
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-021-04110-1
Commun. Math. Phys. 385, 1–54 (2021) Communications in

Mathematical
Physics

A Hamilton–Jacobi PDE Associated with Hydrodynamic
Fluctuations from a Nonlinear Diffusion Equation

Jin Feng1 , Toshio Mikami2, Johannes Zimmer3

1 Mathematics Department, University of Kansas, Lawrence, KS 66045, USA. E-mail: jinfeng@ku.edu
2 Department of Mathematics, Tsuda University, 2-1-1 Tsuda-machi, Kodaira, Tokyo 187-8577, Japan
3 Department of Mathematics, Technical University of Munich, 85748 Garching, Germany

Received: 8 May 2019 / Accepted: 28 April 2021
Published online: 6 June 2021 – © This is a U.S. government work and not under copyright protection in the
U.S.; foreign copyright protection may apply 2021

Abstract: Westudy a class ofHamilton–Jacobi partial differential equations in the space
of probability measures. In the first part of this paper, we prove comparison principles
(implying uniqueness) for this class. In the second part, we establish the existence of a
solution and give a representation using a family of partial differential equations with
control. A large part of our analysis exploits special structures of the Hamiltonian, which
might look mysterious at first sight. However, we show that this Hamiltonian structure
arises naturally as limit of Hamiltonians of microscopical models. Indeed, in the third
part of this paper, we informally derive the Hamiltonian studied before, in a context of
fluctuation theory on the hydrodynamic scale. The analysis is carried out for a specific
model of stochastic interacting particles in gas kinetics, namely a version of theCarleman
model. We use a two-scale averaging method on Hamiltonians defined in the space of
probability measures to derive the limiting Hamiltonian.

1. Introduction

1.1. An overview. We develop a variational approach to derive macroscopic hydrody-
namic equations from particle models. Within this broad context, this article studies a
new class of Hamilton–Jacobi equations in the space of probability measures. Specif-
ically, we study the convergence of Hamiltonians and establish well-posedness for a
limiting Hamilton–Jacobi equation using a model problem in statistical physics. How-
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ever, our main interest is to develop a new scale-bridging methodology, rather than to
advance the understanding of the specific model.

The theory of hydrodynamic limits can be divided into deterministic and stochastic
theories. The goal of the deterministic approach is to derive continuum-level conser-
vation laws as scaling limit of particle motions on the microscopic level, which satisfy
Hamiltonian ordinary differential equations. At a key step, this requires the use of er-
godic theory for Hamiltonian dynamical systems. Such theory, at a level to be applied
successfully, is not readily available for a wide range of problems. Consequently, the
program of rigorously deriving hydrodynamic limits from deterministic models remains
a huge challenge [40, Chapter 1]. (See, however, the work of Dolgopyat and Liverani
[11] on weakly interacting geodesic flows on manifolds of negative curvature, which
made a progress in this direction.) This topic has a long history; indeed, the passage
from atomistic to continuum models is mentioned by Hilbert in his explanation of his
sixth problem (see [32] for a recent review). Stochastic hydrodynamics, on the other
hand, relies on probabilistic interacting particle models, and the program has been more
successful. Conceptually, one often thinks of these stochastic models as regularizations
of underlying deterministic models. Usually, the interpretation is that, at appropriate in-
termediate scale, a class of particles develop contact with a fast oscillating environment,
which ismodeled by stochastic noises.With randomness injected in the particlemotions,
we can invoke probabilistic ergodic theorems. Probabilistic ergodic theory ismuch tamer
than its counterpart for deterministic Hamiltonian dynamics. Hence the program can be
carried out with rigor for a wide variety of problems. In many cases in stochastic hydro-
dynamics, convergence towards a macroscopic equation can be seen as a sophisticated
version of the law of large numbers. Large deviation theory describes fluctuations around
this macroscopic equation as limit, and offers finer information in form of a variational
structure through a so-called rate function. In this context, the rate function automatically
describes the hydrodynamic (macroscopic) limit equation as minimizer. A Hamiltonian
formulation of large deviation theory for Markov processes has been developed by Feng
and Kurtz [24]. We will follow the method in Sect. 4 of this paper. The literature on
the large deviation approach to stochastic hydrodynamics is so extensive that we do not
try to review it (e.g., Spohn [40], Kipnis and Landim [34]). Instead, we only mention
the seminal work of Guo, Papanicolaou and Varadhan [33], which introduced a major
novel technique, known as block-averaging/replacement-lemma, to handle multi-scale
convergence. With refinements and variants, this block-averaging method remains the
standard of the subject to the present day.

Despite the power and beauty of block-averaging and the replacement lemma, this
method relies critically on probabilistic ergodic theories, and is thus largely restricted
to stochastic models. In Sect. 4, we introduce a functional-analytic approach for scale-
bridging which is different to the one of Guo, Papanicolaou and Varadhan [33]. We will
still consider a stochastic model in this paper, but our method is developed with a view
to be applicable in the deterministic program as well. Our approach takes inspiration
from the Aubry–Mather theory for deterministic Hamiltonian dynamical systems, and,
more directly, from another deeply linked topic known as the weak KAM (Kolmogorov–
Arnold–Moser) theory (e.g., Fathi [23]). We will derive and study an infinite particle
version of a specific weak KAMproblem. By infinite particle version, wemean a Hamil-
tonian describing the motion of infinitely many particles. Hence it is defined in space of
probability measures. To avoid raising false hopes, we stress again that the model we use
still incorporates randomness. However, in principle, the Hamilton–Jacobi part of our
program is not fundamentally tied to probabilistic ergodic theory. We choose a stochas-
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tic model problem to test ideas, as the infinite particle version of weak KAM theory in
this case becomes simple and directly solvable. At the present time, a general infinite
particle version of weak KAM theory does not exist. This is in sharp contrast with the
very well-developed theories for finite particle versions of deterministic Hamiltonian
dynamics defined in finite-dimensional compact domains. Therefore, it is useful for us
to focus on a more modest goal in this article—we are content with developing a method
of studying problems where other (probabilistic) approaches may apply in principle,
though we are not aware of such results for Carleman-type models. To put things in
perspective, we hope the study of this paper will reveal the relevance and importance
of studying Hamilton–Jacobi partial differential equations in the space of probability
measures, and open up many possibilities on this type of problems in the future.

In light of the preceding discussion,we study the convergence ofHamiltonians arising
from the large deviation setting in Sect. 4 using a Hamilton–Jacobi theory developed
by Feng and Kurtz [24]. This approach is different from the usual approach to large
deviations, which can be viewed as a Lagrangian technique.

To understand the convergence of Hamilton–Jacobi equations, following a topolog-
ical compactness-uniqueness strategy, we need to resolve two issues: one is the multi-
scale convergence of particle-level Hamiltonians to the continuum-level Hamiltonian;
the other is the uniqueness for a class of abstract Hamilton–Jacobi equations which
includes the limiting continuum Hamiltonian. We settle the first issue in Sect. 4 in a
semi-rigorous manner, and the second issue on Sects. 2 and 3 rigorously.

We first sketch how the second problem—existence and uniqueness for a class of
Hamilton–Jacobi equations—is addressed in this paper; this is a question of independent
interest, and corresponds to a hard issue for the traditional Lagrangian approach to
hydrodynamic limits and large deviations, namely to match large deviation upper and
lower bounds. Essentially, we may not know how regular the paths needs to be in order
to approximate the Lagrangian action accurately for all paths. In the Hamiltonian setting
advocated here, this problem can be solved rigorously for the model problem considered
in this article. Indeed, we develop a method to establish a strong form of uniqueness (the
comparison principle) for the macroscopic Hamilton–Jacobi equation. The analysis uses
techniques from viscosity solution in space of probability measures developed by Feng
and Kurtz [24] and Feng and Katsoulakis [25]. This is a relatively new topic and is a step
forward compared to earlier studies initiated by Crandall and Lions [4–10] onHamilton–
Jacobi equations in infinite dimensions, focusing on Hilbert spaces. Our Hamiltonian
has a structure which is closer in spirit to the one studied by Crandall and Lions [8] (but
with a nonlinear operator and other subtle differences), to Example 9.35 in Chapter 9
and Section 13.3.3 in Chapter 13 of [24] and to Example 3 of [25], or Feng and Swiech
[26]. It is different in structure than those studied by Gangbo, Nguyen and Tudorascu
[28] and Gangbo and Tudorascu [30] in Wasserstein space; or to those studied with
metric analysis techniques by Giga, Hamamuki and Nakayasu [31], Ambrosio and Feng
[1], Gangbo and Swiech [29]. The difference is that we have to deal with an unbounded
drift term given by a nonlinear operator which we explain next. In (1.1) below, we first
informally define the Hamiltonian as H = H(ρ, ϕ) for a probability measure ρ and a
smooth test function ϕ. This definition contains a nonlinear term ∂2xx log ρ. A priori, ρ
is just a probability measure, thus even the definition of this expression is a problem. If
the probability measure ρ is zero on a set of positive Lebesgue measure, log ρ cannot
even be defined in a distributional sense. In addition, our notion of a solution is more
than the B-continuity studied in [8]. Namely, for the large deviation theory, we need the
solution to be continuous in the metric topology on the space (and it in fact is). This
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can be established through an a posteriori estimate technique which we introduce in
Lemma 2.8. Regarding the possible singularity of ∂2xx log ρ, in rigorous treatment, we
will use non-smooth test functions ϕ in the Hamiltonian to compensate for the possible
loss of distributional derivatives of the term log ρ. This is essentially a renormalization
idea, in the sense that we rewrite the equation in appropriately chosen new coordinates to
“tame” the singularities. Section 2 explores a hidden controlled gradient flow structure
in the Hamiltonian. Using a theorem by Feng andKatsoulakis [25] and the regularization
technique in Lemma 2.8, we establish a comparison principle for the Hamilton–Jacobi
equation with the Hamiltonian given by (1.1). For the existence of a solution, we argue in
the Lagrangian picture. Here, the problem translates into a nonlinear parabolic problem,
which again is quite singular.We establish in Sect. 3 an existence theory using the theory
of optimal control and Nisio semigroups, and by deriving some non-trivial estimates.

We now describe the approach for dealing with the first problem, the multi-scale
convergence. This is discussed at the end of the paper (Sect. 4) and involves some semi-
rigorous arguments. As this part involves a broad spectrum of techniques coming from
different areas of mathematics, a rigorous justification and the description of details
are long; we postpone them to future studies. The stochastic model we use here is
known as the stochastic Carleman model studied by Caprino, De Masi, Presutti and
Pulvirenti [3]. This is a fictitious system of interacting stochastic particles describing
a two-velocity gas, and leads to the Carleman equation as the kinetic description. At
a different (coarser) level, a hydrodynamic limit theorem has been derived by Kurtz
[35] and then by McKean [38]. It yields the nonlinear diffusion equation studied in
Sect. 3. Ideas of Lions and Toscani [37] to study this equation in terms of the density
and the flux turn out to be useful. Here, following the Hamilton–Jacobi method of [24],
we study large deviations of the stochastic Carleman equations. We give three heuristic
derivations to identify the limit Hamiltonian, which is the one given in (1.1) and studied
in the earlier parts of the paper. We now sketch these three limit identifications. The first
is based on a formal weak KAM theory in an infinite-dimensional setting. The second
approach is based on a finite-dimensional weak KAM theory, and the key is reduction
due to propagation of chaos. The third derivation uses semiclassical approximations. We
remark that our overall aim is to provide new functional-analytic methods for deriving
the limiting continuum level Hamiltonian in this hydrodynamic large deviation setting.
We turn the issue of multi-scale into one of studying a small-cell Hamiltonian averaging
problem in the space of probability measures. In the present case, this can be solved at
least formally by the weak KAM theory for Hamiltonian dynamical systems, which is a
deterministic method.

Our program combines tools from a variety of sources, notably viscosity solutions in
the space of probability measures, optimal transport, parabolic estimates, optimal con-
trol, Markov processes, and Hamiltonian dynamics. We use weak KAM type arguments
to replace stronger versions of ergodic theory in the derivation of limiting Hamiltonian.

1.2. The setting. Let O be the one dimensional circle, i.e. the unit interval [0, 1] with
periodic boundary by identifying 0 and 1 as one point. We denote by P(O) the space
of probability measures on O and formally define a Hamiltonian function on P(O) ×
C∞(O):

H(ρ, ϕ) := 〈ϕ,
1

2
∂2xx log ρ〉 + 1

2

∫
O

|∂xϕ|2dx, ∀ρ ∈ P(O), ϕ ∈ C∞(O). (1.1)
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We use the word formal because even for probability measures admitting a Lebesgue
density ρ(dx) = ρ(x)dx ∈ P(O), as long as ρ(x) = 0 on a positive Lebesgue measure
set ofO, we have− log ρ(x) = +∞ on this set. In such cases, ∂2xx log ρ cannot be defined
as a distribution. Therefore, we will explore special choices of the test functions ϕ which
are ρ dependent and possibly non-smooth to compensate for loss of the distribution
derivative on the log ρ term.

We will introduce a number of notations and definitions in Sect. 1.3. In particular, we
denote X := P(O) and define a homogeneous negative order Sobolev space H−1(O)

according to (1.14). In Sect. 1.3, we will show that X can be identified as a closed
subset of this H−1(O). Hence it is a metric space as well. With the formal Hamiltonian
function (1.1), we can now proceed to the second step to introduce a formally defined
operator

H f (ρ) := H
(
ρ,

δ f

δρ

)
, ∀ρ ∈ X,

where the test functions f are only chosen to be very smooth,

D := {
f (ρ) = ψ(〈ρ, ϕ1〉, . . . , 〈ϕk, ρ〉) : ψ ∈ C2(Rk),

ϕi ∈ C∞(O), i = 1, . . . , k; k = 1, 2, . . .
}
. (1.2)

In the first part of this paper (Sect. 2), we prove a comparison principle (Theorem 2.1)
for a Hamilton–Jacobi equation in the space of probability measures. This equation is
formally written as

f − αH f = h. (1.3)

In this equation, the function h and the constant α > 0 are given, and f is a solution.
However, making sense of (1.3) rigorous is very subtle. Motivated by a priori estimates,
we make sense of the operator H by introducing two more operators H0 and H1, and
interpret equation (1.3) as two families of inequalities (1.28) and (1.29), which define
sub- and super- viscosity solutions (Definition 1.1). The comparison principle in Theo-
rem 2.1 compares the sub- and super- solutions of these two (in-)equations. This result
implies in particular that there is at most one function f which is both a sub- as well as
a super- solution.

In the second part of the paper (Sect. 3), we construct solutions by studying the
Lagrangian dynamics associated with the Hamiltonian H in (1.1). A Legendre dual
transform of the formal Hamiltonian gives a Lagrangian function

L(ρ, ∂tρ) := sup
ϕ∈C∞(O)

(〈∂tρ, ϕ〉 − H(ρ, ϕ)
) = 1

2
‖∂tρ − 1

2
∂2x log ρ‖2−1

(the norm is defined in (1.13) below). We define an action on P(O)-valued curves by

AT [ρ(·)] :=
∫ T

0
L(ρ(t), ∂tρ(t))dt. (1.4)

One can consider variational problems with this action defined in the space of curves
ρ(·), or equivalently, consider a nonlinear partial differential equation with control,

∂tρ(t, x) = 1

2
∂2xx log ρ(t, x) + ∂xη(t, x), t > 0, x ∈ O, (1.5)
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with ρ(r, ·) being the state variable, η(t, ·) (or equivalently ∂tρ) being a control, and
AT being a running cost. We take the control interpretation next and defined a class of
admissible control as those satisfying

∫ T

0

∫
O

|η(s, x)|2dxds < ∞. (1.6)

We also define a value function for the above optimal control problem,

Rαh(ρ0) := lim sup
t→∞

sup
{ ∫ t

0
e−α−1s

(h(ρ(s))

α
− 1

2

∫
O

|η(s, x)|2dx
)
ds :

(ρ(·), η(·)) satisfies (1.5)and (1.6) with ρ(0) = ρ0

}
. (1.7)

Then, assuming h ∈ Cb(X), we show that

f := Rαh (1.8)

is both a sub-solution to (1.28) as well as a super-solution to (1.29) (see Lemma 3.15).
This gives us an existence result for the Hamilton–Jacobi PDE (1.3) in the setting we
introduced. Hence, by the comparison principle earlier proved, it is the only solution.

The formal basis for the existence results above comes from an observation that

H f (ρ) = sup
η∈L2(O)

{
〈δ f
δρ

,
1

2
∂2xx log ρ + ∂xη〉 − 1

2

∫
O

|η(x)|2dx
}

(1.9)

We emphasize again that log ρ may not be a distribution, hence the above variational
representation is not rigorous. However, it suggests at least formally that H is a Nisio
semigroup generator associated with the family of nonlinear diffusion equations with
control (1.5). We also comment that the value function Rαh : X 	→ R̄ := R ∪ {±∞}
introduced before is well defined for all h : X 	→ R̄ satisfying
∫ t

0
e−α−1sh(ρ(s))ds < +∞, ∀(ρ(·), η(·)) satisfies (1.5)and (1.6), ∀t > 0. (1.10)

This includes in particular the class of measurable h : X 	→ R̄ which are bounded from
above supX h < +∞. Additionally, the precise meaning of control equation (1.5) is
given in Definition 3.1. We establish existence and some regularities of solutions in
Lemmas 3.2 and 3.5. Finally, in Sect. 3 we use that the partial differential equation (1.5)
can also be written as a system in a density-flux (ρ, j)-variables

{
∂tρ + ∂x j = 0,
2ρ( j + η) + ∂xρ = 0.

(1.11)

This “change-of-coordinate” turns out to be very useful when we justify the derivation
of the Hamiltonian H from microscopic models in the last part of the paper.

The third part of this paper, Sect. 4, is, unlike the other parts of the paper, non-
rigorous. The purpose of this section is to place results of first two parts of this paper in
context of a bigger program, by explaining significance of studying the equation (1.3).
Specifically, in Sect. 4, we will informally derive the Hamiltonian H given in (1.1) in a
context of Hamiltonian convergence using generalized multi-scale averaging techniques
(for operators on functions in the space of probability measures). Our starting point is
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a stochastic model of microscopically defined particle system in gas kinetics. By a
two-scale hydrodynamic rescaling and by taking the number of particles to infinity,
the (random) empirical measure of particle number density ρε follows an asymptotic
expression

P(ρε(·) ∈ dρ(·)) ∼ Z−1
ε e−ε−1AT [ρ(·)]P0(dρ(·)), (1.12)

where the AT is precisely the action given by (1.4) and the P0 is some ambient back-
ground reference measure. We justify the above probabilistic limit theorem (known as
large deviations) through a Hamilton–Jacobi approach. For a full exposition on this
approach in a rigorous and general context, see Feng and Kurtz [24]. In this general
theory, H is derived from a sequence of Hamiltonians which describe Markov processes
given by stochastic interacting particle systems. The rigorous application of the general
theory developed in [24] requires to establish a comparison principle for the limiting
Hamilton–Jacobi equation given by the H . In addition, if we have an optimal control
representation of H (such as the identity (1.9)), then we can explicitly identify the right
hand side of (1.12) using the action. This is the reason we studied these problems in
Sects. 2 (comparison principle) and 3 (optimal control problem) in this paper.

To summarize, we derive the Hamiltonian convergence in Sect. 4 in a non-rigorous
manner;we rigorously prove the comparisonprinciple inSect. 2; and rigorously construct
the solution and related the solution with an optimal control problem in Sect. 3.

1.3. Notations and definitions. Let P(A) denote the collection of all probability mea-
sures on a set A. On a metric space (E, r), we use B(E) to denote the collection
of bounded function on E . Further, Cb(E) denotes bounded continuous functions,
UC(E) denotes uniformly continuous functions, UCb(E) := UC(E) ∩ B(E). Finally,
LSC(E) (respectively USC(E)) denotes lower-semicontinuous (respectively upper-
semicontinuous) functions, which are possibly unbounded. For a function h ∈ UC(E),
we denote ωh the (minimal) modulus of continuity of h with respect to the metric r on
E :

ωh(t) := sup
r(x,y)≤t

|h(x) − h(y)|.

We write C∞(O) for the collection of infinitely differentiable functions on O. For a
Schwartz distribution m ∈ D′(O), we define

‖m‖−1 := sup
(
〈m, ϕ〉 : ϕ ∈ C∞(O),

∫
O

|∂xϕ|2dx ≤ 1
)
. (1.13)

We denote the homogeneous Sobolev space of negative order

H−1(O) := {
m ∈ D′(O) : ‖m‖−1 < ∞}

. (1.14)

The associated norm has the property that

‖m‖−1 = +∞, ∀m ∈ D′(O) such that 〈m, 1〉 �= 0.

Hence H−1(O) is a subset of distributions that annihilates constants, 〈m, 1〉 = 0. In fact,
the following representation holds: for every m ∈ H−1(O), we have

m = ∂xη, ∃η ∈ L2(O).



8 J. Feng, T. Mikami, J. Zimmer

Regarding the one dimensional torus O := R/Z as a quotient metric space, we
consider a metric r defined by

r(x, y) := inf
k∈Z |x − y − k|. (1.15)

Let ρ, γ ∈ P(O). We write

�(ρ, γ ) := {
ν ∈ P(O × O) satisfying ν(dx,O) = ρ(dx), ν(O, dy) = γ (dy)

}
.

(1.16)

For p ∈ (1,∞), let Wp be the Wasserstein order p-metric on P(O):

W p
p (ρ, γ ) := inf

{∫
O×O

r p(x, y)ν(dx, dy) : ν ∈ �(ρ, γ )

}
.

SeeChapter 7 inAmbrosio,Gigli andSaváre [2] orChapter 7 ofVillani [44] for properties
of this metric. Next, we claim that

P(O) − 1 := {ρ − 1 : ρ ∈ P(O)} ⊂ H−1(O). (1.17)

To see this, we note that on one hand, by the Kantorovich–Rubinstein theorem (e.g.,
Theorem 1.14 of [44]), for every ρ, γ ∈ P(O), we have

W1(ρ, γ ) = sup
{
〈ϕ, ρ − γ 〉 : ϕ ∈ C∞(O) satisfying ‖ϕ‖Lip ≤ 1

}

≤ sup
{
〈ϕ, ρ − γ 〉 : ϕ ∈ C∞(O),

∫
O

|∇ϕ|2dx ≤ 1
}

= ‖ρ − γ ‖−1. (1.18)

On the other hand, by an adaptation of Lemma 4.1 of Mischler and Mouhot [39] to the
torus case (see Lemma A.1 in Appendix A), there exists a universal constant C > 0
such that

‖ρ − γ ‖−1 ≤ C
√
W1(ρ, γ ).

Therefore the topology induced by the metric ‖ · ‖−1 is identical to the usual topology
of weak convergence of probability measure on P(O). Since any sequence of elements
in X := P(O) is tight, we conclude that (X,d) is a compact metric space with the
d(ρ, γ ) := ‖ρ − γ ‖−1. In particular, this argument establishes that (1.17) holds.

We define a free energy functional S : P(O) 	→ [0,+∞],

S(ρ) :=
{∫

O ρ(x) log ρ(x)dx if ρ(dx) = ρ(x)dx
+∞ otherwise.

(1.19)

We use convention that 0 log 0 := 0. Since this is the relative entropy between ρ and
the uniform probability measure 1 on O, we have S(ρ) ≥ S(1) = 0. By the variational
representation

S(ρ) = sup
ϕ∈C∞(O)

(〈ϕ, ρ〉 − log
∫
O
eϕdx

)
,

we have S ∈ LSC
(P(O)

)
.
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We make two formal observations. For the Hamiltonian H in (1.1), we have

(
H(εS)

)
(ρ) = H

(
ρ, ε

δS

δρ

) = −ε(1 − ε)

2

∫
O

|∂x log ρ|2dx ≤ 0, ε ∈ [0, 1].

We introduce an analog of Fisher information in this context, extending the usual defi-
nition in optimal mass transport theory, by defining

I (ρ) :=
{
supξ∈C∞(O){2〈∂xξ, log ρ〉 − ∫

O |ξ |2dx} if ρ(dx) = ρ(x)dx, log ρ ∈ L1(O)

+∞ otherwise

=
{∫

O |∂x log ρ|2dx if ρ(dx) = ρ(x)dx, log ρ ∈ L1(O), ∂x log ρ ∈ L2(O)

+∞ otherwise.

(1.20)

We claim that I ∈ LSC(P(O); R̄). This claim can be verified by the following obser-
vations. Let ρn be a sequence such that supn I (ρn) < ∞. First, by one-dimensional
Sobolev inequalities, supn ‖ log ρn‖L∞ < ∞ and ρn ∈ C(O). In fact, {ρn}n has a uni-
form modulus of continuity, and is hence relatively compact in C(O). This implies
relative compactness of the {log ρn}n in C(O). Secondly, by variational formula, for all
ρ such that log ρ is bounded:

∫
O

|∂x log ρ|2dx = sup{2〈∂xξ, log ρ〉 −
∫
O

|ξ |2dx : ∀ξ ∈ C∞(O)}.

We note that ϕ 	→ H(ρ, ϕ) is convex in the usual sense.
Next, extending the existing theory of viscosity solution for Hamilton–Jacobi equa-

tions in abstract metric spaces, we define a notion of solutions that will be used in this
paper.

Definition 1.1. Let (E, r) be an arbitrary compact metric space. A function f : E 	→ R

is a sub-solution to (1.3) if for every f0 ∈ D(H), there exists x0 ∈ E such that
(
f − f0

)
(x0) = sup

E

(
f − f0

)
,

we have

α−1( f (x0) − h(x0)
) ≤ H f0(x0).

Similarly, a function f : E 	→ R is a super-solution to (1.3) if for every f1 ∈ D(H),
there exists y0 ∈ E such that

(
f1 − f

)
(y0) = sup

E

(
f1 − f

)
,

we have

α−1( f (y0) − h(y0)
) ≥ H f1(y0).

Note this definition differs from the usual one; indeed, if in Definition 1.1 “there exist”
is replaced by “for every”, then f̄ and f are strong sub- and super- solution. A function
f is a (strong) solution if it is both a (strong) sub-solution and a (strong) super-solution.
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1.4. Towards a well-posedness theory: two more Hamiltonians. We now establish some
useful properties of the Hamiltonian H in (1.1). In particular, we now give a heuristic
argument why a comparison principle can be expected formally for (1.3). Since we
will use non-smooth test functions which do not fall inside the domain of very smooth
functions D(H) given by (1.2), it is not at all trivial to make this result rigorous; to
this behalf we introduce two more Hamiltonians related to the one in (1.1), as moti-
vated through the formal calculations we now give. Throughout the paper, we denote
d(ρ, γ ) := ‖ρ − γ ‖−1.

Let k ∈ R+, at least formally for ρ(dx) = ρ(x)dx and γ (dx) = γ (x)dx , we have

H
(k
2
d2(·, γ )

)
(ρ) = −k

2

∫
O

(ρ − γ ) log ρdx +
k2

2
‖ρ − γ ‖2−1,

≤ k

2

(
S(γ ) − S(ρ)

)
+
k2

2
‖ρ − γ ‖2−1. (1.21)

The last inequality follows since by Jensen’s inequality
∫
O

γ log ρdx =
∫
O

γ log
ρ

γ
dx +

∫
O

γ log γ dx ≤ log
∫
O

ρdx + S(γ ).

Similarly, we have

H
( − k

2
d2(ρ, ·))(γ ) = k

2

∫
O

(γ − ρ) log γ dx +
k2

2
‖ρ − γ ‖2−1,

≥ k

2

(
S(γ ) − S(ρ)

)
+
k2

2
‖ρ − γ ‖2−1. (1.22)

In particular,

H
(k
2
d2(·, γ )

)
(ρ) − H

( − k

2
d2(ρ, ·))(γ ) ≤ 0. (1.23)

Experts in viscosity solution theory may immediately recognize that, at a formal level,
this inequality implies the comparison principle of (1.3) (see for instance, Theorems 3
and 5 of Feng andKatsoulakis [25]). Tomake this rigorous,we need to face the possibility
of cancellations of the kind ∞−∞ when dealing with S(ρ)− S(γ ), or more generally,
∞ − ∞ − ∞ + ∞ when dealing with the left hand of (1.23).

To establish this result rigorously, we introduce two more Hamiltonian operators and
formulate Theorem 1.2, which establishes not only the comparison principle, but also
the existence of super- and sub-solutions for the Hamiltonians we now introduce. Let
us mention that, although every operator in this paper is single-valued, for notational
convenience, we may still identify an operator with its graph.

We now define two operators H0 ⊂ C(X) × M(X; R̄) and H1 ⊂ C(X) × M(X; R̄).
Let

D(H0) := { f0 : f0(ρ) := k

2
d2(ρ, γ ) : S(γ ) < ∞, k ∈ R+}, (1.24)

and

H0 f0(ρ) := k

2

(
S(γ ) − S(ρ)

)
+
k2

2
‖ρ − γ ‖2−1. (1.25)
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This definition is motivated by the formal calculation (1.21). Analogously, motivated
by (1.22), let

D(H1) := { f1 : f1(γ ) := −k

2
d2(ρ, γ ) : S(ρ) < ∞, k ∈ R+}, (1.26)

and

H1 f1(γ ) := k

2

(
S(γ ) − S(ρ)

)
+
k2

2
‖ρ − γ ‖2−1. (1.27)

Instead of working with (1.3) with H given in (1.1), we consider the equation for H0
and seek sub-solutions, and analogously super-solutions for H1. We establish existence
and show that these solutions coincide for a common right-hand side h. Namely, let
h0, h1 ∈ UCb(X) and α > 0. We consider a viscosity sub-solution f for

(I − αH0) f ≤ h0, (1.28)

and a viscosity super-solution f for

(I − αH1) f ≥ h1. (1.29)

We will prove the following well-posedness result in Sects. 2 and 3.

Theorem 1.2. Let h ∈ Cb(X) and α > 0. We consider viscosity sub-solution to (1.28)
and super-solution to (1.29) in the case where h0 = h1 = h. There exists a unique
f ∈ Cb(X) such that it is both a sub-solution to (1.28) as well as a super-solution
to (1.29). Moreover, such solution is given by

f := Rαh,

where the Rα is given by (1.7).

2. The Comparison Principle

In this section, we establish the following comparison principle.

Theorem 2.1. Let h0, h1 ∈ UCb(X) and α > 0. Suppose that f ∈ USC(X) ∩ B(X)

respectively f ∈ LSC(X)∩B(X) is a sub-solution to (1.28) respectively a super-solution
to (1.29). Then

sup
X

(
f − f

) ≤ sup
X

(
h0 − h1

)
.

We divide the proof into two parts.
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2.1. A set of extended Hamiltonians and a comparison principle. We define a new set of
operators H̄0 and H̄1 which extend H0 and H1 by allowing awider class of test functions.
The test functions for these operators are generally discontinuous and can take the values
±∞. The operators H̄0 and H̄1 satisfy a structural assumption (Condition 1) used in Feng
andKatsoulakis [25], hence the comparison principle for the associatedHamilton–Jacobi
equations follows from [25, Theorem3] (the same technique for establishing comparison
principle has also been presented in Chapter 9.4 of Feng and Kurtz [24] (Condition 9.26
and Theorem 9.28)). In the next Sect. 2.2, we will link viscosity solutions for H̄0 and
H̄1 with those for H0 and H1.

Let ε ∈ (0, 1), δ ∈ [0, 1] and γ be such that S(γ ) < ∞. We define

f0(ρ) := (1 − δ)
d2(ρ, γ )

2ε
+ δ

S(ρ)

2
, (2.1)

and

H̄0 f0(ρ) := (1 − δ)H0
d2(·, γ )

2ε
(ρ) − δ

8
I (ρ)

= (1 − δ)
( 1

2ε

(
S(γ ) − S(ρ)

)
+
d2(ρ, γ )

2ε2

)
− δ

8
I (ρ). (2.2)

This definition of H̄0 is motivated by convexity considerations: formally,

H f0 ≤ (1 − δ)H
d2(·, ρ)

2ε
+ δH

S

2
= H̄0 f0.

Similarly, let ε ∈ (0, 1), δ ∈ [0, 1] and ρ be such that S(ρ) < ∞. We define

f1(γ ) := (1 + δ)
−d2(ρ, γ )

2ε
− δ

S(γ )

2
, (2.3)

and

H̄1 f1(γ ) := (1 + δ)H1
( − d2(ρ, ·)

2ε

)
(γ ) +

δ

8
I (γ ).

= (1 + δ)
( 1

2ε

(
S(γ ) − S(ρ)

)
+
d2(ρ, γ )

2ε2

)
+

δ

8
I (γ ). (2.4)

The definition of H̄1 is motivated in a similar way to that of H̄0, but is a bit more involved.
We first observe that

−d2(ρ, γ )

2ε
= 1

1 + δ
f1(γ ) +

δ

1 + δ

S(γ )

2
.

By convexity considerations applied formally to H , we have

(
H

−d2(ρ, ·)
2ε

)
(γ ) ≤ 1

1 + δ
H f1(γ ) +

δ

1 + δ
H

S

2
(γ ).

That is, H̄1 is defined such that

H̄1 f1 ≤ H f1.

We now give an auxiliary statement to establish the existence of strong viscosity
solutions.
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Lemma 2.2. Take f0, f1 in (2.1) and (2.3), then H̄0 f0 ∈ USC(X, R̄) and H̄1 f1 ∈
LSC(X, R̄). Moreover, for ρ, γ ∈ X such that S(ρ) + S(γ ) < ∞, we have

1

1 − δ
H̄0 f0(ρ) − 1

1 + δ
H̄1 f1(γ ) ≤ −1

8

( δ

1 − δ
I (ρ) +

δ

1 + δ
I (γ )

) ≤ 0. (2.5)

Proof. The semi-continuity properties follow from the lower semi-continuity of ρ 	→
S(ρ) and ρ 	→ I (ρ) in (X,d). The estimate (2.5) follows from direct verification. ��

Below, we establish the first comparison result in this paper for strong viscosity
solutions (see the note following 1.1).

Lemma 2.3. Suppose that f ∈ USC(X,R) ∩ B(X) and f ∈ LSC(X,R) ∩ B(X) are
respectively viscosity strong sub-solution and strong super-solution to

f − α H̄0 f ≤ h0, (2.6)

f − α H̄1 f ≥ h1. (2.7)

Then

sup
ρ∈X:S(ρ)<∞

(
f (ρ) − f (ρ)

) ≤ sup
ρ∈X

(
h0(ρ) − h1(ρ)

)
.

Moreover, if f , f ∈ Cb(X), then

sup
X

(
f − f

) ≤ sup
X

(
h0 − h1

)
.

Proof. The estimates in Lemma 2.2 imply that Theorem 3 in Feng and Katsoulakis [25]
applies, hence the conclusions follow. ��

2.2. Viscosity extensions from H0 and H1 to H̄0 and H̄1 and the comparison theorem.
Throughout this section, we assume that the functions f ∈ USC(X)∩B(X) respectively
f ∈ LSC(X)∩ B(X) are a viscosity sub-solution to (1.28) respectively a super-solution

to (1.29). The following regularizations f t and f
t
and Lemma 2.4 are analogues of

Lemma 13.34 of Feng and Kurtz [24].
For each t ∈ (0, 1), we define

f t (ρ) := sup
γ∈X

(
f (γ ) − d2(ρ, γ )

2t

)
, (2.8)

f
t
(γ ) := inf

ρ∈X
(
f (ρ) +

d2(ρ, γ )

2t

)
. (2.9)

It follows that

f ≤ f t , f
t
≤ f , ∀t ∈ (0, 1).

Lemma 2.4. f t , f
t
∈ Lip(X).



14 J. Feng, T. Mikami, J. Zimmer

Next we establish a few a priori estimates. To get some intuition of what we will
derive, we now explain the heuristic ideas. Let f0 be as in (2.1) taking the form

f0(ρ) := (1 − δ)
d2(ρ, γ̂ )

2ε
+ δ

S(ρ)

2
, (2.10)

where the γ̂ ∈ X is such that S(γ̂ ) < ∞. Then formally

δ f0
δρ

= (1 − δ)
(−∂2xx )

−1(ρ − γ̂ )

ε
+ δ

log ρ

2
. (2.11)

If log ρ ∈ L∞(O), then the expression above is an element in L2(O). Let ρ0, γ0 ∈ X be
such that S(ρ0) < ∞. We assume that

f0(ρ) − f0(ρ0) ≥ −1

t

(d2(ρ, γ0)

2
− d2(ρ0, γ0)

2

)
, ∀ρ ∈ X. (2.12)

Then, by taking directional derivatives along paths t 	→ ρ := ρ(t) with ρ(0) = ρ0, the
above will imply the following comparison of Hamiltonians

H
(
γ0,

δ

δγ0

d2(ρ0, ·)
2t

)
≤ H0

(d2(ρ0, ·)
2t

)
(γ0) ≤ H̄0 f0(ρ0).

We now rigorously justify these formal comparisons. We divide the justification into
three steps. First, we make sense of the following statement in a rigorous way:

〈 δ f0
δρ0

,
1

2
∂2xx log ρ0〉 ≥ − 1

2t
〈δd

2(·, γ0)
δρ0

,
1

2
∂2xx log ρ0〉.

Lemma 2.5. Let f0 be given by (2.10) with S(γ̂ ) < ∞. Let ρ0, γ0 ∈ X be such that
S(ρ0) < ∞ and that (2.12) holds. Then

1

2t

(
S(ρ0) − S(γ0)

)
≤

(
(1 − δ)

S(γ̂ ) − S(ρ0)

2ε
− δ

4
I (ρ0)

)
. (2.13)

Note that if we assume S(γ0) < ∞, then this estimate immediately implies an a posteriori
estimate

I (ρ0) < ∞.

Proof. We claim that there exists a curve ρ ∈ C([0,∞);X) such that the following
partial differential equation

∂tρ = 1

2
∂2xx log ρ, ρ(0) = ρ0.

is satisfied in the sense of Definition 3.1 below. Moreover,

S(ρ(s)) − S(ρ0) ≤ −1

2

∫ s

0
I (ρ(r))dr, ∀s > 0, (2.14)

and

1

2
d2(ρ(s), γ̂ ) − 1

2
d2(ρ0, γ̂ ) ≤

∫ s

0

1

2

(
S(γ̂ ) − S(ρ(r))

)
dr, ∀γ̂ with S(γ̂ ) < ∞.

(2.15)
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A rigorous justification of the claim above can be found in Lemma 3.2. Results of
this type are well-known for ∂tρ = ∂xx�(ρ) with a regular � (e.g., Theorem 5.5 of
Vazquez [43]). However, in our case, this existing theory does not directly apply, as our
�(r) = 1

2 log r is singular at r = 0. Althoughmain ideas for establishing these estimates
remain the same, additional subtleties need to be taken care of. Of course, the proofs in
Sect. 3.1 are independent of the results in this section on comparison principle, hence
we can invoke these results here without creating circular arguments.

In summary, by (2.14) and (2.15), the curve satisfies

f0(ρ(s)) − f0(ρ0) ≤
∫ s

0

(
(1 − δ)

S(γ̂ ) − S(ρ(r))

2ε
− δ

4
I (ρ(r))

)
dr.

We also have (note that the following inequality holds trivially if S(γ0) = +∞)

−1

2
d2(ρ(s), γ0) +

1

2
d2(ρ0, γ0) ≥

∫ s

0

1

2

(
S(ρ(r)) − S(γ0)

)
dr.

Weplug the two lines above into (2.12) and note that S, I are both lower semicontinuous.
The inequality (2.13) follows. ��
Lemma 2.6. Let the f0, ρ0, γ0, γ̂ be as in the previous Lemma 2.5 with the additional
assumption that S(γ0) < ∞) (hence I (ρ0) < ∞ by the previous lemma). Then the term
δ f0
δρ0

in (2.11) is well defined and

δ f0
δρ0

= −1

t
(−∂2xx )

−1(ρ0 − γ0),

which implies

∫
O

|∂x δ f0
δρ0

|2dx = d2(ρ0, γ0)
t2

.

Proof. Let γ ∈ C∞(O) ∩ X with infO γ > 0. We define

ρ(s) := ρ0 + s j, with j := (γ − ρ0),∀s ∈ [0, 1].
From I (ρ0) < ∞, we have ρ0, j ∈ C(O) and infO ρ0 > 0. Therefore, ρ(s) ∈ C(O)∩X
and infO ρ(s) > 0 for all s ∈ [0, 1]. With these regularities, (−∂2xx )

−1(ρ(s) − γ ) ∈
C(O). Hence, if we define

δ f0
δρ(s)

:= (1 − δ)
1

ε
(−∂2)−1(ρ(s) − γ̂ ) + δ

1

2
log ρ,

then this expression is well defined and

δ f0
δρ(r)

∈ C(O) and r 	→ 〈 δ f0
δρ(r)

, j〉 ∈ C([0, 1]).

Therefore

f0(ρ(s)) − f0(ρ0) =
∫ s

0
〈 δ f0
δρ(r)

, j〉dr
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and

1

2
d2(ρ(s), γ0) − 1

2
d2(ρ0, γ0) =

∫ s

0
〈(−∂2xx )

−1(ρ(r) − γ0), j〉dr.

In view of (2.12) and the regularities ρ(r), j ∈ C(O), we have

〈 δ f0
δρ0

, j〉 ≥ 〈−1

t
(−∂2xx )

−1(ρ(r) − γ0), j〉.

As j is arbitrary, the claim follows. ��
Lemma 2.7. Let f0, ρ0, γ0, γ̂ beas inLemma2.5, with S(γ0) < ∞.Weassume that (2.12)
holds. Then

H0
(d2(ρ0, ·)

2t

)
(γ0) ≤ H̄0 f0(ρ0).

Proof. We have shown in Lemma 2.5 that I (ρ0) < ∞. Note that by definition

H0
d2(ρ0, ·)

2t
(γ0) = 1

2t

(
S(ρ0) − S(γ0)

)
+
d2(ρ0, γ0)

2t2
,

and

H̄0 f0(ρ0) = (1 − δ)
( 1

2ε

(
S(γ̂ ) − S(ρ0)

)
+
d2(ρ0, γ̂ )

2ε2

)
− δ

8
I (ρ0).

By Lemma 2.6 and then (2.11) and the convexity of quadratic functions, we have

1

t2
d2(ρ0, γ0) =

∫
O

|∂x δ f0
δρ0

|2dx ≤
(
(1 − δ)

d2(ρ0, γ̂ )

ε2
+ δ

1

4
I (ρ0)

)
.

Combined with the estimate (2.13) in Lemma 2.5, the conclusion follows. ��
We now state the first existence result for viscosity solutions, in a suitably regularized

setting. The proof of Theorem 2.1 will follow easily from this statement.

Lemma 2.8. Let us consider h0 ∈ UCb(X) with a nondecreasing modulus of continuity
denoted as ω0 := ωh0 . Let

h0,t (ρ) := h0(ρ) + ω0
(√

tC f

)
,∀ρ ∈ X, with C f := √

2
(‖ f ‖∞

)1/2
.

Then the f t ∈ Cb(X) is a strong viscosity sub-solution to the Hamilton–Jacobi equa-
tion (2.6) with h0 being replaced by h0,t .

Similarly, suppose that h1 ∈ UCb(X) with a nondecreasing modulus of continuity
ω1 := ωh1 . Let

h1,t (γ ) := h1(γ ) − ω1
(√

tC f
)
,∀γ ∈ X, with C f := √

2
(‖ f ‖∞

)1/2
.

Then f
t

∈ Cb(X) is a strong viscosity super-solution to the Hamilton–Jacobi equa-
tion (2.7) with h1 being replaced by h1,t .
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Proof. We only prove the sub-solution case, the super-solution case is similar. Let f0
be as in (2.10). We assume that ρ0 ∈ X is such that

( f t − f0)(ρ0) = sup
X

( f t − f0).

Then S(ρ0) < ∞. The existence of such ρ0 is guaranteed by the lower-semicontinuity
of f0, f0 ∈ LSC(X; R̄) and the compactness of X. We have

sup
γ∈X

(
f (γ ) − d2(ρ0, γ )

2t

)
− f0(ρ0) = sup

ρ,γ∈X

((
f (γ ) − d2(ρ, γ )

2t

) − f0(ρ)
)
. (2.16)

Since the f is a viscosity sub-solution to (1.28), by compactness ofX, there exists γ0 ∈ X
such that

(
f (γ0) − d2(ρ0, γ0)

2t

)
= sup

γ∈X

(
f (γ ) − d2(ρ0, γ )

2t

)
= f t (ρ0) (2.17)

with

( f − h0)(γ0) ≤ H0
d2(ρ0, ·)

2t
(γ0). (2.18)

From the upper boundedness of h0 − f , we arrive at the estimate that S(γ0) < ∞.
Thus (2.16) reduces to

(
f (γ0) − d2(ρ0, γ0)

2t

)
− f0(ρ0) = sup

γ,ρ∈X

((
f (γ ) − d2(ρ, γ )

2t

) − f0(ρ)
)
. (2.19)

The above implies (2.12), hence we can apply Lemma 2.7 to (2.18), which results in

( f − h0)(γ0) ≤ H̄0 f0(ρ0).

From (2.19), we obtain a rough estimate

t−1d2(ρ0, γ0) = f (γ0) − f t (ρ0) ≤ f (γ0) − f (ρ0) ≤ 2‖ f ‖∞.

Denoting a nondecreasing modulus of h by ωh , then

h(γ0) − h(ρ0) ≤ ωh
(
d(ρ0, γ0)

) ≤ ω
(√

tC f

)
, with C f := √

2
(‖ f ‖∞

)1/2
.

We note that, from (2.17),

( f − h0)(γ0) = f t (ρ0) +
d2(ρ0, γ0)

2t
− h(ρ0) +

(
h(ρ0) − h0(γ0)

)

≥ f t (ρ0) −
(
h(ρ0) + ωh

(√
tC f

))
.

The claim is established. ��
Finally, we are in a position to prove Theorem 2.1.
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Proof. By Lemmas 2.4 and 2.8, we know that the functions f t and f
t
satisfy the condi-

tions of Lemma 2.3, for each t > 0. Hence by the comparison principle in Lemma 2.3,
we have

sup
X

(
f t − f

t

) ≤ sup
X

(
h0,t − h1,t

) = sup
X

(
h0 − h1

)
+ ω0(

√
tC f ) + ω1(

√
tC f ).

Since

f (ρ) − f (ρ) ≤ f t (ρ) − f
t
(ρ), ∀t ∈ (0, 1), ρ ∈ X

the conclusion of Theorem 2.1 follows by taking t → 0+. ��

3. Existence of Solutions for the Hamilton–Jacobi Equation Through Optimal
Control of Nonlinear Diffusion Equations and Related Nisio Semigroups

We recall that (X,d) is a compact metric space, hence C(X) = Cb(X) = UC(X).
Theorem 2.1 establishes that for each h ∈ Cb(X) and α > 0, there exists at most
one function f such that it is both a sub-solution to (1.28) as well as a super-solution
to (1.29). In this section,we show that there exists such a solution.Moreover, this solution
is unique and can always be represented as the value function f = Rαh of the family of
nonlinear diffusion equations with control introduced in the introduction (see (1.7) for
the definition of the operator Rα):

∂tρ = 1

2
∂2xx log ρ + ∂xη, (3.1)

with ∫ T

0

∫
O

|η(r, x)|2dxdr < ∞. (3.2)

3.1. A set of nonlinear diffusion equations with control. Throughout this section, we
always assume that η satisfies (3.2). We use the convention 0 log 0 := 0.

Definition 3.1. We say that (ρ, η) is a weak solution to (3.1) in the time interval [0, T ]
if the following holds:

(1) ρ(·) ∈ C([0, T ];X).
(2) ρ(t, dx) = ρ(t, x)dx holds for t > 0, for some measurable function (t, x) 	→

ρ(t, x).
(3) The following estimates hold:

∫ T

0

∫
O

ρ(t, x) log ρ(t, x)dxdt < ∞, (3.3)

and ∫ T

s

∫
O

| log ρ(t, x)|dxdt < ∞, ∀s > 0, (3.4)

and ∫ T

s

∫
O

|∂x log ρ(t, x)|2dxdt < ∞, ∀s > 0. (3.5)
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(4) For every ϕ ∈ C∞(O) and 0 < s < t ≤ T , we have

〈ϕ, ρ(t)〉 − 〈ϕ, ρ(s)〉 =
∫ t

s

(〈1
2
∂2xxϕ, log ρ(r)〉 − 〈∂xϕ, η(r)〉)dr. (3.6)

In the above, note that [0,∞) � r 	→ r log r is a function bounded from below (with
convention 0 log 0 = 0), hence the

∫
O ρ(x) log ρ(x)dx ∈ R ∪ {+∞} is well defined.

We now describe the technical difficulties we need to overcome in this section. Let
�(r) := 1

2 log r , for r > 0. Then (3.1) can be written as

∂tρ = ∂2xx�(ρ) + ∂xη,

where

η(t, x) ∈ L2((0, T ); L2(O)
)
.

Equations similar to this type have been studied byVázquez [43]with the control variable
∂xη denoted using f . However, there it is assumed that � is at least continuous. In
contrast, our� has�(0) = −∞ and is thus singular. In addition, we also need to ensure
that solution is non-negative. In [43], an approach based on the maximum principle is
developed to establish positivity of a solution. This works well in the absence of control,
f = 0, or when f ≥ 0. However, the positivity of a solution in our case, for this
special f , seems to be of a different origin: the singularity of �(0) = −∞ plays a key
role. Therefore, we present a detailed justification using energy estimates. A further, but
very minor, issue in that [43] is focused on Dirichlet or Neumann boundary conditions,
whereas we have a periodic boundary. However, the boundary conditions only appear
after integration by parts and the argument simplifies for the case of periodic boundary
conditions. Hence, we do not provide details for this last issue and only address the first
two issues below by studying a sequence of approximate equations.

The main purpose of this subsection is to establish the following existence result. We
recall that the definition of the entropy function S is given in (1.19).

Lemma 3.2. For every η satisfying (3.2) and every ρ(0) = ρ0 ∈ X ⊂ H−1(O), there
exists a ρ(·) ∈ C([0, T ];X) such that (ρ, η) solve (3.1)–(3.2) in the weak sense of
Definition 3.1. This solution is unique. Indeed, such a pair (ρ, η) also satisfies the
following properties.

(1) For every γ0 ∈ X such that S(γ0) < ∞, and for every 0 ≤ s < t < T , the following
variational inequalities hold:

1

2
‖ρ(t) − γ0‖2−1 +

∫ t

s

(1
2

(
S(ρ(r)) − S(γ0)

)

+
∫
O

η(r, x)
(
∂x (−∂2xx )

−1(ρ(r) − γ0)(x)
)
dx

)
dr

≤ 1

2
‖ρ(s) − γ0‖2−1. (3.7)

(2) It holds that S(ρ(t)) < ∞ for every t > 0 and
∫ T
0 S(ρ(r))dr < ∞ (this implies in

particular that ρ(t, dx) = ρ(t, x)dx for t > 0).
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(3) For every 0 < s < T < ∞, it holds that

∫ T

s

∫
O

( − log ρ
)+
dxdr < ∞.

(4) For every 0 ≤ s ≤ t , allowing the possibility of S(ρ(0)) = +∞, the following holds

S(ρ(t)) +
∫ t

s

∫
O

(1
2
|∂x log ρ(r, x)|2 + η(r, x)∂x log ρ(r, x)

)
dxdr ≤ S(ρ(s)).

(3.8)

We divide the proof into several parts.

3.1.1. Approximate equations Let η ∈ L2((0, T ) × O) and ρ0 ∈ X. We extend the
definition to L2(R × O) by η(t, x) := 0 whenever t ≤ 0 or t ≥ T . Let J ∈ C∞(O)

be a standard spatial mollifier and G ∈ C∞
c (O) a standard time-variable mollifier. We

define mollification of (possibly signed) measures and functions onO in the usual sense.
Hence ρε,0 := Jε ∗ ρ0 ∈ C∞(O). We write

ηε(t, x) := (Gε ∗t Jε ∗x η)(t, x), and fε := ∂xηε.

We approximate the singular function � by a smooth function �ε as follows:

�ε(r) :=

⎧⎪⎨
⎪⎩

1
2 log r + Cε, r ≥ ε,

θε(r) ∈ C2 0 ≤ r ≤ ε
1
ε
r, r < 0.

Note that �′(r) = �′
ε(r) for r > ε. We choose the constant Cε := − 3

2 log ε so that
�ε(ε) = − log ε > 0 = �ε(0). This feature allows us to pick a smooth function θε with
θ ′
ε > 0 such that

θε(0) = 0, θ ′
ε(0) = 1

ε
, θ ′′

ε (0) = 0;

θε(ε) = 1

2
log ε + Cε = − log ε > 0, θ ′

ε(ε) = 1

2ε
, θ ′′

ε (ε) = − 1

2ε2
,

so that

�ε ∈ C3(R), �′
ε(r) > 0,∀r ∈ R, �ε(0) = 0.

We denote the primitive �ε(t) = ∫ t
0 θε(r)dr , and note that (θ ′

ε > 0 ensures that θε is an
increasing function)

sup
0<t≤ε

|�ε(t)| ≤ εθε(ε) = −ε log ε → 0 as ε → 0+.

This construction ensures that �′
ε ∈ C(R). Now, we consider

∂tρε = ∂2xx�ε(ρε) + ∂xηε, ρε(0) = Jε ∗ ρ0. (3.9)
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By Theorem 5.7 in [43], there exists a unique weak solution ρε(·) in the sense of
Definition 5.4 of [43]. Hence for every ϕ ∈ C∞(O), it holds that

〈ϕ, ρε(t)〉 − 〈ϕ, ρε(s)〉 =
∫ t

s

(〈1
2
∂2xxϕ,�ε(ρε(r))〉 − 〈∂xϕ, ηε(r)〉

)
dr. (3.10)

In fact, in the regularized situation considered at themoment, standard quasilinear theory
applies (e.g., the method of proving Theorem 6.1 in Chapter V of Ladyženskaja, Solon-
nikov and Ural’ceva [36]), hence ρε ∈ C1,2((0, T )×Ō) is a classical solution. Note that
the first part of condition (6.9) in Chapter V of [36] requires �′ be uniformly bounded
away from zero. The above constructed �ε does not satisfy this requirement. However,
this is not a problem in current context because that ρε is bounded. We explain this in
detail: Let M > 0 be a large parameter, we modify the definition of �ε(r) into �M

ε (r)
for those r > M and keep �M

ε (r) = �ε(r) for r ≤ M . We do such modification so that
the �M

ε satisfies conditions of [36]. Then there exists a unique classical C1,2-solution
ρM

ε for

∂tρ
M
ε = ∂2xx�

M
ε (ρM

ε ) + ∂xηε.

By the maximum principle,

inf
O

ρε(0) + t inf
[0,T ]×O

∂xηε ≤ ρM
ε (t, x) ≤ sup

O
ρε(0) + t sup

[0,T ]×O
∂xηε =: M0, ∀t ∈ (0, T ).

Consequently, when M > M0, ρε := ρM
ε solves (3.9) in classical sense.

We note that, for each t > 0 and ε > 0, we cannot rule out the possibility that
ρε(x, t) < 0. But we will show that this possibility disappears in the limit ε → 0+, by
asymptotic estimates we now establish.

There are three important regularity properties of the ρε we will exploit. First, let

�ε(s) :=
∫ s

0
�ε(r)dr. (3.11)

Then we have the energy inequality (5.20) in Theorem 5.7 of [43]:
∫
O

�ε(ρε(x, T ))dx +
∫ T

s

∫
O

(
|∂x�ε(ρε(r, x))|2 + ηε(r, x)∂x�ε

(
ρε(r, x)

))
dxdr

≤
∫
O

�ε(ρε(s, x))dx, ∀0 ≤ s ≤ T (3.12)

Note thatρε(0) ∈ L∞(O), hence
∫ |�ε(ρε(0, x))|dx < ∞. Also, by Jensen’s inequality,

∫ T

s

∫
O

|ηε(r, x)|2dxdr ≤
∫ T

s

∫
O

|η(r, x)|2dxdr < ∞.

Second, we have inequalities of dissipation type: for all γ0 ∈ H−1(O) such that∫
O �ε(γ0)dx < ∞ and 0 ≤ s < t

1

2
‖ρε(t) − γ0‖2−1 +

∫ t

s

〈
(ρε(t) − γ0),�ε(ρε(r))

〉
dr

+
∫ t

s

〈
ηε(r), ∂x (−∂2xx )

−1(ρε(t) − γ0)
〉
dr ≤ 1

2
‖ρε(s) − γ0‖2−1. (3.13)
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This estimate can be verified through integration by parts. Note that � ′′
ε = �′

ε > 0. The
convexity of the �ε implies that (v − u)�ε(u) ≤ �ε(v) − �ε(u). Therefore the last
inequality also leads to

1

2
‖ρε(t) − γ0‖2−1 +

∫ t

s

∫
O

(
�ε(ρε(r, x)) − �ε(γ0(x))

)
dxdr

+
∫ t

s

〈
ηε(r), ∂x (−∂2xx )

−1(ρε(r) − γ0)
〉
dr ≤ 1

2
‖ρε(s) − γ0‖2−1. (3.14)

By direct computation,

�ε(r) =

⎧⎪⎨
⎪⎩

1
2

(
r log r − r) + Cεr − 1

2 (ε log ε − ε) − εCε + �ε(ε), if r ≥ ε

�ε(r), if 0 ≤ r < ε
1
2ε r

2, if r < 0.
(3.15)

From (tθε)
′ = tθ ′

ε + θε ≥ θε for t ≥ 0, we obtain the estimate �ε(t) ≤ tθε(t). This
implies in particular that

−1

2
(ε log ε − ε) − εCε + �ε(ε) → 0, as ε → 0+.

Integrating the solution of (3.9), we also arrive at the conservation property 〈1, ρε(t)〉 =
〈1, ρε,0〉 = 1. We decompose ρε into positive and negative parts,

ρε(t, x) = ρ+
ε (t, x) − ρ−

ε (t, x).

Then, when the γ0 ∈ X is a probability measure satisfying S(γ0) < ∞, we have

∫ t

0

∫
O

(
�ε(ρε(r, x)) − �ε(γ0(x))

)
dxdr

=
∫ t

0

∫
O

1

2

(
ρ+

ε (r, x) log ρ+
ε (r, x) − γ0(x) log γ0(x)

)
dxdr

+
∫ t

0

∫
O

( |ρ−
ε (r, x)|2
2ε

+ (
1

2
− Cε)ρ

−
ε (r, x)

)
dxdr + oε(1).

We note that

r2

2ε
− Cεr ≥ r2

4ε
− εC2

ε and
√

εCε → 0.

Therefore, the above estimates combined with (3.14) give a useful control on the amount
of negative mass of ρε :

sup
ε>0

∫ t

0

∫
O

1

ε
|ρ−

ε (r, x)|2dxdr < ∞. (3.16)

Third, we show the following property.
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Lemma 3.3. The {ρε}ε is relatively compact in C
([0,∞); H−1(O)

)
. Hence, selecting

subsequence if necessary, there exists a limiting curve ρ(·) ∈ C
([0,∞); H−1(O)

)
such

that

lim
ε→0+

sup
0≤t≤T

‖ρε(t) − ρ(t)‖−1 = 0, ∀T > 0. (3.17)

Proof. We verify relative compactness of the {ρε(·)}ε>0 through Arzelá-Ascoli lemma.
The proof would be easier if ρε(t) ∈ X, since the X is a compact space. However, for
each fixed ε > 0, our construction allow the possibility of negative mass in ρε(t) even
though ρε(0) ∈ X. The negative masses only vanish in the ε → 0 limit.

First, we verify the existence of a compact subset K1 ⊂⊂ H−1(O) such that

ρε(t) ∈ K1, ∀ε > 0, t ∈ [0, T ]. (3.18)

We start with a compact set K0 := {ρ0, Jε ∗ ρ0 : ε > 0} ⊂⊂ H−1(O). Then for
every δ > 0, there exists a finite positive integer N := N (δ) ∈ N and ρ1,0, . . . , ρN ,0 ∈
C∞(O) ∩ X such that K0 ⊂ ∪N

k=1B(ρk,0; δ). Let ρε,k(t) be the solution to

∂tρε,k = ∂2xx�ε(ρε,k) + ∂xηε, ρε,k(0) = ρk,0.

By a contraction estimate in Chapter 6.7.2 of [43] (see also part (iii) of Theorem 6.17
there),

sup
t∈[0,T ]

‖ρε,k(t) − ρε(t)‖−1 ≤ ‖ρε,k(0) − ρε(0)‖−1, ∀ε > 0. (3.19)

By (3.12), noting ρk,0 ∈ P(O), for every t ∈ [0, T ], we have

sup
ε>0

( ∫
O

�ε(ρε,k(x, t))dx − Cε

)

≤ sup
ε>0

sup
k=1,...,N

( ∫
O

�ε(ρk,0)dx − Cε

)
+

∫ T

0

∫
O

|η(r, x)|2dxdr

=: L(
ρ1,0, . . . , ρN (δ),0; η(·)) =: Lδ < ∞.

In view of the explicit form of �ε in (3.15), the set

K1,δ(l) :=
{
γ ∈ H−1(O) :

∫
O

γ (x)dx = 1, sup
ε>0

( ∫
O

�ε(γ )dx − Cε

)
≤ l

}

is relatively compact in H−1(O) for every finite l ∈ R+. Denote K1,δ := K1,δ(Lδ), then

ρk,ε(t) ∈ K1,δ, ∀ε > 0, k ∈ {1, . . . , N (δ)}, t ∈ [0, T ].
Let K δ

1,δ denote δ-thickening set of the K1,δ . Then by (3.19),

ρε(t) ∈ K δ
1,δ, ∀δ > 0, ε > 0, t ∈ [0, T ]. (3.20)

Taking K1 := ∩δ>0K δ
1,δ (which is complete and totally bounded), we arrive at (3.18).

Second, through variational inequality (3.14), we obtain a local uniform modulus of
continuity estimate supε>0 supt,s∈[0,T ],|t−s|≤1 ‖ρε(t) − ρε(s)‖−1 ≤ ω(|t − s|) for some
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modulus ω. It is sufficient to verify that, for every δ ∈ (0, 1), there exists a finite positive
number Cδ > 0 and α ∈ (0, 1) such that

‖ρε(t) − ρε(s)‖−1 ≤ δ + Cδ|t − s|α, ∀ε > 0, 0 ≤ s ≤ t ≤ T .

Thenwe conclude by taking theω(r) := infδ∈(0,1){δ+Cδrα}. Let δ ∈ (0, 1) be given. For
every s, t ∈ [0, T ] with |s − t | ≤ 1 and ε > 0, by (3.20), there exists γ := γ (δ, ε, s) ∈
K1,δ(Lδ) such that ‖ρε(s) − γ ‖−1 < δ. By (3.14),

1

2
‖ρε(t) − γ ‖2−1 ≤ 1

2
δ2 + C1,δ

√|t − s| +
∫ t

s
(

∫
O

�ε(γ )dx − Cε)dr

≤ 1

2
δ2 + C1,δ

√|t − s| + Lδ|t − s|.
Consequently

‖ρε(t) − ρε(s)‖−1 ≤ ‖ρε(t) − γ ‖−1 + ‖ρε(s) − γ ‖−1 ≤ 2δ + C2,δ|t − s| 14 .
Note that the C2,δ only depends on δ and not on ε, nor on s, t , we conclude. ��

3.1.2. A priori regularities for the PDE with control (3.1)

Lemma 3.4. Let ρ0 ∈ X and ρ(·) ∈ C([0,∞); H−1(O)) be the limit as obtained
from (3.17). It then satisfies the following properties.

(1) It holds that ρ(r) ∈ X for every t ≥ 0. Indeed, ρ(r, dx) = ρ(r, x)dx for r > 0 a.e.,
and

ρ(r, x) ≥ 0, a.e. (r, x) ∈ (0,∞) × O. (3.21)

(2) The variational inequality (3.7) holds.
(3)

∫ T
0

∫
O ρ(t, x) log ρ(t, x)dxdt < ∞.

(4) ρ(·) ∈ C([0,∞);X).

Proof. Taking the limit ε → 0 in (3.17), by the approximate variational inequality
estimates (3.14), the negativemass estimate (3.16), and lower semicontinuity arguments,
we conclude that ρ(r, dx) = ρ(r, x)dx for r > 0 a.e., that (3.21) holds (hence ρ(r) ∈ X
for all r ≥ 0), and that (3.7) holds.

The estimate
∫ T
0 S(ρ(t))dt < ∞ follows from (3.7). ��

We remark that the variational inequalities (3.7) alone (for a family of γ0 ∈ X with
S(γ0) < ∞) can be used as a definition of a solution for (3.1). This definition would
suffice to establish a uniqueness result, as we now show.

Lemma 3.5. Let (ρi , ηi ), i = 1, 2 solve (3.1)–(3.2) in the sense that both pairs satisfy
the variational inequalities (3.7). In addition, we assume that ρi (·) ∈ C([0, T ];X) for
every T > 0 and i = 1, 2. Then

‖ρ1(t) − ρ2(t)‖−1 ≤ ‖ρ1(0) − ρ2(0)‖−1 +
∫ t

0
‖η1 − η2‖L2(O)dr. (3.22)

Hence, given a fixed initial condition and the same control η = η1 = η2, it follows that
ρ1 = ρ2.



A Hamilton–Jacobi PDE Associated with Hydrodynamic Fluctuations 25

Proof. Let 0 < α < β < T and 0 < s < t < T . From (3.7),

∫ β

α

(‖ρ1(t) − ρ2(τ )‖2−1 − ‖ρ1(s) − ρ2(τ )‖2−1

)
dτ

≤
∫ β

α

∫ t

s

(
S(ρ2(τ )) − S(ρ1(r)) + 2〈η1(r), ∂x (−∂2xx )

−1(ρ1(r) − ρ2(τ ))〉)drdτ.

Similarly,

∫ t

s

(‖ρ1(r) − ρ2(β)‖2−1 − ‖ρ1(r) − ρ2(α)‖2−1

)
dr

≤
∫ t

s

∫ β

α

(
S(ρ1(r)) − S(ρ2(τ )) + 2〈η2(τ ), ∂x (−∂2xx )

−1(ρ2(τ ) − ρ1(r))〉
)
dτdr.

Adding these two inequalities, we obtain

∫ β

α

(‖ρ1(t) − ρ2(τ )‖2−1 − ‖ρ1(s) − ρ2(τ )‖2−1

)
dτ (3.23)

+
∫ t

s

(‖ρ1(r) − ρ2(β)‖2−1 − ‖ρ1(r) − ρ2(α)‖2−1

)
dr

≤
∫ t

r=s

∫ β

τ=α

2〈η1(r) − η2(τ ), ∂x (−∂2xx )
−1(ρ1(r) − ρ2(τ ))〉drdτ.

We define

F(t, s;β, α) :=
∫ t

s

∫ β

α

‖ρ1(r) − ρ2(τ )‖2−1dτdr,

M(t, s;β, α) :=
∫ t

r=s

∫ β

τ=α

2〈η1(r) − η2(τ ), ∂x (−∂2xx )
−1(ρ1(r) − ρ2(τ ))〉dτdr.

Then (3.23) becomes

∂t F + ∂s F + ∂βF + ∂αF ≤ M.

If we write G(h) := F(t + h, s + h; t + h, s + h) ∈ C1(R+), then the last inequality
becomes

∂hG(h) ≤ M(t + h, s + h; t + h, s + h).

That is,

∫ t

s

∫ t

s
‖ρ1(r + h) − ρ2(τ + h)‖2−1dτdr −

∫ t

s

∫ t

s
‖ρ1(r) − ρ2(τ )‖2−1dτdr

= G(h) − G(0)

≤
∫ h

0

∫ t

s

∫ t

s
2〈η1(r + q) − η2(τ + q), ∂x (−∂2xx )

−1(ρ1(r + q) − ρ2(τ + q))〉dτdrdq.
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We multiply by (t − s)−2 on both sides and then take the limit t → s+ to find

‖ρ1(s + h) − ρ2(s + h)‖2−1 − ‖ρ1(s) − ρ2(s)‖2−1

≤ 2
∫ h

0
‖η1(s + q) − η2(s + q)‖L2‖ρ1(s + q) − ρ2(s + q)‖−1dq

= 2
∫ s+h

s
‖η1(r) − η2(r)‖L2‖ρ1(r) − ρ2(r)‖−1dr.

Here we used the fact that ρi (·) ∈ C(R+; H−1(O)) for each i = 1, 2. By further
mollification-approximation estimates,wefind the above inequality is equivalent to (3.22).

��
Definition 3.1 gives a notion ofweak solution for the partial differential equation (3.1).

It requires an a priori estimate that log ρ(t, x) is locally integrable, so that this quantity
can be viewed as a distribution (see (3.6)). Next, we establish this local integrability esti-
mate for the limit ρ obtained from (3.17).We note that from the estimates in Lemma 3.4,
we already know that

∫ T
0

∫
O ρ(r, x) log ρ(r, x)dxdr < ∞, which implies in particular

that
∫
r∈[0,T ]

∫
x :ρ(r,x)≥1

log ρ(r, x)dxdr =
∫ T

0

∫
O

(
log ρ(r, x)

)+
dxdr < ∞. (3.24)

Therefore, we need to focus on the case where ρ(r, x) < 1.

Lemma 3.6. Let ρ(·) ∈ C([0,∞); H−1(O)) be the limit as obtained from (3.17). For
every 0 ≤ s ≤ T < ∞, allowing the possibility of S(ρ(0)) = +∞, we have that

1

2
S(ρ(T )) +

1

8

∫ T

s

(
− log 2 +

∫
O

(− log)ρ(r, x)dx
)
dr

≤ 1

2
S(ρ(s)) +

∫ T

s

∫
O

|η(r, x)|2dxdr. (3.25)

Furthermore, in view of (3.24) and Lemma 3.4,

∫ T

s

∫
O

(log ρ
)−

dxdr < ∞, ∀s > 0.

Proof. Noting
∫
O ρε(t, x)dx = 1 for all t > 0, we have maxx ρε(t, x) > 1/2. Since

(t, x) 	→ ρε(t, x) is continuous, we can select a family of points {xε(t) ∈ O : t > 0}
such that ρε(t, xε(t)) ≥ 1/2. We also observe that

sup
z∈O

(
�ε(ρε(t, xε(t))) − �ε(ρε(t, z))

)
≤

( ∫
O

|∂x�ε(ρε(t, x))|2dx
) 1

2
sup
z∈O

|z − xε(t)| 12 .
(3.26)

Next, we estimate the left hand side of the above in three situations, namely

ρε(t, z) ≥ ε, 0 ≤ ρε(t, z) ≤ ε, ρε(t, z) < 0.
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We note that �ε(ρε(t, xε(t))) ≥ − 1
2 log 2 + Cε . Therefore

sup
z:ρε(t,z)≥ε

(
�ε(ρε(t, xε(t))) − �ε(ρε(t, z))

)
≥ −1

2
log 2 − 1

2
log inf

z:ρε(t,z)>ε
ρε(t, z).

In addition,

Cε − �ε(r) ≥ Cε − θε(ε) = −1

2
log ε, ∀r ∈ [0, ε],

which implies

sup
z:0≤ρε(t,z)<ε

(
�ε(ρε(t, xε(t))) − �ε(ρε(t, z))

)
≥ −1

2
log 2 − 1

2
log ε.

Therefore, when ε > 0 is small enough, (3.26) gives (using the convention that sup ∅ =
−∞),

gε(t) :=
(

− 1

2
log 2 − 1

2
log

(
inf
z∈O

ρε(t, z) ∨ ε
)) ∨

(
(−1

2
log 2 + Cε) +

1

ε
sup

z:ρε<0
ρ−
ε (t, z)

)

≤ √
2
( ∫

O
|∂x�ε(ρε(t, x))|2dx

) 1
2
.

Combined with (3.12), this yields

∫
O

�ε(ρε(x, T ))dx +
1

2

∫ T

s
g2ε (r)dr ≤

∫
O

�ε(ρε(s, x))dx +
∫ T

s

∫
O

|ηε(r, x)|2dxdr.
(3.27)

Using
∫
O

( − log
)
(ρε ∨ ε)dx ≤ ( − log

)
(infO ρε ∨ ε), we conclude

∫
O

�ε(ρε(x, T ))dx +
1

8

∫ T

s

(
− log 2 +

∫
O

(− log)(ρε ∨ ε)dx
)
dr

≤
∫
O

�ε(ρε(s, x))dx +
∫ T

s

∫
O

|ηε(r, x)|2dxdr. (3.28)

Now we pass ε → 0 in the above inequality to conclude (3.25). The details are given
in the following steps. First, we note that

‖ρε(t) ∨ ε − ρε(t)‖L∞ ≤ 2ε + sup
z

ρ−
ε (t, z).

Hence by the convergence in (3.17) and by the estimate (3.27),

lim
ε→0

∫ T

s
〈ρε ∨ ε, ϕ〉dt =

∫ T

s
〈ρ, ϕ〉dt, ∀ϕ ∈ C(O).

The observation

− log r = sup
s>0

(
(−s)r + 1 + log s

)
, r > 0,
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leads to the variational formula∫ T

s

∫
O

− log
(
ρε ∨ ε

)
dzdt = sup

ϕ∈C(O),ϕ>0

( ∫ T

s

(〈ρε ∨ ε,−ϕ〉 + 1 + 〈1, logϕ〉))dt.
(3.29)

Consequently
∫ T

s

∫
O

( − log
)
ρ(t, z)dzdt ≤ lim inf

ε→0+

∫ T

s

∫
O

− log
(
ρε ∨ ε

)
dzdt. (3.30)

Second, by Jensen’s inequality, ‖ηε(r)‖L2 ≤ ‖η(r)‖L2 . Finally, to get (3.25) from (3.28)
by taking ε → 0+, noting the identification of �ε in (3.15), all we need is to justify the
inequality

lim sup
ε→0

∫
O

�ε(ρε(s, x))dx +
1

2
− Cε ≤ 1

2

∫
O

ρ(s, x) log ρ(s, x)dx, ∀s ≥ 0, a.e.

(3.31)

If s = 0, then this follows directly by convexity/Jensen inequality arguments,∫
O

(
Jε ∗ ρ0

)
log

(
Jε ∗ ρ0

)
dx ≤

∫
O

ρ0(x) log ρ0(x)dx .

The case of 0 < s < T < ∞ is more subtle. We divide the justifications into three steps.
In step one,we construct the solutions {ρε(r) : 0 ≤ r < s} as beforewithρε(0) := Jε∗ρ0
and take its limit {ρ(r) : 0 ≤ r < s}. Then we construct {ρ̂ε(r) : s ≤ T } as solution
to (3.9) with initial data ρ̂ε(s) := Jε ∗ ρ(s) and concatenate ρε with ρ̂ to arrive at a new
X-valued curve {ρ̃ε(r) : 0 ≤ r ≤ T }. This new curve is defined on r ∈ [0, T ], but may
have a discontinuity at time s > 0.We proceed to the second step next. All arguments and
estimates before (3.31) in the proof of this lemma still hold if we replace ρε by ρ̃ε . Hence,
for the concatenated curve, (3.31) still holds. In the last step, we note that {ρ̃ε : ε > 0}
and {ρε : ε > 0} have the same limit ρ. This holds by the stability-uniqueness result in
Lemma 3.5. Therefore, (3.31) is verified for the curve ρ̃ε .

We conclude that (3.25) holds for the limit ρ. ��
Lemma 3.7. The energy estimate (3.8) holds.

Proof. Our strategy is to derive (3.8) by passing to the limit ε → 0+ in (3.12).
Let ρ be the limit of the the sequence of functions ρε as in (3.17). From (3.12), the

following holds for every 0 < s < T :
∫ T

s

(
lim inf

ε→0

∫
O

|∂x�ε(ρε(r, x))|2dx
)
dr

≤ lim inf
ε>0

∫ T

s

∫
O

|∂x�ε(ρε(r, x))|2dxdr ≤
∫ T

s

∫
O

|η(r, x)|2dxdr + S(ρ(s)).

(3.32)

Suppose that we can find a set N ⊂ [s, T ] of Lebesgue measure zero and functions
[s, T ] � r 	→ kε(r) ∈ R such that for every r ∈ [s, T ] \ N , there exists a subsequence
(still labeled by ε := ε(r)) with

lim
ε→0+

〈�ε(ρε(r, ·)) + kε(r), ∂xϕ〉 = 〈1
2
log ρ(r, ·), ∂xϕ〉, ∀ϕ ∈ C∞(O). (3.33)
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Then

∫
O

|∂x 1
2
log ρ(r, x)|2dx ≤ lim inf

ε→0

∫
O

|∂x�ε(ρε(r, x))|2dx, for a.e. r ∈ [s, T ],

hence we conclude.
We establish (3.33) next. Let

h(r) := lim inf
ε→0

‖∂x�ε(ρε(r, ·))‖2L2(O)
.

By (3.32), we can find a set N ⊂ [s, T ] of Lebesgue measure zero such that

h(r) < ∞, ∀r ∈ [s, T ] \ N . (3.34)

Therefore for r ∈ [s, T ] \ N , there exists a subsequence ε := ε(r), and there exist
constants kε := kε(r) such that {�ε(ρε(r, ·)) + kε}ε>0 is relatively compact in C(O).
Let

u(r, x) := lim
ε→0+

�ε(ρε(r, x)) + kε,

where the convergence (along the selected subsequence) is uniform inO. We claim that
the set {x : ρε(r, x) < 0} = ∅, when ε is small enough. Suppose this is not true. Then
by continuity of x 	→ ρε(r, x), we can find x̃ε(r) such that ρε(r, x̃ε(r)) = 0. We also
recall that in the proof of Lemma 3.6, we can find xε(r) such that ρε(r, xε(r)) ≥ 1/2.
Hence

�ε(ρε(r, x)) − �ε(ρ(r, x̃ε)) ≥ �ε(ε) − 0 = − log ε → +∞, as ε → 0.

But on the other hand, the estimate (3.34) implies that

lim inf
ε→0

sup
x∈O

|�ε(ρε(r, x)) − �ε(0)| < ∞.

This contradiction allows us to conclude that

lim inf
ε→0

(
inf
z∈O

ρε(r, z)
)

= lim inf
ε→0

(
inf
z∈O

ρ+
ε (r, z)

)
= lim inf

ε→0

(
inf
z∈O

ρ+
ε (r, z) ∨ ε

)
> 0.

Therefore u(r, x) = limε→0+
( 1
2 log(ρε(r, x)) + (kε + Cε)

)
, where the convergence is

uniform in x . That is, along this subsequence of ε = ε(r),

lim
ε→0

‖e2(kε+Cε )ρε(r, ·) − e2u(·)‖L∞ = 0.

In view of theweak convergence in (3.17), u(r, x) = 1
2 log ρ(r, x)+C0 for some constant

C0 := C0(r). Hence we verified (3.33). ��
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3.2. A posteriori estimates for the PDE with control. We see in Lemma 3.5 that the
notion of solutions in terms of the variational inequalities (3.7) implies uniqueness and
stability. Next, we prove that the weak solution in the sense of Definition 3.1 implies
that these variational inequalities hold, and hence uniqueness and stability follow.

Lemma 3.8. Every weak solution (ρ, η) to (3.1)–(3.2) also satisfies (3.7).

Proof. From (3.6), simple approximations shows that the following holds for all 0 <

s < t :

〈ϕ(t), ρ(t)〉 − 〈ϕ(s), ρ(s)〉 =
∫ t

s

(〈∂rϕ(r), ρ(r)〉 + 〈ϕ(r),
1

2
∂2xx log ρ(r) + ∂xη〉)dr

(3.35)

for all smooth ϕ := ϕ(r, x) which includes in particular the choice

ϕε(r) := Gε ∗ (−�xx )
−1(ρ(r) − γ0);

here, Gε := Jε ∗ Jε where Jε is a smooth mollifier and the ∗ denotes convolution in the
spatial variable only.

Therefore

‖Jε ∗ (ρ(t) − γ0)‖2−1 = ‖Jε ∗ (ρ(s) − γ0)‖2−1 −
∫ t

s

∫
O

(Gε) ∗ ρ(r, x) log ρ(r, x)dxdr

+
∫ t

s

∫
O

(Gε) ∗ γ0(r, x) log ρ(r, x)dxdr

− 2
∫ t

s

∫
O

(Gε) ∗ η(r, x)∂x (−∂2xx )
−1(ρ(r) − γ0)(x)dxdr.

We note that, by Jensen’s inequality,
∫
O

(Gε ∗ γ0)(x) log ρ(r, x)dx =
∫
O

(Gε ∗ γ0)(x) log
ρ(r, x)

Gε ∗ γ0(x)
dx + S(Gε ∗ γ0)

≤ log
( ∫

O
1dx

)
+ S(γ0) ≤ S(γ0).

With the a priori regularity estimates (3.3)–(3.5), passing to the limit ε → 0, we ob-
tain (3.7) for s > 0. Taking s → 0+, the case s = 0 follows. ��
Lemma 3.9. Suppose that (ρ, η) is the weak solution to (3.1)–(3.2) in the sense of
Definition 3.1. Let

φ(t) := t S(ρ(t)) + ‖ρ(t) − γ0‖2−1,

then

φ(t) ≤ φ(0) +
∫ t

0

(1
2
r + 2‖ρ(r) − γ0‖−1

)‖η(r)‖L2dr.

Proof. Following the ideas exposed in Theorem 24.16 of Villani [45] in a similar setting,
we combine (3.7) and (3.8) to obtain the desired estimate. ��



A Hamilton–Jacobi PDE Associated with Hydrodynamic Fluctuations 31

We define a set of regular points in the state space X,

Reg :=
{
ρ ∈ X : ρ(dx) = ρ(x)dx, some measurable ρ(x),

log ρ ∈ L1(O),

∫
O

|∂x log ρ|2dx < ∞
}

=
{
ρ ∈ X : ρ(dx) = ρ(x)dx, ρ ∈ C(O), inf ρ > 0,

∫
O

|∂x log ρ|2dx < ∞
}
,

(3.36)

where the last equality follows fromone-dimensional Sobolev inequalities. The estimates
in Lemma 3.2 implies that under finite control cost (3.2), the weak solution of (3.1) has
the property that it spends zero Lebesgue time outside the set Reg. That is,

ρ(t) ∈ Reg, ∀t > 0, a.e. (3.37)

3.3. A Nisio semigroup. We recall that

L(ρ, η) := 1

2

∫
O

|η(x)|2dx .

For every (ρ, η) satisfying (3.1)–(3.2) in the sense of Definition 3.1, by the regularity
results established in Lemma 3.2, log ρ(t, x) ∈ D′((0, T ) × O) exists as a distribution,
and ∫ t

0

∫
O

|η(t, x)|2dxds =
∫ t

0
‖∂sρ − 1

2
∂2xx log ρ‖2−1ds.

Let f : X 	→ R ∪ {+∞} with supX f < ∞, we define

V (t) f (ρ0) := sup
{
f (ρ(t)) −

∫ t

0
L
(
ρ(r), η(r)

)
dr : (ρ(·), η(·)) satisfies (3.1)

in the sense of Definition 3.1with ρ(0) = ρ0

}
, ∀ρ0 ∈ X. (3.38)

It follows that supX V (t) f < ∞. Moreover, V (t)C = C for any C ∈ R.
We define an action functional on curves ρ(·) ∈ C([0,∞);X), thus giving a precise

meaning to (1.4):

AT [ρ(·)] :=
{∫ T

0
1
2‖∂tρ − 1

2∂
2
xx log ρ‖2−1dt, if

∫
O | log ρ(t, x)|dx < ∞, a.e. t > 0,

+∞, otherwise.

(3.39)

and

A[ρ0, ρ1; T ] := inf{AT [ρ(·)] : ρ(·) ∈ C([0,∞);X), ρ(0) = ρ0, ρ(T ) = ρ1}. (3.40)

We recall that Rα is defined in (1.7) before giving regularity results for V (t) and Rα .

Lemma 3.10. For h ∈ Cb(X), V (t)h ∈ Cb(X) for all t ≥ 0 and Rαh ∈ Cb(X) for every
α > 0.
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Proof. These claims are consequences of the stability Lemma 3.5. The proofs resemble
those in standard-finite dimensional control problem. Hence we only prove the claim
that V (t)h ∈ Cb(X).

Let ρ0, γ0 ∈ X. For any ε > 0, there exists (ρ(·), η(·)) := (ρε(·), ηε(·)) and
(γ (·), η(·)) := (γε(·), ηε(·)) satisfying (3.1)–(3.2) with ρ(0) = ρ0 and γ (0) = γ0,
and the contraction estimate (3.22) holds. Consequently,

V (t)h(ρ0) − V (t)h(γ0) ≤ ε + h(ρ(t)) − h(γ (t)) ≤ ε + ωh
(
d(ρ(t), γ (t))

)
≤ ε + ωh(d(ρ0, γ0)).

Since ε > 0 is arbitrary, it follows that V (t)h ∈ Cb(X). ��
Lemma 3.11 (Nisio semigroup). The family of operators {V (t) : t ≥ 0} has the fol-
lowing properties:

[(1)]
1. It forms a nonlinear semigroup on Cb(X),

V (t)V (s) f = V (t + s) f, ∀t, s ≥ 0, f ∈ Cb(X).

2. The semigroup is a contraction on Cb(X): for every f, g ∈ Cb(X), we have

‖V (t) f − V (t)g‖L∞(X) ≤ ‖ f − g‖L∞(X).

In fact,

sup
X

(
V (t) f − V (t)g

) ≤ sup
X

(
f − g

)
.

3. The resolvent is a contraction on Cb(X): for every h1, h2 ∈ Cb(X), we have

‖Rαh1 − Rαh2‖L∞(X) ≤ ‖h1 − h2‖L∞(X).

Moreover, if h1 is bounded from above and h2 satisfies (1.10) and is bounded from
below, then

sup
X

(Rαh1 − Rαh2) ≤ sup
X

(h1 − h2). (3.41)

If h1 is bounded and h2 is bounded from above, then

inf
X

(Rαh1 − Rαh2) ≥ inf
X

(h1 − h2).

Proof. The semigroup property follows from standard reasoning in dynamical program-
ming. The contraction properties follow from an ε-optimal control argument applied to
the definition of V (t) in (3.38), similar to the proof of the last lemma. ��
Lemma 3.12. Let ρ0 ∈ X. We have

V (t) f (ρ0) = sup
ρ1∈X

{
f (ρ1) − A[ρ0, ρ1; t]

}
, ∀ sup

X
f < ∞.

If in addition f ∈ Cb(X), then there exists ρt (·) ∈ C([0, t];X) or equivalently, there
exists (ρt (·), η(·)) satisfying (3.1)–(3.2) in the sense of Definition 3.1, with ρt (0) = ρ0
and satisfying the variational inequality (3.7), such that

V (t) f (ρ0) = f (ρt (t)) − At [ρt (·)] = f (ρt (t)) −
∫ t

0

∫
O

1

2
|η(r, x)|2dxdr. (3.42)
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Proof. By the definition of V (t) f in (3.38), we can find a sequence of (ρn(·), ηn(·))
satisfying (3.1) in the weak sense of Definition 3.1 with ρn(0) = ρ0 and such that

V (t) f (ρ0) = lim
n→∞

(
f (ρn(t)) −

∫ t

0

∫
O

1

2
|ηn(r, x)|2dxdr

)
.

Wenote thatV (t)0 = 0.The contraction property inLemma3.11 gives‖V (t) f ‖L∞(X) ≤
‖ f ‖L∞(X), which in turn implies that

C := sup
n

∫ t

0

∫
O

|ηn(r, x)|2dxdr < ∞. (3.43)

Therefore there exists an η such that ηn ⇀ η weakly in L2((0, T ) × O). This implies
in particular

∫ t

0

∫
O

|η(r, x)|2dxdr ≤ lim inf
n→∞

∫ t

0

∫
O

|ηn(r, x)|2dxdr. (3.44)

Therefore, it suffices to show that {ρn(·) : n = 1, 2, . . .} is relatively compact in
C([0,∞);X), and that any limit point ρ∞(·) of a convergent subsequence satisfies
the regularity estimates (3.3)–(3.5).

Since (X,d) is a compact metric space, the relative compactness of the curves {ρn(·) :
n = 1, 2, . . .} follows from a uniform modulus of continuity which we show to hold.
First, for each n, (3.7) implies that

sup
n

sup
0≤t≤T

‖ρn(t)‖−1 < ∞.

Second, by (3.9), this implies that

sup
n

S(ρn(t)) <
M1

t
< ∞,

where the M1 > 0 is a finite constant. Using this, we obtain from (3.7) the estimate

‖ρn(t) − ρn(s)‖2−1 ≤ M

s
(t − s) + M2

∫ t

s
‖ηn(r)‖L2dr, ∀0 < s < t.

Hence there exists a modulus ω1 : [0,∞) 	→ [0,∞) with ω1(0+) = 0 such that

‖ρn(t) − ρn(s)‖−1 ≤ s−1ω1(|t − s|), ∀0 < s < t.

Third, we derive a short-time estimate of a uniform modulus of continuity. From the
weak solution property coupled with the a priori estimates in the definition of a solution
in Definition 3.1, we can derive a variant of (3.7) by approximation arguments:

1

2
‖ρn(t) − γ0‖2−1 − 1

2
‖ρn(s) − γ0‖2−1

=
∫ t

s

(1
2
〈ρn(r) − γ0,− log ρn(r)〉 − 〈∂x (−�2

xx )
−1(ρn(r) − γ0), η〉)dr

≤
∫ t

s

(1
2
〈ρn(r) − γ0,− log γ0〉 − ‖ρn(r) − γ0‖−1‖η‖L2

)
dr

≤
∫ t

s
‖ρn(r) − γ0‖−1

(1
2
‖∂x log γ0‖L2 + ‖η‖L2

)
dr.
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In the last two lines above, the first inequality follows from the fact that log is a mono-
tonically increasing function. The previous estimate implies that

‖ρn(t) − γ0‖−1 − ‖ρn(s) − γ0‖−1 ≤
∫ t

s

(1
2
‖∂x log γ0‖L2 + ‖η‖L2

)
dr.

Consequently, for any ε > 0, by a density argument we can find a γ0,ε ∈ X such that
S(γ0,ε) < ∞ and ‖γ0,ε − ρ0‖−1 < ε. Taking γ0 := γ0,ε and s = 0, we have

sup
0≤r≤t

‖ρn(r) − ρ0‖−1 ≤ inf
ε∈(0,1)

(
2ε +

1

2
‖∂x log γ0,ε‖L2 t +

√
C

√
t
)

=: ω2(t).

The constant C is the one from (3.43). Fourth, by the existence of ωi , i = 1, 2, we
conclude the existence of a uniform modulus ω such that

sup
0≤r≤t

‖ρn(r) − ρ0‖−1 ≤ ω(t).

The entropy estimate (3.3) for the ρ(·) follows from the fact that each ρn(·) satis-
fies (3.7), and that ρ 	→ S(ρ) is lower semicontinuous in (X,d). Similarly, (3.4) holds
for ρ(·) since (3.25) holds for each ρn and ρ 	→ ∫

O(− log)ρ)dx is lower semicontinu-
ous in (X,d) (see the proof of (3.29)). Finally, (3.5) holds for ρ(·) because (3.8) holds
for each ρn(·).
Lemma 3.13. For every α, β > 0, we have

Rαh = Rβ

(
Rαh − β

Rαh − h

α

)
, ∀h ∈ Cb(X).

Proof. The idea of proof in Lemma 8.20 of [24] applies in this context. Because of the
special structure of the problem here, the use of a relaxed control there is not necessary.

��
Let f0 and H0 f0 be as in (1.24)–(1.25). Note that the estimate in (3.7) holds, that

f0 − αH0 f0 is lower semicontinuous and bounded from below, and moreover that it
satisfies for α > 0

∫ t

0
e−α−1r

( ( f0 − H0 f0)(ρ(r))

α
− 1

2

∫
O

|η(r, x)|2dx
)
dr < +∞

for every (ρ(·), η(·)) solving the controlled PDE (3.1) with (3.2). Therefore

Rα( f0 − αH0 f0) : X 	→ R ∪ {+∞}
is a well defined function, it is bounded from below.

Similarly, let f1 and H1 f1 be defined as in (1.26)–(1.27). Since X is compact, f1 −
αH1 f1 is bounded from above. It is also upper semicontinuous and bounded from above.
Hence

Rα( f1 − αH1 f1) : X 	→ R ∪ {−∞}
is a well defined function and it is bounded from above.

With these estimates, we prove a variant of Lemma 8.19 in Feng and Kurtz [24].
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Lemma 3.14. For every α > 0,

Rα( f0 − αH0 f0) ≤ f0, (3.45)

Rα( f1 − αH1 f1) ≥ f1. (3.46)

Proof. We note that, for every η ∈ L2(O),

H0 f0(ρ) + L(ρ, η)

= k

2

(
S(γ ) − S(ρ)

)
+ sup

η̂∈L2(O)

(
〈−k∂x (−∂2xx )

−1(ρ − γ ), η̂〉 − 1

2

∫
O

|η̂|2dx
)
+
1

2

∫
O

|η|2dx

≥ k

2

(
S(γ ) − S(ρ)

)
+ k〈−∂x (−∂2xx )

−1(ρ − γ ), ∂xη〉.
By the a priori estimate (3.7), for every (ρ(·), η(·)) solving the PDE (3.1) in the sense
of Definition 3.1 with (3.2) and the initial condition ρ(0) = ρ0, we have∫ t

0

(
H0 f0(ρ(r)) + L

(
ρ(r), η(r)

))
dr ≥ f0(ρ(t)) − f0(ρ0), ∀t > 0.

Moreover,
∫ t

0
e−α−1s

((
f0 − αH0 f0

)
(ρ(s))

α
− L(ρ(s), η(s))

)
ds

=
∫ t

0
α−1e−α−1s f0(ρ(s))ds −

∫ ∞
s=0

α−1e−α−1s
∫ s∧t
r=0

(
H0 f0(ρ(r)) + L(ρ(r), η(r))

)
drds

≤
∫ t

0
α−1e−α−1s f0(ρ(s))ds −

∫ ∞
0

α−1e−α−1s( f0(ρ(s ∧ t)) − f0(ρ0)
)
ds

= f0(ρ0) − e−α−1t f0(ρ(t)).

In view of (1.7), we conclude (3.45).
Next, we show (3.46). For any γ ∈ X and ρ ∈ X in the definition of f1 := f1(γ ) as

in (1.26), we define η := −k∂x (−∂2xx )
−1(ρ − γ ). Then

H1 f1(γ ) + L(γ, η)

= k

2

(
S(γ ) − S(ρ)

)
+ 〈−k∂x (−∂2xx )

−1(ρ − γ ), η〉 − 1

2

∫
O

|η(x)|2dx +
1

2

∫
O

|η(x)|2dx

= k

2

(
S(γ ) − S(ρ)

)
+ 〈−k∂x (−∂2xx )

−1(ρ − γ ), η〉.
We consider the unique solution γ := γ (t) to

∂tγ = 1

2
∂2xx log γ + ∂xη = 1

2
∂2xx log γ + k(ρ − γ ), γ (0) = γ0,

where the ρ is such that S(ρ) < ∞. Then, in view of the estimate (3.7) (with the roles
of ρ and γ swapped)∫ s

r=0

(
H1 f1(γ (r)) + L(γ (r), η(r))

)
dr

=
∫ s

0

(k
2

(
S(γ (r)) − S(ρ)

)
+ 〈−k∂x (−∂2xx )

−1(ρ − γ (r)), η(r)〉
)
dr

≤ f1(γ (s)) − f1(γ (0)).
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Consequently

sup
{ ∫ t

0
e−α−1s

((
f1 − αH1 f1

)
(ρ̂(s))

α
− L(ρ̂(s), η̂(s))

)
ds :

(ρ̂, η̂) solves (3.1) − (3.2), ρ̂(0) = ρ0

}

≥
∫ t

0
e−α−1s

((
f1 − αH1 f1

)
(ρ(s))

α
− L(ρ(s), η(s))

)
ds

=
∫ t

0
α−1e−α−1s f1(ρ(s))ds −

∫ ∞

s=0
α−1e−α−1s

∫ s∧t

r=0

(
H1 f1(ρ(r)) + L(ρ(r), η(r))

)
drds

=
∫ t

0
α−1e−α−1s f1(ρ(s))ds −

∫ ∞

s=0
α−1e−α−1s( f1(γ (s ∧ t)) − f1(γ0)

)
ds

= f1(γ0) − e−α−1t f1(γ (t)).

Sending t → ∞, we conclude the proof of (3.46) and have thus established the
lemma. ��
Lemma 3.15. Let α > 0 and h ∈ Cb(X). We denote f := Rαh ∈ Cb(X) (Lemma 3.10).
Then f is a viscosity sub-solution to (1.28)with the h0 replaced by h, it is also a viscosity
super-solution to (1.29) with the h1 replaced by h.

Proof. The proof follows from the proof of part (a) of Theorem 8.27 in Feng and Kurtz
[24], using Lemmas 3.13. We only give details for the sub-solution case. The conditions
on H0 f0 is different than those imposed onH† in [24]. However, in view of the improved
contraction estimate (3.41) and because that f0−βH0 f0 satisfies (1.10) (see the a priori
estimate (3.7)), the proof can be repeated almost verbatim.

Let f0, H0 f0 be defined as in (1.24), (1.25). Then f0 is bounded from below and for
every β > 0

sup
X

( f − f0) = sup
X

(Rαh − f0)

≤ sup
X

(
Rβ

(
Rα − βα−1(Rαh − h)

) − Rβ

(
f0 − βH0 f0

))

≤ sup
X

(
Rαh − βα−1(Rαh − h)

) − (
f0 − βH0 f0

))

= sup
X

(
f − f0 − β

( f − h

α
− H0 f0

))

In this estimate, the first inequality follows from Lemmas 3.13 and 3.14; the second
inequality follows from (3.41). By the arbitrariness of the β > 0, the sub-solution
property follows from Lemma 7.8 of [24]. Note that f ∈ Cb(X) and f0 ∈ LSC(X;R ∪
{+∞}) and H0 f0 ∈ USC(X;R ∪ {−∞}). ��

In view of the comparison principle we established in Theorem 2.1, the above result
allows us to conclude that Theorem 1.2 holds.

Finally, we link the operator Rα with the semigroup V by a product formula.

Lemma 3.16. Let h ∈ Cb(X), then

V (t)h(ρ0) = lim
n→∞ R[nt]

n−1h(ρ0), ∀ρ0 ∈ X.

Proof. The proof of Lemma 8.18 in [24] applies here. The use of a relaxed control
argument is not required in the current context. ��
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4. An Informal Derivation of the Hamiltonian H from Stochastic Particles

In this section, we outline a non-rigorous derivation of the Hamiltonian (1.1). A rigorous
versionof the theory requires significant additionalwork andwill be presented elsewhere.
Here, we restrict ourselves to establishing a detailed but heuristic picture.

To explain our program in a nutshell, we start with a system of interacting stochastic
particles which has been used as a simplified toy model for gas dynamics. This model
leads to the Carleman equation as kinetic limit. Kurtz obtained the hydrodynamic limit of
this model, a nonlinear diffusion equation, [35] in 1973, followed by work by McKean
[38]. We will also use ideas of Lions and Toscani [37] in their work on this model.
While these references are concerned with the hydrodynamic limit, we are interested
more broadly in fluctuations around this limit (which includes the hydrodynamic limit
as minimiser of the rate functional).

The system is a high-dimensional Markov process. In the hydrodynamic limit, the
macroscopic particle density is described by a probability measures on O satisfying
a nonlinear diffusion equation. We aim to characterize both the limit as well as the
fluctuations around it through an effective action minimization theory formulated as a
path-integral. Theprobabilistic large deviation theorygives us amathematical framework
for explaining this rigorously.

Following a method developed by Feng and Kurtz [24], we establish the large de-
viations by studying the convergence of a sequence of Hamiltonians derived from the
underlying Markov processes. A critical step in the program is to prove comparison
principles for the limiting Hamiltonian. This is the motivation for the results presented
in earlier sections of this paper. Another critical step is the derivation of the limit Hamil-
tonian, which we present now informally. The main technique involved is a singular
perturbation method generalized to a setting of nonlinear PDEs in the space of proba-
bility measures.

4.1. Carleman equations, mean-field version. We now describe the particle model stud-
ied by Kurtz, McKean and Lions and Toscani [35,37,38]. On the unit circle O, we are
given a fictitious gas consisting of particles with two velocities. The first particle type
moves into the positive x-direction and the second particle type in the negative direction,
both with the same (modulus of) speed c > 0. Let w1(t, x) be density of the first parti-
cles type at time t and at location x , and w2(t, x) be density of the second type. When
particles collide, reactions occur if the types are the same; otherwise, particles move
freely as if nothing happened. The reaction happens at a rate k > 0 and the reaction
mechanism is simple—they both switch to becoming the opposite type. At a mean-field
level, we can express the above description in terms of a system of PDEs known as the
Carleman equation

{
∂tw1 + c∂xw1 = k(w2

2 − w2
1),

∂tw2 − c∂xw2 = k(w2
1 − w2

2).
(4.1)

Following Lions and Toscani [37], we introduce the total mass density variable ρ and
the flux variable j :

ρ := w1 + w2, j := c(w1 − w2). (4.2)
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Then {
∂tρ + ∂x j = 0,
∂t j + c2∂xρ = −2kρ j.

We consider a hydrodynamic rescaling of the system by setting

c = ε−1, k = ε−2, where ε → 0.

Then

∂tρ + ∂x j = 0,

ε2∂t j + ∂xρ = −2ρ j.

The flux variable j quickly equilibrates as ε → 0 to an invariant set indexed by the slow
variable ρ:

∂xρ + 2ρ j = 0.

This very explicit density-flux relation enables us to close the description using the
ρ-variable only, giving a nonlinear diffusion equation

∂tρ = 1

2
∂x

(∂xρ

ρ

)
. (4.3)

The first rigorous derivation of (4.3) as limit from (4.1) was given by Kurtz [35] in
1973 under suitable assumptions on the initial data. McKean [38] improved the result by
giving a different andmore elementary proof. The change of coordinate to the pair (ρ, j)
in Lions and Toscani [37] appeared later but makes a two-scale nature of the problem
much more transparent.

4.2. Amicroscopically defined stochasticCarlemanparticlemodel. TheCarlemanequa-
tion (4.1) is a mean field model without any fluctuation. We go beyond mean field model
by adding more details. One way of doing so would be to introduce explicitly a La-
grangian action, so that the Carleman dynamic (4.1) appears as a critical point or mini-
mizer in the space of curves. We will, however, pursue a different implicit approach by
introducing the action probabilistically using underlying stochastic particle dynamics.
There are more than one possible choice for such a model. However, they all should
have the following properties: one, such a model should give the Carleman equation in
the large particle number limit; two, the action should appear implicitly in the sense of
the likelihood of seeing a curve in the space of curves. That is, the higher the action,
the less likely to see the curve. This action can be defined through a limit theorem as
several parameters get rescaled (particle number, transport speed and reaction speed), as
in (1.12). The precise language to be used here are large deviations. Caprino, De Masi,
Presutti and Pulvirenti [3] has considered such a stochastic particle model and studied
its law of large number limit. We now study the large deviation using a slight variation
of their model.

We denote the phase space variable of an N -particle system

(x, v) :=
(
(x1, v1), . . . , (xN , vN )

)
, (xi , vi ) ∈ O × R
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and define an operator �i j in the phase space

�i j (x, v) :=
(
(x1, v1), . . . , (xi ,−vi ), . . . , (x j ,−v j ), . . . , (xN , vN )

)
, i �= j. (4.4)

For f := f (x, v) and i �= j , with a slight abuse of notation, we denote

(�i j f )(x, v) := f
(
�i j (x, v)

) := f (x1, v1; . . . ; xi ,−vi ; . . . , x j ,−v j ; . . . , xN , vN ).

(4.5)

To model nearest neighbor interaction, we introduce a standard non-negative symmetric
mollifier Ĵ ∈ C∞((−1, 1);R+) with

∫
x∈(−1,1) Ĵ (x)dx = 1, Ĵ (0) > 0. We denote

Ĵθ (x) := θ−1 Ĵ (
x

θ
), Jθ (x) :=

∑
k∈Z

Ĵθ (x + k),

and

χ := χN (x, y; v, u) := JθN
(
x − y

)
δv(u).

Let θ := θN → 0 slowly with NθN → ∞, and let τ := τN → 0. We now describe the
modification of the model studied by Caprino, De Masi, Presutti and Pulvirenti [3]. We
consider a Markov process in state space

(O × {−1,+1})N given by generator

BN f (x, v) := c
N∑
i=1

vi∂xi f + τ

N∑
i=1

∂2xi f +
k

2N

N∑
i, j=1
i �= j

χN (xi , x j ; vi , v j )
(
�i j f (x, v) − f (x, v)

)

= c
N∑
i=1

vi∂xi f + τ

N∑
i=1

∂2xi f +
k

2N

N∑
i, j=1
i �= j

JθN
(
xi − x j

)
δvi (v j )

(
�i j f (x, v) − f (x, v)

)
.

From a formal point of view, the parameter τ is unnecessary. However, it is essential
for us to obtain useful a priori estimates which allow an analysis of the limit passage.
It was introduced in [3] to avoid a paradoxical feature observed by Uchiyama [42] in
the case of Broadwell equations. This feature shows that particles at the same location
cannot be separated by the dynamics. Hence the kinetic limit N → ∞ of the stochastic
model without the term with τ does not converge to the Carleman equation as expected
by formal computations. We refer the reader to page 628 and Section 4 of [3] for more
information on this point.

Let (X, V) := (
(X1, V1), . . . , (XN , VN )

)
be the Markov process defined by the

generator BN . Moreover, we denote the one-particle-marginal density

μN (dx, v; t) := P(Xi (t) ∈ dx, Vi (t) = v).

Exploring propagation of chaos, through theBBGKYhierarchy, the authors of [3] proved
that, as N → ∞, μN has a (kinetic) limit μ := μ(dx, v; t) := μ(x, v; t)dx satisfying

∂tμ + cv · ∂xμ = k
(
μ2(x,−v; t) − μ2(x, v; t)

)
, μ(0) = μ0.

This is the Carleman system (4.1) if we take w1(t, x) = μ(x,+1; t) and w2(t, x) :=
μ(x,−1; t).
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In order to understand the large deviation behavior, following [24], we compute the
following nonlinear operator

HB f (x, v) := e− f BN e
f (x, v)

= c
N∑
i=1

vi∂xi f + τ
( N∑

i=1

∂2xi f +
N∑
i=1

|∂xi f |2
)

+
k

2N

N∑
i, j=1
i �= j

JθN
(
xi − x j

)
δvi

(
v j

)(
e�i j f − f − 1

)
.

We define the empirical probability measure

μ(dx, dv) := μN
(
dx, dv

) := 1

N

N∑
i=1

δ(xi ,vi )(dx, dv), (4.6)

and choose a class of test functions which are symmetric under particle permutations,

f (x, v) := f (μ) := ψ(〈ϕ1, μN 〉, . . . , 〈ϕM , μN 〉)

= ψ
( 1

N

N∑
k=1

ϕ1(xk, vk), . . . ,
1

N

N∑
k=1

ϕM (xk, vk)
)
.

The test function f can be abstractly thought of as a function in the space of probability
measures with a typical element denoted asμ, hence the notation f (μ). In the following,
we use the traditional notation of a functional derivative,

δ f

δμ
(x, v) :=

M∑
l=1

∂lψ(〈ϕ1, μ〉, . . . , 〈ϕM , μ〉)ϕl(x, v), ∀(x, v) ∈ O × {±1}.

For any test function ϕ = ϕ(x, v), we define a collision operator which maps a function
ϕ of two variables (x, v) into a function Cϕ of four variables (x, v, x∗, v∗), as follows:(

Cϕ
)(

(x, v); (x∗, v∗)
) := ϕ(x,−v) − ϕ(x, v) + ϕ(x∗,−v∗) − ϕ(x∗, v∗).

For a measure ν on O and θ > 0, we define its mollification

(Jθ ∗ ν)(y) :=
∫
y∈O

Jθ (y − z)ν(dz) =
∑
k∈Z

∫
y∈O

Ĵθ (y − z + k)ν(dz).

Then, direct computation leads to the estimate

HN f (μ) := 1

N
e−N f BN e

N f (x, v) = N−1HB(N f )(x, v)

= c〈−(
v∂xμ

)
,

δ f

δμ
〉 + k

2

1

N 2

N∑
i, j=1
i �= j

JθN
(
xi − x j

)
δv j (vi )

(
eC

δ f
δμ

(xi ,vi ;x j ,v j ) − 1
)
+ oN (1)

= c〈−(
v∂xμ

)
,

δ f

δμ
〉 + k

2

∑
v=+1,−1

∫
x∈O

(eC
δ f
δμ

(x,v;x,v) − 1)(JθN ∗ μ)(x, v)μ(dx, v) + oN (1).
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In the last line above, we invoked the condition NθN → +∞ to ensure that the diagonal
terms

∑∞
i= j=1 have a negligible effect on the overall convergence. Assuming μN → μ

in narrow topology where the μ(dx; v) = μ(x, v)dx , we then have

HN f (μN ) → c〈−(
v∂xμ

)
,

δ f

δμ
〉 + k

2

∑
v=+1,−1

∫
x∈O

(eC
δ f
δμ

(x,v;x,v) − 1)μ2(x, v)dx .

4.3. Large deviation from the hydrodynamic limit. We now consider the hydrodynamic
scaling by taking c := ε−1 and k := ε−2, together with N := N (ε) → ∞.

To emphasize the two-scale nature of the problem, we switch to the density-flux
coordinates:

ρ(dx) :=
∑

v=+1,−1

μ(dx, v), j (dx) := ε−1
∑

v=±1

vμ(dx, v). (4.7)

The calculations in the coming paragraphs will heavily rely upon the simple relations:
∑

v=±1

vμ2(x, v) = μ2(x, 1) − μ2(x,−1) = ερ(x) j (x) (4.8)

and
∑

v=±1

μ2(x, v) = 1

2

(
ρ2(x) + ε2 j2(x)

)
.

Let

ϕ̃1(x, v) := ϕ1(x), ϕ̃2(x, v) := cvϕ2(x), ∀ϕi ∈ C1(O), i = 1, 2.

Then

〈ϕ1, ρ〉 = 〈ϕ̃1, μ〉, 〈ϕ2, j〉 = 〈ϕ̃2, μ〉.
We consider

f (μ) := f (ρ, j) := ψ
(〈ϕ1, ρ〉, 〈ϕ2, j〉

) = ψ
(〈ϕ̃1, μ〉, 〈ϕ̃2, μ〉),

and then

δ f

δμ
(x, v) = (∂1ψ)ϕ1(x) + (∂2ψ)cvϕ2(x) = δ f

δρ
(x) +

1

ε
v
δ f

δ j
(x). (4.9)

More generally, we can consider

f (μ) := f (ρ, j)

:= ψ
(〈ϕ1,1, ρ〉, . . . , 〈ϕ1,M , ρ〉; 〈ϕ2,1, j〉, . . . , 〈ϕ2,M , j〉)

= ψ
(〈ϕ̃1,1, μ〉, . . . , 〈ϕ̃1,M , μ〉; 〈ϕ̃2,1, μ〉, . . . , 〈ϕ̃2,M , μ〉).

The identity (4.9) relating derivatives of μ to those of ρ and j still holds:

δ f

δμ
(x, v) = δ f

δρ
(x) +

1

ε
v
δ f

δ j
(x). (4.10)
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From this point on, we write Hε := HN (ε) to emphasize the dependence of ε. Then

(
Hε f

)
(ρ, j) =〈δ f

δρ
,−∂x j〉 + 1

ε2
〈δ f
δ j

,−∂xρ〉

+
1

2ε2
∑

v=±1

∫
x∈R

(
e
1
ε
(−4v)

δ f
δ j (x) − 1

)
μ2(x, v)dx + oε(1).

Following the abstract theorems in Feng and Kurtz [24], if we can derive a limit of
the operator Hε (which we claim to be the H in (1.1)) and if we can prove the associated
comparison principle, then

lim
δ→0+

lim
ε→0+

−ε log P
(
ρε(·) ∈ B(ρ(·); δ)

) = AT [ρ(·)], ∀ρ ∈ C([0, T ];X),

where the action functional AT is defined as in (1.4); here B(ρ(·); δ) is a ball of size
δ around ρ(·) in C([0, T ];X) and X = P(O) is the metric space specified in the in-
troduction. This will then rigorously justify the formally statement (1.12). We reiterate
that the aim of this paper is to establish the one challenging part, the comparison princi-
ple, rigorously (Sect. 2), which we now give heuristic arguments for the other part, the
convergence.

4.4. Convergence of Hamiltonian operators, in a singularly perturbed sense. We show
that the Hamiltonian H in (1.1) is a formal limit for the sequence of operators given by
Hε . The identification of H is related to an infinite-dimensional version of ground state
energy problem in (4.15). We now describe three different possible approaches.

We consider a class of perturbed test functions

fε(ρ, j) := f0(ρ) + ε2 f1(ρ, j). (4.11)

It follows then

(
Hε fε

)
(ρ, j) = H(ρ, j; δ f0

δρ
,
δ f1
δ j

) + oε(1), (4.12)

where

H(ρ, j;ϕ, ξ) := 〈ϕ,−∂x j〉 + 〈ξ,−∂xρ − 2ρ j〉 + 2
∫
x
|ξ |2ρ2dx

= H( j, ξ ; ρ) + V( j;ϕ), (4.13)

with

H( j, ξ) := H( j, ξ ; ρ) := 〈ξ,−∂xρ − 2ρ j〉 + 2
∫
x
|ξ(x)|2ρ2(x)dx, ∀ξ ∈ C∞

c (O),

(4.14)

and

V( j) := V( j;ϕ) := 〈ϕ,−∂x j〉 = 〈∂xϕ, j〉.
We would like to have the limit in (4.12) independent of the j-variable and thus want
to make the j-variable to disappear asymptotically. We can choose the test function f1
suitably to achieve this.
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We introduce perturbed Hamiltonians in the j-variable

HV( j, ξ) := HV( j, ξ ; ρ, ϕ) := H( j, ξ) + V( j).

Then we seek solution to a stationary Hamilton–Jacobi equation in the j-variable

HV( j,
δ f1
δ j

) = H, (4.15)

where H is a constant in j but may depend on ρ through H(·, ·; ρ) and on ϕ through
V(·;ϕ). We denote this dependence as

H := H(ρ, ϕ).

Suppose that we can solve (4.15), then

Hε fε(ρ, j) = H
(
ρ; δ f0

δρ

)
+ oε(1)

and

lim
ε→0+

Hε fε = H f0.

Hence we can conclude our program. Next, we identify the Hamiltonian H as the one
defined in (1.1) and show that the associated Hamilton–Jacobi equation (1.3) (in the
interpretation of Sects. 2 and 3) is solvable.

We now present three different approaches to identify H . We comment that, although
we work with a specific model (the Carleman particles) in this paper, our goal has been
more ambitious. We would like to explore the scope of applicability of the Hamiltonian
operator convergence method in the context of hydrodynamic limits. As this ambition
is very general, we aim to present as many ways of verifying the required conditions as
possible.

4.5. First approach to identify H—formal weak KAM method in infinite dimensions.
In finite dimensions, equations of the type (4.15) have been studied in the weak KAM
(Kolmogorov–Arnold–Moser) theory forHamiltoniandynamical systems. SeeFathi [18–
20], E [12], Evans [13–15], Evans and Gomes [16,17], Fathi and Siconolfi [21,22] and
others; there is an unpublished book of Fathi [23]. The existing literature focuses on
finite-dimensional systems,mostlywith compactness assumptions on the physical space.
Our setting is necessarily very different, as we have an infinite-dimensional non-locally
compact state space. In the following, we (formally) apply conclusions of the existing
weak KAM theory to arrive at the representation

H(ρ, ϕ) = inf
f1
sup
j

(
H( j,

δ f1
δ j

; ρ) + V( j; ρ, ϕ)
)
. (4.16)

The representation (4.16) can be made more explicit due to a hidden controlled
gradient flow structure in H (see (4.17)). To present the ideas as clearly as possible, we
introduce yet another set of coordinates by considering

u(x) := d j

dρ
(x), x a.e. ρ.
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Then

j (dx) = u(x)ρ(dx),
δ f

δu
(x) = ρ(dx)

δ f

δ j
(x).

This motivates us to introduce new test functions φ := ρξ . Under the new coordinates,
we have

V(u;ϕ, ρ) = 〈ϕ,−∂x (ρu)〉,
H(u, φ; ρ) = 〈φ,−∂x log ρ − 2ρu〉 + 2

∫
O

∣∣φ∣∣2dx .
We define a free energy function

F(u) := F(u; ρ) := 1

4

∫
O

(
ρu2 + u(x)∂x log ρ(x)

)
dx,

so

δF
δu

= 1

4
(2ρu + ∂x log ρ),

and

H(u,
δ f

δu
; ρ) = −4〈δ f

δu
,
δF
δu

〉 + 2
∫
O

|δ f
δu

|2dx

= 2
( ∫

O
(δ f

δu
− δF

δu

)2
dx −

∫
O

|δF
δu

|2dx
)
. (4.17)

In particular, for any θ ∈ [0, 2],

H(θF)(u; ρ) = H(u; θ
δF
δu

; ρ) = −2θ(2 − θ)

∫
O

|δF
δu

|2dx ≤ 0.

This inequality will play important role in the rigorous justification of the derivation of
H in (1.1).

Putting everything together, (4.16) gives

H(ρ, ϕ) = inf
f1
sup
u

(
H(u,

δ f1
δu

; ρ) + V(u;ϕ, ρ)
)

= inf
f1
sup
u

2
∫
O

(∣∣δ f1
δu

− δF
δu

∣∣2 − ∣∣δF
δu

∣∣2)dx + V(u; ρ, ϕ)

= sup
u

∫
O

(
ρu∂xϕ − 2

∣∣δF
δu

∣∣2)dx
= sup

u

∫
O

(
ρu∂xϕ − 1

8
|2ρu + ∂x log ρ|2

)
dx

= sup
η

∫
O

(
(η − 1

2
∂x log ρ)∂xϕ − 1

2
|η|2

)
dx

= −1

2
〈∂x log ρ, ∂xϕ〉 + 1

2

∫
O

|∂xϕ|2dx .

This is the Hamiltonian we gave in (1.1).



A Hamilton–Jacobi PDE Associated with Hydrodynamic Fluctuations 45

4.6. A decomposition of theH into a family of microscopic ones
{
h(·;α, β) : α, β ∈ R

}
.

The second and third approaches to identify H involve a subtle argument we are going
to explain first.

For the kind of problem we consider, we intuitively expect that propagation of chaos
to hold. We expect this even at the large deviation/ hydrodynamic limit scale. Therefore,
the infinite-dimensional HamiltonianH is expected to be representable as summation of
a family of one-particle level Hamiltonians indexed by some hydrodynamic parameters
in statistical local equilibrium. This intuition leads to the following arguments.

We define a family of Hamiltonians indexed by (α, β) at the one-particle level,

h(υ, p;α, β) := −(2αυ + β)p + 2p2, (υ, p) ∈ R × R, ∀α, β ∈ R,

hP (υ, p;α, β) := h(υ, p;α, β) + αPυ, ∀P ∈ R.

We observe that

H(u, φ; ρ) =
∫
O
h
(
u(x), φ(x); ρ(x), ∂x log ρ(x)

)
dx, (4.18)

and that

HV(u, φ; ρ, ϕ) =
∫
O
h∂xϕ(x)(u(x), ξ(x); ρ(x), ∂x log ρ(x)

)
dx .

At least formally, if we take

f1(u) :=
∫
y∈O

ψ
(
u(y); y)dy (4.19)

and denote ∂1ψ(υ; y) := ∂υψ(υ; y), then
δ f1
δu

(x) = ∂1ψ
(
u(x); x),

and

H
(
u,

δ f1
δu

; ρ
)

=
∫
O
h
(
u(x), ∂1ψ

(
u(x); x); ρ(x), ∂x log ρ(x)

)
dx,

HV

(
u,

δ f1
δu

; ρ, ϕ
)

=
∫
O
h∂xϕ(x)(u(x), ∂1ψ

(
u(x); x); ρ(x), ∂x log ρ(x)

)
dx .

Therefore, in order to solve (4.15), it suffices to solve a family (indexed by α and β) of
finite-dimensional “small cell” problems

h
(
υ, ∂υψ;α, β

)
+ αPυ = E[P;α, β], ∀υ ∈ R. (4.20)

Here, E is a constant of the variable υ. Moreover, if we can solve this finite-dimensional
PDE problem, then the H term for the infinite-dimensional problem (4.15) has a solution

H(ρ, ϕ) =
∫
O
E[∂xϕ(x); ρ(x), ∂x log ρ(x)]dx .

These consideration leads to two more ways of identifying the effective Hamilto-
nian H = H(ρ, ϕ). (We remark that we could present at least one further approach,
which exploits the special one-dimensional nature of (4.20) by invoking the Mauper-
tuis’ principle. We choose not to present this approach, since we are interested in general
methodologies that work even when the velocity field u(x) take values in several dimen-
sions and υ in (4.20) lives in several dimensions.)
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4.7. Second approach to identify H—finite-dimensional weak KAM and the method of
equilibriumpoints. We introduce amicroscopic (one-particle level) free energy function

f(υ) := f(υ;α, β) := 1

4

(
αυ2 + βυ

)
.

The connection with the free energy introduced earlier is that

F(u; ρ) =
∫
O
f
(
u(x); ρ(x), ∂x log ρ(x)

)
dx .

It is not surprising that the microscopic Hamiltonians h also have controlled gradient
flow structures:

h(υ, p;α, β) = 4
(1
2
p2 − p∂υ f

)
= 2

(|p − ∂υ f|2 − |∂υ f|2
)

= hiso
(
υ, p − ∂υ f

)
, (4.21)

if we introduce a family of isotropic Hamiltonians

hiso(υ, p) := 2
(|p|2 − |∂υ f|2

)
.

Solving (4.20) is equivalent to solving

hiso
(
υ, ∂υ�

)
+ αυP = E,

with� = (ψ−f).Wenotehiso is isotropic in the sense that the dependenceongeneralized
momentum variable p is only through its length |p|, i.e. hiso(υ, p) = hiso

(
υ, |p|). It

also holds thatR+ � r 	→ ηiso(υ, r) is convex, monotonically nondecreasing and super-
linear. In particular,

inf
r∈R+

ηiso(υ, r) = ηiso(υ, 0).

For this kind of Hamiltonian, it is known that (e.g. Fathi [23])

E = E[P;α, β] = sup
υ∈R

(
hiso(υ, 0) + αυP

)

= sup
υ∈R

(
αυP − 2|∂υ f(υ)|2) = sup

υ∈R

(
αυP − 1

2

∣∣αυ +
1

2
β
∣∣2)

= −1

2
βP +

1

2
P2.

Consequently,

H(ρ, ϕ) =
∫
O
E[∂xϕ(x); ρ(x), ∂x log ρ(x)]dx = −1

2
〈∂x log ρ, ∂xϕ〉 + 1

2

∫
R

|∂xϕ|2dx .



A Hamilton–Jacobi PDE Associated with Hydrodynamic Fluctuations 47

4.8. Third approach to identify H—semiclassical approximations. Finally, we abandon
methods based onweakKAM. Instead,we introduce amethod for identifying E[P;α, β]
directly using probability theory and ideas from semi-classical limits.

Our point of departure is to approximate equation (4.20) by introducing an extra
viscosity parameter κ > 0. For readers familiar with the Hamiltonian convergence
approach to large deviation as described in Feng and Kurtz [24], h is (see (4.23) below)
the limiting Hamiltonian for small noise large deviations (κ → 0+) for the stochastic
differential equations

dυ(t) +
(
2αυ(t) + β

)
dt = 2

√
κdW (t). (4.22)

The solution υ(t) is an R-valued Markov process with infinitesimal generator

Lκψ(υ) := −(2αυ + β)∂υψ(υ) + 2κ∂2υυψ(υ).

Following [24], we define a sequence of nonlinear second order differential operators

(
hκψ

)
(υ) := e−κ−1ψ

(
κLκ

)
eκ−1ψ(υ),

then

lim
κ→0+

(
hκψ

)
(υ) = h

(
υ, ∂υψ

)
. (4.23)

We also consider a second-order stationary Hamilton–Jacobi equation with constant Eκ :
(
hκψ

)
(υ) + αυP = Eκ . (4.24)

This can be viewed as a regularized approximation to the first-order equation (4.20).
A simple transformation turns the nonlinear PDE (4.24) into a linear eigenfunction,

eigenvalue equation

(κLκ + αυP)�κ = Eκ�κ, (4.25)

where

�κ := eκ−1ψ > 0.

This is the equation defining ground state�κ with ground state energy Eκ of the rescaled
Schrödinger operator κLκ . There is a theory giving uniqueness for the constant E
in (4.20). By well-known stability results for viscosity solution of Hamilton–Jacobi
equations (4.24), we can prove that

E = lim
κ→0

Eκ .

The ground state energy Eκ is given by the Rayleigh-Ritz formula, which has been
extensively studied in probability theory in the context of large deviations for occupation
measures by Donsker and Varadhan. We denote by

mκ(dυ) := Z−1
κ e− αυ2+βυ

2κ dυ
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the invariant probability measure for the Markov process υ(t), and introduce a family
of related probability measures indexed by � ∈ Cb(R):

m�
κ (dυ) := e2�(υ)∫

e2�dmκ

mκ(dυ).

We identify the (pre-)Dirichlet form associated with κLκ by

Eκ(φ1, φ2) := −
∫

υ∈R
φ1(υ)(κLκφ2)(υ)mκ(dυ) = 2κ2

∫
R

(∂υφ1)(∂υφ2)mκ(dυ).

Then, by the arguments on pages 112 and 113 of Stroock [41] (alternatively, one can
also follow Example B.14 in Feng and Kurtz [24]), we have

Eκ [P] = sup
�

{
αP

∫
R

υm�
κ (dυ) − Eκ

(√
dm�

κ

dmκ

)}
= sup

�

∫
R

(
αυP − 2κ2|∂υ�|2)m�

κ (dυ).

A change of variable �̂ 	→ κ� gives

Eκ [P] = sup
�

∫
R

(
αυP − 2|∂υ�̂(υ)|2)m

κ,�̂
(dυ),

where

m
κ,�̂

(dυ) = e
1
κ
(2�̂− αυ2+βυ

2 )dυ

Z
κ,�̂

.

We can further lift the mκ,� probability measure to

mκ,�(dυ, dξ) := δ∂υ�(dξ)mκ,�(dυ), (υ, ξ) ∈ R × R,

giving

Eκ [P] = sup
�

∫
R

(
αυP − 2|ξ |2)mκ,�(dυ, dξ).

We see that as κ → 0, by the Laplace principle, the limit points of {mκ,� : κ > 0} form
a family of probability measures as follows:

m�(dυ, dξ) :=
∑
k

pkδ{υk ,∂υ�(υk)}(dυ, dξ),
∑
k

pk = 1, pk > 0,

with υk solves the algebraic equation

4∂υ�(υ) − (2αυ + β) = 0.

That is,

αυ = 2ξ − β

2
, ∀(υ, ξ) ∈ supp[m�].
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Then it follows that

E[P;α, β] = lim
κ→0

Eκ [P;α, β] = lim
κ→0

sup
�

∫
R

(
αυP − 2|ξ |2)mκ,�(dυ, dξ)

= sup
�

∫
R

(
αυP − 2|ξ |2)m�(dυ, dξ)

= sup
m

∫ ((
2ξ − β

2

)
P − 2|ξ |2

)
m(dυ, dξ)

= −β

2
P +

P2

2
.

Hence again we are lead to the

H(ρ, ϕ) =
∫
O
E[∂xϕ(x); ρ(x), ∂x log ρ(x)]dx = 1

2
〈∂2xx log ρ, ϕ〉 + 1

2

∫
R

|∂xϕ|2dx

and again recover the Hamiltonian (1.1).
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Appendix A. Some Properties of P(O)

A.1 Quotients and Coverings.

A.1.1 Projections and lifts As defined in Sect. 1.3, we view O := R/Z as a quotient
space with corresponding quotient metric r . We define a projection p : R 	→ O by

x := p(x̂) = x̂ (mod 1), ∀x̂ ∈ R. (A.1)

Let P2(R) be the Wasserstein order-2 metric space [2]. For every μ̂ ∈ P2(R), we
define push forward of μ̂ by μ := p#μ̂ ∈ P(O). That is, we project μ̂ to μ in the
following way

μ(A) := μ̂
(
p−1(A)

) :=
∑
k∈Z

μ̂(A + k), ∀A ∈ B(O). (A.2)

Here, we use the set A+k := {x +k : x ∈ A}, and we writeB(O) to denote the collection
of Borel sets in O.

There are manyways to lift a probability measureμ ∈ P(O) to a probability measure
μ̂ ∈ P2(R) such that p#μ̂ = μ. Following Galaz-García, Kell, Mondino and Sosa [27],
we now describe one class of such lifts. Given a family of weights

α := {αk ∈ [0, 1] :
∑
k∈Z

αk = 1,
∑
k∈Z

k2αk < ∞}k∈Z, (A.3)
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we introduce a probability measure on R by

νx (dx̂) := να
x (dx̂) :=

∑
k∈Z

αkδx+k(dx̂), ∀x ∈ O.

Second, using the family of measures {νx }x∈O, we define a lift operator � := �α :
P(O) 	→ P2(R) as follows

μ 	→ μ̂ := �(μ) :=
∫
x∈O

νxμ(dx). (A.4)

We note that p#μ̂ = μ.
Let Cper(R) be the collection of continuous functions which are 1-periodic on R.

Similarly, we define C p
per(R) for p = 1, 2, . . . ,∞. For each ϕ̂ ∈ C p

per(R), we have
translation invariance

ϕ̂(x̂) = ϕ̂(x̂ + k), ∀k ∈ Z .

Hence such a function ϕ̂ projects to an element ϕ ∈ C p(O) as follows

ϕ(x) := ϕ̂(x̂), ∀x̂ ∈ p−1(x). (A.5)

On the other hand, each ϕ ∈ C p(O) has a lift to ϕ̂ ∈ C p
per(R) defined by

ϕ̂(x̂) := ϕ
(
p(x̂)

)
. (A.6)

Such a lift is translation invariant in Z and its projection (as defined in (A.1)) gives ϕ.
Given ρ, γ ∈ P(O) and ϕ ∈ C p(O), for a fixed α, let ρ̂, γ̂ ∈ P2(R) and ϕ̂ ∈ C p

per(R)

be lifts as just defined. Then

〈ρ − γ, ϕ〉 = 〈ρ̂ − γ̂ , ϕ̂〉.
In particular, this implies that

‖ρ − γ ‖−1 = sup
(
〈ρ̂ − γ̂ , ϕ̂〉 : ϕ ∈ C∞(O),

∫
O

|∂xϕ|2dx ≤ 1
)
. (A.7)

A.1.2 A random variable description The constructions of projection and lifts of the
previous subsection A.1.1 can be described using the language of random variables. In
certain situations, this can be more intuitive.

Let (�,F ,P) be a probability space and let (X, K ) : � 	→ O×Z be a pair of random
variables. We define the R-valued random variable

X̂ := X + K .

Then

X = X̂ (mod 1), K := �X�.
If X̂ has the probability law ρ̂, then

ρ(dx) := P(X ∈ dx) =
∑
k∈Z

P(X̂ ∈ dx + k; K = k) =
∑
k∈Z

ρ̂(dx + k).
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On theother hand, if X has theprobability lawρ, dependingon the conditional probability
law of the K ,

αk := αk(x) := P(K = k|X = x),

or equivalently for the conditional law of X̂

νx (dx̂) := P(X̂ ∈ dx̂ |X = x) = P(X + K ∈ dx̂ |X = x) =
∑
k∈Z

αkδx+k(dx̂),

the lift defined in (A.4) becomes

ρ̂(dx̂) = P(X̂ ∈ dx̂) =
∫
x∈O

P(X + K ∈ dx̂ |X = x)P(dx) =
∫
x∈O

νx (dx̂)ρ(dx).

A.2 Equivalence of metric topologies. We recall inequality (1.18)

W1(ρ, γ ) ≤ ‖ρ − γ ‖−1.

Next, we establish a converse of sorts. The proof below is an adaptation of Lemma 4.1
in Mischler–Mouhot [39].

Lemma A.1. For every ρ, γ ∈ P(O), we have

‖ρ − γ ‖−1 ≤ 2√
π

√
W1(ρ, γ ).

Proof. We can construct a probability space (�,F ,P) with two pairs ofO ×Z-valued
random variables (X, K1), (Y, K2) such that

ρ(dx) = P(X ∈ dx), γ (dy) = P(Y ∈ dy).

We introduce

X̂ := X + K1 and Ŷ := Y + K2

and denote ρ̂(dx̂) := P(X̂ ∈ dx̂) and γ̂ (d ŷ) := P(Ŷ ∈ d ŷ). We use the Fourier
transform

F[ρ̂](ξ) := 1√
2π

∫
R

e−i z·ξ ρ̂(dz) = 1√
2π

E[e−i X̂ ·ξ ],

and

F[γ̂ ](ξ) := 1√
2π

∫
R

e−i z·ξ γ̂ (dz) = 1√
2π

E[e−i Ŷ ·ξ ].

Then

|F[ρ̂](ξ) − F[γ̂ ](ξ)| ≤ 1√
2π

∣∣E[e−i X̂ ·ξ − e−i Ŷ ·ξ )]∣∣ ≤ |ξ |√
2π

E[|X − Y − K |],

where K := K1 − K2.
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On the other hand, it holds that

‖ρ − γ ‖2−1 = sup
(
〈ρ̂ − γ̂ , ϕ̂〉 : ϕ ∈ C∞(O),

∫
O

|∂xϕ|2dx ≤ 1,

ϕ̂ is defined fromϕ as in (A.6), ρ̂, γ̂ are lifts of ρ, γ as in (A.4)
)2

≤ sup
(
〈ρ̂ − γ̂ , ϕ̂〉 : ϕ̂ ∈ C∞

c (R),

∫
R

|∂x ϕ̂|2dx ≤ 1
)2

=
∫
R

|F[ρ̂](ξ) − F[γ̂ ](ξ)|2
|ξ |2 dξ

≤ inf
R>0

(
sup
ξ∈R

|F[ρ̂](ξ) − F[γ̂ ](ξ)|2
|ξ |2

∫
|ξ |≤R

dξ +
4

2π

∫
|ξ |>R

1

|ξ |2 dξ
)
.

Therefore

‖ρ − γ ‖2−1 ≤ 1

2π
inf
R>0

(
(2R)E2[|X − Y − K |] + 8

R

)
= 4

π
E[|X − Y − K |].

Next, we note that
{
ϕ(X,Y )

∣∣ ϕ : O × O 	→ Z is measurable
}

⊂ {
K := K1 − K2

∣∣ K1, K2 are Z-valued random variables
}
.

Therefore, with the quotient metric r defined in (1.15), we have

inf
K

E[|X − Y − K |]

≤ inf
{
E[|X − Y − ϕ(X,Y )|] : where ϕ is measurable function from O × O to Z

}

= E[ inf
k∈Z |X − Y − k|] = E[r(X,Y )] =

∫
O×O

r(x, y)ν(dx, dy), ∀ν ∈ �(ρ, γ )

(see (1.16) for the definition of �(ρ, γ )). This leads to

‖ρ − γ ‖2−1 ≤ 4

π
W1(ρ, γ ).

��
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