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Abstract: We discuss various aspects of the positive kernel method of quantization of
the one-parameter groups τt ∈ Aut(P, ϑ) of automorphisms of a G-principal bundle
P(G, π, M) with a fixed connection form ϑ on its total space P . We show that the

generator F̂ of the unitary flow Ut = eit F̂ being the quantization of τt is realized by
a generalized Kirillov–Kostant–Souriau operator whose domain consists of sections of
some vector bundle over M , which are defined by a suitable positive kernel. This method
of quantization applied to the case when G = GL(N , C) and M is a non-compact Rie-
mann surface leads to quantization of the arbitrary holomorphic flow τ holt ∈ Aut(P, ϑ).
For the above case, we present the integral decompositions of the positive kernels on
P × P invariant with respect to the flows τ holt in terms of the spectral measure of F̂ .
These decompositions generalize the ones given by Bochner’s Theorem for the positive
kernels on C × C invariant with respect to the one-parameter groups of translations of
complex plane.
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1. Introduction

From the very beginnings of quantum mechanics the problem of quantization is one
of the most fascinating and crucial ones for understanding the correspondence between
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classical and quantum physics. Excluding the field theory and restricting to the case of
mechanics only, by quantization of a Hamiltonian flow R � t �→ σ F

t ∈ SpDiff(M, ω)

defined on a symplectic manifold (M, ω) one usually understands the construction of a
corresponding unitary flowR � t �→ eit̂F on a Hilbert spaceH. Additionally one claims
that the map Q : P∞(M, R) � F �→ îF ∈ L(D) which assigns to a classical generator
F the quantum one ̂F (a self-adjoint operator inH) is a morphism of some Lie algebras,
where P∞(M, R) is a Lie subalgebra of the Poisson algebra C∞(M, R) and L(D) is a
Lie algebra of anti-self-adjoint operators having a common domain D dense inH.

Among known methods of quantization the Kirillov–Kostant–Souriau geometric
quantization [17,18,36] is one of the most elegant from a geometric point of view
and gives a precise construction of the quantum generator ̂F for the given classical
one F ∈ P∞(M, R). For this construction one needs to obtain a σ F

t -invariant com-
plex Lagrangian distribution P ⊂ TCM and the appropriate measure (density) on the
quotient manifold M/P ∩ P̄ . However, this leads to serious difficulties if one wants
to quantize concrete mechanical systems. In order to omit these difficulties and for
deeper understanding of the relationship between the classical (M, ω) and quantum
(CP(H), ωFS) phase spaces in [25,28] a method of quantization based on the notion of
positive kernel (coherent state map) was proposed, which in our opinion completes the
Kirillov–Kostant–Souriau quantization in a natural way. For example one can find the
application of the coherent state method of quantization to concrete physical systems in
[15,29].

For a general theory of positive (reproducing) kernels and its role in differential
geometry (including Banach differential manifolds and vector bundles over them) and
representation theoryweaddress to [5,6] and to themonograph [23]. See also the classical
paper [1] of N. Aronszajn.

Basing partly on [28], in Sects. 2 and 3 we briefly discuss how to extend the Kirillov–
Kostant–Souriau prequantization procedure defined for U (1)-principal bundle to the
case of an arbitrary G-principal bundle P(G, π, M) with a fixed connection form ϑ on
the total space P . In Sect. 2 we define the Poisson C∞(M, R)-module P∞G (P, ϑ) of

generators (X, F) ∈ P∞G (P, ϑ) of generalized Hamiltonian flows τ
(X,F)
t ∈ Aut(P, ϑ),

i.e. those which are solutions of generalized Hamilton Eq. (10). In Sect. 3 we gener-
alize the Kirillov–Kostant–Souriau prequantization morphisms to the morphism Q :
P∞G (P, ϑ) → D1�∞(M, V) of P∞G (P, ϑ) in the Lie C∞(M, R)-module of differen-
tial operators of order less or equal one acting on the smooth sections �∞(M, V) of an
associated smooth vector bundle V→ M over M .

In Sect. 4 we consider the G-equivariant coherent state map K : P → B(V,H)

and the positive definite G-equivariant kernel K : P × P → B(V ), where V and H
are complex Hilbert spaces and B(V,H) is the right Hilbert B(V )-module of bounded
linear maps of V in H. In the same section the equivalence of the coherent state map κ

and positive kernel K notions is shown and the method of quantization based on them
is investigated. Among others we show that the Kirillov–Kostant–Souriau differential
operator Q(X,F) can be treated as a self-adjoint operator F̂ in the Hilbert space HK
whose domain is defined by the G-equivariant positive kernel K : P × P → B(V ) (see
(79) and (80)). The conditions on this kernel needed to quantize τ

(X,F)
t ∈ Aut(P, ϑ) are

presented in (73) and (74).
In Sect. 5 assuming that G ⊂ GL(V, C) is a Lie subgroup of GL(V, C) and that

there exists a coherent state map K : P → B(V,H) on the total space of P(G, π, M),
we define in a canonical way two other principal bundles ˜P(GL(V, C), π̃ , M) and
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U (U (V ), πu, M) over M . The connection forms˜ϑ ∈ �∞(˜P, T ∗˜P ⊗ B(V )) and ϑa ∈
�∞(U, T ∗U ⊗ TeU (V )) as well as the respective coherent states maps ˜K : ˜P →
B(V,H) and a : U → B(V,H) are defined on these principal bundles by using of

K : P → B(V,H). Next we show, see Proposition 5, that the flows τ
(X,F̃)
t ∈ Aut(˜P,˜ϑ)

and τ
(X,Fa)
t ∈ Aut(U, ϑa) have the same quantum counterpart eit F̂ as the flow τ

(X,F)
t ∈

Aut(P, ϑ).
In Sect. 6 we quantize the holomorphic one-parameter groups of automorphisms of a

holomorphic principal bundles P(GL(V, C), π, M) over a non-compact Riemann sur-
faceM . For this relatively simple but non-trivial case the investigated theory is presented
in a complete way. In particular we obtain a Bochner-type integral decompositions of the
τ

(X,F)
t -invariant positive kernels on P × P and show their relationship with the spectral
decomposition of the corresponding quantum generators Q(X,F) = F̂ .

Some applications of the coherent state method in physics including quantum optics
are shortly discussed in Sect. 7.

2. The Poisson C∞(M, R)-Module Corresponding to the Group Aut(P, ϑ)

Themain task of this section is the investigation of some variant of Hamiltonianmechan-
ics on aG-principal bundle P(G, π, M), where the role of the symplectic form is played
by the curvature form Ω of a fixed connection form ϑ ∈ �∞(P, T ∗P ⊗ TeG). We will
define the Poisson C∞(M, R)-module (P∞G (P, ϑ), {·, ·}ϑ) with the Lie bracket {·, ·}ϑ
given in (11), which satisfies the Leibniz property in the sense of (13). The corresponding
generalization (10) of the Hamiltonian equation is presented. The model proposed here
in the case when G = U (1) and ϑ has non-singular curvature form reduces to standard
Hamiltonian mechanics on a symplectic manifold.

LetAut(P, ϑ) denote the group of diffeomorphisms of P which preserve the principal
bundle structure of P and the connection formϑ .We recall that a TeG-valued differential
one-form ϑ on P is a connection form if and only if

ϑ(pg) ◦ T κg(p) = Adg−1 ◦ ϑ(p), (1)

ϑ(p) ◦ T κp(e) = idTeG , (2)

for any p ∈ P and g ∈ G, where κ : P × G → P is the right-action κ(p, g) =: pg of
the Lie group G on P and TeG is the tangent space to G at the unit element e ∈ G, i.e.
the Lie algebra of G. By κg : P → P and κp : G → P we denoted the maps defined
by κg(p) := pg and κp(g) := pg. The connection form ϑ defines the spliting

TpP = T v
p P ⊕ T h

p P,

of the tangent space TpP at p ∈ P on the horizontal T h
p P := ker ϑ(p) and vertical

T v
p P , i.e. tangent to the fibre π−1(π(p)) of π : P → M , components (see e.g. [20]).
Let τ : (R,+)→ (Aut(P, ϑ), ◦) be a one-parameter subgroup of Aut(P, ϑ) i.e. the

map τ : R× P → P is a smooth map which satisfies

τt (pg) = τt (p)g and τ ∗t ϑ = ϑ.

Then for the vector field ξ ∈ �∞(T P) tangent to the flow {τt }t∈R one has

T κg(p)ξ(p) = ξ(pg), (3)
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Lξϑ = 0, (4)

where Lξ is the Lie derivative with respect to ξ .
The C∞(M, R)-modules of vector fields ξ ∈ �∞(T P) which satisfy the condition

(3) and the condition (3) together with the condition (4) will be denoted by �∞G (T P)

and �∞G,ϑ (T P), respectively. The C∞(M, R)-module structure on �∞G (T P), and hence

on its submodules �∞G (T h P) and �∞G (T vP), is defined by

C∞(M, R)× �∞G (T P) � ( f, ξ) �−→ ( f ◦ π)ξ ∈ �∞G (T P),

where by T h P and T vP we denote the horizontal and vertical vector subbundles of T P ,
respectively.

The tangent map Tπ : T P → T M defines an isomorphism of C∞(M, R)-modules
of horizontal vector fields �∞G (T h P) on P and vector fields �∞(T M) on M by

(π∗ξ h)(π(p)) := Tπ(p)ξ h(p). (5)

In the sequel we will need the C∞(M, R)-module C∞G (P, TeG) which by definition
consists of smooth functions F : P → TeG satisfying the G-equivariance property

F(pg) = Adg−1F(p).

This module is isomorphic to the module of vertical vector fields�∞G (T vP) on P , where

the C∞(M, R)-module isomorphism ν∗ : �∞G (T vP)
∼−→ C∞G (P, TeG) is defined as

follows

ν∗(ξv)(p) := ϑ(p)(ξv(p)) = ϑ(p)(ξ(p)). (6)

Its inverse is given by

(ν∗)−1(F)(p) = T κp(e)F(p).

The correctness of the definitions above follows from (1) and (2), and from T κg(p) ◦
T κp(e) = T κpg(e).

Taking the decomposition ξ = ξ h +ξv of ξ ∈ �∞G (T P) on the horizontal and vertical
components and isomorphisms (5) and (6) we define

(X (π(p)), F(p)) = (π∗ × ν∗)(ξ)(p) := (Tπ(p)ξ h(p), ϑ(p)(ξ(p)))

aC∞(M, R)-module isomorphism π∗×ν∗ : �∞G (T P)
∼−→ �∞(T M)×C∞G (P, TeG).

The inverse of π∗ × ν∗ is given by

(π∗ × ν∗)−1(X, F)(p) = H∗(X)(p) + T κp(e)F(p),

where by H∗ : �∞(T M) → �∞G (T h P) we denote the horizontal lift, i.e. the module
isomorphism inverse to π∗.

For ξ ∈ �∞G (T P) one has

Lξϑ = Lξhϑ + Lξvϑ = d(ξ h�ϑ) + ξ h�dϑ + d(ξv�ϑ) + ξv�dϑ

= ξ h�Ω + d(ξv�ϑ) + [ξv�ϑ, ϑ] = H∗(X)�Ω + dF + [F, ϑ]
= H∗(X)�Ω + DF, (7)
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where

Ω := Dϑ = dϑ +
1

2
[ϑ, ϑ]

is the curvature form of ϑ and

DF = dF + [ϑ, F]
is the covariant derivative of F .

On �∞G (T P) one has the structure of Lie algebra given by the Lie bracket [·, ·]
of vector fields. Using the C∞(M, R)-modules isomorphism π∗ × ν∗ : �∞G (T P)

∼−→
�∞(T M)×C∞G (P, TeG),wecancarry theLie bracket [·, ·] from�∞G (T P) to�∞(T M)×
C∞G (P, TeG) obtaining in this way the Lie bracket

{(X1, F1), (X2, F2)}ϑ = ([X1, X2],−H∗(X2))�DF1 + H∗(X1))�DF2
−2Ω(H∗(X1), H

∗(X2))− [F1, F2]), (8)

of (Xi , Fi ) = (π∗ × ν∗)(ξi ), i = 1, 2, where [F1, F2](p) := [F1(p), F2(p)].
It is reasonable to mention here that the Lie algebra (�∞G (T P), [·, ·]) is isomorphic

with the Lie algebra (�∞(T P/G), [·, ·]) of the Atiyah Lie algebroid, being a central
ingredient of the Atiyah exact sequence of algebroids

0→ P ×Ad−1 TeG
l

↪→ T P/G
a→ T M → 0,

see e.g. [22].
Though the language of Lie algebroid theory will not be used later, we note that

the projection on the first component pr1 : �∞(T M) × C∞G (P, TeG) → �∞(T M)

corresponds to the anchor map a : T P/G → T M of the Atiyah algebroid. Hence, from
the defining property of the anchor map we have

pr1{(X1, F1), (X2, F2)}ϑ = [pr1(X1, F1), pr1(X2, F2)]
and

{(X1, F1), f (X2, F2)}ϑ = f {(X1, F1), (X2, F2)}ϑ + X1( f )(X2, F2). (9)

These properties of pr1 and {·, ·}ϑ can also be obtained directly from their definitions.
The above structure of Lie C∞(M)-module on �∞(T M) × C∞G (P, TeG) restricts

to P∞G (P, ϑ) := (π∗ × ν∗)(�∞G,ϑ (T P)) making it a Lie C∞(M, R)-submodule of
�∞(T M)× C∞G (P, TeG). It follows from (7) that (X, F) ∈ P∞G (P, ϑ) if and only if

H∗(X)�Ω + DF = 0. (10)

Let us note here that the condition (10) is invariant with respect to the Lie C∞(M, R)-
module operation. Thus, for (X1, F1), (X2, F2) ∈ P∞(P, ϑ) the Lie bracket (8) sim-
plifies to the form

{(X1, F1), (X2, F2)}ϑ = ([X1, X2], 2Ω(H∗(X1), H
∗(X2))− [F1, F2])

= ([X1, X2], H∗(X1)�DF2 − [F1, F2]) = ([X1, X2], H∗(X1)(F2)− [F1, F2]).
(11)
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In the case when the curvature formΩ is a non-singular 2-form, i.e. when ξh�Ω = 0
implies ξ h = 0, one has from (10) that for (X, F) ∈ P∞G (P, ϑ) the vector field X ∈
�∞(T M) is defined uniquely by the function F ∈ C∞G (P, TeG). So, in this case we
have the C∞(M, R)-modules morphism b : C∞G (P, TeG) → P∞G (P, ϑ). Note here
that F ∈ kerb if and only if DF = 0, which does not mean in general that F = const.
Substituting X1 = b(F1) and X2 = b(F2) into (11) we obtain the Lie bracket

{F1, F2}ϑ := {(b(F1), F1), (b(F2), F2)}ϑ (12)

of F1, F2 ∈ C∞G (P, TeG), which satisfies the Leibniz property

{F1, f F2}ϑ = f {F1, F2}ϑ + b(F1)( f )F2 (13)

in sense of C∞(M, R)-module.
Assuming G = U (1) we find that C∞G (P, TeG) is canonically isomorphic with

C∞(M, R) and the curvature form Ω is identified with the closed dω = 0 2-form ω on
M , which is a symplectic form in the non-singular case. Hence, formula (12) reduces to
the symplectic Poisson bracket and (13) to its Leibniz property.

Taking the above facts into account, further we will call (P∞G (P, ϑ), {·, ·}ϑ) the
Poisson C∞(M, R)-module.

In the framework of the assumed terminology it is natural to consider:

(i) the Eq. (10) as a generalization of Hamilton’s equation to the arbitrary Lie group
G case;

(ii) the one-parameter group τ
(X,F)
t ∈ Aut(P, ϑ) as a generalized Hamiltonian flow

generated by (X, F) ∈ P∞G (P, ϑ) (in non-singular case by F ∈ C∞G (P, TeG)).

In the next two sections we propose and investigate a method of quantization of the
Hamiltonian flow τ

(X,F)
t ∈ Aut(P, ϑ) based on the notion of G-equivariant positive

kernel on P × P .
Though our considerations below are valid for an arbitrary Lie group G we will as-

sume thatG ⊂ GL(V, C) ∼= GL(N , C) is a Lie subgroup of the linear groupGL(V, C)

of a complex N -dimensional Hilbert space V . By 〈·, ·〉 : V × V → C we denote the
scalar product for V and by

G × V � (g, v) �→ gv ∈ V

the canonical action ofG in V . The group of unitarymaps of V as usually will be denoted
by U (V ) ∼= U (N ).

3. Kirillov–Kostant–Souriau Prequantization Morphism

In this section we generalize the Kirillov–Kostant–Souriau prequantization procedure
[17,18,36] for the case of an arbitrary Lie group G ⊂ GL(V, C), i.e. we obtain the Lie
C∞(M, R)-module morphism Q : P∞G (P, ϑ)→ D1�∞(M, V) of the Poisson module
P∞G (P, ϑ) into the Lie module of differential operators of the order less or equal one
acting on the smooth sections of some complex vector bundle V→ M over M .

To this end we define the smooth complex bundle V := (P × V )/G → M over M
associated to P(G, π, M)by the action P×V×G � (p, v, g) �→ (pg, g−1v) ∈ P×V of
the Lie groupG on P×V . One has the naturalC∞(M, R)-module isomorphismbetween
the module �∞(M, V) of smooth sections of V → M and the module C∞G (P, V ) :=
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{ f ∈ C∞(P, V ) : f (pg) = g−1 f (p) f or g ∈ G} of G-equivariant smooth functions
on P defined by the one-to-one dependence

ψ(π(p)) = [(p, f (p))] := {(pg, g−1 f (p)) : g ∈ G} (14)

between ψ ∈ �∞(M, V) and f ∈ C∞G (P, V ). Using (14) we define

(Q(X,F)ψ)(π(p)) := [(p, ξ( f )(p))], (15)

for any (X, F) = (π∗×ν∗)(ξ) ∈ P∞G (P, ϑ) the differential operatorQ(X,F) : �∞(M, V)

→ �∞(M, V) of order less or equal one. Let us note here that if ξ ∈ �∞G,ϑ (T P) and
f ∈ C∞G (P, V ) then ξ( f ) ∈ C∞G (P, V ).

Sinceπ∗×ν∗ : �∞G,ϑ (T P)
∼−→ P∞G (P, ϑ) is an isomorphism of the LieC∞(M, R)-

modules, from (14) and (15) one obtains

[Q(X1,F1), Q(X2,F2)] = Q{(X1,F1),(X2,F2)}ϑ , (16)

Q f (X,F) = f Q(X,F), (17)

where on the left hand side of the equality (16)we have the commutator of the differential
operators and {·, ·}ϑ is the Lie bracket defined in (11). Since in the case dimC V = 1
and G = U (1) the Lie C∞(M, R)-modules monomorphism

Q : P∞(P, ϑ)→ D1�∞(M, V) (18)

is the Kirillov–Kostant–Souriau prequantization morphism we will further extend this
terminology to the general case. ByD1�∞(M, V) in (18) we denote the LieC∞(M, R)-
module of differential operators of order less or equal one acting on �∞(M, V).

In order to establish amore explicit expression forQ(X,F),where (X, F) ∈ P∞(P, ϑ),
we will use the decomposition ξ = ξ h + ξv of ξ ∈ �∞G,ϑ (T P) on the horizontal and

vertical components. The flows τt and τ ht tangent to ξ and ξ h satisfy

τt (p) = τ ht (p)g(t, p), (19)

where g : R× P → G is the cocycle related to the vertical (tangent to ξv) flow τv
t by

τv
t (p) = pg(t, p).

Proposition 1. The cocycle g : R× P → G corresponding to (X, F) ∈ P∞G (P, ϑ) by
(19) has the following form

g(t, p) = et F(p). (20)

Proof. Since for ξ = (π∗ × ν∗)−1((X, F)) ∈ �∞G,ϑ (T P) one has ξ(F) = ξ(〈ϑ, ξ 〉) =
〈Lξϑ, ξ 〉 + 〈ϑ, [ξ, ξ ]〉 = 0 we find that

F(τt (p)) = F(p). (21)

Combining (21) with (19) we obtain

F(τ ht (p)) = g(t, p)F(p)g(t, p)−1.

Applying τs to both sides of (19) we obtain

τs+t (p)=τs(τ
h
t (p))g(t, p)=τ hs (τ ht (p))g(s, τ ht (p))g(t, p)=τ hs+t (p)g(s, τ

h
t (p))g(t, p).
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From the above and from (19) we find that

g(s + t, p) = g(s, τ ht (p))g(t, p).

Differentiating the equality above with respect to the parameter s at s = 0 we obtain
differential equation

d

dt
g(t, p) = F(τ ht (p))g(t, p) = g(t, p)F(p) (22)

on the cocycle g : R× P → G ⊂ GL(N , C). The equality (20) is obtained as a solution
of (22) with the initial condition g(0, p) = 11V . ��

For f ∈ C∞G (P, V ) one has ξ h( f ), ξv( f ) ∈ C∞G (P, V ) and

ξ h( f )(p) = 〈d f, ξ h〉(p) = 〈D f, ξ 〉(p), (23)

ξv( f )(p) = 〈d f, ξv〉(p) = d

dt
f (pet F(p))|t=0 = d

dt
e−t F(p) f (p)|t=0 = −F(p) f (p),

(24)

where D : C∞G (P, V )→ �∞G (P, T ∗P ⊗ V ) is the covariant derivative of f defined by

D f := d f ◦ prhor = d f + ϑ f.

By prhor : T P → T h P we denoted the projection of T P on its horizontal component
T h P .

Defining the covariant derivative ∇ : �∞(M, V)→ �∞(M, T ∗M ⊗V) as usual by

∇ψ(π(p)) := [(p, D f (p))] = [(p, d f (p) + ϑ(p) f (p))], (25)

where ψ is defined in (14), and using Eqs. (23) and (24) one obtains from (15) the
following expression

Q(X,F) = ∇X − F, (26)

for the Kirillov–Kostant–Souriau operator Q(X,F) : �∞(M, V) → �∞(M, V). Let us
note here that the 0-order differential operator F acts on ψ ∈ �∞(M, V) as follows

(Fψ)(π(p)) := [(p, F(p) f (p))].
We note also that F(pg) f (pg) = g−1F(p) f (p) and (Dξ f )(pg) = g−1(Dξ f )(p).

The Kirillov–Kostant–Souriau operator is the generator

Q(X,F)ψ(m) := lim
t→0

1

t
[(�tψ)(m)− ψ(m)]

of the one-parameter group �t : �∞(M, V) → �∞(M, V) acting on the sections
ψ ∈ �∞(M, V) by

(�tψ)(m) := τVt ψ(σ−t (m)),

where the flows τVt : V→ V and σt : M → M are defined by

τVt [(p, v)] := [(τt (p), v)]
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and by

σt (π(p)) := π(τt (p)),

respectively. The vector field X ∈ �∞(T M) in (26) is tangent to the flow {σt }t∈R.
If the curvature form Ω is non-singular the C∞(M, R)-module morphism b : C∞G

(P, TeG) → �∞(T M) leads to the Kirillov–Kostant–Souriau prequantization mor-
phism

Q : C∞G (P, TeG) � F �→ QF = ∇XF − F ∈ D1�∞(M, V)

for the PoissonC∞(M, R)-module (C∞G (P, TeG), {., .}ϑ), where XF = �(F) and Pois-
son bracket {F1, F2}ϑ of F1, F2 ∈ C∞G (P, TeG) is defined in (12).

Furthermore we will need the vector bundle V̄ := (P × V )/G → M associated to
P(G, π, M) by the action

P × V × G � (p, v, g) �→ (pg, g†v) ∈ P × V

as well as the C∞(M, C)-module

C∞̄
G

(P, V ) := { f ∈ C∞(P, V ) : f (pg) = g† f (p) f or g ∈ G} (27)

of the V -valued smooth function on P . Similarly as in (14) the equality ψ̄(π(p)) :=
[(p, f (p))] defines the isomorphism �∞(M, V̄) ∼= C∞̄

G
(P, V ) of C∞(M, C)-modules.

Using this isomorphism we define

(Q̄(X,F)ψ̄)(π(p)) := [(p, ξ( f )(p))]
another Kirillov–Kostant–Souriau differential operator acting now on �∞(M, V̄). For
vector field ξ ∈ �∞G (T P) tangent to τt from (19) we find

ξ( f )(p) = d

dt
f (τt (p))|t=0 = d

dt
f (τ ht (p))|t=0 + d

dt
g(t, p)†|t=0 f (p)

= D̄ f (p) + F(p)† f (p),

where

D̄ f := d f + ϑ† f .

Next, using the covariant derivative ∇̄ : �∞(M, V̄) → �∞(M, T ∗M ⊗ V̄) defined
by ∇̄ψ̄(π(p)) := [(p, D̄ f (p))] we obtain

Q̄(X,F) = ∇̄X + F†, (28)

the generator of the flow

(�̄t ψ̄)(m) := τ V̄t ψ̄(σ−t (m)), (29)

where F†ψ̄ and τ V̄t : V̄→ V̄ are defined as follows

(F†ψ̄)(π(p)) := [(p, F(p)† f (p))]
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and

τ V̄t [(p, v)] := [(τt (p), v)]
for [(p, v)] ∈ V̄.

The covariance properties (16) and (17) for Q̄ are proved in an analogous way as for
Q.

Now let us mention that using the scalar product 〈·, ·〉 in V one defines for ψ̄1 ∈
�∞(M, V̄) and ψ2 ∈ �∞(M, V) the smooth function

〈〈ψ̄1, ψ2〉〉(π(p)) := 〈 f 1(p), f2(p)〉 (30)

on M . One sees from 〈〈ψ̄1, ψ2〉〉(σt (π(p))) = 〈 f 1(τt (p)), f2(τt (p))〉 that the following
property

X (〈〈ψ̄1, ψ2〉〉) = 〈〈Q̄(X,F)ψ̄1, ψ2〉〉 + 〈〈ψ̄1, Q(X,F)ψ2〉〉
for the pairing (30) is valid.

Fixing a local trivialization sα : Oα → P (where
⋃

α∈I Oα = M is an open covering
ofM) of the principal bundle P(G, π, M) one defines the local cocycles gα(t, ·) : Oα →
G and hα(t, ·) : Oα → G by

τt (sα(m)) = sα(σt (m))gα(t,m), (31)

τ ht (sα(m)) = sα(σt (m))hα(t,m) (32)

for sufficiently small t . From (19) and (20) one has

τt (sα(m)) = τ ht (sα(m))et F(sα(m)). (33)

Hence, from (31)–(33) one obtains

gα(t,m) = hα(t,m) exp(t F(sα(m))). (34)

From (34) and the cocycle properties

gα(t + s,m) = gα(s, σt (m))gα(t,m),

hα(t + s,m) = hα(s, σt (m))hα(t,m)

we have

hα(t,m)esF(sα(m)) = esF(sα(σt (m)))hα(t,m),

which is equivalent to

hα(t,m)F(sα(m)) = F(sα(σt (m)))hα(t,m).

In order to obtain d
dt hα(t,m)|t=0 ∈ TeG we note that from (32) it follows that

ξ h(sα(m)) = T sα(m)X (m) + T κsα(m)(e)
d

dt
hα(t,m)|t=0. (35)

Next, applying ϑ(sα(m)) to both sides of (35) and using (2) we obtain

d

dt
hα(t,m)|t=0 = −ϑ(sα(m))(T sα(m)X (m)) = −ϑα(m)(X (m)),
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where ϑα(m) := ϑ(sα(m)) ◦ T sα(m) = (s∗αϑ)(m).
Introducing the notations φα(m) := d

dt gα(t,m)|t=0 and Fα(m) := F ◦ sα(m), after
differentiating (34) at t = 0 we obtain the equality

φα(m) = −〈ϑα, X〉(m) + Fα(m), (36)

which is useful for finding the local expression for the infinitesimal generator of the flow
�t : �∞(M, V)→ �∞(M, V) defined in (29). Namely, we have

(�tψ)(m) = τVt ψ(σ−t (m)) = τVt [sα(σ−t (m)), ( f ◦ sα)(σ−t (m))]
= [τt sα(σ−t (m)), ( f ◦ sα)(σ−t (m))] = [sα(m)gα(t, σ−t (m)), ( f ◦ sα)(σ−t (m))]
= [sα(m), gα(t, σ−t (m))( f ◦ sα)(σ−t (m))]. (37)

Thus for fα := f ◦ sα : Oα → V one has

(�t fα)(m) = gα(−t,m)−1 fα(σ−t (m)). (38)

Differentiating both sides of (38) at t = 0 and using (36) we obtain the local repre-
sentation

(Q(X,F) fα)(m) = −X ( fα)(m) + φα(m) fα(m)

= −(X + 〈ϑα, X〉)( fα)(m) + Fα(m) fα(m)

= −(∇α
X fα)(m) + Fα(m) fα(m), (39)

of the Kirillov–Kostant–Souriau prequantization operator Q(X,F) : �∞(M, V) →
�∞(M, V), where ∇α

X := X + 〈ϑα, X〉 is the local form of the covariant derivative
∇ defined in (25). Similarly we have

(Q̄(X,F) f α)(m) = −(∇α
X f α)(m) + f α(m)Fα(m)† (40)

for Q̄(X,F) : �∞(M, V̄)→ �∞(M, V̄).
In the local gauge the Hamilton Eq. (10) assumes the form

X�Ωα + DFα = 0, (41)

where

Ωα := (sα)∗Ω = dϑα +
1

2
[ϑα, ϑα], (42)

DFα := dFα + [ϑα, Fα]. (43)

Ending this subsection let us mention the well known equivariance formulae with
respect to the gauge transformation

sβ(m) = sα(m)gαβ(m), (44)

where gαβ : Oα ∩ Oβ → G is the respective transition cocycle, i.e. gαβ(m)gβγ (m) =
gαγ (m). Namely, one has

ϑβ(m) = g−1αβ (m)ϑα(m)gαβ(m) + g−1αβ (m)(dgαβ)(m), (45)

Fβ(m) = g−1αβ (m)Fα(m)gαβ(m), (46)

Ωβ(m) = g−1αβ (m)Ωα(m)gαβ(m), (47)

fβ(m) = g−1αβ (m) fα(m), (48)

φβ(m) = g−1αβ (m)φα(m)gαβ(m)− g−1αβ (m)(Xgαβ)(m), (49)

where m ∈ Oα ∩Oβ .
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4. Positive Definite Kernels and Quantization

In the previous section we obtained the formulas (26) and (28) on Kirillov–Kostant–
Souriau prequantization operators Q(X,F) and Q̄(X,F) as well as their local versions
(39) and (40). Here we will present a procedure which allows us to treat them as self-
adjoint operators in a Hilbert space. This quantization procedure is based on the notion
of G-equivariant positive kernel, see [28]. In order to make the paper self-sufficient we
present the above procedure in detail. Some new results complementary to the ones in
[28] will also be presented in this section.

The theory of reproducing kernels for smooth vector bundles over smooth Banach
manifolds and related linear connections one can find in [5,6].

Let us recall here that we have assumed that dimC V = N < +∞ andG ⊂ GL(V ) ∼=
GL(N , C). Further, by B(V ) ∼= MatN×N (C) we denote the C∗-algebra of linear maps
of V and by B(V,H) the right Hilbert B(V )-module of linear maps � : V → H
from the Hilbert space V into the separable Hilbert spaceH. Let us note here that from
dimC V < +∞ follows boundness of � : V → H. The B(V )-valued scalar product
〈·; ·〉 : B(V,H)× B(V,H)→ B(V ) on B(V,H) is defined by

〈�;�〉 := �∗�

for �,� ∈ B(V,H), where the operator �∗ : H→ V is the one adjoint to � : V → H.

Definition 1. A smooth map K : P → B(V,H) will be called a G-equivariant coherent
state map if it has the following properties:

(i) the G-equivariance property, i.e.

K(pg) = K(p)g (50)

for any p ∈ P and for any g ∈ G;
(ii) non-singularity, i.e.

kerK(p) = {0}, or equivalently K(p)∗K(p) ∈ GL(V, C) (51)

for any p ∈ P;
(iii) the set K(P)V is linearly dense inH, i.e.

⋂

p∈P
kerK(p)∗ = {0}, or equivalently {K(p)v : p ∈ P and v ∈ V }⊥ = {0}.

(52)

By K(p)∗ in (51) and (52) we denoted the map K(p)∗ : H→ V adjoint to K(p) : V →
H, i.e. such that 〈ψ |K(p)v〉 = 〈K(p)∗ψ, v〉 for ψ ∈ H and v ∈ V , where 〈·|·〉 is the
scalar product in Hilbert space H. For the existence of K : P → B(V,H) with the
above properties see [24].

Definition 2. A smoothmap K : P×P → B(V )will be called aG-equivariant positive
definite kernel if it has the following properties

(i) the G-equivariance property, i.e.

K (p, qg) = K (p, q)g (53)

for any p, q ∈ P and g ∈ G;
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(ii) non-singularity, i.e.

K (p, p) ∈ GL(V, C) ⊂ B(V ) (54)

for any p ∈ P;
(iii) positivity, i.e.

J
∑

i, j=1
〈vi , K (pi , p j )v j 〉 � 0 (55)

for arbitrary finite sequences p1, . . . , pJ ∈ P and v1, . . . , vJ ∈ V .

From the positivity condition (55) one obtains the following properties of the kernel

K (p, q)† = K (q, p)

and

K (ph, qg) = h†K (p, q)g,

where g, h ∈ G and p, q ∈ P .
The above structures are mutually dependent. Extending the rather well known

scheme from the theory of reproducing (positive) kernels [3,23] to this more geometri-
cally complicated setting we shortly describe this dependence.

Starting from the coherent state map K : P → B(V,H) we define the G-equivariant
positive definite kernel by

K (p, q) := K(p)∗K(q). (56)

The smoothness of the kernel (56) and the properties (53)–(55) follow from the smooth-
ness of K : P → B(V,H) and its properties mentioned in (50)–(52).

The opposite dependence needs longer considerations. Firstly let us define the vector
space

DK :=
{

f̄ =
∑

i∈J
K (·, qi )vi : qi ∈ P, vi ∈ V

}

(57)

of V -valued functions on P , where J is a finite set of indices, i.e. the vector subspace
DK ⊂ C∞̄

G
(P, V ) which consists of linear combinations of the functions K (·, q)v

indexed by q ∈ P and v ∈ V . In order to define the scalar product 〈 f̄1| f̄2〉K of f̄1, f̄2 ∈
DK weextend the summations in f̄1 =∑

i∈J1 K (·, q1i )v1i and f̄2 =∑

j∈J2 K (·, q2j )v2j to
the set of indexes J = J1∪ J2 and define {p1, . . . , pJ } := {q1, . . . , q1J1}∪{q21 , . . . , q2J2}.
After that assuming v1j = 0 for j ∈ J \ J1 and v2j = 0 for j ∈ J \ J2 we define the
scalar product

〈 f̄1| f̄2〉K :=
∑

i, j∈J
〈v1i , K (pi , p j )v

2
j 〉, (58)

of f̄k =∑

j∈J K (·, p j )v
k
j , where k = 1, 2.
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In particular one has

〈 f̄ |K (·, p)v〉K =
∑

i∈J
〈vi , K (pi , p)v〉 = 〈 f̄ (p), v〉. (59)

From (59) and the Schwarz inequality for the scalar product (58) one obtains

|〈 f̄ (p), v〉| = |〈 f̄ |K (·, p)v〉K | ≤ 〈 f̄ | f̄ 〉1/2K 〈K (·, p)v|K (·, p)v〉1/2K

≤ ‖ f ‖K 〈v, K (p, p)v〉1/2 ≤ ‖ f ‖K ‖K (p, p)‖1/2‖v‖. (60)

From the inequality (60) one sees that ‖ f ‖K = 〈 f | f 〉1/2K = 0 implies f = 0, so,
‖ · ‖K is a norm on DK .

We conclude from (60) that the evaluation functional Ep( f̄ ) := f̄ (p) satisfies

‖Ep( f̄ )‖ ≤ ‖K (p, p)‖1/2‖ f̄ ‖K ,

i.e. it is a bounded functional onDK for every p ∈ P . So, we can extend it to the Hilbert
spaceHK ⊃ DK being the abstract extension of the pre-Hilbert spaceDK ⊂ C∞̄

G
(P, V ).

It follows from (60) that for any equivalence class [{ f̄n}] ∈ HK of Cauchy sequences
{ f̄n} ⊂ DK one defines

f̄ (p) := lim
n→∞ f̄n(p)

a function f̄ : P → V depending on [{ f̄n}] only. Hence we see that the Hilbert space
HK is realized in a natural way as a vector subspace of the vector space of V -valued
functions on P which satisfy the G-equivalence condition from (27).

Now, rewriting (59) as follows

〈 f̄ |K (·, p)v〉K = 〈 f̄ |E∗pv〉K ,

where f̄ ∈ HK , v ∈ V and E∗p : V → HK is the conjugation of Ep : HK → V , we
define the coherent state map KK : P → B(V,HK ) by

KK (p) := E∗p = K (·, p).
One easily sees that the properties (50)–(52) for KK : P → B(V,HK ) follow from the
ones for K given in (53)–(55). The smoothness of KK : P → B(V,HK ) follows from
the smoothness of the positive kernel K (see Proposition 2.1 in [28]).

As we see from (56) a coherent state map K : P → B(V,H) defines the positive
kernel K : P × P → B(V ). The Hilbert space HK for this kernel is isomorphic to the
Hilbert space H, where the isomorphism IK : H ∼−→ HK is defined by

IK : H � |ψ〉 → IK (|ψ〉) := K(·)∗|ψ〉 ∈ HK . (61)

In order to see that IK is indeed an isomorphism we note that for |ψ〉 ∈ DK, where
DK ⊂ H is defined by

DK :=
⎧

⎨

⎩

|ψ〉 =
∑

j∈J
K(p j )v j : p j ∈ P, v j ∈ V

⎫

⎬

⎭

, (62)
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one has IK |ψ〉 =∑

j∈J K (·, p j )v j and 〈IK |ψ〉|IK |ψ〉〉K = 〈ψ |ψ〉H, i.e. IK : DK →
DK is a linear isometry of dense linear subspacesDK ⊂ H andDK ⊂ HK , so it extends
to the isomorphism of the Hilbert spaces.

The isometry IK : H → HK defines the isomorphism of Banach spaces L IK :B(V,H)→ B(V,HK ) by L IK A := IK ◦ A, where A ∈ B(V,H).
Therefore, if the coherent state map K and the positive definite kernel K are related

by (56), then

KK = IK ◦ K.

If KK = IK1 ◦K1 = IK2 ◦K2, then K2 = L I−1K2
◦IK1K1, i.e. the positive definite kernel K

defines the coherent state map K up to an isomorphism of the Hilbert space H.
Now let us consider the tautological bundle πN : EN → Grass(N ,H) over the

Grassmanian of N -dimensional subspaces of the Hilbert spaceH. By definition the total
space of this bundle is

EN := {(γ, q) ∈ H× Grass(N ,H) : γ ∈ q}
and πN := pr2|EN , where pr2 is the projection of H × Grass(N ,H) on its second
component.

The coherent state map K : P → B(V,H) defines the following morphisms

V̄

M

V

M

EN

Grass(N ,H)

�� �

�

��

�
[K]N

[K]id

[K−1]

π
V̄ πV πN

(63)

of vector bundles, where the morphism [K−1] : V̄→ V is defined by

V̄ � [(p, v)] −→ [K−1]([(p, v)]) := [(p, K (p, p)−1v)] ∈ V. (64)

The horizontal arrows on the right hand side of (63) are defined by

M � [p] = π−1(π(p)) −→ [K]([p]) := K(p)V ∈ Grass(N ,H)

and by

V � [(p, v)] −→ [K]N ([(p, v)]) := (K(p)v, [K]([p])) ∈ EN . (65)

Correctness of the above definitions follows from the defining properties (50)–(52) of
the coherent state map K : P → B(V,H). The bundle morphism defined in (64) is an
identity covering isomorphism of vector bundles with inverse given by [K ] : V→ V̄.

Restricting the scalar product 〈·|·〉 of H to the fibers π−1N (q) of the tautological
vector bundle πN : EN → Grass(N ,H) and using the vector bundles morphism (65)
one defines

H[p]([(p, v)], [(p, w)]) := 〈K(p)v|K(p)w〉 = 〈K (p, p)v,w〉 (66)

the Hermitian structure on the vector bundle πV : V→ M .
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Proposition 2. The coherent state map K : P → B(V,H) defines by

ϑK(p) := (K(p)∗K(p))−1K(p)∗dK(p) (67)

themetric (with respect to theHermitian structure (66)) connection formϑK ∈ �∞(T ∗P⊗
TeG) on the G-principal bundle P(G, π, M).

Proof. From the equivariance property (50) one has

ϑK(pg) = (K(pg)∗K(pg))−1K(pg)∗dK(pg)

= g−1(K(p)∗K(p))−1(g∗)−1g∗K(p)∗dK(p)g = g−1ϑK(p)g,

for g ∈ G, so ϑK satisfies (1).
In order to show the condition (2) we take X := d

dt g(t)|t=0, where ] − ε, ε[� t �→
g(t) ∈ G is a smooth curve in G such that g(0) = e, and substitute T κp(e)X into both
sides of the definition (67). Thus we obtain

ϑK(p)(T κp(e)X) = (K(p)∗K(p))−1K(p)∗dK(p)(T κp(e)X)

= (K(p)∗K(p))−1K(p)∗d(K ◦ κp)(e)X = (K(p)∗K(p))−1K(p)∗ d
dt

K(pg(t))|t=0

= (K(p)∗K(p))−1K(p)∗K(p)
d

dt
g(t)|t=0 = X. (68)

From (68) we see also that TpP = ker ϑK(p) ⊕ T v
p P and 〈ϑK(p), ξ(p)〉 ∈ TeG for

ξ(p) ∈ TpP .
It follows from

dK (p, p) = K (p, p)ϑK(p) + ϑK(p)∗K (p, p), (69)

where K (p, p) = K(p)∗K(p), that ϑK is a metric connection with respect to the Hermi-
tian structure (66). In order to see this let us take f1, f2 ∈ C∞G (P, V ). Then from (69)
one obtains

d〈 f1(p), K (p, p) f2(p)〉
= 〈d f1(p) + ϑ(p) f1(p), K (p, p) f2(p)〉 + 〈 f1(p), K (p, p)(d f2(p) + ϑ(p) f2(p))〉.

(70)

Since arbitrary sections ψ1, ψ2 ∈ �∞(M, V) of the vector bundle πV : V→ M can be
written as ψi (π(p)) = [(p, fi (p))], i = 1, 2, from (70) we obtain

dH(ψ1, ψ2) = H(∇ψ1, ψ2) + H(ψ1,∇ψ2),

where ∇ : �∞(M, V) → �∞(M, T ∗M ⊗ V) is the covariant derivative defined
in (25). ��

After these preliminary considerations we propose a method of quantization of the
generalized Hamiltonian flow τ

(X,F)
t : P → P tangent to the vector field ξ = (π∗ ×

ν∗)−1(X, F) ∈ �∞G,ϑ (T P), where (X, F) ∈ P∞G (P, ϑ).

Definition 3. Astrongly continuos unitary representationU (X,F) : (R,+)→ (Aut H, ◦)
of the additive group (R,+) is the positive kernel (coherent state) quantization of a gen-
eralized Hamiltonian flow τ (X,F) : (R,+) → Aut(P, ϑ) if there exists a coherent state
map K : P → B(V,H) such that:
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(i) the connection form ϑ is equal to ϑK defined in (67);
(ii) the equivariance property

K(τ
(X,F)
t (p)) = U (X,F)

t K(p) (71)

for K : P → B(V,H) is fulfilled with respect to both considered flows.

From the condition (iii), see (52) of the Definition 1 it follows that τ
(X,F)
t defines

U (X,F)
t in an unique way.
Let us also note that if K : P → B(V,H) is a one-to-one smooth map and the

flow τt ∈ Aut(P) satisfies K(τt (p)) = UtK(p) for a certain unitary flow Ut , then
τt ∈ Aut(P, ϑK) and thus there exists (X, F) ∈ �∞(T M)× C∞G,ϑK

(P, TeG) such that

τt = τ
(X,F)
t and Ut = U (X,F)

t . Additionally (X, F) satisfies the generalized Hamilton
Eq. (10) for the curvature form ΩK defined by ϑK. If ΩK is non-singular then the vector
field X ∈ �∞(T M) is uniquely defined by F ∈ C∞G (P, TeG).

Since for the non-singular curvature form Ω the Eq. (10) allows one to define X ∈
�∞(T M) by F ∈ C∞G (P, TeG), so, in this case we will use the notation τ F

t and UF
t

instead of τ
(X,F)
t and U (X,F)

t .
It follows from Stone’s Theorem, see e.g. [35], that there exists a self-adjoint operator

̂F with domain D
̂F dense in H such that U (X,F)

t = eit̂F . From (71) we see that DK

defined in (62) is aU (X,F)
t -invariant dense linear subspace ofH. From (71) it also follows

that the functions R � t �→ Ut |ψ〉 ∈ H, where |ψ〉 ∈ DK, are differentiable. So, see
Theorem VII.11 in [35], DK is an essential domain of the infinitesimal generator ̂F of
U (X,F)
t .
Differentiating both sides of the Eq. (71) with respect to t ∈ R we obtain

îFK(p) = ξ(K)(p) =
(

(π∗ × ν∗)−1(X, F)K
)

(p) = (H∗(X)K)(p) + K(p)F(p).

(72)

Note here that for any p ∈ P one has Ran K(p) ⊂ DK ⊂ D
̂F . We also note that the

last equality in (72) follows from (19)–(20) and (71).
The symmetricity of ̂F on the domain DK is equivalent to the equation

0 = [(H∗(X)K)(p) + K(p)F(p)]∗K(q) + K∗(p)[(H∗(X)K)(q) + K(q)F(q)],
where H∗(X) is the horizontal lift of X ∈ �∞(T M) with respect to ϑ .

From (72) and (67) we find that the mean values map 〈·〉 : ̂F �→ 〈̂F〉 defined by

〈̂F〉 := (K(p)∗K(p))−1K∗(p)̂FK(p) = −i F(p)

is inverse to the quantization Q : F �→ ̂F of the classical generator F of the Hamiltonian
flow τ F

t .

Using the isomorphism IK : H → HK we can represent the quantum flow U (X,F)
t

and its generator ̂F in terms of the Hilbert space HK . Namely, we have

IK ◦U (X,F)
t ◦ I−1K = �̄t

and

IK ◦ ̂F ◦ I−1K = Q̄(X,F),
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where �̄t and Q̄(X,F) are defined in (29) and (28), respectively.
Having in mind the Hilbert spaces isomorphism IK : H→ HK , defined in (61), we

see that DK defined in (57) is a common essential domain of the self-adjoint operators
Q̄(X,F) being the generators of the flows U (X,F)

t .
According to Definition 3 the problem of quantization of the classical flow R � t �→

τ
(X,F)
t ∈ Aut(P, ϑ) which solves the generalized Hamilton Eq. (10) reduces to the
finding of a coherent state map K : P → B(V,H) satisfying the conditions ϑ = ϑK

and (71). Taking into account that K : P × P → B(V ) defines K : P → B(V,H) up
to a unitary map U : H→ H it is reasonable to formulate these conditions in terms of
the positive definite kernel:

ϑ(p) = ϑK(p) = K (p, p)−1dq K (p, q)|q=p, (73)

K (p, q) = K (τ
(X,F)
t (p), τ (X,F)

t (q)). (74)

Now, let us describe the quantization conditions (73) and (74) in terms of local
representationsKα := K◦sα : Oα → B(V,H) and Kᾱβ := K∗α◦Kβ : Oα×Oβ → B(V )

of K : P → B(V,H) and K : P × P → B(V ).

Proposition 3. (i) The conditions (73) and (74) written in terms of a local representa-
tion sα : Oα → P assume the following form

ϑα(m) = Kᾱα(m,m)−1dnKᾱα(m, n)|n=m, (75)

Kᾱβ(m, n) = gα(t,m)†Kᾱβ(σ
(X,F)
t (m), σ

(X,F)
t (n))gβ(t, n) (76)

where ϑα := s∗αϑ , the local cocycle gα(t,m) and the flow σ
(X,F)
t : M → M are

related by (31), if we put τt = τ
(X,F)
t and σt = σ

(X,F)
t .

(ii) The infinitesimal version of the condition (76) is the following

X (Kᾱβ)(m, n) + φα(m)Kᾱβ(m, n) + Kᾱβ(m, n)φβ(n) = 0, (77)

whereX (Kᾱβ)(m, n) := d
dt Kᾱβ(σ

(X,F)
t (m), σ

(X,F)
t (n))|t=0, i.e.X (m, n) = (X (m),

X (n)), and φα(m), defined in (36), satisfy the equation

LXϑα + dφα + [ϑα, φα] = 0 (78)

equivalent to the Eq. (41).

Proof. (i) The equality (76) follows from (31).
(ii) One obtains (77) by differentiating of (76) with respect to the parameter t ∈ R at

t = 0. The condition (78) we obtain from (41) using (36), (42) and (43). ��
Let us also mention the transformation formulas

Kβ(m) = Kα(m)gαβ(m),

and

Kβ̄γ (m, n) = gαβ(m)†Kᾱδ(m, n)gδγ (n),
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where gαβ : Oα∩Oβ → G is the cocycle defined in (44) andm ∈ Oα∩Oβ , n ∈ Oγ ∩Oδ ,
between two local representations.

The domain D
̂F of the generator ̂F contains DK ⊂ D

̂F the dense subset DK defined
in (62) which consists of |ψ〉 =∑

j∈J Kβ j (n j )v j ∈ D
̂F , where n j ∈ Oβ j , v j ∈ V and

J is finite. So, the local version of the formula (72) is the following

îFKβ(n)v = X (Kβ)(n)v + Kβ(n)φβ(n)v. (79)

The domains D(Q(X,F)) and D(Q̄(X,F)) of the Kirillov–Kostant–Souriau operators
Q(X,F) : D(Q(X,F)) → �∞(M, V) and Q̄(X,F) : D(Q̄(X,F)) → �∞(M, V̄) de-
fined in (26) and (28), respectively, in the local representation consists of the vectors
ψ =∑

j∈J Kᾱ jβ(m j , ·)v j ∈ D(Q(X,F)) and ψ̄ =∑

j∈J Kβ̄α j
(·, n j )v j ∈ D(Q̄(X,F)).

The local version of (26) and (28) are

Q(X,F)Kᾱβ(m, ·)v = X (Kᾱβ)(m, ·)v + Kᾱβ(m, ·)φβ(·)v (80)

and

Q̄(X,F)Kᾱβ(·, n)v = X (Kᾱβ)(·, n)v + φα(·)†Kᾱβ(·, n)v. (81)

Summing up the above facts, we see that the problem of quantization of classical flow
τ

(X,F)
t described by the generalized Hamilton Eq. (10) (in local representation by the
Eqs. (41) or by (78)) is reduced to the problem of finding a solution Kᾱβ : Oα ×Oβ →
B(V ) of the Eqs. (75) and (77), where X , Fα and ϑα are fixed and satisfy (78). In general
this is a rather hard task. However, it is possible to do this for some particular cases. For
this reason see Sect. 6.

5. Extension and Reduction

It turns out that if G ⊂ GL(V, C), then having a principal bundle P(G, π, M) and
a coherent state map K : P → B(V,H) one can define in a canonical way two other
principal bundles ˜P(GL(V, C), π̃ , M) andU (U (V ), πu, M) overM with the structural
groups GL(V, C) andU (N ), respectively. Moreover the coherent state method of quan-
tization of the generalized Hamiltonian flows on P(G, π, M) extends uniquely to each
of these principal bundles giving the same quantum flows as in the case of P(G, π, M).

Indeed, since G is a Lie subgroup of GL(V, C) one can define the GL(V, C)-
principal bundle ˜P(GL(V, C), π̃ , M) over M in the following way:

(a) the total space ˜P is the quotient ˜P := (P × GL(V, C))/G defined by the action

˜Φg : P × GL(V, C) � (p, g̃) �→ (pg, g−1g̃) ∈ P × GL(V, C) (82)

of G on the product P × GL(V, C);
(b) the bundle projection π̃ : ˜P → M is defined by

π([(p, g̃)]) := π(p),

where [(p, g̃)] := {(pg, g−1g̃) : g ∈ G} ∈ ˜P;
(c) the right action κ̃ : ˜P × GL(V, C)→ ˜P of GL(V, C) on ˜P one defines by

κ̃
˜h([(p, g̃)]) = [(p, g̃)]˜h := [(p, g̃˜h)].
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One has a natural principal bundles morphism E : P → ˜P defined by

E(p) := [(p, e)],
which covers the identity map id : M → M of M . Note here that

E(pg) = [(pg, e)] = [(p, g)] = [(p, e])g = E(p)g

for g ∈ G ⊂ GL(V, C). Hence, according to the Proposition 6.1 in Chapter II of
[20], there exists uniquely defined connection ˜H∗ : Tπ̃( p̃)M → Tp̃˜P which in the case
considered here is related to the connection H∗ : Tπ(p)M → TpP on P by

˜H ∗̃p := T (̃κg̃ ◦ E)(p) ◦ H∗p , (83)

where p̃ = [(p, g̃)] ∈ ˜P .
The connection form˜ϑ ∈ �∞(˜P, T ∗˜P⊗B(V )) corresponding to (83) is the follow-

ing

˜ϑ([(p, g̃)]) := g̃−1ϑ(p)g̃ + g̃−1dg̃.

Having the principal bundles morphism E : P → ˜P we can extend a G-equivariant
coherent state map K : P → B(V,H) as well as an automorphism τ ∈ Aut(P) of
P(G, π, M) to the ones defined on ˜P . These extensions are defined as follows

˜K([(p, g̃)]) := K(p)g̃,

τ̃ ([(p, g̃)]) := [(τ (p), g̃)]. (84)

The correctness of the above definitions including their independence on the choice of
representative (pg, g−1g̃) ∈ [(p, g̃)], where g ∈ G, one can check easily.

If we extend the map F : P → TeG, defined in (6), to the map ˜F : ˜P → B(V ) by

˜F([(p, g̃)]) := g̃−1F(p)g̃, (85)

then the following relations

(˜D˜F)( p̃) = g̃−1DF(p)g̃, (86)
˜H ∗̃p(X)�˜Ω p̃ = g̃−1(H∗p(X)�Ωp)g̃ (87)

are fulfilled, where ˜D and ˜Ω are the covariant derivative and the curvature form corre-
sponding to˜ϑ .

The above allows us to formulate the following proposition.

Proposition 4. A generalized Hamiltonian flow τ
(X,F)
t ∈ Aut(P, ϑ) extends by (84) to

the flow τ̃
(X,F)
t ∈ Aut(˜P,˜ϑ) and one has the equality τ̃

(X,F)
t = τ

(X,˜F)
t of the flows,

where ˜F : ˜P → B(V ) is defined in (85), i.e. the extension τ̃
(X,F)
t is a generalized

Hamiltonian flow τ
(X,˜F)
t on ˜P.

Proof. It follows from (86) and (87) that (X, ˜F) satisfies equation

˜H∗(X)�˜Ω +˜D˜F = 0 (88)

if and only if (X, F) satisfies Eq. (10). ��
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In order to define the principal bundle U (U (V ), πu, M) let us note that having a
G-equivariant coherent state map K : P → B(V,H) we can define the map ΦK :
P × GL(V, C)→ P × GL(V, C)

ΦK (p, g̃) := (p, K (p, p)
1
2 g̃),

where K (p, p) = K(p)∗K(p). This map intertwines

Φu
g ◦ΦK = ΦK ◦ ˜Φg (89)

the action (82) with the action

Φu
g (p, g̃) := (pg, c(p, g)−1g̃), (90)

where the U (V )-valued cocycle c : P × G → U (V ) is defined by

c(p, g) := K (p, p)
1
2 gK (pg, pg)−

1
2 .

The cocycle property c(p, g)c(pg, h) = c(p, gh) and the unitary property c(p, g)†

c(p, g) = 11V for c : P × G → U (V ) follow from (53).
From (89) we see that ΦK defines an automorphism [ΦK ] : ˜P → ˜P of the principal

bundle ˜P(GL(V, C), π̃ , M) which covers the identity map of the base M . The inverse
[ΦK ]−1 = [ΦK−1 ] of this automorphism transforms˜ϑ and ˜F in the following way

ϑu([(p, g̃)]) := ([ΦK−1 ]∗˜ϑ)([(p, g̃)])
= g̃−1

[

K (p, p)
1
2 ϑ(p)K (p, p)−

1
2 + K (p, p)

1
2 (dK−

1
2 )(p, p)

]

g̃ + g̃−1dg̃,

(91)

and

Fu([(p, g̃)]) := (˜F ◦ [ΦK−1 ])([(p, g̃)]) := g̃−1K (p, p)
1
2 F(p)K (p, p)−

1
2 g̃,

respectively.
It follows from c(p, g) ∈ U (V ) that the submanifold P ×U (V ) ⊂ P × GL(V, C)

is invariant with respect to the action (90). Therefore, one can consider the quotientmani-
foldU := (P×U (V ))/G as the total spaceof aU (V )-principal bundleU (U (V ), πu, M)

overM with bundle projectionmapπu : U → M and the right action κu : U×U (V )→
U of U (V ) defined as follows

πu([(p, c)]) := π(p),

κu([(p, c̃)], c) := [(p, c̃c)].
Let us note here that [(p, c̃)] ∈ (P × U (V ))/G is defined by [(p, c̃)]:=
{(pg, c(p, g)−1c̃) : g ∈ G}.

Taking the Lie algebra U(V ) := {Y ∈ B(V ) : 〈Yv,w〉 + 〈v,Yw〉 = 0 for v,w ∈ V }
ofU (V ) and the real vector spaceH(V ) of the Hermitian 〈Hv,w〉 = 〈v, Hw〉 endomor-
phisms H ∈ B(V ) one obtains the Ad(U (V ))-invariant splitting B(V ) = U(V )⊕H(V )

of B(V ). So, according to Proposition 6.4 of Chapter II in [20], the anti-Hermitian part
of ϑu after restriction ϑa := 1

2 (ϑ
u − (ϑu)†)|U to U ⊂ ˜P defines a connection form

on the U (V )-principal bundle U (U (V ), πu, M). Restricting Fa := 1
2 (F

u − (Fu)†)|U
to U ⊂ ˜P one obtains a U(V )-valued U (V )-equivariant function on the total space of
U (U (V ), πu, M).
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Therefore, by fixing a coherent state map K : P → B(V,H) on the total space of
principal bundle P(G, π, M) we reduce a generalized Hamilton system on ˜P described
by (88) to the one defined on U by ϑa and Fa . Let us stress here that this reduction
depends on the choice of K : P → B(V,H) in a canonical way.

Now, we discuss the problem of quantization of the generalized Hamiltonian flows

τ
(X,F)
t , τ (X,˜F)

t and τ
(X,Fa)
t on P , ˜P and U , respectively, which are reciprocally related.

We collect the main facts under our consideration in the subsequent proposition.

Proposition 5. If a flow τ
(X,F)
t ∈ Aut(P, ϑ) is quantized in the sense of Definition 3,

then:

(i) The flow τ
(X,˜F)
t is also quantized in sense of Definition 3, i.e. one has ˜ϑ = ϑ

˜K

and ˜U (X,F)
t

˜K([(p, g̃)]) = ˜K(τ (X,˜F)[(p, g̃)]). Additionally one has the equality
˜U (X,F)
t = U (X,F)

t of the quantum flows.

(ii) The total space U of U (U (V ), πu, M) is invariant with respect to τ
(X,˜F)
t ∈

Aut(˜P,˜ϑ) and τ
(X,˜F)
t |U = τ

(X,Fa)
t ∈ Aut(U, ϑa). The connection form ϑa satis-

fies

ϑa = ϑa
a := a∗da (92)

the quantization condition (i) of Definition 3, for the coherent state map a : U →
U(V,H) ⊂ B(V,H) defined by

a([(p, c̃)]) := K(p)K (p, p)−
1
2 c̃, (93)

where U(V,H) is the set of isometries of Hilbert space V into the Hilbert space
H.

(iii) The generalizedHamiltonian flow τ
(X,Fa)
t ∈ Aut(U, ϑa) is quantized in the sense of

Definition 3 and the quantum flow U (X,Fa)
t corresponding to it is equal U (X,Fa)

t =
U (X,F)
t to the quantum flow U (X,F)

t .

Proof. (i) From ϑ = ϑK we have

˜ϑ([(p, g̃)]) = g̃−1(K(p)∗K(p))−1K(p)∗dK(p)g̃ + g̃−1dg̃
= (˜K([(p, g̃)])∗˜K([(p, g̃)]))−1˜K([(p, g̃)])∗d˜K([(p, g̃)]) = ϑ

˜K([(p, g̃)]).
Next, from (71) and (84) taken for τ = τ

(X,F)
t we obtain

Ut˜K([(p, g̃)]) = UtK(p)g̃ = K(τ
(X,F)
t (p))g̃ = ˜K(τ

(X,˜F)
t ([(p, g̃)])).

(ii) The quantization property for τ
(X,F)
t implies that

K (τ
(X,F)
t (p), τ (X,F)

t (p)) = K (p, p). (94)

This condition is equivalent to the following one

ΦK ◦ (τ
(X,F)
t × id) = (τ

(X,F)
t × id) ◦ΦK .

Since the flow τ
(X,F)
t × id : P×GL(V, C)→ P×GL(V, C) also commutes with

the actionΦu : P×GL(V, C)×G → P×GL(V, C) of G andΦu
g (P×U (V )) ⊂
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P × U (V ) we find that U ⊂ ˜P is invariant with respect to the flow τ
(X,˜F)
t . From

(94) one obtains that a : U → U(V,H) defined in (93) satisfies

Uta([(p, c̃)]) = a(τ (X,˜F)([(p, c̃)])). (95)

Restricting ϑu = [ΦK−1 ]∗˜ϑ = [ΦK−1 ]∗ϑ˜K to U ⊂ ˜P and using (91) one obtains
(92).

(iii) The quantization of τ
(X,Fa)
t = τ

(X,˜F)
t |U as well as the equality Ut = Uu

t follows
from (92) and (95). ��

According to (62) the essential domains of the generators ̂˜F : D
˜K → H and ̂Fa :

Da → H of flows Ut = eit
̂
˜F and Ut = eit̂F

a
are the following

D
˜K :=

{

∑

i∈F
˜K( p̃i )vi : p̃i ∈ ˜P, vi ∈ V

}

and

Da :=
{

∑

i∈F
a( p̃i )vi : p̃i ∈ U, vi ∈ V

}

,

where F is a finite subset of Z.
Since ˜K( p̃i )vi = K(pi )g̃ivi , a( p̃i )vi = K(pi )K (pi , pi )−

1
2 c̃ivi and vi ∈ V are

chosen in an arbitrary way we obtain that D
˜K = Da = DK. So, we have also the

equalities ̂˜F = ̂Fa = ̂F for the generators. However, the formula (72) taken for ̂˜F and
̂Fa is different from the one for ̂F . Namely, we have

î˜F˜K( p̃) = (H∗(X)˜K)( p̃) +˜K( p̃)˜F( p̃), (96)

where p̃ = [(p, g̃)] ∈ ˜P , and
îFaa( p̃) = (Ha∗(X)a)( p̃) + a( p̃)Fa( p̃), (97)

where p̃ = [(p, c̃)] ∈ U .
From (96) and (97) we easily see that the mean value functions 〈̂˜F〉 and 〈̂Fa〉 for

these generators on the coherent states are equal

〈̂˜F〉([(p, g̃)]) = g̃−1〈̂F〉(p)g = ˜F([(p, g̃)]),
〈̂Fa〉([(p, c̃)]) = (̂F ◦ [ΦK−1 ])([(p, g̃)])

to the generators ˜F and Fa of the Hamiltonian flows τ
(X,˜F)
t and τ

(X,Fa)
t , respectively.

Taking the positive kernels

˜K ( p̃, q̃) = ˜K( p̃)∗˜K(q̃) = g̃†K (p, q)˜h,

where p̃ = [(p, g̃)], q̃ = [(q,˜h)] ∈ ˜P and

A( p̃, q̃) = a( p̃)∗a(q̃) = c̃†K (p, p)−
1
2 K (p, q)K (q, q)−

1
2˜b,
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where p̃ = [(p, c̃)], q̃ = [(q,˜b)] ∈ U ,weobtain thedomainsD
˜K ⊂ C∞

GL(V,C)
(˜P, V ) ∼=

�∞(M, V̄) and DA ⊂ C∞
U (V )

(U, V ) ∼= �∞(M, V̄), see (57), of the corresponding

Kirillov–Kostant–Souriau operators Q̄(X,˜F) : D˜K → �∞(M, V̄) and Q̄(X,Fa) : DA →
�∞(M, V̄).

Summing up the above considerations we conclude that there are three equivalent
ways of quantizing of theflowσ

(X,F)
t by the positive kernelmethodbased on the principal

bundles P(G, π, M), ˜P(GL(V, C), π̃ , M) andU (U (V ), πu, M) over M , respectively.
The choice of one of these ways depends on the physical as well as mathematical aspects
of the model under investigation.

For example, the quantization based onU (U (V ), πu, M) is directly related to inter-
pretation of the positive kernel A : U ×U → B(V ) as the matrix valued transition am-
plitude kernel. More precisely, let us take such v,w ∈ V that ‖v‖ = ‖w‖ = 1. Then the
vectors a( p̃)v, a(q̃)w ∈ H have norm equal to 1 also, i.e. they describe pure states of the
system and the transition amplitude between them is 〈a( p̃)v|a(q̃)w〉 = 〈v|A( p̃, q̃)w〉.
So, one can interpret A( p̃, q̃) as the transition amplitude matrix between the states p̃
and q̃ . For more exhaustive discussion of these physical aspects we address to [25,26].

Ending, let us mention that if the base M of the principal bundle P(G, π, M) is a
complex analytic manifold then it is resonable to use an approach based on the principal
bundle ˜P(GL(V, C), π̃ , M). As an example of such a situation see Sect. 6.

6. Quantization of Holomorphic Flows on Non-compact Riemann Surfaces

In this section we will apply the method of quantization presented in Sect. 4 to the
case when P(GL(V, C), π, M) is a holomorphic GL(V, C)-principal bundle over a
non-compact Riemann surface M .

There are two reasons which motivated us to consider this case. The first one is its
relative simplicity what allows to solve the system of differential Eqs. (75), (77) on the
kernel Kᾱβ : Oα ×Oβ → B(V ) under the assumption that (X, Fα) ∈ P∞G (P, ϑ). The

above assumption, as was shown in Sect. 4, allows us to quantize the flow τ
(X,F)
t ∈

Aut(P, ϑ), using the kernel Kᾱβ obtained in such a way. The second reason is that this
type of kernel (equivalently coherent state map) occurs in various problems of quantum
optics, e.g. see [16,38].We omit here the subcasewhenM is a compact Riemann surface,
since then the Hilbert spaceH postulated in Definition 4.1. has finite dimension, which
makes the theory less interesting from a mathematical point of view, but not necessarily
from a physical one, e.g. see [14,30–32].

Using the invariants of the flows τ
(X,F)
t ∈ Aut(P, ϑ) and the appropriate gauge

transformation, we will reduce the Eqs. (75) and (77) to the linear ordinary differen-
tial Eq. (129), which is solvable for (X, F) ∈ P∞G (P, ϑ). The solutions of (129) are
presented through the formula (126) in Proposition 9 and Proposition 10. We will also
obtain the integral decompositions (151) of the positive kernels Kβ̄β(v̄, z) invariant with

respect to the flows τ
(X,F)
t on the positive kernels Kβ̄β(v̄, z; λ) presented in Proposi-

tion 13. The relationship between the B(V )-valued measures d(�∗0E�0)(λ) used for
these decompositions and the spectral measure of the generator F̂ of the quantum flow

U (X,F)
t = eit F̂ is described as well.
One proves, eg. see Section III par. 30 in [9], that for a non-compact Riemann surface

M one has H1(M,GL(N ,O)) = 0, i.e. any GL(N ,O)-valued holomorphic transi-
tion 1-cocycle (gαβ) ∈ Z1({O}α∈I ,GL(N ,O)) is solvable gαβ = δαδ−1β , where the
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holomorphic maps δα : Oα → GL(N , C), α ∈ I , represent a holomorphic 0-cocycle.
Therefore, all holomorphic vector bundles V→ M as well as the holomorphic principal
bundles P(GL(V, C), π, M) over M are trivial.

Being in the framework of the above category we will quantize the holomorphic
flows τ

(X,F)
t ∈ Aut(P, ϑ) only. We will assume also that the coherent state map K :

M × GL(V, C)→ B(V,H) is a holomorphic map.
The existence of a holomorphic flow σ X

t = π(τ
(X,F)
t ) ∈ Aut(M) on a Riemann

surface M radically restricts the class of non-compact Riemann surfaces with this prop-
erty. Namely, see eg. [10], one proves that any non-compact Riemann surface M which
admits a non-discrete group of automorphisms is biholomorphic to the one listed below:

(i) the Gauss plane C = C \ {∞},
(ii) the punctured Gauss plane C

∗ := C \ {∞, 0},
(iii) the unit disc D := {z ∈ C : |z| < 1},
(iv) the punctured unit disc D

∗ := D \ {0},
(v) an annulus Ar := {z ∈ C : r < |z| < 1}, where 0 < r < 1.

Since the groups Aut(M) of automorphisms of M = C, C
∗, D, D

∗, Ar ⊂ C ∼= CP(1)
can be considered as the subgroups of Aut(CP(1)) ∼= SL(2, C)/Z2 we find that:

(i) Aut(C) = {z �→ αz + β : α ∈ C
∗, β ∈ C} ∼= C

∗
� C,

(ii) Aut(C∗) =
{

z �→ αz or z �→ α
z : α ∈ C

∗
} ∼= Z2 � C

∗,

(iii) Aut(D) =
{

z �→ αz+β

βz+α
: |α|2 − |β|2 = 1, α, β ∈ C

} ∼= SU (1, 1)/Z2,

(iv) Aut(D∗) = {

z �→ αz : α ∈ S1
} ∼= S1,

(v) Aut(Ar ) =
{

z �→ αz or z �→ r α
z : α ∈ S1

} ∼= Z2 � S1.

For all these cases M is a circularly symmetric open subset in C. So, the inclusion
map M � m �→ ι(m) =: z ∈ C defines the global chart which is common for all
Riemann surfaces considered here. Hence, the vector field X ∈ �∞(T M) tangent to a
holomorphic flow σ X

t ∈ Aut(M) is given by

X = w(z)
∂

∂z
+ w(z)

∂

∂ z̄
, (98)

where w(z) is a second order polynomial

w(z) = cz2 + az + b (99)

with coefficients satisfying the following conditions

(i) c = b = 0 if M = C
∗, D

∗, Ar ,
(ii) c = 0 if M = C,
(iii) c = −b and a = 2iω, ω ∈ R, if M = D.

From the above conditions we see that if b = 0 then one also has c = 0 in (99).
Taking into account the above facts we present below the list of possible holomorphic

flows σ X
t on M.

Proposition 6. The following holomorphic flows are possible:
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(i) for M = C
∗, D

∗, Ar one has

σ X
t (z) = eat z, (100)

where a ∈ C \ {0} for C
∗ and a = iω, ω ∈ R \ {0}, for D

∗ and Ar ;
(ii) for M = C one has

σ X
t (z) = eat z +

b

a
(eat − 1), (101)

where a ∈ C \ {0}. Note here that for a = 0 the formula (101) reduces to

σ X
t (z) = z + bt; (102)

(iii) for M = D one has

σ X
t (z) = z(� cosh �t + iω sinh �t) + b sinh �t

zb sinh �t + � cosh �t − iω sinh �t
, (103)

if � := √−ω2 + |b|2 �= 0 and

σ X
t (z) = z(1 + iωt) + bt

zbt + 1− iωt
, (104)

if � = 0. For the formula (103) it is reasonable to distinguish the following two
subcases � ∈ R \ {0} (−ω2 + |b|2 > 0) and � ∈ iR \ {0} (−ω2 + |b|2 < 0).

Remark 1. One can consider the flows (100–104) as a one-parameter subgroups of the
Möbius group and in accordance with the standard classification of its elements we
obtain:

(i) The flows (100) are elliptic for a = iω ∈ iR and loxodromic in all other cases.
(ii) The flows (101) are parabolic for b �= 0 and for b = 0 we obtain (i).
(iii) The flows (102) are parabolic.
(iv) The flows (103) are hyperbolic for ρ2 > 0 and elliptic for ρ2 < 0.
(v) The flows (104) are parabolic.

In order to quantize the flows τ
(X,F)
t whose projections π(τ

(X,F)
t ) = σ X

t on M are
listed in (100)–(104), we recall that for every non-compact Riemann surface M the holo-
morphic principal bundle P(GL(V, C), π, M) is trivial. So, there exist a holomorphic
section sα : M → P and the corresponding trivialization Kα : M → B(V,H) of the
coherent state map which are defined on the whole of M . The Eqs. (78), (75) and (77)
in this trivialization assume the following forms

X (Fα)(z̄, z) + [Fα(z̄, z), φα(z)] = 0,
∂φα

∂ z̄
(z̄, z) = 0, (105)

ϑα(z, z) = Kᾱα(z̄, z)−1 ∂Kᾱα

∂z
(z̄, z)dz, (106)

X (Kᾱα)(z̄, z) + Kᾱα(z̄, z)φα(z) + φα(z)†Kᾱα(z̄, z) = 0, (107)

respectively. Note here that the positive kernel Kᾱα(z̄, z) := Kα(z)∗Kα(z) is anti-
holomorphic in the first variable and holomorphic in the second one.
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The relation (36) between the classical data ϑα , Fα , X in this case is the following

φα(z) = −(X�ϑα)(z̄, z) + Fα(z̄, z). (108)

Substituting ϑα(z̄, z) given by (106), into (108) we obtain the equation

Kᾱα(z̄, z)Fα(z̄, z) = Kᾱα(z̄, z)φα(z) + w(z)
∂Kᾱα

∂z
(z̄, z) (109)

on the kernel Kᾱα : M × M → B(V ) complementary to the Eq. (107).

Remark 2. Summarizing, we see that the flow τ
(X,F)
t ∈ Aut(P, ϑ) can be quantizable

iff the kernel Kᾱα satisfies (106), (107) and (109) for given classical data ϑα , Fα , w.

For simplification of the Eqs. (107) and (109) we make use of the gauge transforma-
tions listed in (44)–(49), which in this case are given by

ϑβ(z̄, z) = g−1αβ (z)ϑα(z̄, z)gαβ(z) + g−1αβ (z)(dgαβ)(z),

Fβ(z̄, z) = g−1αβ (z)Fα(z̄, z)gαβ(z),

φβ(z) = g−1αβ (z)φα(z)gαβ(z)− w(z)g−1αβ (z)
∂gαβ

∂z
(z). (110)

We see from (110) that if the equation

w(z)
∂gαβ

∂z
(z) = φα(z)gαβ(z) (111)

has a holomorphic solution gαβ : M → GL(V, C) for the given φα and w, then there
exists a holomorphic section sβ : M → P such that the Eqs. (107) and (109) reduce to
the following ones

X (Kβ̄β)(z̄, z) = 0, (112)

Kβ̄β(z̄, z)Fβ(z̄, z) = w(z)
∂Kβ̄β

∂z
(z̄, z) (113)

and Eq. (105) reduces to

X (Fβ)(z̄, z) = 0. (114)

The existence of a holomorphic solution gαβ ∈ O(M,GL(V, C)) of the Eq. (111)
on M depends on 1

w
φα which is a holomorphic function at least on the domain M0 :=

M \ {z1, z2}, where z1, z2 ∈ M are the roots of the polynomial w (the cases z1 = z2 or
{z1, z2} = ∅ are admissible also).

For the cases mentioned in Proposition 6 one has

(i) if M = C
∗, D

∗, Ar then M0 = M ;
(ii) if M = C then M0 = C \ {− b

a } for a �= 0 and M0 = C for a = 0;
(iii) if M = D then M0 = D \ {z1} for |b|2 − ω2 < 0 and M0 = D for |b|2 − ω2 ≥ 0.

From the above we have:

(a) for the cases (ii) and (iii) if the function 1
w

φα extends as a holomorphic function to
C and to D, respectively, then (111) has a holomorphic solution;
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(b) for the remaining cases we note that the pull-back of the Eq. (111) on the universal
coverinĝM0 ofM0 always has a holomorphic solution and if this solution is invariant
with respect to the natural action of the group Deck(̂M0/M0) on ̂M0 then it defines
a holomorphic solution of (111) on M .

Hence we see that by the gauge transformation (110) the large class of functions φα

could be brought to φβ = 0. Further we will investigate this case only.
Let us note that for φβ = 0 the local form (41) of Hamilton Eq. (10) is

0 = LXϑβ = X�dϑβ + dFβ

where the connection form ϑβ(z̄, z) = ˜ϑβ(z̄, z)dz is related by

Fβ(z̄, z) = (X�ϑβ)(z̄, z) = w(z)˜ϑβ(z̄, z) (115)

to the function Fβ : M → B(V ). See equalities (36) and (78) for this reason. So, in

order to consider the holomorphic flow τ
(X,F)
t as aHamiltonian flowgenerated by (X, F)

we define ˜ϑβ(z̄, z) by (115). Therefore the kernel Kβ̄β quantizes the Hamiltonian flow

π(τ
(X,F)
t ) = σ X

t if and only if it satisfies the Eqs. (112) and (113), while Fβ satisfies
Eq. (114).

Due to the circular symmetry of M ⊂ Cwe expandKβ : M → B(V,H) as a Laurent
series

Kβ(z) =
∑

n∈J
�nz

n, (116)

by definition convergent in the norm topology of the Banach space B(V,H). Let us
mention that because V is finite-dimensional the norm convergence of (116) is equivalent
to its strong convergence. The set of indices J , which numerate 0 �= �n ∈ B(V,H) in
(116), is an infinite subset J ⊂ Z of the ring of integer numbers Z. For M = C, D,
in particular, one has J = N ∪ {0}. The condition (52) on the coherent state map
Kβ : M → B(V,H) implies

{�nv : n ∈ J and v ∈ V }⊥ = {0}. (117)

Taking into account the norm convergence of (116) we can express

�n = 1

2π i

∮

S1ρ

Kβ(z)

zn+1
dz (118)

the coefficients �n by Kβ : M → B(V,H), where S1ρ := {z ∈ C : |z| = ρ} ⊂ M .
From (116) we obtain that

Kβ̄β(z̄, z) = Kβ(z)∗Kβ(z) =
∑

m,n∈J
�∗m�n z̄

mzn . (119)

Using this expansion we find that the Eq. (112) is equivalent to the two-variable second
order difference equation

c(m − 1)�∗m−1�n + c(n − 1)�∗m�n−1 + (an + am)�∗m�n

+b(n + 1)�∗m�n+1 + b(m + 1)�∗m+1�n = 0 (120)

on the coefficients �∗m�n ∈ B(V ), where one assumes that �−1 = 0 if J = N ∪ {0}.
In the next proposition we present some properties of the coefficients �n ∈ B(V,H)

whenever they satisfy the Eq. (120).
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Proposition 7. (i) If b = c = 0 and Re a �= 0, then �n = 0 for n ∈ J \ {0}.
(ii) If b = c = 0 and a = iω ∈ iR \ {0}, then

�∗m�n = �∗n�nδmn, (121)

for m, n ∈ J .
(iii) If b �= 0 then J = N ∪ {0} and �n are linearly independent in B(V,H).

Proof. For b = c = 0 the Eq. (120) reduces to

(an + am)�∗m�n = 0 (122)

for all m, n ∈ J . Thus, for Re a �= 0 one obtains that �n = 0 if n �= 0. This proves (i).
In the case Re a = 0 the Eq. (122) gives �∗m�n = 0 for m �= n, so (ii) holds.

(iii) If b �= 0 let us assume that operators �n , n ∈ N ∪ {0}, are linearly dependent.
Then there exists N ∈ N such that

�N =
N−1
∑

n=0
sn�n (123)

Let us put in (120) n = N and rewrite this equation as follows
[

c(m − 1)�m−1 + b(m + 1)�m+1
]∗

�N

= −�∗m
[

c(N − 1)�N−1 + (aN + ām)�N + b(N + 1)�N+1
]

, (124)

Next substituting�N defined by (123) into the left hand side of (124) and using Eq. (120)
again we find that

b(N + 1)�∗m�N+1 = −�∗m
[

(aN + ām)�N + c(N − 1)�N−1
]

+�∗m

[

N−1
∑

n=0
sn[c(n − 1)�n−1 + (an + ām)�n + b(n + 1)�n+1]

]

for arbitrary m ∈ N ∪ {0}. Thus, due to (117), we have
b(N + 1)�N+1 = −(aN + ām)�N − c(N − 1)�N−1

+
N−1
∑

n=0
sn[c(n − 1)�n−1 + (an + ām)�n + b(n + 1)�n+1],

which means that �N+1 is a linear combination of {�0, . . . , �N−1} too. Repeating the
above procedure we conclude that dimH ≤ N , which leads to the contradiction with
the assumption that dimH = ∞. Ending, let us note that for b �= 0 one has �m �= 0 for
all m ∈ N ∪ {0}. Since, assuming �m = 0 for certain m we obtain from Eq. (120) that
c(m − 1)�m−1 + b(m + 1)�m+1 = 0. It leads to the linear dependence of {�n}n∈N∪{0}. ��
Corollary 1. The vector space

D� :=
{

∑

n∈F
�nvn : vn ∈ V

}

(125)

is dense inH, where F is a finite subset of Z.
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Let us observe that for M = C the flows (100) and (101) are conjugated by the
translation Tb

a
(z) := z + b

a . From this and from the point (i) of Proposition 7 we have:

Corollary 2. If Re a �= 0, then Kβ(z) = γ0 = const. Therefore, the flows σ X
t =

π(τ
(X,F)
t ) corresponding to this subcase are not quantizable by the coherent state map

method.

Hence taking the above statement into account wewill assume subsequently that a = iω,
where ω ∈ R.

In order to find a solution Kβ̄β(z̄, z) of the differential Eqs. (112) and (113) we note
that using (112) and (114) one canwrite Kβ̄β and Fβ as the power series of a real variable
I ∈ � ⊂ R:

Kβ̄β(z̄, z) = Φβ(I (z, z)) =
∑

n∈J
Cn I (z, z)

n, (126)

Fβ(z̄, z) = Ψβ(I (z, z)) =
∑

n∈J
Qn I (z, z)

n, (127)

where Cn = C†
n , Qn ∈ B(V ). By definition we assume the norm convergence of these

power series expansions of the functionsΦβ : �→ B(V ) andΨβ : �→ B(V ) defined
on the range I (M) =: � of an invariant I : M → R:

X (I )(z̄, z) = 0, (128)

of the flow σ X
t tangent to the vector field X defined in (98).

Substituting Kβ̄β and Fβ given by (126) and (127) into the Eq. (113) we reduce this
equation to the ordinary linear equation on the function Φβ

ν(I )
d

d I
Φβ(I ) = Φβ(I )Ψβ(I ), (129)

whereΨβ is defined by Fβ through theEq. (127), and the iR-valued function ν : �→ iR
is defined

ν(I (z, z)) := w(z)
∂ I

∂z
(z̄, z)

by the invariant I (z, z). The correctness of this definition follows from the Eq. (128)
and from [w ∂

∂z , X ] = [w ∂
∂z , w

∂
∂z + w̄ ∂

∂ z̄ ] = 0.

Since Φβ = Φ
†
β and ν = −ν̄ we have from (129) that ΦβΨβ + Ψ

†
β Φβ = 0 which in

the case M = C, D is equivalent to
∑k

l=0(Cl Qk−l + Q†
k−lCl) = 0.

Summarizing the above facts we conclude:

Corollary 3. The flow τ
(X,F)
t is quantized by the positive kernel Kβ̄β = Φβ ◦ I if and

only if the function Φβ : �→ B(V ) is a solution of the Eq. (129), where Ψβ and ν are
related to Fβ and X through (127) and (128), respectively.

In the next proposition we will present the invariants I and ν ◦ I in correspondence
with flows σ X

t listed in Proposition 6.



Some Aspects of Positive Kernel Method of Quantization 963

Proposition 8. (i) For M = C
∗, D

∗, Ar one has w(z) = iωz. Thus

I (z, z) = z̄z, ν(I ) = iωI, (130)

and I (C∗) = � =]0,∞[, I (D∗) = � =]0, 1[ or I (Ar ) = � =]r2, 1[, respec-
tively.

(ii) For M = C one has w(z) = iωz + b. Thus

I (z, z) = ωz̄z + ibz − ibz, ν(I ) = i(ωI + |b|2), (131)

and I (C) = � = R if ω = 0, I (C) = � = [−|b|2
ω

,∞[ if ω > 0 and I (C) = � =
] −∞,−|b|2

ω
] if ω < 0.

(iii) For M = D one has w(z) = −b̄z2 + 2iωz + b. Thus

I (z, z) = 2ωzz + ibz − ibz

1− zz
, ν(I ) = i(I 2 + 2ωI + |b|2), (132)

and I (D) = � = R for b �= 0, I (D) = � =] − ∞, 0[ for b = 0, ω < 0 and
� =]0,∞[ for b = 0, ω > 0.

Proof. By straightforward verification. ��
Now, based on the formulas given in Proposition 8 we will find the dependence of

�∗m�n ∈ B(V ) on the Cn ∈ B(V ). This task is equivalent to solving the difference
Eq. (120) with the {Cn}n∈J as initial data, see (138). We will investigate the subcases
mentioned in (130), (131) and (132) separately.

Proposition 9. For the case b = 0, see (130), which concerns with an arbitrary M =
C, D, C

∗, D
∗, Ar we have

�∗m�n = Cmδmn (133)

for m, n ∈ J ⊂ Z.

Proof. See formula (121) of Proposition 7. ��
Now, let us shortly discuss the subcases presented in Proposition 9. From (133) it

follows that the Hilbert space H can be decomposed

H =
⊕

n∈J
�nV

into the orthogonal �nV⊥�mV , for n �= m, eigenspaces of ̂F . The eigenvalue of ̂F
corresponding to �nV is nω ∈ ωJ , so the subset ωJ ⊂ R is the spectrum of ̂F . We note
here that J ⊂ Z could be chosen as an arbitrary infinite subset of Z. Thus the spectral
decomposition of the operator ̂F is given by

̂F =
∑

n∈J
nω P̂n

where P̂n are the orthogonal projectors on the eigenspaces �nV ⊂ H. The kernels
Kβ̄β(v̄, z) for all these subcases are given by the same formula

Kβ̄β(v̄, z) =
∑

n∈J
Cn(v̄z)

n,
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where 0 < Cn ∈ B(V ). For dimC V = 1 this type of kernels was investigated in [27],
where their relationship with the theory of q-special functions was also shown.

For the remaining subcases, i.e. if b �= 0 we will obtain the dependence of �∗m�n on
the Cn comparing the coefficients in front of monomials v̄mzn occurring in the equality

∞
∑

m,n=0
�∗m�n v̄

mzn =
∞
∑

n=0
Cn I (v, z)n,

valid for arbitrary v, z ∈ C, D, which follows from (119) and (126).

Proposition 10. (i) For the case M = C and b �= 0 we have

�∗m�n =
n+m
∑

l=n
βl
mnCl , (134)

where

βlmn = (i b̄)n−m
(

m

l − n

)(

l

m

)

ωm+n−l |b|2l−2n, (135)

if m ≤ n.
(ii) For the case M = D and b = −c̄ �= 0 we have

�m∗�n =
n+m
∑

l=n−m
βl
mnCl , (136)

where

βl
mn = in−m

m
∑

j=0

(

l − 1 + j

l − 1

)(

l

2l + 2 j − n − m

)

×
(

2l + 2 j − n − m

j + l − n

)

(2ω)n+m−l−2 j b j+l−nb̄ j+l−m (137)

if m ≤ n.
The respective formulas for m > n one obtains by conjugation of the ones presented
in (135) and (137) and transposition of the indices.

(iii) For both cases described above one has

�∗0�n = (i b̄)nCn . (138)

Proof. By straightforward verification. ��
Next proposition describes the action of generator ̂F of the quantum flow U (X,F)

t =
eit F̂ on the coefficients �n ∈ B(V,H) of the Laurent expansion (116).

Proposition 11. The vector space D� defined in (125) is contained D� ⊂ D
̂F in the

domain of ̂F and one has

îF�n = c(n − 1)�n−1 + an�n + b(n + 1)�n+1, (139)

for n ∈ J , where we assume �−1 = 0 if J = N ∪ {0}.
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Proof. After applying eit̂F to both sides of equality (118) we obtain

eit
̂F�n = eit

̂F 1

2π i

∮

S1ρ

1

zn+1
Kβ(z)dz = 1

2π i

∮

S1ρ

1

zn+1
eit

̂FKβ(z)dz. (140)

Since one has ‖ 1
zn+1

eit̂FKβ(z)‖ ≤ 1
ρn+1 supz∈S1ρ ‖Kβ(z)‖ <∞, so due to Lebesgue’s

dominated convergence theorem the derivative d
dt |t=0 at t = 0 of the right-hand side of

(140) commutes with the integral over S1ρ . Thus, we have

îF�n = d

dt

(

1

2π i

∮

S1ρ

1

zn+1
eit

̂FKβ(z)dz

)

|t=0

= 1

2π i

∮

S1ρ

1

zn+1
d

dt

(

Kβ(σ X
t (z))

)

|t=0dz = 1

2π i

∮

S1ρ

1

zn+1
X (Kβ)(z)dz

= 1

2π i

∮

S1ρ

1

zn+1
∑

l∈J
(clzl+1 + alzl + blzl−1)�ldz

= 1

2π i

∮

S1ρ

1

zn+1
∑

l∈J
[c(l − 1)�l−1 + al�l + b(l + 1)�l+1]zldz

= c(n − 1)�n−1 + an�n + b(n + 1)�n+1. (141)

Hence, using also Stone’s Theorem, we find that the rank of �n belongs to D
̂F and

thus (139) is valid. To obtain the successive equalities in (141) we have used the norm
convergence of the series (116). ��

The expression (79) for the generator ̂F : D
̂F → H and the expressions (80) and

(81) for the Kirillov–Kostant–Souriau operators Q(X,F) : D(Q(X,F)) → �hol(M, V)

and Q̄(X,F) : D(Q̄(X,F)) → �antihol(M, V̄) in the case under consideration, i.e. when
φβ = 0, assume the following forms

îFKβ(z)v = w(z)

(

∂

∂z
Kβ

)

(z)v, (142)

and

Q(X,F)Kβ̄β(z̄, ·)v = w(z)

(

∂

∂z
Kβ̄β

)

(z̄, ·)v,

Q̄(X,F)Kβ̄β(·, z)v = w(z)

(

∂

∂ z̄
Kβ̄β

)

(·, z)v

The essential domains of the above operators are given by

DK =
⎧

⎨

⎩

ψ =
∑

j∈F
Kβ(z j )v j : z j ∈ M, v j ∈ V,

⎫

⎬

⎭

,

and by

D(Q(X,F)) =
⎧

⎨

⎩

ψ =
∑

j∈F
Kβ̄β(z̄ j , ·)v j : z j ∈ M, v j ∈ V,

⎫

⎬

⎭

,



966 A. Odzijewicz, M. Horowski

D(Q̄(X,F)) =
⎧

⎨

⎩

ψ̄ =
∑

j∈F
Kβ̄β(·, z j )v j : z j ∈ M, v j ∈ V,

⎫

⎬

⎭

,

respectively, where F is a finite subset of Z.

Proposition 12. If b �= 0, then �0 = Kβ(0) ∈ B(V,H) is a generating element for îF
in the Hilbert B(V )-module B(V,H), i.e. the elements (îF)n�0, where n ∈ N∪{0}, are
linearly independent and they span a linearly dense subspace of B(V,H). Moreover,
one has

�n = Kn(îF)�0, (143)

where the polynomials

Kn(iλ) =
n
∑

l=0
anl (iλ)l

are defined by the recurrence

Kn+1(iλ) = 1

(n + 1)b

[

iλKn(iλ)− naKn(iλ)− (n − 1)cKn−1(iλ)
]

(144)

with the initial conditions K−1(iλ) ≡ 0 and K0(iλ) ≡ 1.

Proof. The linear dependence between �0, îF�0, . . . , (îF)n�0 ∈ B(V,H) and �0,

�1, . . . , �n ∈ B(V,H), where n ∈ N ∪ {0}, given by the equations

�k =
k
∑

l=0
akl (îF)k�0,

where k = 0, 1, . . . , n, is invertible. Hence, and from the linear independence of �n ∈
B(V,H) we conclude that the vectors (îF)n�0 ∈ B(V,H), n ∈ N ∪ {0}, are linearly
independent.

From Proposition 7 it follows that the operators �n span a dense subset of B(V,H),
so, (îF)n�0 span too. ��

Now, let us describe the relationship between the coherent state representation (142)
and the spectral representation of the generator ̂F of the quantum flow U (X,F)

t = eit̂F .
Therefore, let E : R → L(H) denote the resolution of identity or equivalently the
spectral measure E : B(R)→ L(H) of the self-adjoint operator ̂F , i.e. ψ ∈ D

̂F if and
only if

∫

R

λ2d〈Eψ |ψ〉(λ) <∞

and one has

̂Fψ =
∫

R

λd(Eψ)(λ) (145)

for ψ ∈ D
̂F , see Chapter VI §66 in [2] for details. Above by L(H) and by B(R) we

denoted the lattices of orthogonal projections ofH and Borel subsets of R, respectively.
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From Proposition 11 follows that �nV ⊂ D
̂F , so, using (143) and (145) we find that

�n = Kn(îF)�0 =
∫

R

Kn(iλ)d(E�0)(λ). (146)

Next, substituting �n given by (146) into (138) we obtain

Cn = (i b̄)−n�∗0�n =
∫

R

(i b̄)−nKn(iλ)d(�∗0E�0)(λ) =
n
∑

l=0
i l−n(b̄)−nanl μl , (147)

where μl ∈ B(V ) defined by

μn := �∗0̂Fn�0 =
∫

R

λnd(�∗0E�0)(λ) (148)

are the moments of the positive B(V )-valued measure

d(�∗0E�0)(λ) := d[(E�0)
∗(E�0)](λ).

Summing up we conclude from (126) and (147) that through the Hamburger mo-
ment problem defined by (148) one obtains the relationship between the positive kernel
Kβ̄β(v̄, z) and the resolution of identity E : R→ L(H) of ̂F .

Let us define the Hilbert B(V )-module L2(R, d(�∗0E�0)) of B(V )-valued Borel
square integrable functions γ : R→ B(V ), i.e. such ones that 〈γ ; γ 〉L2 ≤ M11V , where
0 < M ∈ R, in sense of B(V )-valued scalar product

〈γ ; δ〉L2 :=
∫

R

γ (λ)∗d(�∗0E�0)(λ)δ(λ)

of the square integrable B(V )-valued functions γ, δ ∈ L2(R, d(�∗0E�0)). As it follows
from (125) and (143) �0 ∈ B(V,H) is a generating element in B(V,H) for ̂F , so we
have the isomorphism

I : L2(R, d(�∗0E�0)) � γ
∼−→

∫

R

d(E�0)(λ)γ (λ) =: � ∈ B(V,H)

of the defined above Hilbert B(V )-modules.
Using the isomorphism I and (143) we find that

�n = I(Kn(i ·)11V )

and, thus

Kβ(z) =
∞
∑

n=0
�nz

n = I(Kβ(z; ·)), (149)

where the function Kβ(z; ·) ∈ L2(R, d(�∗0E�0)) is defined by the power series

Kβ(z; λ) :=
( ∞
∑

n=0
Kn(iλ)zn

)

11V , (150)
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convergent in the norm ‖ · ‖L2 := ‖〈·, ·〉L2‖, where by ‖ · ‖ we denoted the norm on
B(V ). Later on we will see in Proposition 13 that it is also point-wise convergent.

We note here that the equivariance condition

Kβ(σ X
t (z)) = eit

̂FKβ(z)

written in terms of Kβ(z; λ) assumes the following form

Kβ(σ X
t (z); λ) = eitλKβ(z; λ).

Taking into account (149) and that 〈Kβ(v);Kβ(z)〉 = 〈Kβ(v; ·));Kβ(z; ·))〉L2 we
obtain the integral decomposition

Kβ̄β(v̄, z) =
∫

R

Kβ̄β(v̄, z; λ)d(�∗0E�0)(λ), (151)

where

Kβ̄β(v̄, z; λ) = Kβ(v; λ)†Kβ(z; λ) =
⎛

⎝

∞
∑

m,n=0
Km(iλ)Kn(iλ)v̄mzn

⎞

⎠ 11V , (152)

of the kernel Kβ̄β(v̄, z) = Kβ(v)∗Kβ(z) invariant with respect to the flow σ X
t quantized

by eit̂F .
Combining (126) and (147) we obtain the expression

Kβ̄β(v̄, z; λ) :=
( ∞
∑

n=0
Kn(iλ)

1

(i b̄)n
I (v̄, z)n

)

11V (153)

on the kernel Kβ̄β(v̄, z; λ) which is different to (152).
The equivalence of (152) and (153) follows from the equality

Km(iλ)Kn(iλ) =
m+n
∑

l=L

1

(i b̄)l
βl
mnKl(iλ),

valid for the polynomials Kn(iλ), where βl
mn are given: by (135) and L = n for M = C;

by (137) and L = n − m for M = D.
Comparing the right-hand sides of (150) and (153) we obtain

Kβ̄β(v̄, z; λ) = Kβ

(

1

i b̄
I (v̄, z); λ

)

, (154)

where I (z̄, z) is the σ X
t -invariant presented in (131) and (132) of the Proposition 8. In

the next proposition we will present expressions on Kn(iλ), Kβ(z) and Kβ̄β(v̄, z; λ) for
the cases when b �= 0.
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Proposition 13. (i) If M = C and b �= 0 then we have

Kn(iλ) = (−iω)n−1

n!bn
(

− 1

ω
λ

)

n
, (155)

where (x)n = x(x + 1) . . . (x + n − 1) is the Pochhammer symbol,

Kβ(z; λ) = i

ω
1F0

(

− 1

ω
λ;− iω

b
z

)

11V , (156)

Kβ̄β(v̄, z; λ) = i

ω
1F0

(

− 1

ω
λ;− ω2

|b|2 v̄z − iω

b
z +

iω

b̄
v)

)

11V . (157)

If a = iω = 0 the formulas above take the form

Kn(iλ) = 1

n!
(

iλ

b

)n

, (158)

Kβ(z; λ) = ei
λ
b z11V , (159)

Kβ̄β(v̄, z; λ) = e
iλ
(

z
b− v̄

b̄

)

11V . (160)

(ii) If M = D and b �= 0 then for |b|2−ω2 �= 0 we find that polynomials Kn are given
by (non-orthogonal) Meixner–Pollaczek polynomials P(0)

n (x;ϕ) as follows

Kn(iλ) =
(

A

2ib sin ϕ

)n

P(0)
n (−iλ/A;ϕ)

=
(

Aeiϕ

2ib sin ϕ

)n
(2μ)n

n! 2F1

(

−n, μ− iλ

A
; 2μ; 1− e−2iϕ

)

|μ=0
(161)

where A := − 2ω
|ω|
√|b|2 − ω2 and cosϕ := |ω|

|b| (if |b|2−ω2 > 0, then ϕ ∈ [0, π/2],
if |b|2 − ω2 < 0, then A and ϕ are imaginary, A, ϕ ∈ iR, and ϕ/ i ∈ [1,∞[) and

Kβ(z; λ) =
(

2ib sin ϕ − Ae−iϕz
2ib sin ϕ − Aeiϕz

)
iλ
A

11V , (162)

Kβ̄β(v̄, z; λ) =
(

2|b|2 sin ϕ + Ae−iϕ I (v̄, z)

2|b|2 sin ϕ + Aeiϕ I (v̄, z)

)
iλ
A

11V , (163)

where I (v̄, z) is given in (132).
For b �= 0 and |b|2 − ω2 = 0 we have that the polynomials Kn are expressed by
(non-orthogonal) Laguerre polynomials L(−1)

n (x) by

Kn(iλ) =
( ω

ib

)n
L(−1)
n (λ/ω)

=
( ω

ib

)n (α + 1)n
n! 1F1 (−n;α + 1; λ/ω) |α=−1, (164)

and

Kβ(z; λ) = exp

(

λz

ωz − ib

)

11V , (165)
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Kβ̄β(v̄, z; λ) = exp

(

λI (v̄, z)

ωI (v̄, z) + |b|2
)

11V , (166)

where I (v̄, z) is given in (132).

Proof. For M = C one can put in (144) c = 0 (see (99)). Thus it is easy to check that
(158) and (155) are solutions of this recurrence equation for a = 0 and a = iω �= 0,
respectively. The relations (159), (160), (156) and (157) follow immediately from (150),
(153) and the definition of the hypergeometric functions.

For M = D one has c = −b̄ and a = 2iω. Let us introduce the polynomials Qn
defined by

Qn(λ) := n!bnin
An

Kn(−i Aλ), (167)

where A ∈ C \ {0}. Then (144) takes the form

λQn(λ) = Qn+1(λ)− n
2ω

A
Qn(λ) + n(n − 1)

|b|2
A2 bQn−1(λ).

This is a three-term recurrence formula on monic polynomials Qn with the initial con-
ditions Q−1(λ) ≡ 0 and Q0(λ) ≡ 1. By Favard’s Theorem, see e.g. [7] Theorem
4.4, the solutions of (167) are non-orthogonal polynomials described in [21]. Namely,
for |b|2 − ω2 �= 0 and A = − 2ω

|ω|
√|b|2 − ω2 the polynomials Qn are the (non-

orthogonal) monic Meixner–Pollaczek polynomials Qn(λ) = n!
(2 sin ϕ)n

P(0)(λ;ϕ) and

for |b|2 − ω2 = 0 and A = −ω the polynomials Qn are the (non-orthogonal) monic
Laguerre polynomials Qn(λ) = n!(−1)n L(−1)(λ). This proves (161) and (164).

To prove (162), (163), (165) and (166) it is enough to observe that (150) and (153) is
nothing else than the generating function for the family of polynomials {Kn}∞n=0, which
for Meixner–Pollaczek and Laguerre polynomials may be found in [21] as well. ��

The integral decomposition (151) taken for the case dimC V = 1, b �= 0 and a = 0
leads to Bochner’s Theorem, see e.g. [35], which is one of most important instruments
in the operator theory [2] as well as the probability theory. So, as a by-product of our
method of quantization applied to the case M = C, D we obtain a family of Bochner
type integral decompositions presented in Proposition 13 for the positive definite kernels
invariant with respect to suitable holomorphic flows σ X

t on the Riemann surfaces C and
D as well as on the ones which are biholomorphic to them. We stress here that these
decompositions are valid for the arbitrary dimension of the Hilbert space V .

Now let us discuss in details the case when dimC V = 1. In this case one has
the natural isomorphism B(V,H) ∼= H. Therefore, after applying the Gram–Schmidt
orthonormalization procedure to the elements ̂Fn�0 ∈ H, where n ∈ N ∪ {0}, which
according to Proposition 12 are linearly independent and span the vector subspaceD� ⊂
D
̂F ⊂ H dense inH, we obtain the orthonormal basis

|n〉 := Pn(̂F)�0 ∈ D� (168)

inH.
The polynomials Pn(λ) of degree n appearing in (168) are orthogonal with respect

to the positive measure d(�∗0E�0)(λ). They satisfy the three term recurrence

λPn(λ) = bn−1Pn−1(λ) + an Pn(λ) + bn Pn+1(λ)
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defined by infinite Jacobi matrix J. One can express the coefficients an and bn of this
matrix as well as the polynomials Pn(λ) in terms of the moments μn , see (148), of the
measure d(�∗0E�0)(λ). For the respective formulas see Chapter I of [1].

The self-adjoint operator ̂F expressed in the basis (168) assumes the three-diagonal
form

̂F |n〉 = bn−1|n − 1〉 + an|n〉 + bn|n + 1〉, (169)

as well as in the basis �n , n ∈ N ∪ {0}, see (139).
We summarize the facts mentioned above defining

�|n〉 := �n,

P(̂Fn�0) := Pn(̂F)�0 = |n〉,
K (̂Fn�0) := Kn(îF)�0 = �n

the operators

D�

P ↙ ↘ K

D�
�−→ D�

which by definition intertwine the bases {�n}∞n=0, {̂Fn�0}∞n=0, and {|n〉}∞n=0 of theHilbert
space H.

Proposition 14. The domainD�∗ of the operator �∗ adjoint to � containsD� , which is
also the range of �. Hence D�∗ is dense inH.

Proof. For ϕ ∈ H and ψ =∑

n∈F cn|n〉 ∈ D� one has

|〈ϕ|�ψ〉|2 =
∣

∣

∣

∣

∣

∑

n∈F
cn〈ϕ|�n〉

∣

∣

∣

∣

∣

2

≤ 〈ψ |ψ〉
∑

n∈F
|〈ϕ|�n〉|2 ≤ 〈ψ |ψ〉

∑

n∈J
|〈ϕ|�n〉|2.

Thus we see that if
∑

n∈J |〈ϕ|�n〉|2 <∞ then ϕ ∈ D(�∗), so, we need to prove that

∑

n∈J
|〈�m |�n〉|2 <∞ (170)

for any m ∈ J . Let us consider three subcases mentioned in Proposition 9 and Proposi-
tion 10 separately.

For the subcase of Proposition 9 it follows from (133) that
∑

n∈J |〈�m |�n〉|2 =
|〈�m |�m〉|2 <∞.

To prove (170) for the subcase (i) of Proposition 10 where M = C let us observe that
the quantities βl

m,n , l = n, . . . , n +m, given by (135) form, up to the factor (i b̄)n , a finite
family of polynomials of the variable n of degree no greater than m with coefficients
depends on b, ω,m. Thus from (134) we obtain that for fixed m ∈ N ∪ {0} one has

n
√〈�m |�n〉 ≤ n

√

√

√

√

n+m
∑

l=n
|βl

m,n||Cl | −−−→
n→∞ 0
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where the last limit follows from the fact that the right hand side of (126) is convergent

for arbitrary I ∈ R (see (131)), i.e. n
√|Cn| → 0, and n

√

|βl
m,n| → |b|. Finally, (170)

holds due to the root test for the convergence of a series.
The proof of (170) for the subcase (ii) of Proposition 10whereM = D is similar to the

previous case. Namely, from (137) follows that the quantities βl
m,n , l = n−m, . . . , n+m

form, up to the factor (i b̄)n , a finite family of polynomials of the variable n of degree
no greater than 3m with coefficients depending on b, ω,m. Thus

n
√〈�m |�n〉 ≤ |b| n

√

√

√

√

n+m
∑

l=n−m
|βl

m,n||Cl | −−−→
n→∞ 0

because the right hand side of (126) is convergent for arbitrary grates |I | ∈ R (see (132)),
i.e. n
√|Cn| → 0. ��
We see from the above proposition that the assumption of the Theorem VIII.1 in [35]

are fulfilled and thus we have:

Proposition 15. (i) The adjoint operator �∗ is closed.
(ii) The operator � is closable and one has �̄ = �∗∗, (�̄)∗ = �∗.
(iii) The operator �̄∗�̄ = �∗�∗∗ defined on the dense domain D�̄∗�̄ = {ψ ∈ D�̄ :

�̄ψ ∈ D�̄∗} is self-adjoint (see Exercise 45 in Chapter VIII of [35]).

Let usmention an interesting possibility to describe the coherent state mapKβ : D→
H which quantizes a holomorphic flow σ X

t : D→ D on the disc. Namely, let us define
K0 : D→ H by

K0(z) :=
∞
∑

n=0
zn|n〉. (171)

From (171) and from the closability of � : D� → D� we find that

Kβ(z) = �̄K0(z).

The above allows us to represent

Kβ̄β(v̄, z) =
∞
∑

m,n=0
〈m|�̄∗�̄|n〉v̄mzn

the positive kernel Kβ̄β in terms of the matrix elements 〈m|�̄∗�̄|n〉 of the positive self-
adjoint operator �∗�∗∗ = �̄∗�̄.

Proposition 16. Ifdim V = 1 then for the flowσt (z) = eat z, z ∈ M = C, D, C
∗, D

∗, Ar
there exists a holomorphic section sβ : M → P(GL(1, C), π, M) for which φβ(z) =:
φ0 = const.

Proof. We need to show that when dim V = 1 the Eq. (110) has solution gαβ : M →
C \ {0} for φβ(z) = φ0. Let us rewrite this equation in the following form

∂gαβ

∂z
(z) = −φα(z)− φ0

az
gαβ(z). (172)
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Because each M is a circularly symmetric domain in C, the holomorphic function
φα : M → C is globally defined by its Laurent expansion

φα(z) =
∑

n∈J
pnz

n .

Let us define a holomorphic function on M

ψ(z) :=
∑

n∈J\{0}

1

n
pnz

n .

This definition is correct since n
√
n→ 1 for n→∞.

Because z ∂ψ(z)
∂z = φ(z)− p0, then for φ0 = p0 the holomorphic function gαβ(z) =

e
1
α
ψ(z) is a solution of (172) holomorphic on M . ��

Corollary 4. If Re φ0 �= 0, then the flows mentioned in Proposition 16 are not quantiz-
able.

Proof. If φβ(z) = φβ(0) = φ0 �= 0, then for b = 0 the Eqs. (107) and (116) give

[δ(m + n) + 2μ + iω(m − n)]〈�m |�n〉 = 0,

where δ := Re a, ω := Im a and μ := Re φ0. Hence, we find that �n �= 0 iff n =
−μ

δ
∈ Z. So, Kβ(z) = �nzn and from defining property of Kβ : M → H it follows that

dimCH = 1. The above contradicts the postulates of Definition 1. ��
In the next section we will shortly discuss a possible physical applications of the

obtained results.

7. Remarks About Physical Applications

In the theory of quantummechanical systems there are two naturally distinguished ways
of representing quantum Hamiltonians. The first one is by Schrödinger differential op-
erator having domain in the Hilbert space L2(RN , dN x) of square-integrable functions.
The second one, called Fock representation, is given by using the creation and annihila-
tion operators which are the weighted shift operators acting in an abstract Hilbert space.
The Schrödinger approach is used if one defines a quantum system starting from its
classical counterpart (Schrödinger quantization). The Fock approach is usually applied
to systems which do not have the classical equivalents. This for example happens in
quantum optics [11,12,39] and nuclear physics [19], where the annihilation operators
describe the quantum amplitudes of distinguished modes of a quantum physical system.

In order to integrate a quantum system, i.e. to obtain its evolution in time, one needs
to find the spectral resolution of the Hamiltonian. This is the main mathematical task of
quantum mechanics leading to the spectral representation of a quantum Hamiltonian.

The coherent states representation of the physical system investigated in this paper
was initiated by E. Schrödinger in 1926 in the paper [37] and next was investigated by
Fock [8] and Bargmann [4], and is known in quantummechanics as the Bargmann–Fock
representation. Later it was revitalized in quantum optics by Glauber [12]. Let us also
mention also the contribution of Perelomov, see [34], to this subject, i.e. the construction
of coherent state maps through the irreducible representations of Lie groups.
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In the papers [25,26] a method of quantization of an arbitrary Hamiltonian system
based on the notion of coherent state map was proposed and its generalization to the
case of an arbitrary G-principal bundle we investigated here. Therefore, the illustration
of the above method by its application to concrete physical systems is desirable. The
coherent state method of quantization of the harmonic oscillator [37] is the most known
and one can find it also in the textbooks of quantum mechanics. The two cases related
to atomic physics crucial from the physical point of view, i.e. Kepler and MIC-Kepler
systems, were quantized by the coherent state map method in [15,29], respectively. One
can find a large class of systems quantizable by the coherent state method in optics
[14,16,38], where one usually considers a finite number of modes of an electromagnetic
field self-interacting through a nonlinear medium [11,33,39]. In the papers [30–32] the
classical and quantum reduction procedures were applied to the system of nonlinearly
coupled harmonic oscillators (modes) which leads to quantization of the Hamiltonian
systems on circularly symmetric surfaces called Kummer shapes [13,30]. This is a case
to which one can apply the results obtained in Sect. 6. The detailed discussion of all
mentioned cases would require considerable extension of the paper, so we plan to make
it the subject of a subsequent publication.

Finally, let us mention our belief that the kernel decomposition (151) presented in
Proposition 13, which generalizes the one considered in Bochner’s Theorem to arbitrary
noncompact Riemann surfaces, will find applications in probability theory problems.
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