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Abstract: This paper studies the dissipative generalized surface quasi-geostrophic
equations in a supercritical regime where the order of the dissipation is small rela-
tive to order of the velocity, and the velocities are less regular than the advected scalar
by up to one order of derivative. We also consider a non-degenerate modification of the
endpoint case in which the velocity is less smooth than the advected scalar by slightly
more than one order. The existence and uniqueness theory of these equations in the
borderline Sobolev spaces is addressed, as well as the instantaneous smoothing effect
of their corresponding solutions. In particular, it is shown that solutions emanating from
initial data belonging to these Sobolev classes immediately enter a Gevrey class. Such
results appear to be the first of its kind for a quasilinear parabolic equation whose coef-
ficients are of higher order than its linear term; they rely on an approximation scheme
which modifies the flux so as to preserve the underlying commutator structure lost by
having to work in the critical space setting, as well as delicate adaptations of well-known
commutator estimates to Gevrey classes.

1. Introduction

The main equation of interest in this paper is the two-dimensional (2D) dissipative
generalized surface quasi-geostrophic (gSQG) equation given by

WO+yAO+u-VO=0, u=Viy :=(=0,v,0,¥), Ay =APH, 0<pB <2
(1.1)

Here, 6 represents the evolving scalar and v its corresponding streamfunction. The
. . 1

operator A denotes the fractional laplacian operator, (—A)2. The parameters y, k are
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non-negative with ¥ € (0, 2]. We assume the domain is the plane, R2, and consider the
initial value problem (1.1) such that 6(0, x) = 6y(x), where 6 is given. This model
was first introduced in [12], while its inviscid (y = 0) counterpart was studied in [11].
The family of equations in (1.1) parametrized by 8 € [0, 2) interpolates between the
2D incompressible Euler equation (8 = 0) and the SQG equation (8 = 1), and extrap-
olates beyond the SQG equation, 8 € (1, 2), to a family of active scalar equations with
increasingly singular velocity. The 8 = 2 endpoint can also be considered by slightly
modifying the equation for the streamfunction in (1.1). The modification proposed in
[11,12] is given by

Y =—(In(I — A", n=>0. (1.2)

We will ultimately study (1.1) when y > 0,k € (0,1), and 1 < g < 2, where the
endpoint case, 8 = 2, is modified as (1.2). When g € (1, 2), we establish existence and
uniqueness of solutions for arbitrary initial data in H#*17% global existence when the
corresponding homogeneous norm of the initial data is sufficiently small, and establish
Gevrey regularity for the unique solution (see Theorem 3.1) with exponent arbitrarily
close to optimal, that is, to a Gevrey class that is arbitrarily close to the one that the
solution to the linear, parabolic part of (1.1), (1.2) naturally belongs to; the analogous
results for the modified endpoint case are also developed in H?, for o > 3 — « (see
Theorem 3.2).

The case of the SQG equation (8 = 1) models the temperature or buoyancy of a
strongly stratified fluid in a rapidly rotating regime and is a fundamental equation in
geophysics and meteorology [56]. It has received considerable attention in the last three
decades especially due to the presence of mechanisms strongly analogous to those for
vortex-stretching in the 3D Euler equation [20,25]. As a 2D hydrodynamic model, the
SQG also exhibits features of 2D turbulence analogous to those exhibited by the 2D Euler
equation [48]. When y, x > 0 and 8 = 1 (1.1) becomes the dissipative SQG equation.
Here, one distinguishes between the subcritical (1 < « < 2), critical (¢ = 1), and
supercritical (¢ < 1) regimes. Global regularity has been established in the subcritical
[23,57] and critical regimes [10,21,22,41,42]. Global regularity in the supercritical
regime remains an outstanding open problem, though conditional regularity [24,26]
or eventual regularity results [27] are available. Nevertheless, local well-posedness for
large data and global well-posedness for small data have been established in several
functional spaces, including a wide-range of scaling-critical or borderline spaces, in the
supercritical regime [13,17,36,60], as well as the corresponding parabolic smoothing
effect [4,5,29,31].

In the regime 1 < B < 2, in [11], the Cauchy problem for the inviscid case (x = 0)
of (1.1) was shown to be locally well-posed in H 4. This result was sharpened in [37],
where local well-posedness was established in H#+1*¢ for any € > 0. For blow-up of
a closely related non-local transport equation, we refer the reader to [28]. Local well-
posedness in the borderline space H#*! remains an outstanding open problem for these
models, especially in light of recent ill-posedness results for the Euler equation [8,32]
and complementary results on the impossibility of uniform continuity of the solution
operator (see [9,35,38,52] for Euler and [39] for the inviscid SQG). Positive results are,
however, available for rather mild regularizations up to a threshold. Such a threshold was
identified in [14] for the inviscid generalized SQG equations in the regime 8 € [0, 1]
and established to be sharp in [44] for the particular case of the 2D incompressible Euler
equation. In a recent paper by the authors [40], alternative mechanisms for recovering
well-posedness are studied in the spirit of [14] for the full range 8 € (1, 2], with the
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B = 2 endpoint modified accordingly. In contrast, continuity of the solution operator in
borderline spaces has been shown to hold for the Navier-Stokes equations, most recently
in [33]. To the best of our knowledge, analogous results for similar hydrodynamic models,
particularly for (1.1) in the regime of parameters treated here, are not known and remain
an interesting unresolved issue.

In this paper, we address the problem of existence, uniqueness of solutions, and
the smoothing effect for the corresponding Cauchy problem of (1.1) when « € (0, 1)
and g € (1,2], with § = 2 modified as described in (1.2), particularly for arbitrarily
large initial data belonging to the borderline Sobolev spaces, H#*!17%_ These spaces are
identified by imposing norm invariance under the scaling symmetry of the equations.
This scaling is defined by

O (1, x) = APOOKL, Ax). (1.3)

In specific, if 6 is a solution of (1.1) with initial data 6, then 6, is also a solution of (1.1)
with initial data (6p), . The homogeneous Sobolev norm, ||-|| 5+1-« , of a solution remains
invariant under (1.3). Consequently, H?*+! =¥ is referred to as a scaling-critical space for
(1.1). Although the modification of the 8 = 2 endpoint breaks this scaling symmetry, due
to the slightly supercritical nature of the velocity, we nevertheless consider by analogy
the space H>~¥*€ as the borderline space corresponding to this case.

The existence and uniqueness of solutions for large initial data in critical Sobolev
spaces for the critical and supercritical SQG equation, i.e., 8 = 1 case, was established by
Miura in [53], while the instantaneous smoothing effect was later established in [4,29],
using different approaches. For the subcritical SQG equation, using a mild solution ap-
proach, analyticity was established in [30] in the critical Lebesgue spaces and in [3] in
Besov spaces. It was observed in [53] that the main difficulty when working in the critical
space setting for the supercritically dissipative SQG equation is in obtaining a suitable
continuity estimate for the bilinear term. Indeed, the classical Fujita-Kato mild solution
approach cannot be carried out in this setting as the low degree of dissipation cannot,
alone, accommodate the loss of derivatives from the nonlinearity. One can nevertheless
establish such a continuity estimate by exploiting cancellation through the underlying
commutator structure in the equation. Insofar as existence is concerned, one must there-
fore identify a suitable approximation procedure that respects this commutator structure.
In the case of the supercritically dissipative gSQG equation, the difficulty in obtaining
the desired continuity estimate is compounded by the increasingly singular velocities
that characterize the family. Indeed, a direct adaptation of the analysis in [53] to the
2SQG family breaks down in the range k <  — 1 without a more delicate treatment of
the nonlinearity.

When 8 € (1, 2), the criticality regimes are more nuanced; one identifies an addi-
tional “subcritical” region, k > B — 1, “critical” line, k = f — 1, and “supercritical”
regime k < B — 1. The supercritical regime represents the case where the equation
becomes “fully” quasilinear, in the particular sense that the coefficients of the nonlin-
earity depend on derivatives of the solution of an order that exceeds that of the linear
term. Indeed, we see that in these additional critical and supercritical regimes, k¥ neces-
sarily restricts to k € (0, 1). Although we observe that one can take advantage of the
additional commutator structure identified by Chae, Constantin, Cérdoba, Gancedo, and
Wu in [11] to successfully carry out the approaches in [53] and [4], a direct adaptation
of the analysis there is limited to the subcritical regime x > B8 — 1. To overcome this
limitation, one must make use of the more subtle commutator structure identified by Hu,
Kukavica, and Ziane in [37]. In the critical space setting, however, the approximation
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procedure proposed by Miura in [53] cannot accommodate these additional commuta-
tors. In this paper, we propose a new approximation scheme in which one modifies the
flux in such a way that ultimately preserves the underlying commutator structure (see
Sect. 5). Through this approximation, we are then able to obtain the desired continuity
properties for the critical and supercritical regimes represented by « <  — 1. In either
regime, we must carry out a more delicate analysis at the level of the Littlewood—Paley
operators to accommodate the commutator estimates within the critical space setting, as
well as extend these estimates appropriately to the Gevrey classes (see Sect. 4). Analo-
gous results for the § = 2 endpoint case are also established. As we remarked earlier,
since the equation corresponding to (1.2) does not possess a scaling symmetry, we in-
stead work arbitrarily close to what would formally be the scaling critical space, that is,
in H37**€_ With the appropriate commutator estimates and approximation scheme in
hand, we prove our main results, Theorems 3.1 and 3.2 in Sects. 6 and 7, respectively.
As an immediate consequence of establishing Gevrey regularity, we obtain asymptotic
decay of all derivatives with respect to the critical Sobolev topology (see Corollary 3.1).

Previous works on the existence theory for various regimes in the parameter space
(x, B) € (0,2] x (0, 2] of (1.1) have been carried out in [19,51] for the diagonal case
k = B, i.e., the so-called “modified SQG” equation, and in [50] for the regime 1 <
B < 2,8 < k < 2, where local well-posedness was studied, and in [51], for the
regime 1 < B < 2,28 —2 < k < f, where global well-posedness was studied.
A closely related generalization of (1.1) was also considered in [45], where global
existence of weak solutions, global regularity for a slightly supercritical regularization,
and eventual regularity of solutions were established. We point out that the smoothing
effect in this paper is proved for an equation that belongs outside of the general class of
systems treated in [1,55] as well as the general semilinear parabolic equation that includes
the incompressible Navier-Stokes equations as a special case, treated in [16]. Indeed,
this paper establishes a Gevrey regularity smoothing effect for a quasilinear parabolic
equation of the form 9,6 + y A6 = b(A%0, VO), where o, k € (0, 1), particularly, for
one in which o > k. Some context for these results (which are distinguished by larger
font) in the (k, B)—plane is given in Fig. 1.

2. Mathematical Preliminaries

Denote by .7 the space of Schwartz class functions on R? and by .7/ (R?) the space of
tempered distributions. For p € [1, oo], welet L? and Lfoc denote the spaces of Lebesgue

integrable and locally Lebesgue integrable functions of order p on R?, respectively. The
norm on L7 is defined as

I fllLr = {(fRz |f(x)|pdx)l/p’ p €[l, 00),

esssup, g2 | f(x)], p = o0.

We recall that L? is a Banach space with this norm and that Llpoc c & forall p € [1, c0].
In the particular case p = 2, L? can be endowed with the following inner product:

()= [ feostods,

so that L% becomes a Hilbert space. Given f € .7, let f denote the Fourier transform
of f; we will also use the notation, F, to denote the Fourier transform. We recall that F
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Fig. 1. LWP=local well-posedness, GWP =global well-posedness, GR =global regularity, CR = conditional
regularity, ER =eventual regularity, An.=Analytic smoothing, Gev.=Gevrey smoothing

is an isometry on L? and in particular that

(f.8)=(f,8).

We define the fractional laplacian operator, A = (—A)
by

172 and its powers, A%, 0 € R,

F(A° HE) =17 F ().

For o € R, the homogeneous and the inhomogeneous Sobolev spaces on R? are defined
as

A7 :={f € f € Ly I flgo = A7 fl2 < 0. 2.1)
HT = {f e fell Nflge = —A2fl < oo}. 2.2)
The spaces (2.1), (2.2) can be endowed with inner products given by

<f’ g)HU = (Adfv A0g>’
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(f.8)uo == (I = D) f,(I —A)g).

With this in hand, H° (R?) is a Hilbert space for all ¢ € R, whereas, in dimension-
two, H° (R?) is a Hilbert space if and only if o < 1. The inhomogeneous spaces are
nested H° C H®, whenever ¢’ > o, and moreover the embedding is compact over any
compact set K C R2. On the other hand, the homogeneous spaces are, in general, only
related by the following interpolation inequality: For o1 < o < o3

0’2—(7 {T—O’l
Il < CUAN G AN (2.3)

for some constant depending only on o, o1, 02. A related interpolation inequality that
will be also be useful is stated as follows: for 0 € R and o7 > —1 > —o7, there exists
a constant, C, depending on o, o1, 07 such that

o+l op—1

-1 Fllp < CUAN S I A2, (2.4)

2.1. Littlewood—Paley Decomposition. We will make use of the characterization of
Sobolev spaces in terms of the Littlewood—Paley decomposition. We review this de-
composition now and refer the reader [2,15] for additional details.

First, let us define

2= {fef:/ Fx)xTdx =0, |‘L’|=O,1,2,~-~}.
R2
We denote by 2’ the topological dual space of 2. Note that 2’ can be identified with
the space of tempered distributions modulo polynomials, that is, as
9 =92
where the vector space of polynomials on R? is denoted by 2.

Let us denote by B(r), the open ball of radius r centered at the origin and by
A(ry, r2), the open annulus with inner and outer radii r; and r,, and centered at the
origin. There exist two non-negative radial functions x, ¢ € . with supp x C B(1)
and supp ¢ C A1, 2) such that for xj€) = x@277&)and ¢;(§) := ¢p(277§), one

has ZjeZd)j(é) = 1, whenever & € R?\ {0}, x + Zj>0¢j = 1, and one has the
following almost-orthogonality conditions: B

supp¢; Nsupp¢p; =<, [|i —jl>2, and suppg; Nsuppx =<, i>1.
We will make use the shorthand
Aj = AQT 2 A = AR Y, B = BQY),
so that, in particular, A; = A;_1 j+1. With this notation, observe that
supppp; C A;, suppx; C Bj. (2.5)

We denote the (homogeneous) Littlewood—Paley dyadic blocks by A; and S;, which
are both defined in terms of its Fourier transform by

FL;NH=¢;F(), FESif)=xjFU).
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The following localization properties of {A} jez and {S;} ez are a direct consequence
of (2.5):

F(BjHlag =0, F(S; Pl =0,

Observe that by definition

Si=Si+ Y A i<,

i<k<j—1

and, in particular that

f:Sif+ZAjf, ieZ fe

Jzi

On the other hand, when restricted to 2’ one has

Sj= > M.

k<j—1

and, in particular that

=341 fe2.

JEL
In light of the Littlewood—Paley decomposition, one can see that the homogeneous

Sobolev spaces, H 7, can be identified with the homogeneous Besov spaces, Bg »» whose
norm is given by

115, = Z(zf"’uA,-fuLz)2

JEZ
In particular, we have
-1 . . .
C ol g, =Wfllge = Cllfllg -
for some positive constant C. The relation between the Littlewood—Paley blocks and the

fractional laplacian is conveniently captured by the following Bernstein-type inequali-
ties, which we will make copious use of throughout the paper.

Lemma 2.1 (Bernstein inequalities). Leto € Rand 1 < p < g < oo. Then
. il _1
C2NAG f ey < IAT A fllagey < 2775700 fll @)

where ¢, ¢ are constants that depends on p, q and o.
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2.2. Gevrey classes. We introduce the Gevrey classes in this section. These spaces
identify a scale of subspaces between the analytic class of functions, C®, and the class
of smooth functions, C*°. We will consider a Littlewood-Paley characterization of the
Gevrey classes inspired by the spectral characterization of the Gevrey norm introduced
by Foias and Temam in their seminal paper [34]. We remark that the Littlewood—Paley
characterization was also adopted in [4]; for an extension to L”-based Besov spaces, see
[5].

Let @ € (0, 1] and A > 0. Then we define the Gevrey operator, Gﬁ, of order @ and
radius X by

F(GE)(E) = 1 fe).

We will also make use of the notation

o

G* = N, (2.6)

o

We define the H?-based Gevrey norm by
£y, = 1Gaf o
Then the homogeneous («, A, 0)—Gevrey classes are defined as
Gho=1f € H : I fllg < oo 2.7)

Finiteness of || f |l ,for some o € R and v, A > 0, automatically yields estimates on
o,0
higher-order derivatives. Indeed, one has

5 :3' 1/a
107 fll fro < (W) Il - (2.8)
for all multi-indices, 8 € N%, where No := N U {0}. Thus, with the Sobolev embedding
theorem, (2.8) implies uniform bounds on all orders of derivatives. In the particular case
a = 1,if f € L? satisfies (2.8) forall B € N%, for some A > 0, then f is real analytic at
each x € R? with analyticity radius A. On the other hand if (2.8) is satisfied with o < 1,
we say that f belongs to a subanalytic Gevrey class, which is a subclass of smooth
functions. For additional properties of Gevrey classes and applications to a wide-class
of equations, the reader is referred to [1,47,49,54,55].

The main scenario of interest in this paper is when f is a time-dependent function,
globally defined in time. In this case, if f satisfies f(¢) € Gﬁ(ff) , forall + > 0, for some
monotonically increasing function A = A(f), then (2.8) yields temporal decay of all
higher-order derivatives of f; this is one of the main motivations for using the Gevrey
norm.

We will distinguish between the (o, A)—Gevrey operators, Gg\[, and the related frac-
tional heat propagator, {H,f (t)}s>0, which, for k € (0, 2], y > 0, we define as

HY (1) = exp (—ty A¥).
In particular, given 6y € L2, one has that 6(z; 8) := H, (18 satisfies

90 +yA“0 =0, 6(0;6)) = 6.
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Observe that the (k, A)—Gevrey operators can be rewritten as fractional heat propagators
appropriately re-scaled:

A
Gi =H} <—;) =H!).

One may thus alternatively view the (¢, A, 0)—Gevrey classes as the space of functions
for which

IH (=) fll go < o0,

that is, for which the inverse of the heat propagator belongs to the HC . It can be viewed
as a parabolic analog of the so-called X*”—spaces in the dispersive PDE literature,
which are defined in terms of inverses of dispersive operators such as the Airy kernel or
Schrodinger propagator [6,7,58].

Lastly, let us recall the following interpolation-type inequality for Gevrey operators
that was originally proved in [54], but stated here in a slightly more generalized form.

Lemma 2.2. Let o, . > 0 and s1 < s2. Suppose [ € H*! (Rz) such that Géf €
H%2(R?). Then

2(sp—s1)

G 113 < eGP Fliy + o0 "« IIGL [ 13,

forall p € (0, 1].

Proof. Let R > 0, to be chosen later, and fix p € (0, 1]. By Plancherel’s theorem, we
have

IIGéfllquF(/ + / )em'g'“|5|2“|f<s>|2ds=1+n.
[EI<R |E|>R

We estimate I as

20AR* 1—p)r 2
11| < 2 FNGT2" f 1, -

We estimate /1 as

11| < RT2©VIGLF1%,

Now choose R = (2p1)~1/2, so that

) 2(sg—s5])

P
s QoA GG Sl

|+ |11 < e|GU=P% 7| S

as desired. O

Remark 2.1. For the rest of the paper, we adopt the convention that C denotes a pos-
itive constant whose magnitude may change from line-to-line. Dependencies on other
parameters will typically be suppressed in performing estimates, but may be specified
in statements of lemmas, propositions, or theorems when they are relevant or for clarity.
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3. Statements of Main Results

Our main result for (1.1) when B8 € (1, 2) in the regime of supercritical dissipation is
stated in the following theorem.

Theorem 3.1. Let g € (1,2), k € (0, 1), and 0. := 1 + B — k. For each 6y € H (R?),
there exists T > 0 and a unique solution, 0, of (1.1) such that

0 € C(0,T); H)N L2(07 T: HJC+K/2),

Moreover, for any 0 < o < «k and § > 0 sufficiently small, there exists an increasing
function A : [0, 00) — [0, c0) with A(0) = 0 such that

160l groc
||9(t)II(-;;§;>CHS <C G

: 3.1)

forall0 <t < T, for some constant C > 0, independent of T. Lastly, if |00 || go. is
small enough, then T = oo is allowed.

We remark that in the assertion of local existence above, the standard critical space
phenomenon where T depends on 6y in a manner beyond exclusively through its critical
norm ||| g1+s—« is observed. On the other hand, in the small data, global existence set-
ting, we observe that (3.1) along with the Sobolev embedding theorem implies temporal
decay of all higher-order derivatives of the corresponding solution in the critical norm.
As we will see in the proof of Theorem 3.1, A can be chosen as

A1) = ey/crelx, (3.2)

for ¢ > 0 chosen sufficiently small. With this in mind, we have the following immediate
corollary.

Corollary 3.1. Let € (1,2), k € (0, 1), and 0. := 1+ B — k. For § > 0 and ||60 || go.
sufficiently small as in Theorem 3.1, we have for each integer k > 0

1601l o
k+8

(yt) =
forallt > 0, where A(t) is given by (3.2), and Cy, depends on k.

I D*0 (1) || froess < Ci

We lastly observe that (3.1) is nearly optimal in the sense that 6(¢) € Gg(;)( +5» fOT

all « € (0, ), where the optimal result is represented by the endpoint « = «. This
is consistent with the results obtained in [4] for the supercritical SQG equation in the
critical Sobolev spaces. The analysis in [4] was subsequently extended to the L”-based
critical Besov spaces in [5]. In light of these results, it would be interesting to extend
Theorem 3.1 to the Besov space setting as well.

Our second main result establishes the analogous statement for the modified g = 2
endpoint case defined by (1.2).

Theorem 3.2. Let k € (0, 1) and suppose 0y € H® (R?), where o > 3 — k. There exists
T = T(l6pllge) > 0 and a unique solution 6(x, t) to (1.1) with streamfunction given
by (1.2) such that

0 € C(0,T); H’) N L*(0, T; H°*/?).



On the Existence, Uniqueness, and Smoothing of Solutions 561

Moreover, for any 0 < a < k and A > 0, we have

sup 16l < C(L+ 1ol o).

0<t<T
for some constant C > 0 independent of 0.

Remark 3.1. The global regularity problem for the regime 0 < « < f remains an
outstanding open problem. This issue was resolved for the case k = g, forall 8 € (0, 1)
i.e., modified SQG, in [19,51]. We point out that our analysis can as well be extended
to the case B € (0, 1) without any difficulty. In particular, Theorem 3.1 additionally
improves on the work [50], where local well-posedness was established in H?, for
o > 2, provided that 8 < k/2+ 1.

4. Commutator Estimates

In (1.1), the expression for 6 (x, ) in terms of u(x, 7) is given by a singular integral; the
strength of the singularity of the operator is quantified by the parameter g € (1, 2). The
parameter, 8, belonging to this range precludes one from obtaining a suitable continuity-
type estimate on the bilinear term. To overcome this difficulty, we exploit observations
made in [11] and [37] in which additional commutators are identified that allow one to
allocate derivatives more effectively. We will require the following lemma, the proof of
which is provided in Appendix A. It is essentially a classical product estimate, but we
provide it in a frequency-restricted dualized form, as this is the natural form in which
it appears in the apriori analysis below. It will be frequently deployed in proving the
required commutator estimates.

Lemma 4.1. Foro € (=1, 1) and f, g, h € . (R?), define
Lahogty = [[ 1617 F& — maonicends.

Suppose that suppfl C Aj, for some j € Z. Then for each o € (—=1,1) and € € (0, 2)
such that 0 > € — 1, there exists a constant C > 0, depending only on o, €, and a
sequence {c;} € EZ(Z) with |[{c;}|l2 < 1 such that

Lo (f g M < Ce;2 min {1 £l gi-cllgl o gl gi-e 1 £ 1l o } 1l 2.

We observe that Lemma 4.1 immediately imply the following corollary, which will
be useful to have in-hand for proving the commutator estimates below.

Corollary 4.1. For o € (—1,1) and f, g, h € .7 (R?), define
CL(f g h) = / / (16 — 0l + 1nl°) F& — mEhE)dnde.

Suppose that suppfl C Aj, for some j € 7. Then for each o € [0, 1) and € € (0, 1),
there exists a constant C > 0, depending only on o, €, and a sequence {c;} € 52(2)
with |[{cj},2 < 1 such that

1L, (f, & W) < Ce;2 min {[| 1| i-c gl o gl gri=e 1 1 o } A1 2.
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4.1. Commutator estimates in Sobolev classes. We will require two commutator esti-
mates, stated below in Lemma 4.2 and Lemma 4.3, for the trilinear interactions that
appear naturally in the energy arguments carried out in Sects. 5, 6, 7 below. Lemma 4.2
essentially arises as an intermediate step in establishing a classical version of the com-
mutator estimate proved by H. Miura in [53]. We include a proof in Appendix A. The
trilinear form of Lemma 4.2 is crucial as some of the commutators we appeal to can ulti-
mately only be formed between a triad interaction of functions. On the other hand, due to
the expression of the velocity in terms of fractional laplacians and partial derivatives, we
will require a variation of the commutator estimate appearing in [53] to accommodate
these types of operators; this is established in Lemma 4.3.

In what follows, we will denote the commutator of two operators, S and 7, by [S, T,
where

[S,T]:=8T —-TS.

We adopt the convention that [T, f] = [T, fI], where f is a scalar function, and /
denotes the identity operator.

Lemma 4.2. Let p € (0,2) and py € (—1, 1) such that po > p1 — 1. Suppose that
h € L*(R?) satisfies suppfz C Aj; and that either (f, g) € H'=P1(R?) x H*P2(R?) or
(f, g € HP? (R2) x H?> Pt (R2). Then there exists a sequence {c;} € 02(Z) such that
l{cj 2 < 1 and

(4. g1f. h)| < Cc; 2P =22 Dimin {|| £l g1 18]l g1oon 1 | o 11 g2-on } IR 2,
for some constant C depending only on p1, p.

Remark 4.1. Note that the upper bound Cc.,'2<pl_p2_1)j||f||H1_p] 7l 2llgll greer can
also be established above by directly applying Proposition 2 in [53]. Thus, the bound
we provide allows for additional flexibility in the allocation of derivatives.

Lemma 4.3. Let 8 € (1,2), p1 € (0,2), p2 € (=1, 1) be such that p» > p; — 1. Let
f e HP2(R*) and g € HP~P1(R?). Then there exists a constant C > 0, depending only
on B, p1, p2, such that

AP =200, g1 f I jyor-m < Cligl ggp-or I fll gors €=1,2.

Proof. Let h € L?. It will be convenient to define the following functional:

Lpets gy i= [ [ e & — maenh@ande. @.1)
where
mp,e(§, 1) = 11725 — & — P2 —me.
Indeed, by the Plancherel theorem, observe that
(AP IAP200, g1f, ) = Lpo(f, 8. AP A R).
Let

A(r, &) =16+ —1)(E —n). 4.2)
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For convenience, we will suppress the dependence of A on &, n. Observe that

'd
mp.e(&,m) = ‘ /O — (A@P?A@):) dr

1
= ‘v/(; <|A(T)|/S_2 ne + (,B - 2) |A(t)|ﬁ_4 (A(T) . n)A(-,:M) dt (43)
1
<chpl / A2 dr.
0
where the fact 8 € (1, 2) is invoked to obtain the last inequality. Let ¢ := SI%IU and

Vo= % We observe that for fixed & and 1, we have

1 1
1
AP dr = ﬁfl/ ———drt.
| miac U s

We have the following inequality:
lp+ 1017 = o>+ 12+ 219 - 9 > |9 + T2 — 27 |g| = |lp| — T/?,

giving us, since 8 < 2,

1 1 1 1
—drf/ ——dr.
/0 lp + 7 >F o llgl—7|*7#

If [p] < 1,wehaveforl < 8 <2

/1 1 lel 1 ! 1
———dt =f —dr+f ———dt
o llel—7|>7# o (gl—1)*F RG] e

=c(lf " +a-ef) =c.
On the other hand, if |¢| > 1, then
! 1 1 1
/ s dt = C(=(g| = D+ [P,
0 llel—r1l

which is clearly bounded when 1 < |¢| < 2, and also when |¢| > 2 by the mean value
theorem. Using the above inequalities in (4.1), we get

Lo fr g0 5 AP )| <C / / E172P1 | AB-Tg ()11 £ (& — mI[B R (E)|dndE.
Application of Lemma 4.1 with 0 = py, € = p; gives us
(AP=PUAGIAP 20, g1f, 1) = |Lpe(f. g AP < Cejligl oo I f | goa 11l 2,

where ¢ is independent of 2 and ) j c? < 1.Since L> = Bgz, this completes the proof.
0



564 M. S. Jolly, A. Kumar, V. R. Martinez

4.2. Commutator estimates in Gevrey classes. Next we prove a commutator estimate
for operators which can be expressed as a product of Fourier multiplier operators given
by Gf;, A%, ¢, Aj, where Gﬁ is defined in (2.6). In what follows, it will be convenient

to introduce the operator, EZ, given by

1
F(ELf)(E) = ( / e“"““dr) fe). (4.4)
0

We will also let D denote
D=Aoroy, forl=1,2.

Lemmad4.4. Let A > 0,0 € [0,1), « € (0,1], ¢ € [0,1), v € (0,1), and p €
R. Suppose that f, g, h € L*(R?) such that supph C A; and that either (f, g) €
Gh _ R?) x Gl . (R?) or (f.g) € Gl ,(R?) x G%,_ (R?). Then there exists a

a,2—v

sequence {cj} € 02(Z) such that l{ciHle2 < 1 and

HIGEAT* DA, g f h)| < Ccj2Y min{IIfIIG'A gl gl IIfIIG%} IAPR 2
+ A2 DI RS sl piac IGE A Fll 2 1A 2.,
or some constant C > 0, depending only on o, a, ¢, v, p.
D g only

Proof. As we will see below, the proof will make use of the fact that the symbol of D
is dominated by that of A, and so in order to avoid redundancy in the argument, it will
suffice to treat the case D = 0,.

First, let us define

£ (f. g h) = / / ml o106 F & = mEMAE) dn de,
%‘EAJ'
where
mpy o 0 En) =) 181 & — T g5 — ) 1E —nl7 (= e

Then, using Plancherel’s theorem, we see that
L3 (f g h) = ([GLA 0, g1 f h). 4.5)

By (4.5), it is therefore equivalent to obtain bounds for L;Y’g’“p . For convenience, we
will now suppress the indices on m.
Observe that from the triangle inequality, we have

m(E. | < [IE17 & — & — 0l & —ne| 51 1E —nlP 96 — )
+|1E1° ¢ &) — 16 — nlP ¢ (& — )| |51
+ ‘em'a - ek's_"'a‘ & —nl”*** g€ —m)
=mi(&. n) +maE. n) +m3E. ).
Note thatm; > 0, foreach j =1, 2, 3.
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Let A(7, &, n) be given as in (4.2). Then we estimate m as in (4.3) and the triangle
inequality, making use of the facts that o € [0, 1) and @ € (0, 1]. Since ¢;(§ —n) =0
whenever £ — 1 ¢ A;, we have

1
mi(e.) = CPIHE A, il [ A dr
0
< CPTHE A6 —mnl (1€ =0l +1017) . (4.0)

Similarly, for m», we additionally use the fact that £ € A; to estimate

ma(§, 1) < C2777 (lIgoll L + 1| Vol L) Inll5 |7+ e
< C2 A ] (jg = 717 +1n1%) @.7)

Finally, for m3, let us first observe that £, £ — n € A; implies n € Bj4. It then follows
from the fact £ € A; that

(&) = m3(E ML, 14, E =) (1g,_, 00+ 14,y ,,00)
=m3(E ML E)L g, E=mlp, ;) +m3E Mg LA E—mla; 5,0
= m{M & m+mPE ).
For mgl), observe that for £ —n € A; and n € B;_3(17), we have
Az, g, e < c2@, (4.8)
It follows from (4.8) that

a T
‘ew _ ME-l

LI%<6A\A(I)\“>dt

1 o o o 1 o o
§ak|n|/ HMADOI | 4y 2Lar < cafp@—Di HMe—nl / AT g
0 0

Thus

3 o 1 o o
m$" (&, ) < Cafy|2@ 102 M=l < /0 e dr) & —nl"" g E — n)La, E)1p, ().
4.9)

On the other hand, for m_gz), we have

(. m) = M (M = 1) g = T 6 — )L )L, (1)
< C2PT MM 1 — |76 — 1A, (E)La, s (). (4.10)

Hence, upon combining (4.9) and (4.10), we have



566 M. S. Jolly, A. Kumar, V. R. Martinez

1
m3(&,n) < C2PI p|n[2@@ Vi HE—l ( f e”‘““dr) & — 0" E —mLa, E)1s, 4 (1)
A .

+ 2P HEI A il — 17 (5 — )L, (§) A,y 10 () (4.11)

Upon returning to (4.5), and applying (4.6), (4.7), and (4.11), then using the notation
in (4.4), we obtain

1L (g < C f/ (1€ = nl” + 1) |1F(GL)E — WIF(GLAL) &1 1h(&)|dndE
£eA;

+Ca2@ i / |F(GLAT A F)(E — MIF(ELAS;—38) ()| £ 17 (£)|dndE
EeA;
< Li+L,.

For L1 we may use Corollary 4.1 with s = ¢ € = v to obtain
Ly < C;2 min {GL fll 1o 1Ghgl gosr 1Gagl 2ol Gh fl go 1A R 2, (412)

foro € [0, 1), v € (0, 1), for some {C,}; € ¢*(Z).
For L,, we use the Cauchy—Schwarz inequality, Young’s convolution inequality,
Plancherel’s theorem, and Bernstein’s inequality, to obtain for any ¢ € [0, 1)

Ly < CL2@ DI GLAT A fll 2 I F(EZAS;—39) | 1 | A R 2
< CAR2 NN GEAT A Fll 2 IES A S _agll 2 AR 2
< CROTHTONGLA fl 2 | EG A S agll 2| APR] 2. (4.13)
Upon adding (4.12) and (4.13) we obtain the desired result. O

4.3. Commutator estimates with logarithmic multipliers.

Lemmad4.5. Let i, p > 0, € € (0, 1), and § € (0, 21). Suppose f,h € H** (R?) and
g € H>¢*P(R%) N H'~¢(R?). Then there exists a constant C > 0, depending only on
W, €, 8, such that

1 P

K[(n(I — A)H e, g1 f, h)| < CIIgII}E_HpIIgII?_e (£ N gess BN 2 + WA N 2l ggess)
fort=1,2.

Proof. We consider the following functional:

Loe(fogh) = / / My oE ) FE — WEMRE)dndE, @.14)
where

My e, m) i= (In(1 +E[*)HE — (n(1 + & — )" (E — n)e.

By the Plancherel theorem, observe that

<[(]n([ - A))ﬂalv g]f: h) = ‘C;L,E(fa 8 h)
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As before we set
AT, &, n) =15+ -1)E —n).

For convenience, we will suppress the dependence of A on &, n. Observe that by the
elementary inequality ﬁ < In(1 + x), we have

GOIE ‘ /O 1 L ((m(1+1a@P))" A@)) e

<Clnl /Ol <1n (l + |A(r)|2>)u_1 (m) + (ln (1 + IA(r)|2)>M dr

< Clyl (1n (1+max{ g2, 1¢ = n*}))"

= Clpl' = max {l — 0l an(1+ [ = 02", Jg1° an(L+ (P! ]

Using the above inequality in (4.14), we have

|Lye(f. 8. D) S/ '~ 12In(1 + & — n*)* 1€ — 0l | f (& — IhE)|dndE

+c/ ' 18I F (€ — m(n(l + [EP)H |E]€ |h(E)|dndE
=/ +11.

We make use of the following elementary inequality: for any @ € (0, 1)
log(l +x) < Cyx®. (4.15)

In particular, we have ((log(1 + |n|2))“ < CW;|77|5, whenever § € (0,2u1). We apply
the Cauchy—Schwarz inequality, Young’s convolution inequality, (2.4) witho =1 — €,
o1 =0, 02 = 1 + p, and Plancherel’s theorem, to obtain

1] < Cln"™= gl 1< Fall 2 1Al

1 P
T+p T+p
< Clgl gr e, 181 e L f 1l gess IRl 2.

Similarly, we can show

1 P

1< CllEy o Mgl 2l e
thus completing the proof. O

Remark 4.2. Note that by using Plancherel’s theorem and the inequality (4.15), we can
also deduce that for any €, u, § > 0 satisfying 6 € (0, 2u)

IAn(Z — A)* fllge < Cpuesll fll fress- (4.16)
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5. Dissipative Perturbation of a Linear Conservation Law with Modified Flux

The proof of our first main result, Theorem 3.1, will rely on an approximating sequence
that is determined by a linear scalar conservation law that is dissipatively perturbed by
the appropriate power of the fractional laplacian. To be specific, given ¢ sufficiently
smooth, we will consider the following initial value problem:

0,0 +div I, (0) = —yA*0, 060, x) = Oy(x). (5.1
where

(VEAP=29)0 ifp <1+«

FaO =\ (VLA 20)0 + 082V 20)g) i > 14k

(5.2)

Note that one formally has div F_y(0) = —(VEAP=209) . VO = u - V6. Hence, one
recovers equation (1.1) in the case ¢ = —0. The purpose of this particular modification
to the flux is to accommodate additional commutators in the study of (1.1) that the
“standard” approximating sequence of linear transport equations cannot handle. We
observe that when 8 < 1 + «, that is, o, < 2, where o, = 8 + 1 — « denotes the
critical Sobolev exponent, no modification is required and one may simply use the
standard approximating sequence by a linear transport equation, as indicated by (5.2).
However, a modification is crucial for treating the regime corresponding to 8 > 1 +«,
i.e., 0, > 2, of the more singular velocities in (1.1). In this regard, the proposed equation
(5.1) faithfully respects the more nuanced commutator structure of the generalized SQG
equations required to treat the more singular regime of 8 > 1 +«. We will first establish
existence and uniqueness of solutions to (5.1)

Theorem 5.1. Let B € (1,2), k € ©O,1),and o, = 1+ B — k. Given T > 0, suppose
g € L®,T; H") N L*(0, T; H%*/2). Then for each 6y € H(R?), (5.1) has a
unique solution 0 € C([0, T]; H%) N LZ(O, T; H"C+%) satisfying

sup 00 = 60llec exb (Cl 12 oenr) -

0<t<T

Theorem 5.1 can be proved by an artificial viscosity argument. A sketch of the proof is
provided in Appendix B. The reader is referred to [43] for additional details. With this
in hand, we will only develop apriori estimates for solutions to (5.1). We ultimately find
it expedient to perform these estimates in Gevrey classes and simply specialize them to
the case where the exponential rate, A, in the Gevrey norm is identically zero to obtain
estimates in the corresponding Sobolev spaces.

5.1. Apriori estimates. Given g, let v denote
vi= VAP, (5.3)

Then V - v = 0. We will begin by establishing L? estimates. Then we will proceed to
establishing the claimed Sobolev space estimates. Lastly, we provide estimates in the

Gevrey norm topology G} , -
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5.1.1. L? estimates Since vis divergence-free, integrating by parts, we have (v-Vh, h) =
0, for any A sufficiently smooth. Combined with the skew self-adjointness of the operator
VAB~2 we deduce

(V- Fy(0),0) = (AP72V - (V10)g), 0) = —(AP72V - (V19)6). 0)
1
= —E(WAﬁ_z, v1q16,6). (5.4)
By Lemma 4.3 with p; = p2 = «/2, and Young’s inequality, we have

1
(V- Fy0), 0)] = APV, V410, 0)|

IA

CloN 5 1011 L2ligl yoers

Y a2 2 2
Too s + IO g1 s - (5.5)

Taking the inner product in L? of (5.1) with 6 and using (5.5) yields
del3,
dt
Integrating in time, we obtain

10112 /2 < 1601172 exp(Cligl?, .. ¢ ) (5.6)
LPL? L? LEA%S

IA

2 2 2
1015 = Clollql

Hoﬁ% .

5.1.2. Preparatory estimates 1t will be economical at this point to introduce the Gevrey
operator and derive the estimates with this operator included since the commutator
estimates that we apply will reduce accordingly to the Sobolev setting upon setting the
rate, A, in the Gevrey norm to be identically zero. Since we will have to make different
choices for various parameters in each setting, we will then specialize to the Sobolev
setting first, and then return to the Gevrey setting again afterwards. redd For the remainder
of Sect. 5, let us assume that
0<6§ <k, A(t) isdifferentiableint, A(0) =0.

Observe that A = 0 is allowed. To help contain expressions, we will make use of the
notations

hj=GDAjh, AS:=AA; o€l
Observe that for ¢ = ¢(¢, x), sufficiently smooth in 7, x, we have
3 (Gr V) =N (1)GLO A% + G2V, (5.7)
Upon applying the operator GOA,([)A(;”J”3 to (5.1) and invoking (5.7) with ¢ = A;{”S@,
one has
8;(AG”+8§j)—)»/(t)AG‘+8+a§j + yAO'c+S+K§j + G();(I)Aj"JraV . Fq ©) =0. (5.8)

Then by (5.3), taking the inner product in L2 of (5.8) with Gﬁ,(”A‘]’f”e yields

1d ~ ~ ~
5 g AT O Loty AT 2G5 = 2O A 25 7
o+d A
+ <Gg<’)Aj V. F,(0), A7), (5.9)
We will now treat the trilinear terms; it will be divided into two cases: 8 < 1 + x and
B>1+«k.
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Case: B < 1+ k. Observe that in this case 1 < B < o, <2 and F,(0) = —v0. Let
6 € [0,2 — o.). We decompose the term involving the flux in (5.9) as

. s +6 -+
I .:<Ga(’)A‘; BY . (v8), A% 9{,)
- (<G3<’>A‘;c+“(v V)6, Af’c+5§j> - <(v -V)GLO AT, A"c+f‘5j>)

+ <(U . V)AUC+8§j’ AUp+8§j)
=L+

Since I» = 0, it suffices to obtain a bound on /;. Observe that

n=Y" (IGAO AT, v 10,0, A7),
{=1,2

Since § < 2 — o, we may apply Lemma 4.4 with 0 = 8 —« +6, p =0, and f = 9,0,
g = v% h = A%%0;, so that, along with applying Bernstein’s inequalities, we obtain

L] <C <c,»2”' Wl WVOllgao + A2 O EXO S, | g ||v§j||Lz)
IAZ8; ]2
<C <c 27 algio WOllgro  + 221 NEZDS; 5l o 1651 H)
IAZG 2. (5.10)

where ¢ € [0, 1), v € (0, 1), and {c;} € £2(Z) with [|{cj}]l,2 < 1.

Case: B > 1+« . Observe that in this case o, > 2. We decompose the term involving
the flux in (5.9) as

+6 A+
J= <Gg<f>Aj YV F(0), A +59,>

_ <G());(t)A(;C+5(VJ_Aﬂ—2q V), Am,+85j> _ <G(’}[(’)A‘;”+‘3+ﬁ’2(vlq Vo). Aac+s§j>

Ja Jh
=J1+h+3+J4+ 5,

where

7 :<(VLA,972AUC+5% V)6, Arr(+5§'j> _ <VLA,872 ) (Aaﬁaajve)’ Anﬁagj)

J{ Jlb
A :<(VLA,‘}72q ) VA”f'*agj), Ag{.ﬂsgj)
JB=J"—=J =)
_ {(G();(t)A?M(VJ_Aﬁ—Zq .V6), A(75+5§j> . <(G3(1)A?(.+6VJ_A[§—2(1 V)6, Anc+5§j>

_<(VLAﬁ—2q ) VGQ(’)A‘;‘*‘SG), Aa(-+5§j>}
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-2 —2 ~ ~
Jo=— (AﬁT(VJ‘q VAT AT, A”f+50j>
Js=—J+it -,
__ {<G2(1)A(}L.+6Aﬁ—2(qu V), Aa(+5’é'j> _ (VJ.Aﬁ—Z . ((Gg(’)A?“"aq)Va), Aay+5g,j>

g2 B2 ~
- <AT (Viq-VGLOATP AT 0), A“f“sej)}

Observe that by integrating by parts, we derive Jp, J4 = 0, so that it suffices to treat
Ji, J3 and Js.

Bound for Ji : Letting 9t = (—02, 1), observe that we can write J; as
=~ (IAP720F, 0001A74G;, A7), (5.11)

where we sum over repeated indices. By Lemma 4.3 with f = A"f“saj, g = 040,
h = A%tg ;,and p; = pp = k — 4, and by Bernstein’s inequality, it follows that

1] < CUIVON gp-ess IA“DG; | s | AG; | 12
< Cej 27101 ocss gl ﬁ_vuA"“Ee,an, (5.12)

for any v € R, for some {c;} € ¢2(Z) such that Hcitle < 1.

Bound for J3 : We will make use of the following notation
A=At 9t = (=dy, ), (5.13)

so that Ay = Aﬁ’zael, for £ = 1, 2. Observe that we may then rewrite J3 as

J3 =<G§(I)A;fp+8(Aeq 829), AUC+65j> _ <G2(I) (AUCJ“Squj)Z)gG, A0'c+5§j>
_ <qu B AT GHOg; A""*‘Sg?j>,

We observe, as in [37], that we may write J3 as a double commutator. Indeed, for any
o > 2, we have

AT f = AT =) f = —(AT TP f. (5.14)
Then by applying (5.14) and the product rule, we have

By = = (GEO ATy 01 Aeq 000), AT )+ (G AT

01014000000, A78)
- ([Gg(’)A‘;f*‘S*za,, 3019 Agq, A"tr”é‘j) - ([GQ(‘)A;T”‘Ha,, Aq19,946, Af’c“‘ﬁj)

__qa b
=J3 +J3,
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where we sum over repeated indices. By Lemma 4.4 with f = 0;A¢q, g = 9¢0, h =
A%*g jand p =0, 0 = o, — 2+ 4, and by Bernstein’s inequality, we have

UiEye (c,-zvf 18%gll g 1961 g

1+6
()2 OT ENO ;590 s IAPT 1 12 ) A7
| v (I+a=8)j A0 ¢, . .
< Cc;j (2 ”q”G.;(tlLﬁ—v”9”(.;2,(:1)54-6 +A(1)2 ES"S;—30| g ||‘1||Ggffjc+5>
||AUC+6§j||L21 (5.15)

for some {c;} € £2(Z) such that {cj g2 < 1 and where ¢ € [0,1), v € (0, 1). On
the other hand, we apply Lemma 4.4 with f = 0;0¢0, g = A¢q, h = A"‘f+59j, and
o =o. — 2446, p =0, and Bernstein’s inequality to arrive at the same bound for J3b

i =<c (c,-2“f 1Aql g 188 g

o, f—1—k+8

02O B0 S5 3 Aq e AT 2 ) 17T ) 2,

< Cc; (2Yq] - O -
< ,( gl 101G

o,0c+8

+A (021N ELD S aq| o ||9||G~2f;>€+6> A0, ] 12, (5.16)
for some {c;} € £2(Z) such that [{c;j}lg2 < 1 and where ¢ € [0, 1), v € (0, 1).
Bound for Js : We recall that
Js = — {(GQ‘”A?*‘SAﬁ—Z(qu V), A"v+5§j>
_ (ViAﬂfz ) ((Gg(”A‘;"J"Sq)VQ), A“f+5§j>
(A% (Vg vGLOATT AT ), A7)

Similar to J3, we can re-write J5 as a double commutator. By applying (5.14) and the
product rule, and using the notation 81L = —0p and 35- = 01, we have

Js =(GAO AT 20 (Vg - V), AT
_ <(Gé‘l(t)A(;C+5_2VJ‘Aq) V6. A""+‘S+ﬁ_25j>
+ <G§(’)A‘;L'+5Aﬂ/2_381((vlq - V(3,6)). AaL.+5+ﬂ/2—15j)
_ <(VJ_q ) V)G();(I)A(ch-+5+ﬁ/2—3 A0, Aoc+6+/3/271§’j>
=(1GLO AT 0, 0,010F Big, A7)
+ <[G§(’)A;7€+6+’3/2_381, qu]aeazé), AUL.+3+,3/2—1(3j>

=Jé + Jb.
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By Lemma4.4 withoc = o, —2+48,p =0and f = a;a,q, g=100,h = A"C+3+/5_2§j,
and Bernstein’s inequality, we have

¢ <C (cjz“/f' 1Agl oy 1961l a0y
- G G

a,1—v/ o,0c—1+8

+ a2 =T gD 5, 390 14 18T |L2>

|‘Aa€+5+ﬁ_25j ”L2
o . o ~
<227 (cjz“fnmc-m) 16l gy + 2020+ f”nEa(”Sj39||H2+;||qj|mc+a>
a,3—v/ a,0c+0
IAZ*E ] 2
—2)j ’ — —0)j A
= 2P i, (2”||q|G~Am 1Ol + 2028 PR ONEL s, 301145 |q||G-m)>
a3—v a,00+8 o+

IA%*G; ]l 2. (5.17)
for some {c;} € 02(Z) such that [{cj}ll2 <1, where ¢ € [0, 1),v" € (0, 1). Similarly,

for 0 =0, —2+8, p=p/2—1and f = 8,80, g = }-q, h = A°H+F/271g; we
apply Lemma 4.4 and Bernstein’s inequality to obtain again

72| <C <cj2”f||vlq||ém 1A6]] go
a2—/ o,00—2+8

A (20 BOT ERO 5,50 q | 1| A 2 ) AT
<C20 i (2“ Tllgligrer 101z

AR5 ELD S 5q ] e 10 ||G~m>5) 1A% 1.2, (5.18)
for some {c;}; € £2(Z) such that I{cj}jlle2 < 1, where ¢ € [0, 1),v" € (0, 1).

Summary of preparatory bounds. For each case, B < 1+« and B > 1 +«, let us now
summarize our estimates.

Case: B < 1 + k. Upon returning to (5.9) and applying (5.10), we have

d ~ ~
5 7 1T, + y AT, < (1)
”Aa(y+8+oz/2§j ”3‘2
. e .
+Cej (2“1 lalgrr 10l +2028OTEZDS; 3q) gpec 161 rio ) IA%G; 2.
o, 1+B—v oc+s

p— o,00+8
(5.19)

where £ € [0, 1), v € (0, 1), and {c;} € £%(Z) with [l{c;} ]|, < 1.
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Case: f > 1 + k. Applying (5.12) and (5.15)-(5.18), we have
1d
2 dt

+Cc; (2 Y0 Ol -
j< ”q”Ga.tHﬁfv” ll 52

w,0c+8

+57 12 +8+Kk /27 112 1 +8+a /27 112
[AHG; (17, + y AT 2017, < 2 ()| A% )7,

A2 TNELDSj3q ganc 101 o ) | A6 2
o,0¢c+
+ 2=, (2” J lgllgro 101g0
ARSI ELDS) gl aec 10 ||G-m>5> 105112, (5.20)
oc+
where ¢ € [0, 1), v,v" € (0, 1), and {c,} € 02(Z) with el < 1.

5.1.3. Sobolev space estimates We will now specialize the estimates from the previous
section to the Sobolev setting by simply taking A(z) = 0. Upon particular choices of the
parameters &, v, v’, we will derive estimates in L7’ H% N LZTH 9+3  These estimates
will ultimately be leveraged to establish existence and uniqueness. To this end, let us
choose the parameter § = §(«, ) to be defined by

k+1—8 .
5:{ 7o Mp<T+w (5.21)

%, if 8>1+«k.

Observe that 0 < § < /2.

L . .
Intermediary Ly H 9+ _estimates. Inorder to close estimates in L3’ H% and LZT HOs
Ko,
we will first derive an intermediate set of estimates in L; H*_ Let us choose
v=k—-68, V=2—B+Kk—8.

With A = 0 and these choices for 8, v, v/, upon returning to (5.19) and (5.20), then
applying the Bernstein inequalities, we derive

1d .
[ A%P0; |17, + 2y | A%0; 17,

—8)j +0q .
S < Ce; 2% g | grocss 101 groess | A6 2.

Upon dividing both sides by ||A‘;"+50 |z 2, then integrating in time, we obtain

. P __I0k] ¢ S
IAS 012 < e VAT 00)] 12
t .
+Cej2kd / e PG ()| oers 105 rocs ds.
0

Observe that

sup 2=9 p=¢ 2Ty (1=5) < C (3 (r — 5)) ¥k, (5.22)
j
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With this in hand, we take the {,—normin j, followed by the L¥/3_norm in time to obtain

on « ., < () +CHAhT), (5.23)
LY HY

where

1

2
_Iokj+l] )
AT = Y eV IAT 0017,

I 5
jez r

t
F(T) = ||f0 vt = )N G oess 10 ocs dsll .
T

We treat .71 (T) by applying Minkowski’s inequality and the Lebesgue dominated con-
vergence theorem to deduce

AT = Cy= K100l yoc, Jim T3 (T) =0. (5:24)

We treat % (T) by applying the Hardy—Littlewood—Sobolev’s inequality followed by
the Cauchy—Schwarz inequality, we obtain

AT = Cy™ " g Ol ocss 10O rocss | 5
T

< Cy*“‘”“nquLK 101« (5.25)

;?Hacﬂi T;YHU(-H? '
Upon returning to (5.23) and applying (5.24) and (5.25), we obtain

o « < Cy |00l oo + Cy " %Ngll £ . 1I6] = (5.26)

L; Hoc+s — Lg Hoc+s L; Hoc+s :
L2TH octk/2_pstimates. For this case, we choose

K > ,3+K
v=—, V=2-— —.
2 2

Referring back to (5.19) and (5.20) with this choice, we obtain

1d o406 i ki
2 / oct+é np2 [ oc+6
EEIIAJ-‘ Ol 72 + Y29 NAT00 2 = €227 Mg ot 161l frocss A0 2.

We divide both sides by 20-5)J ||Aj‘+59 |lz2, use Bernstein’s inequality, then integrate
in time to obtain

o+5 oK) o+5
IAT 202 e 7 IATT2000)I2
t .
— 1 —c'2Kl —
+ ok a)J/O PG () ot 1005 ecsads.

Using (5.22), and taking the ¢>-norm in j, followed by the L?-norm in time, we have

0 ootk < AT+ CHA(T), 5.27
16115 goevsy < SA(T) + CSAT) (527)
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where

1

2
_oloki*l o+ 5 2
AT = | YT TIATTOONT: | g
JjEZ

! 8
S(T) = | /0 & = DT NGO s 106) | o sl 2.

By direct calculation and an application of the Lebesgue dominated convergence theo-
rem, we have

ST = Cy™ 2100l oc, Jim FA(T) =0. (5.28)

Applying the Hardy—Littlewood—Sobolev inequality followed by Holder’s inequality,
we obtain

ST = Cy Y llg ()] e 10 | rocss | 26
LT
< Cy ¥ s 101 & 5.29
= Oy gl s 1003 (5.29)
Upon returning to (5.27) and applying (5.28) and (5.29), we obtain
. ~1/2 _ —148/k . .
1602 geces < € 2160l + Cr 7 gl g s 161 5 e (530

LZ HO—estimates. Finally, we obtain an estimate of |6 || L5 Foe For this, we must return
to (5.19) and (5.20) and, instead of (5.21), we make the choice § = 0. We then choose

K
v=—=, V=2—-8+—-.
A 2

K
2
Then (5.19) and (5.20) become

1d R .
=—lA%O1%, + Y29 AT012, < ;227 0q 1 oers 101 o IATEO 2
2dr" 7 L J UL H"2 J
cy o i
= Ceal e 101550 + —-2IAT O,

where we used Young’s inequality in the last step. We subtract the last term on the right,
sum in j and integrate in time to obtain

2 2 2
16175 e < 1601500 XPCIGIT, )
Upon combining this with (5.6), we deduce

10120 e < 1160l roe exp(Cllgll?, .. .5 )- (5.31)
T L2Ho"2
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Summary of Sobolev space estimates. Collecting the estimates (5.26), (5.30), (5.31), we
arrive at

—8/k R —1+48/k . ;
61,5 s = €Y Wollsec + Cy 7Nl 5, 0N 5o
1013 oces = €™ 2000l e+ Cy ™€ Nl 5 oces 1011 5 § s
||0||L;owc < 6ol e exp(Cllgl?, ...s)- (5.32)
T

5.1.4. Gevrey class estimates In this section, we will obtain an apriori estimate for (5.1)
in Gevrey classes. First, for a given measurable function ® : (0, 7] — H%* we
define

1D ()llx, = esssup(y ) ||<1>(t)||Gx<r> n (5.33)

0<t<T

where GA denotes the homogeneous («, A, o)—Gevrey class defined in (2.7). Let us
also choose A(1) to be

A(t) = eyt e > 0.
For convenience, we will often drop the dependence on ¢. Suppose that « satisfies
0<a<ck.

Let us assume

O<8<:min{“1 L 2(k — o), a} ifp <1+«

min{E,Z(K—a),a}, if B>1+«.

Upon returning to (5.19) and (5.20), we choose
, 8
v=k—6, vV =2—-—B+Kk-—96, {:1—K+§+a.
These choices yield

1 d
||A“‘+39 12, + y [ ATF2G;12,

< ;ey“/ﬁ“/““ A% 22G 112, + Cc 2% GED G froess 1GLVO N ross | AT08, |2
+ Cey /K@ QW=D GEO A 10| proeas | ELD S ;3G || frocssszsa | A8 || 2
+ Cey /K@l QWD GEO A g | froess | ELD' S -30 | focsssosa 1AT G| 2.

Now observe that from Lemma 2.2, applied with p = 1, 51 = «/2, 52 = «/2,
f =A% +8g ;, it follows that

Syot/l(td/l(—l||A0'(;+3+0[/20j”iz < ngd/KtOl/K—l||AO'C+89]_||2 of2 + C&\K/ay”A0'¢+59 ”HK/Z’

(5.34)
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where C depends on « and «. We will fix ¢ small enough such that
Ce*/* < 1
-2

On the other hand, recall that E; is defined by (4.4). Using the elementary estimate

xte <Cy " a,x>0; by>0,

we first observe that for any function f € G'gfg), one has
1 2
A RE0 1 = [ (([Lieresr 0w 0t a ) (G f e pae
0

2
1
(b 1
< Ca(n 2173 / ——————dr | G, Sl
0 (1—1%)'"2%

) a 1) 1)
< Ce721m )y 26730267306y £ 7 (5.35)

Upon using the estimate in (5.34), (5.35) dividing both sides by ||A°f+5§ jll 2 and
applying Bernstein’s inequality, we obtain

d ~ . ~
o IA*2G; (| 2 + 'y 2 | A% | 2
S Csya/l(tot/l(—lzotj ||AUC+60j ”L2

. 508 8 .
+ ch (Z(K—a)l + 8ﬁyﬂ[ﬂ2(K—5/2)1> IIG(’},(')q ||Hrrc+5 ||G())‘[([)9 ||H“f+5’

for some {c;} € £2(Z) such that || {cj}ll2 < 1. By Gronwall’s inequality and Bernstein’s
inequality, we obtain

1A, ()]l < Ce™ 2 Y127 A0(0) | e

t .
+ chey“/K / 20 o= 2y (t=s) gt/ =1 16 ()| groc+s ds
0

t .
— i /K] —
+Cc; / 20D =2V = GEO g () | froess IGEDO(5) | gross ds
0

B B ! . 19K ] S5
+Ccjelay / 20=8/DJ =2V =) 525 GAD g (5) || groess | GES0 (5) || groess dis.
0
(5.36)
‘We have

1 .
yO(/K / (za]e—c 2K1y(t—s)> sot/l(—l ||9(S)||Hac+8 ds
0

! C
< ya/K/ <—a> sa/K—1||9(s)||1_'1m~+s ds
0 \(y(@—s))«

1 gE-1 ]
= C/ ——5 | YN0l froc+s ds
0 \(t—s)<(ys)«
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s o oa—206
<C(yt) «B (1 - T) N0 xy s

where B(a,b) = fol(l — x)”_lxb_ldx. Similarly, we estimate the last two terms in
(5.36) to obtain

1A B Ol SCO™ (< 2e 27 ) 1A 6O e

oa—39

—5/k o
+Ccje(yt) /B (1 - ) 1011 x7

8 28
+Cej(yr)y ey~ (B (E’ 1— —>

K

vt B (21— 2) ) IgCl 1001
¢ 2’ 2k AR 17X -

We multiply both sides by (y1)%*, take the £2(Z)-norm on, apply the Minkowski in-
equality, and take the supremum over 0 < ¢ < T, to obtain

16O)llx, < CZr (o) + CellOClxy +Cy~ lgOlx, 16 lx,

where
1/2
28 s Iekj+l
Ir(6o) == sup | D (y1)x 2% e= 2V A 60|15,
O<t<T \
JEZ
1/2
<C D126 | < Clfoll o
JEZ
Applying the Lebesgue dominated convergence theorem, we obtain
lim Zr(6p) = 0. (5.37)
T—0
Upon possibly taking & smaller so that
Ce <1/2,
we obtain the following apriori estimate for ||6(-) || x,:
10O)llx, < CZr o)+ Cy~ g x, 10() 1 xy - (5.38)

6. Existence, Uniqueness, and Smoothing for 1 < 8 < 2: Proof of Theorem 3.1

We will now carry out the proof of Theorem 3.1. We do so by introducing a sequence of
approximating equations that will satisfy the dissipative perturbation of the conservation
law (5.1) at each level of the approximation. In particular, we consider the following
approximation scheme.

9,00 +yA0Y =0, (x,1) e R* x R*,
60°(x, 0) = 6o (x)
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and
3,0 4 div F_gn (™) = —y A¥0"™,  (x,1) € R? x RY, 6.1)
0" (x,0) = 6 (x), n € Zi=o '
where
Fogn (@) = —(VEAP2pm)gn+l if B <1+x,
- —(VEAPZgmypn+l — AB=2((VLe ey if B > 1 +k.

6.1. Existence. First, we establish uniform (in n) estimates on 6”*!. Invoking apriori
estimates in (5.24), (5.25), (5.28) and (5.29) for (6.1), we conclude that there exists a
bounded function Z(T) (:= 7 (T) + .1 (T)) such that

AT) = Cly~" 24y 60l o, Jim 22(T) =0

and

<%(T),

0
161 .
L3H

1
o™+

Uc*% OLE I_'Irrc+5
e < Z(T)+ Cy]|0" .« o1 e K
LIZHTINLY Hoctd — M+l ||L2THU"+7OL7§ Hffc+5” ”L%H"C*me,@ Hoctb
Here § is given by (5.21). Let Ty be chosen small such that Z(T) < 1/(4C;) for
T € (0, Tp). Note that this condition also holds if ||6p|| ;70 is small enough and Ty = oo.

We obtain

<2%(T), n=0,1,2,... 6.2)

16"

.
LI ALS foet

Applying Theorem 5.1 recursively and using (6.2), we obtain a unique solution of (6.1)
satisfying, for T € (0, Ty),

o < 2%(T),

.
L2 ALY Hoess

16" )l e proc < 11601l e exp(C2(T)?). (6.3)

Next, we establish that the sequence of solutions {6} converges to a solution of (1.1).
Let us denote by gntl — gn+l _gn and 99 = 9. Then, we can see that the differences
6™*1 satisfy the following equation:

30" +div F_gn (0" +div F_z,(0") = —y AKG"1,

. 6.4
" (x,0) =0, neZpzo (04

We divide the analysis into two cases: B < 1+« and 8 > 1 +«.
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Case: B < 1 +«k. Applying A; to (6.4) and then taking the inner product in L? with
20" yields

1d ~ _
146" 174y 1A% 26!

EE ; ”%2 - _ (A](ul’l . Vél‘l+l)’ Ajén+l>

— (D" VO™, A0
=J{+ ;. (6.5)

Since V - u" = 0, we have
(" - V)A;6™, A6mT = 0.
As aresult, we can express J; in terms of a commutator.
I =—([A;, W) 19,6, Ajén+l>'

By applying Lemma 4.2 with p; = 2 — 2k/3, pp = | — /2, g = (u")", f = 3,6™"!
and h = AJG"“, we have

711 < 0,27 810" acnra 18" 2 14,67 2, (6.6)

for some {b;} € ¢?(Z). Upon using Plancherel’s theorem, and applying Lemma 4.1 with
e=p-2/3,0=0.+8—1,g=1i}, f =00" and h = A]H”“, we obtain

31 < 0,277 1000 | ocsst NG 125 14607 12
< b 267107 | acss 171 26 146" 2, 6.7)
for some {b;} € 02(7).

We use the estimates (6.6) and (6.7) in (6.5), divide both sides by [|A;6"*!||;> and
apply Bernstein’s inequality to obtain

d Gn+l A gntl Y Gn+l
EHA]H“ z2+cy 2 180" N2 < b;27 67107 yoees 1107 I, 2
< i _
+0,25710" | ocss 1071 2.
Multiplying both sides by 2% and integrating in time, we have
% Gnl ! 24 (1-5) 1
3 pn+ i ,—cy28 (1— on+
A7 0" 2 S/O bj22/ e O™ ()1 ocrs 16 ) 2 ds
t .
i _
+ /0 b2 eV DG ()| e 8" ()] 26 .

Using (5.22), and taking the /;-norm in j and then L3-norm in time, obtain

16", e < CU+ID),

T

where
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t
_ _ —1/2gn p An+1
I(T) = |I/0 (& =) N7 pocrs 1677 (N 2 dsll

t
1I(T) = || / (y (t — )N () goess 16" ()| . 2 ds]l 3 -
0 H3 T

We treat / and /] by applying the Hardy—Littlewood—Sobolev inequality followed by
Holder’s inequality to obtain

< n ) an+1
I(Tr)=Cleé IILZTH(W% 112 |IL3TH2K,

1I(T) =Clle"|| «
L} Hoe

nn
M

As a result, we have

an+l < n p an+l . nn .
g B A P (ne Iy 5% +10 ||L;H%).
Let Ty additionally satisfy Z(Tp) < 1/(6Cy). This implies

(6.8)

_ 1 -
16", 2 < =116

3 7 -
Ly HS ~ 2

. 2K .
L3 H3
To

From (6.3), (6.8), and interpolation inequality (2.3), we conclude that there exists a
function 6 (x, t) satisfying

6 € L H N LY HoS,
0"~ 6 in LYH",
0" — 0 in L} H°, Yo €[2/3,0c+k/3).
W' VO™ u.V0 in L} H®, VG e[0,0.— ).
Case: B > 1 + k. Taking the inner product in L? of (6.4) with 8"*! yields
1d - n
5710 1724y IAS20™ 12, = 1] + 1) + 13, (6.9)
where
Il/ — ((VJ_Aﬂ—Zen . V)én+l, én+l>’
Iy = (AP2V - (v hen), 6,
L= ((VEAP=20" . vom), 0™y + (AP72V . ((VEeMeT), 6.
Note that / 1’ =0and Iﬁ can be written in terms of a commutator just like in (5.4).
1 o
I = =5 (A, 36"16™",6™1),

where A is as in (5.13) By Lemma 4.3 with p; = p2» = «/2, and Young’s inequality we
obtain
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51 < CUO™ s 16" s 16712
C  np2 An+l 2 Y an+1)2
< ;IIG IIHUL% 12 ”L2+Z“0 IIH%~ (6.10)

Note that 13’ can be re-written as
Ié — <(VLA/3—29_I1 . Ve)’l)7 én+1> _ (A’B_ZVL . (én(vel’l))’ én+1>
= —([Ag, 8,6M9", 6",

Applying the Cauchy—Schwarz inequality, Lemma 4.3 with p; = «/2 and p» = 0, and
Young’s inequality, we obtain

|| = (A" 2[Ag, 3,6"10", A26"™)

. _
S CNO™ oees 10771 55 10”112

a2, Y gn+l 2
<10 ||L2+4I|9 I,

e (6.11)

oct+

C
e
y H
From estimates (6.10), (6.11), and equation (6.9), we obtain

1d - v o -
PTLAN R

2 2 an+l,2 N2
S 2 ¢ = OO s (107132 +16712,)

We integrate in time and take the L norm with respect to time on both sides to obtain
16" ger2 < Co0" 3 ooy (16" igen + 19" ger2)
Let Ty additionally satisfy Z(Tp) < 1/(6C3). This implies
0™ 12 < 210" e 12 (6.12)
LFL: =5 LEL? .

From (6.3), (6.12), and interpolation inequality (2.3) we conclude that there exists a
function 0 (x, t) satisfying

6 € LYH N L} H*?,
9" =~ in LEH",

" — 0 in L‘}Z’H”,VU € [0, o.).
It is now straightforward to check that for any & € [0, o, — 1), we have

div F_gn(0""") — u-VO in LFHC.
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6.2. Continuity in time. Let 0 be a solution of (1.1) obtained above. We have observed
that

0 € L>(0, T*; HPY' =<2y y e L?(0, T*; H>™*/?),

for any T* < Tp. Since

90 = —yA“0 —u-Vo,
we can observe that 8,0 € L1(0, T*; H=%). As a result, we obtain

0 € C([0, T*); H'™).
By applying Lemma 1.4 in [59, pg. 263], we obtain

0 € Cy ([0, T*); HP'74). (6.13)
Using (6.3) and (6.13), we have

lim supl|6/(t) — Ool3; 51 = lim sup {ne(t)ni,m._K + 1160117501 — 2000, 90>Hﬂ+._K}

=0 t—
< lim { 160117 51— €XP(CZ(1)®) + 160113501 — 2(0(0), 90>H5+1-K}
=0,

where we used the fact that lim,_, o Z(¢t) = 0. This establishes the right continuity of 6
at t = (. By a standard bootstrap argument, we obtain

6 € C([0, To); HPY' 7).

6.3. Uniqueness. To establish uniqueness, we consider two solutions of (1.1), denoted
by O and 0@ Let§ = 0D — 9@ 7 = 4D — @ Then, 0 satisfies the following
equation:

30 +yAG+uV.Vo+i-ve® =0. (6.14)
Taking the inner product in L? of (6.14) with § yields
1d - ‘- o . _
Mneniz +yIA20]7, = —(@D - V)8, 0) — (@ - V)oP, 0)
=I'+1. (6.15)

Observe that since V-u! = 0, we have 1 1” =0. Iﬁ’ can be written in terms of a commutator
just like in (5.4).

L= —%([A@, 360%10,0).
By Lemma 4.3 with p; = p» = «/2, and Young’s inequality, we obtain
11 < Clae0 PN -5 101211011 5
< CIOP 2, s 10132 + 1012 5. (6.16)
From (6.15) and (6.16), we obtain

d - -
017, < CIODI s 1017,

An application of the Gronwall inequality then establishes uniqueness.
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6.4. Gevrey regularity. Invoking the apriori estimate (5.38) for the approximating equa-
tion (6.1), we obtain

16" )llx, < CsTr(0) + Coy ™ 16" Ollx 16" ) llx, - (6.17)

Assume that Cgy ™! 10" ()llx, < 1/2, where the X7—norm is defined in (5.33). From
(6.17), we obtain

16" ()l x, < 2CsZr (fo).

By (5.37), for arbitrary initial datum 6y, 7' can be chosen sufficiently small such that
T < Ty and

2C¢CsIr(00) <y /2. (6.18)

This condition also holds if [|6|| o is small enough and T = oco. By induction, and
(6.18), we have the uniform-in-n bound on ||6"(-)||x, given by

Coy M 16" () llx, < 1/2.

It is now straightforward to check that the solution 6 will also satisfy the above bounds.

7. Existence, Uniqueness, and Smoothing for the Endpoint Case 8 = 2: Proof of
Theorem 3.2

In this section, we prove our second main result, Theorem 3.2. This is carried out by
proving apriori estimates for the norms |6|| yo and ||0| 5. . The existence of a solution

then can be carried out by using a standard artificial viscosity approximation; we refer
the reader to [43] for additional details.

7.1. Existence. To simplify the treatment, we only consider the case wheno € (3—«, 3)
and @ € (0 — 3 +«k, k). Let 81 be chosen such that

. o—3+«k
0 < 61 < min /L,T,K—Ol .

Denote by
S =2(0c —3+Kk —81).

For (1.2), velocity is given by u = —V-L(In( — A))*6. Since V - u = 0, we have
341012, <0, so that
160C, Dliz2 < 10ollz2- (7.1)
Define
Ait)=xrt, A>0.
Upon applying the operator Gé}(t)A‘]T to (1.2) and invoking (5.7) with ¢ = A?G, one
has

% (GLONT0) =N (VG AT 0 +yGLOAT™ 0 + GO AT (- Vo) =0.  (7.2)



586 M. S. Jolly, A. Kumar, V. R. Martinez

Then, taking the inner product in L? of (7.2) with Ga(t)A"Q yields

1d ~ ~ ~
5 2 AT + Y AT P01, = MIATPH}11T, = (GEO AT - V6), A7E;).
(7.3)

By interpolation inequality (2.3) and Young’s inequality, we have

AMIATT2G12, < AIA°E; || ||A"+”/29 ||

2
_a ”Aaej ”LZ-

S E||AO’+K/29]'||L2 + yk_a

Using this in (7.3), we obtain
d ~ ~ ~ ~
TIATO T + Y IAT 2017, < CIATGj11T2 = (G AT (u - VO), A76)).

The nonlinear term is decomposed as follows:

(GLOAT - V0), A°8)) = (A" - V), A°0;) +((u - VA G)), A7)
+{(GEONS W Vo), ATE}) — ((A7iT; - VO), A7) — (- VAT, A7)
=K1+ K> + K3.

Since V - u = 0, we have K» = (. We obtain estimates for K| and K3 below.

Bound for K1 : Letting Ay := —82-(1n(1 — A)H*, for ¢ = 1,2, we observe, as in [11],
that Ay is a skew-adjoint operator, i.e., (A¢h, g) = — (h, A¢g). In particular, we have

([A¢, g1h, h) = =2 ((A¢h)g, h). (7.4)
Using this we can express K in terms of a commutator
K =— (VL(ln(I — A)EAT; - Ve, A"é})
= ((A¢A°8))3¢0, A°F;)

! [Ag, 301A°8;:, A9D;).
2 J J

By Lemma 4.5 with f =h = A"gj, g=00,ande =«/2 — 81,6 =81, p = 62/2, 1t
follows that

|K1|<C||0||”2 ||0||”2 IA G 2 Il A28 2. (1.5)

Hrr+»(/2 H2 i /2+81
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Bound for K3 : By applying (5.14) and the product rule, we have
K3 =— (Gg(”Af;*Zal(a,Age 36), A“'@}) + <(G§(”A.‘;*281(31A59))3z9, A"9~j>
- (GgU)A‘;—Zal(Age 33:0), A“§,> + <Ag9(G§<’>Aj—2al(a,age)), A“§,~>
=~ (1GLO A5 201, 801 A6, A78;) — (IGO0 NS 201, A61910:6, A7F))
=K5 + Ké’.

Applying Lemma 4.4 with o replacedby o —2,p = 0,v = 3—0)/2,¢{ = 1 —k+a+4)
and f = 0;A¢0,g = 00, h = A"GJ, (4.16) and Bernstein’s inequality, we obtain

(3— ~
|K§| <cj27 2 aazAz(?IlHalelGéae@IIH%l A6 .2
+ CAr2 20T B2 3,0 || ya-srassy 181 A¢0 | 21| A6 || 2

< BIGLON s 1GLOI, ags + By MIELO s 1GLON o o NGO s

(7.6)
for some {b;} € ¢1(Z). By interpolation inequality (2.3), we have
1G481 oo < 1G61 ||GA0||H
1G261 =g = IGAON .~ IIG*9H3Z+5,
1Ga01 sy = ||G*9|| : NGeol .,
Using an argument similar to (5.35), we obtain
IELO | 3-csars; < C (A1)~ 1022% G20 1.
Using above bounds in (7.6), we obtain the following estimate for K f:
_%
|K§| <b, ||Gk9|| * ||er|| sy *bj () ||Gk9|| v ||GA9|| (7.7)

for some {b;} € 21(Z). Similarly, applying Lemma 4.4 with o replaced by o —2, p = 0,
v=03-0)/2,butwith =1 —k+a+61/2and f = 0,000, g = Aef, h = A0,
(4.16) and Bernstein’s inequality, we obtain

G- ~
|KS| <cj2 2 w A o1 11G060 el A%l 2

+ O3 =i Ek 4,0 | B 18806, 11 211 A% 6 ||Lz

2 K+a+

2
<b; ||er|| *uG*eu x+b(m2a||ck9|| Kneru (7.8)

for some {b;} € IAXVAY
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Collecting the estimates for K; and K3, we obtain

d ~ ~
E”A(Tejniz +y | AT2E17,

&
~ 2+5 246 ~ /2
< CIIA”Q/II 2 +C|I9IIH02+K/2|I9IIszK/z+a1 1A 1| 2| AT/ | 2

+c,||GA9|| * ||er||
reiOn)E ||G*9|| Knern

Summing in j and applying the Cauchy—Schwarz inequality followed by Young’s in-
equality yields

d 5+2 4:52
TIGL0 15, + yncken,,m/z < CIGLoI%, + Cuengizk/ml ||Gk9||m 1G58 ;o2

72
+ CIGHOIE 1GH6 1 U:%+c<xr>za||cke|| Kqueu
2
< CIGEOI, + ClONaesaes, IGAOIT + ||G*9||HW/2
~ Kby ~
+ CIGLOIT + CONHPNGLO %, (7.9)
where
~ 4 2k . 2
o) =—, 0p=—, 03=—.
Ty T s P

In order to get an apriori estimate for ||6 || o, we recall (7.1) and suppress the Gevrey
multiplier in (7.9) by taking A = 0. We obtain

100 = € (101 + 1015 + 10137 (7.10)
Denote by

2
y(@) =1+10]%o,

then from (7.10), we obtain

where
~ 2 K
o4 =max 12+ —,1+—
8’ )

We conclude that there exists a time 77 = T (||6p|| go ) such that 0(x, t) satisfies

10115 o < C(A+ 160l o)

The existence of a solution 6 (x, t) now follows, for instance, from a standard argument
via artificial viscosity.
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Applying the interpolation inequality (2.3) in (7.9), we obtain

—uG*enHa < CIGEOIR, +ClONS® IGROIT + CIGEOILT + O |GROILT,
(7.11)
where
~ 261 — 62+ 2
05 = ————.
20
Denote by

20) = 1+ G013,

then (7.11) implies
Z Go
— = C@. 6ol 2)2™,

where

~ 32 251—6+2 K K
0g=maxj-—+—+——-—"—" 1+ — 1+ —
2 & 4o ) 31

From the above inequality, we conclude that there exists a time T = T (||0y||go) < T1
such that 6 (x, t) satisfies

esssupll0 ()l < C(1+[160]l o).
0<r<T

7.2. Uniqueness. To establish that the solution obtained above is unique, we consider
two solutions of (1.2), denoted by 6V and 6@. Let 6 = 6V — 0@ 5 = 4V — 4@,
Then, 6 satisfies the following equation:
30 +yANO+uV . Vo+i-veP =o0. (7.12)
Taking the inner product in L? of (7.12) with § yields
d G2 412 D NG §)— (7. e 3
EEIIGIIU +YIA20l7, = —('” - V)8, 0) — ((u- V)0, 0)
= K|+ Kj. (7.13)

Observe that since V- u! = 0, we have K{ = 0. Using (7.4), we can express Ké in terms
of a commutator

1 o
Ky = =3 (A, 30210,0).

By Lemma4.5with f=h=0,g=080®, ande =«/2—581,8 =381, p = 8/2,it
follows that

|K2|<C||ae9<2>||2*"2 ||aee<2>||”2 16112101l ges2

H(T-H(/Z 1 Hl K /2+81
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28

<02
248> 6 2+6
< CUOP 2 N0 P ot 101172 + = ||9||

Hrr-H(/Z (7 1 4)

HK/Z'

From (7.13) and (7.14), we obtain

289

d = 245 5 2+5 5
Zi101L2 = CIOP 0 216 1y 1611

An application of the Gronwall inequality and Holder’s inequality then establishes
uniqueness.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Appendix A.
Proof of Lemma 4.1. By Bony paraproduct formula

where
Li= Y [ 16 xicate = fe ~ mononami@dnae.
k
33 [[ 161 016 = 76 = mncaoami@dnae.
L= Y [t 6ue = mf 6 - e ©ande.
k
and

GF(f)= Y. Fif).

li—k|<3
Observe that by the triangle inequality
ILs(f. 8. M| = Lo (If1, 18], 1hD.
We will treat the cases L1, Ly and L3 separately.
Estimating L : The localizations present in this case imply
§—n€ B3, neA.

Observe that xx(§ — n)¢(n) = O, for all [k — j| > 3, whenever & € A;. Thus for
o eR
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L= Y [[ e s - wifE - mioniga i dnde.

lk—jl=2

By the Cauchy—Schwarz inequality, Young’s convolution inequality, and Plancherel’s
theorem,

ILi<C Y7 ks f ol Aegl ol 2. (A1)
[k—jl1=2

Suppose € > 0.Since f € L?, the Cauchy—Schwarz inequality and Plancherel’s theorem

implies

A A C
=3 £l = 1gae=3)l - 1“2l - 1 xk=3fllz2 < Yl 2K k=3 f 1l e

Upon returning to (A.1), it follows by the Cauchy—Schwarz inequality in /> and Bern-
stein’s inequality that

L1l < C290Sj 1 fllgn-e Y, 27MlAkgl 2l 2
lk—jl=<2

< Ca 29821 fll gr-ellgll go Il 12, (A.2)
where

12
(Zlkfjlsz 229 Arg IIiz)

aij(o) =
! &1l o

Estimating L, : The localizations in this case imply
neBis, &—neA,
Thus
Lal=c Y [l =t aue - i - miaizoie) an .
lk—jl=2

Suppose 0 > —1, then as in (A.1), the Cauchy—Schwarz inequality and Young’s convo-
lution inequality imply

A~ o &
|L2| < CXk:||Xk—3g”L3+% 17 @ fIl g l1R 2 (A.3)

Suppose 0 < 1 and € € R, by Holder’s inequality, we have

1 o
Y < g3 |- % xk—38ll2 < C2XGT D 1S 38 5o
Il Xk 3gIIL% = Illgor-3yl -1 IIL%III 1" xk—38ll2 < 1Sk—38ll g

~ _ _ ~ o_ 1
17 @k Fll o < 1L geptmt pieny |- 177 o - 170 fll 2 < C2XEF 27D Ak Fll e
L3 @127 LT A
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Upon returning to (A.3), and proceeding as for (A.2), one obtains
|La| < Cbi2 | fll gr-e ISj—18ll o Il 2. (A4)

where

1/2
(Zioie2 2209020112,

bi(e) =
i 11

Estimating L3 : Since ¢r(§ — n) Zlk—l|<3 ¢1(n) = 0, for all j > k + 6, whenever
& € A;, the summation only occurs over the range k > j — 5. The localizations in this
case imply

E—neAr, neAi—ai4,

so that foro < 1 and € < o + 1, we have

o+l—e

_€ o—1
&7 <Cle—nl'"" 2T .

This gives us

ILsl<C Y ff|s—n|1*5¢k<s—n)|f<s—n)||n\%*1$k(n)|§<n)||§|“3" 1h(&)ldnds.

k>j—5

The Cauchy—Schwarz inequality, Young’s convolution inequality, and Bernstein’s in-
equality imply

1—€ A o—1 ~ . eto—1 A
L3l <C > M- 13 fllalll - 177 @edllzalll - 177 Allp
k>j-5
€ _ _(o+l ~ e+o+ly
<C Y 23 ARA T 122 NI AN 227 [
k>j—5
<Ce;29 fll gr-elgll o IRl 2, (A5)

where

o+

— 1—€ —7 —_
Susjos 2 CTOED A A g AR f 2
gl o ILf 1 1-e '

cj(o,€) =

Combining (A.2), (A.4), (A.5) and the fact that L, (f, g, h) = L5(g, f, h). completes
the proof. O
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Proof of Lemma 4.2. By Plancherel’s theorem, we have

L= 18y ¢1fm) = [[ memgonie - wh©ande.  a6)
where
m(E, ) = 6;(6) — ;& — ).
Observe that by the mean value theorem
Im(&, | < Il 27/ |Vl v

Using this in (A.6) and the fact that supp hcA j» we obtain

L] €21+ / / £ 17E — I AgIIAE©)ldnde,

for any 0 € R. Foro € (—1,1), € € (0,2) such that ¢ > € — 1, application of
Lemma 4.1 gives us

£ < Ce;27 M min {|| £l g Mg o IAE I gri—e Il £l o } 1N 2

We set p; = € and po» = o to complete the proof. |

Appendix B. Proof of Theorem 5.1
For € > 0, we consider the following artificial viscosity regularization of (5.1):

00 — e AO +div Fy () = —y A*6. (B.1)
For 0 <t < T, define

t
F1(0) := y/ BT NG () ds,
0

t
F(6; q) == / 209 div Fy(9) ds.

0
We have
C t
I Fi(0) (Ol moe < — = 10 () || e ds

€2 Jo (t—ys)2

CT'"%

< — 1161l ree.
€2

To estimate || F>(6; g) || goc , we consider the two cases § < 1+« and B > 1+« separately.
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Case: B > 1 +«k.. ByLemma4.3 with p; =k and pp = /2, Ay = Aﬂ—Zaj, proceed-
ing as in (5.35), we obtain

C ! 1
1F20; Ol jor < / A 301g]l s ds
er Jo (t—s5)T =
C
=<

2-8
T3 |6 ; B
52 l HL?OHUC”q”L;OH’Z

Similarly, by Lemma 4.3 with p; = p» = «, we have

1#20; )OI 2 = CTNON oo proc G 1| Lo pre-

Case: B < 1+ k. In this case, we have

! C 1
1F2(0;5 ) ()l Hoe S/O {1+T—a¢.} | Aeq 00112 ds

€2 (t—s5)2
2—o¢
2
SC\T+—5— | 10l o0 groc g1l oo e -
€ T T

Using Picard’s theorem [46], there exists a unique solution 8¢ to (B.1) such that ¢ €
L‘;‘é H¢ for some time 7€ > 0. Owing to the uniform estimate in (5.32), we can conclude
that

T¢ =T, foralle > 0.

Using similar methods as above, it is easy to see that ||3,0€|| LPHoe2 is bounded uni-

formly in €. An application of Aubin-Lions theorem [18] guarantees the existence of a
limiting function 6 in L3 H . It is then straightforward to show that § is a weak solution
of (5.1). This completes the proof. O
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