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Abstract: In this paper we describe a systematic method to compute elliptic genera of
(2,2) supersymmetric gauge theories in two dimensions with gauge group G/� (for G
semisimple and simply-connected,� a subgroup of the center ofG) with various discrete
theta angles. We apply the technique to examples of pure gauge theories with low-rank
gauge groups. Our results are consistent with expectations from decomposition of two-
dimensional theories with finite global one-form symmetries and with computations of
supersymmetry breaking for some discrete theta angles in pure gauge theories. Finally,
wemake predictions for the elliptic genera of all the other remaining pure gauge theories
by applying decomposition and matching to known supersymmetry breaking patterns.
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1. Introduction

The low energy infrared (IR) limits of gauge theories have been of interest for many
years. Pure gauge theories in two dimensions with N = (2, 2) supersymmetry have
long been believed to be gapless, as a result of the chiral R-symmetry and anomalous
two-point functions [1, section 3]. The paper [2] made a more refined conjecture: that
the IR limit of a (2,2) supersymmetric pure G gauge theory, G semisimple and simply-
connected, should be a theory of free twisted chiral multiplets, as many as the rank of
G, with R-charges proportional to Casimir degrees. Using nonabelian mirrors [3] it was
checked in [3–5] that the IR theory contains as many twisted chirals as the rank, and in
pure G/� gauge theories for � a subgroup of the center of G, that one gets an identical
free theory for one value of the discrete theta angle, and supersymmetry breaking in the
IR for other values of the discrete theta angle.

All that said, the work [3–5] did not compute elliptic genera, which would provide
a very explicit concrete check of R-charges of free IR twisted chirals. For a pure (2,2)
supersymmetric G gauge theory for G simply-connected, methods to compute elliptic
genera exist (see e.g. [6–9]), and it is being checked [10,11], that those elliptic genera
match the expectations of [2].

The purpose of this paper is to develop the technology to compute elliptic genera of
pure (2,2) supersymmetric G/� gauge theories for various discrete theta angles. The
elliptic genus is given by a sum of Jeffrey-Kirwan residues of a meromorphic form over
the moduli space of flat G/�-connections the torus using supersymmetric localization
[6,7]. Themeromorphic form is obtained by evaluating the one-loop determinants corre-
sponding toG/�-bundles with non-trivial characteristic classes.We combine the results
from different components of the moduli space, weighted by phases from the discrete
theta angle, to determine the elliptic genus.

In Sect. 2 we review known results for elliptic genera of pure supersymmetric gauge
theories in two dimensions. In Sect. 3 we describe the procedure we will use to compute
elliptic genera of pure supersymmetric gauge theories with semisimple but non-simply-
connected gauge groups. The remainder of this paper is spent working out low-rank
examples. We begin in Sect. 4 by discussing pure SO(3) gauge theories. For these, the
elliptic genera in question were previously derived in [12, appendix A], but this case
acts as a test and demonstration of our strategy. In Sect. 5, we compute elliptic genera
of pure SU (3)/Z3 gauge theories; in Sect. 6, pure SO(4) gauge theories; in Sect. 7,
pure Spin(4)/(Z2 × Z2) gauge theories; in Sect. 8, pure SO(5) gauge theories; and, in
Sect. 9, pure Sp(6)/Z2 gauge theories. In each case, the elliptic genus vanishes (and
supersymmetry is broken) unless the discrete theta angle takes the value described in
[3–5]. We conclude by making predictions for elliptic genera of all other pure gauge
theories with semisimple non-simply-connected gauge groups, in Sect. 10.

We will also note in each case that the results are consistent with decomposition [13–
15]. (See also e.g. [16,17] for four-dimensional versions and related analyses.) Briefly,
decomposition is the statement that a two-dimensional theory with a finite global 1-
form symmetry (such as a two-dimensional gauge theory in which a finite center acts
trivially) decomposes1 into a disjoint union of theories which individually do not have
a 1-form symmetry. In the case of a pure G gauge theory for G simply-connected,
with � a finite subgroup of the center, the G gauge theory has a global one-form �

symmetry (sometimes denoted B�), and so decomposes into a disjoint union of G/�

1 This is a stronger statement than just superselection. For example, only in infinite volume does one get a
selection rule from superselection sectors, whereas decomposition holds at finite volume. This distinction is
discussed in greater detail in [16].
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gauge theories with various discrete theta angles, which we write schematically as

G = ⊕
θ∈�̂

(G/�)θ . (1.1)

In particular, the elliptic genus of a pure G gauge theory should be the sum of elliptic
genera of pure G/� gauge theories with various discrete theta angles. The result that
the elliptic genera of G/� gauge theories vanish except for a single discrete theta angle,
for which the elliptic genus matches that of the G gauge theory, is consistent with the
decomposition above.

Also, although we will not emphasize this perspective in this paper, in principle
these computations have a mathematical understanding. Elliptic genera of pure G gauge
theories should, in principle, match [18–20] elliptic genera of classifying stacks BG, the
G-equivariant elliptic genera of points [21,22], and so we are also making predictions
for those elliptic genera.

2. Review and Overview

Pure N = (2, 2) supersymmetric G gauge theory can be described in terms of vector
multiplet consisting of a gauge field Aμ, gauginos λ and λ̄, scalars σ, σ̄ , and a real
auxiliary scalar D. The gauge field strength is a twisted chiral superfield � with lowest
component σ. The Euclidean Yang–Mills Lagrangian is

LYM = Tr
(
F2
12 +D2 +Dμσ̄Dμσ + i D[σ, σ̄ ]− i λ̄γ μDμλ− i λ̄P+[σ, λ]− i λ̄P−[σ̄ , λ]

)
,

(2.1)
where

P± = 1 ± γ3

2
. (2.2)

The classical potential is proportional to Tr
[
σ, σ †

]2
. The classical vacua occur at the

minimum of the potential and satisfy
[
σ, σ †

] = 0. Equivalently, the classical Coulomb
branch of vacua can be described by the vacuumexpectation values of the gauge invariant
polynomials in σ . It is a classical result that this ring of functions is freely generated
by rank(G) generators. However, the potential receives quantum corrections, so the IR
behavior is potentially more complex.

2.1. Prediction for simply-connected semisimple G. The paper [2] proposed that for
G semisimple and simply-connected, the IR theory should be a free theory of twisted
chiral multiplets, Yi (�), i = 1, . . . , rank(G), built out of the generators of the invariant
functions on �, with axial R-charges ri given by twice the Casimir degrees2 di of G
computed from and in one-to-one correspondence with the possible Casimirs (of which
there are as many as the rank). The contribution of a single twisted chiral multiplet Y (�)

with axial R-charge r to the elliptic genus is [7, equ’n (2.11)]

TrRR (−1)FqHL qHR y J = θ1(τ |(1 − r/2)z)

θ1(τ | − (r/2)z)
, (2.3)

2 This follows from the Harish-Chandra isomorphism that relates Casimirs to symmetric invariants.
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where q = exp(2π iτ), y = exp(2π i z), J is the left-moving U (1)R charge, and the
genus is computed for periodic left-moving fermions. Since the low energy theory is a
theory of free twisted chiral multiplets, the elliptic genus is expected to be

∏
i

θ1(τ |(1 − ri/2)z)

θ1(τ | − (ri/2)z)
. (2.4)

For simply-connected G, this will be demonstrated by explicit computation in [11].
For later use, we collect in Table 1 the degrees of Casimirs for simple Lie algebras,

each of which is half the R-charge of a corresponding twisted chiral in Eq. (2.4). For
example, the elliptic genus of a pure G2 gauge theory is predicted to be

θ1(τ | − z)

θ1(τ | − 2z)

θ1(τ | − 5z)

θ1(τ | − 6z)
. (2.5)

As a consistency check, the Casimir degrees di and the dimension of the group G are
related by

dimG =
∑
i

(2di − 1). (2.6)

In passing, identifying R-charges ri = 2di , we can apply the central charge formula3

[23][equ’n (15)] to see that

ceff
3

=
∑
i

(1 − ri ) = −dimG, (2.7)

where ceff is an effective central charge, differing from the ordinary central charge as
[24, equ’n (13)]

ceff = c − 24hmin, (2.8)

for hmin the smallest conformal dimension appearing in the theory, as relevant to the-
ories with continuous spectra [25,26]. We can get the same result from the modular
transformation properties. Applying [7, equ’n (2.7)]

Z

(
−1

τ
,
z

τ

)
= exp

[
ceff
3

π i

τ
z2

]
Z(τ, z) (2.9)

and the modular transformation property [7, equ’n (A.8)]

θ1

(
−1

τ

∣∣∣∣
z

τ

)
= −i

√−iτ exp(π i z2/τ)θ1(τ |z), (2.10)

we see that under τ �→ −1/τ , z �→ z/τ , the elliptic genus of a twisted chiral with
R-charge r (equ’n (2.3)) picks up a phase

exp
(
π i(1 − r)z2/τ

)
, (2.11)

and the elliptic genus of a pure G gauge theory (2.4) picks up a phase

exp

(
π i

∑
i

(1 − ri )z
2/τ

)
= exp

(
−π i(dimG)z2/τ

)
. (2.12)

3 In conventions in which the superpotential obeys W (λri xi ) = λ2W (xi ).
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Table 1. List of Casimir degrees for various gauge groups, each corresponding to half an R-charge

Gauge group Dimension Casimir degrees

SU (n + 1)(An) (n + 1)2 − 1 2, 3, 4, · · · , n + 1
Spin(2n + 1)(Bn) n(2n + 1) 2, 4, 6, · · · , 2n
Sp(2n)(Cn) n(2n + 1) 2, 4, 6, · · · , 2n
Spin(2n)(Dn) n(2n − 1) n; 2, 4, 6, · · · , 2n − 2
G2 14 2, 6
F4 52 2, 6, 8, 12
E6 78 2, 5, 6, 8, 9, 12
E7 133 2, 6, 8, 10, 12, 14, 18
E8 248 2, 8, 12, 14, 18, 20, 24, 30

See e.g. [33, table 5a]

This phase is determined by the smallest conformal weight hmin appearing in the theory,
following [24]. In any event, we see again that the (left-moving) effective central charge
is given by

ceff
3

= −dimG. (2.13)

Intuitively, for theories formulated on S2, the sign of the central charge above is surely
related to the fact that for R charge greater than two, the action has a curvature-dependent
term of the wrong sign [27, section 3.4].

Mathematically, this has a simple understanding. A pure G-gauge theory is a sigma
model on [18–20] the stack BG = [point/G], and this stack has dimension (see e.g.
[28, section 7], [29, example 2.44])

dim [point/G] = −dimG, (2.14)

matching ceff/3 above.

2.2. Non-simply-connected G. In this paper, we will compute elliptic genera of pure
supersymmetric gauge theories with gauge groups G/�, where G is simply-connected
and � is a subgroup of the center of G. Now, a principal G/� bundle on worldsheet T 2

admits a characteristic class we shall denote w ∈ H2(T 2, �) ∼= �. (For example, for
SO(k) bundles, w is the Stiefel–Whitney class w2.) Such theories admit analogues of
theta angles, known as discrete theta angles, in which the path integral is weighted by
phases of the form exp(iθ ·w) for θ a (log of a) character of �, the set of which we shall
denote �̂.

The papers [3–5] have looked at IR behavior of two-dimensional pure (2,2) super-
symmetric gauge theories with non-simply-connected gauge groups G/�. (See also
[12,30,31] for computations of elliptic genera in some examples related to Hori’s dual-
ities [32].) Briefly, these papers found

• If the gauge group is not simply-connected, then for precisely one value of the
discrete theta angle, the IR limit is a theory of free twisted chirals, as many as the
rank (and as many as IR limit of a pure gauge theory with corresponding simply-
connected gauge group). For other values of the discrete theta angle, there are no
supersymmetric vacua, hence supersymmetry is broken in the IR.

• For the one nontrivial case, the IR theory is a theory of as many twisted chiral
multiplets as the rank, matching the IR behavior of a pure G gauge theory.
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Table 2. List of distinguished discrete theta angles for various non-simply-connected gauge groups, for which
a pure gauge theory admits supersymmetric vacua, summarizing results from [3–5]

Gauge group Discrete theta angle for which susy unbroken

SU (k)/Zk −(1/2)k(k − 1) mod k
Spin(2k + 1)/Z2 1 mod 2
Spin(4k)/Z2 × Z2 k(2k − 1) mod 2, 0 mod 2
Spin(4k + 2)/Z4 2k(2k − 1) mod 4
Sp(2k)/Z2 (1/2)k(k + 1) mod 2
E6/Z3 0 mod 3
E7/Z2 1 mod 2

This structure is consistent with the predictions of decomposition [13–15] for two-
dimensional theories with one-form symmetries, as discussed in [3–5].

In this paper, we will compute elliptic genera to check these claims for more general
theories.

To understand some of the quantum subtleties that will arisewhen studying pureG/�

gauge theories, let us briefly review such theories more concretely. The Lagrangian for
such a theory can be written in (2,2) superspace in the form4

− 1

4g2

∫
d4θTr�� +

(
−r + i

θ

2π

) ∫
dθ+dθ

−
Tr�|

θ−=θ
+=0 + c.c., (2.15)

where � is a twisted chiral superfield encoding the gauge field strength, r is a Fayet–
Iliopoulos parameter, and θ the theta angle. In analyzing the low-energy behavior of such
theories one often works on the Coulomb branch, alongwhich there is a twisted one-loop
effective superpotential which for a pure G/� gauge theory with G simply-connected
and � a subgroup of the center, takes the form

Weff = −
∑
a

�a

⎡
⎣−ra + i

θa

2π
+

1

|�|
∑
μ̃

αa
μ̃

(
ln

(∑
b

�bα
b
μ̃

)
− 1

)⎤
⎦ , (2.16)

where now ra and θa are the FI parameters and theta angles for each of the unbroken
U (1)’s on the Coulomb branch. (No further corrections exist beyond one-loop order.)
The first two terms are the (−r + iθ/2π)Tr� of the classical action along the Coulomb
branch, and the last is a loop correction, of the same form commonly seen in theories
with matter, here ultimately due toW bosons. The αa

μ̃
are the root vectors of the nonzero

roots (indexed by μ̃) of the Lie algebra of the gauge group. The second term can be
simplified, and written as (see e.g. [5, section 2.1])

1

|�|
∑
μ̃

αa
μ̃

(
ln

(∑
b

�bα
b
μ̃

)
− 1

)
=

∑
μ̃ pos′

iπ

|�|α
a
μ̃, (2.17)

giving what amounts to a gauge-group-dependent shift of the theta angle. (This was first
observed in [27, equ’n (10.9)].) These additional phases will play an important role in
our computations of elliptic genera of pure G/� gauge theories.

4 See e.g. [34, section 4.1].
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3. Strategy to Compute Elliptic Genera

The elliptic genus of a pure G/�-gauge theory reduces to a residue integral over the
moduli space M of flat G/�-connections on T 2 [6,7]. Principal G/� bundles have a
degree-two characteristic class, valued in�, whichwe shall denotew ∈ H2(T 2, �) ∼= �,
so the moduli space of flat G/� connections is a disjoint union of moduli spaces

M =
⊔

w∈H2(T 2,�)

MG/�,w. (3.1)

In the sector of bundles with w = 0, any G/� bundle lifts to a G bundle. Essentially
as a result, the elliptic genus of a pureG gauge theory matches that of a pureG/� gauge
theory in the sector w = 0, up to a volume factor 1/|� × �| and a Jacobian factor |�|5:

Z(G/�,w = 0) = |�|
|� × �| Z(G) = 1

|�| Z(G). (3.2)

Now, we turn to a G/� gauge theory in a sector in which w 	= 0. Computations in
these sectors will occupy most of the effort in this paper. To describe such bundles, we
pick two holonomies p, q around cycles of the torus, which commute up to an element
w ∈ �:

pq = wqp. (3.3)

The matrices p and q are the holonomies of any bundle about two cycles of the torus,
lifted from G/� to G. Put another way, these almost-commuting holonomies are the
result of lifting commuties holonomies in G/� to pairs in G. Next, we simultaneously
diagonalize the adjoint action of p and q on the generators of the Lie algebra in the
adjoint representation, writing

pT α p−1 = ωα
pT

α, (3.4)

qT αq−1 = ωα
q T

α, (3.5)

where ωα
p,q are phases, which enter into the elliptic genus computation. These phases

also appeared in the calculation of the four-dimensional Witten index [35,36] . Note
that such a diagonalization is not possible for every possible representation in which the
T α may appear; in particular, for the diagonalization above to be possible, one needs
for the representation to be acted upon nontrivially6 by the center detected by p and
q. Additionally the phases for the adjoint representation are sufficient to determine the
phases for all representations when the center of G/� is trivial since the adjoint is a
tensor generator of the representation category [37].

If the phases ωp,q are different from one, then, those ‘directions’ in the group are
fixed. If they are equal to one, on the other hand, then the group is unconstrained in
those directions, and so one must integrate over corresponding Wilson lines, over the
corresponding moduli space of flat connections, to get the elliptic genus.

To the latter end, it can be shown that [38,39]

MG/�,w = MG̃(w),1 (3.6)

5 This arises from the different normalization of the root systems.
6 A potentially useful reference is [40], describing representations for which such a diagonalization is

possible. For a representation in which such a diagonalization is not possible, consider the case G = SU (2),
� = Z2, with p and q in the 3 of SU (2). It is easy to check that the resulting 3 × 3 matrices expressing the
Lie algebra simply cannot be diagonalized with respect to nontrivial p and q.
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Table 3. List of groups G̃(w) whose moduli space of flat connections matches that of a moduli space of flat
G/� connections with nontrivial characteristic class w ∈ H2(T 2, �)

G/� w G̃(w)

An−1 ∼ SU (n)/Zn d SU (m), m = gcd(n, d)

Bn ∼ Spin(2n + 1)/Z2 1 Sp(2n − 2), Spin(2n − 1)
C2n ∼ Sp(4n)/Z2 1 Sp(2n), Spin(2n + 1)
C2n+1 ∼ Sp(4n + 2)/Z2 1 Sp(2n), Spin(2n + 1)
D2n+1 ∼ Spin(4n + 2)/Z4 1 Sp(2n − 2), Spin(2n − 1)

2 Sp(4n − 2), Spin(4n − 1)
3 Sp(2n − 2), Spin(2n − 1)

D2n ∼ Spin(4n)/Z2 × Z2 (1, 0) Sp(2n), Spin(2n + 1)
(0, 1) Sp(4n − 4), Spin(4n − 3)
(1, 1) Sp(2n), Spin(2n + 1)

E6/Z3 1 G2
2 G2

E7/Z2 1 F4

In each case, we assume � is all of the center of simply-connected G, and not a subgroup. In D2n , the
(0, 1) indicates the Z2 whose quotient of Spin(4n) is SO(4n). Note that because the ranks and Weyl groups
match, the moduli space of flat Spin(2k + 1) connections matches that of flat Sp(2k) connections. This table
summarizes results in [41, section 5.4], [42, table 6], and [43, appendix A]

for some other group G̃(w) that depends uponG/� andw, whereM denotes themoduli
space of flat connections. Such groups G̃(w) are listed in7 [41, section 5.4], [42, table
6], and [43, appendix A], and we summarize their results in Table 3. Roughly speaking,
we can think of the groups G̃(w) as being obtained by folding the affine Dynkin diagram
according to the action of w ∈ �.

To describe the moduli spaces MG/�,w=0 more concretely we recall some notions
from the theory of compact Lie groups. Let T a maximal torus of G/� 8 with corre-
sponding Cartan subalgebra h. Let Q be the root lattice, P be the weight lattice, and
�char be the character lattice of G/�. Similarly, let Q∨ be the coroot lattice, P∨ be the
coweight lattice, and �∨

char be the co-character lattice. Then the Cartan torus of G/�

can be identified with h/2π�∨
char . The center of and fundamental groups of G/� are

Z(G/�) ∼= P∨/�∨
char

∼= �char/Q, (3.7)

π1(G/�) ∼= �∨
char/Q

∨ ∼= P/�char . (3.8)

Let
M = hC/(�∨

char + τ�∨
char ) , (3.9)

then the moduli space of flat G/�-connections on T 2 with w = 0 is

MG/�,w=0 = M/W, (3.10)

where W is the Weyl group of G/�.
For G simply-connected the cocharacter lattice is equal to the coroot lattice. In the

opposite extreme of G/� with trivial center, the cocharacter lattice is equal to the
coweight lattice. The relations between the cocharacter lattices mean that the moduli
space MG,1 is an order |� × �| cover of MG/�,w=0.

7 In addition, the paper [44] relates the moduli spaces G̃(w) to G̃(w = 0) by Galois coverings.
8 Not to be confused with the elliptic curve T 2.
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The elliptic genus of a pure G/� theory (with bundles of vanishing characteristic
class) is given by [7]

ZT 2(τ, z, w = 0) = 1

|W |
∑

u∗ ∈M∗
sing

JK − Res
u=u∗

(
Q(u∗), η

)
Z1-loop(τ, z, u) (3.11)

where |W | is the order of the Weyl-group of G.9 The Jeffrey-Kirwan residue operation
[45] JK − Resu=u∗

(
Q(u∗), η

)
assigns a residue to eachpole of Z1-loop inM∗

sing depending
on the charge vectors Q(u∗) responsible for the pole and a covector η. The parameter
q = e2π iτ in Z1-loop specifies the complex structure of the torus T 2 and y = e2π i z is the
fugacity for the left-movingU (1) R-symmetry. The coordinates ua on the moduli space
M can equivalently be described by the coordinates xa = e2π iua . The contribution of a
vector multiplet V with gauge group G/� to Z1-loop for the w = 0 characteristic class
is

ZV,G/�(τ, z, u) =
(

2πη(q)3

θ1(q, y−1)

)rank G ∏
α ∈G

θ1(q, xα)

θ1(q, y−1xα)

rank G∏
a=1

dua . (3.12)

The product is over the roots α of the gauge group and η(q) is the Dedekind eta function.
For bundles with non-trivial characteristic classes w, the contribution to Z1-loop is

modified.Using the eigenvaluesωα
p,q , one can then construct an elliptic genus for bundles

of fixed characteristic class w as a product of ratios

θ1(τ |vα)

θ1(τ | − z + vα)
, (3.13)

for nonzero vα , where

vα = ln
ωα
p

2π i
+ τ ln

ωα
q

2π i
, (3.14)

and a residue integral of the form

(
2πη(q)3

θ1(q, y−1)

)rank G̃(w) ∏
α ∈G

θ1(τ |vα)

θ1(τ | − z + vα)

rank G̃(w)∏
a=1

dua . (3.15)

for every vanishing v. The resulting residue integral is computed as a Jeffrey-Kirwan
residue over (a cover of) the moduli space of those flat connections preserving the
holonomy.

This determines the elliptic genus (for fixed bundle characteristic class w) up to
an overall normalization factor, which reflects residual gauge transformations that pre-
serve the holonomies. For theories of the form SU (n)/Zn , that normalization factor is
computed in e.g. [46, section 2.2.1].

So far we have described how one computes contributions to the elliptic genus from
bundles with different characteristic classes w ∈ H2(T 2, �). Finally, we will combine
them, to form the elliptic genus as a function of the discrete theta angle. These different
contributions are each weighted with potentially two different phases. First, there is a
factor exp(iθ · w), where θ ∈ �̂ is a choice of discrete theta angle. Second, as studied

9 We omit the flavor holonomies ξ since they are absent in pure theories.
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in detail in [5] and reviewed in Sect. 2.2, there is a factor of the form exp(iw · t), where
[5, equ’n (2.7)]

ta = − π i

|�|
∑

μ̃ pos′
αa

μ̃, (3.16)

and w is encoded in wa so that

t · w =
∑
a

tawa . (3.17)

Strictly speaking, the ta are not uniquely defined, as there are e.g. branch cut ambiguities,
but the phase factor above is well-defined, as discussed in detail in [5]. Put another way,
the ta encode a constant shift, due to quantum corrections, to the discrete theta angle θ .

Thus, if we label the contribution to the elliptic genus of a pure G/� gauge theory
in a sector with bundles of characteristic class w by Z(G/�,w), then the elliptic genus
for a general characteristic class has the form

Z(G/�, θ) =
∑
w

exp(iw · θ) exp (iw · t) Z(G/�,w). (3.18)

In the next several sections we will carry out this program for several low-rank ex-
amples. Specifically, we will apply the procedure above to derive elliptic genera for
SU (2)/Z2, SU (3)/Z3, SO(4), Spin(4)/(Z2 × Z2), SO(5), and Sp(6)/Z2 gauge the-
ories with various discrete theta angles. The special case of SU (2)/Z2 was previously
discussed in [12, appendix A]; we recover their results through this systematic method.
In each case, we will find that the elliptic genus vanishes unless the discrete theta angle
takes the value listed in Table 3, as expected [3–5]. We will also see that the results are
consistent with decomposition [13–15].

Furthermore, in each case we discuss, we will also find that the contribution to the
elliptic genus from bundles with characteristic class w 	= 0 matches (up to a phase)
the contribution from bundles of characteristic class w = 0. This is reminiscent of the
fact that elliptic genera are independent of deformations, and so one is naturally led to
wonder if there is a more elegant approach to these computations that demonstrates that
contributions to the elliptic genus are (modulo an overall phase) independent of w. For
example, for sigma models on Calabi–Yau manifolds, the scale r of the Calabi–Yau is
a marginal parameter, so as the elliptic genus is an index, it is independent of r , and the
resulting elliptic genera are necessarily independent of worldsheet instanton corrections
[47,48]. In two-dimensional gauge theories, on the other hand, the gauge coupling is
irrelevant10, so this argument does not apply. In any event, we leave this question for
future work.

4. Pure SU(2)/Z2 = SO(3) Gauge Theories

The elliptic genus of pure SU (2) gauge theory is [6]

1

2

∑

u∗ ∈M+
sing

iη(q)3

θ1(τ | − z)

∮

u∗
du

θ1(τ |2u)

θ1(τ | − z + 2u)

θ1(τ | − 2u)

θ1(τ | − z − 2u)
, (4.1)

10 We should be careful as terms such as ‘marginal’ and ‘irrelevant’ are not well-defined away from fixed
points of renormalization group flow, but we are not aware of examples of two-dimensional (2,2) supersym-
metric gauge theories in which the gauge coupling flows in the IR to a marginal operator.
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where the contributing poles are located at

M+
sing =

{ z

2
,
z + 1

2
,
z + τ

2
,
z + τ + 1

2

}
. (4.2)

Elliptic genera of pure SO(3) gauge theorieswere computed in [12, appendixA]. Briefly,
the authors argued that the pure SU (2) and the SO(3)− theories have the same elliptic
genus, given by

θ1(τ | − z)

θ1(τ | − 2z)
= 1

2

θ1(τ | + 1/2)

θ1(τ | − z + 1/2)

θ1(τ | + τ/2)

θ1(τ | − z + τ/2)

θ1(τ | − (1 + τ)/2)

θ1(τ | − z − (1 + τ)/2)
, (4.3)

while the elliptic genus of the pure SO(3)+ theory vanishes identically. This is consistent
with the results of [5], which argued that in pure SO(3) gauge theories, only for the
nontrivial discrete theta angle are there supersymmetric vacua, and supersymmetry is
broken in the IR in SO(3)+. It is also consistent with decomposition [13–15], which in
this case can be schematically expressed as

SU (2) = SO(3)+ + SO(3)−. (4.4)

In more detail, [12, appendix A] combined the contributions of the two distinct
types of SO(3) bundles. The contribution to the SO(3) elliptic genus from bundles of
vanishing characteristic class is obtained from

1

2

∑

u∗ ∈M+
sing

iη(q)3

θ1(τ | − z)

∮

u∗
du

θ1(τ |u)

θ1(τ | − z + u)

θ1(τ | − u)

θ1(τ | − z − u)
, (4.5)

with a single contributing pole located at M+
sing = z/2. This results in

Z(SO(3)0) = 1

2

θ1(τ | − z)

θ1(τ | − 2z)
, (4.6)

which is the SU (2) elliptic genus up to a factor of 1/|�| = 1/2. As explained in Sect. 3,
this factor arises from the differing character lattices of the SU (2) and SO(3) groups.
Note that all four poles in Eq. 4.2 contribute equally to the SU (2) elliptic genus, but
there is only one pole for the SO(3) elliptic genus. Since there are only 1/|�×�| = 1/4
as many poles, but each pole has a Jacobian contribution of |�| relative to the SU (2)
poles, we arrive at the previously claimed factor of |�|/|� × �| = 1/|�| = 1/2.

The contribution from bundles of nonzero characteristic class is

Z(SO(3)1) = −1

2

θ1(τ | − z)

θ1(τ | − 2z)
. (4.7)

For a discrete theta angle θ ∈ {0, π}, the possible SO(3) elliptic genera are

Z(SO(3)) = Z(SO(3)0) + exp(iθ)Z(SO(3)1), (4.8)

= 1

2

θ1(τ | − z)

θ1(τ | − 2z)
(1 − exp(iθ)) . (4.9)

When θ = 0, this vanishes, and when θ = π , this is nonzero and matches Z(SU (2)).
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For later use, the elliptic genus, given up to numerical factors we will describe later,
is

θ1(τ | + 1/2)

θ1(τ | − z + 1/2)

θ1(τ | + τ/2)

θ1(τ | − z + τ/2)

θ1(τ | − (1 + τ)/2)

θ1(τ | − z − (1 + τ)/2)
(4.10)

can be derived directly from thinking about the contribution of Z1−loop in the sector with
w2 	= 0, in the notation of [6]. Briefly, for w2 	= 0, the moduli space of flat connections
is a point, so that one does not integrate over a space of u’s. Instead, the u’s are fixed,
with holonomies about the T 2 which can be taken to be

diag(−1,−1,+1), diag(+1,−1,−1). (4.11)

An SO(3) bundle with these holonomies cannot be lifted to an SU (2) bundle. A
heuristic way to see this is to observe that the lifts of the holonomies to SU (2) are given
in Eq. 4.19 and they anticommute. We can also see this more formally by computing
the second Stiefel–Whitney class w2, which gives the obstruction to lifting, in this case,
an SO(3) bundle to an SU (2) bundle. With the holonomies above, we can describe this
bundle as

L1 ⊕ L2 ⊕ L3, (4.12)

where L1 and L2 each have nontrivial monodromy about a single S1 on T 2, and L3 =
L1 ⊗ L2. Thus, for example,

w(L1) = 1 + J1, w(L2) = 1 + J2, w(L3) = 1 + J1 + J2, (4.13)

where J1, J2 generate H1(T 2,Z2) = (Z2)
2, and in this case give w1 of L1, L2, respec-

tively. Thus,

w(L1 ⊕ L2 ⊕ L3) = w(L1)w(L2)w(L3) = 1 + J1 J2 + · · · , (4.14)

hence
w2(L1 ⊕ L2 ⊕ L3) = J1 J2, (4.15)

and in particular is nonzero. Thus, indeed, this SO(3) bundle has nonzero w2, and can
not be lifted to an SU (2) bundle.

Returning to the computation of the elliptic genus for the pure SO(3) gauge theory
in a sector in which w2 	= 0, in terms of holonomies encoded in the parameter u, it can
be written

∏
rootsα

θ1(τ |α · u)

θ1(τ | − z + α · u)
= θ1(τ |u)

θ1(τ | − z + u)

θ1(τ |0)
θ1(τ | − z)

θ1(τ | − u)

θ1(τ | − z − u)
, (4.16)

corresponding to the three generators of the Lie algebra of SO(3). The three boundary
conditions correspond to values of u as follows:

u (U1,U2)

0 (+1,+1)
1/2 (−1,+1)
τ/2 (+1,−1)

(1 + τ)/2 (−1,−1)

Plugging in the single holonomy, we find that the elliptic genus for the w2 	= 0 sector
of the pure SO(3) gauge theory is proportional to

θ1(τ | + 1/2)

θ1(τ | − z + 1/2)

θ1(τ | + τ/2)

θ1(τ | − z + τ/2)

θ1(τ | − (1 + τ)/2)

θ1(τ | − z − (1 + τ)/2)
, (4.17)
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confirming the results of [12, appendix A] up to numerical factors we will describe
momentarily.

So far, we have discussed known results for SU (2) elliptic genera, and also used a
trick to compute the SO(3) elliptic genus in a sector where the characteristic class is
nontrivial. Let us now repeat the computation systematically using themethod of Sect. 3,
which we will apply to other examples.

Following the method of Sect. 3, we compute the contribution to the elliptic genus
from SO(3)bundles of vanishing characteristic (Stiefel–Whitney) classw2.Asdiscussed
there, the contribution in this sector is the same as that of a pure SU (2) theory, albeit
with a constant factor of 1/|�| = 1/2 from Sect. 3:

Z(SO(3), w2 = 0) = 1

2

θ1(τ | − z)

θ1(τ | − 2z)
. (4.18)

Next, we compute the contribution from SO(3) bundles of nontrivial characteristic
class. As in Sect. 3, we define this sector through holonomies lifted to SU (2), where
they anticommute. Specifically, consider the SU (2) matrices

p =
[

0 1
−1 0

]
, q =

[
i 0
0 −i

]
. (4.19)

It is easy to verify that pq = −qp. Viewing p and q as holonomies, they define a flat
SU (2)/Z2 = SO(3) bundle with nontrivial characteristic class. Under the adjoint action
of p and q, the Pauli sigma matrices are diagonal:

pσ1 p
−1 = −σ1, pσ2 p

−1 = +σ2, pσ3 p
−1 = −σ3, (4.20)

qσ1q
−1 = −σ1, qσ2q

−1 = −σ2, qσ3q
−1 = +σ3. (4.21)

From Table 3, we see that the moduli space of flat SO(3) connections with nontrivial
characteristic class is a point. We compute the contribution to the elliptic genus for this
nontrivial characteristic class by applying Eq. 3.15 with the phases listed above to get
the the product of theta functions in Eq. 4.17 up to a constant factor.

Finally, to derive the elliptic genus for bundles of nonzero second Stiefel–Whitney
class, we need to add a suitable numerical factor, corresponding to dividing out by the
number of residual gauge transformations which preserve the holonomies. From [46,
section 2.2.1] for this case, we multiply the theta function product (4.17) by a factor of
1/|W |, where W = Z2 × Z2. Thus, we have that

Z(SO(3), w2 	= 0) = 1

4

θ1(τ | + 1/2)

θ1(τ | − z + 1/2)

θ1(τ | + τ/2)

θ1(τ | − z + τ/2)

θ1(τ | − (1 + τ)/2)

θ1(τ | − z − (1 + τ)/2)
,

= 1

2

θ1(τ | − z)

θ1(τ | − 2z)
. (4.22)

Now, let us assemble these contributions. For a discrete theta angle θ ,

Z(SO(3), θ) = Z(SO(3), w2 = 0)+exp(iw·t) exp(iw·θ)Z(SO(3), w2 	= 0). (4.23)

As computed in [5, section 3.1], t = −π i , hence

exp(iw · t) = −1, (4.24)
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and trivially exp(iw · θ) = exp(iθ), hence

Z(SO(3), θ) = Z(SO(3), w2 = 0) − exp(iθ)Z(SO(3), w2 	= 0), (4.25)

= 1

2

θ1(τ | − z)

θ1(τ | − 2z)
(1 − exp(iθ)) , (4.26)

which duplicates the SO(3) elliptic genus as a function of θ computed in [12, appendix
A].

5. Pure SU(3)/Z3 Gauge Theories

In this section, we apply the method of Sect. 3 to compute the elliptic genus of a pure
supersymmetric SU (3)/Z3 as a function of the discrete theta angle. First, for a vanishing
characteristic class, from Eq. (3.2), the elliptic genus of the pure SU (3)/Z3 gauge theory
is the same as the elliptic genus of the pure SU (3) gauge theory, up to a factor of 1/|�|:

Z(SU (3)/Z3, w = 0) = 1

3
Z(SU (3)) = 1

3

θ1(τ | − z)

θ1(τ | − 3z)
. (5.1)

Next,we consider the elliptic genus of a pure SU (3)/Z3 gauge theorywith a nontrivial
characteristic class.We can describe an SU (3)/Z3 bundlewith nonzerow ∈ H2(T 2,Z3)

as two holonomies p and q in SU (3) such that

pq = wqp (5.2)

for w = exp(2π ik/3) with k = ±1. To that end, consider the SU (3) matrices

p =
⎡
⎣

w 0 0
0 1 0
0 0 w−1

⎤
⎦ , q =

⎡
⎣
0 1 0
0 0 1
1 0 0

⎤
⎦ , (5.3)

then, using w3 = 1, one can verify that

pq = wqp. (5.4)

Taking linear combinations of the Lie algebra generators λa (in the three-dimensional
adjoint representation) to solve

pλa p
−1 = ωa

pλa, qλaq
−1 = ωa

qλa, (5.5)

we find that

(ωp, ωq) ∈ {(1, w), (1, w2), (w2, 1), (w2, w2), (w2, w), (w, 1), (w,w2), (w,w)}.
(5.6)

In particular, the dimension of this component of the moduli space of flat SU (3)/Z3
connections is zero, as can be confirmed from Table 3.

Using Eq. 3.15with these phases, we find that the elliptic genus of the pure SU (3)/Z3
gauge theory with nontrivial bundle is

1

|W |
θ1(τ | τk/3)

θ1(τ | − z + τk/3)

θ1(τ | − τk/3)

θ1(τ | − z − τk/3)

θ1(τ | − k/3)

θ1(τ | − z − k/3)

θ1(τ | − k/3 − τk/3)

θ1(τ | − z − k/3 − τk/3)

· θ1(τ | − k/3 + τk/3)

θ1(τ | − z − k/3 + τk/3)

θ1(τ | k/3)
θ1(τ | − z + k/3)

θ1(τ | k/3 − τk/3)

θ1(τ | − z + k/3 − τk/3)

· θ1(τ | k/3 + τk/3)

θ1(τ | − z + k/3 + τk/3)
, (5.7)
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where W is the unbroken gauge symmetry of the pair (p, q), which for this case is [46,
section 2.2.1]W = Z3 ×Z3, hence |W | = 9. Recall that w = exp(2π ik/3) for k = ±1
(corresponding to the two nontrivial possible values of the characteristic class), Note
that this expression is symmetric under k ↔ −k.

For k = 1, the product above can be written more succinctly as

1

9

1∏
j,�=−1

[
θ1(τ | j/3 + �τ/3)

θ1(τ | j/3 + �τ/3 − z)

θ1(τ | − z)

θ1(τ |0)
]

, (5.8)

where in the product one should omit the case j = k = 0. One can show that11

1∏
j,�=−1

[
θ1(τ | j/3 + �τ/3)

θ1(τ | j/3 + �τ/3 − z)

θ1(τ | − z)

θ1(τ |0)
]

= 3
θ1(τ | − z)

θ1(τ | − 2z)

θ1(τ | − 2z)

θ1(τ | − 3z)
, (5.9)

where y = exp(2π i z).
Now, let us assemble these pieces to build the elliptic genus of the pure SU (3)/Z3

theory with discrete theta angle θ ∈ {0, 2π/3, 4π/3}. From [5, section 3.2], the quantum
correction is given by

ta = 2π i

3
ma, (5.10)

where ∑
a

ma ≡ 0 mod 3. (5.11)

Without loss of generality, we can choose m1 = 0 = m2, hence the phase factor

exp(iw · t) = +1, (5.12)

and so the elliptic genus can be written as a function of θ ∈ {0, 2π/3, 4π/3} as
Z(SU (3)/Z3, θ) = Z(SU (3)/Z3, w = 0) + exp(iθ)Z(SU (3)/Z3, w = 1)

+ exp(−iθ)Z(SU (3)/Z3, w = 2), (5.13)

= 1

3

θ1(τ | − z)

θ1(τ | − 3z)
(1 + exp(iθ) + exp(−iθ)) . (5.14)

As a consistency check, the reader should note that for θ 	= 0, the expression above for
the elliptic genus vanishes, whereas for θ = 0, it matches that of the pure SU (3) gauge
theory. This is consistent with the computation in [5, section 3.2] that supersymmetry is
only unbroken in a supersymmetric pure SU (3)/Z3 gauge theory when θ = 0.

Furthermore,
∑

θ=0,±2π/3

1

3

θ1(τ | − z)

θ1(τ | − 3z)
(1 + exp(iθ) + exp(−iθ)) = θ1(τ | − z)

θ1(τ | − 3z)
= Z(SU (3)).

(5.15)
This matches the prediction of decomposition [13–15], which in this case schematically
says that

SU (3) = (SU (3)/Z3)θ=0 + (SU (3)/Z3)θ=2π/3 + (SU (3)/Z3)θ=4π/3 . (5.16)

11 A careful reader will observe that if we had instead chosen k = 1, 2, we would have crossed a branch
cut, which can generate factors such as y3. We note that fact here, but it will not play a role in our further
computations.
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6. Pure SO(4) Gauge Theories

Let us now turn to the elliptic genera of pure SO(4) gauge theories. These can be derived
from the results above for pure SO(3) gauge theories.

First, consider a pure SO(4) theory in the sector in which w2 vanishes (so that all
bundles can be lifted to Spin(4) bundles). Now, Spin(4) = SU (2) × SU (2), so the
elliptic genus in this sector is the product of elliptic genera corresponding to two pure
SU (2) gauge theories. Thus, as explained in Sect. 3, the elliptic genus of a pure SO(4)
gauge theory in a sector with w2 = 0 is

1

2

(
θ1(τ | − z)

θ1(τ | − 2z)

)2

, (6.1)

taking into account the constant factor of 1/|�| from Sect. 3. This is consistent with the
prediction (2.4) since there are two Casimirs each of the form Tr �2.

Now, let us turn to the sector in which w2 	= 0. Here, we can apply the same analysis
as in the case of the analogous SO(3) sectors. A set of holonomies describing such
SO(4) bundles are given by

diag(+1,−1,−1,+1), diag(+1,+1,−1,−1). (6.2)

It is straightforward to check that these holonomies describe an SO(4) bundle with
nonzerow2, and from Table 3, the moduli space of flat SO(4) connections with nonzero
w2 is a point. These holonomies emerge as a special case of the results in [9, equ’n
(3.2)]. We can think of these holonomies as describing transformations under one of the
two factors in SO(4) = (SU (2) × SU (2))/Z2. Now, the nonzero roots of SO(4) can
be expressed as

±u1 ± u2, (6.3)

where u1,2 couple to Cartan holonomies. If one of the two SU (2) factors has trivial
holonomy, then we can set u1 = 0, in which case, these roots become two copies of the
roots of SO(3). Using previous results for SO(3) holonomies and elliptic genera, we
immediately have that the SO(4) elliptic genus for w2 	= 0 is proportional to

[
θ1(τ | + 1/2)

θ1(τ | − z + 1/2)

θ1(τ | + τ/2)

θ1(τ | − z + τ/2)

θ1(τ | − (1 + τ)/2)

θ1(τ | − z − (1 + τ)/2)

]2
=

[
2

θ1(τ | − z)

θ1(τ | − 2z)

]2
,

(6.4)
which from Eq. (4.3) is proportional to the elliptic genus for pure SO(4) gauge theories
with vanishing w2.

Now, let us assemble these contributions. In principle, for discrete theta angle θ ∈
{0, π},
Z(SO(4), θ) = Z(SO(4), w = 0) + exp(iw · t) exp(iw · θ)Z(SO(4), w 	= 0). (6.5)

As computed in [5], ta = iπma where
∑
a

ma ≡ 1 mod 2, (6.6)

hence
exp(iw · t) = −1. (6.7)
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Thus, the elliptic genus is given by

Z(SO(4), θ) = 1

2

(
θ1(τ | − z)

θ1(τ | − 2z)

)2

(1 − exp(iθ)) . (6.8)

As a consistency check, note that Z(SO(4), θ) vanishes for θ = 0,which is consistent
with the result [3, section 13.1] that supersymmetry is broken in this theory for θ = 0.

As another consistency check, note that

∑
θ=0,π

1

2

(
θ1(τ | − z)

θ1(τ | − 2z)

)2

(1 − exp(iθ)) =
(

θ1(τ | − z)

θ1(τ | − 2z)

)2

, (6.9)

the elliptic genus of the pure Spin(4) theory. This confirms the prediction of decompo-
sition [13–15] in this case, which schematically says

Spin(4) = SO(4)θ=0 + SO(4)θ=π . (6.10)

7. Pure Spin(4)/(Z2 × Z2) Gauge Theories

The group Spin(4) = SU (2) × SU (2), so the analysis of this group will be closely
related to the analysis of SU (2). We can describe the Lie algebra of Spin(4) in terms
of block-diagonal matrices and we can describe sectors with nontrivial characteristic
classes by taking holonomies to be of the form

diag(p, 1), diag(q, 1) (7.1)

for one Z2 and
diag(1, p), diag(1, q) (7.2)

for the other Z2. Proceeding in a simple generalization of the analysis for a single copy
of SU (2), we find results for elliptic genera as follows:

1. Vanishing characteristic class. In this case, the elliptic genus is a product of two
copies of the SU (2) elliptic genus (divided by a factor of |Z2 × Z2| = 4):

1

4
(Z(SU (2)))2 = 1

4

(
θ1(τ | − z)

θ1(τ | − 2z)

)2

. (7.3)

2. Nontrivial characteristic class in oneZ2. Here, if we let Z(SO(3)1) denote the elliptic
genus of a single SO(3) theory with nontrivial characteristic class, then the elliptic
genus is given by

1

2
Z(SU (2))Z(SO(3)1) = 1

4

(
θ1(τ | − z)

θ1(τ | − 2z)

)2

(7.4)

(up to a phase).
3. Nontrivial characteristic classes in both Z2’s. Here, the elliptic genus is given by

(Z(SO(3)1))
2 =

(
1

2

θ1(τ | − z)

θ1(τ | − 2z)

)2

(7.5)

(up to a phase).
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In the expressions above, we have used that

Z(SU (2)) = θ1(τ | − z)

θ1(τ | − 2z)
(7.6)

and

Z(SO(3)1) = 1

2

θ1(τ | − z)

θ1(τ | − 2z)
(7.7)

up to a phase, matching [12].
Now, let us assemble these results. In principle, a sector of bundles of nontrivial

characteristic class should be weighted by factors exp(iw · t) and exp(iθ), for θ a
discrete theta angle, and using results in [5], one can derive both phases for each sector.
However, in this case there is a faster way, as the gauge group can equivalently be written
as SO(3)× SO(3), so we can reuse the results of [12, appendix A] to immediately write
the elliptic genus of a pure Spin(4)/Z2 × Z2 gauge theory with discrete theta angles
(θ1, θ2), θi ∈ {0, π} as

[
θ1(τ | − z)

θ1(τ | − 2z)

]2 (
1 − exp(iθ1)

2

)(
1 − exp(iθ2)

2

)
. (7.8)

In particular, note that

∑
θ1,θ2∈{0,π}

[
θ1(τ | − z)

θ1(τ | − 2z)

]2 (
1 − exp(iθ1)

2

)(
1 − exp(iθ2)

2

)
=

[
θ1(τ | − z)

θ1(τ | − 2z)

]2
,

(7.9)
and so we see that the elliptic genus of the pure Spin(4) theory matches that of the sum
of the elliptic genera of pure Spin(4)/Z2×Z2 theories with the various possible discrete
theta angles, as expected from decomposition [13–15] of two-dimensional theories with
a B(Z2 × Z2) symmetry.

8. Pure SO(5) Gauge Theories

Now, let us turn to elliptic genera for pure SO(5) gauge theories. From Eq. (2.4) and
the fact that there are two operators, tr �2 and tr �4, of R-charges 4 and 8, one expects
that the elliptic genus of the pure Spin(5) theory and that of a pure SO(5) theory for one
value of the discrete theta angle is

θ1(τ | − z)

θ1(τ | − 2z)

θ1(τ | − 3z)

θ1(τ | − 4z)
, (8.1)

as discussed in Sect. 2. This will also be derived by a direct residue computation in [11].
For bundles with vanishing w2, from Eq. (3.2), the contribution to the elliptic genus

of the pure SO(5) gauge theory is 1/2 of the elliptic genus of the pure Spin(5) theory

1

2

θ1(τ | − z)

θ1(τ | − 2z)

θ1(τ | − 3z)

θ1(τ | − 4z)
, (8.2)

as discussed in Sect. 3.
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Table 4. List of eigenvalues of SO(5) under the adjoint action of p, q

ωp ωq θ argument

−1 −1 −(1 + τ)/2
−1 +1 1/2
+1 −1 τ/2
+1 +1 0
− exp(2π iλ1) − exp(2π iλ2) −(1 + τ)/2 + u
+ exp(−2π iλ1) − exp(−2π iλ2) τ/2 − u
− exp(−2π iλ1) − exp(−2π iλ2) −(1 + τ)/2 − u
exp(2π iλ1) − exp(2π iλ2) τ/2 + u
− exp(2π iλ1) + exp(2π iλ2) 1/2 + u
− exp(−2π iλ1) + exp(−2π iλ2) 1/2 − u

Next, let us consider the case of nonzero w2, which we analyze following the pattern
of Sect. 3. Following [9, equ’n (3.3)], we can express the holonomies p, q in the form

p = diag (exp(2π iλ1σ2),−1,−1,+1) , q = diag (exp(2π iλ2σ2),+1,−1,−1) .

(8.3)
Since we have already descended to SO(5) matrices, and are not working in Spin(5),
these matrices commute. Then, we diagonalize, finding a basis T α of the Lie algebra
such that

pT α p−1 = ωα
pT

α, qT αq−1 = ωα
q T

α. (8.4)

Doing so, we find the eigenvalues ωα
p,q , which we list in Table 4. In each case, the θ

argument is computed as
lnωα

p

2π i
+ τ

lnωα
q

2π i
, (8.5)

and u = λ1 + τλ2. The number of eigenvalues (ωp, ωq) = (1, 1) gives the dimension
of the residue integral, as it reflects moduli of flat connections that are not constrained
by the holonomies p, q.

Alternatively, one could think of Table 4 in terms of a (maximal-rank) SO(2)×SO(3)
subgroup of SO(5). The weights of the nonzero roots of SO(5) are

α · u ∈ {±u1 ± u2,±u1,±u2} , (8.6)

In principle, for nonzero holonomies, the product over roots is of the same form as in
the case w2 = 0, except that the values of one of the ui are constrained (to match those
of SU (2), while the other is unconstrained. Thinking of the roots above in this fashion
can also be used to generate Table 4.

In any event, from Table 4, we read off a one-dimensional residue integral, propor-
tional to

N

2

(
2πη(q)3

θ1(τ | − z)

) ∮
du

2π i

· θ1(τ |u + 1/2)

θ1(τ | − z + u + 1/2)

θ1(τ |u + τ/2)

θ1(τ | − z + u + τ/2)

θ1(τ |u − (1 + τ)/2)

θ1(τ | − z + u − (1 + τ)/2)

· θ1(τ | − u + 1/2)

θ1(τ | − z − u + 1/2)

θ1(τ | − u + τ/2)

θ1(τ | − z − u + τ/2)

θ1(τ | − u − (1 + τ)/2)

θ1(τ | − z − u − (1 + τ)/2)
, (8.7)
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where

N = θ1(τ | + 1/2)

θ1(τ | − z + 1/2)

θ1(τ | + τ/2)

θ1(τ | − z + τ/2)

θ1(τ | − (1 + τ)/2)

θ1(τ | − z − (1 + τ)/2)
, (8.8)

= 2
θ1(τ | − z)

θ1(τ | − 2z)
, (8.9)

where the second line follows from [12, equ’n (A.6)].
From Table 3, the moduli space of flat SO(5) connections with nontrivial character-

istic class is the same as the moduli space of flat SU (2) connections, i.e., T 2/Z2, which
is the origin of the integral above. We integrate over the covering space T 2, and add a
factor of 1/2 (given in the expression above) to take into account the fact that we are
integrating over a double cover of the moduli space.

Let us now evaluate this integral. Following the Jeffrey–Kirwan residue prescription
in this case, we consider residues about three of the six poles, defined by denominators
with positive u coefficients. (Alternatively, we could sum only over poles with negative
u coefficients, but we pick the former convention in this paper.) These poles are given
by

u = z − 1/2, z − τ/2, z + (1 + τ)/2. (8.10)

The fact that the integrand is symmetric under u �→ −u reflects the Weyl group action
on the moduli space of flat SU (2) connections. Also note that the prescription above is
summing over distinct residues which are not related by the Weyl group.

We will use the identity [6, equ’n (B.6)]

θ ′
1(τ |0) = 2πη(q)3, (8.11)

where the derivative is taken with respect to the second variable. As a result, and using
the fact that [6, equ’n (B.4)]

θ1(τ |z + a + bτ) = (−)a+b exp(−2π ibz − iπb2τ)θ1(τ |z) (8.12)

for a, b ∈ Z, one has [6, equ’n (B.7)]

1

2π i

∫

u=a+bτ

du

θ1(τ |u)
= (−)a+b

exp(iπb2τ)

θ ′
1(τ |0) = (−)a+b

exp(iπb2τ)

2πη(q)3
, (8.13)

for a, b ∈ Z.
From the pole at u = z − 1/2, we have a contribution

1

2

N

θ1(τ | − z)
θ1(τ | + z)

θ1(τ |z − 1/2 + τ/2)

θ1(τ | − 1/2 + τ/2)

θ1(τ |z − 1/2 − (1 + τ)/2)

θ1(τ | − 1/2 − (1 + τ)/2)

·θ1(τ | − z + 1/2)

θ1(τ | − 2z)

θ1(τ | − z + 1/2 + τ/2)

θ1(τ | − 2z + 1/2 + τ/2)

θ1(τ | − z + 1/2 − (1 + τ)/2)

θ1(τ | − 2z + 1/2 − (1 + τ)/2)
. (8.14)

From the pole at u = z − τ/2, we have a contribution

1

2

N

θ1(τ | − z)
θ1(τ | + z)

θ1(τ |z + 1/2 − τ/2)

θ1(τ | + 1/2 − τ/2)

θ1(τ |z − τ/2 − (1 + τ)/2)

θ1(τ | − τ/2 − (1 + τ)/2)

· θ1(τ | − z + τ/2 + 1/2)

θ1(τ | − 2z + τ/2 + 1/2)

θ1(τ | − z + τ)

θ1(−z + τ)

θ1(τ | − z − 1/2)

θ1(τ | − 2z − 1/2)
. (8.15)
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From the pole at u = z + (1 + τ)/2, we have a contribution

1

2

N

θ1(τ | − z)
θ1(τ | + z)

θ1(τ |z + 1/2 + (1 + τ)/2)

θ1(1/2 + (1 + τ)/2)

θ1(τ |z + 1/2 + τ)

θ1(τ |1/2 + τ)

· θ1(τ | − z − τ/2)

θ1(τ | − 2z − τ/2)

θ1(τ | − z − 1/2)

θ1(τ | − 2z − 1/2)

θ1(τ | − z − 1 − τ)

θ1(τ | − 2z − 1 − τ)
. (8.16)

One can verify (e.g. numerically) that the sum of these residues is

2
θ1(τ | − z)

θ1(τ | − 2z)

θ1(τ | − 3z)

θ1(τ | − 4z)
. (8.17)

To derive Z(SO(5), w 	= 0), we still need a numerical factor, 1/|W | for some W as
in [46]. Rather than compute W directly, for the moment, we write

Z(SO(5), w 	= 0) = αZ(SO(5), w = 0) (8.18)

for some positive real number α, which we will compute by using known results for
supersymmetry breaking.

Now, let us assemble these results into the elliptic genus for SO(5) with discrete
theta angle θ ∈ {0, π}. The contribution from the sector with w2 = 0 is independent of
θ , and is just a factor of 1/|�| away from the elliptic genus of Spin(5):

Z(SO(5), w = 0) = 1

2

θ1(τ | − z)

θ1(τ | − 2z)

θ1(τ | − 3z)

θ1(τ | − 4z)
. (8.19)

Next, we consider the contribution from the sector with w 	= 0. There is a factor
of exp(iθ) from the discrete theta angle θ ∈ {0, π}. In addition, there is also a phase
exp(iw · t) where, from the analysis of [5],

ta = iπma, (8.20)

where ∑
a

ma ≡ 1 mod 2. (8.21)

As a result, exp(iw · t) = −1.
Putting this together, we have the elliptic genus of a pure supersymmetric SO(5)

gauge theory as a function of discrete theta angle θ ∈ {0, π}:
Z(SO(5), θ) = Z(SO(5), w = 0) − exp(iθ)Z(SO(5), w 	= 0), (8.22)

= 1

2

θ1(τ | − z)

θ1(τ | − 2z)

θ1(τ | − 3z)

θ1(τ | − 4z)
(1 − α exp(iθ)) . (8.23)

From [3, section 13.2], we know that supersymmetry is broken in pure SO(5) theories
with θ = 0, hencewemust require that α = 1, hence the elliptic genus of the pure SO(5)
theory with discrete theta angle θ is

Z(SO(5), θ) = 1

2

θ1(τ | − z)

θ1(τ | − 2z)

θ1(τ | − 3z)

θ1(τ | − 4z)
(1 − exp(iθ)) . (8.24)

As a consistency check, note that α is a positive real number, as expected—phase
factors have already been accounted for. As another consistency check, note that for
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θ = π , the elliptic genus of the pure SO(5) gauge theory matches that of the Spin(5)
theory, in agreement with expectations from [3, section 13.2].

As another consistency check, note that this implies that the elliptic genus of the pure
Spin(5) theory is the sum of the elliptic genera of the pure SO(5) theories with either
value of θ :

Spin(5) = SO(5)θ=0 + SO(5)θ=π , (8.25)

which is consistent with decomposition of two-dimensional theories with a BZ2 sym-
metry [13–15].

9. Pure Sp(6)/Z2 Gauge Theories

We now turn to pure Sp(6)/Z2 gauge theories (in conventions in which Sp(2) =
SU (2)). Since Sp(2) = SU (2) and Sp(4) = Spin(5), the first interesting case amongst
Sp(2k)/Z2 is Sp(6)/Z2.

As before, for bundles of vanishing characteristic class, from Eq. (3.2), the elliptic
genus matches that of the pure Sp(6) gauge theory, up to the factor 1/|�|:

Z(Sp(6)/Z2, w = 0) = 1

2
Z(Sp(6)) = 1

2

θ1(τ | − z)

θ1(τ | − 2z)

θ1(τ | − 3z)

θ1(τ | − 4z)

θ1(τ | − 5z)

θ1(τ | − 6z)
, (9.1)

as discussed in Sect. 3.
To describe a nontrivial bundle, we give two anticommuting holonomies in Sp(2k),

which following [49, section 4.1], [50, equ’n (8)] we can take to be

p = diag
(
λ1,−λ1, i,−i,−λ−1

1 , λ−1
1

)
, (9.2)

q = diag

([
0 −λ2

−λ2 0

]
,

[
0 −i
−i 0

]
,

[
0 −λ−1

2
−λ−1

2 0

])
, (9.3)

and where we take the symplectic form to be

� =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0 0 −1
0 0 0 0 −1 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, (9.4)

so that
pT�p = �, qT�q = �. (9.5)

Following the procedure of Sect. 3, we diagonalize a basis of the Lie algebra 12 with
respect to the diagonal action of p, q above. The eigenvalues ωα

p,q of the adjoint action
are given in Table 5.

In Table 5,

u = ln λ1

2π i
+ τ

ln λ2

2π i
, (9.6)

12 In case the reader finds it helpful, the Lie algebra with the symplectic form given in Eq. (9.4) is described
in detail in [51, Chapter 30].



Elliptic Genera of Pure Gauge Theories 289

Table 5. Table of eigenvalues of the adjoint action of the holonomy matrices

ωp ωq θ argument

λ−2
1 −λ−2

2 τ/2 − 2u
λ−2
1 λ−2

2 −2u
−λ−2

1 λ−2
2 1/2 − 2u

−iλ−1
1 −iλ−1

2 3/4 + 3τ/4 − u

iλ−1
1 −iλ−1

2 1/4 + 3τ/4 − u

−iλ−1
1 iλ−1

2 3/4 + τ/4 − u

iλ−1
1 iλ−1

2 1/4 + τ/4 − u
−1 −1 −(1 + τ)/2
−1 −1 −(1 + τ)/2
1 −1 τ/2
1 −1 τ/2
−1 1 1/2
−1 1 1/2
1 1 0
−iλ1 −iλ2 3/4 + 3τ/4 + u
iλ1 −iλ2 1/4 + 3τ/4 + u
−iλ1 iλ2 3/4 + τ/4 + u
iλ1 iλ2 1/4 + τ/4 + u
λ21 −λ22 τ/2 + 2u
λ21 λ22 2u
−λ21 λ22 1/2 + 2u

and the θ coefficient is
lnωα

p

2π i
+ τ

lnωα
q

2π i
. (9.7)

As a simple consistency check, note that the number of entries, 21, is the same as the
dimension of Sp(6).

The fact that there is only one entry in Table 5 with p, q eigenvalues (1, 1)means that
the elliptic genus will be computed by a one-dimensional residue integral. From Table 3,
we see that the moduli space of flat Sp(6)/Z2 connections with nontrivial characteristic
class is the same as the moduli space of SU (2) connections—indeed, one-dimensional.
The moduli space is T 2/Z2, but we will integrate over the T 2 cover, quotienting by a
factor of 2 to reflect that fact.

Putting this together, the elliptic genus of a pure Sp(6)/Z2 gauge theory with bundles
of nontrivial characteristic class is proportional to

N

2

(
2πη(q)3

θ1(τ | − z)

) ∮
du

2π i

· θ1(τ |3/4 + 3τ/4 + u)

θ1(−z + 3/4 + 3τ/4 + u)

θ1(τ |1/4 + 3τ/4 + u)

θ1(τ | − z + 1/4 + 3τ/4 + u)

θ1(τ |3/4 + τ/4 + u)

θ1(τ | − z + 3/4 + τ/4 + u)

· θ1(τ |1/4 + τ/4 + u)

θ1(τ | − z + 1/4 + τ/4 + u)

θ1(τ |τ/2 + 2u)

θ1(τ | − z + τ/2 + 2u)

θ1(τ |2u)

θ1(τ | − z + 2u)

θ1(τ |1/2 + 2u)

θ1(−z + 1/2 + 2u)

· θ1(τ |3/4 + 3τ/4 − u)

θ1(−z + 3/4 + 3τ/4 − u)

θ1(τ |1/4 + 3τ/4 − u)

θ1(τ | − z + 1/4 + 3τ/4 − u)

θ1(τ |3/4 + τ/4 − u)

θ1(τ | − z + 3/4 + τ/4 − u)

· θ1(τ |1/4 + τ/4 − u)

θ1(τ | − z + 1/4 + τ/4 − u)

θ1(τ |τ/2 − 2u)

θ1(τ | − z + τ/2 − 2u)

θ1(τ | − 2u)

θ1(τ | − z − 2u)

θ1(τ |1/2 − 2u)

θ1(−z + 1/2 − 2u)
,

(9.8)
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where

N =
[

θ1(τ | − (1 + τ)/2)

θ1(τ | − z − (1 + τ)/2)

θ1(τ |τ/2)

θ1(τ | − z + τ/2)

θ1(τ |1/2)
θ1(τ | − z + 1/2)

]2
, (9.9)

=
[
2

θ1(τ | − z)

θ1(τ | − 2z)

]2
, (9.10)

using [12, appendix A]. The overall factor of 1/2 is due to the fact that we are integrating
over the double-cover T 2 of the moduli space of flat connections.

The reader will note that the expression above is symmetric under u ↔ −u. This
reflects the Weyl group action on the moduli space of flat SU (2) connections, whose
double-cover we are integrating over in the expression above.

Following the Jeffrey–Kirwan residue prescription, we will take poles of denomina-
tors in which u appears with a positive coefficient. (Alternatively, we could equivalently
take poles in which u appears with negative coefficient, but we will use the positive co-
efficient prescription in this paper.) In passing, note that none of these poles are related
by the Weyl group action to one another.

Four of the poles are at

u = z − 3/4 − 3τ/4, z − 1/4 − 3τ/4, z − 3/4 − τ/4, z − 1/4 − τ/4. (9.11)

To find all of the remaining poles, one must take into account the periodicities of the
theta function. Taking those into account, we find four poles at

2u = z− τ/2+ {0, 1, τ, 1+ τ }, or u = z/2− τ/4+ {0, 1/2, τ/2, (1+ τ)/2)}, (9.12)

another four poles at

u = z/2 + {0, 1/2, τ/2, (1 + τ)/2)}, (9.13)

and another four at

u = z/2 − 1/4 + {0, 1/2, τ/2, (1 + τ)/2)}, (9.14)

for a total of 16 residues that must be summed over.
We illustrate a few examples of these residues here, to illustrate the complexity of

the computation. The residue at u = z − 3/4 − 3τ/4 is given by

1

2

N

θ1(τ | − z)
θ1(τ | + z)

θ1(τ |z − 1/2)

θ1(τ | − 1/2)

θ1(τ |z − τ/2)

θ1(τ | − τ/2)

θ1(τ |z − (1 + τ)/2)

θ1(τ | − (1 + τ)/2)

·θ1(τ |2z − 3/2 − τ)

θ1(τ |z − 3/2 − τ)

θ1(τ |2z − 3/2 − 3τ/2)

θ1(τ |z − 3/2 − 3τ/2)

θ1(τ |2z − 1 − 3τ/4)

θ1(τ |z − 3τ/4)

·θ1(τ | − 2z + 3/2 + 2τ)

θ1(τ | − 3z + 3/2 + 2τ)

θ1(τ | − 2z + 3/2 + 3τ/2)

θ1(τ | − 3z + 3/2 + 3τ/2)

θ1(τ | − 2z + 2 + 3τ/2)

θ1(τ | − 3z + 2 + 3τ/2)

· θ1(τ | − z + 3/2 + 3τ/2)

θ1(τ | − 2z + 3/2 + 3τ/2)

θ1(τ | − z + 1 + 3τ/2)

θ1(τ | − 2z + 1 + 3τ/2)

θ1(τ | − z + 3/2 + τ)

θ1(τ | − 2z + 3/2 + τ)

· θ1(τ | − z + 1 + τ)

θ1(τ | − 2z + 1 + τ)
. (9.15)
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Similarly, the residue at u = z/2 − τ/4 is given by

1

4

N

θ1(τ | − z)

θ1(τ |z/2 + 3/4 + τ/2)

θ1(τ | − z/2 + 3/4 + τ/2)

θ1(τ |z/2 + 1/4 + τ/2)

θ1(τ | − z/2 + 1/4 + τ/2)

θ1(τ |z/2 + 3/4)

θ1(τ | − z/2 + 3/4)

· θ1(τ |z/2 + 1/4)

θ1(τ | − z/2 + 1/4)
θ1(+z)

θ1(τ |z/2 − τ/2)

θ1(τ | − τ/2)

θ1(τ |z + 1/2 − τ/2)

θ1(τ |1/2 − τ/2)

· θ1(τ | − z + τ)

θ1(τ | − 2z + τ)

θ1(τ | − z + τ/2)

θ1(τ | − 2z + τ/2)

θ1(τ | − z + 1/2 + τ/2)

θ1(τ | − 2z + 1/2 + τ/2)

θ1(τ | − z/2 + 3/4 + τ)

θ1(τ | − 3z/2 + 3/4 + τ)

· θ1(τ | − z/2 + 1/4 + τ)

θ1(τ | − 3z/2 + 1/4 + τ)

θ1(τ | − z/2 + 3/4 + τ/2)

θ1(τ | − 3z/2 + 3/4 + τ/2)

θ1(τ | − z/2 + 1/4 + τ/2)

θ1(τ | − 3z/2 + 1/4 + τ/2)
.

(9.16)

A leading factor of 1/2 in the second residue is due to the fact that the pole arises from a
theta function denominator that depends upon 2u not u. An overall factor of 1/2 in both
residues is due to the fact that we are integrating over T 2 and not T 2/Z2. For reasons of
brevity, we do not list the other fourteen residues here, though they are straightforward
to compute.

One can verify numerically that the sum of the residues above, the integral (9.8)
equals

8
θ1(τ | − z)

θ1(τ | − 2z)

θ1(τ | − 3z)

θ1(τ | − 4z)

θ1(τ | − 5z)

θ1(τ | − 6z)
. (9.17)

The product of theta functions above should be proportional to the elliptic genus of
the pure Sp(6)/Z2 theory with nonzero characteristic class. The proportionality factor
should be a real number of the form 1/|W | for W a finite subgroup of the gauge group
that preserves the holonomies. For the moment, we will write

Z(Sp(6)/Z2, w 	= 0) = αZ(Sp(6)/Z2, w = 0), (9.18)

for some positive real number α. We will compute this factor indirectly, using known
results for supersymmetry breaking for various discrete theta angles.

Finally, we need to weight the w 	= 0 contribution with relevant phases. There is
a factor exp(iθ) arising from the discrete theta angle θ ∈ {0, π}. In addition, there is
potentially a factor of exp(iw · t). From [5, section 5],

ta = π ima (9.19)

where ∑
a

ma ≡ 0 mod 2 (9.20)

(for Sp(6)/Z2), so without loss of generality we can take allma = 0, hence exp(iw ·t) =
+1.

Now, putting this together, combining the result for the elliptic genus in the sector
with w = 0 with the result above, determined up to a proportionality factor, for w 	= 0,
we have that the elliptic genus of a pure Sp(6)/Z2 gauge theory with discrete theta angle
θ ∈ {0, π} is given by

Z(Sp(6)/Z2, θ) = Z(Sp(6)/Z2, w = 0) + α exp(iθ)Z(Sp(6)/Z2, w 	= 0), (9.21)

= 1

2

θ1(τ | − z)

θ1(τ | − 2z)

θ1(τ | − 3z)

θ1(τ | − 4z)

θ1(τ | − 5z)

θ1(τ | − 6z)
(1 + α exp(iθ)) . (9.22)
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It was argued in [5, section 5] that a pure Sp(6)/Z2 gauge theory has supersymmetric
vacua only if the discrete theta angle θ = 0, hence for θ = π , supersymmetry is broken,
and the elliptic genus should vanish. Imposing this as a constraint, we find that α = +1,
hence the elliptic genus of a pure Sp(6)/Z2 gauge theory as a function of discrete theta
angle θ is

Z(Sp(6)/Z2, θ) = 1

2

θ1(τ | − z)

θ1(τ | − 2z)

θ1(τ | − 3z)

θ1(τ | − 4z)

θ1(τ | − 5z)

θ1(τ | − 6z)
(1 + exp(iθ)) . (9.23)

As a consistency check, note that α is real and positive, as expected—phase factors
have already been accounted for. As another consistency check, note that for θ = 0, the
elliptic genus of the pure Sp(6)/Z2 gauge theory matches that of the pure Sp(6) gauge
theory, in agreement with expectations from [5, section 5].

As a further consistency check, it is straightforward to see that this result is consistent
with decomposition [13–15]:

∑
θ=0,π

1

2

θ1(τ | − z)

θ1(τ | − 2z)

θ1(τ | − 3z)

θ1(τ | − 4z)

θ1(τ | − 5z)

θ1(τ | − 6z)
(1 + exp(iθ)) = Z(Sp(6)), (9.24)

consistent with the expectation

Sp(6) = (Sp(6)/Z2)θ=0 + (Sp(6)/Z2)θ=π (9.25)

(expressed schematically).

10. Predictions for General Cases

So far, we have performed direct computations to compute elliptic genera of pure gauge
theories with semisimple, non-simply-connected gauge groups in some low rank cases.
Next, we are going to make a proposal for all cases, utilizing (a) our knowledge of the
contribution fromw = 0, (b) supersymmetry breaking formost discrete theta angles, and
(c) decomposition. These three constraints form sufficiently many algebraic equations
to enable us to solve algebraically for the elliptic genera.

We illustrate the method using the pure SU (4)/Z4 gauge theory as an example. First,
we know that

Z(SU (4)/Z4, w = 0) = 1

4
Z(SU (4)). (10.1)

Given the results for low-rank cases, let us assume that

Z(SU (4)/Z4, w 	= 0) ∝ Z(SU (4)/Z4, w = 0), (10.2)

so we can write

Z(SU (4)/Z4, θ) = 1

4
Z(SU (4)) (1 + α1 exp(iθ) + α2 exp(2iθ) + α3 exp(3iθ)) ,

(10.3)
for θ ∈ {0, π/2, π, 3π/2}. From Table 2,we see that supersymmetry is broken unless
θ = π , which gives the constraints

1 + α1 + α2 + α3 = 0, (10.4)

1 + iα1 − α2 − iα3 = 0, (10.5)

1 − iα1 − α2 + iα3 = 0, (10.6)
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for θ = 0, π/2, 3π/2, respectively, and from decomposition, since the elliptic genera
vanish for θ 	= π , the elliptic genus at θ = π must match that of SU (4), hence

1 − α1 + α2 − α3 = 4. (10.7)

These are four linear algebraic equations in three unknowns, which happen to admit a
unique solution:

α1 = α3 = −1, α2 = +1. (10.8)

Putting this together, we have that

Z(SU (4)/Z4, θ) = 1

4

θ1(τ | − z)

θ1(τ | − 4z)
(1 − exp(iθ) + exp(2iθ) − exp(3iθ)) . (10.9)

We have used our knowledge of supersymmetry breaking and decomposition, and only
assumed that the contributions from sectors of various characteristic classes are propor-
tional to one another.One can check that the resultingphase factors, derived algebraically,
are consistent with those described in Sect. 3.

Proceeding in this fashion, using our knowledge of supersymmetry breaking and
decomposition, elliptic genera are straightforward to predict for all other cases. We
summarize the results below.

First, for SU (k)/Zk , for k odd, supersymmetry is unbroken only for θ = 0 (from
Table 2), and we predict the elliptic genus

Z(SU (k)/Zk, θ) = 1

k

θ1(τ | − z)

θ1(τ | − kz)

k−1∑
m=0

exp(imθ), (10.10)

for θ ∈ {0, 2π/k, 4π/k, · · · , 2(k − 1)π/k}. For k even, supersymmetry is unbroken
only for θ = π and we predict the elliptic genus

Z(SU (k)/Zk, θ) = 1

k

θ1(τ | − z)

θ1(τ | − kz)

k−1∑
m=0

(−)m exp(imθ). (10.11)

Proceeding similarly, for Spin(2k + 1)/Z2, we predict the elliptic genus

Z(Spin(2k + 1)/Z2, θ) = 1

2
Z(Spin(2k + 1)) (1 − exp(iθ)) , (10.12)

where Z(Spin(2k + 1)) denotes the elliptic genus of the pure Spin(2k + 1) gauge theory,
as given in Sect. 2, and for θ ∈ {0, π}.

For Spin(4k)/Z2 × Z2, we predict the elliptic genus

Z(Spin(4k)/Z2 × Z2, θ1, θ2)

= 1

4
Z(Spin(4k))

(
1 + (−)k exp(iθ1)

) (
1 + (−)k exp(iθ2)

)
, (10.13)

for θ1,2 ∈ {0, π}.
For Spin(4k + 2)/Z4, we predict the elliptic genus

Z(Spin(4k + 2)/Z4, θ) = 1

4
Z(Spin(4k + 2))

3∑
m=0

(−)km exp(imθ), (10.14)
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for θ ∈ {0, π}.
For Sp(2k)/Z2, we predict the elliptic genus

Z(Sp(2k)/Z2, θ) = 1

2
Z(Sp(2k))

(
1 + (−)m exp(iθ)

)
, (10.15)

for θ ∈ {0, π}, where
m =

{
k/2 k even,

(k + 1)/2 k odd. (10.16)

For E6/Z3, we predict the elliptic genus

Z(E6/Z3, θ) = 1

3
Z(E6) (1 + exp(iθ) + exp(2iθ)) , (10.17)

for θ ∈ {0, 2π/3, 4π/3}.
For E7/Z2, we predict the elliptic genus

Z(E7/Z2, θ) = 1

2
Z(E7) (1 − exp(iθ)) , (10.18)

for θ ∈ {0, π}.
As a consistency check, note that the elliptic genus of SU (2)/Z2 matches that of

Spin(3)/Z2, the elliptic genus of SU (4)/Z4 matches that of Spin(6)/Z4, and the elliptic
genus of Sp(4)/Z2 matches that of Spin(5)/Z2, as expected since the Lie groups are the
same.

In each case, the elliptic genus vanishes for discrete theta angles θ for which super-
symmetry is broken in the IR (from Table 2), and decomposition [13–15] is obeyed:

Z(G) =
∑
θ

Z(G/�, θ). (10.19)

11. Conclusions

In this paper we have described a systematic method to compute elliptic genera of
pure two-dimensional (2,2) supersymmetric G/� gauge theories with various discrete
theta angles. Our results agree with previous computations of elliptic genera of pure
SO(3) gauge theories, andwe also derived the elliptic genera of pure SU (3)/Z3, SO(4),
Spin(4)/Z2 × Z2, SO(5) and Sp(6)/Z2 gauge theories. In each case, the results are
consistent with predictions of supersymmetry breaking for certain discrete theta angles
in [3–5], and the resulting elliptic genera are also consistent with expectations from
decomposition [13–15] of two-dimensional gauge theories with finite global one-form
symmetries. Finally, we applied these two criteria to make predictions for elliptic genera
of higher-rank cases.

Pure two-dimensional (2,2) supersymmetric gauge theories have also been exten-
sively studied by lattice simulations [52–56]. Our results also provide new analytic re-
sults that can be used to test and callibrate future lattice studies of pure two-dimensional
supersymmetric gauge theories. They also suggest new avenues for research such as
varying the global structure of the gauge group and including discrete theta angles.

Gauge theories correspond to sigmamodels on stacks [18–20], and the elliptic genera
we have computed in this paper should correspond to elliptic genera of the classifying
stacks BG [21,22].
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The sensitivity of the elliptic genus to the global structure of the gauge groupmakes it
a powerful tool to investigate of two-dimensional dualities. The elliptic genus has already
beenused to test several ofHori’s proposeddualities [32] in [12,30,31].Looking forward,
we expect the elliptic genus of G/� gauge theories will be useful to establish new
dualities and will help with exploring the dynamics of two-dimensional supersymmetric
gauge theories 13.
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