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Abstract: We investigate the large time behavior of compactly supported smooth solu-
tions for a one-dimensional thin-film equation with linear mobility in the regime of
partial wetting. We show the stability of steady state solutions. Relaxation rates are
obtained for initial data which are close to a steady state in a suitable sense. The proof
uses the Lagrangian coordinates. Our method is to establish and exploit differential rela-
tions between the energy and the dissipation as well as some interpolation inequalities.
Our result is different from earlier results because here we consider solutions with finite
mass.

1. Introduction

Consider the following one-dimensional fourth-order nonlinear degenerate parabolic
equation

Uy + (Uitgy), =0, fort>0andx € (_(t), A1) ={u >0}, (Lla)

u(t,r+(t)) =0, fort > 0, (1.1b)

lux (@, ()| =1, fort > 0, (1.1¢)

m ey (2, x) = V(2), fort > 0, (1.1d)
x—>Ax (1)

where A4 : (0, 00) — R represent the support of u, u > 0 on (A_, A;) and V is the
velocity of the moving boundary. We supplement the problem (1.1) with the initial data
u(0, x) = up(x) supported in o, )\2) and satisfying (1.1c).

Equation (1.1a) arises as the particular case of the thin-film equation in the Hele—
Shaw setting [3,25,29]. It describes the pinching of thin necks in a Hele—Shaw cell. The
function u# = u(t, x) > 0 represents the height of a two-dimensional viscous thin film
on a one-dimensional flat solid as a function of time ¢ > 0 and the lateral variable x. One
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can rigorously derive equation (1.1) from the Hele—Shaw cell in the regime of thin films
and where the dominating effects are surface tension and viscosity only [15,20,21].
Equation (1.1) is a particular case of the thin-film equation

p+ (u'ttyy) =0 fort >0andx €R, (1.2)

where n > 0 is the mobility exponent. See [28] for a physical explanation of the Eq.
(1.2). For n € (0, 3) and in the complete wetting regime, the existence of self-similar
source-type solution for (1.2) has been established in [2] by ODE arguments. Forn = 1,
the authors of [2] prove the uniqueness in the class of self-similar solutions. See [2,
Lemma 6.3, p. 231]. Recently, the uniqueness of source type solutions is proved in [23]
for a larger class. For n = 2, well-posedness results are established in [19] for (1.2) in
the case of partial wetting regime. See [12, 18] for the complete wetting regime.

The existence of weak solutions to (1.1) was investigated in [29]. See also [4,10,
24]. More recently, the existence and uniqueness of classical solutions to (1.1) was
shown in [21, Theorem 4, p. 607]. The asymptotic behavior of solutions to thin film
equations with prescribed contact angle has not been considered neither in [29] nor in
[21]. However, the asymptotic behavior in the complete wetting regime was investigated
in many papers. See, among many, [7-9,13,14,16,17] and references therein. See also
[31] for the multidimensional case.

In [11], the author studies the following problem for the thin-film equation in the
partial wetting regime on a half-axis, with a single contact point

hi+ (hhyxx), =0, in (x(1), 00),
h(t, x(@) =0, hx@t, x®) =1, hox(@, x@®) = x@), forr>0. (1.3)

Using a strategy inspired by [30], the author of [11] proves the stability of the steady
state given by ho(x) = max{x, O} for initial data close, in some sense, to /g. See [11,
Theorem 1.2, p. 352]. We would like to point out that only the case where the free
boundary is given by a single contact point was considered in [11]. As pointed out in
[11], in contrast to (1.1), solutions to (1.3) do not satisfy conservation of mass or even
have finite mass.

In this paper we are interested in the case where the free boundary is given by two
contact points at every time . Solutions of (1.1) preserve mass and center of mass defined
respectively by

e (1) 29
/ u(t,x)dx = / u(0,x)dx :=M forany ¢ > 0; (1.4)
A_ (1) 20
and
PG s
/ xu(t,x)dx =/ xu(0,x)dx :=pn forany ¢ > 0. (1.5)
A_(1) 20

Note that if # has a mass M > 0 and a center of mass u € R, then u(z, x) = u(t, x + %)
has the same mass but with center of mass equal to zero. Without loss of generality, we
are going to suppose that M > 0 and u € R are given.
Our main goal is the study of the stability of stationary solutions to (1.1). The equation
(1.1) possesses a family of stationary solutions given by
(x —a-)(ay —x)

Ug_ o, (X) = P , 0 < a4y, X € (00—, 0y).
+ - f—
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By choosing M = 2/3 and © = 0, we obtain «— = —1 and oy = 1. So, we will
investigate the asymptotic behavior of smooth solutions with initial data which are small
perturbations of the steady state

w0=1(-9),

where a; = max{a, 0}. To this end, let us define the mass Lagrangian variable as follows:
for given t > 0,

ye(=L Dr—x=2Z(y) e A_(1), (1)),

such that

Z(1,y) 1 [
/ u(t,x)dx = -/ (1 —x%)dx, (1.6)
A (1) 2J

where A+ (0) = )»9_L. The relation (1.6) together with (1.1) defines the function Z. One
advantage of this transformation is that in the new coordinates the boundary is fixed
to y = =*1. Moreover, the transformation (1.6) can be seen as a perturbation of the
stationary solution u#°. In addition, the stationary solution in these coordinates is given
by

Z=(@, ) =y, (1.7)

which is a linear function in y.

The use of von Mises-type transformations in the analysis of thin-film equations was
introduced in [12] and, besides the different steady state, the specific transformation
used here was introduced in [16], and applied for (1 — x2)?% instead of (1 — x2) in (1.6).
Changing from (1 — x2)2 to (1 — x?) does not yield a self-adjoint linear operator £ for
instance. See (2.8) below. This requires a new approach as explained below.

Before stating our result, we introduce the energy

Ly (a2
s =3 [ o (=5)[ -
where u(t,y) = u(t, Z(t,y)). We also define Zo(y) := Z(0,y) and up(y) =

uo(Zo(y))-
Our main result can be stated as follows.

Theorem 1.1 Let u be a global smooth solution to (1.1) with initial data ug satisfying
M((ug) = 2/3 and t(ug) = 0. There exists a constant co > 0 such that, if

E(0) < co, (1.9)
then there exists y > 0 such that

Et) <EO) e, t>0. (1.10)
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Remark 1.2 Equation (1.1) is invariant under the scaling
Ue(t,x) = Kﬁlu(/c3t, kx), k > 0.
The Lagrangian coordinate Z, verifies
Ze(t,y) = K_IZ(K3I, ky), -1 <ky <1,

and

g(t, y) = gt k),
where g is given by (2.6) below. This leads to

E(0) = E1(0) = E(0).
Then the condition (1.9) is invariant under the above scaling and hence it is relevant.

Remark 1.3. Our approach doesn’t apply for weak solutions. Indeed, we need that there
is no topological change of the support {# > 0} and that the solutions are smooth in
the set {# > 0} up to the boundary. These requirements are not guaranteed by weak
solutions.

Remark 1.4 1t is known from [1,4] that (1.1) is the gradient flow with respect to the
Wasserstein metric and the energy given by

As (1) 1

hea ()
Eu(t)) = %A . (u§+1) dx = EA . (uy — 1)? dx. (1.11)
_(t —(r

Making the change of variable x = Z(¢, y) in (1.11) and using Proposition 2.1 below,
we obtain that

L 3 2 > dy
Eu®) = 5 5 2yZy + Zy+ (1 = y9)Zyy z
1! 4 72
= — Z+_+1_ 252 7YYy d 112
2/_1(> s P g ) (1.12)
By Proposition 2.1 below, (1.8) becomes
1 [z

EM) =5 [ —rdy. 113
o=3 o 1)

Clearly the two energies £(u(t)) and E (¢) have different expressions.

The proof of Theorem 1.1 follows from taking the formal derivative of the energy
(1.8), obtaining a differential inequality of the form

[;—If+D§a<<E2+E10>+(E1/3+E5/2>D>, (1.14)

and proving a dissipation estimate

E <D, (1.15)
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where a > 0 is a constant and D is an appropriately defined dissipation (see (2.11)
below). From the previous inequalities, the result follows from considering initial data
with small enough initial energy. See Corollary 3.13 below. The most laborious part of
the proof is to show (1.14) which follows from a direct calculation of the time derivative
and estimating several terms using Poincaré’s inequality and interpolation estimates. See
Proposition 4.1 below. Note that the value of y in (1.10) is given by

5/2 1/3
y :=1—a(cg+co/ +co+co/ ),

where ¢g > 0 is introduced in (1.9) and satisfies cg + CS/Z +co + c(l)/3 < 1/a.
From the above theorem we easily derive the following.

Corollary 1.5 Suppose (1.9) is fulfilled. Then it follows that
o — ullLee—1,1) < co, (1.16)
and
() — ™ oo1ny S, 120, (1.17)

An important consequence of the decay estimate (1.10) is that it implies the desired
convergence of A+ to £1 as stated below.

Corollary 1.6 Suppose (1.9) is fulfilled. Then, for t sufficiently large, we have
() = () =2 S e 7, (1.18)
and
a0 +A_ ()] S e, (1.19)
where y is as in (1.10). In particular, for t large, we have
[Ap() — 1]+ |A=(r) + 1] fje*%l. (1.20)

We also obtain from Theorem 1.1 the convergence of the volumetric coordinates
Z(t, y) to y with the same decay rate as in (1.10).

Corollary 1.7 Suppose (1.9) is fulfilled. Then, for t sufficiently large, we have
_r
19y (Z(t) — Z%)||Loo(—1,1) S e~ 2, (1.21)

where y is as in (1.10).

The rest of this paper is organized as follows. In the next section, we reformulate
our problem and derive a first energy estimate. In Sect. 3, we recall and establish some
preliminaries and useful tools. Section 4 is devoted to the energy estimate. In the last
section we give the proof of the main results. We will write A < B if there exists a
constant ) < C < ocosuchthat A < CB,and A ~ A + Ay +--- Ay if there exist
constants cq, ¢2, ...cy € Rsuchthat A = c1Aj+caAz+- - -+cyAy. Finally, we denote
the norm in Lebesgue space L” by || - ||, 1 < p < o0.
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2. Reformulation of the Problem

In this section we reformulate the problem (1.1). From (1.6) we deduce the following.

Proposition 2.1 Let Z be the mass Lagrangian variable defined by (1.6). Then, we have

(i) Z(r, £1) = 2+(1).
(i) Z; (1, y) = uxax (1, Z(1, y)).

(i) Zy(t, ¥) = zozis5-

Proof. Part (i) follows immediately from the definition (1.6). To prove (ii) we differen-
tiate (1.6) with respect to variable ¢ to obtain

2(t.) dr_(1)
0= / u(t, x)dx + Z(t, y)u(t, Z) + u(t, A_(1)).
() dt

Using boundary condition (1.1b) and equation (1.1a), we get
0=u(t, 2)(Zi(t, ) = a1, )

since u uyxxy = 0 at x = A4 (¢). This obviously leads to (ii).
Now we differentiate (1.6) with respect to variable y to obtain

Zy(t,y)yu(t, Z(t, y) = u*(y),
which is exactly (iii). |
Remark 2.2
(1) By choosing y = 1 in (1.6) and using the fact that Z(¢, 1) = A4 (t) we get
A (1) 1 2
M = u(t,x)dx:/ u®(x)dx = =.
A1) —1 3
(2) Making the change of variable x = Z(, y) and using (iii) of the previous propo-
sition, we see that the center of mass given by (1.5) reads
A () 1 !
u:/ xu(t,x)dx:—/ (1 —y2) Z(t,y)dy. 2.1)
A_ (1) 2 )

In order to derive an evolution equation in the Lagrangian coordinates, observe that
by the previous proposition we have

Zy(t, )y ut, Z(t, y)) = u>™ ). (2.2)

As in [16], the relation (2.2) suggests to define

S 2.

The evolution equation satisfied by G is given in the following proposition.
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Proposition 2.3 The function G defined by (2.3) solves

G: + G?d, Gd,)’ (u™ G =0, fort >0andy e (—1,1), (2.4a)
¥ ¥
G, £1) =1, fort > 0. (2.4b)

Proof. Differentiating (2.3) with respect to ¢ yields

G, = —Z—z’ = —G* Zyy. (2.5)
y
Since, by Proposition 2.1 (iii), u*(y) G(t,y) = u(t,Z(t,y)), it follows that

Hu>*G)=Zyu, = é uty. Therefore
G0y (u™® G) = ux(t, 2).
Similarly we obtain that
(G,)? (¥ G) =ure(t,2) and (Gd,) (4™ G) = urex (1, 2).
Using Part (ii) in Proposition 2.1 and (2.5), we infer

G =—G*Zy
=-G*3, 7
= - G2 8y (Uxxx(t, Z))
~6%0,((G3,)’ (™ G))
This leads to (2.4a). To prove (2.4b) we use the L’Hopital rule to deduce that

@™>)'(1)
Zy(t, Duy(t, he(0))

Zy(t, 1) =

Hence (Zy(z, N =1. By (2.2), Z, > 0. Then, using (2.3) we get (2.4b). Similarly for
y=-—1 O

Since we want to study perturbations of G = Z%.o =1, we set
5

G=1+g. (2.6)
Referring to (2.4), we obtain that
a+Lg =N, fort >0andy € (—1,1), (2.7a)
g(t,£1) =0, fort > 0, (2.7b)
where
1 —y?

Lg=—100]g—5y0) g+

S e 2.8)



844 M. Majdoub, N. Masmoudi, S. Tayachi

and
N(g) =—251+g)* (3,¢)° — 10 [(1 o)’ — 1] 02 ¢

3
—15y(1+¢)* (3, g)” —30y(1+¢)* dyg d; g

2
11
+5 (L= )1+ 270y 007 g

y2
(1+9)* (3, 9)*

5y [(1 +9)° — 1]a§g+

7
20 =)+t @9+ (=) +0) 207 g

1_2
Loy

[(1 +9)° — 1] 2.

Using (2.2), (2.3) and (2.6), we may rewrite the energy given by (1.8) as

! 2
E@) = 5119y s@ll3-

We also introduce the dissipation

1
D(t) = 81167 0113 + 5 Iy 1 = y? 97 g3,

as well as the following quantities
1
n=25[ arpteerRedy,
—1
1 2
L = 10/_1 [(1+g)5—1] <8y2g) dy,
1
3
I = 15f1 y(1+g) (3yg)” 97 gdy,
! 4 2 2
L=30 [ ya+otag(ie) an
1
15:5/ v[a+ei—1] g0l gay,
—1
1! 2 2 4 2
Io=—7 | (1=y)1+g7" (dyg)" dygdy,
—1
1 ! 5 3 2 (2 \2
=5 [ A=+ @) (5e) an
: 2 4 2 3
=2 [ (-t (3) o,
I 11—21 49,802g0%¢gd
9 = 2 1( )’)( +g) yg yg yg )’7

1 1
o=—;3 [ (= [aee’ 1] ol et ay

(2.9)

(2.10)

@2.11)
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Our aim now is to obtain a first energy estimate. We have obtained the following.
Proposition 2.4 Let E and D be given by (2.10) and (2.11) respectively. Then

dE
—+D < I. 2.12
T _Zk (2.12)

Proof. Multiplying (2.7a) by —8}2, g and integrating in y € (—1, 1) we get, using (2.7b)

Li—f+D=—2[(gyy(l)) +(gyy(=1) ] Zlk'

In fact, since g(¢, £1) = 0 for all # > 0, we have

1 1
—/lgzgyydy = —[ggy1%, +/1(81gy)gydy

1 LI dE
=50 g gydy ) = o
Also,
1 2 2 1 1 2
1=y 4 2 1=y 0 1=y 3?2
/_1 3 dygdygdy = |: > 0,80y _1'" L2 (Byg) dy
1
—[1 yaﬁgai’gdy
1
1—y?
:/1 )dy—/yagagdy
Hence
1 1=
4
5/ gdy /1 3 ga gdy
y 2 3
(8 g) dy+4 ga gdy
-y 2 1,
_ / (a g) dy + / ((azg) )
—y? 2 2.\l 2 \?
Bg dy+2[yl0d 1= —2/ ;g ) dy.
[ 55 () () 1 =2 [ (32)
Then

b )2 I 1=y
10/_1(8yg> dy+5/_1yaygaygoly—/_1 > dy80y8dy

:/_11 1—2y2 (3;g>2dy+2[y<3§ )] 1+8/ (32 ) dy

_2 |:y (aj’g)z]l_l + D),

and we get (2.12). O
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3. Useful Tools

In this section, we recall some known and useful tools. Then, we use them to obtain
crucial estimates needed in our proofs.

Proposition 3.1 (Poincaré’s inequality). Suppose I = (a, b) C R is a bounded interval
and 1 < p, g < oo. Then, for every u € W(}’P(I), we have

1_14
lullg < 11«7 (o] . 3.1)

Proof. Forx € I wehave u(x) = [

, W (t)dt. Hence, forall x € I

1—L1

lue ()] Sf[ lw' @ dt < 11777 (1]l p- (3.2

This proves (3.1) for ¢ = co. Suppose now g < oco. Then, by (3.2), we obtain that

/I )| dxe < 1117075 .
This leads to (3.1) as desired. |
Remark 3.2 For u € WP (I) we introduce

Z(u) := {x el; ulx) =O}.
This definition makes sense since W7 (1) < C(I). We also define

Whe(r) = [u e WhP(I): Zw) £9 }

Clearly W,"” (1) € WP (I).
A more general statement of Poincaré’s inequality can be stated as follows.

Proposition 3.3 Suppose I = (a, b) C R is a bounded interval and 1 < p, g < oo.
Then, for every u € Wl’p(l), we have

1_14
lullg < 11477 (o] . (3.3)

From Proposition 3.3 we deduce the following Poincaré—Wirtinger inequality.

Proposition 3.4 (Poincaré—Wirtinger’s inequality). Let 1 < p,q < oo and I =
(a, b) C R a bounded interval. Then, for any u € WP (I), we have

_ 1_1.4
lu —wlly < 19777 1|, (3.4)

where

_ 1
u_m/]u(y)dy.

Proof. Letu € WP (1) and define v = u — u. Since fl v=0andv € C(I), then
v e WhP(I). Applying (3.3) with v we conclude the proof since v/ = u’. |
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Note that, if u € WZP(I) N Wol’p(l), then ' = 0. Hence, by applying (3.4) with u’
instead of u, we obtain the following useful inequality.

Corollary 3.5 Let 1 < p,q < oo and I = (a,b) C R a bounded interval. Then, for
anyu € WP(I)N Wol’p(l), we have

1 1
114
lu'llg < 112" |l (3.5)

We also recall the following Gagliardo-Nirenberg interpolation inequalities useful
for our purpose. We refer to [5,26,27] for more general statements.

Proposition 3.6 Suppose I = (a,b) C R is a bounded interval, 1 < q < oo and
1 < r < oo. Then, there exists a constant C = C(q,r) > 0 such that for every
u € W (I), we have

1 _
lulloo < C (1 + |7|> |y, el (3.6)

where 0 < § < 1 is defined by
1 1 1
S|—+1——-)=—. 3.7
q r q
Proof. We start with the case r > 1. We first suppose u(a) = 0. Then

()1 ux) = f " G o () dr,

a

where G(7) = |t|* 't and @ = % € (1, 00). It follows by Holder’s inequality that

lu(x)|® < “/I lu()* " ' (7)] dt

—1
<o/l Nl

-1
< a 'l flullg™,

where we have used the fact that r'(a — 1) = q. Therefore
Lons ol w =8 1118 (1,118
lulloo < aco lull7 lullg * < 6% lully Nl (3.8)

We now turn to the case when u(a) # 0. Let n € C!([a, b]) defined by

%(S—a)—ﬁ(S—a)zif aSSS#,
n(s) =
1 if #Ssib.

Clearly0 <p <land0 <pn < ﬁ. Applying (3.8) respectively to v(x) := n(x)u(x)

and w(x) = n(x)u(a +b — x), we get

1 s I—s a+b
lu(x)| = C 1+m el g llully™, ¥V x € 5 b, (3.9
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and
1 5 1—s a+b
M <=C{1+ 7 Nullgyrr lully™, ¥V yeja, : (3.10)
Combining (3.9) and (3.10) we obtain the desired inequality (3.6) when » > 1. This
finishes the proof since the case r = 1 is trivial. O

Remark 3.7 A careful inspection of the proof shows that the constant C appearing in
(3.6) can be taken as

1
C(g.r)=Co (1 +q — %) bt

where Cy > 0 is an absolute constant.
Proposition 3.8 Suppose I = (a, b) C Ris a bounded interval, 1 < q < 00,q < p <
oo and 1 < r < oo. Then, there exists a constant C = C(|1|, p,q,r) > 0 such that
foreveryu € W2 ()N W&’r(l), we have
'L, < Cllu” 17 1’11377, (3.11)
where 0 < 6 < 1 is defined by
1 1 1 1
ol—-+1—-)=———. (3.12)
q r q p

Proof. The case p = q is trivial. We will focus only on the case ¢ < p < oo. The proof
will be divided into three steps.
Step 1. We claim that

vl < Clvllg ol ¥ ve wh (), (3.13)

for some constant C = C(|1|, p, q,r) > 0, where 6 is given as in (3.12). Note that for
p = oo we have 6§ = § and (3.13) reduces to (3.6). To see (3.13) for p < oo we write
using (3.6)

ol :/1 )P~ [v(x)]? dx

< llvligs  lvllg

1 8 1-6 p q
= {1+ ) ol vl lvllg-

q
1\'"7r  sa-%) (1-sa-Lyt
) "l o

1-4
vl =C" 7 (1 Ml ol 1. q

Therefore

This leads to (3.13) thanks to 0 = §(1 — %) and 1 —0 = (1 =8)(1 — %) + %.
Step 2. We claim that

Ivll, < CIVIZ vl ¥ ve W () with /U(x)dx =0, (3.14)
1
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for some constant C = C(|I|, p, g, r) > 0, where 0 is given as in (3.12).
Since v = 0, we obtain by using (3.13) and (3.4) that

- =0 S
lvll, = llv =l = Cllv =l llv—"ll,

0 1-6
< CIVII: vy

Step 3. Now we are ready to conclude the proof. Let u € W2 (1) N W(}’r(l ). Then

clearly u’ € W (I) and/ u’ = 0. Applying (3.14) to v := u’ we get (3.11). |
1
Remark 3.9 Choose g = r = 2 in Proposition 3.8, we see that 6 = %— %. The inequality
(3.11) takes the following form
11 1yl
' llp < NNy 7 lldlly 7 (3.15)

forall2 < p <ocandu € H*(I) N H} (I).
From the above inequalities we deduce the following estimates.
Lemma 3.10 Let g = g(y) € H*(—1, 1) N H} (-1, 1). Then, we have
)
lglloe S EV2. (3.16)
(i)
E < D. (3.17)
(iii) For every2 < p < 09,

1 1

loygll, < E4*% DI~ % (3.18)
(iv)
Iy1—y23; gl S EV* DV (3.19)
(v) Forevery2 < p < o9,
192gll, < D2 (3.20)
(vi) For every € > 0,
11— y*)€ 07 glloc S D'V, (3.21)

Proof. (i) Applying (3.1) with ¢ = oo and p = 2, we obtain (3.16).
(ii) The inequality (3.17) follows from (3.5) with p = g = 2. Indeed, applying (3.5)
with p = g = 2 yields
1
E =319y gll3 = 21137 gll>

1
<8167 gl3 + 5111 =y 87 gll3 = D
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(iii)) The inequality (3.18) follows from (3.11).
(iv) We write, using integration by parts,

! 2 2 ! 2792
/1(1—y2) (8),g) dy /1(1 — y*)d; g9 gdy

1 1
—/1(1 —y2)8y3g8ygdy+/12y3§g3ygdy-

Then (3.19) follows by the Cauchy—Schwarz inequality.
(v) To prove (3.20) we write,

y
() = 8}2,g(0)+/(; 3,8(x)dz

_ a2 /
=9 g(0)+/ 1-2z2 Byg(z)\/__zzdz.

Since /1 — y? > JTi fory € (—1/2,1/2), we obtain
1078(0)] < l107¢llo(—1/2.-172)
2
S 058l gt —1/2,-172)

ST =y205gl2 + 105l
< D2

By Cauchy-Schwarz’s inequality, we get
y 2 172 y o1 1/2
19781 < 10 g(0)|+(‘fo (Vi-202s) dz) (/0 1_Z2d2>

1 1+ 12
< p24pl2 <§ 'log (] Y ) D (3.22)
—y

1/2
The desired inequality (3.20) follows thanks to the fact that (‘log ( I+ ) D €
LP(—1,1) forany 2 < p < oo.
(vi) Inequality (3.21) can be deduced easily from (3.22) making use of x* log(x) €
L>°(0, a) for any positive constants « and a.
]

Lemma 3.11 Ler m > 1 be an integer and g = g(y) € H*(—1, 1) N H(} (=1, 1). Then
we have

” H < Em/2-1/4 pl/4, (3.23)
1 —y2lleo ™

Proof. Since H> < C' and g(#£1) = 0, we get by the mean value theorem that

< +
H 1 —y2 Hoo - H 1—y2 HLOO(A,O) H 1 —y2 HLOO(O,U
< 2mligll " 119y glloc-
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Therefore we obtain thanks to (3.16) and (3.18) (with p = oo) that

m
H 8 H SEMT_I EU4 pl/4
1— y2 0
< E¥F pl4,
This finishes the proof. O
To obtain the desired decay estimate, we will use the following.

Lemma 3.12 Let E, D : [0,00) — [0, 00) be absolutely continuous functions such
that

dE
E+D§a(E“+EﬁD), (3.24)

and
bE < D, (3.25)
where a,b > 0, « > 1 and B > 0. Then there exists ¢ > 0 and v > 0 such that
EO0)<e = E() < E(0)e™ "', t>0. (3.26)
Proof. Choose ¢ > 0 small enough such that I — ae? > 0 and
vi=b(—ael)—as* ! > 0. (3.27)
Suppose that E(0) < ¢ and define

T* = sup { §>0; E@)<e forall 7el0,s] } (3.28)

By continuity of E we deduce that 7* > 0. For 0 <t < T*, we have

dE

— +( —-a® D < aE*,
dt
<ag? 'E.
Using (3.25) we deduce that
dE
—+vE <0,

dt
where v is given by (3.27). This finally leads to

E(t) < E(0)e™"!, forall 0<t<T*
In particular 7* = oo and, for all ¢t € [0, 00), we have

E(t) < E(0)e™"".

From the above Lemma we deduce the following.
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Corollary 3.13 Let E, D : [0, 0c0) — [0, 00) be absolutely continuous functions such
that

dd_f +D < a(Eal + E% 4+ (Eﬁl +Eﬁ2) D)’ (329)

and
bE < D, (3.30)

wherea,b > 0,1, ar > land B, B2 > 0. Then, forco > 0 satisfying 1—a(c§1+cgz) >
0 and

y:=b (1 —a(cgl +c§2)) — a(cg“*1 +c3271) > 0, (3.31)
we have

E0) <co = E@) < E0)e™ ", t>0. (3.32)

4. The Energy Estimate

In this section we will see how to estimate all terms Iy to get the following energy
inequality leading to the desired decay rate.

Proposition 4.1 We have

%+D§E2+E1°+(E1/3+E5/2) D. (4.1)

Proof. The proof uses similar ideas to those in [6,22]. We have thanks to (2.12) that

where the energy and the dissipation are given respectively by (2.10) and (2.11).
In what follows we will estimate each term I fork =1, 2, ..., 10.
Estimation of I;: By Cauchy—Schwarz’s inequality, and using (3.16), (3.18), we get

| < (1 + IIgllio) |I3§g||2 I3y glli,
< (1 +E2) pl/2 pl/4 g3/4
This leads to
Ll < (E3/4+E“/4) D4, (4.2)

Estimation of I,: Using (3.16), we obtain that
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1 2
Ll = |/_1 [+ 1] (97¢) av
< (lgloo + 11215 ) o3g13
< (EVZ + E5/2> D. 4.3)
Estimation of I5: We have
1S (1+ 1813 1838203y 13:
Using (3.16) and (3.18) (with p = 6), we obtain that
| < (1 + E3/2) D2 E D'/
< (E + E5/2> D. (4.4)

Estimation of I4: We have

Ll S (1+ gl ( / 11 |ayg|(a§g)2dy)
< (1+111%) 19,8121 )2 12
< (1 + Ez) E'202¢l3.
Using (3.20) with p = 4, we obtain

L < (E1/2 +E5/2> D. (4.5)

Estimation of Is: By using an integration by parts, (Note that (1 + g)°> — 1 = 0 for
y = 1) we can write

Is ~ /_11 ((1 +9)° — 1) (8y2g>2 dy+/

: 4 2 \?
D tag (ag) v

=~ I +14.
Therefore

5| < (EW + E5/2) D. (4.6)

Estimation of Is: By using an integration by parts, we can write

1 1
Ic = 10 /_1 (1 —yH(1+8)?d, [(8); 8)5] dy

1 1
_5/_1 y(1+2)? (3, 8) dy

1 1
+§/1<1 ~)(1+g) (3y8)° d.
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Then, by (3.16) and (3.18)
ol S (1+11g1%) 3,213 + (1 + ligllo) 13,2116
< (L+E)ET4D¥* 4 (1 + E1/2> E2D
< (E7/4 + E“/4) D34 4 (E2 + E5/2) D. 4.7)
Estimation of I;: Making use of (3.16) and (3.21), we can write

1S (1+ 1813 ) 10 = )20 1 11, g13

< (1 + E3/2) DE = (E + E5/2) D. (4.8)

Estimation of Io: By Holder’s inequality, (3.16), (3.18) and (3.19), we get

ol < (1+ 11219y glloo v/ 1 — ¥205 gll2 /1 — ¥2 85 gll2
5 (1 +E2) D1/4E1/4 D1/2D]/4E1/4

< (E1/2 + ES/Z) D. (4.9)
Estimation of Ig: By integration by parts using the fact that y = —%(%), we have
120 15 60
L=—-I——Ig— —1o. 4.10
4 g V-7 (4.10)

Hence
| < o + [I7] + [L4]
< (El/2 + E5/2) D+ <E + E5/2> D
< (E1/2+E+E5/2) D. @.11)

Estimation of I(: Using integration by parts, we get
o= [ @ [ave 1]t ear
zf_ll v+ —1] ) g02 gay
+f1] (1= (1 +2)* 83 g 82 g0, g dy
+/_l1 A=) [a+e’ 1] @]9 dy

1
z15+19+/ (12 [(1 +) — 1] (@3 ¢)* dy.
1 ’
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Hence we obtain thanks to (3.16), (4.6) and (4.9)
ol S s+ 1051 + (llgloo + g% ) D
< [Is| + o] + (El/2 + E5/2) D
< (E1/2 + E5/2) D. (4.12)
Putting all the estimates (4.2)—(4.12) together, we get

L ip< (E‘/2 FE+EX 4 E5/2) D+ (E3/4 +EVA E“/4) D34,
dt ~

Using the fact that
X4 X2 e x O  XO  xn (4.13)

foroa, > ap—1 > -+ > a; > 0and x > 0, we conclude that

9E  p< (El/2 + E5/2> D+ (E3/4 + E“/4> D34,
dt ~

By Young’s inequality, we have
E3/4 p3/4 — E\2(EV4 D34y < E2 4+ E'3D,
EA p3/4 — ES2(EV4 D34y < E10 4L E3D,

Using again (4.13) we conclude the proof. O

5. Proof of the Main Results

This section is devoted to the proof of the main results stated in the introduction. We
begin by proving Theorem 1.1. Using the equivalent expression of the energy E given
in (2.10), it suffices to prove the following.

Theorem 5.1 Let g be a global smooth solution of (2.7) with initial data go. There exists
& > 0 such that, if

E0) < ¢,
then there exists y > 0 such that
E(t) < E)e "', t>0.

Proof. The proof follows by using Proposition 4.1 and Corollary 3.13 with o3 =
2, a0 =10, B1 =1/3, Bp =5/2. ]

Proof of Corollary 1.5. By (1.6)—(2.3), we have that
o) 1 2
In particular, for r = 0 we have
o) 1 2 1 2
u(0, Z(0, y)) —u™(y) = 5(1 —y9)g0,y) = 5(1 —y9go(y),

where g¢ in the initial data for g and Z(0, y) := Zy(y) is the initial data for Z. The
proof follows by using (3.16). O
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Proof of Corollary 1.6. By (2.3), we have Z,(t,y) = m. Integrating with respect
to y and using Z(t, ==1) = A4 (¢), we find that
hat) = A (r)—/l a
" - 1 L+g@t,y)

It follows from (1.10) and (3.16) that, for ¢ sufficiently large, we have

1

Ae(t) —A_() — 2| = ‘_/1 %d ‘
S lg®lloo
<ot

where y is as in (1.10). Next, we integrate (y — %3)Zy to get

1 _ 1
Ae() +A_ (1) = 3/ y—3dy+%/1 (1= ))Z(1, y)dy

2 )0 1+g@,y)
3
3 1 _ )y
=_/ i M (5.1)
2 )0 1+g@,y)

where we have used

3 rl A (1)
5/ (1—y2)Z(t,y)dy=3/ xu(t,x)dx = puu(t)) = u(up) =0.
-1 A_(1)

1 3
Taking advantage of the fact that / (y - %) dy = 0, we infer
—1

— et )

3 1
Ae(t) 40 (1) = —5/1 ( Tre ) (5.2)

We conclude the proof of (1.19) by using (5.2), (1.10) and (3.16). Combining (1.18) and
(1.19) we obtain (1.20). This finishes the proof of Corollary 1.6. O

Proof of Corollary 1.7. By (2.3) and (2.6) we have the equality
0Z(t,y) —Z¥ =0Z —1=———.
The proof follows using (1.10) and (3.16). |
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