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Abstract: We investigate the large time behavior of compactly supported smooth solu-
tions for a one-dimensional thin-film equation with linear mobility in the regime of
partial wetting. We show the stability of steady state solutions. Relaxation rates are
obtained for initial data which are close to a steady state in a suitable sense. The proof
uses the Lagrangian coordinates. Our method is to establish and exploit differential rela-
tions between the energy and the dissipation as well as some interpolation inequalities.
Our result is different from earlier results because here we consider solutions with finite
mass.

1. Introduction

Consider the following one-dimensional fourth-order nonlinear degenerate parabolic
equation

ut + (uuxxx )x = 0, for t > 0 and x ∈ (λ−(t), λ+(t)) = { u > 0 }, (1.1a)

u(t, λ±(t)) = 0, for t > 0, (1.1b)

|ux (t, λ±(t))| = 1, for t > 0, (1.1c)

lim
x→λ±(t)

uxxx (t, x) = V (t), for t > 0, (1.1d)

where λ± : (0,∞) → R represent the support of u, u > 0 on (λ−, λ+) and V is the
velocity of the moving boundary. We supplement the problem (1.1) with the initial data
u(0, x) = u0(x) supported in (λ0−, λ0+) and satisfying (1.1c).

Equation (1.1a) arises as the particular case of the thin-film equation in the Hele–
Shaw setting [3,25,29]. It describes the pinching of thin necks in a Hele–Shaw cell. The
function u = u(t, x) ≥ 0 represents the height of a two-dimensional viscous thin film
on a one-dimensional flat solid as a function of time t > 0 and the lateral variable x . One
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can rigorously derive equation (1.1) from the Hele–Shaw cell in the regime of thin films
and where the dominating effects are surface tension and viscosity only [15,20,21].

Equation (1.1) is a particular case of the thin-film equation

ut +
(
unuxxx

)
x = 0 for t > 0 and x ∈ R, (1.2)

where n > 0 is the mobility exponent. See [28] for a physical explanation of the Eq.
(1.2). For n ∈ (0, 3) and in the complete wetting regime, the existence of self-similar
source-type solution for (1.2) has been established in [2] by ODE arguments. For n = 1,
the authors of [2] prove the uniqueness in the class of self-similar solutions. See [2,
Lemma 6.3, p. 231]. Recently, the uniqueness of source type solutions is proved in [23]
for a larger class. For n = 2, well-posedness results are established in [19] for (1.2) in
the case of partial wetting regime. See [12,18] for the complete wetting regime.

The existence of weak solutions to (1.1) was investigated in [29]. See also [4,10,
24]. More recently, the existence and uniqueness of classical solutions to (1.1) was
shown in [21, Theorem 4, p. 607]. The asymptotic behavior of solutions to thin film
equations with prescribed contact angle has not been considered neither in [29] nor in
[21]. However, the asymptotic behavior in the complete wetting regime was investigated
in many papers. See, among many, [7–9,13,14,16,17] and references therein. See also
[31] for the multidimensional case.

In [11], the author studies the following problem for the thin-film equation in the
partial wetting regime on a half-axis, with a single contact point

ht + (hhxxx )x = 0, in (χ(t),∞) ,

h(t, χ(t)) = 0, hx (t, χ(t)) = 1, hxxx (t, χ(t)) = χ̇(t), for t > 0. (1.3)

Using a strategy inspired by [30], the author of [11] proves the stability of the steady
state given by h0(x) = max{x, 0} for initial data close, in some sense, to h0. See [11,
Theorem 1.2, p. 352]. We would like to point out that only the case where the free
boundary is given by a single contact point was considered in [11]. As pointed out in
[11], in contrast to (1.1), solutions to (1.3) do not satisfy conservation of mass or even
have finite mass.

In this paper we are interested in the case where the free boundary is given by two
contact points at every time t . Solutions of (1.1) preservemass and center ofmass defined
respectively by

∫ λ+(t)

λ−(t)
u(t, x) dx =

∫ λ0+

λ0−
u(0, x) dx := M for any t > 0; (1.4)

and
∫ λ+(t)

λ−(t)
xu(t, x) dx =

∫ λ0+

λ0−
xu(0, x) dx := μ for any t > 0. (1.5)

Note that if u has a mass M > 0 and a center of mass μ ∈ R, then ū(t, x) = u(t, x + μ
M )

has the same mass but with center of mass equal to zero. Without loss of generality, we
are going to suppose that M > 0 and μ ∈ R are given.

Ourmain goal is the study of the stability of stationary solutions to (1.1). The equation
(1.1) possesses a family of stationary solutions given by

uα−,α+(x) = (x − α−)(α+ − x)

α+ − α−
, α− < α+, x ∈ (α−, α+).
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By choosing M = 2/3 and μ = 0, we obtain α− = −1 and α+ = 1. So, we will
investigate the asymptotic behavior of smooth solutions with initial data which are small
perturbations of the steady state

u∞(x) = 1

2

(
1 − x2

)

+
,

where a+ = max{a, 0}.To this end, let us define themass Lagrangian variable as follows:
for given t ≥ 0,

y ∈ (−1, 1) �−→ x = Z(t, y) ∈ (λ−(t), λ+(t)) ,

such that

∫ Z(t,y)

λ−(t)
u(t, x) dx = 1

2

∫ y

−1
(1 − x2) dx, (1.6)

where λ±(0) = λ0±. The relation (1.6) together with (1.1) defines the function Z . One
advantage of this transformation is that in the new coordinates the boundary is fixed
to y = ±1. Moreover, the transformation (1.6) can be seen as a perturbation of the
stationary solution u∞. In addition, the stationary solution in these coordinates is given
by

Z∞(t, y) = y, (1.7)

which is a linear function in y.
The use of von Mises-type transformations in the analysis of thin-film equations was

introduced in [12] and, besides the different steady state, the specific transformation
used here was introduced in [16], and applied for (1− x2)2 instead of (1− x2) in (1.6).
Changing from (1 − x2)2 to (1 − x2) does not yield a self-adjoint linear operator L for
instance. See (2.8) below. This requires a new approach as explained below.

Before stating our result, we introduce the energy

E(t) = 1

2

∫ 1

−1

∣
∣∣∂y

(
ũ(t, y)

u∞(y)

) ∣
∣∣
2
dy, (1.8)

where ũ(t, y) = u(t, Z(t, y)). We also define Z0(y) := Z(0, y) and ũ0(y) =
u0(Z0(y)).

Our main result can be stated as follows.

Theorem 1.1 Let u be a global smooth solution to (1.1) with initial data u0 satisfying
M(u0) = 2/3 and μ(u0) = 0. There exists a constant c0 > 0 such that, if

E(0) < c0, (1.9)

then there exists γ > 0 such that

E(t) ≤ E(0) e−γ t , t ≥ 0. (1.10)
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Remark 1.2 Equation (1.1) is invariant under the scaling

uκ(t, x) = κ−1u(κ3t, κx), κ > 0.

The Lagrangian coordinate Zκ verifies

Zκ(t, y) = κ−1Z(κ3t, κy), −1 < κy < 1,

and

gk(t, y) = g(κ3t, κy),

where g is given by (2.6) below. This leads to

Eκ(0) = E1(0) = E(0).

Then the condition (1.9) is invariant under the above scaling and hence it is relevant.

Remark 1.3. Our approach doesn’t apply for weak solutions. Indeed, we need that there
is no topological change of the support { u > 0 } and that the solutions are smooth in
the set { u > 0 } up to the boundary. These requirements are not guaranteed by weak
solutions.

Remark 1.4 It is known from [1,4] that (1.1) is the gradient flow with respect to the
Wasserstein metric and the energy given by

E(u(t)) = 1

2

∫ λ+(t)

λ−(t)

(
u2x + 1

)
dx = 1

2

∫ λ+(t)

λ−(t)
(ux − 1)2 dx . (1.11)

Making the change of variable x = Z(t, y) in (1.11) and using Proposition 2.1 below,
we obtain that

E(u(t)) = 1

2

∫ 1

−1

(
2yZy + Z3

y + (1 − y2)Zyy

)2 dy

Z5
y

= 1

2

∫ 1

−1

(
Zy +

4

3Z3
y
+ (1 − y2)2

Z2
yy

Z5
y

)
dy. (1.12)

By Proposition 2.1 below, (1.8) becomes

E(t) = 1

2

∫ 1

−1

Z2
yy

Z4
y
dy. (1.13)

Clearly the two energies E(u(t)) and E(t) have different expressions.

The proof of Theorem 1.1 follows from taking the formal derivative of the energy
(1.8), obtaining a differential inequality of the form

dE

dt
+ D ≤ a

( (
E2 + E10

)
+

(
E1/3 + E5/2

)
D

)
, (1.14)

and proving a dissipation estimate

E ≤ D, (1.15)
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where a > 0 is a constant and D is an appropriately defined dissipation (see (2.11)
below). From the previous inequalities, the result follows from considering initial data
with small enough initial energy. See Corollary 3.13 below. The most laborious part of
the proof is to show (1.14) which follows from a direct calculation of the time derivative
and estimating several terms using Poincaré’s inequality and interpolation estimates. See
Proposition 4.1 below. Note that the value of γ in (1.10) is given by

γ := 1 − a(c90 + c5/20 + c0 + c1/30 ),

where c0 > 0 is introduced in (1.9) and satisfies c90 + c5/20 + c0 + c1/30 < 1/a.

From the above theorem we easily derive the following.

Corollary 1.5 Suppose (1.9) is fulfilled. Then it follows that

‖ũ0 − u∞‖L∞(−1,1) � c0, (1.16)

and

‖ũ(t) − u∞‖L∞(−1,1) � e− γ
2 t , t ≥ 0. (1.17)

An important consequence of the decay estimate (1.10) is that it implies the desired
convergence of λ± to ±1 as stated below.

Corollary 1.6 Suppose (1.9) is fulfilled. Then, for t sufficiently large, we have

|λ+(t) − λ−(t) − 2| � e− γ
2 t , (1.18)

and

|λ+(t) + λ−(t)| � e− γ
2 t , (1.19)

where γ is as in (1.10). In particular, for t large, we have

|λ+(t) − 1| + |λ−(t) + 1| � e− γ
2 t . (1.20)

We also obtain from Theorem 1.1 the convergence of the volumetric coordinates
Z(t, y) to y with the same decay rate as in (1.10).

Corollary 1.7 Suppose (1.9) is fulfilled. Then, for t sufficiently large, we have

‖∂y(Z(t) − Z∞)‖L∞(−1,1) � e− γ
2 t , (1.21)

where γ is as in (1.10).

The rest of this paper is organized as follows. In the next section, we reformulate
our problem and derive a first energy estimate. In Sect. 3, we recall and establish some
preliminaries and useful tools. Section 4 is devoted to the energy estimate. In the last
section we give the proof of the main results. We will write A � B if there exists a
constant 0 < C < ∞ such that A ≤ CB, and A ≈ A1 + A2 + · · · AN if there exist
constants c1, c2, . . . cN ∈ R such that A = c1A1 +c2A2 + · · ·+cN AN . Finally, we denote
the norm in Lebesgue space L p by ‖ · ‖p, 1 ≤ p ≤ ∞.
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2. Reformulation of the Problem

In this section we reformulate the problem (1.1). From (1.6) we deduce the following.

Proposition 2.1 Let Z be the mass Lagrangian variable defined by (1.6). Then, we have

(i) Z(t,±1) = λ±(t).
(ii) Zt (t, y) = uxxx (t, Z(t, y)).
(iii) Zy(t, y) = u∞(y)

u(t,Z(t,y)) .

Proof. Part (i) follows immediately from the definition (1.6). To prove (ii) we differen-
tiate (1.6) with respect to variable t to obtain

0 =
∫ Z(t,y)

λ−(t)
ut (t, x) dx + Zt (t, y)u(t, Z) +

dλ−(t)

dt
u(t, λ−(t)).

Using boundary condition (1.1b) and equation (1.1a), we get

0 = u(t, Z)
(
Zt (t, y) − uxxx (t, Z)

)
,

since u uxxx = 0 at x = λ±(t). This obviously leads to (ii).
Now we differentiate (1.6) with respect to variable y to obtain

Zy(t, y) u(t, Z(t, y)) = u∞(y),

which is exactly (iii). 
�
Remark 2.2

(1) By choosing y = 1 in (1.6) and using the fact that Z(t, 1) = λ+(t) we get

M =
∫ λ+(t)

λ−(t)
u(t, x) dx =

∫ 1

−1
u∞(x) dx = 2

3
.

(2) Making the change of variable x = Z(t, y) and using (iii) of the previous propo-
sition, we see that the center of mass given by (1.5) reads

μ =
∫ λ+(t)

λ−(t)
x u(t, x) dx = 1

2

∫ 1

−1

(
1 − y2

)
Z(t, y) dy. (2.1)

In order to derive an evolution equation in the Lagrangian coordinates, observe that
by the previous proposition we have

Zy(t, y) u(t, Z(t, y)) = u∞(y). (2.2)

As in [16], the relation (2.2) suggests to define

G = 1

Zy
. (2.3)

The evolution equation satisfied by G is given in the following proposition.
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Proposition 2.3 The function G defined by (2.3) solves

Gt + G2∂y

( (
G∂y

)3 (
u∞ G

) )
= 0, for t > 0 and y ∈ (−1, 1) , (2.4a)

G(t,±1) = 1, for t > 0. (2.4b)

Proof. Differentiating (2.3) with respect to t yields

Gt = − Zty

Z2
y

= −G2 Zty . (2.5)

Since, by Proposition 2.1 (iii), u∞(y)G(t, y) = u(t, Z(t, y)), it follows that
∂y(u∞ G) = Zy ux = 1

G ux . Therefore

G ∂y
(
u∞ G

) = ux (t, Z).

Similarly we obtain that

(
G ∂y

)2 (
u∞ G

) = uxx (t, Z) and
(
G ∂y

)3 (
u∞ G

) = uxxx (t, Z).

Using Part (ii) in Proposition 2.1 and (2.5), we infer

Gt = −G2 Zty

= −G2 ∂y Zt

= −G2 ∂y (uxxx (t, Z))

= −G2 ∂y

( (
G ∂y

)3 (
u∞ G

) )

This leads to (2.4a). To prove (2.4b) we use the L’Hôpital rule to deduce that

Zy(t, 1) = (u∞)′(1)
Zy(t, 1) ux (t, λ+(t))

.

Hence (Zy(t, 1))2 = 1. By (2.2), Zy ≥ 0. Then, using (2.3) we get (2.4b). Similarly for
y = −1. 
�
Since we want to study perturbations of G∞ = 1

Z∞
y

= 1, we set

G = 1 + g. (2.6)

Referring to (2.4), we obtain that

gt + L g = N (g), for t > 0 and y ∈ (−1, 1) , (2.7a)

g(t,±1) = 0, for t > 0, (2.7b)

where

L g = −10∂2y g − 5y ∂3y g +
1 − y2

2
∂4y g, (2.8)
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and

N (g) = −25(1 + g)4
(
∂y g

)2 − 10
[
(1 + g)5 − 1

]
∂2y g

−15y(1 + g)3
(
∂y g

)3 − 30y(1 + g)4 ∂yg ∂2y g

−5y
[
(1 + g)5 − 1

]
∂3y g +

1 − y2

2
(1 + g)2 (∂y g)

4

+
11

2
(1 − y2)(1 + g)3(∂y g)

2∂2y g

+2(1 − y2)(1 + g)4 (∂2y g)
2 +

7

2
(1 − y2)(1 + g)4 ∂y g ∂3y g

+
1 − y2

2

[
(1 + g)5 − 1

]
∂4y g. (2.9)

Using (2.2), (2.3) and (2.6), we may rewrite the energy given by (1.8) as

E(t) = 1

2
‖∂y g(t)‖22. (2.10)

We also introduce the dissipation

D(t) = 8‖∂2y g(t)‖22 +
1

2
‖
√
1 − y2 ∂3y g(t)‖22, (2.11)

as well as the following quantities

I1 = 25
∫ 1

−1
(1 + g)4 (∂y g)

2 ∂2y g dy,

I2 = 10
∫ 1

−1

[
(1 + g)5 − 1

] (
∂2y g

)2
dy,

I3 = 15
∫ 1

−1
y(1 + g)3

(
∂y g

)3
∂2y g dy,

I4 = 30
∫ 1

−1
y(1 + g)4 ∂y g

(
∂2y g

)2
dy,

I5 = 5
∫ 1

−1
y
[
(1 + g)5 − 1

]
∂3y g ∂2y g dy,

I6 = −1

2

∫ 1

−1
(1 − y2)(1 + g)2

(
∂y g

)4
∂2y g dy,

I7 = −11

2

∫ 1

−1
(1 − y2)(1 + g)3

(
∂y g

)2 (
∂2y g

)2
dy,

I8 = −2
∫ 1

−1
(1 − y2) (1 + g)4

(
∂2y g

)3
dy,

I9 = −7

2

∫ 1

−1
(1 − y2) (1 + g)4 ∂y g ∂3y g ∂2y g dy,

I10 = −1

2

∫ 1

−1
(1 − y2)

[
(1 + g)5 − 1

]
∂4y g ∂2y g dy.
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Our aim now is to obtain a first energy estimate. We have obtained the following.

Proposition 2.4 Let E and D be given by (2.10) and (2.11) respectively. Then

dE

dt
+ D ≤

10∑

k=1

Ik . (2.12)

Proof. Multiplying (2.7a) by −∂2y g and integrating in y ∈ (−1, 1) we get, using (2.7b)

dE

dt
+ D = −2

[(
gyy(1)

)2 +
(
gyy(−1)

)2] +
10∑

k=1

Ik .

In fact, since g(t,±1) = 0 for all t > 0, we have

−
∫ 1

−1
gt gyydy = −[gt gy]1−1 +

∫ 1

−1
(∂t gy)gydy

= 1

2
∂t

(∫ 1

−1
g2ydy

)
:= dE

dt
.

Also,

−
∫ 1

−1

1 − y2

2
∂4y g∂

2
y gdy = −

[
1 − y2

2
∂3y g∂

2
y g

]1

−1
+

∫ 1

−1

1 − y2

2

(
∂3y g

)2
dy

−
∫ 1

−1
y∂2y g∂

3
y gdy

=
∫ 1

−1

1 − y2

2

(
∂3y g

)2
dy −

∫ 1

−1
y∂2y g∂

3
y gdy

Hence

5
∫ 1

−1
y∂3y g∂

2
y gdy −

∫ 1

−1

1 − y2

2
∂4y g∂

2
y gdy

=
∫ 1

−1

1 − y2

2

(
∂3y g

)2
dy + 4

∫ 1

−1
y∂2y g∂

3
y gdy

=
∫ 1

−1

1 − y2

2

(
∂3y g

)2
dy + 4

∫ 1

−1
y
1

2
∂y

(
(∂2y g)

2
)
dy

=
∫ 1

−1

1 − y2

2

(
∂3y g

)2
dy + 2[y

(
∂2y g

)2]1−1 − 2
∫ 1

−1

(
∂2y g

)2
dy.

Then

10
∫ 1

−1

(
∂2y g

)2
dy + 5

∫ 1

−1
y∂3y g∂

2
y gdy −

∫ 1

−1

1 − y2

2
∂4y g∂

2
y gdy

=
∫ 1

−1

1 − y2

2

(
∂3y g

)2
dy + 2[y

(
∂2y g

)2]1−1 + 8
∫ 1

−1

(
∂2y g

)2
dy

= 2

[
y
(
∂2y g

)2]1

−1
+ D(t),

and we get (2.12). 
�
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3. Useful Tools

In this section, we recall some known and useful tools. Then, we use them to obtain
crucial estimates needed in our proofs.

Proposition 3.1 (Poincaré’s inequality). Suppose I = (a, b) ⊂ R is a bounded interval
and 1 ≤ p, q ≤ ∞. Then, for every u ∈ W 1,p

0 (I ), we have

‖u‖q ≤ |I | 1q − 1
p +1 ‖u′‖p. (3.1)

Proof. For x ∈ I we have u(x) = ∫ x
a u′(t) dt . Hence, for all x ∈ I

|u(x)| ≤
∫

I
|u′(t)| dt ≤ |I |1− 1

p ‖u′‖p. (3.2)

This proves (3.1) for q = ∞. Suppose now q < ∞. Then, by (3.2), we obtain that
∫

I
|u(x)|q dx ≤ |I |1+q− q

p ‖u′‖qp.

This leads to (3.1) as desired. 
�
Remark 3.2 For u ∈ W 1,p(I ) we introduce

Z(u) :=
{
x ∈ Ī ; u(x) = 0

}
.

This definition makes sense since W 1,p(I ) ↪→ C( Ī ). We also define

W̃ 1,p(I ) :=
{
u ∈ W 1,p(I ); Z(u) �= ∅

}
.

Clearly W 1,p
0 (I ) ⊂ W̃ 1,p(I ).

A more general statement of Poincaré’s inequality can be stated as follows.

Proposition 3.3 Suppose I = (a, b) ⊂ R is a bounded interval and 1 ≤ p, q ≤ ∞.
Then, for every u ∈ W̃ 1,p(I ), we have

‖u‖q ≤ |I | 1q − 1
p +1 ‖u′‖p. (3.3)

From Proposition 3.3 we deduce the following Poincaré–Wirtinger inequality.

Proposition 3.4 (Poincaré–Wirtinger’s inequality). Let 1 ≤ p, q ≤ ∞ and I =
(a, b) ⊂ R a bounded interval. Then, for any u ∈ W 1,p(I ), we have

‖u − u‖q ≤ |I | 1q − 1
p +1 ‖u′‖p, (3.4)

where

u = 1

|I |
∫

I
u(y) dy.

Proof. Let u ∈ W 1,p(I ) and define v = u − u. Since
∫
I v = 0 and v ∈ C( Ī ), then

v ∈ W̃ 1,p(I ). Applying (3.3) with v we conclude the proof since v′ = u′. 
�
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Note that, if u ∈ W 2,p(I ) ∩ W 1,p
0 (I ), then u′ = 0. Hence, by applying (3.4) with u′

instead of u, we obtain the following useful inequality.

Corollary 3.5 Let 1 ≤ p, q ≤ ∞ and I = (a, b) ⊂ R a bounded interval. Then, for
any u ∈ W 2,p(I ) ∩ W 1,p

0 (I ), we have

‖u′‖q ≤ |I | 1q − 1
p +1 ‖u′′‖p. (3.5)

We also recall the following Gagliardo-Nirenberg interpolation inequalities useful
for our purpose. We refer to [5,26,27] for more general statements.

Proposition 3.6 Suppose I = (a, b) ⊂ R is a bounded interval, 1 ≤ q < ∞ and
1 ≤ r ≤ ∞. Then, there exists a constant C = C(q, r) > 0 such that for every
u ∈ W 1,r (I ), we have

‖u‖∞ ≤ C

(
1 +

1

|I |
)

‖u‖δ
W 1,r ‖u‖1−δ

q , (3.6)

where 0 < δ ≤ 1 is defined by

δ

(
1

q
+ 1 − 1

r

)
= 1

q
. (3.7)

Proof. We start with the case r > 1. We first suppose u(a) = 0. Then

|u(x)|α−1u(x) =
∫ x

a
G ′(u(τ ))u′(τ ) dτ,

where G(τ ) = |τ |α−1τ and α = 1
δ

∈ (1,∞). It follows by Hölder’s inequality that

|u(x)|α ≤ α

∫

I
|u(τ )|α−1 |u′(τ )| dτ

≤ α ‖u′‖r ‖u‖α−1
r ′(α−1)

≤ α ‖u′‖r ‖u‖α−1
q ,

where we have used the fact that r ′(α − 1) = q. Therefore

‖u‖∞ ≤ α
1
α ‖u′‖

1
α
r ‖u‖1−

1
α

q ≤ δ−δ ‖u′‖δ
r ‖u‖1−δ

q . (3.8)

We now turn to the case when u(a) �= 0. Let η ∈ C1([a, b]) defined by

η(s) =
⎧
⎨

⎩

4
|I | (s − a) − 4

|I |2 (s − a)2 if a ≤ s ≤ a+b
2 ,

1 if a+b
2 ≤ s ≤ b.

Clearly 0 ≤ η ≤ 1 and 0 ≤ η′ ≤ 4
|I | . Applying (3.8) respectively to v(x) := η(x)u(x)

and w(x) = η(x)u(a + b − x), we get

|u(x)| ≤ C

(
1 +

1

|I |
)

‖u‖δ
W 1,r ‖u‖1−δ

q , ∀ x ∈
[
a + b

2
, b

]
, (3.9)
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and

|u(y)| ≤ C

(
1 +

1

|I |
)

‖u‖δ
W 1,r ‖u‖1−δ

q , ∀ y ∈
[
a,

a + b

2

]
. (3.10)

Combining (3.9) and (3.10) we obtain the desired inequality (3.6) when r > 1. This
finishes the proof since the case r = 1 is trivial. 
�
Remark 3.7 A careful inspection of the proof shows that the constant C appearing in
(3.6) can be taken as

C(q, r) = C0

(
1 + q − q

r

) 1
1+q− q

r ,

where C0 > 0 is an absolute constant.

Proposition 3.8 Suppose I = (a, b) ⊂ R is a bounded interval, 1 ≤ q < ∞, q ≤ p ≤
∞ and 1 ≤ r ≤ ∞. Then, there exists a constant C = C(|I |, p, q, r) > 0 such that
for every u ∈ W 2,r (I ) ∩ W 1,r

0 (I ), we have

‖u′‖p ≤ C‖u′′‖θ
r ‖u′‖1−θ

q , (3.11)

where 0 ≤ θ ≤ 1 is defined by

θ

(
1

q
+ 1 − 1

r

)
= 1

q
− 1

p
. (3.12)

Proof. The case p = q is trivial. We will focus only on the case q < p ≤ ∞. The proof
will be divided into three steps.
Step 1. We claim that

‖v‖p ≤ C‖v‖θ
W 1,r ‖v‖1−θ

q , ∀ v ∈ W 1,r (I ), (3.13)

for some constant C = C(|I |, p, q, r) > 0, where θ is given as in (3.12). Note that for
p = ∞ we have θ = δ and (3.13) reduces to (3.6). To see (3.13) for p < ∞ we write
using (3.6)

‖v‖p
p =

∫

I
|v(x)|p−q |v(x)|q dx

≤ ‖v‖p−q∞ ‖v‖qq
≤

(
C

(
1 +

1

|I |
)

‖v‖δ
W 1,r ‖v‖1−δ

q

)p−q

‖v‖qq .

Therefore

‖v‖p ≤ C1− q
p

(
1 +

1

|I |
)1− q

p ‖v‖δ(1− q
p )

W 1,r ‖v‖(1−δ)(1− q
p )+ q

p
q .

This leads to (3.13) thanks to θ = δ(1 − q
p ) and 1 − θ = (1 − δ)(1 − q

p ) + q
p .

Step 2. We claim that

‖v‖p ≤ C‖v′‖θ
r ‖v‖1−θ

q , ∀ v ∈ W 1,r (I ) with
∫

I
v(x) dx = 0, (3.14)
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for some constant C = C(|I |, p, q, r) > 0, where θ is given as in (3.12).
Since v = 0, we obtain by using (3.13) and (3.4) that

‖v‖p = ‖v − v‖p ≤ C‖v − v‖θ
W 1,r ‖v − v‖1−θ

q

≤ C‖v′‖θ
r ‖v‖1−θ

q .

Step 3. Now we are ready to conclude the proof. Let u ∈ W 2,r (I ) ∩ W 1,r
0 (I ). Then

clearly u′ ∈ W 1,r (I ) and
∫

I
u′ = 0. Applying (3.14) to v := u′ we get (3.11). 
�

Remark 3.9 Choose q = r = 2 in Proposition 3.8, we see that θ = 1
2 − 1

p . The inequality
(3.11) takes the following form

‖u′‖p � ‖u′′‖
1
2− 1

p
2 ‖u′‖

1
2 +

1
p

2 , (3.15)

for all 2 ≤ p ≤ ∞ and u ∈ H2(I ) ∩ H1
0 (I ).

From the above inequalities we deduce the following estimates.

Lemma 3.10 Let g = g(y) ∈ H2(−1, 1) ∩ H1
0 (−1, 1). Then, we have

(i)

‖g‖∞ � E1/2. (3.16)

(ii)

E ≤ D. (3.17)

(iii) For every 2 ≤ p ≤ ∞,

‖∂y g‖p � E
1
4 +

1
2p D

1
4− 1

2p . (3.18)

(iv)

‖
√
1 − y2∂2y g‖2 � E1/4 D1/4. (3.19)

(v) For every 2 ≤ p < ∞,

‖∂2y g‖p � D1/2. (3.20)

(vi) For every ε > 0,

‖(1 − y2)ε ∂2y g‖∞ � D1/2. (3.21)

Proof. (i) Applying (3.1) with q = ∞ and p = 2, we obtain (3.16).
(ii) The inequality (3.17) follows from (3.5) with p = q = 2. Indeed, applying (3.5)

with p = q = 2 yields

E = 1

2
‖∂y g‖22 ≤ 2‖∂2y g‖22

≤ 8‖∂2y g‖22 +
1

2
‖
√
1 − y2 ∂3y g‖22 = D.



850 M. Majdoub, N. Masmoudi, S. Tayachi

(iii) The inequality (3.18) follows from (3.11).
(iv) We write, using integration by parts,

∫ 1

−1
(1 − y2)

(
∂2y g

)2
dy =

∫ 1

−1
(1 − y2)∂2y g∂

2
y gdy

= −
∫ 1

−1
(1 − y2)∂3y g∂ygdy +

∫ 1

−1
2y∂2y g∂ygdy.

Then (3.19) follows by the Cauchy–Schwarz inequality.
(v) To prove (3.20) we write,

∂2y g(y) = ∂2y g(0) +
∫ y

0
∂3y g(z)dz

= ∂2y g(0) +
∫ y

0

√
1 − z2∂3y g(z)

1√
1 − z2

dz.

Since
√
1 − y2 ≥

√
3
2 for y ∈ (−1/2, 1/2), we obtain

|∂2y g(0)| � ‖∂2y g‖L∞(−1/2,−1/2)

� ‖∂2y g‖H1(−1/2,−1/2)

� ‖
√
1 − y2∂3y g‖2 + ‖∂2y g‖2

� D1/2.

By Cauchy–Schwarz’s inequality, we get

|∂2y g(y)| � |∂2y g(0)| +
(∣∣

∣∣

∫ y

0

(√
1 − z2∂3z g(z)

)2
dz

∣∣
∣∣

)1/2 (∣∣
∣∣

∫ y

0

1

1 − z2
dz

∣∣
∣∣

)1/2

� D1/2 + D1/2
(
1

2

∣∣∣∣log
(
1 + y

1 − y

)∣∣∣∣

)1/2

(3.22)

The desired inequality (3.20) follows thanks to the fact that
(∣∣∣log

(
1+y
1−y

)∣∣∣
)1/2 ∈

L p(−1, 1) for any 2 ≤ p < ∞.

(vi) Inequality (3.21) can be deduced easily from (3.22) making use of xα log(x) ∈
L∞(0, a) for any positive constants α and a.


�
Lemma 3.11 Let m ≥ 1 be an integer and g = g(y) ∈ H2(−1, 1) ∩ H1

0 (−1, 1). Then
we have

∥∥∥
gm

1 − y2

∥∥∥∞ � Em/2−1/4 D1/4. (3.23)

Proof. Since H2 ↪→ C1 and g(±1) = 0, we get by the mean value theorem that
∥∥∥

gm

1 − y2

∥∥∥∞ ≤
∥∥∥

gm

1 − y2

∥∥∥
L∞(−1,0)

+
∥∥∥

gm

1 − y2

∥∥∥
L∞(0,1)

≤ 2m‖g‖m−1∞ ‖∂y g‖∞.
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Therefore we obtain thanks to (3.16) and (3.18) (with p = ∞) that

∥∥∥
gm

1 − y2

∥∥∥∞ � E
m−1
2 E1/4 D1/4

� E
2m−1

4 D1/4.

This finishes the proof. 
�
To obtain the desired decay estimate, we will use the following.

Lemma 3.12 Let E, D : [0,∞) → [0,∞) be absolutely continuous functions such
that

dE

dt
+ D ≤ a

(
Eα + Eβ D

)
, (3.24)

and

bE ≤ D, (3.25)

where a, b > 0, α > 1 and β > 0. Then there exists ε > 0 and ν > 0 such that

E(0) < ε �⇒ E(t) ≤ E(0) e−ν t , t ≥ 0. (3.26)

Proof. Choose ε > 0 small enough such that 1 − aεβ > 0 and

ν := b(1 − aεβ) − aεα−1 > 0. (3.27)

Suppose that E(0) < ε and define

T ∗ = sup
{
s ≥ 0; E(t) ≤ ε for all t ∈ [0, s]

}
. (3.28)

By continuity of E we deduce that T ∗ > 0. For 0 ≤ t < T ∗, we have

dE

dt
+ (1 − aεβ)D ≤ aEα,

≤ aεα−1E .

Using (3.25) we deduce that

dE

dt
+ ν E ≤ 0,

where ν is given by (3.27). This finally leads to

E(t) ≤ E(0)e−ν t , for all 0 ≤ t < T ∗.

In particular T ∗ = ∞ and, for all t ∈ [0,∞), we have

E(t) ≤ E(0) e−ν t .


�
From the above Lemma we deduce the following.
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Corollary 3.13 Let E, D : [0,∞) → [0,∞) be absolutely continuous functions such
that

dE

dt
+ D ≤ a

(
Eα1 + Eα2 +

(
Eβ1 + Eβ2

)
D

)
, (3.29)

and

bE ≤ D, (3.30)

where a, b > 0,α1, α2 > 1 andβ1, β2 > 0. Then, for c0 > 0 satisfying 1−a(cβ1
0 +cβ2

0 ) >

0 and

γ := b
(
1 − a(cβ1

0 + cβ2
0 )

)
− a(cα1−1

0 + cα2−1
0 ) > 0, (3.31)

we have

E(0) < c0 �⇒ E(t) ≤ E(0) e−γ t , t ≥ 0. (3.32)

4. The Energy Estimate

In this section we will see how to estimate all terms Ik to get the following energy
inequality leading to the desired decay rate.

Proposition 4.1 We have

dE

dt
+ D � E2 + E10 +

(
E1/3 + E5/2

)
D. (4.1)

Proof. The proof uses similar ideas to those in [6,22]. We have thanks to (2.12) that

dE

dt
+ D ≤

10∑

k=1

Ik,

where the energy and the dissipation are given respectively by (2.10) and (2.11).
In what follows we will estimate each term Ik for k = 1, 2, . . . , 10.

Estimation of I1: By Cauchy–Schwarz’s inequality, and using (3.16), (3.18), we get

|I1| �
(
1 + ‖g‖4∞

)
‖∂2y g‖2 ‖∂y g‖24,

�
(
1 + E2

)
D1/2 D1/4 E3/4.

This leads to

|I1| �
(
E3/4 + E11/4

)
D3/4. (4.2)

Estimation of I2: Using (3.16), we obtain that
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|I2| = |
∫ 1

−1

[
(1 + g)5 − 1

] (
∂2y g

)2
dy|

�
(
‖g‖∞ + ‖g‖5∞

)
‖∂2y g‖22

�
(
E1/2 + E5/2

)
D. (4.3)

Estimation of I3: We have

|I3| �
(
1 + ‖g‖3∞

)
‖∂2y g‖2‖∂yg‖36.

Using (3.16) and (3.18) (with p = 6), we obtain that

|I3| �
(
1 + E3/2

)
D1/2 E D1/2

�
(
E + E5/2

)
D. (4.4)

Estimation of I4: We have

|I4| �
(
1 + ‖g‖4∞

) (∫ 1

−1
|∂yg|(∂2y g)2dy

)

�
(
1 + ‖g‖4∞

)
‖∂yg‖2‖(∂2y g)2‖2

�
(
1 + E2

)
E1/2‖∂2y g‖24.

Using (3.20) with p = 4, we obtain

|I4| �
(
E1/2 + E5/2

)
D. (4.5)

Estimation of I5: By using an integration by parts, (Note that (1 + g)5 − 1 = 0 for
y = ±1) we can write

I5 ≈

∫ 1

−1

(
(1 + g)5 − 1

) (
∂2y g

)2
dy +

∫ 1

−1
y(1 + g)4∂yg

(
∂2y g

)2
dy

≈ I2 + I4.

Therefore

|I5| �
(
E1/2 + E5/2

)
D. (4.6)

Estimation of I6: By using an integration by parts, we can write

I6 = − 1

10

∫ 1

−1
(1 − y2)(1 + g)2 ∂y

[(
∂y g

)5]
dy

= −1

5

∫ 1

−1
y(1 + g)2

(
∂y g

)5
dy

+
1

5

∫ 1

−1
(1 − y2)(1 + g)

(
∂y g

)6
dy.
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Then, by (3.16) and (3.18)

|I6| �
(
1 + ‖g‖2∞

)
‖∂yg‖55 + (1 + ‖g‖∞) ‖∂yg‖66

� (1 + E) E7/4D3/4 +
(
1 + E1/2

)
E2D

�
(
E7/4 + E11/4

)
D3/4 +

(
E2 + E5/2

)
D. (4.7)

Estimation of I7: Making use of (3.16) and (3.21), we can write

|I7| �
(
1 + ‖g‖3∞

)
‖(1 − y2)1/2∂2y g‖2∞ ‖∂y g‖22

�
(
1 + E3/2

)
D E =

(
E + E5/2

)
D. (4.8)

Estimation of I9: By Hölder’s inequality, (3.16), (3.18) and (3.19), we get

|I9| � (1 + ‖g‖4∞)‖∂y g‖∞ ‖
√
1 − y2∂3y g‖2 ‖

√
1 − y2 ∂2y g‖2

� (1 + E2) D1/4E1/4 D1/2D1/4E1/4

�
(
E1/2 + E5/2

)
D. (4.9)

Estimation of I8: By integration by parts using the fact that y = −∂y(
1−y2

2 ), we have

I4 = −120

11
I7 − 15

2
I8 − 60

7
I9. (4.10)

Hence

|I8| � |I9| + |I7| + |I4|
�

(
E1/2 + E5/2

)
D +

(
E + E5/2

)
D

�
(
E1/2 + E + E5/2

)
D. (4.11)

Estimation of I10: Using integration by parts, we get

I10 = −1

2

∫ 1

−1
(1 − y2)

[
(1 + g)5 − 1

]
∂4y g ∂2y g dy

≈

∫ 1

−1
y
[
(1 + g)5 − 1

]
∂3y g ∂2y g dy

+
∫ 1

−1
(1 − y2)(1 + g)4 ∂3y g ∂2y g∂y g dy

+
∫ 1

−1
(1 − y2)

[
(1 + g)5 − 1

]
(∂3y g)

2 dy

≈ I5 + I9 +
∫ 1

−1
(1 − y2)

[
(1 + g)5 − 1

]
(∂3y g)

2 dy.
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Hence we obtain thanks to (3.16), (4.6) and (4.9)

|I10| � |I5| + |I9| +
(
‖g‖∞ + ‖g‖5∞

)
D

� |I5| + |I9| +
(
E1/2 + E5/2

)
D

�
(
E1/2 + E5/2

)
D. (4.12)

Putting all the estimates (4.2)–(4.12) together, we get

dE

dt
+ D �

(
E1/2 + E + E2 + E5/2

)
D +

(
E3/4 + E7/4 + E11/4

)
D3/4.

Using the fact that

xα1 + xα2 + · · · + xαn � xα1 + xαn , (4.13)

for αn > αn−1 > · · · > α1 > 0 and x ≥ 0, we conclude that

dE

dt
+ D �

(
E1/2 + E5/2

)
D +

(
E3/4 + E11/4

)
D3/4.

By Young’s inequality, we have

E3/4 D3/4 = E1/2(E1/4 D3/4) ≤ E2 + E1/3D,

E11/4 D3/4 = E5/2(E1/4 D3/4) ≤ E10 + E1/3D.

Using again (4.13) we conclude the proof. 
�

5. Proof of the Main Results

This section is devoted to the proof of the main results stated in the introduction. We
begin by proving Theorem 1.1. Using the equivalent expression of the energy E given
in (2.10), it suffices to prove the following.

Theorem 5.1 Let g be a global smooth solution of (2.7)with initial data g0. There exists
ε > 0 such that, if

E(0) < ε,

then there exists γ > 0 such that

E(t) ≤ E(0) e−γ t , t ≥ 0.

Proof. The proof follows by using Proposition 4.1 and Corollary 3.13 with α1 =
2, α2 = 10, β1 = 1/3, β2 = 5/2. 
�
Proof of Corollary 1.5. By (1.6)–(2.3), we have that

u(t, Z(t, y)) − u∞(y) = 1

2
(1 − y2)g(t, y), t ≥ 0, y ∈ [−1, 1].

In particular, for t = 0 we have

u(0, Z(0, y)) − u∞(y) = 1

2
(1 − y2)g(0, y) =: 1

2
(1 − y2)g0(y),

where g0 in the initial data for g and Z(0, y) := Z0(y) is the initial data for Z . The
proof follows by using (3.16). 
�
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Proof of Corollary 1.6. By (2.3), we have Zy(t, y) = 1
1+g(t,y) . Integrating with respect

to y and using Z(t,±1) = λ±(t), we find that

λ+(t) − λ−(t) =
∫ 1

−1

dy

1 + g(t, y)
.

It follows from (1.10) and (3.16) that, for t sufficiently large, we have

|λ+(t) − λ−(t) − 2| =
∣∣
∣∣−

∫ 1

−1

g(t, y)

1 + g(t, y)
dy

∣∣
∣∣

� ‖g(t)‖∞
� e− γ

2 t ,

where γ is as in (1.10). Next, we integrate (y − y3

3 )Zy to get

λ+(t) + λ−(t) = 3

2

∫ 1

−1

y − y3

3

1 + g(t, y)
dy +

3

2

∫ 1

−1
(1 − y2)Z(t, y) dy

= 3

2

∫ 1

−1

y − y3

3

1 + g(t, y)
dy, (5.1)

where we have used

3

2

∫ 1

−1
(1 − y2)Z(t, y) dy = 3

∫ λ+(t)

λ−(t)
xu(t, x) dx = μ(u(t)) = μ(u0) = 0.

Taking advantage of the fact that
∫ 1

−1

(
y − y3

3

)
dy = 0, we infer

λ+(t) + λ−(t) = −3

2

∫ 1

−1

(y − y3

3 )g(t, y)

1 + g(t, y)
dy. (5.2)

We conclude the proof of (1.19) by using (5.2), (1.10) and (3.16). Combining (1.18) and
(1.19) we obtain (1.20). This finishes the proof of Corollary 1.6. 
�
Proof of Corollary 1.7. By (2.3) and (2.6) we have the equality

∂y Z(t, y) − ∂y Z
∞ = ∂y Z − 1 = − g

1 + g
.

The proof follows using (1.10) and (3.16). 
�
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