Commun. Math. Phys. 387, 481-550 (2021) Communications in
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-021-04098-8 Math ematical

Physics
®

Check for
updates

Tetrahedron and 3D Reflection Equation from PBW Bases
of the Nilpotent Subalgebra of Quantum Superalgebras

Akihito Yoneyama

Institute of Physics, University of Tokyo, Komaba, Tokyo 153-8902, Japan.
E-mail: yoneyama@gokutan.c.u-tokyo.ac.jp

Received: 14 January 2021 / Accepted: 15 April 2021
Published online: 23 May 2021 — © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany,
part of Springer Nature 2021

Abstract: In this paper, we study transition matrices of PBW bases of the nilpotent sub-
algebra of quantum superalgebras associated with all possible Dynkin diagrams of type
A and B in the case of rank 2 and 3, and examine relationships with three-dimensional
(3D) integrability. We obtain new solutions to the Zamolodchikov tetrahedron equation
via type A and the 3D reflection equation via type B, where the latter equation was
proposed by Isaev and Kulish as a 3D analog of the reflection equation of Cherednik.
As a by-product of our approach, the Bazhanov—Sergeev solution to the Zamolodchikov
tetrahedron equation is characterized as the transition matrix for a particular case of type
A, which clarifies an algebraic origin of it. Our work is inspired by the recent develop-
ments connecting transition matrices for quantum non-super algebras with intertwiners
of irreducible representations of quantum coordinate rings. We also discuss the crystal
limit of transition matrices, which gives a super analog of transition maps of Lusztig’s
parametrizations of the canonical basis.
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1. Introduction

1.1 Background. The Zamolodchikov tetrahedron equation [46] is a three dimensional
analog of the Yang—Baxter equation [1], where the latter equation serves as a cornerstone
of integrable systems in two dimensions in terms of its physical applications and deeply
understood algebraic aspects. Along the same line as the Yang—Baxter equation, the
tetrahedron equation gives the condition of factorizations for a four-body scattering of
strings, and also gives a sufficient condition for the commutativity of the associated layer-
to-layer transfer matrix. Solutions to the Yang—Baxter equation are called R matrices, and
it is well known that we can systematically construct R matrices through the Drinfeld-
Jimbo quantum algebras [11, 19], but unlike the Yang—Baxter equation, there is no known
way to obtain non-trivial solutions to the tetrahedron equation as such a systematic
procedure.

Historically, one important family of solutions to the tetrahedron equation is the N-
state Zamolodchikov model, which was first proposed by [47] for N = 2 as the first
non-trivial solution and later generalized by [2,41] for general N. From an algebraic
point of view, it is known that the solutions are related to the R matrices associated with
the cyclic representations of the affine quantum algebra U, (Agllll) at roots of unity. For
the history of the solutions, see the introduction of [4] and references therein.

In this paper, we focus on infinite-dimensional solutions on the Fock spaces, which
are essentially different solutions from the N-state Zamolodchikov model. Our starting
point is the known solution (R, L) to the following tetrahedron equations:

R123R145R246R356 = R3s6R246R145R123, (L.1)
L123L145L246R356 = R356L246L145L 123, (1.2)

where indices represent the tensor components on which each matrix acts non-trivially.
The matrix elements of R € End(F ® F ® F) and L € End(V ® V ® F) will be
specified in (3.2) and (3.6), where F and V are the bosonic and Fermionic Fock spaces,
respectively. We call them the 3D R and 3D L.

The 3D R was first derived [21] as the intertwiner of the irreducible representations
of the quantum coordinate ring A, (A2), where the associated tetrahedron equation (1.1)
holds as the identity of the intertwiner of the irreducible representations of the quantum
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coordinatering A, (A3) [36]. The 3D R was also independently discovered by the seminal
paper [4] as explained later, and they are identified by [25]. As an amazing connection,
the 3D R also gives the transition matrix of the PBW bases of the nilpotent subalgebra of
the quantum algebra U, ; (Ap).Itis first observed by Sergeev [39], and later systematically
generalized as the Kuniba—Okado—Yamada theorem [28], which states that intertwiners
of irreducible representations of quantum coordinate rings agree with transition matrices
of PBW bases of the nilpotent subalgebra of quantum algebras for all finite-dimensional
simple Lie algebras. See also [37,43] which proved and sophisticated this theorem from
a different point of view.

On the other hand, the 3D L was obtained by a heuristic quantization of the solution
to the local Yang—Baxter equation [33] by Bazhanov—Sergeev [4]. They made an ansatz
that the 3D L gives an operator-valued solution to the local Yang—Baxter equation, which
is equivalent to the tetrahedron equation (1.2), and solved (1.2) for R. It also gives an
alternative derivation of the 3D R. As a remarkable result related to the 3D L, it is known
that the layer-to-layer transfer matrix of size m x n associated with the 3D L gives
the spectral duality between different row-to-row transfer matrices: sl(m) spin chain
of system size n and sl(n) spin chain of system size m [4]. The duality is called the
rank-size duality, and later, also appeared in the context of the five-dimensional gauge
theory [35].

Of course, the 3D R and 3D L are essentially three-dimensional objects, but it is
known that there is an interesting connection to the R matrix. More concretely, there is
a systematic way to reduce one solution to the tetrahedron equation to an infinite family
of R matrices. By applying this procedure to the 3D R and 3D L, we can obtain explicit
formulae of the R matrices associated with some affine quantum algebras [27]. By n-
concatenation of the 3D R, we obtain the R matrices associated with the symmetric tensor
representations of U, (A;L)] ), and the Fock representations of U, (D,(i)l ), Uy (Agl)) and
U, (C,(,l)). Similarly, by n-concatenation of the 3D L, we obtain the R matrices associ-

ated with the fundamental representations of U, (A,(:_) 1), and the spin representations of
U, (D(z) ), Uy (B,(,l)) and U, (D,(ll)). Moreover, by mixing uses of some 3D R and 3D

n+l1
L, we also obtain the R matrices associated with the generalized quantum groups [27].
They are called matrix product solutions to the Yang—Baxter equation. For more details,

see [27] and references therein.

1.2 Motivation. One of our motivations for this paper is why the 3D R and 3D L lead to
such similar results, although they have totally different origins. Actually, the 3D L has
been derived again in several ways after [4]. First, [25] identified the tetrahedron equation
(1.2) as the set of intertwining relations of the irreducible representations of A, (Az),
that is, the tetrahedron equation (1.2) is obtained by arranging the intertwining relations
of the 3D R into the matrix form (1.2), simply by introducing the matrix L. See Remark
3.2 for more details of this observation. This procedure also works for the intertwining
relation for A, (C>) [30] and even for A, (G2) [24], and leads to matrix product solutions
to the reflection equation of Cherednik [8] and the G, reflection equation. See Remark
3.4 for more details for type C. These are interesting connections but quite mysterious.
Also, although this connection for type A gives a derivation of the tetrahedron equation
(1.2), algebraic origins of the 3D L has been still unclear.

On the one hand, Sergeev gave a parallel derivation [40] for the 3D R and 3D L
by using the methods called quantum geometry [3]. At first glance, it seems that they
consider something like a super analog of the irreducible representations of the quantum
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coordinatering A, (A3). See for example (56)—(59) of [40]. However, to verify itis highly
non-trivial because there is no theory about irreducible representations of quantum super
coordinate rings like Soibelman’s theory for the non-super case [42]. Then, the result
by [40] can not be understood in terms of usual languages of quantum algebras, at least
straightforwardly.

We also remark that the classical limit of the tetrahedron equation (1.2) is recently
derived in relation to non-trivial transformations of a plabic network, which can be
interpreted as cluster mutations [13].

1.3 Main achievements. In this paper, we give a derivation for the 3D L in terms of
the PBW bases of the nilpotent subalgebra of the quantum superalgebra [45] associated
with the Dynkin diagram ()——() . We identify the 3D L with the transition matrix of
them, which clarifies a completely parallel origin for the 3D L to the 3D R. This result is
just a special case of our investigations: we study transition matrices associated with all
Dynkin diagrams of type A in the case of rank 2, which become parts of the tetrahedron
equations. Actually, we obtain a matrix N € End(V ® F ® V) by considering the case
of ®——), which is new and different from the 3D R and 3D L. The matrix elements
of N will be specified in (4.51), and we call N the 3D N.

By considering the transition matrix for the case of rank 3 and attributing it to a
composition of transition matrices of rank 2 in two ways, we obtain several solutions
to the tetrahedron equation which the 3D R, L, and N satisfy. We study the transition
matrices associated with all Dynkin diagrams of type A in the case of rank 3, where
R—O—O and Y——R)——() can be easily attribnuted to O)—0O——)
and O—&——=), respectively, so we consider 6 Dynkin diagrams in total. The cases
for O—(O——0O and O)——(O——) reproduce the known tetrahedron equations
(1.1) and (1.2), respectively. For the case of ()——&)——(), we obtain the following
equation:

N(g™")123N(@ ™ 1a5R246L 356 = L3s6RaaeN(q ™) 145N(g ™ 123 (1.3)

This suggests the 3D N gives a new solution to the tetrahedron equation. The remaining
3 cases also give the tetrahedron like equations, but actually they are the tetrahedron
equations up to sign factors. Further investigations should be done as to whether we can
attribute them to the usual tetrahedron equations. See Remark 3.3 related to this issue.

We can generalize these results to the case of type B. For type B, the associated
equation is the 3D reflection equation [18], which is proposed by Isaev and Kulish as a
three-dimensional analog of the reflection equation of Cherednik [8]. They also call the
equation the tetrahedron reflection equation. Actually, they obtained the equation as the
associativity condition for the 3D boundary Zamolodchikov algebra [18, (9)], just as the
tetrahedron equation is obtained as the associativity condition for the 3D Zamolodchikov
algebra [46]. Physically, the 3D reflection equation gives the condition for factorizations
for a three-body scattering of strings with boundary reflections, along the same line as
the tetrahedron equation.

Essentially, there are only two known non-trivial solutions to the 3D reflection equa-
tion [25,26]. Here, we present one of the equations:

Ras56R48993579R260R2589 167801234 = J123491678R258R26993579R 480 R 456,  (1.4)

where R is the 3D R and the matrix elements of J € End(F ® F ® F ® F) will be
specified in (3.21). We call J the 3D J. The 3D J was first derived as the intertwiner of the
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Table 1. Realization of the fundamental system

g(m|n) Simple roots
sl(m|n) o =€ —€41G=1,...,r1)
osp(2m + 1]2n) a =€ —€(=1,....,r —D,ar =&

irreducible representations of the quantum coordinate ring A, (B), where the associated
3D reflection equation (1.4) holds as the identity of the intertwiner of the irreducible
representations of the quantum coordinate ring A, (B3) [26]. As an immediate corollary
of the Kuniba—Okado—Yamada theorem, we find the 3D J also gives the transition matrix
of the PBW bases of the nilpotent subalgebra of the quantum algebra U q+ (B2). Our
result for type B gives new solutions to the 3D reflection equation, which generalizes the
solution (1.4) to the family of solutions (5.186). Actually, we introduce three analogs of
the 3D J; we call them the 3D X, Y and Z. We emphasize that our result also gives some
explicit formula of transition matrices for type B.

Our idea comes from trying to interpret Sergeev’s result [40] on the side of PBW
bases through the Kuniba—Okado—Yamada theorem although the theorem has not been
established for the super case. Note however our proofs do not need any result for
quantum coordinate rings. The derivation of the tetrahedron and 3D reflection equation
is done only using higher-order relations for quantum superalgebras.

Finally, we discuss the behavior of transition matrices at ¢ = 0, which is known as
the crystal limit [22]. In the crystal limit, transition matrices of PBW bases give so-called
transition maps of Lusztig’s parametrizations of the canonical basis because PBW bases
correspond to the canonical basis in that case [5,32]. Then, if we take the limit for super
cases, it is expected we can obtain a super analog of transition maps. In this paper, we
show that we can take normalizations for transition matrices so that such non-trivial
limits exist, and obtain explicit formulae for almost all cases. In contrast to non-super
cases, non-trivial elements of transition matrices take not only 0, 1 but also —1 in the
crystal limit, and they define non-trivial bijections on mixed spaces of {0, 1} and Zx.

1.4 Outline. The ourline of this paper is as follows. In Sect. 2, we briefly review basic
facts about finite-dimensional Lie superalgebras of type A and B. Then, we introduce
quantum superalgebras and their PBW theorem by [45]. In Sect. 3, we summarize the 3D
operators which give solutions to the tetrahedron and 3D reflection equations. Sections 4
and 5 are main parts of this paper. They can be read almost independently. In Sect. 4,
we consider transition matrices of PBW bases of the nilpotent subalgebra of quantum
superalgebras associated with all possible Dynkin diagrams of type A in the case of rank
2 and 3, and we obtain several solutions to the tetrahedron equation. In Sect. 4.1, we
introduce some notations to briefly describe the PBW bases of rank 3 and higher-order
relations for them, which are used in Sect. 4.3. In Sects. 4.2 and 4.3, we study transition
matrices of rank 2 and 3, respectively. Section 5 is type B version of Sect. 4, where the
associated equation is the 3D reflection equaion. Finally, in Sect. 6, we discuss the crystal
limit of transition matrices. “Appendix A” is devoted to the proof of Theorem 5.12. In
“Appendix B”, we derive recurrence equations for the 3D Z, which is the transition
matrix associated with O=—@) .
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Table 2. Realization of the positive part of the root system

g(mln) Posmve part of root system
sl(m|n) —{e,—ej (1<i<j<N)}
0sp(2m + 1]2n) ={e,:l:€] (1<i<j<N),(1<i<N),2 (1<i<N,ier)}

2. Quantum Superalgebras of Type A and B

2.1. Root data of finite-dimensional Lie superalgebras. In this paper, we consider quan-
tum superalgebras associated with finite-dimensional Lie superalgebras sl(m|n) and
osp(2m + 1|2n) [7,12,20,49]. Here, m, n are non-negative integers and we assume
m+n > 2. We call sl(m|n) type A and osp(2m + 1|2n) type B, respectively. Let g(m|n)
denote sl(m|n) or osp(2m + 1]2n). If we setn = 0, g(m) = g(m|0) is reduced to finite-
dimensional simple Lie algebras. To avoid confusion, we also call the finite-dimensional
simple Lie algebras the finite-dimensional simple non-super Lie algebras. In this case,
we simply write sl(m|0) and osp(2m + 1|0) by sl(m) and so(2m + 1), respectively. In
this section, we describe root data of g(m|n). Here, we use a similar setup to [44].

We set N = m + n. Let E(m|n)r be the N-dimensional real vector space with a
non-degenerate symmetric bilinear form (-, ) : E@m|n)r x E(mn)r — R. We use
€ (@=1,...,m)and §; (i = 1,...,n) as a basis of E(m|n)r with a non-degenerate
symmetric bilinear form given by

(i, €)) = (=18, (5i,8)) = —=(=1)"8j, (&,8)) =0, @1
where 6 = 0, 1 which is specified above Example 2.1, and §; ; is the Kronecker delta.
Let €(m|n) = (€1, ..., €y) denote an ordered basis of €(m|n)r which is a permutation
ofe; (=1,...,m)andd; (i =1,...,n). Without loss of generality, we only consider

cases when ¢; appears before ¢;11 and §; appears before §;41 in € (m|n) for all i, which
is called admissible.

Let @ be the set of roots of g(m|n) and I1 = {«y, ..., a,} be the set of simple roots
of g(m|n), where r is the rank of g(m|n). Here, r = N — 1 for sl(m|n) and r = N
for osp(2m + 1|2n). We write the set of labels by I = {1, ..., r}. We call ® and IT the
root system and fundamental system of g(m|n), respectively. When € (m|n) is given, the
fundamental system I1 is realized as Table 1. We write the positve and negative part of
the root lattice of g(m|n) by 0* =+ '_1 Z=oa; \{0} and the positive and negative
part of the root system by ®* = & N QF, which will be identified in Table 2 for each
case. We also set the weight lattice of g(m|n) by E(m|n)z = Y /L, Zei & Y ', Z3;.

For» = Y7 ,ajei + > i bid; € E(m|n)z, we define the parity p : E(m|n)z —
{0, 1} of A as p(A) = Y _/_, b; (mod 2), and this induces the parity of elements of ® via
its realization. We call A € E(m|n)z is evenif p(1) = 0 and odd if p(L) = 1. We set the
set of indices of odd simple roots by T C I. Then, the positive part of the root system
@™ is given in Table 2. We set the set of reduced roots by d={aecd| o/2 ¢ &} and
the positive and negative part of it by d+ = & N Q.

Fora € @, if p(o) = 1 and (o, ) = 0, we call « the isotropic odd root. On the
one hand, if p(o) = 1 and («, @) # 0, we call « the anisotropic odd root. The set of
even roots, isotropic odd roots and anisotropic odd roots are denoted by ®eyen, Piso and
Daniso C P, respectively. Also, the set of the positive and negatlve part of even roots,

isotropic odd roots and anisotropic odd roots are denoted by CI>even, <I>1j§0 and CD;BO

&%, respectively. We also set the reduced version of them by or = oF
df = @f and L, = o

150 180 aniso aniso”

n o,

even even
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Table 3. All possible Dynkin diagrams

g(m|n) Dynkin diagram
G-&a &a-¢ En_y —€
sl(m|n) 1 2 2 3 N—-1 N
X X X
El—€ € —& EN—1 — €N €N
osp(2m + 1|2n)
X X X @)
€l —€ €)—¢€3 EN—1 — €N €N
X X X [ )

2.2. Cartan matrices, Dynkin diagrams and Weyl groups. Let (a;;); jer, (d;)icr be the
Cartan matrix and the symmetrizing matrix of g(m|n). Here, d; is given by (o;, ;) /2
foro; € &ngen U @;niso and 1 foro; € d~>i+so. Also, a;; is given by a;; = (a;, oj)/d;. We
often write A = (a;;) and D = diag(dy, ..., dy), and the symmetrized Catran matrix
by DA = (d;a;;). We call the pair (A, p) the Cartan data of g(m|n). For later use, we
also define dy by («, ) /2 for o € Deyen U Pypiso and 1 for o € Dj0. Leth = Zle Ch;
be the Cartan subalgebra of g(m|n), where {h;};c; is chosen as «j(h;) = a;;. We call
{hi}ic1 the set of simple coroots of g(m|n).

The Cartan data can be diagrammatically represented by the Dynkin diagram. The
Dynkin diagram associated with (A, p) is defined as follows. First, we set  dots and
decorate the i-th dot by O for o; € ®f,, @ for o € @F and @ for o; € D}, .
respectively. We also use X representing () or (). Then, for every pair of different
numbers (i, j), we connect them with |a;;| lines if a;; # 0. Also, if |a;;| > 2, these lines
are equipped with an arrow pointing from the j-th dot to the i-th dot. All possible Dynkin
diagrams of g(m|n) are given in Table 3, where €y = ¢, for the first Dynkin diagram
of 0sp(2m + 1]|2n) and €y = §, for the second Dynkin diagram of osp(2m + 1|2n).

Here, we specify the value of & = 0, 1 in (2.1). If min{(e;, «j) | i # j} < O for
both values of 8, we choose 6 so that (€1, €;) = 1 holds. If not, we choose 6 so that
min{(o;, o;) | i # j} < 01is satisfied.

0 -10
81 — _
Example 2.1. For the case 1~ @=e €3 ,wehave DA=|—-1 2 —1
—O0—=>0 0 -1 1
01 O
for@ =0and DA = |1 -2 1 | for = 1. We then choose 6 = 0 for this case.
01 -1

For more examples, see Sects. 4 and 5.

Let W(g(m|n)) be the Weyl group of g(m|n) which is generated by reflections s, (o €
Deyven U Daniso) Which are associated with even and anisotropic roots. The action of them
is given by
2(a, B)
o

(o, @)
Under actions of W (g(m|n)), the root system is invariant. The image of the fundamental
system is a different one, but it gives the same Cartan data. For the finite-dimensional

simple non-super Lie algebras, it is known that all possible choice of the fundamental
system is conjugate via the Weyl group actions [16, §10.3. Theorem]. Then, the Dynkin

sa(B) =B —

(B € D). (2.2)
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Table 4. Distinguished Dynkin diagrams

g(mn) Distinguished Dynkin diagram
€1 —€ €m—1 —€m €m —381 81 —8 Sn—1—3n
sl(m|n)
OoO— O ® oO— —O
81— 82 Sn—1—6n Sn—€1 € —€ €m—1—€m  €m
0sp(2m + 1|2n) (m > 0)
OoO— O & O—  —0O0=—>0
81—8 & —138 Sn—1—3n
osp(1]2n)
O O O L

diagrams one-to-one correspond to the finite-dimensional simple non-super Lie algebras.
For non-super case, relations of W (g(m)) are given by sl.2 =1, (sis)™i =10 # J)
where m;; =2, 3,4 fora;ja;; =0, 1, 2, respectively. Here, we write s; = sq, .

For general finite-dimensional Lie superalgebras, however, the fundamental systems
are not always conjugate via the Weyl group actions. It is known that by adding some
elements and extending the Weyl group W (g(m|n)), all fundamental systems become
conjugate [31, Appendix II. Theorem]. The elements are called odd reflections, and we
call the extended Weyl group the Weyl supergroup denoted by SW (g(m|n)). Formally,
odd reflections are reflections associated with odd roots, and the action of the elements
of the Weyl supergroup is given by

B - 2&5)“ (@ € Peyen U Papiso),

sa(ﬂ) — ﬂ +o (Ol S cI)iSOa (Ol, 13) # 07 ﬂ # Ol), (23)
B (a € Biso, (0, B) =0, B # ),
—a (B =a),

where «, B € ®. Similar to usual reflections, the root system is invariant under actions
of odd reflections, but the image of the fundamental system gives different Cartan data.
Therefore, the Dynkin diagrams do not correspond to the finite-dimensional Lie super-
algebras but rather their fundamental systems.

The standard choice of the fundamental system of g(m|n) is called distinguished,
where the associated Dynkin diagrams have only one odd root. The realizations and the
corresponding Dynkin diagrams are given in Table 4.

In this paper, we focus on the nilpotent subalgebra of quantum superalgebras, rather
than the whole algebras. Since the nilpotent subalgebra depends on the choice of the
fundamental system of g(m|n), in addition to the distinguished Dynkin diagrams, we
also consider non-distinguished ones as given in Table 3.

2.3. Quantum superalgebras. Throughout this paper, we assume ¢ is generic. We set

g; = q% and v; = ¢4 (i € I'). We use a variant of g-number and its factorial defined
by
gk —g7* -
k = — 1= klg.x, 24
kg = = =2 Imlyn L[l[ lg.n (2.4)

where k, m € Z>o and m = %1 [10]. We promise [0],, ! = 1. For simplicity, we write
[k]ly,1 = [k]g and [m], 1! = [m],! for # = 1. The quantum superalgebra U, (g(m|n))
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associated with the Cartan data (A, p) is an associative algebra over C generated by
{ei, fi ki = qih" | i € I} satisfying the following relations [6,45]:

KRR =1, kikj = kjki, kiej =q; " ejki, kifi =q; " fiki, (2.5)
(@) p(a)) ki — ki
ei fj — (=P fiep = 8 j———, (2.6)
q4i — 4;
1+|ajj |
Z (_1)v+p(oz,-)u(v—1)/2+vp(a,-)p(aj)efl+|aij|—V)ejei(u)
v=0
=0 (a;; #0, i #j, i € DLy U Do), 2.7)
1+|a;j
Z (_1)V+P(Oli)v(v—1)/2+VP(Oli)P(‘¥j)fi(]""“"jlf")fjfi(")
v=0
=0 (a;j #0, i #J, oj € PLen U d)jmso) (2.8)
lei,e;1=0, [fi, fil=0 (a;; =0), (2.9)
where we set e =e’/[ u] l)pm , f. = f /[v] l)pm , and so-called addi-

tional relatlons for the case when the associated Dynkm dlagram has the subdiagram
X—R—X or X— Q=0 or X—R—@:

. : o
ei—teieivie; + (=% eiei_teiein) + (—1)¥eeieiei—1 + (=1 ¥ie eiei e

- (_1)p(oti71) (C] +q_1) eiei—1¢i+1¢; =0 (a; € cI>1§0)
(2.10)

fict fifisr fi + (VP fi it fi fir + (=D fi fiad fi fiot + (DO fiy fi i f

— D@D (q+q7") fifictfinnfi =0 (@i € B,
@2.11)

where ¢;, ¢; are given by
¢i = pei—1) + p(eir1), @i = p(ai—1) p(@is1). (2.12)

For reader’s convenience, we list (2.7) for each case which appears in this paper:

(1) |aij| = 1and o; € &

even*
e[.zej—(q+q )ele]e,+e]e =0, (2.13)
(2) lajjl =2and o; € <I>even
e?ej —(g+1 +q_1)el-26je,' +(g+1 +q_l)€i€j€,-2 - €j€i3 =0, (2.14)
(3) lajjl =2ando; € @amso, s <I>e+Ven

2

e?ej +(l—q— q_l)eizeje,- +(l—q— q_l)el-ejei +ejel~3 =0, (2.15)
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@) lajjl =2and o; € D}, . aj € DL -

e?ej —(1l—-q- q_l)eizejei +(l—q— q_1)€i€j€l~2 — ejel-3 =0, (2.16)

where we always assume i # j.

In this paper, we focus on UqJr (g(m|n)) which is the nilpotent subalgebra of
U,(g(m|n)) generated by {e;}ic;. We represent U;(g(m|n)) by the Dynkin dia-
gram associated with the Cartan data (A, p). We have the root space decomposi-
tion of U;(g(m|n)) = @QEQ+ U;(g(m|n))o, where each root space are given by

Ur@mm)e = (g | kig = q/"gki (i € D). For x € Uf(gmln)a. y €

U;(g(m|n))ﬂ, we define the g-commutator [-, -], by

[x, ], = xy — (= 1)P@PB) g=@h) 5 (2.17)

and for simplicity we write [+, -]; = [+, -] for ¢ = 1. By using the g-commutator, the
Serre relation (2.7) and the additional relation (2.10) are simply written as follows:

(lej, eily, eily = lei, [ei, ejlqly =0 (laij| = 1), (2.18)
[llej, eily. eily, eily = lei, Leis leis ejlqlqly =0 (laij| = 2), :
[[[ei—1.eilq, €irily, €] = 0. (2.19)

For later use, let x : Uy (g(m|n)) — U, (g(m|n)) be the anti-algebra automorphism
given by

xe) =ei, x(fi)=fi, xtk)=(=Hrr". (2.20)
Then, x also gives the anti-algebra automorphism on U, ; (g(m|n)).

2.4. PBW bases of the nilpotent subalgebra of quantum superalgebras. We begin with

non-super cases. In that case, we have ®* = @7 . Let wo be the longest element

of W(g(m)). When a reduced expression of wy = s;, - - -, is given, we set B; (f =
1,...,0) by

Bt = siy -+ si,_ (), (2.21)
where we set [ = |®*|. Then, it is known that we have B, € ®* (r = 1,...,0),

Bi # B; (i # j)and &+ = (B, | | <1 <1} [17, P25].
It is also known that there exists a quantum analog of this procedure. Let 7; :
U, (g(m)) — Uy(g(m)) (i € I) be the algebra automorphism given by

—kifi (@ =)),
Ti(e;) = o Caiery . (2.22)
- { XL e ese T G # ),

—eik; (i =),

_ b e 2.23
S rg e el (i # ), 22

Tik;) =k, “k;. (2.24)

Ti(fj)={
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Here, T; is known as the so-called Lusztig’s braid group action on U, (g(m)) [32].
Actually, it is known that {7;};c; satisfy the braid group relations. We set eg, (f =
., ) by

€p, = Til ]}2 T Ti,71 (ei,)a (225)

where B, is given by (2.21). Then, it is known that we have eg, € U;(g(m)),g, (r =
., 1) and eg, # ep; (i # j). Also, it gives a PBW basis of U;(g(m)), which
depends on the choice of reduced expressions of wq [32]:

Theorem 2.2. For A = (a;, ..., q)) € (Z>0)l we set
EN = efVel® ... o) (2.26)

where we normalize eg:’) = ez/[at]pr L pe = qdﬁt. Then, {EA | A € (Zzo)l} is a basis

of U (g(m)).

For super cases, it is known that there is a naive construction of a PBW basis without
using some maps like the Lusztig’s braid group action [23,45]. We note that a super
analog of Lusztig’s braid group action was introduced in the context of the so-called
Weyl groupoid [14, 15].

Let us explain the construction by [45]. We define two partial orders < on ®* as
follows. For y = Y /_, cia; € ®*, we define the integers ht(y), g(y), cy € N by
ht(y) = Z?:l ¢i, g(y) =min{i | ¢; # 0} and ¢, = cg(y). Then, fora, B € dt we set
two partial orders Op, O, by

01: a<p < gla)<g(P)or(gla)=g(p)and ht(a) < ht()), (2.27)

Or: a<fB <= ga)>gP or(g(a) =g(p) and ht(x) > ht(B)). (2.28)
Note that O is the same order as [45]. By using them, we define quantum root vectors
as follows:

Definition 2.3. Forevery 8 € &+, we define the elements eg €U ; (g(m|n))g as follows:

(1) If B = o, we seteg = e;.

(1) If B = o + a; where a € ®* and g(a) < i, we define eg depending on the partial
order O;. We set el’g = [e;, eqlq for O1, and e,/s = [eq, ¢l for O;. Then, we
set eg = el’g/(ql/2 + g~ 1/2) for the case g(m|n) = osp(2m + 1|2n), i = r and
a=¢; (1<j<r—1).Weseteg = 61/6 otherwise.

We note that the above normalization factor ¢'/? + ¢g~!/? naturally appears from the

Lusztig’s braid group action for non-super cases.

Then, the quantum root vectors give PBW bases of U ; (g(m|n)):

Theorem 2.4. Let B; (t = 1, ..., 1) denote the reduced roots, which satisfy 1 < --- <

Bi under the order O;. Here, | = |®*|. For A = (a1, ..., a;) where a; € Z>g for

B € d>even Udr. and a; € {0, 1} for B; € &F | we set

aniso is0’

(a1) (a2) (ar)
E =ep 'ep” egl, (2.29)

where we normalize e/(sa’) = ea'/[at]pt ) L pr = qdﬂt_ Then

{EA | a; € Z>o (Br € Of . UdH. ) a, e {0,1} (B € CI>;;0)}, (2.30)

even aniso
is a basis of U;(g(m|n)).
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Proof. We attribute the statement to [45]. First, we consider the case when the order
is given by Oj. In [45], the order among the elements of ®7 is the same as Oy, but
the quantum root vectors are defined by egam = [eq, ei], instead of eg = [e;, ey], as

Definition 2.3. However, eg and egam satisfy the following simple relation:

ep = lei, ealy = (—D)PCOP@Hg= @D g, o]

— (_1)P(a,-)l7(a)+lq—(a,-,a) (egam|q_)q,1> . (2.31)

Then, the only differences between our construction and [45] are overall factors and its
g-dependence. Since the relations of U, (g(m|n)) are invariant under g — g~ !, by the
Proposition 10.4.1 of [45], we find that (2.30) gives a PBS basis of U;_, (g(m|n)). Then,

under the order O1, (2.30) gives a PBW basis of U(;(g(m|n)).

The case when the order is given by O is attributed to the case of Oj. Actually,
E4™ = x(E{") holds for every A, where AP is the reverse order of A. This shows (2.30)
under the order O, gives a PBW basis of U, ; (g(m|n)) because y is an automorphism
on U;(g(m|n)). O

Remark 2.5. The construction by [45] can be considered as a natural analog of one of
Theorem 2.2 as follows. For non-super cases, we call an order < among the elements of
®* normal (or convex) if, for « € ®* which is written by « = B+ y (B, y € ®F), the
order among «, B, y satisfies 8 < o < y or y < a < B. Then, it is known that there
exists a one-to-one correspondence between orders induced by reduced expressions of
wo like (2.21) and normal orders [50, §3 Proposition 2]. The normal order can be defined
in a similar way for super cases, and the orders (2.27) and (2.28) actually satisfy the
condition of the normal order.

Let yé“ and )71;‘ be the transition matrices given by

Ey =3y EP”, (2.32)
B
EA = Z VHEE”. (2.33)
B
where X°P = (xy, ..., x1) is the reverse order of X = (x1, ..., x;). They are one of the

main objects of this paper. By using Eg((’p = x(E f( ), we obtain the following relation:
75 =i (2.34)

We then only consider yl‘;‘ below.

2.5. Technical lemmas for higher-order relations. In this section, we introduce some
technical lemma used to prove higher-order relations in the later sections. First, the
g-commutator enjoy the following Jacobi like identity [45, (4.4.2)].

Lemma 2.6. For x € U;(g(m|n))a, y € U;(g(mln)),g, zZ € U;(g(m|n))y, we have

[[-xa y]Q7 Z]q - [-xa [ya Z]q]q
— (_])P(ﬂ)p()/)q—(ﬁ»y)[x, Zlgy — (_1)P(Ol)17(ﬂ)q—(0t,ﬂ)y[x’ zly- (2.35)
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Vs g Vs y
/ 2 Vs
Vo Vi
Vi _ Ve
Vi
Ve Wi

Fig. 1. A graphical representation of the tetrahedron equation

Proof. By writing down the definitions, we get

4> g = xy7 — (_1)P(H)P(ﬁ)q*(ﬂt‘ﬂ)yxz _ (_1)(P(Ol)+P(/3))P(V)q*(ﬂt+ﬂ’}’)zxy

2.36
+ (_1)p(a)p(ﬂ)+p(ﬁ)p(y)+p(y)p(a)q—(oc,ﬁ)—(ﬁ,y)—(y,a)zyx’ ( )
2lg = xyz — (=1)PBPW) g=BY) y 7y — (= 1)POPBEIPY)) g =(@fty) gy 237
+ (_1)p(a)p(ﬁ)+p(/3)p(y)+p(y)p(a)q—(a,ﬂ)—(ﬂ,y)—(y,oc)zyx. ’
‘We then obtain the desired results. |

Corollary 2.7. We set x € U(;(g(m|n))a, y € U;(g(m|n)),3, zZ € U(;(g(m|n)),,.

(D) If [x, zlg = 0, we have [[x, ylq, zlqg = [x, [y, 2lglq-
() If [y, z] = 0and (B, y) = 0, we have [[x, y];, 2l = (=1)PBPPI[[x, 2], y]1,.

By using Corollary 2.7(2) fory =z = ¢; (¢; € o ), we obtain [[x, e;],, e;]; = 0.

180

This suggests the Serre relation (2.18) actually holds even when «; € d~>i+50:

Corollary 2.8. We set e;, e; satisfying a;j #= 0 andi # j. Then, we have

[lej, eilq, eily = lei, [ei, ejlgly =0 (lajj| = 1),

[Le}. eilg. eily. eily = e Lei. [eir ejlglglg = O (laj| = 2). (2.38)

We also use the following relations for quantum root vectors. Lemma 2.9 is given in
Lemma 5.2.1.(iii) and Remark 5.2.2.(i) of [45].

Lemma 2.9. We consider the quantum root vectors eq under the order O;.

(1) Fora € d~>i+50, we have e2 = 0.

o
(2) Let a € ®F satisfy ¢y = 1, whefe cq Is given by the above of (2.27). Take «;
satisfying g(a) < i and a + o; ¢ ®*. We then have

lea, €ily = 0. (2.39)
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3. Tetrahedron Equation and 3D Reflection Equation

3.1. Tetrahedron equation. In this section, we summarize solutions to the tetrahedron
and 3D reflection equation, which are related to transition matrices of PBW bases of the
nilpotent subalgebra of quantum non-super algebras. For the history of them, see Sect. 1.
Here, we consider the tetrahedron equation [46], which is a three dimensional analog of
the Yang—Baxter equation [1]. The equation is defined on the tensor product of six linear
spaces, and pictorially represented as Fig. 1, where V; are some linear spaces, specified
below.

In this paper, we focus on infinite-dimensional solutions on the Fock spaces. Let
F = D,,—0.1.2... C |Im) be the bosonic Fock space. We set R(¢) € End(F ® F ® F)

[21]" by

RN @) @)= Y R@{ T la)®1b) ®1c) 3.1)
a,b,celxg
RS = Bt Y (g b @ e (’) (i) ,
) roneTeo @7 \H/p2 2
r+pu=b
(3.2)

where we use 8} = dx,y and the g-factorial and g-binomial:

(@)

- i — 0 <m<I
(@m =[]0 -4b, (m> ={@w@n - 33
k=1 q 0 (otherwise).
Summations in (3.1) are actually finite due to 8"”’ 8b+k in (3.2). This is also the same for

other 3D operators we will introduce later. For snnphClty, we also use the abbreviated
notation R = R(g). Then, the matrix R satisfies the following tetrahedron equation
without a spectral parameter:

R123R145R246R356 = R3s6R246R145R123, (34

where indices represent the tensor components on which each matrix acts non-trivially.
We simply call R the 3D R. The 3D R gives the transition matrix of the PBW bases of
the nilpotent subalgebra of the quantum algebra U, ; (s1(3)) associated with the Dynkin
diagram (O)——(C) . See Theorem 4.3 for a more detailed statement.

On the one hand, it is known that there is another solution on the Fock spaces [4].
LetV = @m:O,l Cu,y, be the fermionic Fock space. We set L(g¢) € End(V Q V ® F)
by

L@w@u@k)= Y  L@fu@up®Ic), (3.5)
a,bef0,1},ceZ
L(q>8’8’;‘=£<q>}};-akc, L@gys = —deed™ . L@yoh = dked”,

1,0,¢

0.1.c (3.6)
L(Cl)l 0.k = = O—1,c(1 _q )1 L(Q)()lk = Sk+l,c

1 The formula given in [21] involves misprints unfortunately.
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where L (q)?,’}”’,f = 0 other than (3.6). For simplicity, we also use the abbreviated notation
L = L(g). The matrix L together with the 3D R satisfies the following tetrahedron
equation [4]:

L123L0145L0246R356 = RaseLoa6L145L123. (3.7

We simply call £ the 3D L. Although the original tetrahedron equation obtained in [4]
involves some parameters, the above equation (3.7) is equivalent to it because they are
actually cancelled out as remarked in [4]. Actually, our 3D L concides with the original
one up to a gauge transformation by some diagonal matrix.

Unlike the 3D R, the 3D L has lacked an algebraic origin in terms of established
quantum algebras although they exhibit quite parallel results for their reduction to matrix
product solutions to the Yang—Baxter equation as we explained in Sect. 1. In Theorem
4.4, we will derive the 3D L as the transition matrix of the PBW bases of the nilpotent
subalgebra of the quantum superalgebra U, {;' (s1(2|1)) associated with the Dynkin diagram
(O—&) , which clarifies a parallel origin for the 3D L to the 3D R.

As arelation for them, the following lemma is used for the proof of Theorem 4.4:

Lemma 3.1.
0,0,c _ 0,0, 0,1,c _ 0,1, 1,0,c _ p1,0,c
:ROOk_LO,O,k’ :R()l,k_LOIk’ :Rl,O,k_Ll,O,k’
(3.8)
RO l,e LO,],C Rl,(),c _ ,Q] 0,c
1,0,k — ~1,0,k> 0,1,k — ~0,1,k

For later use, in addition to the 3D R and 3D L, we define M(g) € End(F ® V ® V) by
MUy @uj@u) = Y, M@{¢la)@upy@ue, (3.9
a€Zxq,b,ce{0,1}
\b, b,
M@/ =L@ 75 (3.10)
We simply call M(g) the 3D M. For simplicity, we also use the abbreviated notation
M = M(q).

Remark 3.2. As we explained in Sect. 1, the tetrachdron equation (3.7) was derived again
in several ways after [4]. Here, we explain the details of the derivation by [25]. The g-
boson algebra 3, is an associative algebra over C generated by {a*, k) satisfying the
following relations:

ka* = ¢*la*k, a"a®*=1-¢’k%, a'a” =1-Kk%. (3.11)
It has a representation on F' as follows:
kim)=g" |m), a*lm)=Im+1), a~|lm)=(1—¢”)Im—1). (3.12)
Then, the intertwining relations of the 3D R are given by
R@*T k1) =@ 1 k+k®at @at)R,
RIQk®at)=(k®l®at+aT ®a® QK)R,
RAI®at@l)=@"®1®aT — gk®at @K)R, (3.13)

R@a*®a ®a"-¢k®1®k) =@ ®a*®a —gk®1 k)R,
REOk®II=[R,1k®k] =0.
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As we explained in Sect. 1, the 3D R is uniquely characterized by (3.13) up to the
normalization. Equation (3.2) is obtained by choosing R(|0) ®0)®|0)) = |0)®|0)®|0).
On the other hand, matrix elements of the 3D L can be expressed by using Li’f €
B, (i, j,a,b € {0, 1}) defined by

Lui@ui®k) =Y u®@uy®L{T k), (3.14)
a,be{0,1}

Log=Lri=1, Ly =—qk, Lyg=k Llg=a, Lyl=a" (.15

where L“ ]b = 0 other than (3.15). Therefore, we can consider the 3D L as an operator-
valued 4 x 4 matrix, and the tetrahedron equation (3.7) as an operator-valued 8 x 8 matrix.
The key observation of [25] is each matrix element of the operator-valued equation (3.7)
exactly corresponds to an intertwing relation of (3.13). That is, the tetrahedron equation
(3.7) is equivalent to the set of intertwining relations of the irreducible representations
of A;4(A>). This is an interesting connection but quite mysterious. Also, this connection
gives a derivation of the tetrahedron equation (3.7) but the algebraic origin of 3D L has
been unclear.

Remark 3.3. There is another known solution to the tetrahedron equation which the 3D
L satisfies. Weset L e End(FQ V ® V)

Lioueuw= 3 Lifwewsw. 316
a€Z>0,b,ce{0,1}
L = Lol A7

Then, the matrix £ together with the 3D L satisfies the following tetrahedron equation:
L13sL124LaseLase = LazeLaseLi2aliss. (3.18)

The equation (3.18) was first presented by [4,38] and obtained again by quantum
geometry settings [3,40]. It plays an important role to show the commutativity of the
layer-to-layer transfer matrix associated with the 3D L [38]. Later, we derive an equation
(4.111) which involves only “the 3D L like objects” as (3.18). Actually, it resembles
equation (3.18), but involves nonlocal sign factors, so we can not write it as a matrix
equation like (3.18). We do not deal with this issue in this paper, but it is an interesting
question whether we can attribute (3.18) to Corollary 4.18 or not.

3.2. 3D reflection equation. We then proceed to explanations of the 3D reflection equa-
tion [18], which is a boundary analog of the tetrahedron equation. The equation is defined
on the tensor product of nine linear spaces. The diagram of the 3D reflection equation
is obtained in [26, Figure 1].

Essentially, there are only two known non-trivial solutions to the 3D reflection equa-
tion [25,26]. We use the following notation:

(3.19)

. . nzzl(q)ik " .
{l],...,lr } M@, ik, jk € Z>p),

Jlses s 0 (otherwise).
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Weset J(g) €e End(F @ F Q F ® F) by

Ipnelnekel= Y. i laebh)eldeld. (3.20)
a,b,c,del>g
2 _1\aty
b.e.d e ghrerd A1 (-1 2
3(51)?,,',;1 = 5iafzjfif5ji1€iz @2 Z Tf]%/
4 d(x,ﬁ,yeZzo 97 )b—p

a+b—a—pB—y,0,b+c—a—B—y.d o, ,3’ y,c—a,a—o, ] —o— /3’ b — :8 -y
(3.21)

% §(g) e By O rk—a—py { jb—B jtk—a—Bitj—a—p }

where H(Q)?’é)’k”’ld is given by

2 .
0.c.d d 2 (@) d+a 2 ik
@i’ = SHEST D (CDT S 5, 4" {k,i ek —ctn }
AEZ>q q7)d

(3.22)
and 1, ¥ are given by

Y1 =a(@+2b—-28—-1D)+Q2B—b)a+b+c)+y(y —1)—ji+j+k), (3.23)
Yo=U+d+1)(i+c—21)+c—i. (3.24)

For simplicity, we also use the abbreviated notation J = J(g). We also set K(g) €
End(F® F® F ® F) by

K@liyelhekeh= >  X@ile b eld)eld, (325
a,b,c,del>o

K@@l = 8O0 (3:20

For simplicity, we also use the abbreviated notation K = XK (g). Then, the matrix J, X
together with 3D R satisfies the following 3D reflection equations:

Ras56R48993579R260R258F 167801234 = J1234d 1678 R258 Ro69d3579 RagoRase, (3.27)
Ra56R4890K3579R269R258 K 1678 K 1234 = K1234K 1678 R258 Ro69K 3579 RagoRase. (3.28)

We simply call J, K the 3D J and 3D K, respectively.

The origin of the 3D K is quite similar to the 3D J as we explained in Sect. 1. That
is, the 3D K gives the intertwiner of the irreducible representations of the quantum
coordinate ring A, (C>), where the associated 3D reflection equation (3.28) holds as the
identity of the intertwiner of the irreducible representations of the quantum coordinate
ring A,4(C3) [25]. As an immediate corollary of the Kuniba—Okado-Yamada theorem,
we can see the 3D J also gives the transition matrix of the PBW bases of the nilpotent
subalgebra of the quantum algebra U, ;’ (C).

Although the 3D K itself also appears by considering U; (B3) up to g-dependence
(see Theorems 5.11 and (2.34)), it is worth to emphasize that (3.28) does not follow from
discussions only using type B, that is, it is essentially type C object different from (3.27).
In this paper, we focus on the PBW basis for type B, and will give new solutions to the
3D reflection equation, which generalize the solution (3.27) to the family of solutions
(5.186).
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Remark 3.4. Although the 3D R, J and K have similar origins as we mentioned above,
unlike the 3D R, the 3D J and 3D K themselves do not give matrix product solutions to the
reflection equation because the 3D boundary Zamolodchikov algebra and its associativity
condition, i.e. the 3D reflection equation, take different forms. Nevertheless, it is known
that we can obtain matrix product solutions to the reflection equation by arranging the
intertwining relations of 3D K into a matrix equation [30]:

L£123G924£215516K3456 = K3456G16L125524L213, (3.29)

where L is the 3D L withg — q2 and we introduce a matrix G, which gives K -matrices
in the reflection equation. Interestingly, this procedure is exactly in the same way as
we explained in Remark 3.2. The equation (3.29) is called the quantized reflection
equation [30]. By reducing the equation (3.29), we get the solutions to the reflection

equation associated with the fundamental representations of U,,(Afll_) 1)» and the spin
representations of U, (Dlﬁ)l), Uq(B,(ll)) and U, (D,(ll)) [30]. See [30] for more details.
Later, the K-matrices are characterized as the interwiners of some coideal subalgebras
of the quantum algebras [29].

4. PBW Bases of Type A and Tetrahedron Equation

4.1. PBW bases of type A. In this section, we focus on quantum superalgebras of type
A in the case of rank 2 and 3. Here, we introduce some notations to briefly describe
the PBW bases of the nilpotent subalgebra of them, and show higher-order relations for
them. For the case of type A, there are no anisotropic odd roots. We then simply write
Dven U Poniso DY Plyen- We set eij, eqijyk. €i(jry € Ug (sl(m|n)) by

eij =lei,ejly, eipr = leij, exlq, ey = leis ejily, 4.1)

where i, j, k € 1. By considering Corollary 2.7(1), we simply write e;jx = e(;jx for the
case («;, o) = 0. We have the following higher-order relations for them:

Proposition 4.1.

eGii—1),i+1 = (=D)PCDP@D g0, (4.2)
lei-1.i> €i+1,i1 =0, 4.3)
lei, ei—1,ii+1] =0, 4.4)
eleirtiva — (g +q eieist e + e el =0 (0 € Dlen), 4.5)

2 —1 2 N+
€iv1,i+26i — (g +q et iv2eiCivl,iv2 + €€y, = 0 (aip1 +aip2 € Dgey), (4.6)

2 -1 2 =

eieivli — (@ +q eipeisr e teiriein, =0 (@2 € Pgen)s “4.7)
2 -1 2 =

€iy1,iCiv2 — (g +q eir1ieiv2eis1,; + Ci+2€iL 1 = 0 (o +og1 € PLep), 4.8)
2 N+

€iiv1 =0 (o +aiv1 € Diy,). 4.9)

Proof. (4.2) is obtained from Corollary 2.7(2) because [e;_1, ej+1] = O and (o;_1, otj11)
= 0. (4.3) and (4.4) are obtained by [e;_1,;, €i+1,i] = [ei—1.i.i+1, €¢;] = 0 where we used
Corollary 2.7(1) and Lemma 2.9(2). (4.9) is a cororally of Lemma 2.9(1).
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For (4.5)-(4.8), we only consider (4.5) and (4.6). The remaining relations (4.7) and
(4.8) can be proved in the same way. By using the g-commutator, the left hand side of
(4.5) can be written as [[e;+1,i+2, €il4, €il4. Then we have

[[eir1.i+2, €ilys eilg = (=1)PCOPCD e,y 1 eiinly, eily = [leistis eilg, €ivaly = 0,
(4.10)

where we used Corollary 2.7(2) and the Serre relation (2.18). Similarly, the left hand
side of (4.6) can be written as [e;+1,i42, [€i+1,i+2, €i]4]4- Then we have

leis1.i+2, [€irt iv2s €ilglg = (=D)PDPD e i Teivn iy einnlgly =0, (4.11)

where we first used (4.2) and then Corollary 2.7(1), Corollary 2.8 and (4.13). |
Proposition 4.2.
eiv1 1) = (—DPEIPE ey 4, (4.12)
leii-1,€ii+1]1 =0, (4.13)
leis €iv1,ii-1]1 =0, (4.14)
efeivnivi — (g +q eieisrisie +einnivie; =0 (i € D), (4.15)
e,'2+2,i+1€i —(q+ q_l)€i+2,i+1€iei+2,i+l + ei@,z+2,i+1 =0 (41 +aiyp € &);ven)’
(4.16)
eneiint — (g +q Demreiiniea +eiinet, =0 (a2 € L), 4.17)

2 —1 2 =
eiiveiv2 — (q+q eiivieinaeiivt +einaei ;. =0 (o +aipy € D), (4.18)
ef1i =0 (o +is1 € B (4.19)

1807 °

Proof. By applying the anti-algebra automorphism x given by (2.20) on (4.2)—(4.9), we
obtain the desired results. |

By writing down quantum root vectors given by Definition 2.3 for the case of rank
2, we find they are given by

By : eg =e1, ep, =er, ep =e3, 4.20)
Bz . eég =€, €p, =¢€12, €p; =¢€]l, (4.21)
where f; (t = 1, ..., 3) are the same as Theorem 2.4. For non-super case, (4.20) and

(4.21) concide with quantum root vectors given by (2.25) with the reduced expressions
wo = S15251, $25152 of the longest element of the Weyl group, respectively.

Similarly, by writing down quantum root vectors given by Definition 2.3 for the case
of rank 3, we find they are given by

By : ep =e1, ep, =ex, ep, =enl, ep, =er, ep =e3, ep, = e3,

4.22)

By: ep =e3, eg =ex, ep, =er, e =e123, €p; =e€12, €p; =ej,
4.23)
where §; (t = 1, ..., 6) are the same as Theorem 2.4. For non-super case, (4.22) and

(4.23) concide with quantum root vectors given by (2.25) with the reduced expressions
wo = S15253515251, $35253515253 of the longest element of the Weyl group, respectively.
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Table 5. List of Dynkin diagrams of type A of rank 2

g(m|n) Dynkin diagram
€ —¢€ & —¢
S1310) —e 27— €3

= =5 -5 8y — 8y — -
[pt] sI2|1) €1 €2 €2 3 €1 2 2 — €3 1 €2 €) — €3

O——— —O
) h—€ d—e €—38 € —8& 3 =33

(12
sl(112) = = = o

O—=R
8 =& 8 — 83

s[(0]3) O

4.2. Transition matrices of PBW bases of type A of rank 2. In this section, we consider
transition matrices of the PBW bases of U(; (sl(m|n)) of rank 2, som + n = 3. All
possible Dynkin diagrams associated with admissible realizations are given in Table 5
In Table 5, (IT, p) associated with same Dynkin diagrams are exactly same. We then
only consider quantum superalgebras associated with the following Dynkin diagrams
given by (4.24)

€ — € € — €3 €] — € €& — 83

(ID
—0O —
€ — & 8 — 83 €1 952 p) 6—963 (4.24)

av)
X——O R
where they are distinguished except (IV), in the sense defined in Sect. 2.2. For the case

of rank 2, quantum root vecotrs are given by (4.20) and (4.21), so the transition matrix
in (2.32) is given as follows:

RORONE e 0D, 0
eiyel” = ytheNes) e, (4.25)
i,jk

@

(IID)

where the domain of indices is specified below. Hereafter, we consider each case. Some-
times, we abbreviate simple roots for Dynkin diagrams, but we always assume that they
are given as (4.24).

4.2.1. The case (I) O——O Inthis case, the corresponding symmetrized Cartan matrix

is given by
DA:(E{?), (4.26)

and the corresponding positive roots are given by

oL . = {a1, a2, a1 + a2}, 4.27)

even

®F, = {}. (4.28)

Then, indices are specified as i, j, k, a, b, ¢ € Zx> for (4.25). The transition matrix in
(4.25) is explicitly given as the consequence of the Kuniba—Okado—Yamada theorem
[28]:
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Theorem 4.3 [28,39]. For the quantum superalgebra associated with (O)——) , the
transition matrix in (4.25) is given by

Vi = R (4.29)
where R is the 3D R given by (3.2).

4.2.2. The case (INO——&) Inthis case, the corresponding symmetrized Cartan matrix
is given by

2 —1
pa= (7). (430

and the corresponding positive roots are given by

®F o = o1}, 4.31)
& = {ar, o) + ). (4.32)

150

Then, indices are specified as i, j,a,b € {0, 1}, k, ¢ € Zxp for (4.25). The transition
matrix in (4.25) is explicitly given as follows:

Theorem 4.4. For the quantum superalgebra associated with ()——), the transition
matrix in (4.25) is given by

e =Bk 43
where L is the 3D L given by (3.0).

Proof. Multiplying both sides of (4.25) by k; from left and &, ! from right, also using
the relation (2.5), we obtain

PO = 3 by DD 434
i,j.k

On the other hand, yffj’.{’,f = gb*e—i ’kyi{f}lfléc holds becasuse {eik)e%)eg)} are linearly
independent by Theorem 2.4. This means, if yf}-{’,f # 0, b+ c = j +k holds. Similarly,
multiplying both sides of (4.25) by k from left and kf] from right, also using the relation
(2.5), we obtain —a+b+2c = —i +j +2kif yf’}{’,;c # 0. Combining them, we eventually

]
obtain the following weight conservation:
yf}f’,f:O (i+j#a+b or j+k#Db+c). (4.35)

Next, we consider (4.25) for the cases (a, b) = (0, 0), (0, 1), (1, 0). For these case,
the degreee of e; is at most 1 in both sides of (4.25) thanks to the weight conservation
(4.35). Now, the relations ey, e> satisfy are

e%ez —(q+ q_l)elezel + eze% =0, e% =0. (4.36)

Therefore, the only relation one can apply on both sides of (4.25) is the first relation of
(4.36) for the cases (a, b) = (0, 0), (0, 1), (1, 0). The first relation of (4.36) is the same
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as one of the case (I) (O)——(), so by Lemma 3.1, we obtain yi“}b,f = L?’}”kc for the

cases (a,b) = (0,0),(0,1),(1,0)andi + j =a+b, j+k = b+ c are satisfied.
Eventually, it is sufficient to show that (4.25) for the cases (a, b) = (1, 1)

. l 1 .
erejere] = yl”l”cceiezelez (c € Z>p), 4.37)

holds for ylly’lly’cc = LHE = 1, where we used the weight conservation (4.35) and €3 = 0,
and multiplied both sides by [c],!. Actually, we can prove (4.37) by induction as follows.

When ¢ = 0, (4.37) trivially holds for 7/11”11,’(? = 1. Letus suppose (4.37) is true forc = n

with yll ']1’,:’ = 1. Then, we obtain

1
ezelege’fH = elerejere = —e'feze%eg = e'l”lezeleg, (4.38)
q+q!

where we used (4.36). Thus, (4.37) holds for ¢ = n + 1 with yll”ll”’:':ll = 1. To sum up
the above discussion, we then obtain yf}{’,f = Lﬁ’ﬁ’kc. ]
Corollary 4.5.

Lh=r. (4.39)
Proof. By using (4.25) and (2.34), we obtain

eéa)egbz)egc) = Z L‘."b"'egk)eé{)eg) = Z Z Lf”b’cj\/[ﬁjﬁ’,izeg)eg)egx) (4.40)

i,j.k i.J.k
ij.k i,j.kXx,y,2
N abcpijk (2) () (x)
=D D LI ey e, 44D
i jkX,y.2

Here, we omit the domain of indices but it is easily specified. Since {ega)egg)egc)} are

linearly independent by Theorem 2.4, we obtain
ik
YN LETERLY = 84.28b y0cx- (4.42)
ij kX2
This finishes the proof. O

4.2.3. The case (Il) ©®——CO In this case, the corresponding symmetrized Cartan
matrix is given by

0 -1
pa=("7). 443)
and the corresponding positive roots are given by

ot = (o), (4.44)

oF = {a1, a1 + a2} (4.45)

1

Then, indices are specified as j, k, b, ¢ € {0, 1}, i,a € Zxo for (4.25). The transition
matrix in (4.25) is explicitly given as follows:
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Corollary 4.6. For the quantum superalgebra associated with Q——C), the transition
matrix in (4.25) is given by

b b
Vil =M (4.46)
where M are the 3D M given by (3.10).

Proof. h : U;(s[(2|1)) — U;(s[(1|2)) defined by e; > e, ez > e] gives an algebra
homomorphism, where the former algebra is associated with ()——@) and the latter
is associated with ——() . Then, by Theorem 4.4 and (2.34), it is easy to see that the
statement holds. m|

4.2.4. The case (IV) @——& In this case, the corresponding symmetrized Cartan
matrix is given by

0 —1
DA:(—] 0>, (4.47)
and the corresponding positive roots are given by
Plen = o1 + a2}, (4.48)
L, = {ar, o). (4.49)
Then, indices are specified as i, k, a, ¢ € {0, 1}, j, b € Z>¢ for (4.25). We set N(g) €
End(V® F® V) by
. a,b,c
N@Owi 1)) @ue) = Y N@)jua® b @uc, (4.50)
a,ce{0,1},beZxg
b, i b, i b, b,
N@)oso=8a", N1 ==8;pq"", N7} = N0 =8,
N@ToY = 8j41007 A= gD, N@)g7o = 8j-15L1g,
(4.51)

where Nﬁ’ﬁ}f = 0 other than (4.51). For simplicity, we also use the abbreviated notation
N = N(g). We simply call N the 3D N. Then, the transition matrix in (4.25) is explicitly
given as follows:

Theorem 4.7. For the quantum superalgebra associated with RXQ——), the transition
matrix in (4.25) is given by

Vo =N (452)
where N is the 3D N given by (4.51).

Proof. By the same discussion as (4.35), we obtain the following weight conservation:

V=0 G+j#ath o jrk#b+o). (4.33)
Now, the relations ej, ey satisfy are e% = e% = 0 and ez, ep1 are given by e =

e1ex + qezel, ex] = exe] + gerey. We introduce the following notation:
2n 2n
—— —
ni(n) =ejex---ejez, pa(n) =ezey---ezey. (4.54)
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We then explicitly write down e?,, e3, as

ey =m®) +q"mad), & = ma () +q’ (. (4.55)
Actually, they are easily shown by induction. Hereafter, we consider each case for values
of (a, c¢) in (4.25).

(i) For the case (a, ¢) = (0, 0), by the weight conservation (4.53), (4.25) is explicitly
written down as

p1(0) + 4" a(b) p#2(b) +4°1(b) i (b)
-8 A ase
[b],! e [b],! T b — 1!
where we use (4.55) and e? = e% = 0. By comparing coefficients of each monomial
p1(b), ua(b), we obtain

1 060 4" 0.5,0 1 q’ 06,0 1
=Y0b.0 777 T Vb ) =Y p0 o (4.57)
[b]q' 0,b,0 [ ]q' 1,b—1,1 b— ]]q| [b]q' 0,b,0 [b]q'
It is easy to see that y(? ’[f’(()) = Ng’}g’g and yR fiol,l = N(I)Z—Ol | give the solution of
(4.57). o o ’

(i1) For the case (a, ¢) = (0, 1), by the weight conservation (4.53), (4.25) is explicitly
written down as

wi(byer = vy e1pa(b), (4.58)

where we used (4.55) and e% = e% = 0. We then obtain yg”bb”ll =1= Ng:i:i
because 1 (b)e; = e (b).

(iii) For the case (a, ¢) = (1, 0), by the weight conservation (4.53), (4.25) is explicitly
written down as

e2u1(b) = v}y nabes, (4.59)

where we used (4.55) and e% = e% = 0. We then obtain yll"bby’(? =1= N}:Z:g
because ex 11 (b) = uz(b)es.

(iv) For the case (a, ¢) = (1, 1), by the weight conservation (4.53), (4.25) is explicitly
written down as

pib+1) 1y pab+ D +g" b+ 1)
[bl,l | Yob+L0 b+ 1],!

uab+1) g,

TN =y . (4.60)

s
s

where we used (4.55) and e% = e% = 0. Similarly to the case (i), it is easy to see

1,b,1 _ ~¢l,b,1 1,b,1  _ Aflbl . .
that y 3, = Ny and vy 300 o = Ny'pyp o give the solution of (4.60).

Corollary 4.8.
N =0, (4.61)

Proof. This is shown exactly in the same way as Corollary 4.5. O
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Table 6. List of Dynkin diagrams of type A of rank 3

g(m|n) Dynkin diagram
€] — € €) — € €3 — €,
51(4/0) 1 2 2(\ 3 3 4
N\
€] — e € — €3 €e3—84 €1 —€ € — 83 83 — €4
s[(31) ~
N\
€1 — & 8 — €3 €e3—€4 81 —€ € —€3 €3 — €4

& X O
€]l — e € — 83 03 —684 €1 —68 8y — €3 €3 — 684

50(212) O & O
51— e € —€3 €3 —084 €1 —8 8 — 83 803 — €4
& O O
51— e e — 83 853—€4 81— 8y — €3 €3 — €4
X 02
€1 — 8 8 — 83 53 —68 61 —e€ € — 83 63 — 84
s[(1]3) ~
N\
51— 6 8y — €3 €e3—684 61 —0) S — 83 83 — €4
O 02 & O O 02
81 =& 8 =83 83 =84 -
s[(0]4)

O O O

Remark 4.9. We find that the matrix elements of the 3D L and 3D N satisfy the following
relation:

be _ Llg! i-ik
ik = T i (4.62)

It is naturally thought that (4.62) originates from the fact that both (O)——) and
X——) give the Dynkin diagrams of sl(2|1) as Table 5. However, the origin of the
relation (4.62) in terms of the PBW basis is unknown to us. We do not deal with this
issue in this paper, but it is interesting whether, in general, transition matrices associated
with a pair of Cartan data mapped to each other via odd reflections are attributed to each
other or not. For example, we will also establish a relation between transition matrices
associated with such pair of Cartan data for type B. See (5.131).

4.3. Transition matrices of PBW bases of type A of rank 3 and tetrahedron equation. In
this section, we consider the transition matrix of the PBW bases of U (;’ (sl(m|n)) of rank
3,som+n = 4. All possible Dynkin diagrams associated with admissible realizations are
given in Table 6. In Table 6, (IT, p) associated with same Dynkin diagrams are exactly
same. We then only consider the quantum superalgebras associated with the following
Dynkin diagrams given by (4.63):

€1 — € € — €3 €3 — €4 €1 — € € — €3 €3 — 84
D (I1)
O O O O

€ € — 83 83 — 84

5 s
(IH) €1 €2 €2 3 3 €4

€1 — & 6 — 83 63 — €4 VD) €1 — & 5 — €3 €3 — 84

2y O ® & & %Y
(4.63)

av) ! 6

V)

where (I), (I) and (IV) are distinguished, in the sense defined in Sect. 2.2. Here, we omit
the following Dynkin diagrams given by (4.64), because the cases of (VII) and (VIII)
are easily attributed to ones of (II) and (III), respectively.
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€1 — & 8 — 83 863 — &84 €1 — & b — €3 €3 — €4
(VIII)
&® O O &® &® O
(4.64)

For the case of rank 3, quantum root vectors are given by (4.22) and (4.23), so the
transition matrix in (2.32) is given as follows:

(VID)

(01) (02) (03) (04) (05) (06) _ 01,02,03,04,05,06
63 623 62 6123 612 el = Z ......

11,12,13,14,15,16

i1,02,i3,14,i5,i¢
(ig) (is) (i4) (i3) (i) (i1)
€1 € €321¢ €32 €3 (4.65)

where the domain of indices is specified below. In order to attribute the transition matrix
in (4.65) to a composition of transition matrices of rank 2, we exploit the following
transition matrices I'¥):

eéa)eig)e(c) Z F(zll)ziﬁ}:eik)eg)eg), (4.66)
ijk
(a) (b) (C) 3|12)a,b,c (k) (J) (l)
€3¢ Zr(l)l]k ¢ €33, (467)
i,j,k
(a) ,(b) (c) 23|1)a,b,c (k) (J) (1)
€33 €123¢] ZF( | )z jk €1 €@3)123> (4.68)
i,j.k
(@) (b)) (o) 32|1)a,b,c (k) (J) @)
€32 €132)¢1 ZF( | )z ik €1 321932 (4.69)
i,j,k
(a) ,(b) (c) 3|12)a,b,c (k) (J) (1)
€3 €123¢1p = ZF( | )ljkeIZ €3(12)¢3 > (4.70)
i,j.k
(a) (b) (C) 3121)a,b,c (k) (J) (l)
€3 €1)3¢21 ZF( | )z]k €321¢3 > 4.71)
i,j,k

where the domain of indices will be specified and explicit formulae of I'*) are given for
each case in (4.63).

Then, by using '™ (4.2)~(4.4) and (4.12)—(4.14), we can construct the transition
matrix in (4.65) in two ways. The first way is given by

(01) (02) (03)6(34)6(05) (06) 4.72)
ZFGlZ)i: Z; degs)e%z) (x1) 5343) (05) (06) (4.73)
_ Z F(3|2)z} z; Z;F(Sllz)il,;f;; ;m)egéz)e%s)
iy e @
=E(—l)p‘(”06+x4)+p2xzx5 F(3|2))0ci )ﬂé ggr(3|12)fll”;’:’;5
(m) %s) %2) %)2) (06) (11) (4.75)

— Z(_ )P (i106+x4)+p2x2%5 1 (312) 01,02,03

X1,X2,X3
1—~(3|12)X1 104,05 F(32“)x2 »X4,06

i1,X4,X5 i2,i4,X6
(x3) (xs5) (x6) (ia) (i2) (i1)
X ey ey e ey ez e 4.76)
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— 2 :(_1)/)1(i106+x4)+02X2X5F(3|2)01 102,03 (312)%1,04,05  7(32[1)X2,X4,06 (2] 1) ¥3.X5, X6
- X1,X2,X3 i1,X4,X5 i2,i4,X6 i3,i5,i¢

(i) ,(is) (i3) (ia) (i2) (i1)
X e ey ey e3ne35 €3 “.77)
— (_1);01(!106+X4)+02X2XS+031'31'4l—-(3|2)01,02,03 l—-(3|12)x1 ,04,05

2 : X1,X2,X3 i1,X4,X5
F(32\1)x2 ,X4, 06F(2|1)X3 ,X5,X6

in,i4,X6 i3,i5,i6
(le)egls)eélzztl) (i3) (12) (11) (4.78)

where summations are taken on iy, x; (k =1, ..., 6) and we set

p1 = pla)plas), p2=plar+ax)plaz+az), p3= pla)pa;+az+asz).
(4.79)

‘We have put the underlines to the parts to be rewritten. The details of the above procedure
are as follows. For (4.72), we used (4.67). For (4.73), we used (4.70). For (4.74), we
used (4.2), (4.3) and [eq, e3] = 0. For (4.75), we used (4.69). For (4.76), we used (4.66).
For (4.77), we used (4.14).

Similarly, the second way is given by

(01)eg;z)eéoz)egozg)6535)6506) (4.80)
_ (_1)p30304e(01) %2) %343) 503) (05) (06) (4.81)
=Z(—1)"‘”3”“F(2'”i§ ii zg §0')€§§2)6$‘§) (xs)egis)e(m) (4.82)
— Z(_1)0303O4F(2|1)§; i: Zgr(zml);z ;2 fﬁsegm)egts) 6%1 e("”eg’?) (x3) (4.83)

— E (=P (01i6+xa)+p2X2X5+030304 [7(2]1)03,05,06 [~ (23]1) 02,04.X6
X3,X5,X6 X2,X4,i6

eyt 9 el (454

= Z(—l)f’l (01i6+x4)+02X2x5+030304 1 (211)03,05,06 [(23]1)02,04,X6 [~ (3]21) 01,%4,X5

X3,X5,X6 X2,X4,16 X1,i4,i5
s eli0)li5) 8) 1) gl22) ) (4.85)
_ p1(01i6+x4)+p2X2X5+030304 17 (2]1) 03,05,06 17 (23]1) 02,04, X6 7 (3|21) 01, X4,X5 (3|2)X1 X2,X3
_Z(_l)l HoT PRRTRGT xzx;xgr X2X4l()r x11415F i1,i2,i3
s €410 6l19 1919 02 1), (4.86)

where summations are taken on ig, x; (k =1, ..., 6). Again, we have put the underlines
to the parts to be rewritten. The details of the above procedure are as follows. For (4.80),
we used (4.4). For (4.81), we used (4.66). For (4.82), we used (4.68). For (4.83), we used
(4.12), (4.13) and [eq, e3] = 0. For (4.84), we used (4.71). For (4.85), we used (4.67).

Now, {e(lﬁ)egf )eglfl) eg%) ;’2) g”)} are linearly independent by Theorem 2.4. Then, by
comparing (4.78) and (4.86), we obtain the following result:

Theorem 4.10. As the identity of transition matrices of quantum superalgebras of type
A, we have

_1)\P1(106+x4)+p2x2x5+0313i4 [ (312) 01,02,03 [ (3]12)¥1,04,05 7 (32| 1) X2,X4,06 1~ (2]1) X35, X6
Z( D r X1,X2, xzr i1,X4,X5 r i2,i4,%6 r i3,15,i6

X3,X5,X6 X2,X4,i6 X1,i4,15 i1,02,i3 °

(4.87)

_ Z( l)pl(0116+X4)+p2X2X5+pwso4F(Z\l)os 105,06 [(23]1)02:04,%6 [7(3|21) 01.X4. X5 [~ (3]2) X1.%2, X3
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where summations are taken on x; (k =1, ...,6).

The above equation (4.87) generally involve nonlocal sign factors. In (4.63), we have
p1 = p2 = p3 = 0for (), (I1) and (II). In that case, (4.87) exactly gives the tetrahedron
equation. Hereafter, we specialize Theorem 4.10 for each case given in (4.63).

4.3.1. The case (I O——O——O Inthis case, the corresponding symmetrized Cartan
matrix is given by

2 -1 0
DA=|-1 2 -1}, (4.88)
o -1 2
and the corresponding positive roots are given by
&);ven

o = {}. (4.90)

Now, '™ defined by (4.66)—(4.71) are specified as follows:

Lemma 4.11. For the quantum superalgebra associated with O)——CO——C), we have
(4.66)—(4.71) where T'") are given by

@I — pGR) — p@31) — pG2D — pGI12) — pGRD — g 4.91)

= {1, a2, 3, 00 + 002, 002 + 3, 0] + 002 + 3}, (4.89)

Proof. TCID TGI2) are direct consquences of Theorem 4.3. I'?3!D is obtained by (4.5),
(4.6) and Theorem 4.3. Actually, ej, e>3 satisfy the exactly same relations of ey, e> of
U;(s[(?))) associated with O——(),so0 A : U(;(sI(?a)) — U;(s[(4)) defined by ¢; —
e1, e2 > ep3 gives an algebra homomorphism. Also, dy,+a; = do, and dyj+ap+a; =
dg,+a, are satisfied where the left hand sides are for U +(5 (4)) and the right hand sides
are for U+(5 (3)), so [m]qda2+u3 = [m]qda2 and [m] vy | = [m]qdalm2 hold.
Therefore by applying & on (4.25) for the case Q—Q we obtain
b k ..
e%)eizée(c) Z le“ /bkc i )68%)1653) (i, j, k,a,b,c € Zsp). (4.92)
i,j.k

This is exactly (4.68) for ®3I1) = R. The remaining cases can be shown exacly in the

same way. |

The phase factors given by (4.79) are now p; = p» = p3 = 0. Then, (4.87) is specialized
as follows:
01,02,03 X1,04,05 PX2,X4,06 PX3:X5,X6 03,05,06 102,04,X6 101 :X4,X5 pX],X2,X3
ZRXI X2, x?:Rll X4,X5 :Rlz iq,X6 13 i5,ig ZRIW X5, X6Rx2 X4,i6 :Rxl ig,is :Rtl in,iz (493)

where all indices are defined on Zx. This is exactly the tetrahedron equation (3.4):
R123R145R246R356 = R356R246R145R123. (4.94)
We then get the following result:

Corollary 4.12. The tetrahedron equation (3.4) is characterized as the identity of the
transition matrices of the quantum superalgebra associated with O——O——(C).

We note that although Corollary 4.12 is a corollary of the Kuniba—Okado—Yamada
theorem [28], the above calculation gives a direct derivation of the tetrahedron equation
(3.4) without using any results for quantum coordinate rings. This is a key for the
generalization of earlier results to super cases.
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4.3.2. The case (II) O——O——&) In this case, the corresponding symmetrized Car-
tan matrix is given by

2 -1 0
DA=|-1 2 -—11, (4.95)
0o -1 0
and the corresponding positive roots are given by
&+

even —

{ar, a2, a1 + a2}, (4.96)
CT314;0 = {a3, 00 + a3, o1 + a2 + a3} 4.97)

Similarly to Lemma 4.11, by using Proposition 4.1 and 4.2, we can show the following
lemma:

Lemma 4.13. For the quantum superalgebra associated with (O)——O——Q), we have
(4.66)—(4.71) where T'") are given by

r@n — L, rG2 — r@in _ pG21H _ pGN2) _ pGR2H _ ¢ (4.98)

The phase factors given by (4.79) are now p; = p2 = p3 = 0. Then, (4.87) is specialized
as follows:

01,02,03 ( X1,04,05 0 X2,X4,06 X3.X5,X6 Z 03,05,06 ( 02,04,X6 p 0],X4,X5 ~ X],X2,X3
ZL’CI X2, X3 11,X4,X5 le i4,X¢6 13 i5,ig 'rRx3 x5, X6Lx2 X4,16 L)q ig,i5 Ll] ip,i3 ° (499)

where oy, ix, xx € {0, 1} (k = 1, 2, 4) and the other indices are defined on Zx¢. This is
exactly the tetrahedron equation (3.7):

L123L145L246R356 = R3s56L246L145L123. (4.100)
We then get the following result:

Corollary 4.14. The tetrahedron equation (3.7) is characterized as the identity of the
transition matrices of the quantum superalgebra associated with O)——(O——) .

4.3.3. The case (III) O——&——&) In this case, the corresponding symmetrized Car-
tan matrix is given by

0
pa=|-1 o 1], (4.101)
0

and the corresponding positive roots are given by

q)+

even

& = {ay, a3, 0] + a2} (4.103)

180

= {a1, 00 + a3, a1 + 02 + a3}, (4.102)

Similarly to Lemma 4.11, by using Propositions 4.1 and 4.2, we can show the following
lemma:

Lemma 4.15. For the quantum superalgebra associated with (O)——X——), we have
(4.66)—(4.71) where T'Y) are given by

r@u — g pGR) Z I Z peRD gy, = p@ID — pG2AD — g
(4.104)
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The phase factors given by (4.79) are now p; = po» = p3 = 0. Then, (4.87) is specialized
as follows:
—1,01,02,03 —1,X1,04,05 X2,X4,06 ( X3,X5,X¢
ZN(q )XlaXZsX:%N(q )il,X4,x5 RiQ,i4,x6 Li3,i5,i6
_ Z LU3’(}5’{)6302’04’X6N(q_1 )01 ’x4’x5N(q_] )X1~X2-X3 (4 105)

X3.X5.X6 " x0,X4,16 X1,i4,i5 i1,ip,i3 °’

where o, ix, xx € {0, 1} (k = 1, 3,5) and the other indices are defined on Zxo. We
then get the following result, which gives a new solution to the tetrahedron equation.

Corollary 4.16. As the identity of the transition matrices of the quantum superalgebra
associated with (O)——X)——) , we have the tetrahedron equation given by

N(g™)123N(@ ) 1a5R246L 356 = L3s6Raa6N(g ™) 145sN(g ™ D123 (4.106)

4.3.4. The case (IV) O——&@——O In this case, the corresponding symmetrized Car-
tan matrix is given by

pA=|[-1 o 1], (4.107)
1

and the corresponding positive roots are given by

Dl en = {1, a3}, (4.108)
&)frso = {ap, 001 + a2, ap + a3, a1 + o2 + a3} (4.109)

Similarly to Lemma 4.11, by using Propositions 4.1 and 4.2, we can show the following
lemma:

Lemma 4.17. For the quantum superalgebra associated with (O)——X——), we have
(4.66)—(4.71) where T™) gre given by

P@L Z p@3ID Z pG2AD — g PG Z pGID Z pORD — gy, (4.110)

The phase factors given by (4.79) are now p; = 0, po = p3 = 1. Then, (4.87) is
specialized as follows:

XoXx5+i3i4 —1y01,02,03 —1\X1,04,05 p X2,X4,06 p X3,X5,X6
Z(_l) TEEMG T D)5 M v R e Fiis e @111
_ __1\X2X54+0304 [ 03,05,06 [ 02,04,X6 —1,01,%4,x5 —1\X1,x2,X3 )
=2 (=D L e M M@ D M@ 505
where og, ix, xx € {0, 1} (k = 2, 3,4, 5) and the other indices are defined on Z>q. As
we explained in Remark 3.3, this equation resembles the tetrahedron equation (3.18),
but we can not eliminate the sign factors at present. Anyway, we then get the following

result:

Corollary 4.18. As the identity of the transition matrices of the quantum superalgebra
associated with (O)——Q——), we have the tetrahedron equation up to sign factors
given by (4.111).
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4.3.5. The case (V)Q——O——&) Inthis case, the corresponding symmetrized Cartan
matrix is given by

0O -1 O
DA=|-1 2 -1}, (4.112)
0 -1 0

and the corresponding positive roots are given by

Pl en = {02, a1 + 02 + a3}, (4.113)

= {01, 03, 01 + 0, 0p + a3} (4.114)

180

Similarly to Lemma 4.11, by using Propositions 4.1 and 4.2, we can show the following
lemma:

Lemma 4.19. For the quantum superalgebra associated with Q——O)——), we have
(4.66)—(4.71) where T™ gre given by

r@n — M, rém? — L, r@in — rG2hH _ pGI2) _ pGI2D _ . (4.115)

The phase factors given by (4.79) are now p; = p» = 1, p3 = 0. Then, (4.87) is
specialized as follows:
Z(_l)ilu(,+X4+x2X5 [,01,02,03 Nf\’l»04,05 N{C2,x4,06MJ“3,x57/‘76

X1,X2,X3% 7i1,X4,X5 * "i,l4,X6 ~ "i3,i5,i6

E i ,X4,X:
— (_1)0116+x4+x2x5M03,05,0(,N02,04,X6N01 4 SLxhxz,J@’

X3,X5,X67 " X2,X4,i6 © " X1,i4,i5 "Ti1,2,i3

(4.116)

where og, ix, xx € {0, 1} (k = 1, 2,5, 6) and the other indices are defined on Zxo. We
then get the following result:

Corollary 4.20. As the identity of the transition matrices of the quantum superalgebra
associated with Q——O——), we have the tetrahedron equation up to sign factors
given by (4.116).

4.3.6. The case (VI) Q——&——&) In this case, the corresponding symmetrized Car-
tan matrix is given by

0
paA=|1 o -1}, 4.117)
0

and the corresponding positive roots are given by

P en = la1 + 0, 00 + 3}, (4.118)

&’go={a1,a2,a3,a1+a2+a3}, (4.119)

Similarly to Lemma 4.11, by using Propositions 4.1 and 4.2, we can show the following
lemma:

Lemma 4.21. For the quantum superalgebra associated with Q——X)——X), we have
(4.66)—(4.71) where T'™) are given by

re Z N, 18P =N, 1@ = pGAD Z g1y, 1612 Z ey _ g
(4.120)
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The phase factors given by (4.79) are now p; = p3 = 1, pp = 0. Then, (4.87) is
specialized as follows:

Z(_ l)i106+X4+i3i4N01,02,()32{(1’04s05M(q—1)X2vx4’06N(q—1)x3vx51X6

X1,X2,X377i1,X4,X5 i2,i4,X6 i3,i5,i6

— Z(—1)01i6+x4+o304N(£]—1)03’05’0°M(q_1)02’04’X6£01’x4’x5Nx1 ,X2,X3

X3,X5,X6 X2,%4,06 " X1,i4,i5 7 Vi1,02,03

(4.121)

where oy, ix, Xy € {0, 1} (k = 1, 3, 4, 6) and the other indices are defined on Zxo. We
then get the following result:

Corollary 4.22. As the identity of the transition matrices of the quantum superalgebra
associated with (X——x——), we have the tetrahedron equation up to sign factors
given by (4.121).

5. PBW Bases of Type B and 3D Reflection Equation

5.1. PBW bases of type B of rank 2 and 3. In this section, we focus on quantum super-
algebras of type B in the case of rank 2 and 3. Here, we introduce some notations to
briefly describe the PBW bases of the nilpotent subalgebra of them, and show higher-
order relations for them. We define el/.j, ezij)k, elf(jk) € U;(osp(Zm + 1]2n)) in the same
way as (4.1). Let us recall the normalization el’3 > eg given in Definition 2.3(ii). Cor-
responding to the normalization, we use a simplified rule as follows, which is enough
to our description. We set e, = e;C/(ql/2 + q_l/z) (x =ij,(ij)k,i(jk)) for the case
x involves the letter “r” twice where r is the rank of U ('; (0sp(2m + 1]2n)) defined in
Sect.2.1,and we setex = €. (x = ij, (ij)k, i(jk)) otherwise. By considering Corollary
2.77(1), we simply write ¢;jx = e(;j), for the case (a;, ay) = 0.

Example 5.1. The indices of the element 6212)2 € Uq+ (osp(2m + 1|2n)) for rank r =
m +n = 2 involve the letter “2” twice. We then set e(12)2 = 6212)2/(611/2 + q_l/z).

We also define elements with more g-commutators as well. For example, we define
eé(jk)k)(ji) € U, (0sp(2m + 1|2n)) by

eé(jk)k)(ji) = [[[ejv ek]qv ek]qv [ejv ei]q]q~ (5.1
Then, we similarly sete, = € /(q +¢~ /%) for the case x involves two letters “r”, and
we set e, = ¢}, otherwise. These elements satisfy the following higher-order relations,
where we only consider the case of rank 3, which is enough for our purpose in Sect. 5.3.

1/2

Proposition 5.2. For the case of rank 3, we have

e@a = ()PP (5.2)
€((12)3)3 = €1((23)3)> (5.3)
€((23)3)1 = €((21)3)3, 5.4)

) = (_1)(17(011)+P(0t2)+P(013))P(012)62(((12)3)3)’ (5.5)

) = (—1)P@DP@3)+(plan)+p(@))(plar)+p(@s))

€(1(23))(23
e(23)((23)1 eQR1)((23)3)> (5.6)
€((23)3)(21) = €2(3(3(21)))- (5.7
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Proof. (5.2) is obtained by Corollary 2.7(2) because [e, e3] = 0 and (a1, «3) = O.
(5.3) is obtained by Corollary 2.7(1). (5.4) is obtained by

[[lea, e3> €31g, e1ly = (—=DPEIPEI[[[er e3],, €11y, €3]y = [[le2, e1ly €314, €314,
(5.8)

where we used Corollary 2.7(2). For (5.7), itis sufficient to show e(12)(3(32)) = €(((12)3)3)2
by considering the anti-algebra automorphism y given by (2.20). Actually, we have
€(12)(3(32)) = €((12)3)(32) = €(((12)3)3)2 where we used Corollary 2.7(1), (5.12) and
Lemma 2.9(2). (5.5) and (5.6) are shown in the same way. Here, we only present the
proof for (5.5). We can calculate the left hand side of (5.5) as

le123, [e2, e31414/(q"* + g7 /%)
— (_1)(1’(061)+P(Otz)+[7(013))17(a2)q—(011+012+0!3,0!2)

€2€((12)3)3
_ (_1)P(az)p(aa)q*(az,a3)e((12)3)3e2 (5.9)
— (_1)([7(061)+P(a2)+17(013))17(a2)q—(0t1+Olz+a3,a2)

% (eze((12)3)3 _ (_1)(P(a1)+P(a2))P(Otz)q(Ol|+a2,a2)e((12)3)362) , (5.10)
where we used Lemma 2.6 and (5.11). One can see (@] +ay+a3, ap) = (€1, € —€3) =0
and (o] +ap, @) = (€3, €3) = — (o] + a2 + 23, a2). Then, the right hand side of (5.10)
is exactly the right hand side of (5.5). |

Here, we cite a lemma from [45, Lemma 6.3.1(i)] used below.

Lemma5.3. For 1 < i <r — 1, [eg, ezl = 0. Especially, if r = 3, this gives
le123, e12)3)3lg = 0 fori = 1 and [ez3, e23)3]y = 0 fori = 2.

Proposition 5.4. For the case of rank 3, we have

lez, e123] =0, (5.11)
[e21,€23] =0, (5.12)
le23, e12)3)3]1 = 0, (5.13)
le@3)1, €33l =0, (5.14)
le3, e(23)3)21)] = 0. (5.15)

Proof. (5.11) and (5.12) are obtained exactly in the same way as (4.3) and (4.4),
where we use the anti-algebra automorphism x given by (2.20). (5.13) is obtained
by [e(12)3)3, 23] = [e(((12)3)3)2, €3] = 0 where we used Corollary 2.7(1) and Lemma
2.9(2). (5.14) is obtained by

g e33)g = [e3, [e1, ezl + (= )PP g (@1t o)y 60303]e

+ (_1)P(O¢1)(p(d2)+ﬂ(as))q—(0t1,0tz+0!3) (5.16)

eilezs, e3)3l,

where we used Lemma 2.6. This is actually equal to O by Lemma 5.3 for i = 2, (5.3)
and (5.13). (5.15) is obtained by

x ([e3, e23)3)21)]) = x([e3, 2332 ]) = le12)3)3)2. €3] =0, (5.17)
where we used (5.7) and Lemma 2.9(2). |
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Proposition 5.5. For the case of rank 3, we have

6%823 (g+qg 1)6162381 +ez3el =0 (a1 € o (5.18)

even)
3 -1 2
eye; —(g+1+gq )62361623 +(@+1+qg~ )62361623

—e1e3; =0 (mr+az € ®L,), (5.19)

egegl (g+1+g 1)6362183 +(@g+1+g 1)e3egle§ — ezleg =0 (x3€ <I>even)
(5.20)
6%163 —(q+q )ezlegezl +€3€21 =0 (aj+ar € (Deven) (5.21)
etess — (g +q Dereaaper +epszer =0 (o) € Dhey), (5.22)
e(223)3el — (g + q_l)e(23)3ele(23)3 + 616(223)3 =0 (423 € é;ven), (5.23)
ee123)3 — (@ +q Deseaazzer +ezaes =0 (a2 € Dfe), (5.24)
6(2(12)3)362 — (g +q Deaierezs + 626(2(12)3)3 =0 (a1 +op+2a3 € Df ),
(5.25)
310233 — (g +q Derespzers +eszear =0 (o) +az € Dfye), (5.26)
6(223)3621 — (g +q Heeszearensys + 6216%23)3 =0 (a2 +203 € ). (5.27)

Proof. The proof of this proposition will be presented together with the next
proposition. O

Proposition 5.6. For the case of rank 3, we have

621 =0 (aj+ap € <D1so) (5.28)
e<23)3 =0 (2 +2a3 € ), (5.29)
oz =0 (a1 +a2 +203 € B, (5.30)

63361 + (_l)p(al)(l —q9—q )6235‘1923

+(1—q—q Hexered; + (=P Wejed; =0 (ar+a3 € Do), (5.31)
ezen + (—1)”“”*1’(“2’(1 —q—q He3enes
+(1—q —q Hesere3 +( DPETP@ ey 03 — 0 (a3 € D). (5.32)

Proof. (5.28), (5.29) and (5.30) are cororallies of Lemma 2.9(1). (5.20) and (5.32) can
be written together as [[[e21, €314, €3]y, €3]4. Then, (5.18), (5.20), (5.32) and (5.22) are
obtained exactly in the same way as (4.5). (5.21) and (5.23) are obtained in the same
way as (4.6), where we use (5.14) for (5.23). The left hand side of (5.24) can be written
as [[6((12)3)3, ez]q, ez]q = [E(((12)3)3)2, ez]q. This is equal to0 by Lemma 2.9.

(5.19) and (5.31) can be written together as [[[e1, e23]4, €231y, €23]4. Then, we have

[[le1, €231y, €234 2314/ (q"* + g7/
= [eq1(23))(23)» €23]4 (5.33)
= (- 1)(p(al)+p(a2)+p(a3))p(a2)[82(((12)3)%),62%] (5.34)
— (_1)(17(0“)+P(0t2)+p(0!3))17(a2)[€2’ le((12)3)35 623]q]q =0, (5.35)

where we used (5.5), Corollary 2.7(1), Corollary 2.8 and Lemma 2.9(2).
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The left hand side of (5.25) can be written as [ez(((12)3)3), €((12)3)3]¢- Then we have

[e2(((12)3)3)s €((12)3)3]g

— (_1)(p(a1)+p(¢¥2)+p(0t3))l7(a2)[6(1(23))(23)’ e((12)3)3]q (5.36)
= (= )PEPEITPEIP )55 [er3, e123)31glg /(g + 47 (5.37)
= (= 1) PP @NP@ 10103 [ers, e12313) 141 /(@ > +q71/%) (5.38)

= (= 1) P P@I PP [ 153 ey, e33]gle/ (@ * +q7*) =0, (5.39)

where we used (5.5), Corollary 2.7(1), Lemma 5.3 fori = 1, (5.3), Lemma 5.3 fori =2
and (5.14).
The left hand side of (5.26) can be written as [e21, e(21)((23)3)]¢- Then we have

[e21, e21)(23)3)]q
= (- 1)(17(0“ )+p(@2))(p(a2)+p(e3)) [ea1, e3y(23)1)]g g (5.40)

— 1/ +¢717?) ((_1)(17(061)+p(a2))(p(a2)+p(t¥3))([[621’ exlgs e3tlg

— (=1)P@)+p))(pla)+plar)+p(e3)) ; —(@rtas.artartas)y, eamilgen

+ (_1)(p(otl)+P(<12))(P(0t2)+17(a3))q—(a1+<12,0t2+013)623[621’ 8(23)1]q)) i (5.41)

where we used (5.6) and Lemma 2.6. This is actually equal to 0 because we have
le21, 23]y = 0by (5.12) and [e21, e23)1]qy = [le21, 23]y, €11, = 0 by Corollary 2.7(1),
Corollary 2.8 and (5.12).

We prove (5.62) instead of (5.27). The left hand side of (5.62) can be written as
[le12. e332)1q. €332)1g. Here, we have [e12, e332)ly = [e123, e2lg/(q'/* + g7V =
e(((12)3)3)2 Where we used Corollary 2.7(1), (5.49) and (5.11). Then, it is sufficient to
show [e(((12)3)3)2, €3(32)]¢ = 0. This actually holds by repeated use of Lemma 2.6 and
Lemma 2.9(2). o

Also, by applying the anti-algebra automorphism y given by (2.20) on the above propo-
sitions, we obtain the following relations:

Proposition 5.7. For the case of rank 3, we have

e132) = (=D)PEVPE@) oy 1), (5.42)
€3(3(21)) = €331, (5.43)
€1(3(32)) = €3(3(12))> (5.44)
e32)((32)1) = (_1)(P(Oll)+1Y7(012)+17(ot3))17(062)6(3(3(21)))27 (5.45)
e1(2)(32) = (_1)P(O¢1)p(a3)+(p(al)+P(<¥2))(P(Otz)+p(0t3))6(3(32))(]2)’ (5.46)
€(12)(3(32)) = €(((12)3)3)2- (5.47)
Proposition 5.8. For the case of rank 3, we have
[e2, e321] = 0, (5.48)
[e12, e32] =0, (5.49)
[e32, e3321))] = 0, (5.50)
[e332), €132)] =0, (5.51)

les, e12)332)] = 0. (5.52)
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Proposition 5.9. For the case of rank 3, we have

e%e32 — (g +q Hereze +€32€% =0 () € é;ven , (5.53)

3 —15,2 -1 2 3
epel —(g+1+qg eperenn+(g+1+q eperes; —erez

=0 (e2+a3 € Dfp), (5.54)
egelz —(g+1 +q_1)e§e1263 +(g+1 +q_1)e3elze§ — elzeg =0 (a3 € &ngen()s, 55
6%263 —(qg+ q_1)€1263€]2 +e3e%2 =0 (aj+ap € &):VCH), (5.56)
etes3) — (g +q Deresaner +eszne; =0 (a1 € Dlyey). (5.57)
93(32)61 — (g +q Desaperesa +€1€§(32) =0 (o +203 € Bf,), (5.58)
esesaen) — (@ +q Heresaainer + eagaiyes =0 (o € ), (5.59)
€§<3(21))62 — (@ +q Heszaereszary + 6265(3(21)) =0 (a1 +0o2+203 € Dfep),
(5.60)
ehesm) — (g +q Denesgyen +esanenn =0 (a) +az € BF), (5.61)
63(32)612 — (g +9 Hespennesz) + 61265(32) =0 (ap+203 € DL, (5.62)
Proposition 5.10. For the case of rank 3, we have
e, =0 (a1 +ar € B}, (5.63)
3y =0 (o2 +2a3 € Of), (5.64)
iy =0 (@ +ay+203 € D). (5.65)
ener + (=D)P (1 — g — g Hedyeren
+(1—q—q Denerel, + (—1)Pejed, =0 (aa+a3 € dF. ), (5.66)
eyery + (=P (| — g — g7 edernes
+(1 —q — g Dezeppes + (—1)POP@ged — 0 (a3 € DF. ). (5.67)

By writing down quantum root vectors given by Definition 2.3 for the case of rank
2, we find they are given by

By : eg =e1, ep, =er, ep =exn, ep, =e, (5.68)
By: eg =ex, ep, =eqn, ep, =en, ep =ei, (5.69)
where §; (t = 1,...,4) are the same as Theorem 2.4. For non-super case, (5.68) and

(5.69) concide with quantum root vectors given by (2.25) with the reduced expressions
wo = S1525152, 2515281 of the longest element of the Weyl group, respectively.

Similarly, by writing down quantum root vectors given by Definition 2.3 for the case
of rank 3, we find they are given by

By : eg =e1, ep, =er, ep, =enl, ep, =e332l), €ps = 2332

€y = €2, €p;, = €32, €g; = €3(32), €py = €3,
(5.70)

By: ep =e3, ep, =ew3)3, epy =€, ep =€, €p; = €((12)3)3)2:
€gs = €((12)3)3, €p; = €123, €gy = €12, epy, = e,

(5.71)
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Table 7. List of Dynkin diagrams of type B of rank 2

g Dynkin diagram
€ —€ €
05p(5/0) ez

81— e e € —8 8

osp(3|2) . ®8 ®
osp(1|4) = ,2
where f; (t = 1,...,9) are the same as Theorem 2.4. For non-super case, (5.70) and

(5.71) concide with quantum root vectors given by (2.25) with the reduced expressions
WO = §15253525152535253, §35253525152535251 of the longest element of the Weyl group,
respectively.

5.2. Transition matrices of PBW bases of type B of rank 2. In this section, we consider
transition matrices of the PBW bases of U;' (0sp(2m + 1]|2n)) of rank 2, som +n = 2.
All possible Dynkin diagrams associated with admissible realizations are given in Table
7, where they are distinguished except (X)—=@ , in the sense defined in Sect. 2.2.
For the case of rank 2, quantum root vecotrs are given by (5.68),(5.69), so the transition
matrix (2.32) is given as follows:
el = Ty e el o) 57
ijk,l

where the domain of indices is specified below. Hereafter, we consider each case. Some-
times, we abbreviate simple roots for Dynkin diagrams, but we always assume that they
are given as Table 7.

5.2.1. The case (I) O==(O In this case, the corresponding symmetrized Cartan matrix

is given by
DA = (_21 _11) , (5.73)

and the corresponding positive roots are given by

Dlien = o1, a2, oy + a2, o1 + 2002}, (5.74)
of, =1, (5.75)
q~)Zniso ={} (5.76)

Then, indices are specified as i, j, k, [, a, b, ¢, d € Zx¢ for (5.72). The transition matrix
in (5.72) is explicitly given as the consequence of the Kuniba—Okado—Yamada theorem
[28]:

Theorem 5.11 [26,28] For the quantum superalgebra associated with (O)=—=-() , the
transition matrix in (5.72) is given by

a,b,c,d __ qa,b,c,d
Vigad =3dijxl (5.77)

where { is the 3D J given by (3.21).
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5.2.2. The case (II)Q==O Inthis case, the corresponding symmetrized Cartan matrix

is given by
DA = <_01 _11> , (5.78)

and the corresponding positive roots are given by

&);ven = {2}, (5.79)
®f, = {or, 1 + 203}, (5.80)
D} o = {01 + a2} (5.81)

Then, indices are specified as i, k,a,c € Zxo, j,I,b,d € {0, 1} for (5.72). We set
X(g) eEnd(FRV ® FQV)by

Y@ ®u; @k @u)= Y. X@{tla) @up @ o) @ ua,
a,cel>0,b,def{0,1}

(5.82)
Xy = 8iadke (1 — (1= (=9))q"). (5.83)
(@)1 = 8ia—18k.e—1 (=g D21+ q), (5.84)
X0kt = Siaribe—1 (=D g D14+ g)(1 — g™, (5.85)
X = 8iabre—2g" 7 (1 + @)%, (5.86)

1 +1
x(q)a,ol,kc,(g) = 8; 4r10k.cal (_1)c+1q(a—c+1)/2 - 6]¢J+ )1 - (—C])L+ ) (5.87)
L0k, A l+gq ’ '
Xy = 8iabr.cq™, (5.88)
X(@) i = 8ias2dee(d — g1 — g, (5.89)
XY = Siantre—1 (=g D21+ g)(1 — g™, (5.90)
o 1— (_ )C+l
@55 = amideen (~Dig eV (591)
(@) = Sia—20k.c. (5.92)
X0 = 8iadk.cq”. (5.93)
(@ = 8ia—10ke—1 (=D g @2 (1 4 g, (5.94)
Tl (= (=H 1 = (=)D
x(Q)?’oykc,o = 8i,a£k,c+2qa ¢ 1+ 6])2 , (5.95)
, . 1— (_ )c+l
X o = Siamtkert (D g ”“/2#, (5.96)
, 3 (1 _ a+l)(1 _ (_ )L‘+l)

X@] = Sramden (—1)q D2 e 7, (5.97)

X@ = Siade (1= (0= (—Hg™!). (5.98)
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For simplicity, we also use the abbreviated notation X = X(g). We simply call X the
3D X. Then, the transition matrix in (5.72) is explicitly given as follows:

Theorem 5.12. For the quantum superalgebra associated with (X==-(), the transition
matrix in (5.72) is given by

v =i (5.99)
where X is the 3D X given by (5.83)—(5.98).
The proof of Theorem 5.12 is available in “Appendix A”.
Corollary 5.13.
X~ =x. (5.100)

Proof. This is shown exactly in the same way as Corollary 4.5. O

5.2.3. The case (IlI) @=—=@ In this case, the corresponding symmetrized Cartan

matrix is given by
DA = < 01 _11> , (5.101)

and the corresponding positive roots are given by

Pl = {01 + a2}, (5.102)
®F, = (o, a1 + 202}, (5.103)
Do = {02} (5.104)

Then, indices are specified as i, k,a,c € Z>o, j,I,b,d € {0, 1} for (5.72). We set
Y(@) e End(FQV ® F ® V) by

YU @u; @k @u)= Y. Y@ la) @ up®|c) ® ua,
a,celx(,b,de{0,1}

(5.105)
’zi(q)ﬁ’oo,}f;g =8iadkc (1= (1 =g (—q)7), (5.106)
Y@ = ia18ke—14 V(1 + ), (5.107)
Y@ oeT = Sias1dre1 (=1 V21— g)(1 = (=)™, (5.108)
YD T = 8iabke—2(—Dq 7 (1 = ¢?), (5.109)

) 1—(— a+1 1— c+1
Y@L = Sranidien () gererhr U EDICZT) s 149
o q
Y@ = Siabre(—g)*, (.111)
) 1— 1—(— a+l 1 —(— a+2

Y@ = 8 gradi e (— e L DU COTIAZ DT -5y

1+q
Y@ = iar1Ske—1 (D@21 — ) (1 = (=)™, (5.113)



520 A. Yoneyama

a0,c,1 _ o (a7¢-71)/21 - 61C+1

g(Q)i,O,k,O = 8i.a—10k,c+19 ﬁ, (5.114)
1+¢q
Y@ e = ai,a_zék,c(—l)“m, (5.115)
Y@y = Siabre(—a)", (5.116)
Y@L = —8iam18ke—1g V(1 +q), (5.117)
(1= c+1 1— c+2

Y@ = Sadrera (=1t gae L4 1 i(qz ). (5.118)

alel _ o (a—c+1)/21 - ff“

q); = 0j,a—10k,c+19 —_—, .
@i i = Sia—15k, 1—¢ (5.119)
Cernyp (L= (=) H A — gt

Y@ILE! = 81.an18k, et (=1)0q @D/ e . (5.120)
Y@ = badee (1- 1 =g DH=™). (5.121)

For simplicity, we also use the abbreviated notation Y = Y(g). We simply call Y the 3D
Y. Then, the transition matrix in (5.72) is explicitly given as follows:

Theorem 5.14. For the quantum superalgebra associated with Q—@), the transition
matrix in (5.72) is given by

vt =Yl (5.122)
where Y is the 3D Y given by (5.106)—(5.121).
Proof. The relations ey, e; satisfy are
e% =0, egel —(l—q— qil)e%elez +(1—q— qil)ezele% — eleg =0, (5.123)
Also, the quantum root vectors are given by

ey =ejex +qerey, ey = exe) +gejer, (5.124)

. ey — €€y erxer] — e21€2
(122= —7 ———7 €CD= —THh 77 -
g2 +q-172 g2 +q-172

(5.125)
On the other hand, for the case (II) (X==-(), the relations for the generators are
B =0, &é1—(l+qg+qg Heseiea+(1+qg+q HEee5 -85 =0, (5.126)

where we write the generators by e; instead of ¢; to avoid confusion. Also, the quantum
root vectors for the case (II) Q== are given by

ep = ejey —qexel, ey = exel —qeje, (5.127)

- €12ey — €2€12 . 8183 — €218

€122 = —np L i ey = ——7. (5.128)
2 +q- 172 2 +q 172

Apparently, (5.126), (5.127) and the numerators of (5.128) correspond to (5.123), (5.124)
and the numerators of (5.125) with a replacement ¢ — —q.
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Here, (5.72) for the case (II) == and (III) X=—=@ are explicitly written as
follows:

- - - D g~ ~ o
e (61282 — 62612) (€162 —gezer) y

[Cl]ql/z! 172 +q*1/2 [C] -172 (= 1)!
. (e2e] — 46182) AR
= oe-bedgl B (5.129)
l;{:l bkl Kl-12, iyt \ g2 +q712 ) [il !
e <612€2 - 62612)b (erex — gezer) 4
[d]ql/z’(_l)! 1/2 +q*1/2 [C]q—l/z!
abed, (exe1 — geren)k (62621 —ener )j e
v 2 , . (5.130)
z;c:l ikl €1 [k]y-1/2! ql/2+q-1/2 ({1412 1)

Comparing (5.129) with ¢ — —q and (5.130), we obtain the following relation:

yfl{b’c’d _ 1 /o [a]ql/Z![c]qfl/z,(—l)!xq,b,c,d
PR TG g2 ) itk TR

q9——q

(@' + 112 _p Lilg12 (1) !Tk] 12!

lalyi2 (py'lc]y-12! (5.131)

i—b
= (—1){G=D/A=k(=D/4=a(a=1)/4+c(c=1)/4+]/2=b/2 (ﬂ)j Y (—q) e

1—gq ijk,l o
(5.132)
where we used
[l gyt = (D" Dl ), (5.133)
gy, oyt = (D7D g, (5.134)
! m l+gq " 1
— (_1\ym/2
(=) 172 + (—gq)~1/2)m =(=D <l—q> T (5.135)

We then obtain the desired result by direct calculations. We note that (5.132) involves

(-DHY 2 but no matrix elements of the 3D Y involve it. |
Corollary 5.15.

y=-l =y, (5.136)
Proof. This is shown exactly in the same way as Corollary 4.5. O

5.2.4. The case (IV) O==@ In this case, the corresponding symmetrized Cartan

matrix is given by
DA = (_21 _11> (5.137)

and the corresponding positive roots are given by

Dlen = {1, a1 + 202}, (5.138)

even
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Table 8. List of Dynkin diagrams of type B of rank 3

g(mn) Dynkin diagram
05p(7/0) € —€ € — €3 €
€1 — €2 € — 33 g €1 — & 5 — €3 €& d—e€ € —€3 €3
0sp(5[2) O O
S SN R R—— ———O——
€] — & 82— 83 g 3 —e € — 83 % 81— 82 3 —e3 €3
espE) » ——0 O——8&—0
81— 6 S — 6
0sp(1]6) =% 27 ,3
d>l+so ={}, (5.139)
OF o = a2, a1 + a2} (5.140)

Then, the indices are specified as i, j, k, !, a, b, c,d € Z>o for (5.72). We write matrix
elements of the transition matrix in (5.72) by

a,b,c,d a,b,c,d
Vijki =2@; 00 (5.141)

For simplicity, we also use the abbreviated notation Z = Z(g). We simply call Z the 3D
Z.

At present, an explict formula for the 3D Z is yet to be constructed. In “Appendix B”,
we present recurrence equations for the 3D Z. We can calculate any matrix elements of
the 3D Z by using a computer program via these equations.

Example 5.16. The following is the list of all the non-zero elements of Z ’g
2001 = L+ (1 + ¢, (5.142)
Zgiiiiﬁ =—¢*(1—q*—q"), (5.143)
2001 =~ U+ U +g+q* +4° +4°), (5.144)
2ot =1-q"-¢’. (5.145)
5 3
1+

ot —M, (5.146)

T —q

2

: q-(1+q)

Zo0rs = T (5.147)

5.3. Transition matrices of PBW bases of type B of rank 3 and 3D reflection equation. In
this section, we condider the transition matrices of the PBW bases of U ; (0sp(2m+1|2n))
of rank 3, so m + n = 3. All possible Dynkin diagrams associated with admissible

realizations are given in Table 8.
For the case of rank 3, quantum root vectors are given by (5.70) and (5.71), so the
transition matrix in (2.32) is given as follows:

20D ,(02) (03) (04) ,(05) 297 ,(08) (09)

€3 €03)3%23 €2 €(((12)3)3)2 ((12)3)% €123 12 €

_ Z 01,02,03,04,05,06,07,08, 09e(l9)e(18) (i7) (16) e(l 5) 6(14)8(13)602) (i)
= Vilsin.i.iaeiseig.i7.is.io 17 €1 ¢321930e1)%330en)% €32 ¢3(32)°%

[1,12,13,14,15,16,17,18,19

(5.148)
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where the domain of indices is specified below. In order to attribute the transition matrix
in (5.148) to a composition of transition matrices of rank 2, we exploit the following
transition matrices @) and E07:

(@) (b) (c) @|Da,b,c (k) () (@)
€ €12 Z® | ik € €€ (5.149)
i,j,k
@, ) @1233)a.b.c (k) 0 0
el lmmmeiing = 2 © ik €(123)3€2(((1233) €2 (5.150)
i,j,k
(@) () @3320)a.b.c (k) () 0)
) e<(3<32)>1>2e<3(3z>>1 = 29 i.j.k €332)1€2((B3G2)HE2 (5.151)
i,j,k
(a) (b) (c) 233|1)a,b,c (k) (j) (1)
€23)3¢1(233¢1 = ZG) ij.k €1 €((23)3)1€(23)3> (5.152)
i,j.k
@ o) el = @R2Ihab.e ), )
€3321332)¢%1 = 29 ik €1 6’(3(32))163(32), (5.153)
ij.k
@ 0 @33nab.e, &) () o)
€(23)3 (21)((23)3)921 = ZO i,j.k €21 6((23)3)(21) 23)3° (5.154)
i,j,k
(a) (b) (c) (332\12)abc k) () (@)
€332¢126G2)°%12 = ZO i.j.k €12 €(3(32))(12)€3(32)° (5.155)
i,j,k
(@) ,(b) (o) (d) _ gGRab.ed, O, @ () 0
€3 €@33¢23¢ = Z > kil €2 €32 €332)€3 (5.156)
ij.kl
(a) (D) (c) d) _ r—~(3|21)abca’ @ (k) ) )
€3 €@n3zens = Z ijkl €21€321)¢3(321)¢3 > (5.157)
ijk.l
(a) (D) (C) (d) zGl12)a.b.c.d 0] (k) ) @)
€3 €12)3)3¢12)3¢12 = Z | i,jk,l €12€3(12)€3(3(12)¢3 » (5.158)
i,j,k,l
(@) ,(b) (o @ _ g@3Ihab.cd, B & () @)
€23 12323102361 = Z ijkl €1 €23)1¢ (23)((23)1)623» (5.159)
ijk.l
(@) () (o) ) _ g@2hab.ed 0 & () 0)
e3¢ eiane’ = D il el eGmieananes (5.160)
ij.kl

where the domain of indices will be specified. For each case in Table 8, O™ and E®
are identified with the 3D operators we have already introduced.

Then, by using oW, g0 Propositions 5.2, 5.4 and Propositions 5.7, 5.8, we can
construct the transition matrix in (5.148) in two ways. The first way is given by

(01) (02) (m) (04) (05) (06) (07) (08) (09)
€3 €(23)3623 € e(<(12)3)3)2"((12>3>3 123 €12 €1 (5.161)

_ (2/1233) 201 p02) (03) (%) (s) () (07) ,(08) (0)
Z © JoReRtIER 9(2;)3me2(2(12)3)3)wel Ve (5.162)

_ 340741203 Y6 (211233 (0)(0) (Ye) (03) (ys (07) ,(y4) (0)(0)
= Z(_l)ﬂmm 1203v0 @l >$i ?2 ?2263 ] (2%)3 ((12)3)3"22 ez(((12>3)3) 123 €3 ey
(5.163)

_ p3(¥407+y5)+12036 5 (211233) 04,05, % (2|1))4 08,09
= (-1 C FONCHIC R M
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(01) (02) (¥6) (03) (¥s) (07) (¥9) (ys) (X)
xe3" e(2§)3 €((12)3)3 ey 6(1(23))(23)6123 ¢ ! (5.164)

+y5)+ ) 2[1233) 04, 21 }4,08 09,-‘ 23|1)03,)5,07,Y9
— Z(_l)m(yMn ¥5)+1203Y6 & (2 )04 05 ;’60( 1 (23] )X3 2w

(01) (02) (¥6) (x9) (x7) (x5) (x3) (¥8) (x4)
X €3 33412331 ¢@3)19@3) (23123 €21 2 (5.165)
— Z(_l)m(ﬂmws)wzm)s0(2\1233)04,05 060(2\1)}4’08 209 ~(23|1)0;,}5 ,07, V9O(233|1);§ ;2;?

(01) ,(i9) (X) »2) (x7) (xs) (x3) (y8) (X)
xe3'e” ((53)3)13(23)3‘3(22)1 e(zg)((zz)l) 53 €51 € (5.166)

— Z(_l)m (0119+x5)+p2 (X3 y8+X5)+03 (y407+y5)+11203 Y6 +13 y2X7
(2]1233) 04,05,06 ) (2]1) Y4,08,09 r—~(23|1)03 ¥5,07,Y9 (233|1)02,¥6,X9
x 0 vae @k gy X3.X35,%7,%9 © Y2.%6.i0

(i) (o1) (XG) (x7) () (xs) (y8) (X3) (XA)
X e e €n3)3)1 €23)1 €23)3€21)((23)3)€21 €23 €2 (5.167)

— Z(, NG (01i9+x5+x7)+02 (X3 y8+X5)+03 (y407+Y5)+1203 Y6 +13 Y2X7
(211233) 04,05, 06 (2\1))4,03 99 G2311)93.35,07.39 &) (233]1)02.6,%9 ) (233(21) 12.35. 38
x© V4,Y5,y 60 x3,%5,7,%9 © ¥2,%X6,i9 ® X2,15,X8

(i9) ,(01) ,(x6) (x7) (X) (is) e2) ,(3) (x4)
xe1” ey e31)3)3€013¢1 €3NI € (5.168)

- Z(_])m(01i9+x5+x7)+pz(X3ys+x5)+/>3(}'407+,V5)+n203)‘6+n3y2x7 ©(211233)04,05,06 g (2]1) 4,08,09

Y4,Y5,Y6 X4,Y8,Y9
g@3ines. 350739 ®(233\1)02 Y650 (2331212, %5, 38 = (3121) 016,37 .38
3:X5 V2,X6,i9 X2,is,x3 X1,i6,17,i8
(19) (i) (i7) (i) (x1) (is) ( 2) (x3) (x4)
€1 €1 €32163321)%3 e(m)z)(zn (22)3"23 € (5.169)

— 2 (= 1)P1(O1io+x5HX7)H02 (X3 Y8X5)+03 (40745 ) N1 X1 541203 Y6+113 Y247

(211233)04,05,06 ¢ (2]1) ¥4:08,09
® 4,5, ya® X4,Y8,Y9
x =(23]1)03,Y5,07,Y9 ®(233\l)02 2 Y65 X9®(233|21)y2 »X5,)8 ~(3\21)01 X6,X7,X8
= X3,X5,X7,X9 ¥2,X6,i9 X7,i5,X8 X1,i6,17,i8
(i9) ,(is) ,(i7) (i6) (15) (1) ,(x2) (x3) (x4)
X €161 €32163321)¢((23)3)2) % €(23)3¢23 €2 (5.170)

— § (_1)01(01i9+X5+X7)+pz(x3y8+X5)+P3(y407+y5)+'71X|i5+nzv3y6+n3y2x7

(2]1233)04,05,06 (3 (2|1) ¥4,08,09
S} V4,)5, )6‘0 X4,Y8,Y9
(23\1)03 )5 07 )9 ®(233\1)02 yquo(23%|21))’2 ,X5,)8

Y2,X6,i9 X2,i5,X3
h(3\2l)01 X6,X7,%8 r2(3]2) X1, X2,X3,%4
X1,i6,17,18 = i1,02,13,14
(19) (ig) (17) (i6) ig) (i3) (i2) (i)
e €135 <<23>3><21>ez €33 €332)€3 (5.171)

—
X o

— § (=DM (01i9+x5+x7)+p2 (X3Y8+x5)+p3 (Y407+Y5)+1N1 X1i5+10203 Y6 +13y2X7
(2|1233)04,05 o(, (2|1) y4,08,09
© O X4,Y8,)9

q(23\1)03 ¥5,07, yg (233]1)02,Y6,%9 (233]21) ¥2.X5,)8
X & X3,X5,X7, @ \2)(()19@ X2,i5,X8

H(NZI)U] X6,X7,X8 n(?\2)x1 X2,X3,X4
X1,i6,iT,ig i1,02,03,i4

(i9) ,(is) ,(i7) ,(i6) (is) (i) ,G3) G2) (i1)
X e el 163G 266N 4 €% (5.172)

where summations are taken on ig, xx (k =1,...,9), yy (k =2,4,5,6,8,9). We have
put the underlines to the parts to be rewritten. We used p1, p2, p3 given by (4.79) and
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we have also set

n = p(az)plar + 202 + 2a3),
2 = plaz +a3)p(ag + g + 203), (5.173)

n3 = p(og + a2 + a3) plag + 2a3).

We note that n, n2 and n3 are actually equal to p1, pp and p3, respectively because the
parts whose coefficients are 2 do not contribute the parity. We exploit both of them for
a better understanding. The details of the above procedure are as follows. For (5.161),
we used (5.150). For (5.162), we used (5.13) and (5.11). For (5.163), we used (5.149)
and (5.4). For (5.164), we used (5.159) and (5.3). For (5.165), we used (5.152). For
(5.166), we used [e1, e3] = 0, (5.6), (5.12) and (5.14). For (5.167), we used (5.2), (5.4)
and (5.154). For (5.168), we used (5.157). For (5.169), we used (5.15). For (5.170), we
used (5.156). For (5.171), we used (5.7).

Similarly, the second way is given by

(01) J(02) (03) (04) (05) (06) (07) (08) (09)
€3 €123)3¢23 €2 €(((12)3)3)2¢((12)3)3¢123 €12 €1 (5.174)
_ =~(312) (va) (x3) (y2) _(x1) (05) (06) (07) (08) (09)

Z | v aaeaer €3y €33)€3 e(((12)3)3)2e((12)3)3e123 12 (5.175)
_ s = (312) (va) (x3) (2) (05) (x1) ,(06) (07) (08) ,(09)
= Z(—l)"mosu(l asies e €330 €133 es ((12)3)3 €123 €12 €]

(5.176)

_ § :(_1)77|X105 5 12)01,02,03,04 £ (3]12)¥1,06,07,08
- X1,Y2,X3, y4 ll Y6,X7,Y8

(ya) (x3) (y2) C ()8) (x7) (¥6) (i1) ,(09)
X €y €33 €33)¢ (13)(3(32)) 12 63(¥2)63(3(12))e Ve (G.177)

_ (_DmxloS = (3]2)01,02,03,04 m(%|12)x1 06, 07,036(332|12)y2,05,y8

- Z X1.2.03. 4 i1,6,X7,Y8 X2,Y5,X8

(va) (x3) (x8) (¥5) (x2) (1) (ve) (i) (09)
X ey €3 e 6(3(32))(12)‘33(32)63(;2) €3(3(12)) ey el (5.178)

— 2 :(_1)[)1n09+pzxzxs+n1x105+n3XzX7 = (312)01,02,03,04 5 (3]12) ¥1,06,07, 086(332\12)yz,05,y3
- X1,Y2.X3,94 i1,Y6,X7,Y8 X2,¥5,X8

(a) ,(x8) ,(x3) ,(V5) (1) (x2) (v6) (09) (i)
X ey e ey 6(3(32))(12) 312 ©362)€1662)°1 €3 (5.179)

— E :(_l)m (1109+x7+y5)+p2 (X3X8+Y5)+111 X1 05+113%2.X7

(3\2)01 02,03,04 ~(3\12)X1 06,07, 08@(332|12)y2 ,05, yg®(332|1)xz , V6,09
X1,Y2.X3, 4 i1,Y6:%7,)8 i2,X6,Y9

(}4) (x8) ,(x3) ,(¥5) (x7) (y9) ,(x6) (lz) @i1)
€12 €32 €(1(32)(32)°162¢1  €(3(32))143(32)¢3 (5.180)

— E (- 1)/01 (1109+x7+y5)+p2(X3X8+Y5)+11X105+13%2X7

5 312)01,02,03,04 5(3]12)11.06.07.08 @(332|12))2 .05, ys®(332|1)xz 176,09 = (32 1)X3,)5,X7,59

X1,Y2,X3,y4 = i1,Y6,X7,)8 12,X6,Y9 i3,X5,07,X9
(v4) (Xx) (X9) (i7) (XS) (i3) (Xs) (12) (i)
X €& €1 €321¢32)((32)) %32 €(3(32))1€3(32)¢3 (5.181)
= Z(—1)'0'(l'09+x7+y5)+p2("3"3+)’5)+'71X105+77%x2x7 5 (312)01,02.03,04 5 (3]12)X1,06.07,08
X1,y2,X3,54 = i1,Y6,X7,Y8
(332112 320538 (33211)%2,76,09 = (32] 1) 3, 5,37, 39 ¢ (2]1) V4, 8,9
x© s© i2,X6,Y9 i3,X5,07,X9 e X4,i8,19
(19) (i8) (m) (i7) (xs) (i3) (x6) @i2) (1)
1€ €31 €33 1) €32 C(3(32)193(32)€3 (5.182)

_ (_1)Pl(il09+X7+y5)+/02(X3X8+y5)+ﬂ3(X4l7+~’55)+'71X105+7)2i3x6+773x2~’f7 =(312)01,02,03,04
- X1,Y2,X3,Y4
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« 5 0612)x1.06.07, os®(332|12)>z,us 8 @32AD2:76:05 g (32[1) 333557, gy (2] ) Y539
= i1,Y6,%7,)8 i2.%6,y9 = i3,X5,17,X9 X4,18,19
(19) (ig) (17) (xa) (x5) (x6) (@i3) (i2) (11)
1 €331€5  €(3(32)126(3(32)1€33 €3(32)€3 (5.183)
— Z(_1)/01(il09+x7+YS)+ﬂz(X3xs+)’5)+ﬂ3(X4l7+X5)+771X105+n2i3X6+n3X2X7 =(312)01,02,03,04
X1,Y2,X3, Y4
n(3\12)m,06 07, 08®(332|12)y2 05 y8®(332|1)X2 , V6,09 ~(32|1)X3 Y5,X7, y9®(2|1)y4 ,X8,X9
i1,Y6,X7,)8 lz x6,y9 = i3,X5,7,X9 X4,18,19
(213321)X4,%5,%6 (i9) (ig) (17) (i6) (is (ia) (3) (i2) (i1)
x© e iV ed]) el e €5 €5 e (5.184)

_ —1)P1G109+x7+Y5)+02 (X3X8+Y5)+p3 (Xai7+X5)+11 X105 +12i3X6+13X2X7 =(3]2)01.02,03,04
= (=D = X1,Y2,X3,V4

% g(3\12)X1,06,07,08®(332|12)Vz ,05, ys®(332|1)xz 176,09 =(32[1)3.35.57.59 0 (2]1) Y4,X8,X9
= i1,Y6,X7,)8 i2,%6,Y9 i3,X5,i7,X9 X4,18,19

(2|3321)x4,x5,x6 (i9) (ig) (17) (i) (is) (14) (13) @2) (@)
x ©F 14,15516 € ¢ 632163(3(21))92(53(3(21))) 2 €33 €332)¢3 s> (5.185)

where summations are taken on ix, xx (k = 1,...,9), yp (k =2,4,5,6,8,9). Again,
we have put the underlines to the parts to be rewritten. The details of the above procedure
are as follows. For (5.174), we used (5.156). For (5.175), we used (5.47) and (5.52). For
(5.176), we used (5.158) and (5.47). For (5.177), we used (5.155). For (5.178), we used
[er, e3] = 0, (5.42), (5.44), (5.49) and (5.51). For (5.179), we used (5.153), (5.42) and
(5.46). For (5.180), we used (5.160). For (5.181), we used (5.149). For (5.182), we used
(5.42), (5.43) and (5.45), (5.48) and (5.50). For (5.183), we used (5.151). For (5.184),

we used (5.43).

Now, fe!e{® {7} eé’(";(zl))eéi(SS)(3(21) ))eg“)eg'f)egé)z) ¢V} are linearly independent by

Theorem 2.4. Then, by comparing (5.172) and (5.185), we obtain the following result:

Theorem 5.17. As the identity of transition matrices of quantum superalgebras associ-
ated with type B, we have
Z(_l)m(01i9+X5+X7)+;02(X3y8+x5)+p3(y407+,\'5)+'71X1i5+77203y6+n3y217 @(2|1233)D4 05,06 (2]1)74,08,09
Y4,¥5,Y6 X4,Y8,Y9
(23\1)01 )s 07 V9 0(233\1)02 »Y6,X9 0(233\21)\)2 2X5,)8 H(Z\Zl)m 2 X6,X7,X8 ~(2|2)r1 ,X2,X3,X4

X3, Y2.X6,i9 x2,05,X8 X1,16,17,18 i1,02,13,i4
— § (—DHP (i109+x7+y5)+02 (X3X8+Y5)+p3 (X4i7+X5)+111 X105 +72i3 X6 +13%2%7 57 (3]2) 01,02,03,04 =(3]12) X1,06,07,08
X1,Y2,X3,V4 i1,Y6:%7,)8
% O(332|12) V? 05 vg 0(232\1)/\2 , 6,09 ~(32|1)Xw ¥5.X7,Y9 0(2\1)}4 X8,X9 0(2\3?21»4 5 X5, Xe.
i2,X6,Y9 i3,X5,17,X9 X4,18,i9 is,is,ig

(5.186)
where summations are taken on x; (k =1,...,9) and y, (k =2,4,5,6,8,9).

The above equation (5.186) generally involves nonlocal sign factors. Here, we group
the Dynkin diagrams given by Table 8§ into the two families. In Table 8, we have p; =
p2 = p3 =11 = n2 = n3 = 0 for the following Dynkin diagrams given by (5.187):

M €1 — € 62(-)63 8 an ) @;62 62(—)63 €3
€1 — & h—e3 €3 €1—€  €—8 3
111 v 5.187
V) €] — €2 € — 83 43

where (I) (I) and (IV) are distinguished, in the sense defined in Sect. 2.2. For each case
of (5.187), (5.186) exactly gives the 3D reflection equation. On the other hand, there are
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non-trivial nonlocal sign factors for the following Dynkin diagrams given by (5.188):

81 — 8 b — €3 €3 €1 — & 8 — 83 33
VI VII
Vo o=—=0 " @ ——0—@ s
(VHI) 51 — €2 € — 53 53
X X o

where (VI) is distinguished. Then, as we will see later, the associated equations are the
3D reflection equation up to sign factors. Hereafter, we specialize Theorem 5.17 for each
case given in (5.187) and (5.188).

5.3.1. The case (I) O——O==(O In this case, the corresponding symmetrized Cartan
matrix is given by

2 -1 0
DA=[|-1 2 -1], (5.189)
0 -1 1

and the corresponding positive roots are given by

<I>Zven {1, a2, a3, a1 +ap, o + a3, @z + 203, (5.190)
al+a2+a3,a1+a2+2a3,a1+2a2+2a3}, (5.191)
D = {1, (5.192)
amso ={} (5.193)

Now, @) 20 defined by (5.149)—(5.160) are specified as follows:

Lemma 5.18. For the quantum superalgebra associated with O)——CO=—=), we have
(5.149)— (5.160) where ©%) 2O are given by

W =R (x = 2|1,2(1233,2|3321, 2331, 3321, 233|21, 332|12),

(5.194)

BV =g (y=3|2,3|21, 3|12, 231, 32|1).
Proof. ®C1) and 20V can be obtained in the same way as Lemma 4.11 via the propo-
sitions given in Sect. 5.1. The remaining cases are also obtained almost in the same
way, but we have to care the normalization factor ¢!/? + g ~!/2 of quantum root vectors,
which is given by the begining of Sect. 5.1. Here, we only present the proof for @331,
Similarly to Lemma 4.11, by considering (5.22) and (5.23), 4 : U;(s[(S)) — Uq+ (s0(5))
defined by e| — e1, e = e(23)3 gives an algebra homomorphism. Also, dy,+2¢; = da,
is satisfied where the left hand side is for U +(50(5)) and the right hand side is for
U +(5 3)), so [m] 41a2+a3 = [m] gl ! holds. Therefore by applying & on (4.25) for the
case (O)——(), we obtain

(a) (b) (©) 1/2 —1/2\i+j—a—bma,b,c (k) (J) (1)
€(23)3€1((23)3)€1 Z(q/ e Rivier eamiCass  (5:195)

i,j,k

The 3D R satisfies the weight conservation law: IR kc =0ifi+j # a+bor j+k # b+c.
We then obtain (5.152) for @331 = R, O
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The phase factors given by (4.79) and (5.173) are now p; = pp = p3 = 0 and
n1 = n2 = 13 = 0. Then, (5.186) is specialized as follows:
04,05,06 V408,09 103,Y5,07,¥9 D02, V6,X9 © ¥2,X5, Y8 01,X6,X7,X8 X1,X2,X3,X4
Z :R)’m}'&%j{x4’)’8~y93x3>x5vx7’x9:Ry2VX6,i9 :Rst,xg EXLis,i%is Hil,izﬁi&iza

— 301,02,03,043351,06,07,08CRyzyO_s,ysR{zyy6,0933_€3,ys,‘)C7,y9Ryzt,{cs,_)@j{)‘u,_xszxs
2: X1,Y2,X3,Y4911,¥6,X7,y8 © X2,Y5:X8 iy, x6,y9 Vi3,x5,i7,X9 ¥ x4,18,09 i4,is,ic °

(5.196)

where all indices are defined on Zx¢. This is exactly the 3D reflection equation (3.27):

Ra56R48993579R260R2587 167801234 = J1234d 1678 R258 R26993570R480R456.  (5.197)
We then get the following result:

Corollary 5.19. The 3D reflection equation (3.27) is characterized as the identity of the
transition matrices of the quantum superalgebra associated with (O)——O=—=().

We note that although Corollary 5.19 is a corollary of the Kuniba—Okado—Yamada
theorem [28], the above calculation gives a direct derivation of the 3D reflection equation
(3.27) without using any results for quantum coordinate rings.

5.3.2. The case (I) @——O==(0 In this case, the corresponding symmetrized Car-
tan matrix is given by

0o -1 0
DA=1[-1 2 -1], (5.198)
0o -1 1

and the corresponding positive roots are given by

D en = {02, @3, a2 + a3, 2 + 203}, (5.199)
&F, = {1, a1 +a, a1 +az +203), (5.200)
dF = {a1 +an + a3, o + 200 + 2a3). (5.201)

Similarly to Lemma 5.18, by using the propositions given in Sect. 5.1, we can show the
following lemma:

Lemma 5.20. For the quantum superalgebra associated with Q——O=—=), we have
(5.149)—(5.160) where @) B are given by

W =M (x = 2|1,2[1233,2|3321, 233|1, 332|1, 23321, 332|12),

J (y=32), (5.202)
X (y =321, 3]12,23|1, 32|1).

=0 —

The phase factors given by (4.79) and (5.173) are now p; = pp = p3 = 0 and
n1 = n2 = n3 = 0. Then, (5.186) is specialized as follows:
04,05,06 7\ 4:08,09 03, Y5,07,Y9 o\ £02,¥6,X9 i\ £V2,X5, V8 01, X6,X7,X8 X1,X2,X3,X4
Z M)’4J5J6Mx4v-"8~y9xx3»x5’x7vx9My2,x6,i9 sz,is,xs xx] J16,07,18 Hil,iz,i3,i4

— 01,02,03y04xxlv06,07’08M)’LOS’YBMXL%’@xx3»y5>X7,}'9M)’4,X8,X9 X4,X5,X6
ng,yz,xs,m 11,Y6,X7,y8 © ' X2, Y5: X8~ 1ip,x6,y9 7Vi3,X5,i7,X9 *'"X4,i8,09 ' “i4,i5,i6 ’

(5.203)

where o, ix, xk, yr € {0, 1} (k =5, 6, 8, 9) and the other indices are defined on Zx.
We then get the following result, which gives a new solution to the 3D reflection equation.
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Corollary 5.21. As the identity of the transition matrices of the quantum superalgebra
associated with (Q——O==-(), we have the 3D reflection equation given by

Mas6Mag9 X3579Ma60M2s58 X 167891234 = 1234 X1678M258 M269 X3570 MagoMase.
(5.204)

5.3.3. The case () @——&==(0 In this case, the corresponding symmetrized Car-
tan matrix is given by

0
pa=|1 0o -1}, (5.205)
0

and the corresponding positive roots are given by

é;ven = {0137 o] +op, 0+ a3, 0] +ap + 20’3}, (5206)
i, = {ar, o2, a2 + 203, oy + 203 + 203}, (5.207)
PF o = o2 + a3} (5.208)

Similarly to Lemma 5.18, by using the propositions given in Sect. 5.1, we can show the
following lemma:

Lemma 5.22. For the quantum superalgebra associated with Q——X=—=(), we have
(5.149)—~(5.160) where @) | ) are given by

o _ X (x = 2/1233, 23321, 23321, 332/12),
T IN@YH (= 2]1,233]1,332]1),
d (y = 3|21, 3]12), (5.209)
BV =1x (=31,
Y hH (v =23|1,32[1).

The phase factors given by (4.79) and (5.173) are now p; = pp = p3 = 0 and
n1 = n2 = n3 = 0. Then, (5.186) is specialized as follows:

04,05,06 —14Y4,08,09 —1403,¥5,07,y9 —102,Y6:X9 p ¥2,X5,Y8 101,X6,X7,X8 y~X1,X2,X3,X4
ZLM,)’S,%N(Q )X4~YS*)'9y(q )x37x5’x7~x9N(q )yz,x6,i9 Ln,is,XS X1,i6,17,i8 DCil,iz,i}»izt

— Z xm,az,os,mg{ﬂ ,06,07,03L;§:;§:§§N(q—1)X2»y6,09y(q—l)X3,)’5,X7»y9N(q—1),VA,X8,X9

X1,Y2,X3,Y4%i1,Y6,%7,)8 2,%6,Y9 i3,X5,07,X9 X4,i8,09
X4,X5,X6
ig,is,ic

(5.210)

where ok, ik, xk, yr € {0, 1} (k = 2,4,5,9) and the other indices are defined on Zx.
‘We then get the following result, which gives a new solution to the 3D reflection equation.

Corollary 5.23. As the identity of the transition matrices of the quantum superalgebra
associated with (Q——QQ=—=), we have the 3D reflection equation given by

L456N(q ™" )a309(q 359N (g ™ D60 Lassd 1678 X 1234

> ® - (5.211)
= X1234d1678L258N (g™ )2609(q ™ )3579N (g™ )agoLass.
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5.3.4. The case (IV) O——O=="@ In this case, the corresponding symmetrized Car-
tan matrix is given by

2 -1 0
pA=|-1 2 -1}, (5.212)
0o -1 1

and the corresponding positive roots are given by

&)gven ={ay, ap, a1 + a2, a2 + 203, o + @ + 203, o + 200 + 2003}, (5.213)
o =1}, (5.214)
o= {3, a0 + a3, a1 +0p +az). (5.215)

Similarly to Lemma 5.18, by using the propositions given in Sect. 5.1, we can show the
following lemma:

Lemma 5.24. For the quantum superalgebra associated with O)——O=—=@), we have
(5.149)—(5.160) where @) EO) are given by

O =R (x =2|1,2]1233, 2|3321, 233|1, 332|1, 233|121, 332|12),

(5.216)
EW =2 (y=32,321,3]12, 231, 32|1).

The phase factors given by (4.79) and (5.173) are now p; = pp = p3 = 0 and
n1 = n2 = 13 = 0. Then, (5.186) is specialized as follows:
04,05,06 P Y4,08,09 & 03,Y5,07,Y9 02, Y6,X9 e Y2,X5, Y8 oy 01 ,X6,X7,X8 oy X1,X2,X3,X4
Z :R)MJS,%:RM’YS’W ZX%XS,X%W:R})L%J() :Rm,is,xg Z’Xl,iﬁ,imis i1,02,03,i4

_ 01,02,03,04 ¢ X1,06,07,08 P Y2,05,Y8 DX2,Y6,09 cvX3,Y5,X7, Y9 ey V4,X8,X9  X4,X5,X6
- Z Z’Xl,>‘2,X3,y42’i1,y6,X7,y8 CRXZ’YS’XS:Riz%,ya: Z’1'3,)65,1'7,)69 :Rm,is,io ‘(Ri4,i5,i6 K

(5.217)

where all the indices are defined on Z=(. We then get the following result, which gives
a new solution to the 3D reflection equation.

Corollary 5.25. As the identity of the transition matrices of the quantum superalgebra
associated with (O)——O=—=-@) , we have the 3D reflection equation given by

Ras6R48923579R269R258 2167821234 = 2123421678 R258R26023579R4g0R4s6.  (5.218)

5.3.5. The case(V)O——&==@ Inthis case, the corresponding symmetrized Cartan
matrix is given by

2 -1 0
pa=|-1 o 1], (5.219)
0o 1 -1

and the corresponding positive roots are given by

O, = {og, 00 + a3, ap +2a) + 203, o +an + a3}, (5.220)
&’EO = {oo, a1 +az, a2 + 203, a + ap + 203}, (5.221)
ot = {as). (5.222)

Similarly to Lemma 5.18, by using the propositions given in Sect. 5.1, we can show the
following lemma:
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Lemma 5.26. For the quantum superalgebra associated with (O)——X=—=@), we have
(5.149)—(5.160) where @) ED) are given by

o — {L (x =21, 233|1, 332|1),

T IN@TYH (x =2]1233,2(3321, 233|121, 332]12),
(5.223)
o _)d (v =23|1,32/1),

- _{H(q‘l) (v =312.3]21, 3]12).

The phase factors given by (4.79) and (5.173) are now p; = pp = p3 = 0 and
n1 = n2 = n3 = 0. Then, (5.186) is specialized as follows:

—1 ,05, Y4,08,09 403,Y5,07,Y9  02,Y6,X9 —1\)2,X5,y8 —1\01,X6,X7,X8
ZN(‘] )04 % 06£’X4,yg,y93X3,X5,X7,X9L N(q ) 9(61 ) /

Y4,¥5,Y6 ¥2,%X6,i9 X2,i5,X8 X1,16,i7,18
YD
= D Y@ Y NG D SR e e e
N i,

(5.224)

where ok, ik, xk, yr € {0, 1} (k = 2,4, 6, 8) and the other indices are defined on Zx.
We then get the following result, which gives a new solution to the 3D reflection equation.

Corollary 5.27. As the identity of the transition matrices of the quantum superalgebra
associated with (O)——Q—=-@) , we have the 3D reflection equation given by

N(g™as6L48093579L260N(q " 258Y(q D 1678Y(q 1234

_1 - o * (5.225)
=Yg )1234Y9(q 1678 N (g™ )258L26993579L489N (g™ )456-

5.3.6. The case (VI) O——&@==0 In this case, the corresponding symmetrized Car-
tan matrix is given by

DA=|-1 0o 1], (5.226)
1

and the corresponding positive roots are given by

d~>;ven = {a1, a3, o1 + 20 + 203}, (5.227)
éfgo = {az, a1 + a2, ap + 203, a1 +ap + 23}, (5.228)
O o= {ar + a3, a1 + 0o +az). (5.229)

Similarly to Lemma 5.18, by using the propositions given in Sect. 5.1, we can show the
following lemma:
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Lemma 5.28. For the quantum superalgebra associated with (O)——X=—=), we have
(5.149)—(5.160) where @) EO) are given by

© L (x = 2|1,233|1, 332|1),
T IN@TYH (x = 211233, 2|3321, 233]21, 332|12),

(5.230)

oo _ | X@™) (v =312.321.3]12),
Z (y = 231, 32|1).

The phase factors given by (4.79) and (5.173) are now p; = n1 =0and pp = p3 =
n2 = n3 = 1. Then, (5.186) is specialized as follows:

2 :(_ 1)X3 Y8+X5+y407+y5+03y6+y2x7

—1504,05,06 [ Y4,08,09 ~03,Y5,07,)9 p 02,Y6,X9 —1\)2,X5,)8 —1\01,%6,%7,X8
XN(q ).V4»)’5,Y6£’x4’yssY9Z'x3>x5’x7’x9£’y2,X6,i9 N(q )X2,i5,)c8 X(q )X1,i6,i7,is

—1\X1,X2,X3,X.
x(q )1234

01,02,i3,i4
— E (_ 1))C3x3+y5+X4i7+xS+i3X(,+x2x7

—1\01,02,03,04 —1yX1,06,07,08 —11Y2,05,Y8 p X2,Y6,09 oy X3,Y5,X7,Y9 r V4,X8,X9
x X(g )xl»y2>x3,y4x(q )il,)’67x7v)’8N(q )XZvyS*XSLiz,Xs,)@ Z’l'3,xs,i7,x9 LX4J8J9

e
(5.231)
where o, ix, xk, yr € {0, 1} (k = 2,4, 6, 8) and the other indices are defined on Zx.
We then get the following result:

Corollary 5.29. As the identity of the transition matrices of the quantum superalgebra
associated with (O)——X=—=), we have the 3D reflection equation up to sign factors
given by (5.231).

5.3.7. The case (VII) ©@——O==@ In this case, the corresponding symmetrized
Cartan matrix is given by

0o -1 o0
DA=|-1 2 -1}, (5.232)
0o -1 1
and the corresponding positive roots are given by
Pl = {0, @2 +203, a1 + 2 + 3}, (5.233)
D, = {on, o1 + a2, 0 + o + 203, op + 202 + 203}, (5.234)
Df oo = (o3, @2 +a3). (5.235)

Similarly to Lemma 5.18, by using the propositions given in Sect. 5.1, we can show the
following lemma:

Lemma 5.30. For the quantum superalgebra associated with Q——O=—=-@), we have
(5.149)—(5.160) where @) D) are given by

OW =M (x = 2|1,2]1233,2|3321, 233|1, 332|1, 233|121, 332|12),

Z (y=3[2), (5.236)

=0 —
Y (y = 3|21, 3]12, 23]|1, 32|1).
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The phase factors given by (4.79) and (5.173) are now p3 = 3 =0 and p; = p» =
n1 = n2 = 1. Then, (5.186) is specialized as follows:

§ :(_ 1)01 i9+x5+x7+x3yg+X5+X1i5+03 V6

04,05,06 N\ [Y4,08,091403,Y5,07,Y9 3\ £02,Y6,X9 o\ £32,X5, Y8101 ,X6,X7,X8 oy X1,X2,X3,X4
X My4»,V51>'6Mx4’Y8vy9gx3’x5”‘7’)‘9My2,)%,i9 sz,is,xg X1,i6,07,i8 "i1,i2,i3,i4

(5.237)

=§ (_1)i109+X7+y5+x3x8+y5+x105+i3x6
01,02,03,041X1,06,07,08 2\ 1Y2:05,Y8 A\ £X2, Y6509y X35Y5,X7, Y9 o\ ~V4,X8,X9 o\ £X4,X5,X6
x Z’m,yz,X3.y4yi1,y6,X7,ys MXZ,Y&XSM!'LX@,)@ yist,i%m MX4J'8J9 M!’4J5J6 ’
where ok, ix, xk, yr € {0, 1} (k = 5, 6, 8,9) and the other indices are defined on Zx.
We then get the following result:

Corollary 5.31. As the identity of the transition matrices of the quantum superalgebra
associated with Q——O—=@), we have the 3D reflection equation up to sign factors
given by (5.237).

5.3.8. The case (VIII) ®——&==@ In this case, the corresponding symmetrized
Cartan matrix is given by

0 1 0
DA=|1 0 ~—1/f, (5.238)
0 -1 1
and the corresponding positive roots are given by
qN);ven = {Ol] +o2, 02 +03,01 02+ 20[3}7 (5239)
D, = {o1, o2, @2 + 203, @01 + 20 + 203}, (5.240)
&);niso = {a3, @) + o2 + a3} (5.241)

Similarly to Lemma 5.18, by using the propositions given in Sect. 5.1, we can show the
following lemma:

Lemma 5.32. For the quantum superalgebra associated with Q——X—=@), we have
(5.149)—(5.160) where @) B0 are given by

oW _ 1F (x = 2]1233, 23321, 23321, 332/12),
T IN@TYH (= 2]1,233]1,332]1),
X(g™" (v =23|1,32|1), (5.242)
E(y) — 13 (y — 3|2)’
Z (y = 3|21, 3|12).

The phase factors given by (4.79) and (5.173) are now pp = n2 = 0and p; = p3 =
n1 = n3 = 1. Then, (5.186) is specialized as follows:

§ :(_ N i9+x5+x7+Y407+y5+X1i5+y2X7

04,05,06 —1Y4,08,09 —1,03,¥5,07,Y9 —1102,Y6,X9 p ¥2,X5,Y8 v 01,X6,X7,X8 yX1,X2,X3,X4
XLMJSJ%NW )X4~~"8vy9x(q )X3~X5vx7~x9N(q ),quxevit) sz,is,xs Z'Xl,is,i%is i1,02,i3,i4

— E (_1)i109+X7+)'5+x4i7+x5+x105+x2x7

01,02,03,04 c»X1,06,07,08 p ¥2,05,)8 —1\X2,Y6,09 —1X3,Y5,%7,Y9 —1Y4,X8,%9
X yxl,}’2’X3,.\’4Zi1,y6,x7,,v8 L"Z'«VSV‘SN(‘Z )iquﬁ,m X(g )isqxs,i%xg Nig )X4,i8,i9
X4,X5,X6
Li4,i5,i6 ’

(5.243)
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where o, ik, xk, yr € {0, 1} (k = 2,4,5,9) and the other indices are defined on Zx.
We then get the following result:

Corollary 5.33. As the identity of the transition matrices of the quantum superalgebra
associated with Q——X—=@) , we have the 3D reflection equation up to sign factors
given by (5.243).

6. Crystal Limit

6.1. Crystal limit of transition matrices of rank 2. In this section, we consider some
transition matrices obtained in Sects. 4 and 5 at ¢ = 0, which is known as the crystal
limit [22]. First, we note that the crystal limit of transition matrices for non-super cases
reproduces so-called transition maps of Lusztig’s parametrizations of the canonical basis
[5,32]. For type A and B, we set the crystal limits of the 3D R and 3D J by

a,b,c __ 1. a,b,c a,b,c,d __ q: a,b,c,d
Rijk = ;l_rﬂ) R@ij Tijii = ;1_% @i - (6.1)
Then, these elements are explicitly given as follows [5]:

a,b,c

Riik = 8a.i+j—min(i,k)8b.min(i k)8c, j+k—min(i.k)» (6.2)
a,b,c,d

‘7i,j,k,l = 5a,i+2j+k—x1 Sb,xl —xz80,2xz—x1 8d,j+k+l—x2 s (6~3)

where x; = min(i + 2min(j, /), k + 20), xo = min(i + min(j, 1), k +1). (6.2) and (6.3)
follow from the fact that diagonal elements of transition matrices from PBW bases to the
canonical basis is 1 and off-diagonal elements are in gZ[q]. They define the non-trivial
bijections on (220)3 and (220)4, respectively. There also exists the crystal limit of the
tetrahedron equation (3.7) and the 3D reflection equation themselves, so they gives the
combinatorial solutions to them. See also related results given in [25].

Here, we present a super analog of these results. Let us begin with the case of type
A of rank 2. We set the crystal limits of the 3D L, M and N by

a,b,c __ 1. a,b,c

Lijjic = Hm L@y (6:4)
a,b,c _ q: a,b,c
ik = (}1_{110 M(Q)i’j,k ) (6.5)
a,b,c _ q: [b]q' a,b,c

A =t (Gt ) (0

We note that the normalization change in (6.6) corresponds to use unnormalized PBW
bases for (X)——) . This is consistent with earlier observations given in [9, Section
5.3]. Then, we have the following results by direct calculations:

Proposition 6.1. The crystal limit of the 3D L defines a non-trivial bijection on {0, 1}* x
Z>o. The elements are given by

0,0,c _ pll,c _ 1,0,c _ 1,0,0 __ 0,1,c __
AC()’()’k = ‘Cl,l,k = Sk,c» ‘CO,l,k = 6k+1,c: ACl’()’() = 1s ‘CI,O,k = 5k—l,Ca (67)

where E?”ﬁ’kc = 0 other than (6.7).
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Corollary 6.2. The crystal limit of the 3D M defines a non-trivial bijection on Zxp %
{0, 1}2. The elements are given by Mﬁ’ﬁ’,{c = E;’;la

Proposition 6.3. The crystal limit of the 3D N defines a non-trivial bijection on {0, 1} x
Z>o x {0, 1}. The elements are given by

bl aflbO _ o Lbl _ ¢ 00 _ b0 _ o
0,j,1 _'A/l,j,O = 8./,b» NO,j,O = 8./—1,b7 N(?,O,O = 17 Nﬂj,l = 8/+1,b7 (68)
where ./\fia}b,f = 0 other than (6.8).

Next, we proceed to the case of type B of rank 2. We set the crystal limits of the 3D
X and 3D Y by

: [elg-12, ! :
x40 = im | L)t 6.9
i,j,k,l g—0 [k]qfl/z,(—l)! (q)z,j,k,l (6.9)
a,b,c,d : [6]471/2! a,b,c,d
et =] PPN . 6.10
Vijki 25 <[k]ql/2!9(61)l,,,k,1 (6.10)

We note that the normalization changes in (6.9) and (6.10) correspond to use partially
unnormalized PBW bases for == and X——@ , respectively. Then, we have
the following results by direct calculations:

Proposition 6.4. The crystal limit of the 3D X defines a non-trivial bijection on Z>p X
{0, 1} x Z>o x {0, 1}. The matrix elements are given by

X = 8i.abk.cf(a > 1ora=c=0), 6.11)
X050 = 81.av1Sk.c16(a = 0), (6.12)
X350 = 8 avadic, (6.13)
XL = Sia18k.cr18(a = 1), (6.14)
X0 = Siamadke 6.15)
Xi‘fé(,)lfil = 8i.a0k.c0(a = 0), (6.16)
x5l = 6iabie, (6.17)

where é\fia’}{’,;’cid = 0 otherwise, and we used 0 defined by 0(true) = 1 and 6 (false) = 0.

Proposition 6.5. The crystal limit of the 3D Y defines a non-trivial bijection on Zxo %
{0, 1} x Z>¢ x {0, 1}. The matrix elements are given by

VDD = 81 adkcOa = Lora=c=0), (6.18)
yf’o?zf,io = 8i,a+10k,c—10(a = 0), (6.19)
VD = ianadie (=17, (6.20)
3’36(,)}5&)1 =8i.a—18k.c+10(a = 1), (6.21)

VI = 8ia—abie (=17, (6.22)
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VEoE!l = 8 adr.cb(a = 0), (6.23)
VAN = 8iabke, (6.24)

where y;f ’jl?l’:id = 0 otherwise, and we used 0 defined by 0(true) = 1 and 6 (false) = 0.

Here, the bijections obtained by the crystal limit of the 3D X and 3D Y are actually

same, but have different sign factors. Actually, y;f ’j.lf,’(fzd takes not only 0, 1 but also —1.

This is a new aspect not arising for non-super cases.
We can also observe the crystal limit of the 3D Z although we do not have an explicit
formula for it. We set the crystal limit of the 3D Z by

a,b,c,d __ 4. a,b,c,d
Z = Jim 2077 (6.25)

Supported by computer experiments, we conjecture the crystal limit of the 3D Z

also defines a non-trivial bijection on (Z=()*. For example, the list of all the non-
zero elements of Zglﬁg is given in Example 5.16. The crystal limit of them gives
Zg”l}” lcg = 84,10p,18¢,084,3- We note that the negative factor also appears for the 3D Z.

For example, the following is the list of all the non-zero elements of Zg’g’f’g:

oo = —(1-q* +4%), (6.26)

2070 = a(l — g)%, (6.27)

23000 =4- (6.28)
The crystal limit of them gives Zzay’g”f”g = —84.285.08¢.184.0-

The above results give a super analog of Lusztig’s parametrizations of the canonical
basis. To the best of my knowledge, there is no such a study considering transition
maps for super cases at present. We note that there are some earlier results attempting to
construct the canonical basis from PBW bases for super cases recently [9,10] although
they mainly deal with the distinguished Dynkin diagrams and the canonical basis not

depending on reduced expressions has obtained only for O— - —(O—&) . As

we considered for the 3D N, it seems our results are consistent with them. On the other
hand, further investigations should be done for negative factors, which is also remarked
in [10, Remark 7.10].

6.2. Crystal limit of transition matrices of rank 3. Here, we remark for the case of rank
3. In contrast to the case of rank 2, we can not take the crystal limit for all cases. For
example, we obtained the tetrahedron equation for O)——&)——) given by (4.106):

N(g™)123N (@ ™D 1a5R2a6L356 = L3seRaaeN(q ™) 145N(g ™ D123 (6.29)

This equation is not consistent with the crystal limits introduced in the previous section
because of their staggered g-dependence of the components.

Among the Dynkin diagrams dealt with Sects. 4.3 and 5.3, we can take the limit for
the following cases:

O—O0—Q& —0O0—: (6.30)
—0O0=0, O—0O0—0® X—0O—@. ’
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where we omit the non-super cases. Actually, by setting the normalization factors appro-
priately, we obtain solutions to the tetrahedron and 3D reflection equations which are
compositions of bijections. Such solutions are often called set-theoretical or combina-
torial, here we use the latter term.

Corollary 6.6. We have the combinatorial solution to the tetrahedron equation given by
L123L145L246R356 = R3s56L246L145L123, (6.31)

and the combinatorial solution up to sign factors given by

E (_1)i106+X4+x2x5£01,02,03NX1’04s05NX2,x4a06Mx3’X5sx6

X1,X2,X3% Vi1,X4,X5 7 " i2,14,X6 i3,i5,i6

— § (_1)01i6+X4+x2x5M03,05,06N02704vx6./\/'01sx4vx5£x1ax2ax3.

X3,X5,X6% " X2,X4,16 " X1,i4,05 Ti1,02,03

(6.32)

where summations are taken on x; (k =1, ..., 6).

Corollary 6.7. We have the combinatorial solution to the 3D reflection equation given
by

Mys56Mago X3579 Mogg Mosg Xi678 T1234 = J1234 X1678 M258 Maeo X3579 M agg Mase.
(6.33)

Conjecture 6.8. We have the combinatorial solution to the 3D reflection equation given
by

Ra56R48923579R260R258 21678 21234 = 2123421678 R258 R269 23579 R 489 R 456,
(6.34)

and the combinatorial solution up to sign factors given by
2 :(_1)01i9+x5+x7+X3yg+X5+x1i5+03ys
04,05,06 \ 4Y4:08,09~103,Y5,07,Y9 § 102,Y6,X9 £ (¥2,X5,Y8~101,X6,X7,X8 ZX1,X2,X3,X4
x My4»)’5’y6Mx4’YSvY9yx3’x5"‘7’x9Myz,xmo MXZ,is,Xzz X1,i6,17,i8 Zil,iz,is,izt
— E (_1)i109+X7+y5+x3x8+y5+x105+i3x6
X 201,02,03»04 Xl,06v07q08M)’Z»OS’)’SM)_CZ,)’6,09y‘x3,y5,x7xy9My47x8vx9M{C4,x5,x6

X1,Y2,X3,Y4 Y i1,Y6,X7,)8 X2,Y5:X8% " "ip,x6,y9 ¥ 13,X5,i7,X9 X4,18,i9 ig,is5,i6 °

(6.35)

where summations are taken on xx (k =1,...,9) and yx (k =2,4,5,6,8,9).

7. Concluding Remarks

In this paper, we studied transition matrices of PBW bases of the nilpotent subalgebra
of quantum superalgebras of type A and B in the case of rank 2 and 3, and obtained
explicit formulae for many cases. By considering the case of rank 3, we obtained the
“mother” solution to the tetrahedron equation (4.87) and 3D reflection equation (5.186)
as identities of transition matrices attributed to compositions of transition matrices of
rank 2 in two ways. Then, we reduced them to special cases and obtained several solutions
to the tetrahedron and 3D reflection equation. The parts of them are summarized as the
following table:
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Type A:

Dynkin diagram Transition matrix
O—0 R (3.2)
Oo—® £ (3.6)
K—C0O M (3.10)
R—R N (4.51)

Type B:
Dynkin diagram Transition matrix

o—0 362D
=0 X (5.83)~(5.98)
X—@ Y(5.106)~(5.121)
O—@ 2(5.141)

It is important that our proofs exploit higher-order relations for quantum superalgebras
given in Sects. 4.1 and 5.1, and did not use any result for quantum coordinate rings.

For the case of ()——) , our approach exactly reproduced matrix elements of
the 3D L (3.6), and the associated tetrahedron equation (3.7) for O—0O—— .
That is one of the remarkable result of this paper. It was known that the 3D L also
satisfies another tetrahedron equation (3.18). We obtained the similar equation (4.111)
for O——&)——C) , but it involves nonlocal sign factors, so we can not write it as
a matrix equation at present, in the sense explained in Remark 3.3. It is open whether
we can attribute (3.18) to (4.111). If we can, it is also interesting whether the procedure
“eliminating nonlocal sign factors” can be applied to other tetrahedron equations (4.116)
and (4.121), and the 3D reflection equations (5.231), (5.237) and (5.243) for the case of
type B.

We further obtained the new solution to the tetrahedron equation by considering
R)——), which we call the 3D N (4.51). The associated equation (4.106) was obtained
by considering (O)——&)——) . We found matrix elements of the 3D N are related
to ones of the 3D L as (4.62). It is interesting whether, in general, transition matrices
associated with a pair of Cartan data mapped to each other via odd reflections are
attributed to each other or not.

Our framework also can be applied to the case of type B. We derived the new solutions
to the 3D reflection equation (5.204), (5.211), (5.218) and (5.225). As parts of the
equations, we introduced the 3D X, Y and Z and obtained explicit formulae for the 3D X
and 3D Y given by (5.83)—(5.98) and (5.106)—(5.121), respectively. Although we did not
for the 3D Z, we can calculate any matrix elements by recurrence equations like Example
5.16. We hope to report an explicit formula for the 3D Z in a future publication.

We also discussed the crystal limit of transition matrices for super cases, and obtained
a super analog of transition maps of Lusztig’s parametrizations of the canonical basis.
We hope that our result gives a new insight into recent studies for a super analog of the
canonical basis [9,10]. It is also an interesting question whether a geometric lifting [5]
for them exists or not.

Our result stimulates to challenge whether the Kuniba—Okado—Yamada theorem can
be generalized to the case of quantum superalgebras, or not. This question is quite inter-
esting but needs hard works because there is no theory about irreducible representations
of quantum super coordinate rings like Soibelman’s theory for the non-super case [42].
To construct a super version of Soibelman’s theory, it seems that the Weyl groupoid
plays important roles [15]. More concretely, as we mentioned in Sect. 1, [40] seems to
give a related result. We hope to report this issue in a future publication.
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Appendix A. Proof of Theorem 5.12

By considering (2.34), it is sufficient to prove fi“}b,;‘;d = f)Cflk‘jbl“ Our proof is motivated

by the proof of Proposition 2. of [28]. If we obtain an explicit formula for X l” ’jlf}{‘:’ld defined
by

a b ¢ d _ ab,cd | k Joi
€1621601)% = Z Xi,j,k,l €2€(12)2€12€1> (A.T)
i.k€Z=,j,1€{0,1}

- ~a,b,c,d
we can obtain Y by

_abed _ Lge cn!llgrt g g

abed _ ab.cd (A2)
ikt [bg-172 —1ylld]g12! i jikd
Then, in order to prove 7244 = Xx%¢24 it is sufficient to show X*:¢¢ is given b
, P Viijkd = Mk, ji- ijki 158 y
0,6,0,d
Xo ot =8jp01a(l — (1 = (=)")g"),
1201 — (—A\bY(1 — Ad
0,6,0.d g/~ —(—¢)")d —q%)
Xo i1 = —0jb-181,d-1 g , (A.3)
d
XPE0H =855 181anq (1 — )1 = ()",
0.5,0,d _
X000 = =8 528149 P (1 = (=) "H(1 = (=9)"), (A4)
0,b,1,d 0.b,1,d
XoToi = =8jpr1dang™ P —q), XgT1T = 8j681.49", (A.5)
0.b.1d _ o d+1/2 2 0bld _ o d+1 b
X300 = 8j.b01.d+29 I=q) X700 =—8jb-181a114"7 (1 = )1 = (=q)"),
(A.6)
_d —d+3/2(1 _ d—1\(1 _ d
1,6,0,d q 1,6,0,d q (I'—g“H —q%
X e — 5. 877, D SN S S ,
0,7,0,1 j,b+101,d—1 l—q 0,j,1,1 j,bOl,d-2 (1 _q)z
(A7)
1201 _ ¢ nby(1 — Ad
5,0.d b,0,d g/~ —(=¢)")A —q%)
X};j;S;, =8, 81,49, Xllijj?j, =38j5-101,4-1 g , (A.8)
. . q(1 —q%)
T (A9

XPhon =81 pe18an1q™ A = @), XPh1 = 81584(1 = (1= (=)" g,
(A.10)
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A.l. Recurrence Equations. Our strategy to derive (A.3)—(A.10) is using recurrence
equations for X. For simplicity, we write by = e, by = ez1, b3 = e3(21), bs = ez and

l])’?l’"j’k’l = b’ibébé‘bg, le’k’jl = (F' ok l) Then, (A.1) with g — g~ is represented
y

D DD ¢ ol (A.11)
i,keZ=>,j,1€{0,1}
The elements b; satisfy the following relations:
baby = —qbiby, b3by = —q*b1b3 — q'/?b3, bsby = qbbs + by, (A.12)
b3by = —qbybs, baby = bobs+(q'* +q 7" )b3, babs =q 'b3bs.  (A.13)

We can easily prove the following relations for n € N by induction.

bab| = (—q)" b by, (A.14)
n nyn 1 - (_l)n n—1zn—1
bab| = q"bbs + Tq by b, (A.15)
bab = bibs+q~ 2 (1 — (=1)"¢"b3 b3, (A.16)
b4bg = qinbgbm (A.17)
-q" o U+ —gnHA—¢"" _an n-2,
biby = q"bibl + ———byb ! + 323}
! Yl—g -1 - 2)
(A.18)
n n, 2n n - (D" 2n—3/2321n—1
b3bl =(=1"¢q blb3 - Tq b2b3 s (A.19)
byby = (—q)"b1b3, (A.20)
biby = (—q)"babs. (A.21)
Then, the left multiplication of by, by, by on F}" bed and Fy LRI are given by
blFla,b,c,d — Fla+l,b,c,d7 (A22)
b2F1u,b,c,d — (_q)a Flu,b+l,c,d’ (A23)
b4F1a,b,C,d :qa—CFla,b,C,d+1 + a—1/2(1 _ (_1)bqb)Fla,b—1,C+l,d
1—(—D*
N (2 ) g Fe- Lbtled (A24)
. _(—1)k DA
blF””' (_1)j+kqj+2k+zFé,k,j,z+l _ 1 (2 D q2k+1—3/2F21,k—1,1+2,t
+1—ql( )\ F! =1k, j+1,i
l—gq
I+g)(1—¢q )(1 —251 ) ,1+3/2Fl —2.k+1, 11 (A.25)
(I-g)d—g*)

b Fl k,ji (_1)j+kqj+2k+l(1 o qZ)Fé‘H’kﬁjaH'l

1—(=DF Iy
. (=1 q2k+[73/2(1_q2)F21+1,k 1,j+2,i
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Lk, j+1,i A+q)(0—q") 11kt ji
oM = (g T — g P
(A.26)

b4Fé,k,j,i _ F21+1,k,j,i’ (A.27)

where the left multiplication of by on Fé’k’j ' can be calculated only using the right

multiplication of by, by on Fi'"*! via by Fy5 7" = x (FP/*! (b1by — qbaby)). By con-
sidering the left multiplication of b1, by, b4 on (A.11), we obtain the following recurrence

equations:

xatlbed _ _qyjtk j+2k+ ga.b.c.d 1= (=D 2k+l+1/2 ya.b.c.d
ikl =D i—1,jkl ) q i,j—2.k+1,1
I+1
—q ky-a,b,c.d
+ ﬁ(—‘ﬂ X e
1+ 1 — 1+2 1 — I+1 )
b+l,e,d - - —a— .b,c.d
Xia’j’;lc _ (_l)]+k+aq]+2k+l a 1(1 _ qz)Xiafl,Cj,k,lfl
1— (_1)k+1 B B bed
_ T(_q) aq2k+1 1/2(1 B qz)X:‘l,’j;Cz’,kH,l—l
_ b,c.d
+ (=) 1 = A+ gh X7
a1 +A =g iped
— (o — e (A.29)
b.c.d+1 —ayab.c.d - b—1,c+1,d
Xia’j,kézl + — qc aXl'a’j,kC:l_l _qc 1/2(1 _ (_l)bqb)XZ]’k’l c+
1—(=D* | _
B (=1 e xeTLbed. (A.30)

) ijkd

A.2. I-parameter family. We first construct the 1-parameter family for X la ’jb;f’ld by using

(A.29), which has generic j, b and takes as small as possible /, d for each i, k,a,c €
{0, 1}. By the same discussion as (4.35), we obtain the following weight conservation:

X;fjj;jf’zo (i+j+k#a+b+c or j+2k+1#b+2c+d). (A31)

(1) Forthecase (i, k, a, c) = (0,0, 0, 0), the non-trivial case for (A.29)is j = b+1,] =
d by (A.31). Then, if we set d = 0, (A.29) gives

0,b+1,0,0 __ 0,6,0,0 __ b+1y,0,0,0,0
Xop+1.00 = —4X0p000 = 0" Xp00)0- (A.32)
: : 0,0,0,0 :
It is easy to verify X)’y'q’g = 1, so we obtain
0,,0,0 b
Xob00 = (9. (A.33)

Later, we use the case d = 1. By setting d = 1, (A.29) gives

0,b+1,0,1 172 2\ v0,5,0,1 21 v0,5,0,1
XO,bil,O,l =—q'*(1—¢ YXopZinotd—a—=q)Xy 0 (A.34)
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(2) For the case (i, k, a, c) = (0, 1, 0, 0), the non-trivial case for (A.29)is j = b,] =
d — 1 by (A.31). Then, if we setd = 1, (A.29) gives
0,b+1,0,1 2+v0,5,0,1 1/2 0.b,0,1
Xob1.0 =9 Xopi1.0 4 ! + ) X001 (A.35)
0,b—1,0,1 0,b—1,0,1
=q° [qzxo,b—Z,l,O —q'2(1+ q)XO,b—l,O,l]

2 2 2\ v0,b—1,0,1 25\ v0,0—1,0,1
- ql/ (I+q) [—611/ (I—¢ )Xoybfz’]’() +(1—-—qg—gq )XO,bfl,O,l]

(A.36)
0,b—1,0,1 0,b—1,0,1

=q(l+q—g) Xy 50— a0 —a)H Xy, 1o (A.37)

=q(1 = (="' = N Xg 0 —a' (1 = —")Xg 101
(A.38)
where we use (A.34). It is easy to verify ng(l):(l):(l) = —q'2(1 +q), ngijgzll =

1 — g — g2, so we obtain

Xgphol = 21+ )1 — (="' = (") — ¢"2(1 = (—=9)")1 — g — ¢
(A.39)
=—q'(1 = (=¢)"™. (A.40)

Similarly, we can derive the following formulae for other i, k, a, ¢ € {0, 1}:

X(l):llj:t)]‘,lo,o — (1 _ q)(l _ (_q)b+l)’ XO,b+2,O,0 — _ql/Z(l _ (_q)b+l)(1 _ (_q)b+2)’

1,b,1,0

(A.41)

Xomnon =—a"> (1 =a), Xgpi0=a (A42)
XPon =a"2 (=% X\ = —q(1 =) (1 = (=)™, (A.43)
Xomoo=1 Xgpivo=a""1+q), (A.44)
Xipoo =1 Xiphdt=¢'"21 — (=g, (A45)
Xorsbo=—4"" Xgpilo=—4 (A.46)
XiriS i =aPa-g. Xpprt=1-q - (=" (A47)

A.3. 2-parameter family. Next, we lift the 1-parameter family to the 2-parameter family
by using (A.30) and (A.28), which has generic j, k, b, d for each i, k, a, c € {0, 1}.

(I For the case (a, ¢) = (0, 1), (A.30) gives

0.6,1,d+1 _ 0b1d _ a+ly0b,1d—a
Xijki  =aXijei1 =4 Xijki-a—10 (A.48)

where « is specified below.
(i) For the case (i, k) = (0, 0), the non-trivial case for (A.48)is j =b+1,l =d+2
by (A.31). In that case, (A.48) gives

0,b,1,d+1  _ _d+1+0,b,1,0
Xob+1,0.d+2 =9 Xop1,0,10 (A.49)

0,b,1,d
S X0 b 0.1 = —q1 2 (1 - ). (A.50)
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(i1) For the case (i, k) = (0, 1), the non-trivial case for (A.48)is j = b,l =d + 1 by
(A.31). In that case, (A.48) gives

b,
q““XS 1o (A51)

,b,1,d+1
,b,1,d+1
j,’ g™ (A.52)

. 0
XO

(iii) For the case (i, k) = (1, 0), the non-trivial case for (A.48)is j = b,l =d + 3 by
(A.31). In that case, (A.48) gives

0.6, 1,d+1 _  d+1 v0.b,1,0
X1b0d+3_ +X1b021 (A.53)
X 0 =P = )%, (A.54)

(iv) For the case (i, k) = (1, 1), the non-trivial case for (A.48)is j =b— 1,1l =d+2
by (A.31). In that case, (A.48) gives

0,b,1,d+1 _ _d+l v0,5,1,0

Xy itan =4 X0 (A.55)
0,b+1,1,d

XV = =™ A - = (=", (A.56)

(II) For the case (a, ¢) = (0, 0), (A.30) gives

a+
XO,b,O,d+1 — XO,b,(),dfa _q—1/2(1 (— l)b b) XOb 1,1,d—«

i,j.k,l ijhl—a—1 iiki—e o (AST)

where « is specified below.
(i) For the case (i, k) = (0, 0), the non-trivial case for (A.57)is j = b,l =d + 1
by (A.31). In that case, (A.57) gives

d+
Xopoan = Xopo0 —a A1 = (=1)'q ”) —Xoroi e (AsY)
LXOPeY = () + (1= ()P (1 — g% (A.59)
=1— (- (—hq". (A.60)

(ii) For the case (i, k) = (0, 1), the non-trivial case for (A.57)is j =b— 1,1 =d
by (A.31). In that case, (A.57) gives

1— d
0,b,0,d+1 0,6,0,1 ~1/2 b b 4" ,0b-1,1,1
Xobita = Xop-i10—4 21— (=1’q )—1 p Xop—111 (A6l)

1— d

0,0,0,1 12 b b q x0-6-1.1.0

:X(),bfl,l,o_q / (1 _(_1) q )ﬁ 0,6—1,1,0° (A62)
d

1 —
Xg,z*—]l,;),d+l _ _ql/Z(l _ (_q)b+1) _ q3/2(1 _ (_q)b+l)— (A63)
,0,1, 1 — q

1201 _ ¢ \b+lye] _ ,d+l
__4 (1 (161) Y1 —gq )' (A.64)
—q
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(iii) For the case (i, k) = (1, 0), the non-trivial case for (A.57)is j = b—1,] =d+2
by (A.31). In that case, (A.57) gives

1— d+1
0,b,0,d+1 0,b,0,0 -1/2 b b q 0,b—1,1,0
X1 i0an = X1y 00 — a2 = (=1)’q )= Xib-102: (A-69)
SXP = A=) = (=) = (1 = ) (1 = (=)0 = ¢%)
(A.66)
_ d b+1
=g =) - (—=q)""). (A.67)

(iv) Forthe case (i, k) = (1, 1), the non-trivial case for (A.57)is j = b—2,l = d+1
by (A.31). In that case, (A.57) gives

1— qd+1

0,b,0,d+1 0,5,0,0 —1/2 b b 0,b—1,1,0
Xl,h—2,1+,d+1 =X\p 2104 21— (=1 q )Txl,b—z,l,l’ (A.68)
LXPPEN = =421 = (=" - (=)
+¢'2(1 = (=)"H (A = (—¢)P*H (1 = ¢%) (A.69)
= —q"2 (1 - (=" = (=)"*D). (A.70)

Similarly to (IT), we can derive the following formulae for (a, ¢) = (1, 1):

q(1 — g™

1,b,1.d d+1/2 1,b,1,d+1
Xopn0a=—a""% Xopiia= T 1—-gq (A1)
X 0an =4 A=) Xpprg=1-(1= ()" g™ (A72)
Finally, we consider the case (a, ¢) = (1, 0). (A.28) with (a, ¢) = (0, 0) gives
1,b,0.d Jj+k o j+2k+ 30.b,0,d 1— (=D 2Uk++1/2 10,5,0,d
Xijki =D Xilt okt — 3 14 Xii ke
1—¢"™ k v0,5,0,d
+ 1 — (=q) Xi i 0 ke
A+)U—g"HU =" 1 0p0a
1—qg)(1 — g2 g~ Xi k10420 (A.73)
(1I—=q¢)(1—g°)

(i) For the case (i, k) = (0, 0), the non-trivial case for (A.73)is j = b+ 1, =d — 1
by (A.31). In that case, (A.73) gives

1— d
1,b,0,d d—1/2+0,b,0,d 9" ,0,b,0,d
Xopia— = =4 X v T~ Xovoa  (ATA)
_ g ¢ = (=" —¢9
l—gq
1-— qd
t o, (1- ="’ (A.75)
1— d
=1 (A.76)
l—g¢
1— d+1
- xLb.0.d+l _ q ' (A7)

CR0b+1,0d =T 2
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(ii) For the case (i, k) = (0, 1), the non-trivial case for (A.73)is j = b,l =d — 2 by
(A.31). In that case, (A.73) gives

1— d—1
x1b0d q x0.0.0.d
0b1,d-2= "9 5 _

1—¢q 0,b—1,1,d—1
A+ —q " N =qY 4432 50004
G—qi-qy ¢ Tosod A7
1—gq"" ( q'?(1 - (="l - qd)>
:—q —
I—g¢g I—gqg
A+q)(1 =g N —gY 443 by, d
1—(1-(—
I—pd-a) q ( (I—=(—q) )qZ )
(A7
B q—d+3/2(1 _qd—l)(l _qd) (A 80)
(1—¢)? ’ '
N —d—1/2 1— d+1 1— d+2
g = e (A8D

(iii) For the case (i, k) = (1, 0), the non-trivial case for (A.73) is j = b, = d by
(A.31). In that case, (A.73) gives

d+1

1 —
1,b,0,d b b+d 0,0,0,d d+1/2+,0,b,0,d q 0,6,0,d
Xipoa=(=D"q * Xob0.a —4 +/ Xipa1at 1—g¢g X1p21,0,d41
(A.82)
= 9"¢" (1= 1 = ~0"q")
— g™ (=™~ (=" = (=)
1— qd+l 4 b
t (60 -0 - o) (A83)
=q“. (A.84)

(iv) For the case (i, k) = (1, 1), the non-trivial case for (A.73)is j =b—1,l =d — 1
by (A.31). In that case, (A.73) gives

d
1,6,0,d _ b d0,b,0,d 1 —q% 0504
XpZina—1 = 0 7a" Xgp 01 a1 _‘1—1 p X1p51.4

(I+g)(1 —gh (1 — g™ ~d+1/2 3 0.0,0.d

11— —qg? 1,b—1,0,d+1 (A.85)
1201 — (—aY)(1 — g
= (—q)?¢? (_f] ( (1 91 —gq ))
—q
1-q d+1/2 b1 .
1Ty (_‘1 A= (=) HA = (=9) ))
(1+¢)(1 —g?)(1 — g% ani2 { b
1— 1= (=
T—90-g) (40 - - ")

(A.86)
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g1 — (=" — ¢
l—g
q'2(1 = (=¢)""H — ¢4*h

. 1,b+1,0,d+1 __
Xt = g . (A.88)

Therefore, (A.50), (A.52), (A.54), (A.56), (A.60), (A.64), (A.67), (A.70),(A.71),(A.72),
(A.77), (A.81), (A.84) and (A.88) exactly correspond to (A.3)—((A.10)).

) (A.87)

Appendix B. Recurrence Equations for the 3D Z

In order to calculate matrix elements of the 3D Z, it is sufficient to calculate y“ ., ‘ d by
the relation (2.34). If we obtain a formula for Z defined by

a b c d _ a,b,ed | k
€1€31€301)€2 = Z Zi ikl 626(12)261261’ (B.1)
i,j ko 1€Z0

we can obtain 7, lbkcld by

sabed _ [i1g!71g12. -0 k]G W G172 1! ab.cd
BERE T [a) b1 1) [elg Td g2 gyt IR

(B.2)

Then, it is sufficient to calculate Z” ot C d . In this section, we derive recurrence equations

for Z. By the same discussion as (4 35) we obtain the following weight conservation:

Zlajbkcld_o (i+j+k#a+b+c or j+2k+1#b+2c+d). (B.3)

For simplicity, we write by = e1, by = ex1, b3 = ex21), ba = e and F”kl =

b’ibébé‘bé, FLkdT X(Ff’j’k’l), where x is the anti-algebra automorphism given by
(2.20). Then, (B.1) is represented by

Flabcd _ Z Z?kaC]dFlkjl' (B4)
i, j.k,1€ls0
The elements b; satisfy the following relations:
baby = q 'biby,  b3by =bibs+q /?b3, byb1 = qbiby + by,

bsby = q7'babs,  baby = —boba+ (¢"* +q 7V P)bs,  baby = g7 b3ba.
(B.5)

We can easily prove the following relations for n € N by induction.

bob = q "By, (B.6)

1— 2n
bab] = bibs + — g 232 b, (B.7)
b3b = g "bibs, (B.8)

bab? = q"biby + [nlyb} " bo, (B.9)
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bably = (—=1)"Dyby +q "1 — (= 1)"g")by b3, (B.10)

b4bg = q_nbglb4, (B.11)
1 —(=D"q" -1

by = q" b\ b} — (—1)"Tb2bg

L (= DY = DY
+q 32 1 1 — T pap2, (B.12)

1—

biby = bybl + g~ T — bzb” L (B.13)

q*
byby = g "bib}, (B.14)
bgbz = qinbzbg. (B.15)
a,b,c,d

Then, the left multiplication of by, b3, by on F|” are given by

szla,b,c,d _ qfaFla,lHl,C,d’ (B.16)

. . 1 — 2a )
b3F1a,b,c,d — q—bFla,b,cH,d + 1 q - q—2a+3/2Fla—l,b+2,c,d’ (B.17)
-4
b4Fla,b,c,d — (_quachla,b,C,d*'l

+q A = ()P FTE N qag T (B8)

and the right multiplication of by, b4 on F 1’ IR are given by

Fiikly, = gi=i pirhik! -2z ) — 4 RN
+q = h
_(—1)lg* 1—(-D'q! Fi Lk
I+gq !
1,0 I-141-1
q—1+3/2(1 —(—D'q )1(1 (=D ) ll, Je11=2 (B.19)
Fy by = R (B.20)

Calculating F""*! (b1 by — gbysby) and F/*!

g~ '/?), then by using x, we get

(0163 + (1 — q)bab1bs — qb3b1)/(q"/* +

by F””’ — g1 — )F é+1k]z+1 =22 (1 — 2k)F1+1/< L j+2,i
— (=Dlg7* 1 = (=)' (1 — gy FLEI
+ (=g 21 = (=gh By (B.21)
b3F21’k’j’i _ R — g )F21+2,k,,,,z+1 +ql 22 — 2k)Fl+2k 1,j+2,i
+q! T2 = gy FyRTT gl e (B.22)
by Fl koji _ F21+1,k.,j,i. (B.23)
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By considering the left multiplication of by, b3, bs on (B.4), we obtain the following
recurrence equations:

ab.ed _ ha [ql—j—l(l _gPyzebled | =32 2ka2) gab—led

i)kl 2 k-1t iy j=2k41,1—1
_ b—1,c.d
—(=D'g U = (=)' A =g Z{
+(_1)l+1q1/2(1 (— q)l+1)Zlajbk_llclf_l:| (B.24)
abed _ b 1-j-3/2 2\ Sa,be—1.d 1—2k—2 242y yab.e—1.d
Ziikl =4 [‘1 ! /(I_Q)Z 1L]k12+‘1 (I—-gq +)Zz] 2,k+1,1-2
_k— b,c—1,d ,be—1.d
+q' 2 - DZE i — o PRy
1—g* —2a+3/2 ya—1,b+2,c—1.d B.25
_1_q2q ijk,l , (B.25)

a,b,c,d __ b c—a a,b,c,d—1 a—1,b+1,c,d—1
ikl =(D7g I:Zi,j,k,lfl —lalgZ; ;1

—goP2 (1 — (—1)Pyg b)Zl jk; c+1,d71i|’ (B.26)

which (B.24) holds for b > 1, (B.25) holds for ¢ > 1 and (B.26) holds for d > 1.

We can calculate Z”’b’°’ by using the above reccurence equations (B.24)-(B.26) as

follows. First, we can reduce Z” ]bk° ld to the case of d = 0 by using (B.26). Second, we

can reduce Z“ kaclo to the case of ¢ = 0 by using (B.25) keeping d = 0. Finally, we

can reduce Z“ kaolo to the case of b = 0 by using (B.24) keeping ¢ = d = 0. Then, by

considering the weight conservation (B.3), we find le ?,?lo #0forj=k=1[=0and

a = i. In that case, we can easily obtain Zl 8 8 8 = 1 by (B.1). Therefore, we can obtain

any matrix elements of Z by the above procedure See Example 5.16 for the cases of
(G, j,k,)=(0,1,1,2).
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