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Abstract: We prove the well-posedness of the initial boundary value problem for the
Einstein equationswith sole boundary condition the requirement that the timelike bound-
ary is totally geodesic. This provides the first well-posedness result for this specific geo-
metric boundary condition and the first setting for which geometric uniqueness in the
original sense of Friedrich holds for the initial boundary value problem. Our proof relies
on the ADM system for the Einstein vacuum equations, formulated with respect to a
parallelly propagated orthonormal frame along timelike geodesics. As an independent
result, we first establish the well-posedness in this gauge of the Cauchy problem for the
Einstein equations, including the propagation of constraints. More precisely, we show
that by appropriately modifying the evolution equations, using the constraint equations,
we can derive a first order symmetric hyperbolic system for the connection coefficients of
the orthonormal frame. The propagation of the constraints then relies on the derivation of
a hyperbolic system involving the connection, suitably modified Riemann and Ricci cur-
vature tensors and the torsion of the connection. In particular, the connection is shown to
agree with the Levi-Civita connection at the same time as the validity of the constraints.
In the case of the initial boundary value problem with totally geodesic boundary, we
then verify that the vanishing of the second fundamental form of the boundary leads to
homogeneous boundary conditions for our modified ADM system, as well as for the
hyperbolic system used in the propagation of the constraints. An additional analytical
difficulty arises from a loss of control on the normal derivatives to the boundary of the
solution. To resolve this issue, we work with an anisotropic scale of Sobolev spaces and
exploit the specific structure of the equations.
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1. Introduction

This article establishes the well-posedness of the initial boundary value problem (IBVP)
for the Einstein vacuum equations

Ric(g) = 0, (1.1)

in the specific case of a totally geodesic timelike boundary.

1.1. The initial boundary value problem in general relativity. In the standard formu-
lation of the Cauchy problem for the Einstein vacuum equations, given a Riemannian
manifold (�, h) and a symmetric 2-tensor k satisfying the constraints equations

R − |k|2 + (trk)2 = 0, (1.2)

divk − dtrk = 0, (1.3)

where R is the scalar curvature of the Riemannian metric h and all operators are taken
with respect to h, the goal is to construct a Lorentzian manifold (M, g) solution to the
Einstein equations, together with an embedding of � intoM such that (h, k) coincides
with the first and second fundamental form of the embedding. For the IBVP, we now
require that � is a manifold with boundary S. We consider an additional manifold
B = R × S, a section S0 = {0} × S of B which is identified with the boundary S of
� via a diffeomorphim ψs,s0 , and a set of functions BC on B representing source terms
for the chosen boundary conditions. On top of the constraint equations, the initial and
boundary data must also now verify the so-called corner or compatibility conditions, a
set of equations involving h, k,BC, their derivatives at all orders on S and S0, as well
as a given real function ω on S, which will eventually represent the angle between the
initial slice and the timelike boundary.
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A solution to the IBVP is then aLorentzianmanifold (M, g)with a timelike boundary
T , an embbeding ψt of a neigbhoorhood of S0 ⊂ B into T , such that the boundary data
BC can be identified with the corresponding data on T , and an embedding ψi of � into
M respecting the initial data, withψi (S) = ψt (S0), such thatψ

−1
t ◦ [ψi ]|S = ψs,s0 and

the angle between T and the future unit normal to ψi (�) is ω ◦
[
ψ−1
i

]
ψi (S)

.

There is a priori a large freedom in the choice of boundary conditions. The sourcesBC
could correspond to the values of tensor fields encoding the geometry of T , for instance,
the first or second fundamental forms of T , its conformal geometry, some curvature
invariants or they could correspond to components of geometric tensor fields in some
gauge and boundary conditions for the gauge itself.

The IBVP is related to many important aspects of general relativity and the Einstein
equations, such as numerical relativity, the construction of asymptotically Anti-de-Sitter
spacetimes, timelike hypersurfaces emerging as the boundaries of the support of mas-
sive matter fields or the study of gravitational waves in a cavity and their nonlinear
interactions. This problem was first addressed for the Einstein equations in the semi-
nal work of Friedrich-Nagy [13], as well as by Friedrich [10] in the related Anti-de-
Sitter setting.1 Well-posedness of the IBVP has since been obtained in generalized wave
coordinates, see [17] or the recent [1],2 and for various first and second order systems
derived from the ADM formulation of the Einstein equations, see for instance [9,19]
and previous work in numerics [2,14]. We refer to [20] for an extensive review of the
subject.

1.2. Geometric uniqueness. One of the remaining outstanding issues, concerning the
study of the Einstein equations in the presence of a timelike boundary, is the geometric
uniqueness problem of Friedrich [12]. Apart from the construction of asymptotically
Anti-de-Sitter spacetimes [10], where the timelike boundary is a conformal boundary at
spacelike infinity, all results establishing well-posedness, for some formulations of the
IBVP, impose certain gauge conditions on the boundary, and the boundary data depend
on these choices. In particular, given a solution to the Einstein equations with a timelike
boundary, different gauge choices will lead to different boundary data, in each of the
formulations for which well-posedness is known. On the other hand, if we had been
given the different boundary data a priori, we would not know that these lead to the
same solution. The situation is thus different from the usual initial value problem, for
which only isometric data lead to isometric solutions, which one then regards as the
same solution.

In the Anti-de-Sitter setting, this problem admits one solution: in [10], Friedrich
proved that one can take the conformal metric of the boundary as boundary data, which
is a geometric condition independent of any gauge. Even in the Anti-de-Sitter setting, it
is actually possible to formulate other boundary conditions, such as dissipative boundary
conditions, for which one knows how to prove well-posedness, however, with a formu-
lation of the boundary conditions that is gauge dependent and thus, such that we do not
know whether geometric uniqueness holds or not.

1 See also [4,7] for extensions and other proofs of well-posedness in the Anti-de-Sitter case.
2 To be more precise, the boundary data in [1] relies on an auxiliary wave map equation akin to generalized

wave coordinates. This introduces a geometric framework to address the IBVP, albeit for the Einstein equations
coupled to the auxiliary wave map equation.
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1.3. The IBVP with totally geodesic boundary. Our main result shows the local well-
posedness of the IBVP with totally geodesic boundary, analogous to the classical result
[5] for the initial value problem.Recall that in the absence of a timelike boundary, (M, g)
is an extension of (M′′, g′′), if there exists an isometric embedding ψ : M′′ → M,
preserving orientation, and such that ψ ◦ ψ ′′

i = ψi , where ψ ′′
i : � → M′′ is the

embedding of the initial hypersurface into M′′. For the IBVP, we require in addition
that ψ ◦ ψ ′′

t = ψt , where ψ ′′
t : B → M′′ is the embedding of the timelike boundary B

intoM′′. More precisely, the statement of our theorem is the following:

Theorem 1.1. Let (�, h, k) be a smooth initial data set for the Einstein vacuum equa-
tions such that � is a 3-manifold with boundary ∂� = S. For a smooth function ω

defined on S, we assume that the corner conditions corresponding to the totally geodesic
boundary condition with respect to ω hold on S. Then, there exists a smooth Lorentzian
manifold (M, g) solution to the Einstein vacuum equations with boundary ∂M = �̂∪T
such that

1. there exists an embedding ψi of � onto �̂ with (h, k) coinciding with the first and
second fundamental form of the embedding,

2. T ∩ �̂ = ψi (S) and T is a timelike hypersurface emanating from ψi (S) at an angle
ω ◦ [ψ−1

i ]|ψi (S) relative to the future unit normal of �̂,
3. T is totally geodesic, i.e. it has vanishing second fundamental form χ ,
4. geometric uniqueness holds: given any other solution (M′, g′) verifying 1, 2 and 3,

(M, g) and (M′, g′) are both extensions of yet another solution (M′′, g′′) verifying
1, 2 and 3.

Remark 1.2. The function ω corresponds to the angle of the (hyperbolic) rotation that
takes the future unit normal of �̂ on ψi (S) to the future unit normal of ψi (S) within T ,
see (3.2) and Fig. 2.

In the specific case of a totally geodesic boundary, the corner conditions mentioned
in the theorem can then be written purely in terms of (h, k), ω and their derivatives at
all orders on S. These are the conditions that would be satisfied at the intersection of
a totally geodesic timelike boundary and a spacelike hypersurface of a solution to the
vacuum Einstein equations. In Lemma 3.1, we write the zeroth order condition with
an angle explictly. We do not write the higher order conditions explicitly, but they can
be obtained from our choice of boundary conditions, the zeroth order conditions and
the Einstein equations. We do state the first order condition in the simple case of an
orthogonal slice in Lemma 3.4.

For the proof of Theorem1.1,wewill only consider the case of the initial hypersurface
intersecting T orthogonally, since a standard argument allows one to select such an
orthogonal slice in the domain of dependence region of (�, h, k), by appealing to the
classical initial boundary value problem, see Sect. 3.2.

Remark 1.3. The geometric uniqueness is a direct consequence of our choice of geo-
metric boundary conditions. Although totally geodesic boundaries are of course quite
special, this result provides the first setting in which geometric uniqueness holds for the
Einstein vacuum equations with zero cosmological constant � = 0. Note also that here,
since we prescribe homogeneous boundary conditions, we did not introduce an abstract
embedding of S × R into the spacetime, since the prescribed value of χ is identical on
each point of the boundary.

Remark 1.4. The above theorem is obtained using a system of reduced equations based
on the ADM system in a geodesic gauge. For the reduced equations, due to the presence
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of a boundary and our choice of boundary conditions, we prove local well-posedness in
a scale of anisotropic Sobolev spaces, see Definition 3.6 and Proposition 3.10. Indeed,
the boundary conditions can a priori only be commuted by tangential derivatives to
the boundary. Thus, our Sobolev spaces distinguish between derivatives tangential and
normal to the boundary. In view of this, the normal derivatives cannot be estimated
using commutation and standard energy estimates, but instead, are recovered from the
equations directly, which allow to rewrite normal derivatives in terms of tangential ones.
However, the structure of the equations plays an essential role here, since some com-
ponents do not have any normal derivatives appearing in the equations. The anisotropic
Sobolev spaces (3.9) provide a solution to this analytical problem. Such issues have
been investigated for more general first order symmetric hyperbolic systems, already in
[21], where similar anisotropic spaces are used to study the local well-posedness of the
IBVP with characteristic boundaries of constant multiplicity (cf. Remark 3.8). Never-
theless, we include a treatment of the reduced IBVP in our specific setting, for the sake
of completeness, see the proof of Proposition 3.10.

Remark 1.5. Since the reduced system is solved in (anisotropic) Sobolev spaces, one can
obtain a similar statement assuming only that the initial data lie in a standard Hs space,
s ≥ 7, with corner conditions satisfied up to the corresponding finite order.

Remark 1.6. We note that, importantly, our choice of boundary conditions for the Ein-
stein equations translates to admissible boundary conditions both for the reduced system
of evolution equations that we use to construct a solution (see Lemma 3.3) and for the
hyperbolic system that allows a posteriori to prove the propagation of constraints (see
Lemma 4.7) and recover the Einstein equations. More precisely, χ ≡ 0 on the bound-
ary implies the validity of the momentum constraint, which translates to homogeneous
boundary conditions for certain Ricci components. Note that we are not referring to (1.3)
here, but to the analogous constraint equations where k is replaced by χ and div and tr
are the divergence and trace with respect to the induced metric on the boundary.

Remark 1.7. In order to construct initial data sets towhich localwell-posedness theorems
of the IBVP can be applied, including Theorem 1.1, one needs to solve the constraint
equations with boundary. However, the corner conditions already mentioned impose
various relations between h and k and their derivatives at all orders on S. For these
reasons, it is unclear how the known methods for solving the constraint equations can
be adapted to construct solutions in this setting.

On the other hand, it is not hard to construct a special family of initial data verifying the
assumptions of Theorem 1.1. Such data can for instance be constructed by considering
solutions to the Einstein equations admitting a spacelike Killing vector field, which is
also hypersurface orthogonal. Explicit examples are given by the Schwarzschild solution

gSchw = −(1 − 2M

r
)dt2 + (1 − 2M

r
)−1dr2 + r2(dθ2 + sin2 θdφ2),

where the level sets of φ in the exterior region or the level sets of t in the interior of the
black hole are totally geodesic hypersurfaces.

Remark 1.8. If one thinks of χ ≡ 0 as the vanishing of the Lie derivative of the solution
in the normal direction to the boundary, our boundary conditions could be interpreted as
homogeneous Neumann boundary conditions, and, in this respect, a natural direction for
possible extensions of the present result would be to consider inhomogeneous Neumann
type boundary conditions, for instance by prescribing a non-zero χ . However, there
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seem to be nontrivial obstructions for such type of results to hold, both analytic, due
to various losses of derivatives, and geometric, since geodesics of the boundary are no
longer geodesics of the Lorentzian manifold. On a more physical point of view, note
that if one thinks of χ ≡ 0 as a form of homogeneous Neumann boundary conditions,
our setting is applicable to the study of gravitational waves in a cavity.

Remark 1.9. Recall that if ψ : (M, g) → (M, g) is an isometry of a Riemanian or
Lorentzian manifold, then every connected component of the set of fixed points {p ∈
M : ψ(p) = p} is totally geodesic [16]. This suggests3 another possible proof of
Theorem1.1, at least in the casewhere the initial data intersect the boundaryorthogonally,
based on extending the initial data via reflection, then solving the regularCauchyproblem
for the extended data and finally checking that the resulting spacetime enjoys a discrete
isometry. Of course, this approach is clearly not generalizable to other kind of boundary
conditions, while the proof of this paper may serve as a basis for further applications in
the subject.

1.4. The hyperbolicity of the ADM system in a geodesic gauge. As already explained,
our choice of evolution equations is based on the ADM formulation of the Einstein
equations. This formalism and its many variants are widely used in the study of the
Einstein equations, by theoretical or numerical means. They are based on a 3+1 splitting
of the underlying Lorentzian manifold (M, g) through a choice of time function t and
the foliation induced by its level sets �t . The main dynamical variables are the first and
second fundamental forms (g, K ) of each�t , satisfying, together with the lapse and shift
of the foliation, a system of partial differential equations, which is first order in the time
derivative. This system is generally underdetermined due to the geometric invariance
of the equations. In order to render it well-determined, one naturally needs to make
additional gauge choices, leading to a reduced system of equations. In full generality,
they are many possible such choices, see for example [11] and the references therein.
For rigorous studies of the well-posedness problem we refer the reader to [3,19].

In this paper, we consider the reduced ADM system for the Einstein vacuum equa-
tions, obtained by writing the equations in an orthonormal frame {eμ}3μ=0, which is
parallelly propagated with respect to a family of timelike geodesics. In this setting, the
lapse of the foliation is fixed to 1, while the shift vector field is set to zero, and the
spacetime metric takes the form

g = −dt2 + gpqdx
pdxq , (1.4)

where (x1, x2, x3) are t-transported coordinates, with respect to which the orthonormal
frame is expressed via

e0 = ∂t , ei = fi
p∂p, ∂p = f b p eb, i, j = 1, 2, 3, (1.5)

where fi p f b p = δbi , f
b
p fbq = δ

q
p. Here, and throughout the text, the Einstein summa-

tion is used for the Latin indices that range in 1,2,3.
In the classicalADMformalism, themain evolution equations are first order equations

(in ∂t ) for gpq , ∂t gpq ; the second variable corresponding to the second fundamental form
of�t . When expressed in terms of the previous orthonormal frame, the components gpq

3 We would like to thank M.T. Anderson and E. Witten for this suggestion.
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correspond to the frame coefficients fi p, while the second fundamental form is now
evaluated against the spatial frame components ei :

Ki j := g(Dei e0, e j ) = K ji , (1.6)

where D is the Levi-Civita connection of g. In our framework, Ki j , fi p satisfy the
evolution equations (2.6), (2.8). The right-hand-side of (2.6) contains up to two spatial
derivatives of fi p, encoded in the Ricci tensor of g. However, we find it analytically
convenient to expand this term using the spatial connection coefficients of the frame:

�i jb := g(Dei e j , eb) = g(Dei e j , eb) = −�ibj , (1.7)

where D is the Levi-Civita connection of g. These then satisfy the propagation equation
(2.7).

At first glance, the system (2.6)–(2.8) does not seem to be eligible for an energy
estimate, due to the first term in the right-hand-side of (2.6) that renders the system non-
symmetric and could lead to a loss of derivatives. This is a well-known problem of the
ADM system. One remedy is to consider a harmonic gauge [3] on the slices �t , which
would eliminate this bad term. The adoption of such gauges introduces new variables
to the system (lapse, shift vector field) that satisfy elliptic equations. Another argument
was given in [18], where the authors made use of the momentum constraint (1.3), in
order to eliminate any such bad terms in the energy estimates by integrating by parts.
For this, they used a CMC foliation, a transported coordinate system (t, x1, x2, x3) and
the associated Christoffel symbols, to derive a priori energy estimates, assuming the
existence of a spacetime solution verifying the constraints, instead of working with a
system for which well-posedness holds, as we do in this paper.

In contrast, the ADM system can be transformed into a second order system of
equations for the second fundamental form of the time slices, expressed in terms of
transported coordinates (t, x1, x2, x3). This was first derived in [6], where the authors
demonstrated its hyperbolicity under the gauge assumption �gt = 0. It turns out that
the second order system for K is also hyperbolic in normal transported coordinates
(1.4), without any additional gauge assumptions, see the framework presented in [8]
with an application to asymptotically Kasner-like singularities. Recently, we also used
the aforementioned second order system for K (see [9]) to analyse the initial boundary
value problem for the Einstein vacuum equations in the maximal gauge.

In the present study, we carry out the analysis in the geodesic gauge presented above,
circumventing the apparent loss of derivatives issue (see Lemma 2.5) by making use of
both the Hamiltonian and momentum constraints. In [14,19], both the Hamiltonian and
momentum constraints were already used to modify the ADM system and obtain well-
posedness of the equations in coordinate-based gauges. The orthonormal frame that we
consider in the present article seems to simplify the analysis of the boundary conditions
in our setting.We thus prove that bymodifying (2.6)–(2.7), adding appropriate multiples
of (2.19)–(2.20), one obtains a first order symmetric hyperbolic system for the unknowns,
see (2.19)–(2.20), which is suitable for a local existence argument. In order to facilitate
the propagation of the (anti)symmetries of K and �, we also (anti)symmetrize parts of
the equations.

In general, once the reduced system is solved, one then recovers the Einstein equa-
tions through the Bianchi equations. For a modified system, however, the equations one
solves for are not directly equivalent to the vanishing of the components of the Ricci
tensor and thus this procedure becomes more complicated. See [19, Appendix A] for



1622 G. Fournodavlos, J. Smulevici

such an example concerning the progragation of constraints in a modified ADM set-
ting. It is for this reason that one should make minimal modifications to the reduced
equations, since any additional change could complicate even further the final system
for the vanishing quantities, making it intractable via energy estimates. Nonetheless, for
the modified system we consider, we are able to recover the full Einstein equations by
deriving a hyperbolic system for appropriate combinations of the vanishing quantities
(see Lemma 4.5). Note that since the connection is obtained by solving the modified
reduced equations, it can only be shown to agree with the Levi-Civita connection at the
same time as the recovery of the full Einstein equations (see Sect. 4). This issue was
already present in the approach of [13] using an orthonormal frame. In particular, it is
not known a priori that the torsion of the connection vanishes. Thus, the unknowns in the
hyperbolic system used for the recovery of the Einstein equations are the components of
the torsion, as well as the components of the Ricci and Riemann tensors, after suitable
symmetrizations and modifications. The modifications involve the torsion and are sim-
ilar to the modifications used in [13], where the authors study the Einstein equations at
the level of the Bianchi equations, which results into a different system for the recovery
of the Einstein equations.

Our result on thewell-posedness of the initial value problem for theEinstein equations
in the above framework can be stated as follows:

Theorem 1.10. The initial value problem for the modified reduced system (2.8), (2.19),
(2.20), for the frame and connection coefficients is locally well-posed in L∞

t Hs(�t ),
for s ≥ 3. Moreover, if the initial data (�, h, K ) satisfy the constraint equations (1.2)–
(1.3), then the solution to (2.8), (2.19), (2.20), with the induced initial data (see Sect.
2.4), induces a solution of (1.1). In particular, the initial value problem for the Einstein
vacuum equations, cast as a modified ADM system, is locally well-posed.

Remark 1.11. Adding the boundary conditions for the reduced system that arise from the
totally geodesic condition, assuming that the corner conditions hold, and replacing the
usual Sobolev spaces Hs by anisotropic Sobolev spaces Bs (see Definition 3.6), which
contain half as many transversal derivatives to the boundary compared to the number of
tangential derivatives in L2(�t ), the analogue of Theorem 1.10 for the initial boundary
value problem holds true, see Propositions 3.10, 4.8.

Remark 1.12. Note that the geodesic gauge considered here respects the hyperbolicity of
the equations. In particular, the usual finite speed of propagation and domain of depen-
dence arguments can be proven in this gauge. Hence, in the case of the initial boundary
value problem, one can localize the analysis near a point on the boundary, provided
that the orthonormal frame we consider is adapted to the boundary. This requirement is
verified for vanishing second fundamental form χ (Lemma 3.2).

1.5. Outline. In Sect. 2, we set up our modified version of the ADM system. We first
formulate the standard ADM evolution equations in the geodesic gauge (Lemma 2.2)
and then prove (in Lemma 2.5) a first order energy identity, assuming that the constraints
hold. This identity leads us to the introduction of themodified evolution equations (2.19)–
(2.20). The resulting system is then shown to be symmetric hyperbolic in Lemma 2.8.
Although the local well-posedness of the usual initial value problem follows from stan-
dard arguments, to simplify the treatment of the IBVP, we establish localized energy
estimates in Sect. 2.3 (see Proposition 2.12), using the structure of the commuted equa-
tions identified in Sect. 2.2. In Sect. 2.4, we briefly describe how to derive the initial
data for the reduced system from the geometric initial data.
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Section 3 is devoted to the initial boundary value problem for the modified ADM
system. First, in Sect. 3.1, we compute the zeroth compatibility conditions with a given
angleω. Then, in Sect. 3.2,wedescribe the procedure that allows us toworkwith an initial
hypersurface orthogonal to the timelike boundary T . Using that our geodesic frame is
adapted to the totally geodesic boundary (Lemma 3.2), we express the vanishing of χ

in terms of certain of the components Ki j , �i jb, and derive the first order compatibility
conditions for an orthogonal slice (see Lemmas 3.3, 3.4). Finally, in Sect. 3.4, we prove
the local well-posedness of the initial boundary value problem for the modified reduced
system of equations, subject to the boundary conditions induced by the vanishing of χ .
The main difficulty here arises from a loss in the control of the normal derivatives to the
boundary, cf. Remark 1.4, forcing us to introduce anisoptropic Sobolev spaces.

Finally, in Sect. 4, we show that once a solution to the reduced system has been
obtained, our framework allows for the recovery of the Einstein vacuum equations, both
for the standard Cauchy problem and in the presence of a totally geodesic boundary,
thus completing the proofs of Theorems 1.1 and 1.10 (see Sect. 4.4). The starting point
is to introduce the Lorentzian metric and the connection associated to a solution of the
reduced equations. One easily verifies that the connection is compatible with the metric,
by virtue of the propagation of the antisymmetry of the spatial connection coefficients
�i jb (see Lemma 2.7). On the other hand, the connection is not a priori torsion free
and therefore, does not a priori agree with the Levi-Civita of the metric. We first derive
various geometrical identities such as the Bianchi equations and the Gauss–Codazzi
equations, in the presence of torsion (cf. Lemma 4.1). Since the resulting equations
are not suitable to propagate the constraints, we consider modified Riemann and Ricci
curvature tensors (4.10), both for the spacetime geometry and the geometry of the time
slices, the modifications depending on the torsion (cf. [13, Section 6]). The symmetries
of these modified curvatures are studied in Lemma 4.2 and 4.4. Then, we prove that they
lead to a symmetric hyperbolic system (4.25)–(4.29) for the modified spacetime Ricci
curvature components and the torsion. Finally, we show that the boundary conditions
satisfied by the solution to the modified ADM system, which are in turn induced by the
vanishing of χ (see Lemma 3.3), imply boundary conditions for the modified spacetime
Ricci curvature (Lemma 4.7) that are suitable for an energy estimate. The final argument
for the recovery of the Einstein equations, both for the Cauchy problem and in the case
a totally geodesic timelike boundary, is presented in Sect. 4.3.

1.6. Notation. We use Greek letters α, β, μ, ν etc, for indices ranging from 0 to 3, Latin
letters i, j, a, b, c etc, as spatial indices 1, 2, 3, and capital letters A, B for the indices
1, 2 (which correspond below to spacelike vector fields tangential to the boundary).

The indices p, q, r are reserved for the coordinate vector fields, while the remaining
Latin and Greek letters correspond to the orthonormal frame.

Einstein’s summation is used for repeated upper and lower indices, with the range of
the sum being that of the specific indices. All tensors throughout the paper are evaluated
against the orthonormal frame {eμ}30. In particular, we raise and lower indices using
mαβ = diag(−1, 1, 1, 1). For example, Ki

j = Ki j , e0 = −e0.

2. The ADM System in a Geodesic Gauge

In this section we introduce our framework and show that the Einstein vacuum equations
(EVE) reduce to a first order symmetric hyperbolic system for the connection coefficients
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of a parallelly propagated orthonormal frame. For completeness, we confirm the well-
posedness of the initial value problem in usual Hs spaces.

2.1. The modified ADM evolution equations and their hyperbolicity. Let (M, g) be a
3 + 1-dimensional Lorentzian manifold and let �0 be a Cauchy hypersurface equipped
with an orthonormal frame e1, e2, e3. Also, let e0 be the future unit normal to �0. We
extend the frame {eμ}30 by parallel propagation along timelike geodesics emanating from
�0 with initial speed e0:

De0eμ = 0 (2.1)

If t is the proper time parameter of the e0 geodesics, {t = 0} = �0, then g takes
the form (1.4), where g is the induced metric on �t , and the transition between {eμ}30
and a transported coordinate system (t, x1, x2, x3) is defined via (1.5). The connection
coefficients of the orthonormal frame are Ki j , �i jb, defined in (1.6), (1.7).

Our convention for the spacetime Riemann, Ricci, and scalar curvatures is

Rαβμν = g((DeαDeβ − DeβDeα − D[eα,eβ ])eμ, eν), Rβμ = Rαβμ
α, R = Rμ

μ

(2.2)

and similarly for the curvature tensors of g, denoted by Ri jlb, R jl , R. We now state the
well-knownGauss–Codazzi equations.We also provide a short proof for the convenience
of the reader since similar computations will be used to retrieve the Einstein equtions in
Sect. 4, but with a torsion.

Lemma 2.1. With the above conventions, the Gauss and Codazzi equations for�t read:

Rai jb = Rai jb + KabKi j − Kaj Kib, (2.3)

R0i jb = Dj Kbi − DbK ji , (2.4)

where

Rai jb = ea�i jb − ei�ajb − �ab
c�i jc + �ib

c�ajc − �ai
c�cjb + �ia

c�cjb (2.5)

Proof. We employ the formulas

Dei e j =Dei e j +Ki j e0, Debe0=Kb
cec, [e j , eb] = Dej eb − Debe j =(� jb

c − �bj
c)ec

to compute

Rai jb = g((DeaDei − DeiDea − D[ea ,ei ])e j , eb)
= g(Dea (Dei e j + Ki j e0) − Dei (Deae j + Kaj e0) − D[ea ,ei ]e j , eb)
= g(Dea Dei e j − Dei Dea e j − D[ea ,ei ]e j , eb) + Ki j Kab − Kaj Kib,

R0i jb = R jb0i = g((De jDeb − DebDe j − D[e j ,eb])e0, ei )
= g(De j (Kb

cec) − Deb (K j
cec), ei ) − (� jb

c − �bj
c)Kci

= e j Kbi + Kb
c� jci − ebK ji − K j

c�bci − (� jb
c − �bj

c)Kci

and

Rai jb = g((Dea Dei − Dei Dea − D[ea ,ei ])e j , eb)
= g(Dea (�i j

cec), eb) − g(Dei (�aj
cec), eb) − (�ai

c − �ia
c)g(Dece j , eb)

= ea�i jb + �i j
c�acb − ei�ajb − �aj

c�icb − (�ai
c − �ia

c)�cjb
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which can be seen to correspond to the asserted formulas by using the antisymmetry of
�i jb in ( j; b). �
Lemma 2.2. The components Ki j , �i jb, fi p, f b p satisfy the following identities:

e0Ki j + trKKi j = − R(S)
i j + R(S)

i j ,

= 1

2

[
ei�

b
jb − eb�i jb+�b

i
c�cjb + �b

b
c�i jc

+ e j�
b
ib − eb� j ib+�b

j
c�cib + �b

b
c� j ic

]
+ R(S)

i j (2.6)

e0�i jb + Ki
c�cjb = Dj Kbi − DbK ji

= e j Kbi − ebK ji − � jb
cKci − � j i

cKbc + �bj
cKci + �bi

cK jc
(2.7)

e0 fi
p + Ki

c fc
p = 0 (2.8)

e0 f
b
p − Kc

b f c p = 0 (2.9)

for all indices i, j, b = 1, 2, 3, where

R(S)
i j :=1

2
(Ri j + R ji ), R(S)

i j :=1

2
(Ri j + R j i ) (2.10)

Remark 2.3. TheRicci tensor associated to theLevi-Civita connection is always symmet-
ric, and thus R(S)

i j = Ri j in this case. However, in order to establish local well-posedness,
we will construct the connection from modified equations below and it will no longer
hold a priori that Ri j or Ki j are symmetric, unless we expand the right-hand side of

(2.6) in terms of the symmetrised Ricci tensor R(S)
i j . In this form, the symmetry of Ki j

is automatically propagated, provided it is valid initially.

Proof. The propagation condition (2.1) implies the second variation equation

R0i0 j = g((De0Dei − DeiDe0 − D[e0,ei ])e0, e j ) = g(De0(Ki
cec) − D(De0 ei−Dei e0)

e0, e j )

= e0Ki j + Ki
bg(Debe0, e j ) = e0Ki j + Ki

bKbj . (2.11)

Utilising (2.3) we have

R0i0 j = −R0i j0 = Ri j − Rbi j
b = Ri j − Ri j − trKKi j + Ki

bK jb (2.12)

On the other hand, contracting (2.5) in (a; b) gives

−Ri j = − Rbi j
b = ei�

b
jb − eb�i jb + �b

i
c�cjb − �i

bc�cjb + �b
b
c�i jc − �i

bc�bjc

= ei�
b
jb − eb�i jb + �b

i
c�cjb + �b

b
c�i jc

= e j�
b
ib − eb� j ib+�b

j
c�cib + �b

b
c� j ic = −R ji , (2.13)

where in the last equality we used the symmetry of the Ricci tensor of g. Combining
(2.11), (2.12) and (2.13), we conclude (2.6).
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By (2.1) and the Codazzi equation (2.4) it follows that

e0�i jb = g(De0Dei e j , eb) = R0i jb + g(DeiDe0e j , eb) + g(D[e0,ei ]e j , eb)

=R0i jb + g
(
D(

De0 ei−Dei e0
)e j , eb

)

= Dj Kbi − DbK ji − Ki
c�cjb, (2.14)

which yields (2.7).
Finally, we have

Ki
cec=Dei e0=Dei e0 − De0ei =[ei , e0] = [ fi p∂p, ∂t ] ⇒ Ki

c fc
p∂p = −e0 fi

p∂p,

which implies (2.8). Utilising the relation fi p f b p = δbi , we also conclude (2.9). �
Remark 2.4. Contracting the formula (2.13) and using antisymmetry of�i jb with respect
to the last two indices, we notice that the two first order terms combine to give

−R = 2e j�b
jb+�bjc�cjb + �b

b
c� j

jc. (2.15)

In the next lemma, we illustrate the structure of the equations (2.6)–(2.7) that we exploit
in the local existence argument below, by deriving the main energy identity for Ki j , �i jb
(at zeroth order). For the moment, we make use of both the Hamiltonian and momentum
contraints (1.2)–(1.3), i.e., the fact that we have an actual solution to (1.1).

Lemma 2.5. Let g be a solution to the EVE. Then the variables Ki j , �i jb satisfy the
following identity:

1

2
e0(|K |2) + trK |K |2 + 1

4
e0[�i jb�

i jb] + 1

2
Ki

c�cjb�
i jb

= e j [K i j�b
ib] − ei [trK�b

ib] − eb[�i jbK ji ] + 1

2
trK

[
(trK )2 − |K |2−�bic�cib − �b

b
c�i

ic

]

− � j
i
cK

cj�b
ib − � j

j
cK

ic�b
ib + K i j [�b

j
c�cib + �b

b
c� j ic] + �i jb[�bj

cKci + �bi
cK jc],
(2.16)

where |K |2 = Ki j Ki j .

Proof. Multiplying (2.7) by �i jb and using its antisymmetry in ( j; b) gives the identity
1

4
e0[�i jb�

i jb] + 1

2
Ki

c�cjb�
i jb = −eb[�i jbK ji ] + K ji eb�i jb + �i jb[�bj

cKci + �bi
cK jc].
(2.17)

Multiplying (2.6) by Ki j and using its symmetry in (i; j), we also have

1

2
e0(|K |2) + trK |K |2 = Ki j ei�

b
jb − Ki j eb�i jb + Ki j [�b

i
c�cjb + �b

b
c�i jc].

(2.18)

Notice that the second terms on the right-hand sides of (2.17) and (2.18) are exact
opposites, hence, canceling out upon summation of the two identities.

We proceed by rewriting the first term on the right-hand side of (2.18), making use
of both constraint equations (1.3)–(1.2) in the following manner
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K i j ei�
b
jb = ei [K i j�b

jb] − ei (K
i j )�b

jb

= ei [K i j�b
jb] − Di K

i j�b
jb − �i

i
cK

cj�b
jb − �i

j
cK

ic�b
jb

= ei [K i j�b
jb] − e j trK�b

jb − �i
i
cK

cj�b
jb − �i

j
cK

ic�b
jb (by (1.3))

= ei [K i j�b
jb] − e j [trK�b

jb] + trKe j�b
jb − �i

i
cK

cj�b
jb − �i

j
cK

ic�b
jb

= ei [K i j�b
jb] − e j [trK�b

jb]
− 1

2
trK

[
R+�bjc�cjb + �b

b
c� j

jc
] − �i

i
cK

cj�b
jb − �i

j
cK

ic�b
jb (by (2.15))

= ei [K i j�b
jb] − e j [trK�b

jb] + 1

2
trK

[
(trK )2 − |K |2−�bjc�cjb − �b

b
c� j

jc
]

(by (1.2))

− �i
i
cK

cj�b
jb − �i

j
cK

ic�b
jb

Combining the above identities, we obtain (2.16). �
Although the differential identity (2.16) provides a way of deriving a priori estimates for
Ki j , �i jb, the equations (2.6)–(2.7) are still not eligible for a local existence argument,
because of the heavy use of the constraint equations in the argument. Indeed, in a local
existence proof via a Picard iteration scheme, the constraints are no longer valid off of
the initial hypersurface �0. This implies that a structure similar to the one identified in
Lemma 2.5 is no longer present, which leads to a loss of derivatives.

We remedy this problem by adding appropriate multiples of the constraints in the
RHS of the evolution equations (2.6)–(2.7), resulting to the system:

e0Ki j + trKKi j = 1

2

[
ei�

b
jb − eb�i jb + �b

i
c�cjb+�b

b
c�i jc + e j�

b
ib − eb� j ib + �b

j
c�cib+�b

b
c� j ic

]

− 1

2
δi j

[
2ea�b

ab+�bac�cab + �b
b
c�a

ac + |K |2 − (trK )2
]

(2.19)

e0�i jb + Ki
c�cjb = e j Kbi − ebK ji − � jb

cKci − � j i
cKbc + �bj

cKci + �bi
cK jc

+δib

[
ecKcj − �c

cl Kl j − �c
j
l Kcl − e j trK

]

−δi j

[
ecKcb − �c

cl Klb − �c
b
l Kcl − ebtrK

]
(2.20)

Remark 2.6. Contracting (2.3) in (a; b), (i; j), contracting (2.4) in (i; b), and utilising
(2.15), we notice that the added expressions in the last lines of (2.19)–(2.20) correspond
to

− 1

2
δi j

[
2ea�b

ab + �bac�cab + �b
b
c�a

ac + |K |2 − (trK )2
]

= 1

2
δi j [R − |K |2 + (trK )2] = 1

2
δi j [R + 2R00],

δib

[
ecKcj − �c

cl Kl j − �c
j
l Kcl − e j trK

]
− δi j

[
ecKcb − �c

cl Klb − �c
b
l Kcl − ebtrK

]

= δib

[
DcKcj − e j trK

]
− δi j

[
DcKcb − ebtrK

]
= δibR0 j − δi jR0b,

which are indeed multiples of the Hamiltonian and momentum constraints (1.2), (1.3).

By definition of the initial data, cf. Sect. 2.4, Ki j = K ji , �i jb = −�ibj , fi p f b p = δbi ,
f b p fbq = δ

q
p will be valid initially for any solution and the same can be imposed for

any iterate in a Picard iteration scheme.
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Lemma 2.7. A solution Ki j , �i jb, fi p, f b p to (2.19), (2.20), (2.8), (2.9) satisfies the
properties Ki j = K ji , �i jb = −�ibj , fi p f b p = δbi , f

b
p fbq = δ

q
p, provided they hold

true initially.

Proof. The variables Ki j − K ji , �i jb + �ibj , fi p f b p − δbi , f b p fbq − δ
q
p satisfy the

following homogeneous ODE system with trivial initial data:

e0(Ki j − K ji ) + trK (Ki j − K ji ) = 0

e0(�i jb + �ibj ) + Ki
c(�cjb + �cbj ) = 0

e0( fi
p f b p − δbi ) + Ki

c( fc
p f b p − δbc ) − Kc

b( fi
p f c p − δci ) = 0

e0( f
b
p fb

q − δ
q
p) = 0

This implies that they must be identically zero. �
Lemma 2.8. The equations (2.19), (2.20), coupled to the ODE (2.8), constitute a first
order symmetric hyperbolic system.

Proof. It suffices to look at the linearised equations around zero:4

e0K11 = e3�223 − e2�323, 2e0K12 = −e3�123 − e3�213 + e1�323 + e2�313,

e0K22 = e3�113 − e1�313, 2e0K13 = e3�212 + e2�123 − e1�223 − e2�312,

e0K33 = e2�112 − e1�212, 2e0K23 = −e3�112 + e1�213 − e2�113 + e1�312,

e0�113 = e3K22 − e2K23, e0�223 = e3K11 − e1K13, e0�123 = −e3K12 + e2K13,

e0�213 = −e3K12 + e1K23, e0�313 = e2K12 − e1K22, e0�323 = e1K12 − e2K11,

e0�312 = e1K23 − e2K13, e0�112 = −e3K23 + e2K33, e0�212 = e3K13 − e1K33
(2.21)

As one can tediously check, (2.21) is symmetric.
Alternatively, one can verify that the principal symbol of (2.19), (2.20) is symmetric

relative to the scalar product associated with the quadratic form 2Ki j Ki j + �i jb�i jb,5

since the spatial symbol of each equation reads

2(σξ K̇ )i j = ξi �̇
b
jb − ξb�̇i jb + ξ j �̇

b
ib − ξb�̇ j ib − 2δi jξ

a�̇b
ab

(σξ �̇)i jb = ξ j K̇bi − ξb K̇i j + δib(ξ
c K̇cj − ξ j trK̇ ) − δi j (ξ

c K̇cb − ξbtrK̇ ),

and hence,

2K̃ i j (σξ K̇ )i j + �̃i jb(σξ · �̇)i jb = 2K̇ i j (σξ K̃ )i j + �̇i jb(σξ �̃)i jb,

where K̇i j , �̇i jb, K̃i j , �̃i jb are variations of the components Ki j , �i jb, having the same
(anti)symmetry properties. �

4 In fact, the system (2.21) corresponds exactly to (2.19)–(2.20) up to zeroth order terms.
5 We are grateful to an anonymous referee for this observation.
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2.2. The differentiated system. In order to derive higher order energy estimates below,
we will need to work with differentiated versions of (2.19)–(2.20). Moreover, for the
boundary value problem (Sect. 3), we commute the equations with components of the
orthonormal frame, which enables us to use the structure identified in (2.21) to control
energies that contain an appropriate number of normal derivatives to the boundary (see
Proposition 3.10).

For this purpose, we consider a multi-index I and the corresponding combination
of vector fields eI among {eμ}30. We will use the following commutation formulas to
compute the differentiated equations below:

[ei , e0] = Ki
cec, [ei , e j ] = f d p(ei f j

p)ed − f d p(e j fi
p)ed . (2.22)

We note that (2.22) follows by (1.5) and (2.8). It is important that we do not use relations
between the orthonormal frame and its connection coefficients, as for example, [ei , e j ] =
�i j

cec−� j i
cec, to compute the commuted equations, since in a local existence argument

it is not a priori known that �i jb are the connection coefficients of e1, e2, e3. The fact
that the solution to the modified evolution equations (2.19)–(2.20) gives indeed the
connection coefficients of the orthonormal frame {eμ}30, with respect to the Levi-Civita
connection of the metric induced by the latter, is shown in Sect. 4 together with the
vanishing of the Einstein tensor.

Applying eI to both sides of the equations (2.19), (2.20), we obtain:

e0e
I Ki j + eI (trKKi j )

= 1

2

[
ei e

I�b
jb − ebeI�i jb + e j e

I�b
ib − ebeI� j ib − 2δi j e

aeI�b
ab

]
− [eI , e0]Ki j

+
1

2

[
[eI , ei ]�b

jb − [eI , eb]�i jb + [eI , e j ]�b
ib − [eI , eb]� j ib − 2δi j [eI , ea]�b

ab

]

+
1

2
eI

[
�b

i
c�cjb + �b

b
c�i jc + �b

j
c�cib + �b

b
c� j ic − δi j

[
�bac�cab + �b

b
c�a

ac + |K |2 − (trK )2
]]

,

e0e
I�i jb + eI (Ki

c�cjb) (2.23)

= e j e
I Kbi − ebe

I K ji + δib(e
ceI Kcj − e j e

I trK ) − δi j (e
ceI Kcb − ebe

I trK ) − [eI , e0]�i jb

+ [eI , e j ]Kbi − [eI , eb]K ji + δib([eI , ec]Kcj − [eI , e j ]trK ) − δi j ([eI , ec]Kcb − [eI , eb]trK )

+ eI
[
�bj

cKci + �bi
cK jc − � jb

cKci − � j i
cKbc − δib(�c

cl Kl j + �c
j
l Kcl ) + δi j (�c

cl Klb + �c
b
l Kcl )

]

(2.24)

The differentiated versions of the equations (2.8), (2.9) read

e0e
I fi

p + Ki
ceI fc

p = −
∑

I1∪I2=I, |I2|<|I |
eI1Ki

ceI2 fc
p − [eI , e0] fi p, (2.25)

e0e
I f b p − Kc

beI f c p =
∑

I1∪I2=I, |I2|<|I |
eI1Kc

beI2 f c p − [eI , e0] f b p, (2.26)

where the union of the multi-indices I1, I2 is unordered and can be any possible permu-
tation of I .

Lemma 2.9. Let Ki j , �i jb, fi p be either a solution to (2.8), (2.19), (2.20) or an iterative
version of these equations, where the frame coefficients fi j (and hence ei = fi j∂ j ) are
determined by solving (2.8) with Ki j of the previous step. In the latter case, the first
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order terms in the RHS of (2.19)–(2.20) should have Ki j , �i jb of the current iterates
we’re solving for. Then for any a combination of derivatives eI , Ki j , �i jb satisfy the
following identity:

1

2
e0(e

I K i j eI Ki j ) +
1

4
e0(e

I�i jbeI�i jb)

= ei [eI K i j eI�b
jb] − eb[eI K i j eI�i jb] − e j [eI trKeI�bj

b]
+ eI K i j

[
[eI , ei ]�b

jb − [eI , eb]�i jb − δi j [eI , ea]�b
ab

]
− eI K i j [eI , e0]Ki j

+ eI�i jb
[
[eI , e j ]Kbi + δib([eI , ec]Kcj − [eI , e j ]trK )

]
− 1

2
eI�i jb[eI , e0]�i jb

+ eI K i j eI
[
�b

i
c�cjb + �b

b
c�i jc − trKKi j − 1

2
δi j

[
�bac�cab + �b

b
c�a

ac+|K |2 − (trK )2
]]

+ eI�i jbeI
[
�bj

cKci + �bi
cK jc − 1

2
Ki

c�cjb−δib(�c
cl Kl j + �c

j
l Kcl)

]
(2.27)

Proof. It follows straightforwardly by multiplying (2.23)–(2.24) with eI K i j , 1
2e

I�i jb

and using Lemma 2.7. �

2.3. Local well-posedness of the reduced equations for the Cauchy problem. Since the
above equations form a symmetric hyperbolic system, local well-posedness follows from
standard arguments. Nonetheless, we provide details below concerning the derivation of
higher order energy estimates and the domain of dependence. This will allow us to treat
the boundary case by a modification of the present section.

Define the Hs(Ut ) spaces, Ut ⊂ �t , as the set of functions satisfying

‖u‖2Hs (Ut )
:=

∑
|I |≤s

∫

Ut

(eI u)2volUt < +∞, (2.28)

where I is a multi-index consisting only of spatial indices so that eI is a combination
of I derivatives among e1, e2, e3, and volUt is the intrinsic volume form. One might
need more than one orthonormal frame to cover all of T�t , but we could also consider
the corresponding norms restricted to the slicing Ut of a neighbourhood of a point. In
the case where u depends on various spatial indices, we define its Hs norm similarly,
summing as well over all indices.

Remark 2.10. The above Hs spaces are equivalent to the usual spaces defined using coor-
dinate derivatives ∂ I , provided we have control over the transition coefficients fi p, f b p.
The use of eI vector fields is essential for the treatment of the boundary problem in the
next section. For this subsection we could have used ∂ I instead.

Lemma 2.11. Let Ut be an open, bounded, subset of �t with smooth boundary. Assume
the transition coefficients fi p, f b p satisfy the bounds

∑
|I |≤1

3∑
i,b,p=1

sup
t∈[0,T ]

(‖eI fi p‖L∞(Ut ) + ‖eI f b p‖L∞(Ut )) ≤ D, (2.29)
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UT

U0

H
H

Σ

Ut

L ∂t
N

Fig. 1. Local domain of dependence

for some T > 0. Then the following Sobolev inequalities hold with respect to the Hs

spaces defined above:

‖u‖L∞(Ut ) ≤ C‖u‖H2(Ut )
, ‖u‖L4(Ut )

≤ C‖u‖H1(Ut )
(2.30)

for all t ∈ [0, T ], where C > 0 depends on Ut and D.

Proof. It is immediate by invoking the corresponding classical inequalities (for Hs

spaces defined via coordinate derivatives) and using (2.29):

‖u‖2L∞(Ut )
≤C

∫

Ut

(∂2u)2 + (∂u)2 + u2volUt

=C
∫

Ut

f 4(e2u)2 + f 2(e f )2(eu)2 + f 2(eu)2 + u2volUt

≤C
∫

Ut

D4(e2u)2 + D4(eu)2 + D2(eu)2 + u2volUt

The second inequality is derived similarly. �
Proposition 2.12. The initial value problem for the system of reduced equations (2.19),
(2.20), (2.8), (2.9) is well-posed in L∞

t Hs , s ≥ 3, with initial data prescribed along the
Cauchy hypersurface �0.

Proof. We assume that a globally hyperbolic solution exists, in the relevant spaces, and
derive a priori energy estimates below. Since the estimates for fi p, f b p can be trivially
derived using the ODEs (2.8)–(2.9), we assume we already have control over their Hs

norm. Note that the assumption s ≥ 3 is consistent with the pointwise control (2.29) of
up one derivative of fi p, f b p via (2.30).

Consider the differentiated equations (2.23)–(2.24), for a multi-index I of order
|I | ≤ s, over the future domain of dependence6 of a neighbourhood of a point, U0,
foliated by Ut , t ∈ [0, T ], for some small T ≥ 0, as depicted in Fig. 1.

Using Lemma 2.9, we obtain the energy inequality:

6 Since the domain of dependence depends on the spacetime metric, in a Picard iteration the actual region
of spacetime is not known until after a solution has been found, but one can enlarge slightly the domain to
guarantee that in the end the resulting region includes the true domain of dependence of U0.
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∑
|I |≤s

∂t

∫

Ut

1

2

∑
i, j

(eI Ki j )
2 +

1

4

∑
i, j,b

(eI�i jb)
2volUt

≤ −
∑
|I |≤s

∫

∂Ut

1

2

∑
i, j

(eI Ki j )
2 +

1

4

∑
i, j,b

(eI�i jb)
2vol∂Ut

+
∑
|I |≤s

∫

Ut

[
1

2

∑
i, j

(eI Ki j )
2 +

1

4

∑
i, j,b

(eI�i jb)
2
]
trKvolUt (∂tvolUt = trKvolUt )

+
∑
|I |≤s

∫

Ut

e j [eI K i j eI�b
ib] − ei [eI trKeI�b

ib] − eb[eI�i jbeI K ji ]volUt

+
∑
|I |≤s

∫

Ut

(
eI K i j

[
[eI , ei ]�b

jb − [eI , eb]�i jb − δi j [eI , ea]�b
ab

]
− eI K i j [eI , e0]Ki j

+ eI�i jb
[
[eI , e j ]Kbi + δib([eI , ec]Kcj − [eI , e j ]trK )

]
− 1

2
eI�i jb[eI , e0]�i jb

)
volUt

+ C‖K‖Hs (Ut )‖�‖2Hs (Ut )
+ C‖K‖3Hs (Ut )

, (by (2.30)) (2.31)

for a constant C > 0, depending on the number of derivatives s and Ut . The first
term in the RHS comes from the coarea formula, having a negative sign since the null
boundary of {Uτ }τ∈[0,t] is ingoing. Indeed, we can writeUt as a union of an open setUT
(independent of t) and 2D surfaces constituting a variation of ∂Ut in the inward normal
direction N to the surfaces. Decomposing ∂t = L − N , we then notice that L commutes
with the integral, while the −N component gives the additional boundary term above.
The last line includes all the terms corresponding to the last two lines in (2.27), which
are treated by estimating the lowest order term in L∞ and using Cauchy–Schwarz. To
bound the terms in the second and third from last lines, we expand the commutators
schematically in the two types of terms using (2.22):

∣∣∣∣
∫

Ut

eI u ∗ [eI , e0]uvolUt

∣∣∣∣ =
∣∣∣∣

∑
|I1|+|I2|=|I |−1

∫

Ut

eI u ∗ eI1K ∗ eI2euvolUt

∣∣∣∣

(2.30)≤ C‖K‖Hs (Ut )‖u‖2Hs (Ut )
, (2.32)

for u = K , �, and
∣∣∣∣
∫

Ut

eI u ∗ [eI , ei ]vvolUt

∣∣∣∣ =
∣∣∣∣

∑
|I1|+|I2|+|I3|=|I |−1

∫

Ut

eI u ∗ eI1 f ∗ eI2e f ∗ eI3evvolUt

∣∣∣∣

≤C‖u‖Hs (Ut )‖ f ‖2Hs (Ut )
‖v‖Hs (Ut ), (by (2.30)) (2.33)

for (u, v) = (K , �) or (�, K ), where we make use of the L4 estimate (2.30) only in the
last inequality, when s = 3, |I2| = |I3| = 1, after performing Cauchy–Schwarz twice,
otherwise estimating the lowest order term in L∞.

We may combine (2.31)–(2.33), integrate in [0, t] and integrate by parts to obtain the
overall integral inequality

1

2
‖K‖2Hs (Ut )

+
1

4
‖�‖2Hs (Ut )

≤ 1

2
‖K‖2Hs (U0)

+
1

4
‖�‖2Hs (U0)

+ C
∫ t

0

[
‖K‖Hs (Uτ )‖�‖2Hs (Uτ )

+ ‖K‖3Hs (Uτ ) + ‖ f ‖2Hs (Uτ )‖K‖Hs (Uτ )‖�‖Hs (Uτ )

]
dτ
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−
∫ t

0

∑
|I |≤s

∫

∂Ut

1

2

∑
i, j

(eI Ki j )
2 +

1

4

∑
i, j,b

(eI�i jb)
2volUt dτ

−
∫ t

0

∑
|I |≤3

∫

∂Ut

[
eI K i

ce
I�b

ib − eI trKeI�b
cb − eI�i j

ce
I K ji

]
NcvolUt dτ

(2.34)

where we have used that the coefficients of the interior terms generated by integrating
by parts the terms in the fourth line in (2.31), contain first derivatives of fi p that can be
estimated in L∞.

It remains to show that the sumof all boundary terms in the last two lines of (2.33) has a
favourable sign. For notational simplicity in the following computations, we assume that
e3

∣∣
∂Ut

= −N and omit eI . This is without loss of generally, since N∂Uτ can be written
as a linear combination of e1, e2, e3, where the sum of the squares of the coefficients is
1. Repeating the argument that follows for each component of N∂Uτ , leads to the same
conclusion by using Cauchy’s inequality.

The integrands of the boundary terms then read:

− 1

2
Ki j Ki j − 1

4
�i jb�i jb + Ki

3�
b
ib − trK�b

3b − �i j
3K ji

= −1

2
(K33)

2 − K A
3KA3− 1

2
K̂ AB K̂ AB − 1

4
(KC

C )2 (K̂ AB := KAB− 1

2
δABKC

C )

− 1

4
�ABC�ABC − 1

4
�3

AB�3AB − 1

2
�33

A�33A − 1

2
�A

3
B�A3B

+ K3
A�b

Ab − KC
C�B

3B − �i B
3KiB

= −1

2
(K33)

2 − K A
3KA3 − 1

2
K̂ AB K̂ AB − 1

4
(KC

C )2

(�̂A3B := �A3B − 1

2
δAB�C3

C ) − 1

4
�ABC�ABC − 1

4
�3

AB�3AB

− 1

2
�33

A�33A − 1

2
�̂A

3
B �̂A3B − 1

4
(�C

3C )2

+ K3
A�B

AB − KC
C�B

3B − �AB
3KAB . (2.35)

Rewrite the last line

K3
A�B

AB − KC
C�B

3B − �AB
3KAB

= K3
A�B

AB − KC
C�B

3B + �A
3
BKAB

= K3
A�B

AB − 1

2
KC

C�B
3B + �̂A

3
B K̂ AB

≤ K3
AK3A +

1

4
�BA

B�B
AB +

1

4
(KC

C )2 +
1

4
(�B

3B)2 +
1

2
�̂A

3
B �̂A3B +

1

2
K̂ AB K̂ AB

(2.36)

Notice that �BA
B�B

AB = (�112)
2 + (�221)

2.
Thus, plugging (2.36) into (2.35), we conclude that the sum of all boundary terms

has an overall negative sign. Therefore, they can be dropped in (2.34), giving
1

2
‖K‖2Hs (Ut )

+
1

4
‖�‖2Hs (Ut )

≤ 1

2
‖K‖2Hs (U0)

+
1

4
‖�‖2Hs (U0)

+ C
∫ t

0

[
‖K‖Hs (Uτ )‖�‖2Hs (Uτ )

+ ‖K‖3Hs (Uτ ) + ‖ f ‖2Hs (Uτ )‖K‖Hs (Uτ )‖�‖Hs (Uτ )

]
dτ

(2.37)
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The preceding estimate, combined with bounds for ‖ f ‖2Hs (Ut )
that are straightfor-

wardly derived using (2.25)–(2.26), can be upgraded to a Picard iteration and a local
existence result in a standard way, we omit the details. �

2.4. Initial data. Our initial data (�0, g, K ) are that of the EVE, i.e. the induced metric
and the second fundamental form on �0, verifying the constraint equations (1.2)–(1.3),
with h, k replaced by g, K . Given an orthonormal frame e1, e2, e3 on�0 and an abstract
coordinate system (x1, x2, x3), the initial data for f pi , f b p, Ki j , �i jb are determined in
the obvious way from (1.5), (1.6), (1.7). In particular, the functions �i jb are the connec-
tion coefficients associated to e1, e2, e3, with respect to the Levi-Civita connection D of
g, and they are hence anti-symmetric in the indices j, b, while Ki j = K ji , fi p f b p = δbi ,
f b p fbq = δ

q
p on �0.

3. Application to Totally Geodesic Boundaries

We now consider how to apply our framework to the initial boundary value problem, in
the case of timelike, totally geodesic boundaries. In this case, with N being the outward
unit normal to T , the second fundamental form of the boundary

χ(Y, Z) := g(DY N , Z) = χ(Z ,Y ), Y, Z ⊥ N , (3.1)

is identically zero, χ ≡ 0.
We start in Sect. 3.1 by deriving the zeroth order compability conditions in the case

of an angle ω. In order to use the setting of the previous section, it will be convenient
that the orthonormal frame is adapted to the boundary, so that e0 is for instance tangent
to T . For this, we need the spacelike slice to be orthogonal to the boundary, so we briefly
outline a standard reduction that allows us to do so in Sect. 3.2. We also state the first
order compatibility condition in the case ω = 0 and then derive the induced boundary
conditions from the geometric ones in Sect. 3.3. Then, in Sect. 3.4, we prove the local
well-posedness of the resulting IBVP for the reduced equations (2.8), (2.19), (2.20), see
Proposition 3.10.

3.1. Zeroth order compatibility conditions with an angle. Consider a solution to the
Einstein equations (M, g) with a totally geodesic timelike boundary T . For a time
function t and a foliation of M by the level sets �t of t , with �0 an initial orthogonal
slice, we use the notation St for the cross sections �t ∩ T and denote S0 = S.

Let e0 be the normal toS, withinT , and N be the outward unit normal to the boundary.
The initial slice � will not in general be orthogonal to the boundary T , but it will have
a given angle ω : S → R, that defines the hyperbolic rotation between (e0, N ) and
the pair (n, N ), where n is the future unit normal to � on S and N is the outward unit
normal to S, within �, see Fig. 2:

{
e0 = n coshω − N sinhω

N = −n sinhω + N coshω
,

{
n = e0 coshω + N sinhω

N = e0 sinhω + N coshω
. (3.2)
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Σ

Σ0

T

D(Σ)

S

e0
n

N

N

Fig. 2. The classical solution in the domain of dependence D(�)

Lemma 3.1. (zeroth order compatibility conditions with an angle) Let (h, k) denotes
the first and second fundamental form of �. Then, (�, h, k) must satisfy the following
zeroth order compatibility conditions:

χ(X ,Y ) = 0 ⇐⇒ k(X ,Y ) sinhω = h(∇X N ,Y ) coshω

χ(X , e0) = 0 ⇐⇒ k(X , N ) = Xω
(3.3)

for all X ,Y ∈ TS, where ∇ is the Levi-Civita connection of h.

Higher order compatibility conditions can be derived using the zeroth order com-
patibility conditions (3.3), the boundary conditions and the Einstein vacuum equations.
These can be written intrinsically on � as relations involving only (h, k), the function ω

and their derivatives on S. We do not write the details in the general case, but in Lemma
3.4, we write the first order conditions in the particular case of an initial slice intersecting
the timelike boundary orthogonally.

Proof. Recall that k(X,Y ) = g(DXn,Y ), for X,Y ∈ T�. Plugging (3.2) in the defini-
tion (3.1) of χ , we have

χ(X , Y ) = g(DX (−n sinhω + N coshω), Y )

= − k(X , Y ) sinhω + h(∇X N , Y ) coshω − g(n, Y )X sinhω + h(N , Y )X coshω

= − k(X , Y ) sinhω + h(∇X N , Y ) coshω

and

χ(X , e0) = g(DX (−n sinhω + N coshω), n coshω − N sinhω)

= (coshω)2Xω + k(X , N )(sinhω)2 − k(X , N )(coshω)2 − (sinhω)2Xω

= − k(X , N ) + Xω,

which proves the equivalence (3.3). �
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3.2. Choosing an orthogonal initial slice to the boundary. With the notations of the
previous section, we may considerD(�) the (future and past) domain of dependence of
�, see Fig. 2. Note thatD(�) can be constructed by solving a pure initial value problem
with the initial data (�, h, k). Consider an another initial hypersurface, �0 contained in
D(�) and such that �0 ∩ � = S. Let N�0 be the unit normal to S in �0 and e�0 be
its future unit normal. If the hyperbolic angle between the pair (e�0 , N�0) and (n, N ) is
equal to the angle ω, then it follows that (e�0 , N�0) = (e0, N ) and that�0 is orthogonal
to T .

Thus, given initial data (�, h, k) verifying the compatibility conditions with an angle
ω, one can first solve the classical initial value problem with data (�, h, k) to obtain a
developmentD(�) and an embeddingψi of� intoD(�). One then chooses a new initial
slice �0 in D(�), such that ψi (�) ∩ �0 = ψi (S) and the hyperbolic angle between
(e�0 , N�0), (n, N ) is equal to ω. Provided we can solve the IBVP with compatibility
conditions induced from the original ones (3.3) by setting ω = 0, the new slice will then
be orthogonal to the boundary.

3.3. Boundary and compatibility conditions in the geodesic frame. From now on, we
focus on solving the initial boundary value problem in the case of initial data withω = 0
and thus also consider a spacetime with a totally geodesic timelike boundary T and a
foliation �t orthogonal to T .

For a spacetime with a timelike boundary T , the e0 geodesics relative to g, emanating
from S, will not in general remain tangent to T . This makes the geodesic frame (2.1),
as it stands, unsuitable for studying the general boundary value problem. However, for
a totally geodesic boundary, the e0 geodesics will indeed foliate a neighbourhood of T .

An essential ingredient in our approach is the use of an adapted frame to the boundary.
The existence of such a frame, compatiblewith the propagation conditon (2.1), is possible
thanks to the vanishing of the second fundamental form χ .

Lemma 3.2. (Adapted frame to the boundary) Let �0 be orthogonal to T , as in Fig.
2, and let e0 denote its future unit normal. Also, let e1, e2, e3 be an orthonormal frame
tangent to �0, such that at the boundary e1, e2 ∈ TS and e3 coincides with the outward
unit normal N. Then the frame verifying (2.1) is adapted to the boundary. In particular,
the e0 curves emanating from S remain tangent to T and e3 = N on T .

Proof. Define the tangential, orthonormal frame ẽ0, ẽ1, ẽ2 on T by the condition:

/∇ ẽ0 ẽ0 = /∇ ẽ0 ẽ1 = /∇ ẽ0 ẽ2 = 0, (3.4)

where /∇ is the covariant connection intrinsic to T . Also, we impose that ẽ0 = e0, ẽ1 =
e1, ẽ2 = e2 at S.

Then, ẽ0, ẽ1, ẽ2, N satisfy

Dẽ0 ẽ0 = Dẽ0 ẽ1 = Dẽ0 ẽ2 = Dẽ0N = 0, on T , (3.5)

since the second fundamental formofT vanishes.Hence, the two set of frames ẽ0, ẽ1, ẽ2, N
and e0, e1, e2, e3 satisfy the same propagation equation and have the same initial con-
figurations at S. We arrive at the conclusion that they must coincide. �
Lemma 3.3 (Boundary conditions for the orthogonal foliation). For theparticular geodesic
frame e0, e1, e2, e3 that is adapted to the boundary, as above, the vanishing of χ induces
the following boundary conditions on Ki j , �i jb:

KA3 = K3A = �A3B = �AB3 = 0, (3.6)
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satisfied on T , for every A, B = 1, 2.

Proof. The conditions (3.6) follow from the relations

KA3 = K3A = g(DeA e0, e3) = −χ0A, �A3B = −�AB3 = g(DeA e3, eB) = χAB , on T ,

(3.7)

and the vanishing of χ . �
Lemma 3.4 (Compatibility conditions for the orthogonal foliation). The initial data of
Ki j , �i jb, fi j that correspond to the orthonormal frame in Lemma 3.2, must satisfy
corner conditions at S to all orders allowed in our energy spaces. The zeroth order
conditions are the boundary conditions (3.6), which are induced by (3.3), while the first
order conditions read:

e3�
B
AB = eB�3AB − �b

b
C�3AC , e3K22 = −2�31

C K1C ,

e3K11 = −2�32
C K2C , e3K12 = �31

C K2C + �32
C K1C .

(3.8)

Remark 3.5. Note that the above conditions only involve the initial data (�, h, k) since
the frame (e1, e2, e3) is tangential to � and the connection coefficients are those of the
Riemannian metric h. If we assume that we have a solution foliated by �t , then the
relations (3.8) would hold on each St . We can then inductively take e0 derivatives of
(3.8), commute e0 with eB, e3 and replace all e0K , e0� derivatives using the evolution
equations (2.19)–(2.20). Restricted to S0, the resulting equations only involve the initial
data and are the higher order compatibility conditions expressed with respect to an
orthonormal frame.

Proof. The zeroth order compatibility conditions are derived from the oneswith an angle
(3.3), using the rotation relations (3.2). We confirm that these are indeed the boundary
conditions (3.6), without using the existence of a spacetime solution to the IBVP, as in
the proof of Lemma 3.3, showing that they can be derived solely from the initial data on
the original initial slice � and the knowledge of the angle ω. We compute on S:

KA3 = g(DeAe0, e3) = g(DeA (n coshω − N sinhω),−n sinhω + N coshω)

= eAω sinh2 ω + k(eA, N ) cosh2 ω − k(eA, N ) sinh2 ω − eAω cosh2 ω

= − eAω + k(eA, N ) = 0

and

�A3B = g(DeAe3, eB) = g(DeA (−n sinhω + N coshω), eB)

= −k(eA, eB) sinhω + h(∇eA N , eB) = 0.

Together with the symmetry/antisymmetry of K3A, �A3B , this proves our claim for the
zeroth order corner conditions.

Restricting (2.19), (2.20), for i = 3, j = A and i = A, j = 3, b = B respectively,
to the intersection S and utilising (3.6), we obtain the equations:

0 = e0K3A + trKK3A = 1

2

[
e3�

b
Ab − eb�3Ab+�b

3
c�cAb + �b

b
c�3Ac

+ eA�b
3b − eb�A3b+�b

A
c�c3b + �b

b
c�A3c

]
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TD
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Fig. 3. A local domain of dependence region near the boundary

=1

2

[
e3�

B
AB − eB�3AB + �b

b
C�3AC

]

0 = e0�A3B + KA
c�c3B = e3KBA − eBK3A − �3B

cKcA − �3A
cKBc + �B3

cKcA + �BA
cK3c

+ δAB

[
ecKc3 − �c

cbKb3 − �c
3
bKcb − e3trK

]

= e3KBA − �3B
C KCA − �3A

C KBC − δABe3KC
C

which give the conditions (3.8). �

3.4. Local well-posedness for the initial boundary value problem. In the following, we
consider a Lorentzian manifold with boundary of the form (D, g) with D foliated by
spacelike hypersurfaces Ut⊂ �t , D = ⋃

t∈[0,T ] Ut , such that ∂D = U0 ∪ T ∪H ∪UT ,
with T timelike andH ingoing null, T > 0, as depicted in Fig. 3. The Ut are moreover
assumed to be orthogonal to T .

We assume that (D, g) is globally hyperbolic in the sense of a Lorentzian manifold
with timelike boundary [15]. In particular, we assume that D is such that given p ∈ D,
J−(p) ∩ J+ (U0 ∪ T ) is compact, so that all the computations below are well defined.
Wewill prove high order energy estimates on g assuming it solves the Einstein equations
with the corresponding initial and boundary data. These a priori estimates can then be
upgraded via a Picard iteration to obtain the existence of a solution.

We denote by e any of the derivatives tangential to the boundary e0, e1, e2. We
consider the following modified Sobolev spaces, denoted Bs , which, for a given s,
contains [ s2 ]normal derivatives compared to s tangential derivatives, [ s2 ]being the integer
part of s

2 .

Definition 3.6. Let s ∈ N. For any u ∈ L∞
t L2(Ut ), we consider the following energy

norm on each slice Ut ,

‖u‖Bs (Ut ):=
∑

|I1|+2|I2|≤s

‖eI1eI23 u‖L2(Ut )
,

and the corresponding energy space

Bs(Ut ) =
⎧⎨
⎩u ∈ L∞ ([0, T ]; L2(Ut )

) : sup
t∈[0,T ]

ess
∑

|I1|+2|I2|≤s

‖eI1eI23 u‖L2(Ut )
< +∞

⎫⎬
⎭ . (3.9)
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Remark 3.7. The need for the Bs spaces is dictated by the form (2.21) of the modified
ADM system, which only allows the control of roughly half the number of normal
derivatives compared with the number of tangential derivatives in L2. Here is also where
the definition of the norms with respect to eμ vector fields becomes particularly useful.
Note that we have also included time derivatives in the norms.

Remark 3.8. The reduced equations (2.19), (2.20), coupled to the ODE (2.8), and subject
to the boundary conditions (3.6), fit in the context of more general characteristic sym-
metric hyperbolic systems that have been studied in the literature [21]. In the language
of [21]:

– the space Hm∗ (�) coincides with Bs(Ut ), for e3 = ∂1,
– Aν has a kernel of constant rank 4, equal to the number of variables in (2.21) whose
evolution equation does not contain e3 derivatives,
– and M(x) is the (constant) projection matrix on the latter variables, satisfying
〈Aνu, u〉 = 0 for all u ∈ kerM(x).

Hence, the local well-posedness theorems in [21] apply to our specific case as well.
For the convenience of the reader, we derive the local well-posedness estimates for the
present problem in Proposition 3.10.

Lemma 3.9. Let s ≥ 6 and let

‖v‖Bs (Ut ) ≤ C0, v = Ki j , �i jb, fi
p, f b p,

for all 0 ≤ t ≤ T . Changing the order of the tangential and normal derivatives in
the definition (3.9) gives an equivalent norm, up to a constant depending on C0. More
precisely, the following inequality holds true

‖eI u‖L2(Ut )
≤ C

∑
|I1|≤r

∑
|I2|≤m

‖eI1eI23 u‖L2(Ut )
, (3.10)

for any eI that consists of r tangential and m e3 derivatives, r + 2m ≤ s. The constant
C is of the form C = D + TC2

0 , where D > 0 depends only on initial norms.

Proof. We argue by induction in |I | = r + m. According to (2.22), a commutation
between a tangential and a normal derivative in eI u gives terms of the form

eJ1 [e, e3]eJ2u = eJ1(K ∗ eeJ2u) + eJ1( f ∗ e f ∗ eeJ2u), |J1| + |J2| = |I | − 2

There are two distinct cases for bounding the L2 norm of the previous RHS.

• The derivatives are relatively equally distributed among the corresponding factors,
in which case we can bound their L2 norms using the L4 estimate in (2.30) and the
inductive step.

• Most derivatives hit one of the factors, in which we can apply (2.30) to the lowest
order factor and use the inductive step.

The assumption s ≥ 6 allows for a pointwise bound on the factor e f via (2.30). The
dependence of the constant C in D,C0 comes from the use of the following basic
estimate:

‖eI ′
v‖2L2(Ut )

C−S≤ ‖eI ′
v‖2L2(U0)

+
∫ t

0
2‖eI ′

v‖L2(Uτ )‖e0eI
′
v‖L2(Uτ )dτ ≤ D + TC2

0

to the terms eI
′
v, v = (Ki j , �i jb, fi j , f b j ), that have one less than maximum number

of tangential derivatives, ie. for eI
′
containing r ′ tangential and m′ e3 derivatives with

r ′ + 2m′ ≤ s − 1. �
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Proposition 3.10. Under the boundary and compatibility conditions (3.6), (3.8), as well
as their higher order analogues up to order s − 1 (see Remark 3.5), the system (2.19),
(2.20), (2.8), (2.9) has a locallywell-posed initial boundary value problem in L∞

t Bs(Ut ),
for s ≥ 7.

Proof. We prove an energy estimate in the space L∞([0, T ]; Bs), for s ≥ 7 and T
sufficiently small. To this end, we proceed by a bootstrap argument and assume that we
have a smooth solution u on [0, T ], for some T > 0, satisfying

‖u‖Bs (Ut ) ≤ C0, (3.11)

for all 0 ≤ t ≤ T . The slices Ut correspond now to the neighbourhood of a point at
the boundary �0 ∩ T . We will upgrade this type of non-quantitative estimate into a
quantitative one depending only on the initial data. This is the kind of estimate that
is required to then prove existence and uniqueness of solutions via a Picard iteration
scheme (cf. also [21]). As for the solution to the linear problem required at each step
in the iteration, this follows by a duality argument, using the symmetry of the system
(2.21), combined with the fact that the boundary terms in a usual energy argument
for (2.19)–(2.20) vanish by virtue of the boundary conditions (3.6), see (3.12) below.
This implies that the dual system has the same form, satisfying the same homogeneous
Dirichlet boundary conditions, as in (3.6), for the corresponding dual variables.

Step 1: Estimates for tangential derivatives. Consider I a multi-index of order |I | ≤ s,
such that eI = eI does not contain any e3 derivative. We repeat the energy argument of
Proposition 2.12, where we use the differentiated equations (2.23)–(2.24) for eI = eI .
Note that by the above bootstrap assumption and since s ≥ 7, the Sobolev inequalities
used to control the L∞, L4 norms of certain terms are still applicable. In particular, the
error terms generated by the various integration by parts (due to ei not being Killing) can
be controlled in this way and then absorbed by choosing T sufficiently small depending
only on the norm of the initial data.

We examine now the arising T -boundary terms in the energy argument. Going back
to the fourth line of (2.31), we notice that these terms are

∫

St

eI K3
j eI�b

jb − eI trKeI�b
3b − eI�i j

3e
I Ki jvolSt

=
∫

St

eI K33e
I�B

3B + eI K3
AeI�B

AB − eI trKeI�B
3B − eI�AB

3e
I KABvolSt ,

(3.12)

for |I | ≤ s. Since eI is tangential, we infer by (3.6) that all boundary terms vanish.
Since we commute only with tangential derivatives, the error terms corresponding to

(2.32)–(2.33) take the form

∑
|I1|+|I2|=|I |−1

∫

Ut

eI K ∗ eI1K ∗ eI2eKvolUt

+
∑

|I1|+|I2|+|I3|=|I |−1

∫

Ut

eI K ∗ eI1 f ∗ eI2e f ∗ eI3e�volUt

Thus, they contain at most one e3 derivative and can be handled using (2.30) (since
we include at least three normal derivatives in our Bs norms, s ≥ 7) and the bootstrap
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assumption. We make use of the L4 estimate only for the second term, in the case
|I1| = 0, where both e = e3.

Step 2: Consequences of the bootstrap assumption. First, we note that a standard energy
argument for (2.25)–(2.26) gives the desired estimate for the part of the norm involving
fi j , f b j , making use only of the bootstrap assumption:

3∑
i,b,p=1

sup
t∈[0,T ]

(‖eI1eI23 fi
p‖L2(Ut )

+ ‖eI1eI23 f b p‖L2(Ut )
) ≤ D f , (3.13)

where D f depends on initial norms and C2
0T . The latter can be made smaller than a

universal constant by taking T > 0 sufficiently small.
Moreover, any term having a less than top order number of tangential derivatives can

also be bounded in L2 by using only the bootstrap assumption in the following manner:

‖eI ′
1eI23 u‖2L2(Ut )

≤ ‖eI ′
1eI23 u‖2L2(U0)

+
∫ t

0
2‖eI ′

1eI23 u‖L2(Uτ )‖∂τ e
I ′
1eI23 u‖L2(Uτ )dτ

≤ ‖eI ′
1eI23 u‖2L2(U0)

+ TC2
0 (|I ′

1| < s − 2|I2|)
≤ Dlow (3.14)

for some T > 0 sufficiently small, where Dlow denotes a constant depending on the
initial L2 norms of ∂ I ′

1∂ I2u, ∂t∂
I ′
1∂ I2u.

Thus, matters are reduced to estimating the top order Ki j , �i jb terms.

Step 3: Induction for the normal derivatives. To complete the energy argument, we must
estimate the norms ‖eI1eI23 u‖L2 , with |I1| + 2|I2| = s, u = K , �.

We proceed by induction in |I2|. Step 1 above shows in particular that one can deal
with |I2| = 0. Letm ≤ [ s2 ] − 1 and assume that, for all multi-indices I1 and I2 verifying
|I1| + 2|I2| = s, |I2| ≤ m, we have a bound of the form

sup
t∈[0,T ]

‖eI1eI23 u‖L2(Ut )
≤ Dm, (3.15)

for some T > 0 sufficiently small, where Dm depends only on the Bs-norm of the initial
data of (Ki j , �i jb, fi j , f b j ), the number of derivatives s,m, and is independent of C0.
We will derive (3.15) for |I2| = m + 1.

Let us split the variables Ki j , �i jb into two sets:

1. the good set

G = {K11, K12, K22, K31, K32, �112, �212, �113, �223, �123 + �213} , (3.16)

2. the bad set

B = {K33, �313, �323, �312, �123 − �213} . (3.17)

According to the composition of the system (2.19)–(2.20) identified in (2.21), we have
the following two schematic types of equations

e0�G = e3�G + eA�B + � ∗ �, (3.18)

e0�B = eA�G + � ∗ �, (3.19)
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satisfied by �G ∈ G, �B ∈ B, � ∈ G ∪ B, where we note that e3�G corresponds
to a single representative of the good set, whereas eA�B, eA�G could be an algebraic
combination of more than one terms from the corresponding sets.

Starting with (3.18), we differentiate the equation in eI1e
I ′
2
3 , |I1| + 2|I ′

2| = s − 1,
|I ′
2| = m:

eI1e
I ′
2
3 e3�G = eI1e

I ′
2
3 e0�G − eI1e

I ′
2
3 eA�B − eI1e

I ′
2
3 (� ∗ �) (3.20)

Note that the derivatives acting on�G in the LHS contain one more tangential derivative
than what we need for the desired estimate on �G . It is necessary to include this extra
tangential derivative in order to infer the bound on �B directly below.

The first two terms in the RHS of (3.20) are at the level of the inductive assumption
(3.15). To bound the L2 norm of the third term we employ (2.30) as follows:

‖eI1eI ′
2
3 (� ∗ �)‖L2(Ut )

≤ ‖�eI1e
I ′
2
3 �‖L2(Ut )

+
∑

|J2|,|L2|<m

‖eJ1eJ23 � ∗ eL1eL2
3 �‖L2(Ut )

C−S≤ ‖�‖H2(Ut )
‖eI1eI ′

2
3 �‖L2(Ut )

+
∑

|J2|,|L2|<m

‖eJ1eJ23 �‖H1(Ut )
‖eL1eL2

3 �‖H1(Ut )

≤ D2
low (by Step 2) (3.21)

This implies an L2 estimate for eI1eI23 �G , |I1| + 2|I2| = s + 1, |I2| = m + 1, in
accordance with (3.15) (choosing Dm+1 ≥ D2

low + Dm). As we remarked above, the
previous term contains one tangential derivativemore than required. The desired estimate
for |I1| + 2|I2| = s, |I2| = m + 1 is in fact simpler.

For �B we apply eI1eI23 , |I1| + 2|I2| = s, |I2| = m + 1 to (3.19):

eI1eI23 e0�B = eI1eI23 eA�G + eI1eI23 (� ∗ �), (3.22)

The first term in the RHS has just being controlled in L2 (cf. Lemma 3.9). The argument
for the second term is as in (3.21), only now the final RHS becomes

‖eI1eI23 (� ∗ �)‖L2(Ut )
≤ D2

low + Dlow‖eI1eI23 �‖L2(Ut )
≤ DlowDm+1 + Dlow‖eI1eI23 �B‖L2(Ut )

(3.23)

Thus, combining with Lemma 3.9, we have the bound

‖e0eI1eI23 �B‖L2(Ut )
≤ DlowDm+1 + Dlow‖eI1eI23 �B‖L2(Ut )

(3.24)

The first line in (3.14) then gives the estimate

∑
�B∈B

‖eI1eI23 �B‖2L2(Ut )
≤ D +

∑
�B∈B

∫ t

0
‖eI1eI23 �B‖L2(Uτ )

(
DlowDm+1 + Dlow‖eI1eI23 �B‖L2(Uτ )

)
dτ

(3.25)

EmployingGronwall’s inequality, we obtain the desired estimate for�B by taking T > 0
sufficiently small. This completes the proof of the proposition. �
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4. A Solution to the EVE

In this section we show that the solution of the modified reduced system, with initial
data as in Sect. 2.4, either for the standard Cauchy problem or for the boundary value
problem, subject to the conditions in Lemmas 3.3, 3.4, is in fact a solution to the EVE,
see Proposition 4.8 and the conclusion in Sect. 4.3. Thus, completing the proofs of
Theorems 1.1, 1.10.

4.1. The geometry of a solution to the reduced equations. Having solved (2.19), (2.20),
(2.8), (2.9) for Ki j , �i jb, fi p, f b p, we declare that e0 = ∂t , together with e1, e2, e3 given
by (1.5), constitute an orthonormal frame. This completely determines the spacetime
metric g, which splits in the form (1.4).We then need to verify that the variables Ki j , �i jb
are indeed the second fundamental formof the t-slices and spatial connection coefficients
of the orthonormal framewe have just defined, with respect to the Levi-Civita connection
D of g. In fact, this must be derived at the same time with the vanishing of the spacetime
Ricci tensor, confirming that the solution of the reduced system is in fact a solution of
the EVE.

For this purporse, we define the connection D̃ by the relations

D̃e0eμ = 0, D̃ei e0 = Ki
j e j , D̃ei e j = �i j

beb + Ki j e0 (4.1)

and denote the projection of D̃ onto the span of e1, e2, e3 by D̃. Let

R̃αβμ
νeν := (D̃eα D̃eβ − D̃eβ D̃eα − D̃[eα,eβ ])eμ = −R̃βαμ

νeν, R̃βμ = R̃αβμ
α, R̃ = R̃μ

μ

(4.2)

be theRiemann,Ricci, and scalar curvatures of D̃; the curvatures R̃ai jb, R̃i j , R̃ associated
to D̃ are defined similarly. For notational simplicity, we will also use in certain places
below the convention �αβν :=g(D̃eαeβ, eν)= −�ανβ , despite the fact that we have used
� so far to denote only spatial connection coefficients. In particular, with this convention
�i0 j = −�i j0 = Ki j , �0αβ = 0.

Define the torsion of D̃:

Cαμν = g([eα, eμ] − D̃eαeμ + D̃eμeα, eν) = −Cμαν (4.3)

Note that D̃ is not a priori torsion-free, however, it annihilates the metric g.
The next lemma is a list of standard identities for the torsion and curvature tensors of

D̃, which are the same for any affine connection compatible with g. We include a proof
for the sake of completeness.

Lemma 4.1. The connection D̃ is compatible with g, D̃g = 0, while its curvature and
torsion tensors satisfy:

Ci jb = f b pei f j
p − f b pe j fi

p − �i jb + � j ib = −C jib, Cαβ0 = C0i j = Ci0 j = 0,
(4.4)

0 = R̃αβμν + R̃βμαν + R̃μαβν + D̃μCαβν + D̃αCβμν + D̃βCμαν

+Cαβ
lClμν + Cμα

lClβν + Cβμ
lClαν (4.5)

R̃αβμν = − R̃αβνμ, R̃ai jb = −R̃aibj (4.6)
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0 = D̃μR̃αβγ δ + D̃αR̃βμγ δ + D̃β R̃μαγ δ − Cμαl R̃
l
βγ δ − Cαβl R̃

l
μγ δ − Cβμl R̃

l
αγ δ

(4.7)

Moreover, the Gauss and Codazzi equations in Lemma 2.1 become:

R̃ai jb = R̃ai jb + KabKi j − Kaj Kib, (4.8)

R̃ jb0i = D̃ j Kbi − D̃bK ji − C jb
l Kli . (4.9)

Proof. The compatibility of D̃ with g is equivalent to:

(D̃αg)μν = 0 ⇐⇒ g(D̃eαeμ, eν) + g(eμ, D̃eαeν) = 0

Hence, it follows from the antisymmetry of �i jb = −�ibj , see Lemma 2.7, and the
definition (4.1). Therefore, D̃ is also compatible with g. By definition (4.2), this also
implies the antisymmetry of the curvatures R̃αβμν, R̃ai jb with respect to the last two
indices.

By (2.22) and (4.1) we derive the identities

[e0, ei ] − D̃e0ei + D̃ei e0 =−Ki
cec + Ki

cec = 0,

[ei , e j ] − D̃ei e j + D̃e j ei = f b pei f j
peb − f b pe j fi

peb − (�i j
b − � j i

b)eb + (K ji − Ki j )e0,

which yield (4.4), thanks to the symmetry of Ki j (Lemma 2.7).
Next, we derive the first Bianchi identity (4.5) using the definitions (4.2), (4.3):

R̃αβμν + R̃βμαν + R̃μαβν

= g((D̃eα D̃eβ − D̃eβ D̃eα − D̃[eα,eβ ])eμ, eν ) + g((D̃eβ D̃eμ − D̃eμ D̃eβ − D̃[eβ ,eμ])eα, eν)

+ g((D̃eμ D̃eα − D̃eα D̃eμ − D̃[eμ,eα ])eβ , eν)

= g(D̃eα ([eβ , eμ] − Cβμ
l el ), eν ) + g(D̃eβ ([eμ, eα] − Cμα

l el ), eν) + g(D̃eμ ([eα, eβ ] − Cαβ
l el ), eν )

− g(D̃[eα,eβ ]eμ, eν ) − g(D̃[eβ ,eμ]eα, eν ) − g(D̃[eμ,eα ]eβ , eν)

= g(D̃eα ([eβ , eμ]) − D̃[eβ ,eμ]eα, eν ) + g(D̃eβ ([eμ, eα]) − D̃[eμ,eα ]eβ , eν ) + g(D̃eμ ([eα, eβ ]) − D̃[eα,eβ ]eμ, eν)

− g(D̃eα (Cβμ
l el ), eν ) − g(D̃eβ (Cμα

l el ), eν) − g(D̃eμ (Cαβ
l el ), eν)

= [eμ, [eα, eβ ]] + [eα, [eβ , eμ]] + [eβ , [eμ, eα]] − Cμlνg(el , [eα, eβ ]) − Cαlνg(el , [eβ , eμ])
− Cβlνg(el , [eμ, eα]) − eαCβμν − Cβμ

l�αlν − eβCμαν − Cμα
l�βlν − eμCαβν − Cαβ

l�μlν

= −CμlνCαβ
l − Cμlν (�αβ

l − �βα
l )−CαlνCβμ

l − Cαlν (�βμ
l − �μβ

l )−CβlνCμα
l (Jacobi’s identity)

− Cβlν (�μα
l − �αμ

l ) − eαCβμν − Cβμ
l�αlν − eβCμαν − Cμα

l�βlν − eμCαβν − Cαβ
l�μlν .

The last RHS can be seen to correspond to the torsion terms in (4.5) by using the
antisymmetries of �αβν,Cαβν in the last two and first two indices respectively.

On the other hand, we have

D̃μR̃(eα, eβ) + D̃αR̃(eβ, eμ) + D̃β R̃(eμ, eα)

= D̃eμ(D̃eα D̃eβ − D̃eβ D̃eα − D̃[eα,eβ ]) − (D̃eμeα)ν(D̃eν D̃eβ − D̃eβ D̃eν − D̃[eν ,eβ ])
− (D̃eμeβ)ν(D̃eα D̃eν − D̃eν D̃eα − D̃[eα,eν ])
+ D̃eα (D̃eβ D̃eμ − D̃eμ D̃eβ − D̃[eβ ,eμ]) − (D̃eα eβ)ν(D̃eν D̃eμ − D̃eμ D̃eν − D̃[eν ,eμ])
− (D̃eα eμ)ν(D̃eβ D̃eν − D̃eν D̃eβ − D̃[eβ ,eν ])
+ D̃eβ (D̃eμ D̃eα − D̃eα D̃eμ − D̃[eμ,eα ]) − (D̃eβ eμ)ν(D̃eν D̃eα − D̃eα D̃eν − D̃[eν ,eα ])
− (D̃eβ eα)ν(D̃eμ D̃eν − D̃eν D̃eμ − D̃[eμ,eν ])
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= [D̃eμ , D̃eα ]D̃eβ + [D̃eβ , D̃eμ ]D̃eα + [D̃eα , D̃eβ ]D̃eμ − (D̃eμeα − D̃eα eμ)νR̃(eν, eβ)

− (D̃eα eβ − D̃eβ eα)νR̃(eν, eμ) − (D̃eβ eμ − D̃eμeα)νR̃(eν, eα)

− [D̃eμ , D̃[eα,eβ ]] − [D̃eα , D̃[eβ ,eμ]] − [D̃eβ , D̃[eμ,eα ]]
− D̃[eα,eβ ]D̃eμ − D̃[eβ ,eμ]D̃eα − D̃[eμ,eα ]D̃eβ

+ D̃[eμ,[eα,eβ ]] + D̃[eα,[eβ ,eμ]] + D̃[eβ ,[eμ,eα ]] (adding zero by Jacobi’s identity)

= R̃(eμ, eα)D̃eβ + R̃(eα, eβ)D̃eμ + R̃(eβ, eμ)D̃eα + ([eα, eβ ] − D̃eα eβ + D̃eβ eα)νR̃(eν, eμ)

+ ([eβ, eμ] − D̃eβ eμ + D̃eμeβ)νR̃(eν, eα) + ([eμ, eα] − D̃eμeα + D̃eα eμ)νR̃(eν, eβ)

The second Bianchi identity follows by applying the preceding expression to eγ , taking
the inner product with eδ and utilising the idenitty [eα, eβ ] = Cαβ

l el + D̃eαeβ − D̃eβ eα .
Finally, for the Gauss and Codazzi equations (4.8)–(4.9), we repeat the steps in

the proof of Lemma 2.1, making use of the formula [e j , eb] = C jb
lel + D̃e j eb − D̃ebe j ,

without identifying R̃0i jb, R̃ jb0i (which uses the torsion free property of the connection).
This completes the proof of the lemma. �

4.2. Modified curvature and propagation equations for vanishing quantities. An essen-
tial step in proving the vanishing of Ci jb, R̃βμ is the derivation of propagation equations
for them, using the reduced equations (2.19)–(2.20) and the Bianchi identities for the
curvature of D̃ in Lemma 4.1. If these equations are suitable for an energy argument,
then we can infer the vanishing of the relevant variables from their vanishing on the
initial hypersurface.

However, for the particular curvature of D̃ we have defined, this system would fail
to be hyperbolic, hence, obstructing us from deriving energy estimates. Indeed, this can
be seen by examining the system of evolution equations in Lemma 4.5, which we derive
below for the modified curvature (4.10). The first order system (4.25)–(4.28) is in fact
symmetric hyperbolic, but if we were to replace R̂ by R̃ this would fail to be the case,
due to the additional first order Ci jb terms with no particular structure.

For this purpose, we consider the modified curvature:

R̂αβμ
νeν := (D̃eα D̃eβ − D̃eβ D̃eα − D̃D̃eα eβ−D̃eβ eα

)eμ = (R̃αβμ
ν + Cαβ

λ�λμ
ν)eν

(4.10)

Note that R̂αβμν is not tensorial with respect to its third index μ. We also define R̂βμ =
R̂αβμ

α, R̂ = R̂μ
μ and similarly for the modified curvatures R̂ai jb, R̂i j , R̂ of D̃. Then

we have the following identities, which are immediate consequences of Lemma 4.1 and
(4.10):

Lemma 4.2. The curvatures R̂αβμν, R̂ai jb satisfy the identites:

R̂αβμν = − R̂βαμν = −R̂αβνμ, R̂ai jb = −R̂ia jb = −R̂aibj (4.11)

0 = R̂αβμν + R̂βμαν + R̂μαβν + D̃μCαβν + D̃αCβμν + D̃βCμαν

+Cαβ
lClμν + Cμα

lClβν + Cβμ
lClαν − Cαβ

λ�λμν − Cβμ
λ�λαν − Cμα

λ�λβν (4.12)

R̂αβ − R̂βα = − D̃
μ
Cαβμ − D̃αCβμ

μ − D̃βCμα
μ

−Cαβ
lClμ

μ − Cμα
lClβ

μ − Cβμ
lClα

μ + Cβμ
λ�λα

μ + Cμα
λ�λβ

μ (4.13)

0 = D̃μR̂αβγ δ + D̃αR̂βμγ δ + D̃β R̂μαγ δ − Cμαl (R̂
l
βγ δ − Cl

βν�
ν
γ δ)
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− Cαβl (R̂
l
μγ δ − Cl

μν�
ν
γ δ) − Cβμl(R̂

l
αγ δ − Cl

αν�
ν
γ δ)

+

[
R̂αβμν + R̂βμαν + R̂μαβν+Cαβ

lClμν + Cμα
lClβν + Cβμ

lClαν (4.14)

−Cαβ
λ�λμν − Cβμ

λ�λαν − Cμα
λ�λβν

]
�νγ δ

− Cαβ
νD̃μ�νγ δ − Cβμ

νD̃α�νγ δ − Cμα
νD̃β�νγ δ (4.15)

R̂ai jb = R̂ai jb + KabKi j − Kaj Kib, (4.16)

R̂ jb0i = D̃ j Kbi − D̃bK ji , (4.17)

R̂b0 = D̃i Kbi − D̃btrK (4.18)

R̂ai jb = ea�i jb − ei�ajb − �ab
c�i jc + �ib

c�ajc − �ai
c�cjb + �ia

c�cjb (4.19)

where everything is interpreted tensorially, e.g., D̃μ�νγ δ:=eμ�νγ δ −�μν
λ�λγ δ −�μγ

λ

�νλδ − �μδ
λ�νγλ.

Proof. The antisymmetries (4.11) follow from the definition (4.10), the antisymmetries
(4.2), (4.6) of R̃αβμν and that of Cαβμ in (α;β). Also, plugging (4.10) into (4.5) gives
(4.12), while contracting (4.12) with respect to (μ; ν) gives (4.13). Moreover, (4.16)–
(4.17) follow from (4.8)–(4.9) by plugging in the definition (4.10) and recalling that
Cai0 = 0, see (4.4). Contracting (4.17) also gives (4.18). The computation of the curva-
ture formula (4.19) is straightforward, using the definition of R̂ai jb, analogous to (4.10),
cf. the proof of Lemma 2.1. ]

For the less obviousBianchi-type identity (4.14), we plug (4.10) into (4.7) and treat all
the terms tensorially. Although R̂αβγ δ is not a tensor in γ , its difference from Cαβ

ν�νγ δ

is. Therefore, we deduce

0 = D̃μ(R̂αβγ δ − Cαβ
ν�νγ δ) + D̃α(R̂βμγ δ − Cβμ

ν�νγ δ) + D̃β(R̂μαγ δ − Cμα
ν�νγ δ)

− Cμαl (R̂
l
βγ δ − Cl

βν�
ν
γ δ) − Cαβl (R̂

l
μγ δ − Cl

μν�
ν
γ δ) − Cβμl(R̂

l
αγ δ − Cl

αν�
ν
γ δ)

= D̃μR̂αβγ δ + D̃αR̂βμγ δ + D̃β R̂μαγ δ

− Cμαl (R̂
l
βγ δ − Cl

βν�
ν
γ δ) − Cαβl (R̂

l
μγ δ − Cl

μν�
ν
γ δ) − Cβμl(R̂

l
αγ δ − Cl

αν�
ν
γ δ)

−(D̃μCαβ
ν + D̃αCβμ

ν + D̃βCμα
ν)�νγ δ−Cαβ

νD̃μ�νγ δ − Cβμ
νD̃α�νγ δ − Cμα

νD̃β�νγ δ

On the other hand, we employ the first Bianchi identity (4.12) to write

− D̃μCαβ
ν − D̃αCβμ

ν − D̃βCμα
ν

= R̂αβμν + R̂βμαν + R̂μαβν+Cαβ
lClμν + Cμα

lClβν + Cβμ
lClαν

−Cαβ
λ�λμν − Cβμ

λ�λαν − Cμα
λ�λβν

which completes the proof of the lemma. �
Remark 4.3. It is important that (4.14) does not contain any spatial derivatives of Ci jb,
which could lead to a non-symmetric system for the vanishing variables, cf. Lemma 4.5.
We were able to replace such terms by using the first Bianchi identity (4.12). In turn, we
must express the cyclic curvature sum in (4.14) solely by Ricci terms.

Lemma 4.4. The cyclic sum R̂(αβμ)ν := R̂αβμν + R̂βμαν + R̂μαβν satisfies:

R̂(abi) j = (R̂ia − R̂ai )gbj + (R̂bi − R̂ib)gaj + (R̂ab − R̂ba)gi j ,

R̂(0bi)0 = R̂(abi)0 = 0, R̂(0bi) j = −δi j R̂b0 + δbj R̂i0
(4.20)
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Proof. For the first identity, we notice that if either of a, b, i coincide, both sides are
trivially zero. In the case where a, b, i are all distinct, j must coincide with one of them
(since �t is 3-dimensional), say j = a. Then we have

R̂bi − R̂ib = R̂λbi
λ − R̂λib

λ (4.11)= R̂abia + R̂iaba + R̂0b0i − R̂0i0b = R̂(abi)a + R̂0b0i − R̂0i0b

(4.21)

On the other hand, using the symmetry of Kbi it holds

R̂0b0i = g((D̃e0D̃eb − D̃eb D̃e0 − D̃D̃e0 eb−D̃eb e0
)e0, ei ) = e0Kbi + Kb

l Kli = R̂0i0b,

(4.22)

Combining (4.21)–(4.22) yeilds the first identity in (4.20). Also, (4.22) implies the first
part of the second identity in (4.20) regarding R̂(0bi)0 = 0.

Next, we employ (4.17) to infer:

R̂(abi)0 = − R̂ab0i − R̂bi0a − R̂ia0b

= − D̃aKbi + D̃bKai − D̃bKia + D̃i Kba − D̃i Kab + D̃aKib

= 0

To prove the last identity in (4.20) we utilise the reduced equation (2.20), which we
rewrite in a more covariant way using (4.18):

e0�i jb + Ki
c�cjb = D̃ j Kbi − D̃bK ji + δibR̂ j0 − δi j R̂b0 (4.23)

Appealing to the symmetry of K once more, we compute:

R̂(0bi) j = R̂0bi j + R̂bi0 j − R̂0ibj

= g((D̃e0D̃eb − D̃eb D̃e0 − D̃D̃e0 eb−D̃eb e0
)ei , e j )

+ D̃bKi j − D̃i Kbj − g((D̃e0D̃ei − D̃ei D̃e0 − D̃D̃e0 ei−D̃ei e0
)eb, e j ) (by (4.17))

= e0�bi j + Kb
c�ci j − e0�ibj − Ki

c�cbj + D̃bKi j − D̃i Kbj

= D̃i K jb − D̃bK ji − δi j R̂b0 + δbj R̂i0 + D̃bKi j − D̃i Kbj (by (4.23))

= −δi j R̂b0 + δbj R̂i0,

as asserted. �
Recall that we symmetrized the RHS of (2.6), such that the symmetry of Ki j is

automatically propagated off of the initial hypersurface. Consequently, we must treat
the symmetrized and antisymmetrized Ricci tensors as different variables:

R̂
(S)

i j = 1

2
(R̂i j + R̂ j i ) = R̂

(S)

j i , R̂
(A)

i j = 1

2
(R̂i j − R̂ j i ) = −R̂

(A)

j i . (4.24)

With the above lemmas at our disposal, we derive the following propagation equations
for the variables that should vanish.
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Lemma 4.5. The variables R̂βμ,Ci jb satisfy the following system of equations:

e0Ci jb = Kb
lCi jl − Ki

lCl jb − K j
lCilb − δibR̂ j0 + δ jbR̂i0, (4.25)

e0R̂i0 = ei R̂00 + eaR̂(A)
ia − �a

i
β R̂βa − �a

aβ R̂iβ−Li (C, R̂), R̂0i = −R̂i0, (4.26)

e0R̂00 = eaR̂a0 − �a
abR̂b0+L0(C, R̂), (4.27)

e0R̂
(A)
i j = 1

2
(e j R̂i0 − ei R̂ j0)−Ki

l R̂
(A)
l j − K j

l R̂
(A)
il − 1

2
Kbl R̂(i jl)b+

1

2
Kbl R̂(i jb)l + Mi j (C, R̂),

(4.28)

R̂
(S)
i j = − δi j R̂00, (4.29)

where

2Lμ(C, R̂) = − Cμαl (R̂
l
βγ δ − Cl

βν�
ν
γ δ) − Cαβl (R̂

l
μγ δ − Cl

μν�
ν
γ δ) − Cβμl(R̂

l
αγ δ − Cl

αν�
ν
γ δ)

+

[
R̂αβμν + R̂βμαν + R̂μαβν+Cαβ

lClμν + Cμα
lClβν + Cβμ

lClαν−Cαβ
λ�λμν (4.30)

−Cβμ
λ�λαν − Cμα

λ�λβν

]
�νγ δ − Cαβ

νD̃μ�νγ δ − Cβμ
νD̃α�νγ δ − Cμα

νD̃β�νγ δ,

Mi j (C, R̂) = − 1

2
e0Li j (C) − 1

2
Ki

l Ll j (C) − 1

2
K j

l Lil (C) − 1

2
Kbl Li jlb(C) +

1

2
Kbl Li jbl(C)

− 1

2

[
Ci jl e

bKb
l + C jblei K

bl + Cbil e j K
bl − Cl jbe

bKi
l − Cilbe

bK j
l − Clb

bei K j
l

− C jlbei K
bl − Clibe j K

bl − Cbl
be j Ki

l
]
, (4.31)

Li j (C) = D̃bCi jb + D̃iC jb
b + D̃ jCbi

b − ebCi jb − eiC jb
b − e jCbi

b

+ Ci j
lClb

b + Cbi
lCl j

b + C jb
lCli

b − C jb
l�li

b − Cbi
l�l j

b, (4.32)

Li jbl(C) = D̃bCi jl + D̃iC jbl + D̃ jCbil − ebCi jl − eiC jbl − e jCbil

− Ci j
dCdbl − Cbi

dCd jl − C jb
dCdil + Ci j

d�dbl + C jb
d�dil + Cbi

d�d jl . (4.33)

Remark 4.6. The system (4.25)–(4.28) constitutes a (linear, homogeneous) first order
symmetric hyperbolic system for the variables Ci jb, R̂i0, R̂00, R̂

(A)
i j . Indeed, we notice

that Lμ(C, R̂), Mi j (C, R̂), R̂(i jb)l can be viewed, by virtue of Lemma 4.4 and (4.4),
(4.25), as linear expressions in the unknowns, with coefficients depending on the solution
Ki j , �i jb, fi p, f b p to the reduced equations (2.8), (2.9), (2.19), (2.20) and their first
derivatives.

Proof. We compute (4.25) by directly differentiating (4.4) and using the commutation
formula (2.22), the evolution equations (2.8), (2.9), (4.23), Lemma2.7, alongwith (4.18):

e0Ci jb = e0( f
b
pei f j

p − f b pe j fi
p − �i jb + � j ib)

= Kc
b f c pei f j

p − f b pei (K j
c fc

p) − f b pKi
cec f j

p − Kc
b f c pe j fi

p

+ f b pe j (Ki
c fc

p) + f b pK j
cec fi

p

−
[

− Ki
l�l jb + D̃ j Kbi − D̃bK ji + δibR̂ j0 − δi j R̂b0

]

+

[
− K j

l�lib + D̃i Kbj − D̃bKi j + δ jbR̂i0 − δi j R̂b0

]
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= Kb
lCi jl − Ki

lCl jb − K j
lCilb − δibR̂ j0 + δ jbR̂i0 (4.34)

Moreover, a direct computation shows that

R̂0b = −R̂0ib
i = − g((D̃e0D̃ei − D̃ei D̃e0 − D̃D̃e0 ei−D̃ei e0

)eb, e
i )

= − e0�ib
i − Ki

c�cb
i (4.23.),(4.18)= −R̂b0 (4.35)

Also, contracting (4.16) in (a; b) and (i; j) we obtain
R̂ + 2R̂00 = R̂ − |K |2 + (trK )2, (4.36)

while

R̂0i0 j = −R̂0i j0 = R̂i j − R̂bi j
b (4.16)= R̂i j − R̂i j − trKKi j + Ki

bK jb (by (4.22))

R̂0i0 j = e0Ki j + Ki
bKbj

⇒ e0Ki j + trKKi j = −R̂i j + R̂i j (4.37)

Contracting (4.19) and using the antisymmetry of�i jb (see Lemma 2.7), the spatial Ricci
tensor in the preceding RHS expands to

−R̂i j := − R̂bi j
b = ei�

b
jb − eb�i jb+�b

i
c�cjb + �b

b
c�i jc (4.38)

By the symmetry of Ki j we also have

e0Ki j + trKKi j = −R̂(S)
i j + R̂

(S)

i j . (4.39)

Due to (4.38), we find that the reduced equation (2.19) corresponds to (cf. (2.15) and
Remark 2.6)

e0Ki j + trKKi j = − R̂(S)
i j +

1

2
δi j [R̂ − |K |2 + (trK )2] (4.40)

Combining (4.36)–(4.40)we deduce the identities:

1

2
(R̂i j + R̂ j i ) = 1

2
δi j [R̂ + 2R̂00] (4.41)

Contracting indices in (4.41) gives

R̂ + R̂00 = 3

2
[R̂ + 2R̂00] ⇒ R̂ = −4R̂00 ⇒ 1

2
(R̂i j + R̂ j i ) = −δi j R̂00,

(4.42)

which confirms (4.29).
Next, we contract the second Bianchi identity (4.14) in the indices (α; δ) and (β; γ )

to obtain:

D̃
α
R̂μα = 1

2
D̃μR̂ + Lμ(C, R̂), (4.43)

where Lμ(C, R̂) is given by (4.30). Hence, for μ = i = 1, 2, 3, we deduce the equation
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e0R̂i0
(4.1)= D̃0R̂i0 = −1

2
ei R̂ + D̃

a
R̂ia−Li (C, R̂)

(4.42)= 2ei R̂00 + eaR̂(S)
ia + eaR̂(A)

ia − �a
i
βR̂βa − �a

aβR̂iβ−Li (C, R̂)

(4.29)= ei R̂00 + eaR̂(A)
ia − �a

i
βR̂βa − �a

aβR̂iβ−Li (C, R̂)

which proves (4.26).
Employing the identity (4.43) once more, for μ = 0, we have

e0R̂00
(4.1)= D̃0R̂00 = −1

2
e0R̂ + D̃

a
R̂0a−L0(C, R̂)

(4.42)= 2e0R̂00 + eaR̂0a − KabR̂
(S)

ba − trK R̂00 − �a
abR̂0b−L0(C, R̂)

Solving for e0R̃00 and using (4.29), (4.35), we obtain (4.27).
Going back to (4.13), we put α = i, β = j and use (4.4) to keep only the spatial

part of the identity. Differentiating both sides in e0 and using the commutation formula
(2.22) we compute:

−2e0R̂
(A)

i j = e0

[
D̃bCi jb + D̃iC jb

b + D̃ jCbi
b + Ci j

lClb
b + Cbi

lCl j
b + C jb

lCli
b − C jb

l�li
b − Cbi

l�l j
b
]

= ebe0Ci jb + ei e0C jb
b + e j e0Cbi

b − KblelCi jb − Ki
lelC jb

b − K j
lelCbi

b + e0Li j (C)

(4.44)

where Li j (C) is given by (4.32). We rewrite the second line in (4.44) by plugging in
(4.25):

ebe0Ci jb + ei e0C jb
b + e j e0Cbi

b − KblelCi jb − Ki
l elC jb

b − K j
l elCbi

b

= eb
[
Kb

lCi jl − Ki
lCl jb − K j

lCilb − δibR̂ j0 + δ jbR̂i0

]
+ ei

[
KblC jbl − K j

lClb
b − KblC jlb − R̂ j0 + 3R̂ j0

]

+ e j

[
KblCbil − KblClib − Ki

lCbl
b − 3R̂i0 + R̂i0

]
− KblelCi jb − Ki

l elC jb
b − K j

l elCbi
b

= ei R̂ j0 − e j R̂i0+K
bl (ebCi jl + eiC jbl + e jCbil ) − Ki

l (ebCl jb + e jCbl
b + elC jb

b)

− K j
l (ebCilb + eiClb

b + elCbi
b) − Kbl (eiC jlb + e jClib + elCi jb)+Ci jl e

bKb
l + C jbl ei K

bl + Cbil e j K
bl

− Cl jbe
bKi

l − Cilbe
bK j

l − Clb
bei K j

l − C jlbei K
bl − Clibe j K

bl − Cbl
be j Ki

l (4.45)

On the other hand, from (4.13) and the first Bianchi identity (4.12), the spatial derivatives
of Ci jb in (4.45) can be replaced by

Kbl (ebCi jl + eiC jbl + e jCbil ) − Ki
l (ebCl jb + e jCbl

b + elC jb
b) − K j

l (ebCilb + eiClb
b + elCbi

b)

− Kbl (eiC jlb + e jClib + elCi jb)

= 2Ki
l R̂

(A)

l j + 2K j
l R̂

(A)

il + Kbl R̂(i jl)b−Kbl R̂(i jb)l+Ki
l Ll j (C) + K j

l Lil (C) + Kbl [Li jlb(C) − Li jbl (C)],
(4.46)

where Li jbl is given by (4.33).
Summarizing (4.44)–(4.33) gives (4.28) and completes the proof of the lemma. �

In the presence of a timelike, totally geodesic, boundary, the boundary conditions (3.6)
yield boundary conditions for certain components of the modified Ricci curvature R̂αβ .
In particular, we have:
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Lemma 4.7. The spacetime metric g induced by the solution to the boundary problem
for (2.8), (2.19), (2.20), subject to (3.6), as described above, satisfies:

R̂03 = R̂30 = 0, R̂
(A)
B3 = R̂

(A)
3B = 0, on T . (4.47)

Proof. All subsequent computations are restricted to the boundary T . The first boundary
condition follows by setting b = 3 in (4.35) and using the boundary condition (3.6):

R̂03 = −R̂30 = −e0�i3
i − Ki

c�c3
i = −e0�B3

B − KA3�33
A − KA

B�B3
A = 0.

For the second boundary condition, we first notice that by (4.29) it holds

R̂B3 = −R̂3B ⇒ R̂
(A)

B3 = −R̂
(A)

3B = R̂B3.

Contracting (4.16) in (a; b) and setting i = B, j = 3, we obtain

R̂B3 − R̂0B03 = R̂B3 + trKKB3 − K3
aKBa (by (4.38), i = B, j = 3)

= eb�B3b − eB�b
3b+�b

B
c�c3b + �b

b
c�B3c

+ trKKB3 − K3
aKBa (by (4.22))

R̂B3 = eC�B3C − eB�C
3C + �C

B
D�D3C + �C

B3�33C + �a
a
C�B3C

+ trKKB3 − K3
aKBa + e0KB3 + KB

AK3A + KB3K33

Every term in the preceding RHS vanished by virtue of the boundary condition (3.6),
which implies the vanishing of R̂B3 and hence that of R̂(A)

B3 . �

4.3. Final step. The equations (4.25)–(4.29) constitute a linear first order symmetric

hyperbolic system (see also Remark 4.6) for the variables R̂μ0, R̂
(A)

i j ,Ci jb, which in
the presence of a timelike boundary also satisfy the conditions (4.47). As an immediate
implication, we conclude that the solution Ki j , �i jb, fi p, f b p to the reduced equations
(2.19), (2.20), (2.8), (2.9), is indeed a solution to the EVE. More precisely, we have:

Proposition 4.8. Consider a solution to the reduced equations (2.19), (2.20), (2.8), (2.9),
such that

1. Ki j , �i jb, fi p, f b p ∈ L∞
t Hs , s ≥ 3, for the classical Cauchy problem;

2. Ki j , �i jb, fi p, f b p ∈ L∞
t Bs , s ≥ 7, subject to (3.6), for the boundary value problem.

Then the variables R̂μν,Ci jb vanish. In particular, D̃ is the Levi-Civita connection D of
g. Moreover, g satisfies the EVE and in the case 2. the boundary is totally geodesic.

Proof. The coefficients in (4.25)–(4.29) depend on Ki j , �i jb, fi p, f b p and their first
spatial derivatives. Hence, they are bounded, provided up to three of their spatial deriva-
tives are bounded in L2. This is consistent with the spaces L∞

t Hs , for s ≥ 3, and L∞
t Bs ,

for s ≥ 7.
In the absence of a boundary, the symmetry of the system (4.25)–(4.29) implies

uniqueness of solutions (via a standard energy estimate). Since Ci jb vanishes on the
initial hypersurface, we have that D̃ = D. By virtue of (4.13) (for α = i, β = j) and
(4.4), we have that R̂(A)

i j

∣∣
�0

= 0. Also, the validity of the constraints, together with the
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formula (4.29), implies R̂μ0
∣∣
�0

= 0, see (4.18), (4.36). Hence, R̂μ0, R̂
(A)

i j ,Ci jb vanish

everywhere and D̃ = D. By (4.29), R̂
(S)

i j = 0, and hence, R̂μν = Rμν = 0.
In the presence of a timelike boundary, we notice that in a typical L2-energy estimate

for (4.25)–(4.28), the arising T -boundary terms equal
∫

St

R̂00R̂30 + R̂
(A)

i3 R̂
i
0volSt =

∫

St

R̂00R̂30 + R̂
(A)

B3 R̂
B
0 + R̂

(A)

33 R̂30volSt

(4.47)= 0.

(4.48)

Therefore, an energy estimate closes and the previous argument applies. Since D̃ = D
is the actual Levi-Civita connection of g, the variables Ki j , �i jb are the true connection
coefficients of the orthonormal frame {eμ}30, given by (1.6), (1.7). Hence, the geometric
formulas (3.7) are valid, where χ0A, χAB are the components of the actual second fun-
damental form χ of T , which vanish by virtue of the condition (3.6). The component
χ00 = g(De0e3, e0) = −g(e3,De0e0) vanishes, since e0 is geodesic. We conclude that
χ ≡ 0, i.e., T is totally geodesic. �

4.4. Proof of Theorems 1.1, 1.10. It is a combination of Propositions 2.12, 3.10, 4.8.
We note in particular that geometric uniqueness is immediate from the homogeneity of
our boundary conditions. After setting up the geodesic gauge in any vacuum spacetime
with totally geodesic timelike boundary, the relevant connection coefficients will vanish,
in which case the uniqueness statement for the reduced system of equations applies to
solutions with the same initial data.

Acknowledgements. G.F. would like to thank Jonathan Luk for useful discussions. We would also like to
thank M.T. Anderson for several interesting comments on our work. Both authors are supported by the ERC
grant 714408 GEOWAKI, under the European Union’s Horizon 2020 research and innovation program.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

References

1. An, Z., Anderson, M.T.: On the initial boundary value problem for the vacuum Einstein equations and
geometric uniqueness. arXiv:2005.01623

2. Anderson, A., York, J.W., Jr.: Fixing Einstein’s equations. Phys. Rev. Lett. 82(22), 4384–4387 (1999)
3. Andersson, L., Moncrief, V.: Elliptic-hyperbolic systems and the Einstein equations. Ann. Henri Poincaré

4(1), 1–34 (2003)
4. Carranza, D.A., Valiente Kroon, J.A.: Construction of anti-de Sitter-like spacetimes using the metric

conformal Einstein field equations: the vacuum case. Class. Quantum Gravity 35(24), 245006 (2018)
5. Choquet-Bruhat, Y.: Théoreme d’existence pour certains systèmes d’équations aux dérivées partielles

non linéaires. Acta Math. 88, 141–225 (1952)
6. Choquet-Bruhat, Y., Ruggeri, T.: Hyperbolicity of the 3 + 1 system of Einstein equations. Commun.Math.

Phys. 89(2), 269–275 (1983)
7. Enciso, A., Kamran, N.: Lorentzian Einstein metrics with prescribed conformal infinity. J. Differ. Geom.

112(3), 505–554 (2019)
8. Fournodavlos, G., Luk, J.: Asymptotically Kasner-like singularities. arXiv:2003.13591
9. Fournodavlos, G., Smulevici, J.: On the initial boundary value problem for the Einstein vacuum equations

in the maximal gauge. arXiv:1912.07338
10. Friedrich, H.: Einstein equations and conformal structure: existence of anti-de Sitter-type space-times. J.

Geom. Phys. 17(2), 125–184 (1995)

http://arxiv.org/abs/2005.01623
http://arxiv.org/abs/2003.13591
http://arxiv.org/abs/1912.07338


The Initial Boundary Value Problem for the Einstein Equations 1653

11. Friedrich, H.: Hyperbolic reductions for Einstein’s equations. Class. Quantum Gravity 13(6), 1451–1469
(1996)

12. Friedrich, H.: Initial boundary value problems for Einstein’s field equations and geometric uniqueness.
Gen. Relativ. Gravit. 41, 1947–1966 (2009)

13. Friedrich, H., Nagy, G.: The initial boundary value problem for Einstein’s vacuum field equation. Com-
mun. Math. Phys. 201(3), 619–655 (1999)

14. Frittelli, S., Reula, O.: On the Newtonian limit of general relativity. Commun. Math. Phys. 166(2), 221–
235 (1994)

15. Hau, L.A., Flores, J.L., Sánchez, M.: Structure of globally hyperbolic spacetimes with timelike boundary.
Rev. Mat. Iberoam 37(1), 45–94 (2021)

16. Klingenberg, Wilhelm P.A.: Riemannian geometry. De Gruyter Studies in Mathematics, 2nd edn., vol. 1.
Walter de Gruyter & Co., Berlin, pp. x+409. ISBN: 3-11-014593-6 (1995)

17. Kreiss, H.O., Reula, O., Sarbach, O., Winicour, J.: Boundary conditions for coupled quasilinear wave
equations with application to isolated systems. Commun. Math. Phys. 289(3), 1099–1129 (2009)

18. Rodnianski, I., Speck, J.: Stable big bang formation in near-FLRW solutions to the Einstein-scalar field
and Einstein-stiff fluid systems. Sel. Math. (N.S.) 24(5), 4293–4459 (2018)

19. Sarbach, O., Tiglio, M.: Boundary conditions for Einstein’s field equations: mathematical and numerical
analysis. J. Hyperbolic Differ. Equ. 2(4), 839–883 (2005)

20. Sarbach, O., Tiglio, M.: Continuum and discrete initial-boundary value problems and Einstein’s field
equations. Living Rev. Relativ. 15, 9 (2012). https://doi.org/10.12942/lrr-2012-9

21. Secchi, P.: Well-posedness of characteristic symmetric hyperbolic systems. Arch. Ration. Mech. Anal.
134(2), 155–197 (1996)

Communicated by P. Chrusciel

https://doi.org/10.12942/lrr-2012-9

	The Initial Boundary Value Problem for the Einstein Equations with Totally Geodesic Timelike Boundary
	Abstract:
	1 Introduction
	1.1 The initial boundary value problem in general relativity
	1.2 Geometric uniqueness
	1.3 The IBVP with totally geodesic boundary
	1.4 The hyperbolicity of the ADM system in a geodesic gauge
	1.5 Outline
	1.6 Notation

	2 The ADM System in a Geodesic Gauge
	2.1 The modified ADM evolution equations and their hyperbolicity
	2.2 The differentiated system
	2.3 Local well-posedness of the reduced equations for the Cauchy problem
	2.4 Initial data

	3 Application to Totally Geodesic Boundaries
	3.1 Zeroth order compatibility conditions with an angle
	3.2 Choosing an orthogonal initial slice to the boundary
	3.3 Boundary and compatibility conditions in the geodesic frame
	3.4 Local well-posedness for the initial boundary value problem

	4 A Solution to the EVE
	4.1 The geometry of a solution to the reduced equations
	4.2 Modified curvature and propagation equations for vanishing quantities
	4.3 Final step
	4.4 Proof of Theorems 1.1, 1.10

	Acknowledgements.
	References




