) · (v2(x) + v3(x))ω1(x)dx .



From Point Vortices to Vortex Patches 717

+
∫

−k|x − ζ1|k−2(x − ζ1) · (v2(ζ1) + v3(ζ1) + O(tε/2−3/2))ω1(x)dx

=
∫∫

k|x − ζ1|k−2 (x − ζ1) · (x − y)⊥

|x − y|2 ω1(x)ω1(y)dxdy

+
∫

k|x − ζ1|k−2(x − ζ1) · (v2(x) − v2(ζ1) + v3(x) − v3(ζ1))ω1(x)dx

+ O

(
tε/2−3/2

∫
k|x − ζ1|k−1ω1(x)dx

)

=
∫∫

k|x − ζ1|k−2 (x − ζ1) · (x − y)⊥

|x − y|2 ω1(x)ω1(y)dxdy

+
∫

k|x − ζ1|k−2(x − ζ1) · (v2(x) − v2(ζ1) + v3(x) − v3(ζ1))ω1(x)dx

+ O
(
t

ε−3
2

)
I
k−1
k

k,1 . (8)

We first deal with the first term in the same way that it is done in [16]. First, we
note that in the special case k = 2, we symmetrize in x and y, and that term vanishes.
For even k > 2, we use the fact that ζ1 is the center of mass to subtract 0. Note that
because |(x − ζ1) · (ζ1 − y)⊥| = |(x − y) · (ζ1 − y)⊥| ≤ |x − y||ζ1 − y|, all terms in
the expressions below are absolutely integrable, so the rearrangements and splitting are
all valid.

∫∫
|x − ζ1|k−2 (x − ζ1) · (x − y)⊥

|x − y|2 ω1(x)ω1(y)dxdy =

=
∫∫ (

|x − ζ1|k−2 (x − ζ1) · (ζ1 − y)⊥

|x − y|2 − |x − ζ1|k−2 (x − ζ1) · (ζ1 − y)⊥

|x − ζ1|2
)

ω1(x)ω1(y)dxdy

=
∫∫

S1

(
|x − ζ1|k−2 (x − ζ1) · (ζ1 − y)⊥

|x − y|2 − |x − ζ1|k−2 (x − ζ1) · (ζ1 − y)⊥

|x − ζ1|2
)

ω1(x)ω1(y))dxdy

+
∫∫

S2

(
|x − ζ1|k−2 (x − ζ1) · (ζ1 − y)⊥

|x − y|2 − |x − ζ1|k−2 (x − ζ1) · (ζ1 − y)⊥

|x − ζ1|2
)

ω1(x)ω1(y)dxdy

+
∫∫

S3

(
|x − ζ1|k−2 (x − ζ1) · (ζ1 − y)⊥

|x − y|2 − |x − ζ1|k−2 (x − ζ1) · (ζ1 − y)⊥

|x − ζ1|2
)

ω1(x)ω1(y)dxdy

(9)

where

S1 = {|x − ζ1| < |y − ζ1|/2}
S2 = {|y − ζ1|/2 ≤ |x − ζ1| ≤ 2|y − ζ1|}
S3 = {|x − ζ1| > 2|y − ζ1|}

For the first term in (9), we use

∣∣∣∣
∫∫

S1

(
|x − ζ1|k−2 (x − ζ1) · (ζ1 − y)⊥

|x − y|2 − |x − ζ1|k−2 (x − ζ1) · (ζ1 − y)⊥

|x − ζ1|2
)

ω1(x)ω1(y)dxdy

∣∣∣∣

≤
∫∫

S1
2|x − ζ1|k−3|y − ζ1|ω1(x)ω1(y)dxdy

≤
∫∫

S1
|x − ζ1|k−4|y − ζ1|2ω1(x)ω1(y)dxdy
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≤ C I
k−4
k

k,1 I2,1 ≤ Ctε/2 I
k−4
k

k,1 . (10)

For the second term in (9), we symmetrize in x and y and get

∣∣∣∣
∫∫

S2

(
|x − ζ1|k−2 (x − ζ1) · (ζ1 − y)⊥

|x − y|2 − |x − ζ1|k−2 (x − ζ1) · (ζ1 − y)⊥

|x − ζ1|2
)

ω1(x)ω1(y)

∣∣∣∣

≤
∣∣∣∣
∫∫

S2

1

2
(|x − ζ1|k−2 − |y − ζ1|k−2)

(x − ζ1) · (ζ1 − y)⊥

|x − y|2 ω1(x)ω1(y)dxdy

∣∣∣∣

+

∣∣∣∣
∫∫

S2
|x − ζ1|k−4(x − ζ1) · (ζ1 − y)⊥ω1(x)ω1(y)dxdy

∣∣∣∣

≤
∫∫

S2

∣∣∣∣(k/4 − 1/2)
(|x − ζ1|k−4 + |y − ζ1|k−4)(|x − ζ1|2 − |y − ζ1|2

)

× (x − ζ1) · (x − y)⊥

|x − y|2
∣∣∣∣ω1(x)ω1(y)dxdy

+ 2

∣∣∣∣
∫∫

S2
|x − ζ1|k−4|y − ζ1|2ω1(x)ω1(y)dxdy

∣∣∣∣

≤ C

∣∣∣∣
∫∫

S2
|x − ζ1|k−4|y − ζ1|2ω1(x)ω1(y)dxdy

∣∣∣∣

+ 2

∣∣∣∣
∫∫

S2
|x − ζ1|k−4|y − ζ1|2ω1(x)ω1(y)dxdy

∣∣∣∣

≤ C I
k−4
k

k,1 I2,1 ≤ Ctε/2 I
k−4
k

k,1 . (11)

For the third term in (9), we take advantage of the term we subtracted off to get

∣∣∣∣
∫∫

S3

(
|x − ζ1|k−2 (x − ζ1) · (ζ1 − y)⊥

|x − y|2 − |x − ζ1|k−2 (x − ζ1) · (ζ1 − y)⊥

|x − ζ1|2
)

ω1(x)ω1(y)dxdy

∣∣∣∣

≤ C
∫∫

S3
|x − ζ1|k−4|y − ζ1|2ω1(x)ω1(y)dxdy

≤ C I
k−4
k

k,1 I2,1 ≤ Ctε/2 I
k−4
k

k,1 . (12)

Plugging (10), (11), (12) into (9) when k > 2 and remembering that the term goes away
when k = 2, we get that for k ≥ 2 even

∣∣∣∣
∫∫

|x − ζ1|k−2 (x − ζ1) · (x − y)⊥

|x − y|2 ω1(x)ω1(y)dxdy

∣∣∣∣ ≤ C(k − 2)tε/2 I
k−4
k

k,1 . (13)

To deal with the second term in (8), we plug (6) into it to get
∫

|x − ζ1|k−2(x − ζ1) · (v2(x) − v2(ζ1))ω1(x)dx =

=
∫

−2�2|x − ζ1|k−2(x − ζ1) · (ζ1 − ζ2)
⊥ (x − ζ1) · (ζ1 − ζ2)

|ζ1 − ζ2|4 ω1(x)

+ O
(
t−3/2|x − ζ1|k+1

)
ω1(x) + O

(
tε/2−3/2|x − ζ1|k−1

)
ω1(x)dx

=
∫

−�2 sin(2θ(x))|x − ζ1|k
|ζ1 − ζ2|2 ω1(x) +

(
t−3/2|x − ζ1|k+1

)
ω1(x)
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+ O
(
tε/2−3/2|x − ζ1|k−1

)
ω1(x)dx

where θ(x) is the angle between x−ζ1 and ζ1−ζ2. Now, using the bootstrap assumptions
on sup |x − ζ1|, I2,2, and |ζ1 − ζ2|, as well as using Holder’s inequality on the last term,
we get
∫

|x − ζ1|k−2(x − ζ1) · (v2(x) − v2(ζ1))ω1(x)dx =

=
∫

−�2 sin(2θ(x))|x − ζ1|k
|ζ1 − ζ2|2 ω1(x)dx + O

(
tε−5/4

)
Ik,1 + O

(
t

ε−3
2

)
I
k−1
k

k,1 . (14)

If we were to use crude bounds for the first term of (14), bounding the numerator
by Ik,1, we would achieve vorticity confinement that is worse by some factor of tα ,
with α depending on the configuration of point vortices (�i , ηi ). In fact, for some
configurations, our confinement resultwould beworse than t1/2, so itwouldn’t be enough
to prevent the patches from interacting strongly, causing the whole proof to break down.
For this reason, we want a better bound on this term. There is little hope of getting
one for each time, but we note that we want to bound the expression in (14) because it
appears in the derivative of Ik,1, so it is enough to get a better bound on its time average
(as long as the time interval we are averaging over isn’t too long). More precisely, define
H : R2 × R

2 → R by

H(λ, μ) := − cos
(
2(arg λ − argμ)

)|λ|k+2 (15)

where arg λ is the angle of λ and we define

fk,2(x) := H(x − ζ1, ζ1 − ζ2) = − cos(2θ(x))|x − ζ1|k+2 (16)

where θ(x) is the angle between x − ζ1 and ζ1 − ζ2.
Note that fk,2(x) also has implicit dependence on time through its dependence on ζ1

and ζ2. We then use the following estimate, which will be proved in section 4.1:

d

dt

∫
fk,2(x)ω1(x)dx = �1

∫
2 sin(2θ)|x − ζ1|kω1(x)dx + O(δ Ik,1 + Rkδ−k).

(17)

One way of thinking about this estimate is as a renormalization of the moments Ik,i ,
where we define new quantities of the form

Îk,i = Ik,i + C

∫
fk,2(x)ω1(x)dx

t

and bound their time derivatives. This is equivalent to the argument below, though the
notation and organization are different.

To use (17), we plug it into into (14) to get

∫
|x − ζ1|k−2(x − ζ1) · (v2(x) − v2(ζ1))ω1(x)dx = −�2

2�1|ζ1 − ζ2|2
d

dt

∫
fk,2(x)ω1(x)dx

+ O
(
tε−5/4 Ik,1

)
+ O

(
t

ε−3
2 I

k−1
k

k,1

)
+ O

(
δ Ik,1 + Rkδ−k

t

)
. (18)
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If we introduce fk,3 as being entirely analogous to fk,2, but with ζ3 replacing ζ2, we
can plug (13) and (18) and into (8) to get

d

dt
Ik,1 = O

(
k(k − 2)tε/2 I

k−4
k

k,1

)
− k�2

2�1|ζ1 − ζ2|2
d

dt

∫
fk,2(x)ω1(x)dx

− k�3

2�1|ζ1 − ζ3|2
d

dt

∫
fk,3(x)ω1(x)dx + O

(
tε−5/4

)
Ik,1

+ O
(
t

ε−3
2

)
I
k−1
k

k,1 + O

(
δ Ik,1 + Rkδ−k

t

)
. (19)

We are now ready to confirm the bootstrap assumptions on I2,1 and Ik,1. First, we note
that

∣∣∣∣
∫

fk,2(x)ω1(x)dx

∣∣∣∣ ≤
(

sup
x∈suppω1

|x − ζ1|
)2 ∫

|x − ζ1|kω1(x)dx ≤ ε2t1/2+2ε Ik,1.

(20)

We now set k = 2 in order to prove that I2,1(T∗) < T ε/2∗ . The term that has a factor of
k − 2 in (19) goes away, and we get

d

dt
I2,1 = − 2�2

2�1|ζ1 − ζ2|2
(

d

dt

∫
f2,2(x)ω1(x)dx

)
− 2�3

2�1|ζ1 − ζ3|2
(

d

dt

∫
f2,3(x)ω1(x)dx

)

+ O
(
tε−5/4 I2,1

)
+ O

(
t

ε−3
2 I

1
2
2,1

)
+ O

(
δ I2,1 + Rkδ−k

t

)

We integrate in t from t1 = T∗ − T 2/3∗ ≥ t0 to T∗ and plug in I2,1(t) ≤ tε/2 to get

I2,1(T∗) ≤ −
∫ T∗

t1

2�2

2�1|ζ1 − ζ2|2
(

d

dt

∫
f2,2(x)ω1(x)dx

)
+

2�3

2�1|ζ1 − ζ3|2
(

d

dt

∫
f2,3(x)ω1(x)dx

)
dt

+ C
∫ T∗

t1
t3ε/2−5/4 + t3ε/4−3/2 + δtε/2−1 + Rkδ−k t−1dt + I2,1(t1).

For the terms in the first line, we now integrate by parts in t . For the integral in the
second line, we use that ε is small and the fact that T∗ ≥ T � R, 1/δ to throw away all
but the largest term at the cost of making the constant worse. We then obtain

I2,1(T∗) ≤
[ −2�2

2�1|ζ1 − ζ2|2
∫

f2,2(x)ω1(x)dx

]
(T∗) +

[
2�2

2�1|ζ1 − ζ2|2
∫

f2,2(x)ω1(x)dx

]
(t1)

+

[ −2�3

2�1|ζ1 − ζ3|2
∫

f2,3(x)ω1(x)dx

]
(T∗) +

[
2�3

2�1|ζ1 − ζ3|2
∫

f2,3(x)ω1(x)dx

]
(t1)

+
∫ T∗

t1

(
d

dt

2�2

2�1|ζ1 − ζ2|2
) ∫

f2,2(x)ω1(x)dxdt

+
∫ T∗

t1

(
d

dt

2�3

2�1|ζ1 − ζ3|2
) ∫

f2,3(x)ω1(x)dxdt

+ C
∫ T∗

t1
δtε/2−1dt + I2,1(t1). (21)
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We now bound the boundary terms using the bootstrap assumptions on |ζ1 − ζ2| as
well as (20) (as well as the same bound for f2,3). For the last line, we use the fact that
T∗ − t1 = T 2/3∗ to bound the integral.

I2,1(T∗) ≤ CT−1/2+2ε∗ (I2,1(t1) + I2,1(T∗)) +
∫ T∗

t1

(
d

dt

2�2

2�1|ζ1 − ζ2|2
) ∫

f2,2(x)ω1(x)dxdt

+
∫ T∗

t1

(
d

dt

2�3

2�1|ζ1 − ζ3|2
) ∫

f2,3(x)ω1(x)dxdt + CδT ε/2−1/3∗ + I2,1(t1). (22)

We now use use v2 = O(t−1/2) on suppω1 and (7) (as well as all the analogous
statements where we permute the indices 1, 2, 3) to get

d

dt

2�2

2�1|ζ1 − ζ2|2 = O

(
t−3/2 d

dt
|ζ1 − ζ2|

)
≤ O

(
t−2

)
(23)

as well as all the analogous statements where we permute the indices 1, 2, 3. We plug
this along with (20) into (22) to get

I2,1(T∗) ≤ CT−1/2+2ε∗ (I2,1(t1) + I2,1(T∗)) + C
∫ T∗

t1
ε2t2ε−3/2 I2,1(t)dt + CδT ε/2−1/3∗ + I2,1(t1)

≤ I2,1(t1) + CT−1/2+5ε/2∗ + CT 5ε/2−3/2+2/3∗ + CδT ε/2−1/3∗
≤ I2,1(t1) + CδT ε/2−1/3∗ (24)

where we used T∗ > T � 1/δ. From (24) and I2,1(t1) < tε/21 , and the fact that δ � ε,
we get

I2,1(T∗) ≤ I2,1(t1) + CδT ε/2−1/3∗ < tε/21 +
∫ T∗

t1

(
d

dt
tε/2

)
dt = T ε/2∗ .

The same then applies to I2,2 and I2,3, so bootstrap assumption 2 is maintained.
We now take k > 2 even, which we treat similarly to the k = 2 case. We integrate

(19) in time from t1 to T∗ and use the bootstrap assumptions on I2,1 and Ik,1 to get

Ik,1(T∗) ≤
∫ T∗

t1
Ctε/2 I

k−4
k

k,1 dt −
∫ T∗

t1

k�2

2�1|ζ1 − ζ2|2
d

dt

∫
fk,2(x)ω1(x)dxdt

+
∫ T∗

t1
− k�3

2�1|ζ1 − ζ3|2
d

dt

∫
fk,3(x)ω1(x)dx

+ C
∫ T∗

t1
t
k(1+ε)

4 +ε− 5
4 + t

(k−1)(1+ε)
4 + ε−3

2 + δt
k(1+ε)

4 −1 +
Rkδ−k

t
dt + Ik,1(t1).

We integrate by parts in t and use (20), and the bootstrap assumptions to bound the
boundary terms. In the last line, we are using T∗ ≥ T � R, 1/δ to get rid of all but the
biggest term in the integral, at the price of making the constant bigger. We get

Ik,1(T∗) ≤ C
∫ T∗

t1
tε/2 I

k−4
k

k,1 dt + CT−1/2+2ε∗ (Ik,1(t1) + Ik,1(T∗))

+
∫ T∗

t1

(
d

dt

2�2

2�1|ζ1 − ζ2|2
) ∫

f2,2(x)ω1(x)dxdt
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+
∫ T∗

t1

(
d

dt

2�3

2�1|ζ1 − ζ3|2
) ∫

f2,3(x)ω1(x)dxdt + C
∫ T∗

t1
δt

k(1+ε)
4 −1dt + Ik,1(t1).

We now use (23) and (20), as well as using the fact that T∗ − t1 = T 2/3∗ , to get

Ik,1(T∗) ≤ C
∫ T∗

t1
tε/2 I

k−4
k

k,1 dt + CT−1/2+2ε∗ (Ik,1(t1)+ Ik,1(T∗))+C
∫ T∗

t1
t2ε−3/2 Ik,1(t)dt

+
∫ T∗

t1
Cδt

k(1+ε)
4 −1dt + Ik,1(t1).

We now use that T∗ > T � 1/δ, as well as the bootstrap assumption 3, to get

Ik,1(T∗) ≤ tk(1+ε)/4
1 + CT−1/2+2ε∗ T k(1+ε)/4∗ + C

∫ T∗

t1
t

(k−4)(1+ε)
4 + δt

k(1+ε)
4 −1dt

so, as long as δ is sufficiently small, and T∗ > T is sufficiently large in terms of δ, ε, k,
we get

Ik,1(T∗) < tk(1+ε)/4
1 +

1

2

(
T k(1+ε)/4∗ − tk(1+ε)/4

1

)
+
1

2

∫ T∗

t1

(
d

dt
tk(1+ε)/4

)
dt = T k(1+ε)/4∗ .

The same then applies to Ik,2 and Ik,3, so bootstrap assumption 3 is maintained.

We now need to recover bootstrap assumption 5. For this, we let t1 = T∗ −T 2/3∗ > t0
and take some point p(t1) that is in the support of ω1, so we have |p(t1) − ζ1(t1)| <

εt1/4+ε
1 . We then have p(t) solve p′(t) = u(t, p(t)). We want to show that |p(T∗) −

ζ1(T∗)| < εT 1/4+ε∗ , which would show that bootstrap assumption 5 is maintained since
the support of ω1 is transported by u. Suppose this is false, that is |p(T∗) − ζ1(T∗)| ≥
εT 1/4+ε∗ . Then let

t2 = sup
{
s ∈ [t1, T∗] | s = t1 or |p(s) − ζ1(s)| <

ε

2
T 1/4+ε∗

}
.

Note for later use that whether or not t2 = t1, we have

|p(t2) − ζ1(t2)| ≤ εt1/4+ε
1 . (25)

We will work on the interval [t2, T∗], where we are guaranteed that

ε

2
T 1/4+ε∗ ≤ |p − ζ1| ≤ εT 1/4+ε∗ . (26)

We calculate (using (7) to get to the second equality)

d

dt
(p − ζ1) = v2(p) + v3(p) +

(p − ζ1)
⊥

|p − ζ1|2 �1+

+
∫ (

(p − x)⊥

|p − x |2 − (p − ζ1)
⊥

|p − ζ1|2
)

ω1(x)dx − dζ1

dt

= v2(p) − v2(ζ1) + v3(p) − v3(ζ1) +
(p − ζ1)

⊥

|p − ζ1|2 �1+
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+
∫ (

(p − x)⊥

|p − x |2 − (p − ζ1)
⊥

|p − ζ1|2
)

ω1(x)dx + O(tε/2−3/2). (27)

We now use (6) to get that

v2(p) − v2(ζ1) = −�2(p − ζ1) · (ζ1 − ζ2)
(ζ1 − ζ2)

⊥

|ζ1 − ζ2|4
− �2(p − ζ1) · (ζ1 − ζ2)

⊥ ζ1 − ζ2

|ζ1 − ζ2|4 + O(ε2t2ε−1). (28)

We will also need a coarser form of this estimate, namely

v2(p) − v2(ζ1) = O(tε−3/4). (29)

We now note that by Lemma 3 (essentially, Taylor expansion), there is some time-
dependent matrixAwith |A| ≤ C |p− ζ1|−2 such that when |x − ζ1| <

|p−ζ1|
2 , we have

that

(p − x)⊥

|p − x |2 − (p − ζ1)
⊥

|p − ζ1|2 = A(x − ζ1) + O

( |x − ζ1|2
|p − ζ1|3

)
. (30)

Let

S7 =
{
|x − ζ1| <

ε

4
T 1/4+ε∗

}

S8 =
{
εT 1/4+ε∗ ≥ |x − ζ1| ≥ ε

4
T 1/4+ε∗

}
.

Then, since ζ1 is the center of mass, we use (30) and the bound on |A| in region S7 to
obtain

∣∣∣∣
∫ (

(p − x)⊥

|p − x |2 − (p − ζ1)
⊥

|p − ζ1|2
)

ω1(x)dx

∣∣∣∣

=
∣∣∣∣
∫

(p − x)⊥

|p − x |2 − (p − ζ1)
⊥

|p − ζ1|2 − A(x − ζ1)ω1(x)dx

∣∣∣∣

=
∫

S7

∣∣∣∣
(p − x)⊥

|p − x |2 − (p − ζ1)
⊥

|p − ζ1|2 − A(x − ζ1)ω1(x)

∣∣∣∣ dx

+
∫

S8

∣∣∣∣
(p − x)⊥

|p − x |2 − (p − ζ1)
⊥

|p − ζ1|2 − A(x − ζ1)ω1(x)

∣∣∣∣ dx

≤ C

|p − ζ1|3
∫

S7
|x − ζ1|2ω1(x)dx + C

∫

S8

(
1

|p − x | +
1

|p − ζ1| +
|x − ζ1|
|p − ζ1|2

)
ω1(x)dx

We now use (26), Cauchy-Schwarz, and bootstrap assumption 2 to obtain

∣∣∣∣
∫ (

(p − x)⊥

|p − x |2 − (p − ζ1)
⊥

|p − ζ1|2
)

ω1(x)dx

∣∣∣∣

≤ C I2,1
|p − ζ1|3 + C

( ε

2
T 1/4+ε∗

)−1
∫

S8
ω1(x)dx + C

∫

S8

1

|p − x |ω1(x)dx + C
( ε

2
T 1/4+ε∗

)−2
I

1
2
2,1

(∫

S8
ω1(x)dx

) 1
2

≤ CT−3/4−5ε/2∗ + CT−1/4−ε∗
∫

S8
ω1(x)dx + C

∫

S8

1

|p − x |ω1(x)dx + T−1/2−7ε/4∗
(∫

S8
ω1(x)dx

) 1
2

(31)
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Now, from Ik,1(t) < T k(1+ε)/4∗ , we get that

∫

S8
ω1(x)dx ≤ C

T k(1+ε)/4∗
T k(1/4+ε)∗

= CT−3kε/4∗ . (32)

From this, we get by Holder’s inequality
∫

S8

1

|p − x |ω1(x)dx ≤ C

∥∥∥∥
1

|p − ·|
∥∥∥∥
Lq̄ (S8)

‖ω1‖σ
Lq (S8)

‖ω1‖1−σ

L1(S8)
≤ CT ε−3kε(1−σ)/4∗

(33)

for some σ ∈ (0, 1), q̄ ∈ (2− ε, 2) that depend only on q. We now choose k sufficiently
large that 3kε(1 − σ)/4 − ε > 2. Then plugging (32) and (33) into (31), we get that

∫ (
(p − x)⊥

|p − x |2 − (p − ζ1)
⊥

|p − ζ1|2
)

ω1(x)dx = O
(
T−3/4−5ε/2∗

)
. (34)

We now plug (34) and (29) along with the analogous estimate for v3 into (27) to get

d

dt
(p − ζ1) = (p − ζ1)

⊥

|p − ζ1|2 �1 + O(T ε−3/4∗ ). (35)

Now, for any t̃ with

[t̃, t̂] :=
[
t̃, t̃ + 2π |p(t̃) − ζ1(t̃)|2/�1

]
⊂ [t2, T∗]

we have that on the time interval [t̃, t̂], the total variation of |p − ζ1| is at most

Var[t̃,t̂](|p − ζ1|) = O(T ε−3/4∗ |p(t̃) − ζ1(t̃)|2) = O(T 3ε−1/4∗ ). (36)

We now define the angles ϕ = arg(p− ζ1) and θ2 = arg(ζ1 − ζ2). Combining (35) with
(36) gives that the angular velocity for t ∈ [t̃, t̂] is

d

dt
ϕ = �1

|p − ζ1|2 + O

(
T ε−3/4∗
|p − ζ1|

)
= �1

|p(t̃) − ζ1(t̃)|2 + O

⎛

⎜⎝
T 3ε−1/4∗(
T 1/4+ε∗

)3

⎞

⎟⎠ + O(T−1∗ )

= �1

|p(t̃) − ζ1(t̃)|2 + O
(
T−1∗

)

so

ϕ(t) = ϕ(t̃) +
�1(t − t̃)

|p(t̃) − x(t̃)|2 + O
(
T 2ε−1/2∗

)
. (37)

Also, we have
∣∣ d
dt ζi

∣∣ = O(T−1/2∗ ) so
∣∣∣∣
d

dt
θ2

∣∣∣∣ =
∣∣∣∣
d

dt

ζ1 − ζ2

|ζ1 − ζ2|
∣∣∣∣ = O(T−1∗ )

so

θ2(t) = θ2(t̃) + O(T 2ε−1/2∗ ) (38)
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We now use (27) and (28) along with the analogous estimate for ζ3 and (34) to compute

d

dt
|p − ζ1|2 = −4�2(p − ζ1) · (ζ1 − ζ2)

(p − ζ1) · (ζ1 − ζ2)
⊥

|ζ1 − ζ2|4

− 4�3(p − ζ1) · (ζ1 − ζ3)
(p − ζ1) · (ζ1 − ζ3)

⊥

|ζ1 − ζ3|4
+ O(T (2ε−1)+(1/4+ε)∗ ) + O

(
T (−3/4−5ε/2)+(1/4+ε)∗

)

= −2�2 sin(−2θ2 + 2ϕ)|p − ζ1|2
|ζ1 − ζ2|2 − 2�3 sin(−2θ3 + 2ϕ)|p − ζ1|2

|ζ1 − ζ3|2 + O
(
T−1/2−3ε/2∗

)
.

(39)

By combining (38), (37), (36), and (23), we get that for t ∈ [t̃, t̂], we have
−2�2 sin(−2θ2 + 2ϕ)|p − ζ1|2

|ζ1 − ζ2|2 =

= −2�2 sin

(
−2θ2(t̃) + 2ϕ(t̃) +

2�1(t − t̃)

|p(t̃) − x(t̃)|2
) |p(t̃) − ζ1(t̃)|2

|(ζ1(t̃) − ζ2(t̃))|2 + O
(
T 4ε−1∗

)
.

(40)

Then substituting (40) into (39) (alongwith the analogous estimate for ζ3) and integrating
from t̃ to t̂ , we note that the principal term of (40) cancels and we are left with

|p(t̂) − ζ1(t̂)|2 − |p(t̃) − ζ1(t̃)|2 = O((t̂ − t̃)T−3ε/2−1/2∗ ).

We now take a new interval starting at t̂ . Tiling most of [t2, T∗] with such intervals, we
get that

|p(T∗) − ζ1(T∗)|2 ≤ |p(t2) − ζ1(t2)|2 + O
(
(T∗ − t2)T

−3ε/2−1/2∗
)
+

∫ T∗

t3

d

dt
|p − ζ1|2dt

(41)

where t3 ∈ [t2, T∗] satisfies T∗ − t3 = O(t1/2+2ε). Using (35) to bound the last term of
(41) and applying (25), we then get

|p(T∗) − ζ1(T∗)|2 ≤ |p(t2) − ζ2(t1)|2 + O(T 1/6−3ε/2∗ ) + O(T 4ε∗ ) ≤ (εt1/4+ε
1 )2 + O(T 1/6−3ε/2∗ ) <

(
εT 1/4+ε∗

)2
,

which verifies bootstrap assumption 5. Thus we have shown (modulo the proof of (17)
in section 4.1) that we cannot have t0 + t9/100 ≤ T∗ < ∞.

4.1. Moment renormalization. In this section, we prove estimate (17). This estimate
would follow from a short computation directly if all of the mass of the vortex patch
were located precisely at ζi and all of the kth moment came from parts of the vortex
patch at a large distance from ζi . This cannot hold precisely, but we will obtain an
approximation to this by proving that each ωi concentrates, as shown in Figure 2 (see
(42) below for the precise statement).

To prove the concentration result, we note that for any solution of 2D Euler with
compactly supported L∞ vorticity, the following is a conserved quantity:

L =
∫∫

log |x − y|ω(x)ω(y)dxdy.
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Fig. 2. The red mass is the vortex patch given by ωi . Note that most of its mass is in a ball centered at some
ζ̃i that is distinct from the center of mass ζi

This quantity corresponds to physical energy of the fluid, and one can directly check
that it is conserved with a simple computation. In our solution, for any two points
x ∈ suppωi , y ∈ suppω j with i �= j , we have log |x − y| = (log t)/2 + O(1). Thus

L =
∑

i �= j

�i� j (log t)/2 + O(1) +
3∑

i=1

∫∫
ωi (x)ωi (y) log |x − y|dxdy

=
3∑

i=1

∫∫
ωi (x)ωi (y) log |x − y|dxdy + O(1)

where we used (1). Now note that L is conserved, and using a combination of Holder’s
and Young’s inequality, we get

∣∣∣∣
∫∫

ωi (x)ωi (y)(log |x − y|)−dxdy
∣∣∣∣ ≤ ‖ωi‖2Lq‖(log | · |)−‖L1/(2−2/q) = O(1).

Thus

3∑

i=1

∫∫
ωi (x)ωi (y)(log |x − y|)+dxdy = O(1).

Since ωi (x)ωi (y) ≥ 0, we then have that there is some constantC so that for 1 ≤ i ≤ 3,
∫∫

ωi (x)ωi (y)(log |x − y|)+dxdy ≤ C.

Thus there is some R = R(δ) > 0 such that
∫∫

ωi (x)ωi (y)1|x−y|>Rdxdy < �iδ
4,

from which it follows that for some ζ̃i ∈ suppωi , we have that the vorticity mass of ωi

concentrates around ζ̃i , meaning that
∫

ωi (x)1|x−ζ̃i |>Rdx < δ4. (42)
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We now recall that in (15) and (16), we defined fk,2(x) and H : R2 × R
2 → R. In the

calculation below, we will use the following bounds on derivatives of H , where ∂1H
means a derivative with respect to λ and ∂2H means a derivative with respect to μ. The
bounds on derivatives come from H being homogeneous of order k +2 with respect to λ

and homogeneous of order 0 with respect toμ, so derivatives of H are also homogeneous
of appropriate orders.

|H(λ, μ)| ≤ C |λ|k+2
|∂1H(λ, μ)| ≤ C |λ|k+1
|∂21H(λ, μ)| ≤ C |λ|k

|∂2H(λ, μ)| ≤ C
|λ|k+2
|μ| .

(43)

We calculate

d

dt

∫
fk,2(x)ω1(x)dx = d

dt

∫
H(x − ζ1, ζ1 − ζ2)ω1(x)dx =

=
∫∫

∂1H(x − ζ1, ζ1 − ζ2) · (x − y)⊥

|x − y|2 ω1(x)ω1(y)dxdy

+
∫

∂1H(x − ζ1, ζ1 − ζ2) ·
(

v2(x) + v3(x) − d

dt
ζ1

)
ω1(x)dx

+
∫

∂2H(x − ζ1, ζ1 − ζ2) ·
(
d

dt
ζ1 − d

dt
ζ2

)
ω1(x)dx . (44)

In the calculation below, we will use

S4 = {|x − ζ1| ≤ δ|y − ζ1|}
S5 = {δ|y − ζ1| < |x − ζ1| < |y − ζ1|/δ}
S6 = {|x − ζ1| ≥ |y − ζ1|/δ}.

Using v2, v3,
d
dt ζ j = O(t−1/2), and symmetrizing in x and y for the integral over S5

we get

d

dt

∫
fk,2(x)ω1(x)dx

=
∫∫

S4∪S5∪S6
∂1H(x − ζ1, ζ1 − ζ2) · (x − y)⊥

|x − y|2 ω1(x)ω1(y)dxdy + O
(
t−1/2)

∫
|x − ζ1|k+1ω1(x)dx

+ O
(
t−1)

∫
|x − ζ1|k+2ω1(x)dx

=
∫∫

S4
∂1H(x − ζ1, ζ1 − ζ2) · (x − y)⊥

|x − y|2 ω1(x)ω1(y)dxdy

+
1

2

∫∫

S5
(∂1H(x − ζ1, ζ1 − ζ2) − ∂1H(y − ζ1, ζ1 − ζ2)) · (x − y)⊥

|x − y|2 ω1(x)ω1(y)dxdy

+
∫∫

S6

(
∂1H(x − ζ1, ζ1 − ζ2) · (x − y)⊥

|x − y|2 − ∂1H(x − ζ1, ζ1 − ζ2) · (x − ζ1)
⊥

|x − ζ1|2
)

ω1(x)ω1(y)dxdy

+
∫∫

S4∪S5
−∂1H(x − ζ1, ζ1 − ζ2) · (x − ζ1)

⊥

|x − ζ1|2 ω1(x)ω1(y)dxdy
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+
∫∫

R3×R3
∂1H(x − ζ1, ζ1 − ζ2) · (x − ζ1)

⊥

|x − ζ1|2 ω1(x)ω1(y)dxdy

+ O

(
t−1/2 sup

x∈suppω1

|x − ζ1|
∫

|x − ζ1|kω1(x)dx

)

+ O

(
t−1 sup

x∈suppω1

|x − ζ1|2
∫

|x − ζ1|kω1(x)dx

)
. (45)

We now address each of these terms. First, we want to bound
∫∫

R3×R3
∂1H(x − ζ1, ζ1 − ζ2) · (x − ζ1)

⊥

|x − ζ1|2 ω1(x)ω1(y)dxdy.

This is the principal term. The integral with respect to y factors out to give a factor of
�1. The integrand is just 1/|x − ζ1|2 multiplied by the derivative of H with respect to
arg λ. Since θ = arg(x − ζ1) − arg(ζ1 − ζ2), we have

∫∫

R3×R3
∂1H(x − ζ1, ζ1 − ζ2) · (x − ζ1)

⊥

|x − ζ1|2 ω1(x)ω1(y)dxdy = �1

∫
2 sin(2θ)|x − ζ1|kω1(x)dx .

(46)

The remaining terms of (45) we need to bound with something small. The first term we
bound by

∣∣∣∣
∫∫

S4
∂1H(x − ζ1, ζ1 − ζ2) · (x − y)⊥

|x − y|2 ω1(x)ω1(y)dxdy

∣∣∣∣

≤ C
∫∫

S4

|x − ζ1|k+1
|y − ζ1| ω1(x)ω1(y)dxdy

≤ Cδ

∫∫

R3×R3
|x − ζ1|kω1(x)ω1(y)dxdy

≤ δC Ik,1. (47)

We bound the third term in (45) by

∣∣∣∣
∫∫

S6
∂1H(x − ζ1, ζ1 − ζ2) · (x − y)⊥

|x − y|2 − ∂1H(x − ζ1, ζ1 − ζ2) · (x − ζ1)
⊥

|x − ζ1|2 ω1(x)ω1(y)dxd

∣∣∣∣

≤ C
∫∫

S5
|x − ζ1|k+1 |y − ζ1|

|x − ζ1|2 ω1(x)ω1(y)dxdy

≤ δC
∫∫

S4∪S5
|x − ζ1|kω1(x)ω1(y)dxdy

≤ δC Ik,1. (48)

We bound the second term in (45) by using the mean value theorem on ∂1H(·, ζ1 − ζ2)

to get that for some s ∈ (0, 1), we have
∣∣∣∣
∫∫

S5
(∂1H(x − ζ1, ζ1 − ζ2) − ∂1H(y − ζ1, ζ1 − ζ2)) · (x − y)⊥

|x − y|2 ω1(x)ω1(y)dxdy

∣∣∣∣

=
∣∣∣∣
∫∫

S5
(∂21H(sx + (1 − s)y − ζ1, ζ1 − ζ2) · (x − y)⊥

|x − y|2 ω1(x)ω1(y)dxdy

∣∣∣∣ .
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We now use the bound on ∂21H in (43) and the convexity of z �→ |z|k to obtain
∣∣∣∣
∫∫

S5
(∂1H(x − ζ1, ζ1 − ζ2) − ∂1H(y − ζ1, ζ1 − ζ2)) · (x − y)⊥

|x − y|2 ω1(x)ω1(y)dxdy

∣∣∣∣

≤ C
∫∫

S5
(|x − ζ1|k + |y − ζ1|k) |x − y|2

|x − y|2ω1(x)ω1(y)dxdy

≤ C
∫∫

S5
|x − ζ1|kω1(x)ω1(y)dxdy

≤ C
∫∫

S4∪S5
|x − ζ1|kω1(x)ω1(y)dxdy. (49)

We bound the fourth term in (45) by
∣∣∣∣
∫∫

S4∪S5
−∂1H(x − ζ1, ζ1 − ζ2) · (x − ζ1)

⊥

|x − ζ1|2 ω1(x)ω1(y)dxdy

∣∣∣∣

≤ C
∫∫

S4∪S5
|x − ζ1|kω1(x)ω1(y)dxdy. (50)

To bound this expression, we use the concentration result (42) and split into two cases.
First, if |ζ̃1 − ζ1| < 2R, then

∫∫

S4∪S5
|x − ζ1|kω1(x)ω1(y)dxdy

≤
∫∫

{|y−ζ1|≥3R}
|x − ζ1|kω1(x)ω1(y)dxdy +

∫∫

{|x−ζ1|≤3R/δ}
|x − ζ1|kω1(x)ω1(y)dxdy

≤ δ4 Ik,1 + �2
1(3R/δ)k . (51)

The second case is |ζ̃1 − ζ1| ≥ 2R. In this case, for any x ∈ B(ζ̃1, R), we have

(x − ζ1) · ζ̃1 − ζ1

|ζ̃1 − ζ1|
≥ |ζ̃1 − ζ1|

2
.

Also, since δ is sufficiently small, the total vorticity contained in B(ζ̃1, R) is at least
�1/2. Thus

∣∣∣∣
∫

B(ζ̃1,R)

(x − ζ1)ω1(x)dx

∣∣∣∣ ≥ �1

2

(
|ζ̃1 − ζ1|

2

)
≥ |ζ̃1 − ζ1|�1

4
.

Also, since ζ1 is the center of mass,
∫

(x − ζ1)ω1(x)dx = 0

and by (42), we have

∫

B(ζ1,|ζ̃1−ζ1|�1/(8δ4))\B(ζ̃1,R)

|x − ζ1|ω1(x)dx ≤ |ζ̃1 − ζ1|�1

8
.
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Combining the last three inequalities, we get

∫

{|x−ζ1|>|ζ̃1−ζ1|�1/(8δ4)}
|x − ζ1|ω1(x)dx ≥ |ζ̃1 − ζ1|�1

8

from which it follows that

Ik,1 ≥
∫

{|x−ζ1|>|ζ̃1−ζ1|�1/(8δ4)}
|x − ζ1|kω1(x)dx ≥ |ζ̃1 − ζ1|k�k

1

8kδ4(k−1)
.

Thus
∫

{|x−ζ1|≤2|ζ̃1−ζ1|/δ}
|x − ζ1|kω1(x)dx ≤ 2k�1|ζ̃1 − ζ1|k/δk < δ Ik,1.

as long as δ is sufficiently small. Thus (recalling that we are in the case where |ζ̃1−ζ1| ≥
2R)

∫∫

S4∪S5
|x − ζ1|kω1(x)ω1(y)dxdy

≤
∫∫

{|x−ζ1|<2|ζ̃1−ζ1|/δ}
|x − ζ1|kω1(x)ω1(y)dxdy

+
∫∫

{|y−ζ1|≥2|ζ̃1−ζ1|}
|x − ζ1|kω1(x)ω1(y)dxdy

≤ δ Ik,1 + δ4 Ik,1 ≤ 2δ Ik,1. (52)

Thus, combining (51) and (52), we get that in either case, we have

∫∫

S4∪S5
|x − ζ1|kω1(x)ω1(y)dxdy ≤ δC Ik,1 + Cδ−k Rk . (53)

Finally, we bound the last two terms of (45) by using the bootstrap assumption 5 and
the fact that t ≥ T � 1/δ to get

t−1/2 sup
x∈suppω1

|x − ζ1|
∫

|x − ζ1|kω1(x)dx + t−1 sup
x∈suppω1

|x − ζ1|2
∫

|x − ζ1|kω1(x)dx

≤ t−1/4+ε Ik,1 + t−1/2+2ε Ik,1 ≤ Cδ Ik,1. (54)

Combining (45), with (46), and getting error bounds from (47), (48), (49), (50), (53),
and (54), we get

d

dt

∫
fk,2(x)ω1(x)dx = �1

∫
2 sin(2θ)|x − ζ1|kω1(x)dx + O(δ Ik,1 + Rkδ−k).

which completes the proof of (17).
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5. Short Time Behavior

In this section, we assume that T∗ < t0 + t
9/10
0 . We will use rougher versions of estimates

from Section 4. In particular, we use the boundedness of sin to turn (14) into
∫

|x − ζ1|k−2(x − ζ1) · (v2(x) − v2(ζ1))ω1(x)dx = O
(
t−1 Ik,1

)
+ O

(
tε−5/4 Ik,1

)
+ O

(
t

ε−3
2 I

k−1
k

k,1

)
.

We then plug this, the analogous bound for v3, and (13) into (8) to get that whenever
Ik,1 ≥ 1, we have

d

dt
Ik,1 ≤ C

Ik,1
t

+ C(k − 2)tε/2 I
k−4
k

k,1 . (55)

Plugging in k = 2, and using the fact that I2,1(t0) = O(1), we get that for all t ∈ [t0, T∗],
we have

I2,1(t) = O(1) exp

(∫ t0+t
9/10
0

t0

C

t
dt

)
= O(1) < tε/2

so bootstrap assumption 2 is maintained. Now we apply (55) for more general k. Using
bootstrap assumption 3, we get that

Ik,1(T∗) ≤ C + C
∫ T∗

t0

Ik,1
t

+ tε/2 I
k−4
k

k,1 dt

≤ C + Ct9/100

(
tk(1+ε)/4−1
0 + tε/20 tk(1+ε)/4−(1+ε)

0

)

< T k(1+ε)/4∗
so bootstrap assumption 3 is maintained. Now, to verify bootstrap assumption 5, we do
things similarly to section 4. We suppose that there is some p(t) ∈ suppω1 transported
by u such that at time T∗, we have |p(T∗) − ζ1(T∗)| ≥ εT 1/4+ε∗ and we define

t2 = sup
{
s ∈ [t0, T∗]

∣∣ s = t0 or |p(s) − ζ1(s)| <
ε

2
T 1/4+ε∗

}
.

Since |p(t0) − ζ1(t0)| ≤ ρ, we in fact have that t2 > t0 and that

|p(t2) − x(t2)| = ε

2
T 1/4+ε∗ .

Then on the interval [t2, T∗], we have that (35) holds, so
|p(T∗) − x(T∗)| ≤ |p(t2) − x(t2)| + O

(
T 9/10∗ T ε−3/4∗

)
< εT 1/4+ε∗ ,

which gives a contradiction, so bootstrap assumption 5 is maintained. Thus we have
shown that we cannot have T∗ < t0 + t9/100 , so T∗ = ∞, completing the proof of
Theorem 4.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
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A Proof of Lemma

Here we prove Lemma 2. For the first part of the statement, we note that it is known (see
e.g. [1]) that an equilateral triangle configuration of point vortices always evolves via
rigid rotation or translation, regardless of vortex strengths, so our three vortices cannot
be in that arrangement. For any three collinear vortices, the instantaneous derivative of
distances between them is 0, so our three vortices cannot be collinear.
For the second part of the statement, we note that by (1),

(
3∑

i=1

�i

)2

=
3∑

i=1

�2
i + 2

∑

i< j

�i� j > 0

so
∑

�i �= 0.
For the third part of the lemma statement we first want to show that ∇E and ∇ I are

not parallel. We define

Ĩ =
3∑

i=1

3∑

j=1

�i� j |ζi − ζ j |2 = −2

∣∣∣∣∣

3∑

i=1

�iζi

∣∣∣∣∣

2

+ 2
3∑

i=1

�i

⎛

⎝
3∑

j=1

� j

⎞

⎠ |ζi |2

= −2X2 + 2

⎛

⎝
3∑

j=1

� j

⎞

⎠ I = 2

⎛

⎝
3∑

j=1

� j

⎞

⎠ I

so, on the subspace V , we have that Ĩ is proportional to I . Now, we can think of any
small perturbation as a small change in |ζ1 − ζ2|, |ζ1 − ζ3|, |ζ2 − ζ3|, plus a rotation
(this works because the points are not collinear, so there is some room in the triangle
inequality). Then

∂E

∂|ζi − ζ j | = �i� j

|ζi − ζ j | ,
∂ Ĩ

∂|ζi − ζ j | = 2�i� j |ζi − ζ j |.

Then the only way ∇E and ∇ Ĩ are parallel is if all |ζi − ζ j | are equal, that is the points
form the vertices of an equilateral triangle. But we already showed that this cannot
happen. Now, since the gradients are not parallel, we can locally find a surface S in A
through (η1, η2, η3) on which E and Ĩ give coordinates. Since Ĩ is proportional to I , we
have that E and I give coordinates. Rotation clearly does not change the values of E
or I . Also, at the point (η1, η2, η3), we have by conditions (1) and (2) that scaling also
does not change the values of I and E . Thus, rotation and scaling give two vectors fields
that are linearly independent and whose span does not intersect the tangent space of S.
Thus, in some small set U , we can take the coordinates given in the lemma statement.
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