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Abstract: In this paper, we study transition matrices of PBWbases of the nilpotent sub-
algebra of quantum superalgebras associated with all possible Dynkin diagrams of type
A and B in the case of rank 2 and 3, and examine relationships with three-dimensional
(3D) integrability. We obtain new solutions to the Zamolodchikov tetrahedron equation
via type A and the 3D reflection equation via type B, where the latter equation was
proposed by Isaev and Kulish as a 3D analog of the reflection equation of Cherednik.
As a by-product of our approach, the Bazhanov–Sergeev solution to the Zamolodchikov
tetrahedron equation is characterized as the transition matrix for a particular case of type
A, which clarifies an algebraic origin of it. Our work is inspired by the recent develop-
ments connecting transition matrices for quantum non-super algebras with intertwiners
of irreducible representations of quantum coordinate rings. We also discuss the crystal
limit of transition matrices, which gives a super analog of transition maps of Lusztig’s
parametrizations of the canonical basis.
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1. Introduction

1.1 Background. The Zamolodchikov tetrahedron equation [46] is a three dimensional
analog of the Yang–Baxter equation [1], where the latter equation serves as a cornerstone
of integrable systems in two dimensions in terms of its physical applications and deeply
understood algebraic aspects. Along the same line as the Yang–Baxter equation, the
tetrahedron equation gives the condition of factorizations for a four-body scattering of
strings, and also gives a sufficient condition for the commutativity of the associated layer-
to-layer transfermatrix. Solutions to theYang–Baxter equation are called Rmatrices, and
it is well known that we can systematically construct R matrices through the Drinfeld-
Jimbo quantum algebras [11,19], but unlike theYang–Baxter equation, there is no known
way to obtain non-trivial solutions to the tetrahedron equation as such a systematic
procedure.

Historically, one important family of solutions to the tetrahedron equation is the N -
state Zamolodchikov model, which was first proposed by [47] for N = 2 as the first
non-trivial solution and later generalized by [2,41] for general N . From an algebraic
point of view, it is known that the solutions are related to the R matrices associated with
the cyclic representations of the affine quantum algebra Uq(A

(1)
n−1) at roots of unity. For

the history of the solutions, see the introduction of [4] and references therein.
In this paper, we focus on infinite-dimensional solutions on the Fock spaces, which

are essentially different solutions from the N -state Zamolodchikov model. Our starting
point is the known solution (R,L) to the following tetrahedron equations:

R123R145R246R356 = R356R246R145R123, (1.1)

L123L145L246R356 = R356L246L145L123, (1.2)

where indices represent the tensor components on which each matrix acts non-trivially.
The matrix elements of R ∈ End(F ⊗ F ⊗ F) and L ∈ End(V ⊗ V ⊗ F) will be
specified in (3.2) and (3.6), where F and V are the bosonic and Fermionic Fock spaces,
respectively. We call them the 3D R and 3D L.

The 3D R was first derived [21] as the intertwiner of the irreducible representations
of the quantum coordinate ring Aq(A2), where the associated tetrahedron equation (1.1)
holds as the identity of the intertwiner of the irreducible representations of the quantum
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coordinate ring Aq(A3) [36]. The 3DRwas also independently discovered by the seminal
paper [4] as explained later, and they are identified by [25]. As an amazing connection,
the 3D R also gives the transition matrix of the PBW bases of the nilpotent subalgebra of
the quantum algebraU+

q (A2). It is first observed by Sergeev [39], and later systematically
generalized as the Kuniba–Okado–Yamada theorem [28], which states that intertwiners
of irreducible representations of quantum coordinate rings agree with transitionmatrices
of PBW bases of the nilpotent subalgebra of quantum algebras for all finite-dimensional
simple Lie algebras. See also [37,43] which proved and sophisticated this theorem from
a different point of view.

On the other hand, the 3D L was obtained by a heuristic quantization of the solution
to the local Yang–Baxter equation [33] by Bazhanov–Sergeev [4]. They made an ansatz
that the 3DL gives an operator-valued solution to the local Yang–Baxter equation, which
is equivalent to the tetrahedron equation (1.2), and solved (1.2) for R. It also gives an
alternative derivation of the 3D R. As a remarkable result related to the 3D L, it is known
that the layer-to-layer transfer matrix of size m × n associated with the 3D L gives
the spectral duality between different row-to-row transfer matrices: sl(m) spin chain
of system size n and sl(n) spin chain of system size m [4]. The duality is called the
rank-size duality, and later, also appeared in the context of the five-dimensional gauge
theory [35].

Of course, the 3D R and 3D L are essentially three-dimensional objects, but it is
known that there is an interesting connection to the R matrix. More concretely, there is
a systematic way to reduce one solution to the tetrahedron equation to an infinite family
of R matrices. By applying this procedure to the 3D R and 3D L, we can obtain explicit
formulae of the R matrices associated with some affine quantum algebras [27]. By n-
concatenation of the 3DR,we obtain the Rmatrices associatedwith the symmetric tensor
representations of Uq(A

(1)
n−1), and the Fock representations of Uq(D

(2)
n+1), Uq(A

(2)
2n ) and

Uq(C
(1)
n ). Similarly, by n-concatenation of the 3D L, we obtain the R matrices associ-

ated with the fundamental representations of Uq(A
(1)
n−1), and the spin representations of

Uq(D
(2)
n+1), Uq(B

(1)
n ) and Uq(D

(1)
n ). Moreover, by mixing uses of some 3D R and 3D

L, we also obtain the R matrices associated with the generalized quantum groups [27].
They are calledmatrix product solutions to the Yang–Baxter equation. For more details,
see [27] and references therein.

1.2 Motivation. One of our motivations for this paper is why the 3D R and 3D L lead to
such similar results, although they have totally different origins. Actually, the 3D L has
been derived again in severalways after [4]. First, [25] identified the tetrahedron equation
(1.2) as the set of intertwining relations of the irreducible representations of Aq(A2),
that is, the tetrahedron equation (1.2) is obtained by arranging the intertwining relations
of the 3D R into the matrix form (1.2), simply by introducing the matrix L. See Remark
3.2 for more details of this observation. This procedure also works for the intertwining
relation for Aq(C2) [30] and even for Aq(G2) [24], and leads to matrix product solutions
to the reflection equation of Cherednik [8] and the G2 reflection equation. See Remark
3.4 for more details for type C. These are interesting connections but quite mysterious.
Also, although this connection for type A gives a derivation of the tetrahedron equation
(1.2), algebraic origins of the 3D L has been still unclear.

On the one hand, Sergeev gave a parallel derivation [40] for the 3D R and 3D L
by using the methods called quantum geometry [3]. At first glance, it seems that they
consider something like a super analog of the irreducible representations of the quantum



484 A. Yoneyama

coordinate ring Aq(A2). See for example (56)–(59) of [40].However, to verify it is highly
non-trivial because there is no theory about irreducible representations of quantum super
coordinate rings like Soibelman’s theory for the non-super case [42]. Then, the result
by [40] can not be understood in terms of usual languages of quantum algebras, at least
straightforwardly.

We also remark that the classical limit of the tetrahedron equation (1.2) is recently
derived in relation to non-trivial transformations of a plabic network, which can be
interpreted as cluster mutations [13].

1.3 Main achievements. In this paper, we give a derivation for the 3D L in terms of
the PBW bases of the nilpotent subalgebra of the quantum superalgebra [45] associated
with the Dynkin diagram . We identify the 3D L with the transition matrix of
them, which clarifies a completely parallel origin for the 3D L to the 3D R. This result is
just a special case of our investigations: we study transition matrices associated with all
Dynkin diagrams of type A in the case of rank 2, which become parts of the tetrahedron
equations. Actually, we obtain a matrix N ∈ End(V ⊗ F ⊗ V ) by considering the case
of , which is new and different from the 3D R and 3D L. The matrix elements
of N will be specified in (4.51), and we call N the 3D N.

By considering the transition matrix for the case of rank 3 and attributing it to a
composition of transition matrices of rank 2 in two ways, we obtain several solutions
to the tetrahedron equation which the 3D R, L, and N satisfy. We study the transition
matrices associated with all Dynkin diagrams of type A in the case of rank 3, where

and can be easily attribnuted to
and , respectively, sowe consider 6Dynkin diagrams in total. The cases
for and reproduce the known tetrahedron equations
(1.1) and (1.2), respectively. For the case of , we obtain the following
equation:

N(q−1)123N(q−1)145R246L356 = L356R246N(q−1)145N(q−1)123. (1.3)

This suggests the 3D N gives a new solution to the tetrahedron equation. The remaining
3 cases also give the tetrahedron like equations, but actually they are the tetrahedron
equations up to sign factors. Further investigations should be done as to whether we can
attribute them to the usual tetrahedron equations. See Remark 3.3 related to this issue.

We can generalize these results to the case of type B. For type B, the associated
equation is the 3D reflection equation [18], which is proposed by Isaev and Kulish as a
three-dimensional analog of the reflection equation of Cherednik [8]. They also call the
equation the tetrahedron reflection equation. Actually, they obtained the equation as the
associativity condition for the 3D boundary Zamolodchikov algebra [18, (9)], just as the
tetrahedron equation is obtained as the associativity condition for the 3DZamolodchikov
algebra [46]. Physically, the 3D reflection equation gives the condition for factorizations
for a three-body scattering of strings with boundary reflections, along the same line as
the tetrahedron equation.

Essentially, there are only two known non-trivial solutions to the 3D reflection equa-
tion [25,26]. Here, we present one of the equations:

R456R489J3579R269R258J1678J1234 = J1234J1678R258R269J3579R489R456, (1.4)

where R is the 3D R and the matrix elements of J ∈ End(F ⊗ F ⊗ F ⊗ F) will be
specified in (3.21). We call J the 3D J. The 3D J was first derived as the intertwiner of the
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Table 1. Realization of the fundamental system

g(m|n) Simple roots
sl(m|n) αi = ε̄i − ε̄i+1 (i = 1, . . . , r)
osp(2m + 1|2n) αi = ε̄i − ε̄i+1 (i = 1, . . . , r − 1), αr = ε̄r

irreducible representations of the quantum coordinate ring Aq(B2), where the associated
3D reflection equation (1.4) holds as the identity of the intertwiner of the irreducible
representations of the quantum coordinate ring Aq(B3) [26]. As an immediate corollary
of the Kuniba–Okado–Yamada theorem, we find the 3D J also gives the transition matrix
of the PBW bases of the nilpotent subalgebra of the quantum algebra U+

q (B2). Our
result for type B gives new solutions to the 3D reflection equation, which generalizes the
solution (1.4) to the family of solutions (5.186). Actually, we introduce three analogs of
the 3D J; we call them the 3D X, Y and Z. We emphasize that our result also gives some
explicit formula of transition matrices for type B.

Our idea comes from trying to interpret Sergeev’s result [40] on the side of PBW
bases through the Kuniba–Okado–Yamada theorem although the theorem has not been
established for the super case. Note however our proofs do not need any result for
quantum coordinate rings. The derivation of the tetrahedron and 3D reflection equation
is done only using higher-order relations for quantum superalgebras.

Finally, we discuss the behavior of transition matrices at q = 0, which is known as
the crystal limit [22]. In the crystal limit, transitionmatrices of PBWbases give so-called
transition maps of Lusztig’s parametrizations of the canonical basis because PBW bases
correspond to the canonical basis in that case [5,32]. Then, if we take the limit for super
cases, it is expected we can obtain a super analog of transition maps. In this paper, we
show that we can take normalizations for transition matrices so that such non-trivial
limits exist, and obtain explicit formulae for almost all cases. In contrast to non-super
cases, non-trivial elements of transition matrices take not only 0, 1 but also −1 in the
crystal limit, and they define non-trivial bijections on mixed spaces of {0, 1} and Z≥0.

1.4 Outline. The ourline of this paper is as follows. In Sect. 2, we briefly review basic
facts about finite-dimensional Lie superalgebras of type A and B. Then, we introduce
quantum superalgebras and their PBW theorem by [45]. In Sect. 3, we summarize the 3D
operators which give solutions to the tetrahedron and 3D reflection equations. Sections 4
and 5 are main parts of this paper. They can be read almost independently. In Sect. 4,
we consider transition matrices of PBW bases of the nilpotent subalgebra of quantum
superalgebras associated with all possible Dynkin diagrams of type A in the case of rank
2 and 3, and we obtain several solutions to the tetrahedron equation. In Sect. 4.1, we
introduce some notations to briefly describe the PBW bases of rank 3 and higher-order
relations for them, which are used in Sect. 4.3. In Sects. 4.2 and 4.3, we study transition
matrices of rank 2 and 3, respectively. Section 5 is type B version of Sect. 4, where the
associated equation is the 3D reflection equaion. Finally, in Sect. 6, we discuss the crystal
limit of transition matrices. “Appendix A” is devoted to the proof of Theorem 5.12. In
“Appendix B”, we derive recurrence equations for the 3D Z, which is the transition
matrix associated with .
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Table 2. Realization of the positive part of the root system

g(m|n) Positive part of root system
sl(m|n) �+ = {ε̄i − ε̄ j (1 ≤ i < j ≤ N )}
osp(2m + 1|2n) �+ = {ε̄i ± ε̄ j (1 ≤ i < j ≤ N ), ε̄i (1 ≤ i ≤ N ), 2ε̄i (1 ≤ i ≤ N , i ∈ τ)}

2. Quantum Superalgebras of Type A and B

2.1. Root data of finite-dimensional Lie superalgebras. In this paper, we consider quan-
tum superalgebras associated with finite-dimensional Lie superalgebras sl(m|n) and
osp(2m + 1|2n) [7,12,20,49]. Here, m, n are non-negative integers and we assume
m + n ≥ 2. We call sl(m|n) type A and osp(2m + 1|2n) type B, respectively. Let g(m|n)

denote sl(m|n) or osp(2m + 1|2n). If we set n = 0, g(m) = g(m|0) is reduced to finite-
dimensional simple Lie algebras. To avoid confusion, we also call the finite-dimensional
simple Lie algebras the finite-dimensional simple non-super Lie algebras. In this case,
we simply write sl(m|0) and osp(2m + 1|0) by sl(m) and so(2m + 1), respectively. In
this section, we describe root data of g(m|n). Here, we use a similar setup to [44].

We set N = m + n. Let E(m|n)R be the N -dimensional real vector space with a
non-degenerate symmetric bilinear form (·, ·) : E(m|n)R × E(m|n)R → R. We use
εi (i = 1, . . . ,m) and δi (i = 1, . . . , n) as a basis of E(m|n)R with a non-degenerate
symmetric bilinear form given by

(εi , ε j ) = (−1)θ δi, j , (δi , δ j ) = −(−1)θ δi, j , (εi , δ j ) = 0, (2.1)

where θ = 0, 1 which is specified above Example 2.1, and δi, j is the Kronecker delta.
Let ε̄(m|n) = (ε̄1, . . . , ε̄N ) denote an ordered basis of E(m|n)R which is a permutation
of εi (i = 1, . . . ,m) and δi (i = 1, . . . , n). Without loss of generality, we only consider
cases when εi appears before εi+1 and δi appears before δi+1 in ε̄(m|n) for all i , which
is called admissible.

Let � be the set of roots of g(m|n) and � = {α1, . . . , αr } be the set of simple roots
of g(m|n), where r is the rank of g(m|n). Here, r = N − 1 for sl(m|n) and r = N
for osp(2m + 1|2n). We write the set of labels by I = {1, . . . , r}. We call � and � the
root system and fundamental system of g(m|n), respectively. When ε̄(m|n) is given, the
fundamental system � is realized as Table 1. We write the positve and negative part of
the root lattice of g(m|n) by Q± = ±∑r

i=1 Z≥0αi\{0} and the positive and negative
part of the root system by �± = � ∩ Q±, which will be identified in Table 2 for each
case. We also set the weight lattice of g(m|n) by E(m|n)Z = ∑m

i=1 Zεi ⊕ ∑n
i=1 Zδi .

For λ = ∑m
i=1 aiεi +

∑n
i=1 biδi ∈ E(m|n)Z, we define the parity p : E(m|n)Z →

{0, 1} of λ as p(λ) = ∑n
i=1 bi (mod 2), and this induces the parity of elements of � via

its realization. We call λ ∈ E(m|n)Z is even if p(λ) = 0 and odd if p(λ) = 1. We set the
set of indices of odd simple roots by τ ⊂ I . Then, the positive part of the root system
�+ is given in Table 2. We set the set of reduced roots by �̃ = {α ∈ � | α/2 /∈ �} and
the positive and negative part of it by �̃± = �̃ ∩ Q±.

For α ∈ �, if p(α) = 1 and (α, α) = 0, we call α the isotropic odd root. On the
one hand, if p(α) = 1 and (α, α) 
= 0, we call α the anisotropic odd root. The set of
even roots, isotropic odd roots and anisotropic odd roots are denoted by �even, �iso and
�aniso ⊂ �, respectively. Also, the set of the positive and negative part of even roots,
isotropic odd roots and anisotropic odd roots are denoted by �±

even, �
±
iso and �±

aniso ⊂
�±, respectively. We also set the reduced version of them by �̃±

even = �±
even ∩ �̃,

�̃±
iso = �±

iso and �̃±
aniso = �±

aniso.
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Table 3. All possible Dynkin diagrams

g(m|n) Dynkin diagram

sl(m|n)
ε̄1 − ε̄2 ε̄2 − ε̄3 ε̄N−1 − ε̄N

osp(2m + 1|2n)
ε̄1 − ε̄2 ε̄2 − ε̄3 ε̄N−1 − ε̄N ε̄N

ε̄1 − ε̄2 ε̄2 − ε̄3 ε̄N−1 − ε̄N ε̄N

2.2. Cartan matrices, Dynkin diagrams and Weyl groups. Let (ai j )i, j∈I , (di )i∈I be the
Cartan matrix and the symmetrizing matrix of g(m|n). Here, di is given by (αi , αi )/2
for αi ∈ �̃+

even ∪ �̃+
aniso and 1 for αi ∈ �̃+

iso. Also, ai j is given by ai j = (αi , α j )/di . We
often write A = (ai j ) and D = diag(d1, . . . , dr ), and the symmetrized Catran matrix
by DA = (diai j ). We call the pair (A, p) the Cartan data of g(m|n). For later use, we
also define dα by (α, α)/2 for α ∈ �even ∪�aniso and 1 for α ∈ �iso. Let h = ∑r

i=1 Chi
be the Cartan subalgebra of g(m|n), where {hi }i∈I is chosen as α j (hi ) = ai j . We call
{hi }i∈I the set of simple coroots of g(m|n).

The Cartan data can be diagrammatically represented by the Dynkin diagram. The
Dynkin diagram associated with (A, p) is defined as follows. First, we set r dots and
decorate the i-th dot by for αi ∈ �̃+

even, for αi ∈ �̃+
iso and for αi ∈ �̃+

aniso,
respectively. We also use representing or . Then, for every pair of different
numbers (i, j), we connect them with |ai j | lines if ai j 
= 0. Also, if |ai j | ≥ 2, these lines
are equippedwith an arrow pointing from the j-th dot to the i-th dot. All possible Dynkin
diagrams of g(m|n) are given in Table 3, where ε̄N = εm for the first Dynkin diagram
of osp(2m + 1|2n) and ε̄N = δn for the second Dynkin diagram of osp(2m + 1|2n).

Here, we specify the value of θ = 0, 1 in (2.1). If min{(αi , α j ) | i 
= j} < 0 for
both values of θ , we choose θ so that (ε̄1, ε̄1) = 1 holds. If not, we choose θ so that
min{(αi , α j ) | i 
= j} < 0 is satisfied.

Example 2.1. For the case
δ1 − ε2 ε2 − ε3 ε3 , we have DA =

⎛

⎝
0 −1 0

−1 2 −1
0 −1 1

⎞

⎠

for θ = 0 and DA =
⎛

⎝
0 1 0
1 −2 1
0 1 −1

⎞

⎠ for θ = 1. We then choose θ = 0 for this case.

For more examples, see Sects. 4 and 5.

LetW (g(m|n)) be theWeyl group of g(m|n)which is generated by reflections sα (α ∈
�even∪�aniso)which are associated with even and anisotropic roots. The action of them
is given by

sα(β) = β − 2(α, β)

(α, α)
α (β ∈ �). (2.2)

Under actions ofW (g(m|n)), the root system is invariant. The image of the fundamental
system is a different one, but it gives the same Cartan data. For the finite-dimensional
simple non-super Lie algebras, it is known that all possible choice of the fundamental
system is conjugate via the Weyl group actions [16, §10.3. Theorem]. Then, the Dynkin
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Table 4. Distinguished Dynkin diagrams

g(m|n) Distinguished Dynkin diagram

sl(m|n)
ε1 − ε2 εm−1 − εm εm − δ1 δ1 − δ2 δn−1 − δn

osp(2m + 1|2n) (m > 0)
δ1 − δ2 δn−1 − δn δn − ε1 ε1 − ε2 εm−1 − εm εm

osp(1|2n)
δ1 − δ2 δ2 − δ3 δn−1 − δn δn

diagrams one-to-one correspond to the finite-dimensional simple non-super Lie algebras.
For non-super case, relations of W (g(m)) are given by s2i = 1, (si s j )mi j = 1 (i 
= j)
where mi j = 2, 3, 4 for ai j a ji = 0, 1, 2, respectively. Here, we write si = sαi .

For general finite-dimensional Lie superalgebras, however, the fundamental systems
are not always conjugate via the Weyl group actions. It is known that by adding some
elements and extending the Weyl group W (g(m|n)), all fundamental systems become
conjugate [31, Appendix II. Theorem]. The elements are called odd reflections, and we
call the extended Weyl group the Weyl supergroup denoted by SW (g(m|n)). Formally,
odd reflections are reflections associated with odd roots, and the action of the elements
of the Weyl supergroup is given by

sα(β) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

β − 2(α,β)
(α,α)

α (α ∈ �even ∪ �aniso),

β + α (α ∈ �iso, (α, β) 
= 0, β 
= α),

β (α ∈ �iso, (α, β) = 0, β 
= α),

−α (β = α),

(2.3)

where α, β ∈ �. Similar to usual reflections, the root system is invariant under actions
of odd reflections, but the image of the fundamental system gives different Cartan data.
Therefore, the Dynkin diagrams do not correspond to the finite-dimensional Lie super-
algebras but rather their fundamental systems.

The standard choice of the fundamental system of g(m|n) is called distinguished,
where the associated Dynkin diagrams have only one odd root. The realizations and the
corresponding Dynkin diagrams are given in Table 4.

In this paper, we focus on the nilpotent subalgebra of quantum superalgebras, rather
than the whole algebras. Since the nilpotent subalgebra depends on the choice of the
fundamental system of g(m|n), in addition to the distinguished Dynkin diagrams, we
also consider non-distinguished ones as given in Table 3.

2.3. Quantum superalgebras. Throughout this paper, we assume q is generic. We set
qi = qdi and vi = q(ε̄i ,ε̄i ) (i ∈ I ). We use a variant of q-number and its factorial defined
by

[k]q,π = (πq)k − q−k

πq − q−1 , [m]q,π ! =
m∏

k=1

[k]q,π , (2.4)

where k,m ∈ Z≥0 and π = ±1 [10]. We promise [0]q,π ! = 1. For simplicity, we write
[k]q,1 = [k]q and [m]q,1! = [m]q ! for π = 1. The quantum superalgebra Uq(g(m|n))
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associated with the Cartan data (A, p) is an associative algebra over C generated by
{ei , fi , ki = qhii | i ∈ I } satisfying the following relations [6,45]:

k±1
i k∓1

i = 1, ki k j = k j ki , ki e j = q
ai j
i e j ki , ki f j = q

−ai j
i f j ki , (2.5)

ei f j − (−1)p(αi )p(α j ) f j ei = δi, j
ki − k−1

i

qi − q−1
i

, (2.6)

1+|ai j |∑

ν=0

(−1)ν+p(αi )ν(ν−1)/2+νp(αi )p(α j )e
(1+|ai j |−ν)

i e j e
(ν)
i

= 0 (ai j 
= 0, i 
= j, αi ∈ �̃+
even ∪ �̃+

aniso), (2.7)
1+|ai j |∑

ν=0

(−1)ν+p(αi )ν(ν−1)/2+νp(αi )p(α j ) f
(1+|ai j |−ν)

i f j f
(ν)
i

= 0 (ai j 
= 0, i 
= j, αi ∈ �̃+
even ∪ �̃+

aniso), (2.8)

[ei , e j ] = 0, [ fi , f j ] = 0 (ai j = 0), (2.9)

where we set e(ν)
i = eν

i /[ν]qi ,(−1)p(αi ) !, f (ν)
i = f ν

i /[ν]qi ,(−1)p(αi ) !, and so-called addi-
tional relations for the case when the associated Dynkin diagram has the subdiagram

or or :

ei−1ei ei+1ei + (−1)φi ei ei−1ei ei+1 + (−1)ϕi ei ei+1ei ei−1 + (−1)φi+ϕi ei+1ei ei−1ei

− (−1)p(αi−1)
(
q + q−1

)
ei ei−1ei+1ei = 0 (αi ∈ �̃+

iso),

(2.10)

fi−1 fi fi+1 fi + (−1)φi fi fi−1 fi fi+1 + (−1)ϕi fi fi+1 fi fi−1 + (−1)φi+ϕi fi+1 fi fi−1 fi

− (−1)p(αi−1)
(
q + q−1

)
fi fi−1 fi+1 fi = 0 (αi ∈ �̃+

iso),

(2.11)

where φi , ϕi are given by

φi = p(αi−1) + p(αi+1), ϕi = p(αi−1)p(αi+1). (2.12)

For reader’s convenience, we list (2.7) for each case which appears in this paper:

(1) |ai j | = 1 and αi ∈ �̃+
even:

e2i e j − (q + q−1)ei e j ei + e j e
2
i = 0, (2.13)

(2) |ai j | = 2 and αi ∈ �̃+
even:

e3i e j − (q + 1 + q−1)e2i e j ei + (q + 1 + q−1)ei e j e
2
i − e j e

3
i = 0, (2.14)

(3) |ai j | = 2 and αi ∈ �̃+
aniso, α j ∈ �̃+

even:

e3i e j + (1 − q − q−1)e2i e j ei + (1 − q − q−1)ei e j e
2
i + e j e

3
i = 0, (2.15)
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(4) |ai j | = 2 and αi ∈ �̃+
aniso, α j ∈ �̃+

iso:

e3i e j − (1 − q − q−1)e2i e j ei + (1 − q − q−1)ei e j e
2
i − e j e

3
i = 0, (2.16)

where we always assume i 
= j .
In this paper, we focus on U+

q (g(m|n)) which is the nilpotent subalgebra of
Uq(g(m|n)) generated by {ei }i∈I . We represent U+

q (g(m|n)) by the Dynkin dia-
gram associated with the Cartan data (A, p). We have the root space decomposi-
tion of U+

q (g(m|n)) = ⊕
α∈Q+ U+

q (g(m|n))α where each root space are given by

U+
q (g(m|n))α = {g | ki g = qα(hi )

i gki (i ∈ I )}. For x ∈ U+
q (g(m|n))α, y ∈

U+
q (g(m|n))β , we define the q-commutator [·, ·]q by

[x, y]q = xy − (−1)p(α)p(β)q−(α,β)yx, (2.17)

and for simplicity we write [·, ·]1 = [·, ·] for q = 1. By using the q-commutator, the
Serre relation (2.7) and the additional relation (2.10) are simply written as follows:

[[e j , ei ]q , ei ]q = [ei , [ei , e j ]q ]q = 0 (|ai j | = 1),
[[[e j , ei ]q , ei ]q , ei ]q = [ei , [ei , [ei , e j ]q ]q ]q = 0 (|ai j | = 2), (2.18)

[[[ei−1, ei ]q , ei+1]q , ei ] = 0. (2.19)

For later use, let χ : Uq(g(m|n)) → Uq(g(m|n)) be the anti-algebra automorphism
given by

χ(ei ) = ei , χ( fi ) = fi , χ(ki ) = (−1)p(αi )k−1
i . (2.20)

Then, χ also gives the anti-algebra automorphism on U+
q (g(m|n)).

2.4. PBW bases of the nilpotent subalgebra of quantum superalgebras. We begin with
non-super cases. In that case, we have �+ = �+

even. Let w0 be the longest element
of W (g(m)). When a reduced expression of w0 = si1 · · · sil is given, we set βt (t =
1, . . . , l) by

βt = si1 · · · sit−1(αit ), (2.21)

where we set l = |�+|. Then, it is known that we have βt ∈ �+ (t = 1, . . . , l),
βi 
= β j (i 
= j) and �+ = {βt | 1 ≤ t ≤ l} [17, P.25].

It is also known that there exists a quantum analog of this procedure. Let Ti :
Uq(g(m)) → Uq(g(m)) (i ∈ I ) be the algebra automorphism given by

Ti (e j ) =
{

−ki fi (i = j),
∑−ai j

r=0 (−1)r qri e
(r)
i e j e

(−ai j−r)
i (i 
= j),

(2.22)

Ti ( f j ) =
{

−ei k
−1
i (i = j),

∑−ai j
r=0 (−1)r q−r

i e
(−ai j−r)
i e j e

(r)
i (i 
= j),

(2.23)

Ti (k j ) = k
−ai j
i k j . (2.24)
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Here, Ti is known as the so-called Lusztig’s braid group action on Uq(g(m)) [32].
Actually, it is known that {Ti }i∈I satisfy the braid group relations. We set eβt (t =
1, . . . , l) by

eβt = Ti1Ti2 · · · Tit−1(eit ), (2.25)

where βt is given by (2.21). Then, it is known that we have eβt ∈ U+
q (g(m))βt (t =

1, . . . , l) and eβi 
= eβ j (i 
= j). Also, it gives a PBW basis of U+
q (g(m)), which

depends on the choice of reduced expressions of w0 [32]:

Theorem 2.2. For A = (a1, . . . , al) ∈ (Z≥0)
l , we set

E A = e(a1)
β1

e(a2)
β2

· · · e(al )
βl

, (2.26)

where we normalize e(at )
βt

= eatβt
/[at ]pt !, pt = qdβt . Then, {E A | A ∈ (Z≥0)

l} is a basis
of U+

q (g(m)).

For super cases, it is known that there is a naive construction of a PBW basis without
using some maps like the Lusztig’s braid group action [23,45]. We note that a super
analog of Lusztig’s braid group action was introduced in the context of the so-called
Weyl groupoid [14,15].

Let us explain the construction by [45]. We define two partial orders < on �̃+ as
follows. For γ = ∑r

i=1 ciαi ∈ �̃+, we define the integers ht(γ ), g(γ ), cγ ∈ N by
ht(γ ) = ∑r

i=1 ci , g(γ ) = min{i | ci 
= 0} and cγ = cg(γ ). Then, for α, β ∈ �̃+, we set
two partial orders O1, O2 by

O1 : α < β ⇐⇒ g(α) < g(β) or (g(α) = g(β) and ht(α) < ht(β)), (2.27)

O2 : α < β ⇐⇒ g(α) > g(β) or (g(α) = g(β) and ht(α) > ht(β)). (2.28)

Note that O1 is the same order as [45]. By using them, we define quantum root vectors
as follows:

Definition 2.3. For everyβ ∈ �̃+, we define the elements eβ ∈ U+
q (g(m|n))β as follows:

(i) If β = αi , we set eβ = ei .
(ii) If β = α + αi where α ∈ �̃+ and g(α) < i , we define eβ depending on the partial

order Oi . We set e′
β = [ei , eα]q for O1, and e′

β = [eα, ei ]q for O2. Then, we

set eβ = e′
β/(q1/2 + q−1/2) for the case g(m|n) = osp(2m + 1|2n), i = r and

α = ε̄ j (1 ≤ j ≤ r − 1). We set eβ = e′
β otherwise.

We note that the above normalization factor q1/2 + q−1/2 naturally appears from the
Lusztig’s braid group action for non-super cases.

Then, the quantum root vectors give PBW bases of U+
q (g(m|n)):

Theorem 2.4. Let βt (t = 1, . . . , l) denote the reduced roots, which satisfy β1 < · · · <

βl under the order Oi . Here, l = |�̃+|. For A = (a1, . . . , al) where at ∈ Z≥0 for
βt ∈ �̃+

even ∪ �̃+
aniso and at ∈ {0, 1} for βt ∈ �̃+

iso, we set

E A
i = e(a1)

β1
e(a2)
β2

· · · e(al )
βl

, (2.29)

where we normalize e(at )
βt

= eatβt
/[at ]pt ,(−1)p(βt ) !, pt = qdβt . Then

Bi = {E A
i | at ∈ Z≥0 (βt ∈ �̃+

even ∪ �̃+
aniso), at ∈ {0, 1} (βt ∈ �̃+

iso)}, (2.30)

is a basis of U+
q (g(m|n)).
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Proof. We attribute the statement to [45]. First, we consider the case when the order
is given by O1. In [45], the order among the elements of �̃+ is the same as O1, but
the quantum root vectors are defined by eYamβ = [eα, ei ]q instead of eβ = [ei , eα]q as

Definition 2.3. However, eβ and eYamβ satisfy the following simple relation:

eβ = [ei , eα]q = (−1)p(αi )p(α)+1q−(αi ,α)[eα, ei ]q−1

= (−1)p(αi )p(α)+1q−(αi ,α)
(
eYamβ |q→q−1

)
. (2.31)

Then, the only differences between our construction and [45] are overall factors and its
q-dependence. Since the relations of Uq(g(m|n)) are invariant under q → q−1, by the
Proposition 10.4.1 of [45], we find that (2.30) gives a PBS basis ofU+

q−1(g(m|n)). Then,

under the order O1, (2.30) gives a PBW basis of U+
q (g(m|n)).

The case when the order is given by O2 is attributed to the case of O1. Actually,
E Aop

2 = χ(E A
1 ) holds for every A, where Aop is the reverse order of A. This shows (2.30)

under the order O2 gives a PBW basis of U+
q (g(m|n)) because χ is an automorphism

on U+
q (g(m|n)). ��

Remark 2.5. The construction by [45] can be considered as a natural analog of one of
Theorem 2.2 as follows. For non-super cases, we call an order < among the elements of
�+ normal (or convex) if, for α ∈ �+ which is written by α = β + γ (β, γ ∈ �+), the
order among α, β, γ satisfies β < α < γ or γ < α < β. Then, it is known that there
exists a one-to-one correspondence between orders induced by reduced expressions of
w0 like (2.21) and normal orders [50, §3 Proposition 2]. The normal order can be defined
in a similar way for super cases, and the orders (2.27) and (2.28) actually satisfy the
condition of the normal order.

Let γ A
B and γ̃ A

B be the transition matrices given by

E A
2 =

∑

B

γ A
B EBop

1 , (2.32)

E A
1 =

∑

B

γ̃ A
B EBop

2 . (2.33)

where Xop = (xl , . . . , x1) is the reverse order of X = (x1, . . . , xl). They are one of the
main objects of this paper. By using EXop

2 = χ(EX
1 ), we obtain the following relation:

γ̃ A
B = γ Aop

Bop . (2.34)

We then only consider γ A
B below.

2.5. Technical lemmas for higher-order relations. In this section, we introduce some
technical lemma used to prove higher-order relations in the later sections. First, the
q-commutator enjoy the following Jacobi like identity [45, (4.4.2)].

Lemma 2.6. For x ∈ U+
q (g(m|n))α, y ∈ U+

q (g(m|n))β, z ∈ U+
q (g(m|n))γ , we have

[[x, y]q , z]q − [x, [y, z]q ]q
= (−1)p(β)p(γ )q−(β,γ )[x, z]q y − (−1)p(α)p(β)q−(α,β)y[x, z]q . (2.35)
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Fig. 1. A graphical representation of the tetrahedron equation

Proof. By writing down the definitions, we get

q , z]q = xyz − (−1)p(α)p(β)q−(α,β)yxz − (−1)(p(α)+p(β))p(γ )q−(α+β,γ )zxy

+ (−1)p(α)p(β)+p(β)p(γ )+p(γ )p(α)q−(α,β)−(β,γ )−(γ,α)zyx,
(2.36)

q ]q = xyz − (−1)p(β)p(γ )q−(β,γ )xzy − (−1)p(α)(p(β)+p(γ ))q−(α,β+γ )yzx

+ (−1)p(α)p(β)+p(β)p(γ )+p(γ )p(α)q−(α,β)−(β,γ )−(γ,α)zyx .
(2.37)

We then obtain the desired results. ��
Corollary 2.7. We set x ∈ U+

q (g(m|n))α, y ∈ U+
q (g(m|n))β, z ∈ U+

q (g(m|n))γ .

(1) If [x, z]q = 0, we have [[x, y]q , z]q = [x, [y, z]q ]q .
(2) If [y, z] = 0 and (β, γ ) = 0, we have [[x, y]q , z]q = (−1)p(β)p(γ )[[x, z]q , y]q .

By using Corollary 2.7(2) for y = z = ei (αi ∈ �̃+
iso), we obtain [[x, ei ]q , ei ]q = 0.

This suggests the Serre relation (2.18) actually holds even when αi ∈ �̃+
iso:

Corollary 2.8. We set ei , e j satisfying ai j 
= 0 and i 
= j . Then, we have

[[e j , ei ]q , ei ]q = [ei , [ei , e j ]q ]q = 0 (|ai j | = 1),
[[[e j , ei ]q , ei ]q , ei ]q = [ei , [ei , [ei , e j ]q ]q ]q = 0 (|ai j | = 2). (2.38)

We also use the following relations for quantum root vectors. Lemma 2.9 is given in
Lemma 5.2.1.(iii) and Remark 5.2.2.(i) of [45].

Lemma 2.9. We consider the quantum root vectors eα under the order O1.

(1) For α ∈ �̃+
iso, we have e

2
α = 0.

(2) Let α ∈ �̃+ satisfy cα = 1, where cα is given by the above of (2.27). Take αi

satisfying g(α) < i and α + αi /∈ �̃+. We then have

[eα, ei ]q = 0. (2.39)
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3. Tetrahedron Equation and 3D Reflection Equation

3.1. Tetrahedron equation. In this section, we summarize solutions to the tetrahedron
and 3D reflection equation, which are related to transition matrices of PBW bases of the
nilpotent subalgebra of quantum non-super algebras. For the history of them, see Sect. 1.
Here, we consider the tetrahedron equation [46], which is a three dimensional analog of
the Yang–Baxter equation [1]. The equation is defined on the tensor product of six linear
spaces, and pictorially represented as Fig. 1, where Vi are some linear spaces, specified
below.

In this paper, we focus on infinite-dimensional solutions on the Fock spaces. Let
F = ⊕

m=0,1,2,... C |m〉 be the bosonic Fock space. We set R(q) ∈ End(F ⊗ F ⊗ F)

[21]1 by

R(q)(|i〉 ⊗ | j〉 ⊗ |k〉) =
∑

a,b,c∈Z≥0

R(q)
a,b,c
i, j,k |a〉 ⊗ |b〉 ⊗ |c〉 , (3.1)

R(q)
a,b,c
i, j,k = δa+bi+ j δ

b+c
j+k

∑

λ,μ∈Z≥0
λ+μ=b

(−1)λqi(c− j)+(k+1)λ+μ(μ−k) (q
2)c+μ

(q2)c

(
i
μ

)

q2

(
j
λ

)

q2
,

(3.2)

where we use δ
y
x = δx,y and the q-factorial and q-binomial:

(q)m =
m∏

k=1

(1 − qk),

(
l
m

)

q
=

⎧
⎨

⎩

(q)l

(q)l−m(q)m
(0 ≤ m ≤ l),

0 (otherwise).
(3.3)

Summations in (3.1) are actually finite due to δa+bi+ j δ
b+c
j+k in (3.2). This is also the same for

other 3D operators we will introduce later. For simplicity, we also use the abbreviated
notation R = R(q). Then, the matrix R satisfies the following tetrahedron equation
without a spectral parameter:

R123R145R246R356 = R356R246R145R123, (3.4)

where indices represent the tensor components on which each matrix acts non-trivially.
We simply call R the 3D R. The 3D R gives the transition matrix of the PBW bases of
the nilpotent subalgebra of the quantum algebra U+

q (sl(3)) associated with the Dynkin
diagram . See Theorem 4.3 for a more detailed statement.

On the one hand, it is known that there is another solution on the Fock spaces [4].
Let V = ⊕

m=0,1 Cum be the fermionic Fock space. We set L(q) ∈ End(V ⊗ V ⊗ F)

by

L(q)(ui ⊗ u j ⊗ |k〉) =
∑

a,b∈{0,1},c∈Z≥0

L(q)
a,b,c
i, j,k ua ⊗ ub ⊗ |c〉 , (3.5)

L(q)
0,0,c
0,0,k = L(q)

1,1,c
1,1,k = δk,c, L(q)

0,1,c
0,1,k = −δk,cq

k+1, L(q)
1,0,c
1,0,k = δk,cq

k,

L(q)
0,1,c
1,0,k = δk−1,c(1 − q2k), L(q)

1,0,c
0,1,k = δk+1,c,

(3.6)

1 The formula given in [21] involves misprints unfortunately.
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whereL(q)
a,b,c
i, j,k = 0 other than (3.6). For simplicity, we also use the abbreviated notation

L = L(q). The matrix L together with the 3D R satisfies the following tetrahedron
equation [4]:

L123L145L246R356 = R356L246L145L123. (3.7)

We simply call L the 3D L. Although the original tetrahedron equation obtained in [4]
involves some parameters, the above equation (3.7) is equivalent to it because they are
actually cancelled out as remarked in [4]. Actually, our 3D L concides with the original
one up to a gauge transformation by some diagonal matrix.

Unlike the 3D R, the 3D L has lacked an algebraic origin in terms of established
quantum algebras although they exhibit quite parallel results for their reduction tomatrix
product solutions to the Yang–Baxter equation as we explained in Sect. 1. In Theorem
4.4, we will derive the 3D L as the transition matrix of the PBW bases of the nilpotent
subalgebra of the quantum superalgebraU+

q (sl(2|1)) associatedwith theDynkin diagram
, which clarifies a parallel origin for the 3D L to the 3D R.

As a relation for them, the following lemma is used for the proof of Theorem 4.4:

Lemma 3.1.

R
0,0,c
0,0,k = L

0,0,c
0,0,k, R

0,1,c
0,1,k = L

0,1,c
0,1,k, R

1,0,c
1,0,k = L

1,0,c
1,0,k,

R
0,1,c
1,0,k = L

0,1,c
1,0,k, R

1,0,c
0,1,k = L

1,0,c
0,1,k .

(3.8)

For later use, in addition to the 3D R and 3D L, we defineM(q) ∈ End(F ⊗ V ⊗ V ) by

M(q)(|i〉 ⊗ u j ⊗ uk) =
∑

a∈Z≥0,b,c∈{0,1}
M(q)

a,b,c
i, j,k |a〉 ⊗ ub ⊗ uc, (3.9)

M(q)
a,b,c
i, j,k = L(q)

c,b,a
k, j,i . (3.10)

We simply call M(q) the 3D M. For simplicity, we also use the abbreviated notation
M = M(q).

Remark 3.2. Aswe explained in Sect. 1, the tetraehdron equation (3.7) was derived again
in several ways after [4]. Here, we explain the details of the derivation by [25]. The q-
boson algebra Bq is an associative algebra over C generated by {a±,k±1} satisfying the
following relations:

ka± = q±1a±k, a−a+ = 1 − q2k2, a+a− = 1 − k2. (3.11)

It has a representation on F as follows:

k |m〉 = qm |m〉 , a+ |m〉 = |m + 1〉 , a− |m〉 = (1 − q2m) |m − 1〉 . (3.12)

Then, the intertwining relations of the 3D R are given by

R(a± ⊗ k ⊗ 1) = (a± ⊗ 1 ⊗ k + k ⊗ a± ⊗ a∓)R,

R(1 ⊗ k ⊗ a±) = (k ⊗ 1 ⊗ a± + a∓ ⊗ a± ⊗ k)R,

R(1 ⊗ a± ⊗ 1) = (a± ⊗ 1 ⊗ a± − qk ⊗ a± ⊗ k)R,

R(a+ ⊗ a− ⊗ a+ − qk ⊗ 1 ⊗ k) = (a− ⊗ a+ ⊗ a− − qk ⊗ 1 ⊗ k)R,

[R,k ⊗ k ⊗ 1] = [R, 1 ⊗ k ⊗ k] = 0.

(3.13)
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As we explained in Sect. 1, the 3D R is uniquely characterized by (3.13) up to the
normalization. Equation (3.2) is obtained by choosingR(|0〉⊗|0〉⊗|0〉) = |0〉⊗|0〉⊗|0〉.
On the other hand, matrix elements of the 3D L can be expressed by using L

a,b
i, j ∈

Bq (i, j, a, b ∈ {0, 1}) defined by

L(ui ⊗ u j ⊗ |k〉) =
∑

a,b∈{0,1}
ua ⊗ ub ⊗ L

a,b
i, j |k〉 , (3.14)

L
0,0
0,0 = L

1,1
1,1 = 1, L

0,1
0,1 = −qk, L

1,0
1,0 = k, L

0,1
1,0 = a−, L

1,0
0,1 = a+, (3.15)

where La,b
i, j = 0 other than (3.15). Therefore, we can consider the 3D L as an operator-

valued 4×4matrix, and the tetrahedron equation (3.7) as an operator-valued 8×8matrix.
The key observation of [25] is each matrix element of the operator-valued equation (3.7)
exactly corresponds to an intertwing relation of (3.13). That is, the tetrahedron equation
(3.7) is equivalent to the set of intertwining relations of the irreducible representations
of Aq(A2). This is an interesting connection but quite mysterious. Also, this connection
gives a derivation of the tetrahedron equation (3.7) but the algebraic origin of 3D L has
been unclear.

Remark 3.3. There is another known solution to the tetrahedron equation which the 3D
L satisfies. We set L̃ ∈ End(F ⊗ V ⊗ V )

L̃(|i〉 ⊗ u j ⊗ uk) =
∑

a∈Z≥0,b,c∈{0,1}
L̃
a,b,c
i, j,k |a〉 ⊗ ub ⊗ uc, (3.16)

L̃
a,b,c
i, j,k = L(−q)

b,c,a
j,k,i . (3.17)

Then, the matrix L̃ together with the 3D L satisfies the following tetrahedron equation:

L̃135L̃124L456L236 = L236L456L̃124L̃135. (3.18)

The equation (3.18) was first presented by [4,38] and obtained again by quantum
geometry settings [3,40]. It plays an important role to show the commutativity of the
layer-to-layer transfer matrix associated with the 3D L [38]. Later, we derive an equation
(4.111) which involves only “the 3D L like objects” as (3.18). Actually, it resembles
equation (3.18), but involves nonlocal sign factors, so we can not write it as a matrix
equation like (3.18). We do not deal with this issue in this paper, but it is an interesting
question whether we can attribute (3.18) to Corollary 4.18 or not.

3.2. 3D reflection equation. We then proceed to explanations of the 3D reflection equa-
tion [18], which is a boundary analog of the tetrahedron equation. The equation is defined
on the tensor product of nine linear spaces. The diagram of the 3D reflection equation
is obtained in [26, Figure 1].

Essentially, there are only two known non-trivial solutions to the 3D reflection equa-
tion [25,26]. We use the following notation:

{
i1, . . . , ir
j1, . . . , js

}

=
⎧
⎨

⎩

∏r
k=1(q)ik∏s
k=1(q) jk

(∀ik, jk ∈ Z≥0),

0 (otherwise).
(3.19)
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We set J(q) ∈ End(F ⊗ F ⊗ F ⊗ F) by

J(q) |i〉 ⊗ | j〉 ⊗ |k〉 ⊗ |l〉 =
∑

a,b,c,d∈Z≥0

J(q)
a,b,c,d
i, j,k,l |a〉 ⊗ |b〉 ⊗ |c〉 ⊗ |d〉 , (3.20)

J(q)
a,b,c,d
i, j,k,l = δa+2b+ci+2 j+k δb+c+dj+k+l

(q2)l
(q2)d

∑

α,β,γ∈Z≥0

(−1)α+γ

(q2)b−β

qψ1/2

× J(q)
i+ j−α−β−γ,0, j+k−α−β−γ,l
a+b−α−β−γ,0,b+c−α−β−γ,d

{
j, b − β, j + k − α − β, i + j − α − β

α, β, γ, c − α, a − α, j − α − β, b − β − γ

}

,

(3.21)

where J(q)
a,0,c,d
i,0,k,l is given by

J(q)
a,0,c,d
i,0,k,l = δa+ci+k δc+dk+l

∑

λ∈Z≥0

(−1)c+λ (q2)d+λ

(q2)d
qψ2/2

{
i, k

λ, i − λ, c − λ, k − c + λ

}

,

(3.22)

and ψ1, ψ2 are given by

ψ1 = α(α + 2b − 2β − 1) + (2β − b)(a + b + c) + γ (γ − 1) − j (i + j + k), (3.23)

ψ2 = (l + d + 1)(i + c − 2λ) + c − i. (3.24)

For simplicity, we also use the abbreviated notation J = J(q). We also set K(q) ∈
End(F ⊗ F ⊗ F ⊗ F) by

K(q) |i〉 ⊗ | j〉 ⊗ |k〉 ⊗ |l〉 =
∑

a,b,c,d∈Z≥0

K(q)
a,b,c,d
i, j,k,l |a〉 ⊗ |b〉 ⊗ |c〉 ⊗ |d〉 , (3.25)

K(q)
a,b,c,d
i, j,k,l = J(q2)d,c,b,a

l,k, j,i . (3.26)

For simplicity, we also use the abbreviated notation K = K(q). Then, the matrix J,K
together with 3D R satisfies the following 3D reflection equations:

R456R489J3579R269R258J1678J1234 = J1234J1678R258R269J3579R489R456, (3.27)

R456R489K3579R269R258K1678K1234 = K1234K1678R258R269K3579R489R456. (3.28)

We simply call J, K the 3D J and 3D K, respectively.
The origin of the 3D K is quite similar to the 3D J as we explained in Sect. 1. That

is, the 3D K gives the intertwiner of the irreducible representations of the quantum
coordinate ring Aq(C2), where the associated 3D reflection equation (3.28) holds as the
identity of the intertwiner of the irreducible representations of the quantum coordinate
ring Aq(C3) [25]. As an immediate corollary of the Kuniba–Okado–Yamada theorem,
we can see the 3D J also gives the transition matrix of the PBW bases of the nilpotent
subalgebra of the quantum algebra U+

q (C2).
Although the 3D K itself also appears by considering U+

q (B2) up to q-dependence
(see Theorems 5.11 and (2.34)), it is worth to emphasize that (3.28) does not follow from
discussions only using type B, that is, it is essentially type C object different from (3.27).
In this paper, we focus on the PBW basis for type B, and will give new solutions to the
3D reflection equation, which generalize the solution (3.27) to the family of solutions
(5.186).
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Remark 3.4. Although the 3D R, J and K have similar origins as we mentioned above,
unlike the 3DR, the 3D J and 3DK themselves do not givematrix product solutions to the
reflection equation because the 3DboundaryZamolodchikov algebra and its associativity
condition, i.e. the 3D reflection equation, take different forms. Nevertheless, it is known
that we can obtain matrix product solutions to the reflection equation by arranging the
intertwining relations of 3D K into a matrix equation [30]:

L123G24L215G16K3456 = K3456G16L125G24L213, (3.29)

whereL is the 3D L with q → q2 and we introduce a matrix G, which gives K -matrices
in the reflection equation. Interestingly, this procedure is exactly in the same way as
we explained in Remark 3.2. The equation (3.29) is called the quantized reflection
equation [30]. By reducing the equation (3.29), we get the solutions to the reflection
equation associated with the fundamental representations of Uq(A

(1)
n−1), and the spin

representations of Uq(D
(2)
n+1), Uq(B

(1)
n ) and Uq(D

(1)
n ) [30]. See [30] for more details.

Later, the K -matrices are characterized as the interwiners of some coideal subalgebras
of the quantum algebras [29].

4. PBW Bases of Type A and Tetrahedron Equation

4.1. PBW bases of type A. In this section, we focus on quantum superalgebras of type
A in the case of rank 2 and 3. Here, we introduce some notations to briefly describe
the PBW bases of the nilpotent subalgebra of them, and show higher-order relations for
them. For the case of type A, there are no anisotropic odd roots. We then simply write
�̃+

even ∪ �̃+
aniso by �̃+

even. We set ei j , e(i j)k, ei( jk) ∈ U+
q (sl(m|n)) by

ei j = [ei , e j ]q , e(i j)k = [ei j , ek]q , ei( jk) = [ei , e jk]q , (4.1)

where i, j, k ∈ I . By considering Corollary 2.7(1), we simply write ei jk = e(i j)k for the
case (αi , αk) = 0. We have the following higher-order relations for them:

Proposition 4.1.

e(i,i−1),i+1 = (−1)p(αi−1)p(αi+1)e(i,i+1),i−1, (4.2)

[ei−1,i , ei+1,i ] = 0, (4.3)

[ei , ei−1,i,i+1] = 0, (4.4)

e2i ei+1,i+2 − (q + q−1)ei ei+1,i+2ei + ei+1,i+2e
2
i = 0 (αi ∈ �̃+

even), (4.5)

e2i+1,i+2ei − (q + q−1)ei+1,i+2ei ei+1,i+2 + ei e
2
i+1,i+2 = 0 (αi+1 + αi+2 ∈ �̃+

even), (4.6)

e2i+2ei+1,i − (q + q−1)ei+2ei+1,i ei+2 + ei+1,i e
2
i+2 = 0 (αi+2 ∈ �̃+

even), (4.7)

e2i+1,i ei+2 − (q + q−1)ei+1,i ei+2ei+1,i + ei+2e
2
i+1,i = 0 (αi + αi+1 ∈ �̃+

even), (4.8)

e2i,i+1 = 0 (αi + αi+1 ∈ �̃+
iso). (4.9)

Proof. (4.2) is obtained from Corollary 2.7(2) because [ei−1, ei+1] = 0 and (αi−1, αi+1)

= 0. (4.3) and (4.4) are obtained by [ei−1,i , ei+1,i ] = [ei−1,i,i+1, ei ] = 0 where we used
Corollary 2.7(1) and Lemma 2.9(2). (4.9) is a cororally of Lemma 2.9(1).
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For (4.5)–(4.8), we only consider (4.5) and (4.6). The remaining relations (4.7) and
(4.8) can be proved in the same way. By using the q-commutator, the left hand side of
(4.5) can be written as [[ei+1,i+2, ei ]q , ei ]q . Then we have

[[ei+1,i+2, ei ]q , ei ]q = (−1)p(αi )p(αi+2)[[ei+1,i , ei+2]q , ei ]q = [[ei+1,i , ei ]q , ei+2]q = 0,
(4.10)

where we used Corollary 2.7(2) and the Serre relation (2.18). Similarly, the left hand
side of (4.6) can be written as [ei+1,i+2, [ei+1,i+2, ei ]q ]q . Then we have

[ei+1,i+2, [ei+1,i+2, ei ]q ]q = (−1)p(i)p(i+2)[ei+1,i+2, [ei+1,i , ei+2]q ]q = 0, (4.11)

where we first used (4.2) and then Corollary 2.7(1), Corollary 2.8 and (4.13). ��
Proposition 4.2.

ei+1,(i−1,i) = (−1)p(αi−1)p(αi+1)ei−1,(i+1,i), (4.12)

[ei,i−1, ei,i+1] = 0, (4.13)

[ei , ei+1,i,i−1] = 0, (4.14)

e2i ei+2,i+1 − (q + q−1)ei ei+2,i+1ei + ei+2,i+1e
2
i = 0 (αi ∈ �̃+

even), (4.15)

e2i+2,i+1ei − (q + q−1)ei+2,i+1ei ei+2,i+1 + ei e
2
i+2,i+1 = 0 (αi+1 + αi+2 ∈ �̃+

even),

(4.16)

e2i+2ei,i+1 − (q + q−1)ei+2ei,i+1ei+2 + ei,i+1e
2
i+2 = 0 (αi+2 ∈ �̃+

even), (4.17)

e2i,i+1ei+2 − (q + q−1)ei,i+1ei+2ei,i+1 + ei+2e
2
i,i+1 = 0 (αi + αi+1 ∈ �̃+

even), (4.18)

e2i+1,i = 0 (αi + αi+1 ∈ �̃+
iso). (4.19)

Proof. By applying the anti-algebra automorphism χ given by (2.20) on (4.2)–(4.9), we
obtain the desired results. ��

By writing down quantum root vectors given by Definition 2.3 for the case of rank
2, we find they are given by

B1 : eβ1 = e1, eβ2 = e21, eβ3 = e2, (4.20)

B2 : eβ1 = e2, eβ2 = e12, eβ3 = e1, (4.21)

where βt (t = 1, . . . , 3) are the same as Theorem 2.4. For non-super case, (4.20) and
(4.21) concide with quantum root vectors given by (2.25) with the reduced expressions
w0 = s1s2s1, s2s1s2 of the longest element of the Weyl group, respectively.

Similarly, by writing down quantum root vectors given by Definition 2.3 for the case
of rank 3, we find they are given by

B1 : eβ1 = e1, eβ2 = e21, eβ3 = e321, eβ4 = e2, eβ5 = e32, eβ6 = e3,
(4.22)

B2 : eβ1 = e3, eβ2 = e23, eβ3 = e2, eβ4 = e123, eβ5 = e12, eβ6 = e1,
(4.23)

where βt (t = 1, . . . , 6) are the same as Theorem 2.4. For non-super case, (4.22) and
(4.23) concide with quantum root vectors given by (2.25) with the reduced expressions
w0 = s1s2s3s1s2s1, s3s2s3s1s2s3 of the longest element of the Weyl group, respectively.
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Table 5. List of Dynkin diagrams of type A of rank 2

g(m|n) Dynkin diagram

sl(3|0) ε1 − ε2 ε2 − ε3

[4pt] sl(2|1) ε1 − ε2 ε2 − δ3 ε1 − δ2 δ2 − ε3 δ1 − ε2 ε2 − ε3

sl(1|2) δ1 − δ2 δ2 − ε3 δ1 − ε2 ε2 − δ3 ε1 − δ2 δ2 − δ3

sl(0|3) δ1 − δ2 δ2 − δ3

4.2. Transition matrices of PBW bases of type A of rank 2. In this section, we consider
transition matrices of the PBW bases of U+

q (sl(m|n)) of rank 2, so m + n = 3. All
possible Dynkin diagrams associated with admissible realizations are given in Table 5.
In Table 5, (�, p) associated with same Dynkin diagrams are exactly same. We then
only consider quantum superalgebras associated with the following Dynkin diagrams
given by (4.24)

(I)
ε1 − ε2 ε2 − ε3

(II)
ε1 − ε2 ε2 − δ3

(III)
ε1 − δ2 δ2 − δ3

(IV)
ε1 − δ2 δ2 − ε3

(4.24)

where they are distinguished except (IV), in the sense defined in Sect. 2.2. For the case
of rank 2, quantum root vecotrs are given by (4.20) and (4.21), so the transition matrix
in (2.32) is given as follows:

e(a)
2 e(b)

12 e
(c)
1 =

∑

i, j,k

γ
a,b,c
i, j,k e(k)

1 e( j)
21 e

(i)
2 , (4.25)

where the domain of indices is specified below. Hereafter, we consider each case. Some-
times, we abbreviate simple roots for Dynkin diagrams, but we always assume that they
are given as (4.24).

4.2.1. The case (I) In this case, the corresponding symmetrized Cartan matrix
is given by

DA =
(

2 −1
−1 2

)

, (4.26)

and the corresponding positive roots are given by

�̃+
even = {α1, α2, α1 + α2}, (4.27)

�̃+
iso = {}. (4.28)

Then, indices are specified as i, j, k, a, b, c ∈ Z≥0 for (4.25). The transition matrix in
(4.25) is explicitly given as the consequence of the Kuniba–Okado–Yamada theorem
[28]:
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Theorem 4.3 [28,39]. For the quantum superalgebra associated with , the
transition matrix in (4.25) is given by

γ
a,b,c
i, j,k = R

a,b,c
i, j,k , (4.29)

where R is the 3D R given by (3.2).

4.2.2. The case (II) In this case, the corresponding symmetrizedCartanmatrix
is given by

DA =
(

2 −1
−1 0

)

, (4.30)

and the corresponding positive roots are given by

�̃+
even = {α1}, (4.31)

�̃+
iso = {α2, α1 + α2}. (4.32)

Then, indices are specified as i, j, a, b ∈ {0, 1}, k, c ∈ Z≥0 for (4.25). The transition
matrix in (4.25) is explicitly given as follows:

Theorem 4.4. For the quantum superalgebra associated with , the transition
matrix in (4.25) is given by

γ
a,b,c
i, j,k = L

a,b,c
i, j,k , (4.33)

where L is the 3D L given by (3.6).

Proof. Multiplying both sides of (4.25) by k2 from left and k−1
2 from right, also using

the relation (2.5), we obtain

e(a)
2 e(b)

12 e
(c)
1 =

∑

i, j,k

qb+c− j−kγ
a,b,c
i, j,k e(k)

1 e( j)
21 e

(i)
2 . (4.34)

On the other hand, γ
a,b,c
i, j,k = qb+c− j−kγ

a,b,c
i, j,k holds becasuse {e(k)

1 e( j)
21 e

(i)
2 } are linearly

independent by Theorem 2.4. This means, if γ
a,b,c
i, j,k 
= 0, b + c = j + k holds. Similarly,

multiplying both sides of (4.25) by k1 from left and k−1
1 from right, also using the relation

(2.5), we obtain−a+b+2c = −i + j +2k if γ a,b,c
i, j,k 
= 0. Combining them, we eventually

obtain the following weight conservation:

γ
a,b,c
i, j,k = 0 (i + j 
= a + b or j + k 
= b + c). (4.35)

Next, we consider (4.25) for the cases (a, b) = (0, 0), (0, 1), (1, 0). For these case,
the degreee of e2 is at most 1 in both sides of (4.25) thanks to the weight conservation
(4.35). Now, the relations e1, e2 satisfy are

e21e2 − (q + q−1)e1e2e1 + e2e
2
1 = 0, e22 = 0. (4.36)

Therefore, the only relation one can apply on both sides of (4.25) is the first relation of
(4.36) for the cases (a, b) = (0, 0), (0, 1), (1, 0). The first relation of (4.36) is the same
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as one of the case (I) , so by Lemma 3.1, we obtain γ
a,b,c
i, j,k = L

a,b,c
i, j,k for the

cases (a, b) = (0, 0), (0, 1), (1, 0) and i + j = a + b, j + k = b + c are satisfied.
Eventually, it is sufficient to show that (4.25) for the cases (a, b) = (1, 1)

e2e1e2e
c
1 = γ

1,1,c
1,1,c e

c
1e2e1e2 (c ∈ Z≥0), (4.37)

holds for γ 1,1,c
1,1,c = L

1,1,c
1,1,c = 1, where we used the weight conservation (4.35) and e22 = 0,

andmultiplied both sides by [c]q !. Actually, we can prove (4.37) by induction as follows.
When c = 0, (4.37) trivially holds for γ 1,1,0

1,1,0 = 1. Let us suppose (4.37) is true for c = n

with γ
1,1,n
1,1,n = 1. Then, we obtain

e2e1e2e
n+1
1 = en1e2e1e2e1 = 1

q + q−1 e
n
1e2e

2
1e2 = en+11 e2e1e2, (4.38)

where we used (4.36). Thus, (4.37) holds for c = n + 1 with γ
1,1,n+1
1,1,n+1 = 1. To sum up

the above discussion, we then obtain γ
a,b,c
i, j,k = L

a,b,c
i, j,k . ��

Corollary 4.5.

L−1 = L. (4.39)

Proof. By using (4.25) and (2.34), we obtain

e(a)
2 e(b)

12 e
(c)
1 =

∑

i, j,k

L
a,b,c
i, j,k e

(k)
1 e( j)

21 e
(i)
2 =

∑

i, j,k

∑

x,y,z

L
a,b,c
i, j,k M

k, j,i
x,y,ze

(z)
2 e(y)

12 e
(x)
1 (4.40)

=
∑

i, j,k

∑

x,y,z

L
a,b,c
i, j,k L

i, j,k
z,y,x e

(z)
2 e(y)

12 e
(x)
1 , (4.41)

Here, we omit the domain of indices but it is easily specified. Since {e(a)
2 e(b)

12 e
(c)
1 } are

linearly independent by Theorem 2.4, we obtain
∑

i, j,k

∑

x,y,z

L
a,b,c
i, j,k L

i, j,k
z,y,x = δa,zδb,yδc,x . (4.42)

This finishes the proof. ��

4.2.3. The case (III) In this case, the corresponding symmetrized Cartan
matrix is given by

DA =
(

0 −1
−1 2

)

, (4.43)

and the corresponding positive roots are given by

�̃+
even = {α2}, (4.44)

�̃+
iso = {α1, α1 + α2}. (4.45)

Then, indices are specified as j, k, b, c ∈ {0, 1}, i, a ∈ Z≥0 for (4.25). The transition
matrix in (4.25) is explicitly given as follows:
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Corollary 4.6. For the quantum superalgebra associated with , the transition
matrix in (4.25) is given by

γ
a,b,c
i, j,k = M

a,b,c
i, j,k , (4.46)

where M are the 3D M given by (3.10).

Proof. h : U+
q (sl(2|1)) → U+

q (sl(1|2)) defined by e1 �→ e2, e2 �→ e1 gives an algebra
homomorphism, where the former algebra is associated with and the latter
is associated with . Then, by Theorem 4.4 and (2.34), it is easy to see that the
statement holds. ��

4.2.4. The case (IV) In this case, the corresponding symmetrized Cartan
matrix is given by

DA =
(

0 −1
−1 0

)

, (4.47)

and the corresponding positive roots are given by

�̃+
even = {α1 + α2}, (4.48)

�̃+
iso = {α1, α2}. (4.49)

Then, indices are specified as i, k, a, c ∈ {0, 1}, j, b ∈ Z≥0 for (4.25). We set N(q) ∈
End(V ⊗ F ⊗ V ) by

N(q)(ui ⊗ | j〉 ⊗ uk) =
∑

a,c∈{0,1},b∈Z≥0

N(q)
a,b,c
i, j,k ua ⊗ |b〉 ⊗ uc, (4.50)

N(q)
0,b,0
0, j,0 = δ j,bq

j , N(q)
1,b,1
1, j,1 = −δ j,bq

j+1, N(q)
0,b,1
0, j,1 = N(q)

1,b,0
1, j,0 = δ j,b,

N(q)
0,b,0
1, j,1 = δ j+1,bq

j (1 − q2), N(q)
1,b,1
0, j,0 = δ j−1,b[ j]q ,

(4.51)

whereNa,b,c
i, j,k = 0 other than (4.51). For simplicity, we also use the abbreviated notation

N = N(q). We simply callN the 3D N. Then, the transition matrix in (4.25) is explicitly
given as follows:

Theorem 4.7. For the quantum superalgebra associated with , the transition
matrix in (4.25) is given by

γ
a,b,c
i, j,k = N

a,b,c
i, j,k , (4.52)

where N is the 3D N given by (4.51).

Proof. By the same discussion as (4.35), we obtain the following weight conservation:

γ
a,b,c
i, j,k = 0 (i + j 
= a + b or j + k 
= b + c). (4.53)

Now, the relations e1, e2 satisfy are e21 = e22 = 0 and e12, e21 are given by e12 =
e1e2 + qe2e1, e21 = e2e1 + qe1e2. We introduce the following notation:

μ1(n) =
2n

︷ ︸︸ ︷
e1e2 · · · e1e2, μ2(n) =

2n
︷ ︸︸ ︷
e2e1 · · · e2e1 . (4.54)
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We then explicitly write down eb12, e
j
21 as

eb12 = μ1(b) + qbμ2(b), e j21 = μ2( j) + q jμ1( j), (4.55)

Actually, they are easily shown by induction. Hereafter, we consider each case for values
of (a, c) in (4.25).

(i) For the case (a, c) = (0, 0), by the weight conservation (4.53), (4.25) is explicitly
written down as

μ1(b) + qbμ2(b)

[b]q ! = γ
0,b,0
0,b,0

μ2(b) + qbμ1(b)

[b]q ! + γ
0,b,0
1,b−1,1

μ1(b)

[b − 1]q ! , (4.56)

wherewe use (4.55) and e21 = e22 = 0. By comparing coefficients of eachmonomial
μ1(b), μ2(b), we obtain

1

[b]q ! = γ
0,b,0
0,b,0

qb

[b]q ! + γ
0,b,0
1,b−1,1

1

[b − 1]q ! ,
qb

[b]q ! = γ
0,b,0
0,b,0

1

[b]q ! . (4.57)

It is easy to see that γ
0,b,0
0,b,0 = N

0,b,0
0,b,0 and γ

0,b,0
1,b−1,1 = N

0,b,0
1,b−1,1 give the solution of

(4.57).
(ii) For the case (a, c) = (0, 1), by the weight conservation (4.53), (4.25) is explicitly

written down as

μ1(b)e1 = γ
0,b,1
0,b,1 e1μ2(b), (4.58)

where we used (4.55) and e21 = e22 = 0. We then obtain γ
0,b,1
0,b,1 = 1 = N

0,b,1
0,b,1

because μ1(b)e1 = e1μ2(b).
(iii) For the case (a, c) = (1, 0), by the weight conservation (4.53), (4.25) is explicitly

written down as

e2μ1(b) = γ
1,b,0
1,b,0 μ2(b)e2, (4.59)

where we used (4.55) and e21 = e22 = 0. We then obtain γ
1,b,0
1,b,0 = 1 = N

1,b,0
1,b,0

because e2μ1(b) = μ2(b)e2.
(iv) For the case (a, c) = (1, 1), by the weight conservation (4.53), (4.25) is explicitly

written down as

μ2(b + 1)

[b]q ! = γ
1,b,1
1,b,1

μ1(b + 1)

[b]q ! + γ
1,b,1
0,b+1,0

μ2(b + 1) + qb+1μ1(b + 1)

[b + 1]q ! , (4.60)

where we used (4.55) and e21 = e22 = 0. Similarly to the case (i), it is easy to see

that γ 1,b,1
1,b,1 = N

1,b,1
1,b,1 and γ

1,b,1
0,b+1,0 = N

1,b,1
0,b+1,0 give the solution of (4.60).

��
Corollary 4.8.

N−1 = N. (4.61)

Proof. This is shown exactly in the same way as Corollary 4.5. ��
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Table 6. List of Dynkin diagrams of type A of rank 3

g(m|n) Dynkin diagram

sl(4|0) ε1 − ε2 ε2 − ε3 ε3 − ε4

sl(3|1) ε1 − ε2 ε2 − ε3 ε3 − δ4 ε1 − ε2 ε2 − δ3 δ3 − ε4

ε1 − δ2 δ2 − ε3 ε3 − ε4 δ1 − ε2 ε2 − ε3 ε3 − ε4

sl(2|2) ε1 − ε2 ε2 − δ3 δ3 − δ4 ε1 − δ2 δ2 − ε3 ε3 − δ4

δ1 − ε2 ε2 − ε3 ε3 − δ4 ε1 − δ2 δ2 − δ3 δ3 − ε4

δ1 − ε2 ε2 − δ3 δ3 − ε4 δ1 − δ2 δ2 − ε3 ε3 − ε4

sl(1|3) ε1 − δ2 δ2 − δ3 δ3 − δ4 δ1 − ε2 ε2 − δ3 δ3 − δ4

δ1 − δ2 δ2 − ε3 ε3 − δ4 δ1 − δ2 δ2 − δ3 δ3 − ε4

sl(0|4) δ1 − δ2 δ2 − δ3 δ3 − δ4

Remark 4.9. We find that the matrix elements of the 3D L and 3DN satisfy the following
relation:

N
a,b,c
i, j,k = [ j]q !

[b]q !L
1−i,k, j
1−a,c,b. (4.62)

It is naturally thought that (4.62) originates from the fact that both and
give the Dynkin diagrams of sl(2|1) as Table 5. However, the origin of the

relation (4.62) in terms of the PBW basis is unknown to us. We do not deal with this
issue in this paper, but it is interesting whether, in general, transition matrices associated
with a pair of Cartan data mapped to each other via odd reflections are attributed to each
other or not. For example, we will also establish a relation between transition matrices
associated with such pair of Cartan data for type B. See (5.131).

4.3. Transition matrices of PBW bases of type A of rank 3 and tetrahedron equation. In
this section, we consider the transition matrix of the PBW bases ofU+

q (sl(m|n)) of rank
3, som+n = 4.All possibleDynkin diagrams associatedwith admissible realizations are
given in Table 6. In Table 6, (�, p) associated with same Dynkin diagrams are exactly
same. We then only consider the quantum superalgebras associated with the following
Dynkin diagrams given by (4.63):

(I)
ε1 − ε2 ε2 − ε3 ε3 − ε4

(II)
ε1 − ε2 ε2 − ε3 ε3 − δ4

(III)
ε1 − ε2 ε2 − δ3 δ3 − ε4

(IV)
ε1 − ε2 ε2 − δ3 δ3 − δ4

(V)
ε1 − δ2 δ2 − δ3 δ3 − ε4

(VI)
ε1 − δ2 δ2 − ε3 ε3 − δ4

(4.63)

where (I), (II) and (IV) are distinguished, in the sense defined in Sect. 2.2. Here, we omit
the following Dynkin diagrams given by (4.64), because the cases of (VII) and (VIII)
are easily attributed to ones of (II) and (III), respectively.
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(VII)
ε1 − δ2 δ2 − δ3 δ3 − δ4

(VIII)
ε1 − δ2 δ2 − ε3 ε3 − ε4

(4.64)

For the case of rank 3, quantum root vectors are given by (4.22) and (4.23), so the
transition matrix in (2.32) is given as follows:

e
(o1)
3 e

(o2)
23 e

(o3)
2 e

(o4)
123 e

(o5)
12 e

(o6)
1 =

∑

i1,i2,i3,i4,i5,i6

γ
o1,o2,o3,o4,o5,o6
i1,i2,i3,i4,i5,i6

e
(i6)
1 e

(i5)
21 e

(i4)
321 e

(i3)
2 e

(i2)
32 e

(i1)
3 , (4.65)

where the domain of indices is specified below. In order to attribute the transition matrix
in (4.65) to a composition of transition matrices of rank 2, we exploit the following
transition matrices �(x):

e(a)
2 e(b)

12 e
(c)
1 =

∑

i, j,k

�(2|1)a,b,c
i, j,k e

(k)
1 e( j)

21 e
(i)
2 , (4.66)

e(a)
3 e(b)

23 e
(c)
2 =

∑

i, j,k

�(3|2)a,b,c
i, j,k e

(k)
2 e( j)

32 e
(i)
3 , (4.67)

e(a)
23 e

(b)
123e

(c)
1 =

∑

i, j,k

�(23|1)a,b,c
i, j,k e

(k)
1 e( j)

(23)1e
(i)
23 , (4.68)

e(a)
32 e

(b)
1(32)e

(c)
1 =

∑

i, j,k

�(32|1)a,b,c
i, j,k e

(k)
1 e( j)

321e
(i)
32 , (4.69)

e(a)
3 e(b)

123e
(c)
12 =

∑

i, j,k

�(3|12)a,b,c
i, j,k e

(k)
12 e

( j)
3(12)e

(i)
3 , (4.70)

e(a)
3 e(b)

(21)3e
(c)
21 =

∑

i, j,k

�(3|21)a,b,c
i, j,k e

(k)
21 e

( j)
321e

(i)
3 , (4.71)

where the domain of indices will be specified and explicit formulae of �(x) are given for
each case in (4.63).

Then, by using �(x), (4.2)–(4.4) and (4.12)–(4.14), we can construct the transition
matrix in (4.65) in two ways. The first way is given by

e(o1)
3 e(o2)

23 e(o3)
2 e(o4)

123 e
(o5)
12 e(o6)

1 (4.72)

=
∑

�(3|2)o1,o2,o3
x1,x2,x3e

(x3)
2 e(x2)

32 e(x1)
3 e(o4)

123 e
(o5)
12 e(o6)

1 (4.73)

=
∑

�(3|2)o1,o2,o3
x1,x2,x3�

(3|12)x1,o4,o5
i1,x4,x5

e(x3)
2 e(x2)

32 e(x5)
12

e(x4)
3(12) e

(i1)
3 e(o6)

1 (4.74)

=
∑

(−1)ρ1(i1o6+x4)+ρ2x2x5�(3|2)o1,o2,o3
x1,x2,x3�

(3|12)x1,o4,o5
i1,x4,x5

× e(x3)
2 e(x5)

12 e(x2)
32 e(x4)

1(32)e
(o6)
1 e(i1)

3 (4.75)

=
∑

(−1)ρ1(i1o6+x4)+ρ2x2x5�(3|2)o1,o2,o3
x1,x2,x3

�(3|12)x1,o4,o5
i1,x4,x5

�(32|1)x2,x4,o6
i2,i4,x6

× e(x3)
2 e(x5)

12 e(x6)
1 e(i4)

321e
(i2)
32 e(i1)

3 (4.76)
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=
∑

(−1)ρ1(i1o6+x4)+ρ2x2x5�(3|2)o1,o2,o3
x1,x2,x3�

(3|12)x1,o4,o5
i1,x4,x5

�(32|1)x2,x4,o6
i2,i4,x6

�(2|1)x3,x5,x6
i3,i5,i6

× e(i6)
1 e(i5)

21 e(i3)
2 e(i4)

321e
(i2)
32 e(i1)

3 (4.77)

=
∑

(−1)ρ1(i1o6+x4)+ρ2x2x5+ρ3i3i4�(3|2)o1,o2,o3
x1,x2,x3 �(3|12)x1,o4,o5

i1,x4,x5

�(32|1)x2,x4,o6
i2,i4,x6

�(2|1)x3,x5,x6
i3,i5,i6

× e(i6)
1 e(i5)

21 e(i4)
321e

(i3)
2 e(i2)

32 e(i1)
3 , (4.78)

where summations are taken on ik, xk (k = 1, . . . , 6) and we set

ρ1 = p(α1)p(α3), ρ2 = p(α1 + α2)p(α2 + α3), ρ3 = p(α2)p(α1 + α2 + α3).

(4.79)

We have put the underlines to the parts to be rewritten. The details of the above procedure
are as follows. For (4.72), we used (4.67). For (4.73), we used (4.70). For (4.74), we
used (4.2), (4.3) and [e1, e3] = 0. For (4.75), we used (4.69). For (4.76), we used (4.66).
For (4.77), we used (4.14).

Similarly, the second way is given by

e(o1)
3 e(o2)

23 e(o3)
2 e(o4)

123 e
(o5)
12 e(o6)

1 (4.80)

= (−1)ρ3o3o4e(o1)
3 e(o2)

23 e(o4)
123 e

(o3)
2 e(o5)

12 e(o6)
1 (4.81)

=
∑

(−1)ρ3o3o4�(2|1)o3,o5,o6
x3,x5,x6e

(o1)
3 e(o2)

23 e(o4)
123 e

(x6)
1 e(x5)

21 e(x3)
2 (4.82)

=
∑

(−1)ρ3o3o4�(2|1)o3,o5,o6
x3,x5,x6�

(23|1)o2,o4,x6
x2,x4,i6

e(o1)
3 e(i6)

1 e(x4)
(23)1 e

(x2)
23 e(x5)

21 e(x3)
2 (4.83)

=
∑

(−1)ρ1(o1i6+x4)+ρ2x2x5+ρ3o3o4�(2|1)o3,o5,o6
x3,x5,x6�

(23|1)o2,o4,x6
x2,x4,i6

× e(i6)
1 e(o1)

3 e(x4)
(21)3e

(x5)
21 e(x2)

23 e(x3)
2 (4.84)

=
∑

(−1)ρ1(o1i6+x4)+ρ2x2x5+ρ3o3o4�(2|1)o3,o5,o6
x3,x5,x6�

(23|1)o2,o4,x6
x2,x4,i6

�(3|21)o1,x4,x5
x1,i4,i5

× e(i6)
1 e(i5)

21 e(i4)
321e

(x1)
3 e(x2)

23 e(x3)
2 (4.85)

=
∑

(−1)ρ1(o1i6+x4)+ρ2x2x5+ρ3o3o4�(2|1)o3,o5,o6
x3,x5,x6�

(23|1)o2,o4,x6
x2,x4,i6

�(3|21)o1,x4,x5
x1,i4,i5

�(3|2)x1,x2,x3
i1,i2,i3

× e(i6)
1 e(i5)

21 e(i4)
321e

(i3)
2 e(i2)

23 e(i1)
3 , (4.86)

where summations are taken on ik, xk (k = 1, . . . , 6). Again, we have put the underlines
to the parts to be rewritten. The details of the above procedure are as follows. For (4.80),
we used (4.4). For (4.81), we used (4.66). For (4.82), we used (4.68). For (4.83), we used
(4.12), (4.13) and [e1, e3] = 0. For (4.84), we used (4.71). For (4.85), we used (4.67).

Now, {e(i6)
1 e(i5)

21 e(i4)
321e

(i3)
2 e(i2)

23 e(i1)
3 } are linearly independent by Theorem 2.4. Then, by

comparing (4.78) and (4.86), we obtain the following result:

Theorem 4.10. As the identity of transition matrices of quantum superalgebras of type
A, we have

∑
(−1)ρ1(i1o6+x4)+ρ2x2x5+ρ3i3i4�(3|2)o1,o2,o3

x1,x2,x3�
(3|12)x1,o4,o5

i1,x4,x5
�(32|1)x2,x4,o6

i2,i4,x6
�(2|1)x3,x5,x6

i3,i5,i6

=
∑

(−1)ρ1(o1i6+x4)+ρ2x2x5+ρ3o3o4�(2|1)o3,o5,o6
x3,x5,x6�

(23|1)o2,o4,x6
x2,x4,i6

�(3|21)o1,x4,x5
x1,i4,i5

�(3|2)x1,x2,x3
i1,i2,i3

.

(4.87)
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where summations are taken on xk (k = 1, . . . , 6).

The above equation (4.87) generally involve nonlocal sign factors. In (4.63), we have
ρ1 = ρ2 = ρ3 = 0 for (I), (II) and (III). In that case, (4.87) exactly gives the tetrahedron
equation. Hereafter, we specialize Theorem 4.10 for each case given in (4.63).

4.3.1. The case (I) In this case, the corresponding symmetrized Cartan
matrix is given by

DA =
⎛

⎝
2 −1 0

−1 2 −1
0 −1 2

⎞

⎠ , (4.88)

and the corresponding positive roots are given by

�̃+
even = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3}, (4.89)

�̃+
iso = {}. (4.90)

Now, �(x) defined by (4.66)–(4.71) are specified as follows:

Lemma 4.11. For the quantum superalgebra associated with , we have
(4.66)–(4.71) where �(x) are given by

�(2|1) = �(3|2) = �(23|1) = �(32|1) = �(3|12) = �(3|21) = R. (4.91)

Proof. �(2|1), �(3|2) are direct consquences of Theorem 4.3. �(23|1) is obtained by (4.5),
(4.6) and Theorem 4.3. Actually, e1, e23 satisfy the exactly same relations of e1, e2 of
U+
q (sl(3)) associated with , so h : U+

q (sl(3)) → U+
q (sl(4)) defined by e1 �→

e1, e2 �→ e23 gives an algebra homomorphism. Also, dα2+α3 = dα2 and dα1+α2+α3 =
dα1+α2 are satisfied where the left hand sides are for U+

q (sl(4)) and the right hand sides
are for U+

q (sl(3)), so [m]qdα2+α3 ! = [m]qdα2 ! and [m]qdα1+α2+α3 ! = [m]qdα1+α2 ! hold.
Therefore, by applying h on (4.25) for the case , we obtain

e(a)
23 e

(b)
123e

(c)
1 =

∑

i, j,k

R
a,b,c
i, j,k e

(k)
1 e( j)

(23)1e
(i)
23 (i, j, k, a, b, c ∈ Z≥0). (4.92)

This is exactly (4.68) for �(23|1) = R. The remaining cases can be shown exacly in the
same way. ��
The phase factors given by (4.79) are now ρ1 = ρ2 = ρ3 = 0. Then, (4.87) is specialized
as follows:

∑
R
o1,o2,o3
x1,x2,x3R

x1,o4,o5
i1,x4,x5

R
x2,x4,o6
i2,i4,x6

R
x3,x5,x6
i3,i5,i6

=
∑

R
o3,o5,o6
x3,x5,x6R

o2,o4,x6
x2,x4,i6

R
o1,x4,x5
x1,i4,i5

R
x1,x2,x3
i1,i2,i3

, (4.93)

where all indices are defined on Z≥0. This is exactly the tetrahedron equation (3.4):

R123R145R246R356 = R356R246R145R123. (4.94)

We then get the following result:

Corollary 4.12. The tetrahedron equation (3.4) is characterized as the identity of the
transition matrices of the quantum superalgebra associated with .

We note that although Corollary 4.12 is a corollary of the Kuniba–Okado–Yamada
theorem [28], the above calculation gives a direct derivation of the tetrahedron equation
(3.4) without using any results for quantum coordinate rings. This is a key for the
generalization of earlier results to super cases.
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4.3.2. The case (II) In this case, the corresponding symmetrized Car-
tan matrix is given by

DA =
⎛

⎝
2 −1 0

−1 2 −1
0 −1 0

⎞

⎠ , (4.95)

and the corresponding positive roots are given by

�̃+
even = {α1, α2, α1 + α2}, (4.96)

�̃+
iso = {α3, α2 + α3, α1 + α2 + α3}. (4.97)

Similarly to Lemma 4.11, by using Proposition 4.1 and 4.2, we can show the following
lemma:

Lemma 4.13. For the quantum superalgebra associated with , we have
(4.66)–(4.71) where �(x) are given by

�(2|1) = L, �(3|2) = �(23|1) = �(32|1) = �(3|12) = �(3|21) = R. (4.98)

The phase factors given by (4.79) are now ρ1 = ρ2 = ρ3 = 0. Then, (4.87) is specialized
as follows:

∑
L
o1,o2,o3
x1,x2,x3L

x1,o4,o5
i1,x4,x5

L
x2,x4,o6
i2,i4,x6

R
x3,x5,x6
i3,i5,i6

=
∑

R
o3,o5,o6
x3,x5,x6L

o2,o4,x6
x2,x4,i6

L
o1,x4,x5
x1,i4,i5

L
x1,x2,x3
i1,i2,i3

, (4.99)

where ok, ik, xk ∈ {0, 1} (k = 1, 2, 4) and the other indices are defined on Z≥0. This is
exactly the tetrahedron equation (3.7):

L123L145L246R356 = R356L246L145L123. (4.100)

We then get the following result:

Corollary 4.14. The tetrahedron equation (3.7) is characterized as the identity of the
transition matrices of the quantum superalgebra associated with .

4.3.3. The case (III) In this case, the corresponding symmetrized Car-
tan matrix is given by

DA =
⎛

⎝
2 −1 0

−1 0 1
0 1 0

⎞

⎠ , (4.101)

and the corresponding positive roots are given by

�̃+
even = {α1, α2 + α3, α1 + α2 + α3}, (4.102)

�̃+
iso = {α2, α3, α1 + α2}. (4.103)

Similarly to Lemma 4.11, by using Propositions 4.1 and 4.2, we can show the following
lemma:

Lemma 4.15. For the quantum superalgebra associated with , we have
(4.66)–(4.71) where �(x) are given by

�(2|1) = L, �(3|2) = �(3|12) = �(3|21) = N(q−1), = �(23|1) = �(32|1) = R.

(4.104)
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The phase factors given by (4.79) are now ρ1 = ρ2 = ρ3 = 0. Then, (4.87) is specialized
as follows:

∑
N(q−1)

o1,o2,o3
x1,x2,x3N(q−1)

x1,o4,o5
i1,x4,x5

R
x2,x4,o6
i2,i4,x6

L
x3,x5,x6
i3,i5,i6

=
∑

L
o3,o5,o6
x3,x5,x6R

o2,o4,x6
x2,x4,i6

N(q−1)
o1,x4,x5
x1,i4,i5

N(q−1)
x1,x2,x3
i1,i2,i3

, (4.105)

where ok, ik, xk ∈ {0, 1} (k = 1, 3, 5) and the other indices are defined on Z≥0. We
then get the following result, which gives a new solution to the tetrahedron equation.

Corollary 4.16. As the identity of the transition matrices of the quantum superalgebra
associated with , we have the tetrahedron equation given by

N(q−1)123N(q−1)145R246L356 = L356R246N(q−1)145N(q−1)123. (4.106)

4.3.4. The case (IV) In this case, the corresponding symmetrized Car-
tan matrix is given by

DA =
⎛

⎝
2 −1 0

−1 0 1
0 1 −2

⎞

⎠ , (4.107)

and the corresponding positive roots are given by

�̃+
even = {α1, α3}, (4.108)

�̃+
iso = {α2, α1 + α2, α2 + α3, α1 + α2 + α3}. (4.109)

Similarly to Lemma 4.11, by using Propositions 4.1 and 4.2, we can show the following
lemma:

Lemma 4.17. For the quantum superalgebra associated with , we have
(4.66)–(4.71) where �(x) are given by

�(2|1) = �(23|1) = �(32|1) = L, �(3|2) = �(3|12) = �(3|21) = M(q−1). (4.110)

The phase factors given by (4.79) are now ρ1 = 0, ρ2 = ρ3 = 1. Then, (4.87) is
specialized as follows:

∑
(−1)x2x5+i3i4M(q−1)o1,o2,o3x1,x2,x3M(q−1)

x1,o4,o5
i1,x4,x5

L
x2,x4,o6
i2,i4,x6

L
x3,x5,x6
i3,i5,i6

=
∑

(−1)x2x5+o3o4Lo3,o5,o6
x3,x5,x6L

o2,o4,x6
x2,x4,i6

M(q−1)
o1,x4,x5
x1,i4,i5

M(q−1)
x1,x2,x3
i1,i2,i3

,
(4.111)

where ok, ik, xk ∈ {0, 1} (k = 2, 3, 4, 5) and the other indices are defined on Z≥0. As
we explained in Remark 3.3, this equation resembles the tetrahedron equation (3.18),
but we can not eliminate the sign factors at present. Anyway, we then get the following
result:

Corollary 4.18. As the identity of the transition matrices of the quantum superalgebra
associated with , we have the tetrahedron equation up to sign factors
given by (4.111).
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4.3.5. The case (V) In this case, the corresponding symmetrizedCartan
matrix is given by

DA =
⎛

⎝
0 −1 0

−1 2 −1
0 −1 0

⎞

⎠ , (4.112)

and the corresponding positive roots are given by

�̃+
even = {α2, α1 + α2 + α3}, (4.113)

�̃+
iso = {α1, α3, α1 + α2, α2 + α3}. (4.114)

Similarly to Lemma 4.11, by using Propositions 4.1 and 4.2, we can show the following
lemma:

Lemma 4.19. For the quantum superalgebra associated with , we have
(4.66)–(4.71) where �(x) are given by

�(2|1) = M, �(3|2) = L, �(23|1) = �(32|1) = �(3|12) = �(3|21) = N. (4.115)

The phase factors given by (4.79) are now ρ1 = ρ2 = 1, ρ3 = 0. Then, (4.87) is
specialized as follows:

∑
(−1)i1o6+x4+x2x5Lo1,o2,o3

x1,x2,x3N
x1,o4,o5
i1,x4,x5

N
x2,x4,o6
i2,i4,x6

M
x3,x5,x6
i3,i5,i6

=
∑

(−1)o1i6+x4+x2x5Mo3,o5,o6
x3,x5,x6N

o2,o4,x6
x2,x4,i6

N
o1,x4,x5
x1,i4,i5

L
x1,x2,x3
i1,i2,i3

,
(4.116)

where ok, ik, xk ∈ {0, 1} (k = 1, 2, 5, 6) and the other indices are defined on Z≥0. We
then get the following result:

Corollary 4.20. As the identity of the transition matrices of the quantum superalgebra
associated with , we have the tetrahedron equation up to sign factors
given by (4.116).

4.3.6. The case (VI) In this case, the corresponding symmetrized Car-
tan matrix is given by

DA =
⎛

⎝
0 1 0
1 0 −1
0 −1 0

⎞

⎠ , (4.117)

and the corresponding positive roots are given by

�̃+
even = {α1 + α2, α2 + α3}, (4.118)

�̃+
iso = {α1, α2, α3, α1 + α2 + α3}. (4.119)

Similarly to Lemma 4.11, by using Propositions 4.1 and 4.2, we can show the following
lemma:

Lemma 4.21. For the quantum superalgebra associated with , we have
(4.66)–(4.71) where �(x) are given by

�(2|1) = N(q−1), �(3|2) = N, �(23|1) = �(32|1) = M(q−1), �(3|12) = �(3|21) = L.

(4.120)
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The phase factors given by (4.79) are now ρ1 = ρ3 = 1, ρ2 = 0. Then, (4.87) is
specialized as follows:

∑
(−1)i1o6+x4+i3i4No1,o2,o3

x1,x2,x3L
x1,o4,o5
i1,x4,x5

M(q−1)
x2,x4,o6
i2,i4,x6

N(q−1)
x3,x5,x6
i3,i5,i6

=
∑

(−1)o1i6+x4+o3o4N(q−1)o3,o5,o6x3,x5,x6M(q−1)
o2,o4,x6
x2,x4,i6

L
o1,x4,x5
x1,i4,i5

N
x1,x2,x3
i1,i2,i3

,
(4.121)

where ok, ik, xk ∈ {0, 1} (k = 1, 3, 4, 6) and the other indices are defined on Z≥0. We
then get the following result:

Corollary 4.22. As the identity of the transition matrices of the quantum superalgebra
associated with , we have the tetrahedron equation up to sign factors
given by (4.121).

5. PBW Bases of Type B and 3D Reflection Equation

5.1. PBW bases of type B of rank 2 and 3. In this section, we focus on quantum super-
algebras of type B in the case of rank 2 and 3. Here, we introduce some notations to
briefly describe the PBW bases of the nilpotent subalgebra of them, and show higher-
order relations for them. We define e′

i j , e
′
(i j)k, e

′
i( jk) ∈ U+

q (osp(2m + 1|2n)) in the same
way as (4.1). Let us recall the normalization e′

β �→ eβ given in Definition 2.3(ii). Cor-
responding to the normalization, we use a simplified rule as follows, which is enough
to our description. We set ex = e′

x/(q
1/2 + q−1/2) (x = i j, (i j)k, i( jk)) for the case

x involves the letter “r” twice where r is the rank of U+
q (osp(2m + 1|2n)) defined in

Sect. 2.1, and we set ex = e′
x (x = i j, (i j)k, i( jk)) otherwise. By considering Corollary

2.7(1), we simply write ei jk = e(i j)k for the case (αi , αk) = 0.

Example 5.1. The indices of the element e′
(12)2 ∈ U+

q (osp(2m + 1|2n)) for rank r =
m + n = 2 involve the letter “2” twice. We then set e(12)2 = e′

(12)2/(q
1/2 + q−1/2).

We also define elements with more q-commutators as well. For example, we define
e′
(( jk)k)( j i) ∈ U+

q (osp(2m + 1|2n)) by

e′
(( jk)k)( j i) = [[[e j , ek]q , ek]q , [e j , ei ]q ]q . (5.1)

Then, we similarly set ex = e′
x/(q

1/2 +q−1/2) for the case x involves two letters “r”, and
we set ex = e′

x otherwise. These elements satisfy the following higher-order relations,
where we only consider the case of rank 3, which is enough for our purpose in Sect. 5.3.

Proposition 5.2. For the case of rank 3, we have

e(23)1 = (−1)p(α1)p(α3)e(21)3, (5.2)

e((12)3)3 = e1((23)3), (5.3)

e((23)3)1 = e((21)3)3, (5.4)

e(1(23))(23) = (−1)(p(α1)+p(α2)+p(α3))p(α2)e2(((12)3)3), (5.5)

e(23)((23)1) = (−1)p(α1)p(α3)+(p(α1)+p(α2))(p(α2)+p(α3))e(21)((23)3), (5.6)

e((23)3)(21) = e2(3(3(21))). (5.7)
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Proof. (5.2) is obtained by Corollary 2.7(2) because [e1, e3] = 0 and (α1, α3) = 0.
(5.3) is obtained by Corollary 2.7(1). (5.4) is obtained by

[[[e2, e3]q , e3]q , e1]q = (−1)p(α1)p(α3)[[[e2, e3]q , e1]q , e3]q = [[[e2, e1]q , e3]q , e3]q ,
(5.8)

wherewe usedCorollary 2.7(2). For (5.7), it is sufficient to show e(12)(3(32)) = e(((12)3)3)2
by considering the anti-algebra automorphism χ given by (2.20). Actually, we have
e(12)(3(32)) = e((12)3)(32) = e(((12)3)3)2 where we used Corollary 2.7(1), (5.12) and
Lemma 2.9(2). (5.5) and (5.6) are shown in the same way. Here, we only present the
proof for (5.5). We can calculate the left hand side of (5.5) as

[e123, [e2, e3]q ]q/(q1/2 + q−1/2)

= (−1)(p(α1)+p(α2)+p(α3))p(α2)q−(α1+α2+α3,α2)e2e((12)3)3

− (−1)p(α2)p(α3)q−(α2,α3)e((12)3)3e2 (5.9)

= (−1)(p(α1)+p(α2)+p(α3))p(α2)q−(α1+α2+α3,α2)

×
(
e2e((12)3)3 − (−1)(p(α1)+p(α2))p(α2)q(α1+α2,α2)e((12)3)3e2

)
, (5.10)

where we used Lemma 2.6 and (5.11). One can see (α1+α2+α3, α2) = (ε̄1, ε̄2− ε̄3) = 0
and (α1 +α2, α2) = (ε̄3, ε̄3) = −(α1 +α2 + 2α3, α2). Then, the right hand side of (5.10)
is exactly the right hand side of (5.5). ��

Here, we cite a lemma from [45, Lemma 6.3.1(i)] used below.

Lemma 5.3. For 1 ≤ i ≤ r − 1, [eε̄i , eε̄i+ε̄r ]q = 0. Especially, if r = 3, this gives
[e123, e((12)3)3]q = 0 for i = 1 and [e23, e(23)3]q = 0 for i = 2.

Proposition 5.4. For the case of rank 3, we have

[e2, e123] = 0, (5.11)

[e21, e23] = 0, (5.12)

[e23, e((12)3)3] = 0, (5.13)

[e(23)1, e(23)3] = 0, (5.14)

[e3, e((23)3)(21)] = 0. (5.15)

Proof. (5.11) and (5.12) are obtained exactly in the same way as (4.3) and (4.4),
where we use the anti-algebra automorphism χ given by (2.20). (5.13) is obtained
by [e((12)3)3, e23] = [e(((12)3)3)2, e3] = 0 where we used Corollary 2.7(1) and Lemma
2.9(2). (5.14) is obtained by

q , e(23)3]q = [e23, [e1, e(23)3]] + (−1)p(α1)p(α2)q−(α1,α2+α3)[e23, e(23)3]e1
+ (−1)p(α1)(p(α2)+p(α3))q−(α1,α2+α3)e1[e23, e(23)3],

(5.16)

where we used Lemma 2.6. This is actually equal to 0 by Lemma 5.3 for i = 2, (5.3)
and (5.13). (5.15) is obtained by

χ([e3, e((23)3)(21)]) = χ([e3, e2(3(3(21)))]) = [e(((12)3)3)2, e3] = 0, (5.17)

where we used (5.7) and Lemma 2.9(2). ��
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Proposition 5.5. For the case of rank 3, we have

e21e23 − (q + q−1)e1e23e1 + e23e
2
1 = 0 (α1 ∈ �̃+

even), (5.18)

e323e1 − (q + 1 + q−1)e223e1e23 + (q + 1 + q−1)e23e1e
2
23

− e1e
3
23 = 0 (α2 + α3 ∈ �̃+

even), (5.19)

e33e21 − (q + 1 + q−1)e23e21e3 + (q + 1 + q−1)e3e21e
2
3 − e21e

3
3 = 0 (α3 ∈ �̃+

even),

(5.20)

e221e3 − (q + q−1)e21e3e21 + e3e
2
21 = 0 (α1 + α2 ∈ �̃+

even), (5.21)

e21e(23)3 − (q + q−1)e1e(23)3e1 + e(23)3e
2
1 = 0 (α1 ∈ �̃+

even), (5.22)

e2(23)3e1 − (q + q−1)e(23)3e1e(23)3 + e1e
2
(23)3 = 0 (α2 + 2α3 ∈ �̃+

even), (5.23)

e22e((12)3)3 − (q + q−1)e2e((12)3)3e2 + e((12)3)3e
2
2 = 0 (α2 ∈ �̃+

even), (5.24)

e2((12)3)3e2 − (q + q−1)e((12)3)3e2e((12)3)3 + e2e
2
((12)3)3 = 0 (α1 + α2 + 2α3 ∈ �̃+

even),

(5.25)

e221e(23)3 − (q + q−1)e21e(23)3e21 + e(23)3e21 = 0 (α1 + α2 ∈ �̃+
even), (5.26)

e2(23)3e21 − (q + q−1)e(23)3e21e(23)3 + e21e
2
(23)3 = 0 (α2 + 2α3 ∈ �̃+

even). (5.27)

Proof. The proof of this proposition will be presented together with the next
proposition. ��
Proposition 5.6. For the case of rank 3, we have

e221 = 0 (α1 + α2 ∈ �̃+
iso), (5.28)

e2(23)3 = 0 (α2 + 2α3 ∈ �̃+
iso), (5.29)

e2((12)3)3 = 0 (α1 + α2 + 2α3 ∈ �̃+
iso), (5.30)

e323e1 + (−1)p(α1)(1 − q − q−1)e223e1e23

+ (1 − q − q−1)e23e1e
2
23 + (−1)p(α1)e1e

3
23 = 0 (α2 + α3 ∈ �̃+

aniso), (5.31)

e33e21 + (−1)p(α1)+p(α2)(1 − q − q−1)e23e21e3

+ (1 − q − q−1)e3e21e
2
3 + (−1)p(α1)+p(α2)e21e

3
3 = 0 (α3 ∈ �̃+

aniso). (5.32)

Proof. (5.28), (5.29) and (5.30) are cororallies of Lemma 2.9(1). (5.20) and (5.32) can
be written together as [[[e21, e3]q , e3]q , e3]q . Then, (5.18), (5.20), (5.32) and (5.22) are
obtained exactly in the same way as (4.5). (5.21) and (5.23) are obtained in the same
way as (4.6), where we use (5.14) for (5.23). The left hand side of (5.24) can be written
as [[e((12)3)3, e2]q , e2]q = [e(((12)3)3)2, e2]q . This is equal to 0 by Lemma 2.9.

(5.19) and (5.31) can be written together as [[[e1, e23]q , e23]q , e23]q . Then, we have
[[[e1, e23]q , e23]q , e23]q/(q1/2 + q−1/2)

= [e(1(23))(23), e23]q (5.33)

= (−1)(p(α1)+p(α2)+p(α3))p(α2)[e2(((12)3)3), e23]q (5.34)

= (−1)(p(α1)+p(α2)+p(α3))p(α2)[e2, [e((12)3)3, e23]q ]q = 0, (5.35)

where we used (5.5), Corollary 2.7(1), Corollary 2.8 and Lemma 2.9(2).
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The left hand side of (5.25) can be written as [e2(((12)3)3), e((12)3)3]q . Then we have

[e2(((12)3)3), e((12)3)3]q
= (−1)(p(α1)+p(α2)+p(α3))p(α2)[e(1(23))(23), e((12)3)3]q (5.36)

= (−1)(p(α1)+p(α2)+p(α3))p(α2)[e123, [e23, e((12)3)3]q ]q/(q1/2 + q−1/2) (5.37)

= (−1)(p(α1)+p(α2)+p(α3))p(α2)[e123, [e23, e1((23)3)]q ]q/(q1/2 + q−1/2) (5.38)

= (−1)(p(α1)+p(α2)+p(α3))p(α2)[e123, [e(23)1, e(23)3]q ]q/(q1/2 + q−1/2) = 0, (5.39)

where we used (5.5), Corollary 2.7(1), Lemma 5.3 for i = 1, (5.3), Lemma 5.3 for i = 2
and (5.14).

The left hand side of (5.26) can be written as [e21, e(21)((23)3)]q . Then we have

[e21, e(21)((23)3)]q
= (−1)(p(α1)+p(α2))(p(α2)+p(α3))[e21, e(23)((23)1)]q ]q (5.40)

= 1/(q1/2 + q−1/2)
(
(−1)(p(α1)+p(α2))(p(α2)+p(α3))([[e21, e23]q , e(23)1]q

− (−1)(p(α2)+p(α3))(p(α1)+p(α2)+p(α3))q−(α2+α3,α1+α2+α3)[e21, e(23)1]qe23
+ (−1)(p(α1)+p(α2))(p(α2)+p(α3))q−(α1+α2,α2+α3)e23[e21, e(23)1]q)

)
, (5.41)

where we used (5.6) and Lemma 2.6. This is actually equal to 0 because we have
[e21, e23]q = 0 by (5.12) and [e21, e(23)1]q = [[e21, e23]q , e1]q = 0 by Corollary 2.7(1),
Corollary 2.8 and (5.12).

We prove (5.62) instead of (5.27). The left hand side of (5.62) can be written as
[[e12, e3(32)]q , e3(32)]q . Here, we have [e12, e3(32)]q = [e123, e32]q/(q1/2 + q−1/2) =
e(((12)3)3)2 where we used Corollary 2.7(1), (5.49) and (5.11). Then, it is sufficient to
show [e(((12)3)3)2, e3(32)]q = 0. This actually holds by repeated use of Lemma 2.6 and
Lemma 2.9(2). ��
Also, by applying the anti-algebra automorphism χ given by (2.20) on the above propo-
sitions, we obtain the following relations:

Proposition 5.7. For the case of rank 3, we have

e1(32) = (−1)p(α1)p(α3)e3(12), (5.42)

e3(3(21)) = e(3(32))1, (5.43)

e1(3(32)) = e3(3(12)), (5.44)

e(32)((32)1) = (−1)(p(α1)+p(α2)+p(α3))p(α2)e(3(3(21)))2, (5.45)

e(1(32))(32) = (−1)p(α1)p(α3)+(p(α1)+p(α2))(p(α2)+p(α3))e(3(32))(12), (5.46)

e(12)(3(32)) = e(((12)3)3)2. (5.47)

Proposition 5.8. For the case of rank 3, we have

[e2, e321] = 0, (5.48)

[e12, e32] = 0, (5.49)

[e32, e3(3(21))] = 0, (5.50)

[e3(32), e1(32)] = 0, (5.51)

[e3, e(12)(3(32))] = 0. (5.52)
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Proposition 5.9. For the case of rank 3, we have

e21e32 − (q + q−1)e1e32e1 + e32e
2
1 = 0 (α1 ∈ �̃+

even), (5.53)

e332e1 − (q + 1 + q−1)e232e1e32 + (q + 1 + q−1)e32e1e
2
32 − e1e

3
32

= 0 (α2 + α3 ∈ �̃+
even), (5.54)

e33e12 − (q + 1 + q−1)e23e12e3 + (q + 1 + q−1)e3e12e
2
3 − e12e

3
3 = 0 (α3 ∈ �̃+

even),

(5.55)

e212e3 − (q + q−1)e12e3e12 + e3e
2
12 = 0 (α1 + α2 ∈ �̃+

even), (5.56)

e21e3(32) − (q + q−1)e1e3(32)e1 + e3(32)e
2
1 = 0 (α1 ∈ �̃+

even), (5.57)

e23(32)e1 − (q + q−1)e3(32)e1e3(32) + e1e
2
3(32) = 0 (α2 + 2α3 ∈ �̃+

even), (5.58)

e22e3(3(21)) − (q + q−1)e2e3(3(21))e2 + e3(3(21))e
2
2 = 0 (α2 ∈ �̃+

even), (5.59)

e23(3(21))e2 − (q + q−1)e3(3(21))e2e3(3(21)) + e2e
2
3(3(21)) = 0 (α1 + α2 + 2α3 ∈ �̃+

even),

(5.60)

e212e3(32) − (q + q−1)e12e3(32)e12 + e3(32)e12 = 0 (α1 + α2 ∈ �̃+
even), (5.61)

e23(32)e12 − (q + q−1)e3(32)e12e3(32) + e12e
2
3(32) = 0 (α2 + 2α3 ∈ �̃+

even). (5.62)

Proposition 5.10. For the case of rank 3, we have

e212 = 0 (α1 + α2 ∈ �̃+
iso), (5.63)

e23(32) = 0 (α2 + 2α3 ∈ �̃+
iso), (5.64)

e23(3(21)) = 0 (α1 + α2 + 2α3 ∈ �̃+
iso), (5.65)

e332e1 + (−1)p(α1)(1 − q − q−1)e232e1e32

+ (1 − q − q−1)e32e1e
2
32 + (−1)p(α1)e1e

3
32 = 0 (α2 + α3 ∈ �̃+

aniso), (5.66)

e33e12 + (−1)p(α1)+p(α2)(1 − q − q−1)e23e12e3

+ (1 − q − q−1)e3e12e
2
3 + (−1)p(α1)+p(α2)e12e

3
3 = 0 (α3 ∈ �̃+

aniso). (5.67)

By writing down quantum root vectors given by Definition 2.3 for the case of rank
2, we find they are given by

B1 : eβ1 = e1, eβ2 = e21, eβ3 = e2(21), eβ4 = e2, (5.68)

B2 : eβ1 = e2, eβ2 = e(12)2, eβ3 = e12, eβ4 = e1, (5.69)

where βt (t = 1, . . . , 4) are the same as Theorem 2.4. For non-super case, (5.68) and
(5.69) concide with quantum root vectors given by (2.25) with the reduced expressions
w0 = s1s2s1s2, s2s1s2s1 of the longest element of the Weyl group, respectively.

Similarly, by writing down quantum root vectors given by Definition 2.3 for the case
of rank 3, we find they are given by

B1 : eβ1 = e1, eβ2 = e21, eβ3 = e321, eβ4 = e3(3(21)), eβ5 = e2(3(3(21))),

eβ6 = e2, eβ7 = e32, eβ8 = e3(32), eβ9 = e3,
(5.70)

B2 : eβ1 = e3, eβ2 = e(23)3, eβ3 = e23, eβ4 = e2, eβ5 = e(((12)3)3)2,

eβ6 = e((12)3)3, eβ7 = e123, eβ8 = e12, eβ9 = e1,
(5.71)
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Table 7. List of Dynkin diagrams of type B of rank 2

g Dynkin diagram

osp(5|0) ε1 − ε2 ε2

osp(3|2) δ1 − ε2 ε2 ε1 − δ2 δ2

osp(1|4) δ1 − δ2 δ2

where βt (t = 1, . . . , 9) are the same as Theorem 2.4. For non-super case, (5.70) and
(5.71) concide with quantum root vectors given by (2.25) with the reduced expressions
w0 = s1s2s3s2s1s2s3s2s3, s3s2s3s2s1s2s3s2s1 of the longest element of the Weyl group,
respectively.

5.2. Transition matrices of PBW bases of type B of rank 2. In this section, we consider
transition matrices of the PBW bases of U+

q (osp(2m + 1|2n)) of rank 2, so m + n = 2.
All possible Dynkin diagrams associated with admissible realizations are given in Table
7, where they are distinguished except , in the sense defined in Sect. 2.2.

For the case of rank2, quantum root vecotrs are givenby (5.68),(5.69), so the transition
matrix (2.32) is given as follows:

e(a)
2 e(b)

(12)2e
(c)
12 e

(d)
1 =

∑

i, j,k,l

γ
a,b,c,d
i, j,k,l e(l)

1 e(k)
21 e

( j)
2(21)e

(i)
2 , (5.72)

where the domain of indices is specified below. Hereafter, we consider each case. Some-
times, we abbreviate simple roots for Dynkin diagrams, but we always assume that they
are given as Table 7.

5.2.1. The case (I) In this case, the corresponding symmetrized Cartan matrix
is given by

DA =
(

2 −1
−1 1

)

, (5.73)

and the corresponding positive roots are given by

�̃+
even = {α1, α2, α1 + α2, α1 + 2α2}, (5.74)

�̃+
iso = {}, (5.75)

�̃+
aniso = {}. (5.76)

Then, indices are specified as i, j, k, l, a, b, c, d ∈ Z≥0 for (5.72). The transition matrix
in (5.72) is explicitly given as the consequence of the Kuniba–Okado–Yamada theorem
[28]:

Theorem 5.11 [26,28] For the quantum superalgebra associated with , the
transition matrix in (5.72) is given by

γ
a,b,c,d
i, j,k,l = J

a,b,c,d
i, j,k,l , (5.77)

where J is the 3D J given by (3.21).
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5.2.2. The case (II) In this case, the corresponding symmetrizedCartanmatrix
is given by

DA =
(

0 −1
−1 1

)

, (5.78)

and the corresponding positive roots are given by

�̃+
even = {α2}, (5.79)

�̃+
iso = {α1, α1 + 2α2}, (5.80)

�̃+
aniso = {α1 + α2}. (5.81)

Then, indices are specified as i, k, a, c ∈ Z≥0, j, l, b, d ∈ {0, 1} for (5.72). We set
X(q) ∈ End(F ⊗ V ⊗ F ⊗ V ) by

X(q)(|i〉 ⊗ u j ⊗ |k〉 ⊗ ul) =
∑

a,c∈Z≥0,b,d∈{0,1}
X(q)

a,b,c,d
i, j,k,l |a〉 ⊗ ub ⊗ |c〉 ⊗ ud ,

(5.82)

X(q)
a,0,c,0
i,0,k,0 = δi,aδk,c

(
1 − (1 − (−q)c)qa

)
, (5.83)

X(q)
a,0,c,0
i,1,k,0 = δi,a−1δk,c−1(−1)cq(a+c−1)/2(1 + q), (5.84)

X(q)
a,0,c,0
i,0,k,1 = δi,a+1δk,c−1(−1)c+1q(a+c−1)/2(1 + q)(1 − qa+1), (5.85)

X(q)
a,0,c,0
i,1,k,1 = δi,aδk,c−2q

a+c−1(1 + q)2, (5.86)

X(q)
a,1,c,0
i,0,k,0 = δi,a+1δk,c+1(−1)c+1q(a−c+1)/2 (1 − qa+1)(1 − (−q)c+1)

1 + q
, (5.87)

X(q)
a,1,c,0
i,1,k,0 = δi,aδk,cq

a+1, (5.88)

X(q)
a,1,c,0
i,0,k,1 = δi,a+2δk,c(1 − qa+1)(1 − qa+2), (5.89)

X(q)
a,1,c,0
i,1,k,1 = δi,a+1δk,c−1(−1)cq(a+c+1)/2(1 + q)(1 − qa+1), (5.90)

X(q)
a,0,c,1
i,0,k,0 = δi,a−1δk,c+1(−1)cq(a−c−1)/2 1 − (−q)c+1

1 + q
, (5.91)

X(q)
a,0,c,1
i,1,k,0 = δi,a−2δk,c, (5.92)

X(q)
a,0,c,1
i,0,k,1 = δi,aδk,cq

a, (5.93)

X(q)
a,0,c,1
i,1,k,1 = δi,a−1δk,c−1(−1)c+1q(a+c−1)/2(1 + q), (5.94)

X(q)
a,1,c,1
i,0,k,0 = δi,aδk,c+2q

a−c (1 − (−q)c+1)(1 − (−q)c+2)

(1 + q)2
, (5.95)

X(q)
a,1,c,1
i,1,k,0 = δi,a−1δk,c+1(−1)c+1q(a−c+1)/2 1 − (−q)c+1

1 + q
, (5.96)

X(q)
a,1,c,1
i,0,k,1 = δi,a+1δk,c+1(−1)cq(a−c+1)/2 (1 − qa+1)(1 − (−q)c+1)

1 + q
, (5.97)

X(q)
a,1,c,1
i,1,k,1 = δi,aδk,c

(
1 − (1 − (−q)c+1)qa+1

)
. (5.98)
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For simplicity, we also use the abbreviated notation X = X(q). We simply call X the
3D X. Then, the transition matrix in (5.72) is explicitly given as follows:

Theorem 5.12. For the quantum superalgebra associated with , the transition
matrix in (5.72) is given by

γ
a,b,c,d
i, j,k,l = X

a,b,c,d
i, j,k,l , (5.99)

where X is the 3D X given by (5.83)–(5.98).

The proof of Theorem 5.12 is available in “Appendix A”.

Corollary 5.13.

X−1 = X. (5.100)

Proof. This is shown exactly in the same way as Corollary 4.5. ��

5.2.3. The case (III) In this case, the corresponding symmetrized Cartan
matrix is given by

DA =
(

0 −1
−1 1

)

, (5.101)

and the corresponding positive roots are given by

�̃+
even = {α1 + α2}, (5.102)

�̃+
iso = {α1, α1 + 2α2}, (5.103)

�̃+
aniso = {α2}. (5.104)

Then, indices are specified as i, k, a, c ∈ Z≥0, j, l, b, d ∈ {0, 1} for (5.72). We set
Y(q) ∈ End(F ⊗ V ⊗ F ⊗ V ) by

Y(q)(|i〉 ⊗ u j ⊗ |k〉 ⊗ ul) =
∑

a,c∈Z≥0,b,d∈{0,1}
Y(q)

a,b,c,d
i, j,k,l |a〉 ⊗ ub ⊗ |c〉 ⊗ ud ,

(5.105)

Y(q)
a,0,c,0
i,0,k,0 = δi,aδk,c

(
1 − (1 − qc)(−q)a

)
, (5.106)

Y(q)
a,0,c,0
i,1,k,0 = δi,a−1δk,c−1q

(a+c−1)/2(1 + q), (5.107)

Y(q)
a,0,c,0
i,0,k,1 = δi,a+1δk,c−1(−1)aq(a+c−1)/2(1 − q)(1 − (−q)a+1), (5.108)

Y(q)
a,0,c,0
i,1,k,1 = δi,aδk,c−2(−1)aqa+c−1(1 − q2), (5.109)

Y(q)
a,1,c,0
i,0,k,0 = δi,a+1δk,c+1(−1)a+1q(a−c+1)/2 (1 − (−q)a+1)(1 − qc+1)

1 + q
, (5.110)

Y(q)
a,1,c,0
i,1,k,0 = δi,aδk,c(−q)a+1, (5.111)

Y(q)
a,1,c,0
i,0,k,1 = δi,a+2δk,c(−1)a

(1 − q)(1 − (−q)a+1)(1 − (−q)a+2)

1 + q
, (5.112)

Y(q)
a,1,c,0
i,1,k,1 = δi,a+1δk,c−1(−1)aq(a+c+1)/2(1 − q)(1 − (−q)a+1), (5.113)



520 A. Yoneyama

Y(q)
a,0,c,1
i,0,k,0 = δi,a−1δk,c+1q

(a−c−1)/2 1 − qc+1

1 − q
, (5.114)

Y(q)
a,0,c,1
i,1,k,0 = δi,a−2δk,c(−1)a

1 + q

1 − q
, (5.115)

Y(q)
a,0,c,1
i,0,k,1 = δi,aδk,c(−q)a, (5.116)

Y(q)
a,0,c,1
i,1,k,1 = −δi,a−1δk,c−1q

(a+c−1)/2(1 + q), (5.117)

Y(q)
a,1,c,1
i,0,k,0 = δi,aδk,c+2(−1)a+1qa−c (1 − qc+1)(1 − qc+2)

1 − q2
, (5.118)

Y(q)
a,1,c,1
i,1,k,0 = δi,a−1δk,c+1q

(a−c+1)/2 1 − qc+1

1 − q
, (5.119)

Y(q)
a,1,c,1
i,0,k,1 = δi,a+1δk,c+1(−1)aq(a−c+1)/2 (1 − (−q)a+1)(1 − qc+1)

1 + q
, (5.120)

Y(q)
a,1,c,1
i,1,k,1 = δi,aδk,c

(
1 − (1 − qc+1)(−q)a+1

)
. (5.121)

For simplicity, we also use the abbreviated notation Y = Y(q). We simply call Y the 3D
Y. Then, the transition matrix in (5.72) is explicitly given as follows:

Theorem 5.14. For the quantum superalgebra associated with , the transition
matrix in (5.72) is given by

γ
a,b,c,d
i, j,k,l = Y

a,b,c,d
i, j,k,l , (5.122)

where Y is the 3D Y given by (5.106)–(5.121).

Proof. The relations e1, e2 satisfy are

e21 = 0, e32e1 − (1 − q − q−1)e22e1e2 + (1 − q − q−1)e2e1e
2
2 − e1e

3
2 = 0, (5.123)

Also, the quantum root vectors are given by

e12 = e1e2 + qe2e1, e21 = e2e1 + qe1e2, (5.124)

e(12)2 = e12e2 − e2e12
q1/2 + q−1/2 , e2(21) = e2e21 − e21e2

q1/2 + q−1/2 . (5.125)

On the other hand, for the case (II) , the relations for the generators are

ẽ21 = 0, ẽ32 ẽ1 − (1 + q + q−1)ẽ22 ẽ1ẽ2 + (1 + q + q−1)ẽ2ẽ1ẽ
2
2 − ẽ1ẽ

3
2 = 0, (5.126)

where we write the generators by ẽi instead of ei to avoid confusion. Also, the quantum
root vectors for the case (II) are given by

ẽ12 = ẽ1ẽ2 − qẽ2ẽ1, ẽ21 = ẽ2ẽ1 − qẽ1ẽ2, (5.127)

ẽ(12)2 = ẽ12ẽ2 − ẽ2ẽ12
q1/2 + q−1/2 , ẽ2(21) = ẽ2ẽ21 − ẽ21ẽ2

q1/2 + q−1/2 . (5.128)

Apparently, (5.126), (5.127) and the numerators of (5.128) correspond to (5.123), (5.124)
and the numerators of (5.125) with a replacement q → −q.
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Here, (5.72) for the case (II) and (III) are explicitly written as
follows:

ẽa2
[a]q1/2 !

(
ẽ12ẽ2 − ẽ2ẽ12
q1/2 + q−1/2

)b
(ẽ1ẽ2 − qẽ2ẽ1)c

[c]q−1/2,(−1)!
ẽd1

=
∑

i, j,k,l

X
a,b,c,d
i, j,k,l ẽ

l
1
(ẽ2ẽ1 − qẽ1ẽ2)k

[k]q−1/2,(−1)!
(
ẽ2ẽ21 − ẽ21ẽ2
q1/2 + q−1/2

)j ẽi2
[i]q1/2 !

. (5.129)

ea2
[a]q1/2,(−1)!

(
e12e2 − e2e12
q1/2 + q−1/2

)b
(e1e2 − qe2e1)c

[c]q−1/2 ! ed1

=
∑

i, j,k,l

γ
a,b,c,d
i, j,k,l el1

(e2e1 − qe1e2)k

[k]q−1/2 !
(
e2e21 − e21e2
q1/2 + q−1/2

)j ei2
[i]q1/2,(−1)!

. (5.130)

Comparing (5.129) with q → −q and (5.130), we obtain the following relation:

γ
a,b,c,d
i, j,k,l =

(
1

q1/2 + q−1/2

)j−b [a]q1/2 ![c]q−1/2,(−1)!
[i]q1/2 ![k]q−1/2,(−1)!

X
a,b,c,d
i, j,k,l

∣
∣
∣
∣
∣
q→−q

× (q1/2 + q−1/2) j−b [i]q1/2,(−1)![k]q−1/2 !
[a]q1/2,(−1)![c]q−1/2 ! (5.131)

= (−1)i(i−1)/4−k(k−1)/4−a(a−1)/4+c(c−1)/4+ j/2−b/2
(
1 + q

1 − q

)j−b

X(−q)
a,b,c,d
i, j,k,l ,

(5.132)

where we used

[m](−q)1/2 ! = (−1)m(m−1)/4[m]q1/2,(−1)!, (5.133)

[m](−q)−1/2,(−1)! = (−1)−m(m−1)/4[m]q−1/2 !, (5.134)

1

((−q)1/2 + (−q)−1/2)m
= (−1)m/2

(
1 + q

1 − q

)m 1

(q1/2 + q−1/2)m
. (5.135)

We then obtain the desired result by direct calculations. We note that (5.132) involves
(−1)1/2, but no matrix elements of the 3D Y involve it. ��
Corollary 5.15.

Y−1 = Y. (5.136)

Proof. This is shown exactly in the same way as Corollary 4.5. ��

5.2.4. The case (IV) In this case, the corresponding symmetrized Cartan
matrix is given by

DA =
(

2 −1
−1 1

)

, (5.137)

and the corresponding positive roots are given by

�̃+
even = {α1, α1 + 2α2}, (5.138)
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Table 8. List of Dynkin diagrams of type B of rank 3

g(m|n) Dynkin diagram

osp(7|0) ε1 − ε2 ε2 − ε3 ε3

osp(5|2) ε1 − ε2 ε2 − δ3 δ3 ε1 − δ2 δ2 − ε3 ε3 δ1 − ε2 ε2 − ε3 ε3

osp(3|4) ε1 − δ2 δ2 − δ3 δ3 δ1 − ε2 ε2 − δ3 δ3 δ1 − δ2 δ2 − ε3 ε3

osp(1|6) δ1 − δ2 δ2 − δ3 δ3

�̃+
iso = {}, (5.139)

�̃+
aniso = {α2, α1 + α2}. (5.140)

Then, the indices are specified as i, j, k, l, a, b, c, d ∈ Z≥0 for (5.72). We write matrix
elements of the transition matrix in (5.72) by

γ
a,b,c,d
i, j,k,l = Z(q)

a,b,c,d
i, j,k,l . (5.141)

For simplicity, we also use the abbreviated notation Z = Z(q). We simply call Z the 3D
Z.

At present, an explict formula for the 3D Z is yet to be constructed. In “Appendix B”,
we present recurrence equations for the 3D Z. We can calculate any matrix elements of
the 3D Z by using a computer program via these equations.

Example 5.16. The following is the list of all the non-zero elements of Za,b,c,d
0,1,1,2 :

Z
0,0,3,1
0,1,1,2 = q4(1 + q)2(1 + q2), (5.142)

Z
0,1,1,2
0,1,1,2 = −q2(1 − q4 − q7), (5.143)

Z
1,0,2,2
0,1,1,2 = −q3(1 + q)(1 + q + q2 + q3 + q5), (5.144)

Z
1,1,0,3
0,1,1,2 = 1 − q4 − q7, (5.145)

Z
2,0,1,3
0,1,1,2 = −q5(1 + q3)

1 − q
, (5.146)

Z
3,0,0,4
0,1,1,2 = q2(1 + q)

1 − q
. (5.147)

5.3. Transition matrices of PBW bases of type B of rank 3 and 3D reflection equation. In
this section,we condider the transitionmatrices of the PBWbases ofU+

q (osp(2m+1|2n))

of rank 3, so m + n = 3. All possible Dynkin diagrams associated with admissible
realizations are given in Table 8.

For the case of rank 3, quantum root vectors are given by (5.70) and (5.71), so the
transition matrix in (2.32) is given as follows:

e
(o1)
3 e

(o2)
(23)3e

(o3)
23 e

(o4)
2 e

(o5)
(((12)3)3)2e

(o6)
((12)3)3e

(o7)
123 e

(o8)
12 e

(o9)
1

=
∑

i1,i2,i3,i4,i5,i6,i7,i8,i9

γ
o1,o2,o3,o4,o5,o6,o7,o8,o9
i1,i2,i3,i4,i5,i6,i7,i8,i9

e
(i9)
1 e

(i8)
21 e

(i7)
321 e

(i6)
3(3(21))e

(i5)
2(3(3(21)))e

(i4)
2 e

(i3)
32 e

(i2)
3(32)e

(i1)
3 ,

(5.148)
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where the domain of indices is specified below. In order to attribute the transition matrix
in (5.148) to a composition of transition matrices of rank 2, we exploit the following
transition matrices �(x) and �(y):

e(a)
2 e(b)

12 e
(c)
1 =

∑

i, j,k

�(2|1)a,b,c
i, j,k e

(k)
1 e( j)

21 e
(i)
2 , (5.149)

e(a)
2 e(b)

(((12)3)3)2e
(c)
((12)3)3 =

∑

i, j,k

�(2|1233)a,b,c
i, j,k e

(k)
((12)3)3e

( j)
2(((12)3)3)e

(i)
2 , (5.150)

e(a)
2 e(b)

((3(32))1)2e
(c)
(3(32))1 =

∑

i, j,k

�(2|3321)a,b,c
i, j,k e

(k)
(3(32))1e

( j)
2((3(32))1)e

(i)
2 , (5.151)

e(a)
(23)3e

(b)
1((23)3)e

(c)
1 =

∑

i, j,k

�(233|1)a,b,c
i, j,k e

(k)
1 e( j)

((23)3)1e
(i)
(23)3, (5.152)

e(a)
3(32)e

(b)
1(3(32))e

(c)
1 =

∑

i, j,k

�(332|1)a,b,c
i, j,k e

(k)
1 e( j)

(3(32))1e
(i)
3(32), (5.153)

e(a)
(23)3e

(b)
(21)((23)3)e

(c)
21 =

∑

i, j,k

�(233|21)a,b,c
i, j,k e

(k)
21 e

( j)
((23)3)(21)e

(i)
(23)3, (5.154)

e(a)
3(32)e

(b)
(12)(3(32))e

(c)
12 =

∑

i, j,k

�(332|12)a,b,c
i, j,k e

(k)
12 e

( j)
(3(32))(12)e

(i)
3(32), (5.155)

e(a)
3 e(b)

(23)3e
(c)
23 e

(d)
2 =

∑

i, j,k,l

�(3|2)a,b,c,d
i, j,k,l e

(l)
2 e(k)

32 e
( j)
3(32)e

(i)
3 , (5.156)

e(a)
3 e(b)

((21)3)3e
(c)
(21)3e

(d)
21 =

∑

i, j,k,l

�(3|21)a,b,c,d
i, j,k,l e

(l)
21e

(k)
3(21)e

( j)
3(3(21))e

(i)
3 , (5.157)

e(a)
3 e(b)

((12)3)3e
(c)
(12)3e

(d)
12 =

∑

i, j,k,l

�(3|12)a,b,c,d
i, j,k,l e

(l)
12e

(k)
3(12)e

( j)
3(3(12))e

(i)
3 , (5.158)

e(a)
23 e

(b)
(1(23))(23)e

(c)
1(23)e

(d)
1 =

∑

i, j,k,l

�(23|1)a,b,c,d
i, j,k,l e

(l)
1 e(k)

(23)1e
( j)
(23)((23)1)e

(i)
23 , (5.159)

e(a)
32 e

(b)
(1(32))(32)e

(c)
1(32)e

(d)
1 =

∑

i, j,k,l

�(32|1)a,b,c,d
i, j,k,l e

(l)
1 e(k)

(32)1e
( j)
(32)((32)1)e

(i)
32 , (5.160)

where the domain of indices will be specified. For each case in Table 8, �(x) and �(y)

are identified with the 3D operators we have already introduced.
Then, by using �(x), �(y), Propositions 5.2, 5.4 and Propositions 5.7, 5.8, we can

construct the transition matrix in (5.148) in two ways. The first way is given by

e(o1)
3 e(o2)

(23)3e
(o3)
23 e(o4)

2 e(o5)
(((12)3)3)2e

(o6)
((12)3)3e

(o7)
123 e

(o8)
12 e(o9)

1 (5.161)

=
∑

�(2|1233)o4,o5,o6
y4,y5,y6e

(o1)
3 e(o2)

(23)3e
(o3)
23 e(y6)

((12)3)3e
(y5)
2(((12)3)3)e

(y4)
2 e(o7)

123 e
(o8)
12 e(o9)

1 (5.162)

=
∑

(−1)ρ3 y4o7+η2o3 y6�(2|1233)o4,o5,o6
y4,y5,y6e

(o1)
3 e(o2)

(23)3e
(y6)
((12)3)3e

(o3)
23 e(y5)

2(((12)3)3)e
(o7)
123 e

(y4)
2 e(o8)

12 e(o9)
1

(5.163)

=
∑

(−1)ρ3(y4o7+y5)+η2o3 y6�(2|1233)o4,o5,o6
y4,y5,y6�

(2|1) y4,o8,o9
x4,y8,y9
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× e(o1)
3 e(o2)

(23)3 e
(y6)
((12)3)3 e

(o3)
23 e(y5)

(1(23))(23)e
(o7)
123 e

(y9)
1 e(y8)

21 e(x4)
2 (5.164)

=
∑

(−1)ρ3(y4o7+y5)+η2o3 y6�(2|1233)o4,o5,o6
y4,y5,y6�

(2|1) y4,o8,o9
x4,y8,y9�

(23|1)o3,y5,o7,y9
x3,x5,x7,x9

× e(o1)
3 e(o2)

(23)3e
(y6)
1((23)3)e

(x9)
1 e(x7)

(23)1e
(x5)
(23)((23)1)e

(x3)
23 e(y8)

21 e(x4)
2 (5.165)

=
∑

(−1)ρ3(y4o7+y5)+η2o3 y6�(2|1233)o4,o5,o6
y4,y5,y6�

(2|1) y4,o8,o9
x4,y8,y9�

(23|1)o3,y5,o7,y9
x3,x5,x7,x9�

(233|1)o2,y6,x9
y2,x6,i9

× e(o1)
3 e(i9)

1 e(x6)
((23)3)1e

(y2)
(23)3e

(x7)
(23)1 e

(x5)
(23)((23)1) e

(x3)
23 e(y8)

21 e(x4)
2 (5.166)

=
∑

(−1)ρ1(o1i9+x5)+ρ2(x3 y8+x5)+ρ3(y4o7+y5)+η2o3 y6+η3 y2x7

× �(2|1233)o4,o5,o6
y4,y5,y6�

(2|1) y4,o8,o9
x4,y8,y9�

(23|1)o3,y5,o7,y9
x3,x5,x7,x9�

(233|1)o2,y6,x9
y2,x6,i9

× e(i9)
1 e(o1)

3 e(x6)
((23)3)1 e

(x7)
(23)1 e

(y2)
(23)3e

(x5)
(21)((23)3)e

(y8)
21 e(x3)

23 e(x4)
2 (5.167)

=
∑

(−1)ρ1(o1i9+x5+x7)+ρ2(x3 y8+x5)+ρ3(y4o7+y5)+η2o3 y6+η3 y2x7

× �(2|1233)o4,o5,o6
y4,y5,y6�

(2|1) y4,o8,o9
x4,y8,y9�

(23|1)o3,y5,o7,y9
x3,x5,x7,x9�

(233|1)o2,y6,x9
y2,x6,i9

�(233|21) y2,x5,y8
x2,i5,x8

× e(i9)
1 e(o1)

3 e(x6)
((21)3)3e

(x7)
(21)3e

(x8)
21 e(i5)

((23)3)(21)e
(x2)
(23)3e

(x3)
23 e(x4)

2 (5.168)

=
∑

(−1)ρ1(o1i9+x5+x7)+ρ2(x3 y8+x5)+ρ3(y4o7+y5)+η2o3 y6+η3 y2x7�(2|1233)o4,o5,o6
y4,y5,y6�

(2|1) y4,o8,o9
x4,y8,y9

× �(23|1)o3,y5,o7,y9
x3,x5,x7,x9�

(233|1)o2,y6,x9
y2,x6,i9

�(233|21) y2,x5,y8
x2,i5,x8

�(3|21)o1,x6,x7,x8
x1,i6,i7,i8

× e(i9)
1 e(i8)

21 e(i7)
321e

(i6)
3(3(21))e

(x1)
3 e(i5)

((23)3)(21)e
(x2)
(23)3e

(x3)
23 e(x4)

2 (5.169)

=
∑

(−1)ρ1(o1i9+x5+x7)+ρ2(x3 y8+x5)+ρ3(y4o7+y5)+η1x1i5+η2o3 y6+η3 y2x7

�(2|1233)o4,o5,o6
y4,y5,y6�

(2|1) y4,o8,o9
x4,y8,y9

× �(23|1)o3,y5,o7,y9
x3,x5,x7,x9�

(233|1)o2,y6,x9
y2,x6,i9

�(233|21) y2,x5,y8
x2,i5,x8

�(3|21)o1,x6,x7,x8
x1,i6,i7,i8

× e(i9)
1 e(i8)

21 e(i7)
321e

(i6)
3(3(21))e

(i5)
((23)3)(21)e

(x1)
3 e(x2)

(23)3e
(x3)
23 e(x4)

2 (5.170)

=
∑

(−1)ρ1(o1i9+x5+x7)+ρ2(x3 y8+x5)+ρ3(y4o7+y5)+η1x1i5+η2o3 y6+η3 y2x7

�(2|1233)o4,o5,o6
y4,y5,y6�

(2|1) y4,o8,o9
x4,y8,y9

× �(23|1)o3,y5,o7,y9
x3,x5,x7,x9�

(233|1)o2,y6,x9
y2,x6,i9

�(233|21) y2,x5,y8
x2,i5,x8

�(3|21)o1,x6,x7,x8
x1,i6,i7,i8

�(3|2)x1,x2,x3,x4
i1,i2,i3,i4

× e(i9)
1 e(i8)

21 e(i7)
321e

(i6)
3(3(21))e

(i5)
((23)3)(21)e

(i4)
2 e(i3)

32 e(i2)
3(32)e

(i1)
3 (5.171)

=
∑

(−1)ρ1(o1i9+x5+x7)+ρ2(x3 y8+x5)+ρ3(y4o7+y5)+η1x1i5+η2o3 y6+η3 y2x7

�(2|1233)o4,o5,o6
y4,y5,y6�

(2|1) y4,o8,o9
x4,y8,y9

× �(23|1)o3,y5,o7,y9
x3,x5,x7,x9�

(233|1)o2,y6,x9
y2,x6,i9

�(233|21) y2,x5,y8
x2,i5,x8

�(3|21)o1,x6,x7,x8
x1,i6,i7,i8

�(3|2)x1,x2,x3,x4
i1,i2,i3,i4

× e(i9)
1 e(i8)

21 e(i7)
321e

(i6)
3(3(21))e

(i5)
2(3(3(21)))e

(i4)
2 e(i3)

32 e(i2)
3(32)e

(i1)
3 , (5.172)

where summations are taken on ik, xk (k = 1, . . . , 9), yk (k = 2, 4, 5, 6, 8, 9). We have
put the underlines to the parts to be rewritten. We used ρ1, ρ2, ρ3 given by (4.79) and
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we have also set

η1 = p(α3)p(α1 + 2α2 + 2α3),

η2 = p(α2 + α3)p(α1 + α2 + 2α3),

η3 = p(α1 + α2 + α3)p(α2 + 2α3).

(5.173)

We note that η1, η2 and η3 are actually equal to ρ1, ρ2 and ρ3, respectively because the
parts whose coefficients are 2 do not contribute the parity. We exploit both of them for
a better understanding. The details of the above procedure are as follows. For (5.161),
we used (5.150). For (5.162), we used (5.13) and (5.11). For (5.163), we used (5.149)
and (5.4). For (5.164), we used (5.159) and (5.3). For (5.165), we used (5.152). For
(5.166), we used [e1, e3] = 0, (5.6), (5.12) and (5.14). For (5.167), we used (5.2), (5.4)
and (5.154). For (5.168), we used (5.157). For (5.169), we used (5.15). For (5.170), we
used (5.156). For (5.171), we used (5.7).

Similarly, the second way is given by

e(o1)
3 e(o2)

(23)3e
(o3)
23 e(o4)

2 e(o5)
(((12)3)3)2e

(o6)
((12)3)3e

(o7)
123 e

(o8)
12 e(o9)

1 (5.174)

=
∑

�(3|2)o1,o2,o3,o4
x1,y2,x3,y4e

(y4)
2 e(x3)

32 e(y2)
3(32)e

(x1)
3 e(o5)

(((12)3)3)2e
(o6)
((12)3)3e

(o7)
123 e

(o8)
12 e(o9)

1 (5.175)

=
∑

(−1)η1x1o5�(3|2)o1,o2,o3,o4
x1,y2,x3,y4e

(y4)
2 e(x3)

32 e(y2)
3(32) e

(o5)
(((12)3)3)2 e

(x1)
3 e(o6)

((12)3)3e
(o7)
123 e

(o8)
12 e(o9)

1

(5.176)

=
∑

(−1)η1x1o5�(3|2)o1,o2,o3,o4
x1,y2,x3,y4�

(3|12)x1,o6,o7,o8
i1,y6,x7,y8

× e(y4)
2 e(x3)

32 e(y2)
3(32)e

(o5)
(12)(3(32))e

(y8)
12 e(x7)

3(12)e
(y6)
3(3(12))e

(i1)
3 e(o9)

1 (5.177)

=
∑

(−1)η1x1o5�(3|2)o1,o2,o3,o4
x1,y2,x3,y4�

(3|12)x1,o6,o7,o8
i1,y6,x7,y8

�(332|12)y2,o5,y8
x2,y5,x8

× e(y4)
2 e(x3)

32 e(x8)
12 e(y5)

(3(32))(12)e
(x2)
3(32)e

(x7)
3(12) e

(y6)
3(3(12)) e

(i1)
3 e(o9)

1 (5.178)

=
∑

(−1)ρ1i1o9+ρ2x3x8+η1x1o5+η3x2x7�(3|2)o1,o2,o3,o4
x1,y2,x3,y4�

(3|12)x1,o6,o7,o8
i1,y6,x7,y8

�(332|12)y2,o5,y8
x2,y5,x8

× e(y4)
2 e(x8)

12 e(x3)
32 e(y5)

(3(32))(12) e
(x7)
3(12) e

(x2)
3(32)e

(y6)
1(3(32))e

(o9)
1 e(i1)

3 (5.179)

=
∑

(−1)ρ1(i1o9+x7+y5)+ρ2(x3x8+y5)+η1x1o5+η3x2x7

× �(3|2)o1,o2,o3,o4
x1,y2,x3,y4�

(3|12)x1,o6,o7,o8
i1,y6,x7,y8

�(332|12)y2,o5,y8
x2,y5,x8�

(332|1)x2,y6,o9
i2,x6,y9

× e(y4)
2 e(x8)

12 e(x3)
32 e(y5)

(1(32))(32)e
(x7)
1(32)e

(y9)
1 e(x6)

(3(32))1e
(i2)
3(32)e

(i1)
3 (5.180)

=
∑

(−1)ρ1(i1o9+x7+y5)+ρ2(x3x8+y5)+η1x1o5+η3x2x7

× �(3|2)o1,o2,o3,o4
x1,y2,x3,y4�

(3|12)x1,o6,o7,o8
i1,y6,x7,y8

�(332|12)y2,o5,y8
x2,y5,x8�

(332|1)x2,y6,o9
i2,x6,y9

�(32|1)x3,y5,x7,y9
i3,x5,i7,x9

× e(y4)
2 e(x8)

12 e(x9)
1 e(i7)

321e
(x5)
(32)((32)1)e

(i3)
32 e(x6)

(3(32))1e
(i2)
3(32)e

(i1)
3 (5.181)

=
∑

(−1)ρ1(i1o9+x7+y5)+ρ2(x3x8+y5)+η1x1o5+η3x2x7�(3|2)o1,o2,o3,o4
x1,y2,x3,y4�

(3|12)x1,o6,o7,o8
i1,y6,x7,y8

× �(332|12)y2,o5,y8
x2,y5,x8�

(332|1)x2,y6,o9
i2,x6,y9

�(32|1)x3,y5,x7,y9
i3,x5,i7,x9

�(2|1)y4,x8,x9
x4,i8,i9

× e(i9)
1 e(i8)

21 e(x4)
2 e(i7)

321 e
(x5)
(32)((32)1) e

(i3)
32 e(x6)

(3(32))1e
(i2)
3(32)e

(i1)
3 (5.182)

=
∑

(−1)ρ1(i1o9+x7+y5)+ρ2(x3x8+y5)+ρ3(x4i7+x5)+η1x1o5+η2i3x6+η3x2x7�(3|2)o1,o2,o3,o4
x1,y2,x3,y4
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× �(3|12)x1,o6,o7,o8
i1,y6,x7,y8

�(332|12)y2,o5,y8
x2,y5,x8�

(332|1)x2,y6,o9
i2,x6,y9

�(32|1)x3,y5,x7,y9
i3,x5,i7,x9

�(2|1)y4,x8,x9
x4,i8,i9

× e(i9)
1 e(i8)

21 e(i7)
321e

(x4)
2 e(x5)

((3(32))1)2e
(x6)
(3(32))1e

(i3)
32 e(i2)

3(32)e
(i1)
3 (5.183)

=
∑

(−1)ρ1(i1o9+x7+y5)+ρ2(x3x8+y5)+ρ3(x4i7+x5)+η1x1o5+η2i3x6+η3x2x7�(3|2)o1,o2,o3,o4
x1,y2,x3,y4

× �(3|12)x1,o6,o7,o8
i1,y6,x7,y8

�(332|12)y2,o5,y8
x2,y5,x8�

(332|1)x2,y6,o9
i2,x6,y9

�(32|1)x3,y5,x7,y9
i3,x5,i7,x9

�(2|1)y4,x8,x9
x4,i8,i9

× �(2|3321)x4,x5,x6
i4,i5,i6

e(i9)
1 e(i8)

21 e(i7)
321 e

(i6)
(3(32))1 e

(i5)
2((3(32))1)e

(i4)
2 e(i3)

32 e(i2)
3(32)e

(i1)
3 (5.184)

=
∑

(−1)ρ1(i1o9+x7+y5)+ρ2(x3x8+y5)+ρ3(x4i7+x5)+η1x1o5+η2i3x6+η3x2x7�(3|2)o1,o2,o3,o4
x1,y2,x3,y4

× �(3|12)x1,o6,o7,o8
i1,y6,x7,y8

�(332|12)y2,o5,y8
x2,y5,x8�

(332|1)x2,y6,o9
i2,x6,y9

�(32|1)x3,y5,x7,y9
i3,x5,i7,x9

�(2|1)y4,x8,x9
x4,i8,i9

× �(2|3321)x4,x5,x6
i4,i5,i6

e(i9)
1 e(i8)

21 e(i7)
321e

(i6)
3(3(21))e

(i5)
2(3(3(21)))e

(i4)
2 e(i3)

32 e(i2)
3(32)e

(i1)
3 , , (5.185)

where summations are taken on ik, xk (k = 1, . . . , 9), yk (k = 2, 4, 5, 6, 8, 9). Again,
we have put the underlines to the parts to be rewritten. The details of the above procedure
are as follows. For (5.174), we used (5.156). For (5.175), we used (5.47) and (5.52). For
(5.176), we used (5.158) and (5.47). For (5.177), we used (5.155). For (5.178), we used
[e1, e3] = 0, (5.42), (5.44), (5.49) and (5.51). For (5.179), we used (5.153), (5.42) and
(5.46). For (5.180), we used (5.160). For (5.181), we used (5.149). For (5.182), we used
(5.42), (5.43) and (5.45), (5.48) and (5.50). For (5.183), we used (5.151). For (5.184),
we used (5.43).

Now, {e(i9)
1 e(i8)

21 e(i7)
321e

(i6)
3(3(21))e

(i5)
2(3(3(21)))e

(i4)
2 e(i3)

32 e(i2)
3(32)e

(i1)
3 } are linearly independent by

Theorem 2.4. Then, by comparing (5.172) and (5.185), we obtain the following result:

Theorem 5.17. As the identity of transition matrices of quantum superalgebras associ-
ated with type B, we have

∑
(−1)ρ1(o1i9+x5+x7)+ρ2(x3 y8+x5)+ρ3(y4o7+y5)+η1x1i5+η2o3 y6+η3 y2x7�(2|1233)o4,o5,o6

y4,y5,y6�
(2|1) y4,o8,o9

x4,y8,y9

× �(23|1)o3,y5,o7,y9
x3,x5,x7,x9�

(233|1)o2,y6,x9
y2,x6,i9

�(233|21) y2,x5,y8
x2,i5,x8

�(3|21)o1,x6,x7,x8
x1,i6,i7,i8

�(3|2)x1,x2,x3,x4
i1,i2,i3,i4

=
∑

(−1)ρ1(i1o9+x7+y5)+ρ2(x3x8+y5)+ρ3(x4i7+x5)+η1x1o5+η2i3x6+η3x2x7�(3|2)o1,o2,o3,o4
x1,y2,x3,y4�

(3|12)x1,o6,o7,o8
i1,y6,x7,y8

× �(332|12) y2,o5,y8
x2,y5,x8�

(332|1)x2,y6,o9
i2,x6,y9

�(32|1)x3,y5,x7,y9
i3,x5,i7,x9

�(2|1) y4,x8,x9
x4,i8,i9

�(2|3321)x4,x5,x6
i4,i5,i6

.

(5.186)

where summations are taken on xk (k = 1, . . . , 9) and yk (k = 2, 4, 5, 6, 8, 9).

The above equation (5.186) generally involves nonlocal sign factors. Here, we group
the Dynkin diagrams given by Table 8 into the two families. In Table 8, we have ρ1 =
ρ2 = ρ3 = η1 = η2 = η3 = 0 for the following Dynkin diagrams given by (5.187):

(I)
ε1 − ε2 ε2 − ε3 ε3

(II)
δ1 − ε2 ε2 − ε3 ε3

(III)
ε1 − δ2 δ2 − ε3 ε3

(IV)
ε1 − ε2 ε2 − δ3 δ3

(V)
ε1 − ε2 ε2 − δ3 δ3

(5.187)

where (I) (II) and (IV) are distinguished, in the sense defined in Sect. 2.2. For each case
of (5.187), (5.186) exactly gives the 3D reflection equation. On the other hand, there are
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non-trivial nonlocal sign factors for the following Dynkin diagrams given by (5.188):

(VI)
δ1 − δ2 δ2 − ε3 ε3

(VII)
ε1 − δ2 δ2 − δ3 δ3

(VIII)
δ1 − ε2 ε2 − δ3 δ3

(5.188)

where (VI) is distinguished. Then, as we will see later, the associated equations are the
3D reflection equation up to sign factors. Hereafter, we specialize Theorem 5.17 for each
case given in (5.187) and (5.188).

5.3.1. The case (I) In this case, the corresponding symmetrized Cartan
matrix is given by

DA =
⎛

⎝
2 −1 0

−1 2 −1
0 −1 1

⎞

⎠ , (5.189)

and the corresponding positive roots are given by

�̃+
even = {α1, α2, α3, α1 + α2, α2 + α3, α2 + 2α3, (5.190)

α1 + α2 + α3, α1 + α2 + 2α3, α1 + 2α2 + 2α3}, (5.191)

�̃+
iso = {}, (5.192)

�̃+
aniso = {}. (5.193)

Now, �(x), �(y) defined by (5.149)–(5.160) are specified as follows:

Lemma 5.18. For the quantum superalgebra associated with , we have
(5.149)– (5.160) where �(x), �(y) are given by

�(x) = R (x = 2|1, 2|1233, 2|3321, 233|1, 332|1, 233|21, 332|12),
�(y) = J (y = 3|2, 3|21, 3|12, 23|1, 32|1). (5.194)

Proof. �(2|1) and �(y) can be obtained in the same way as Lemma 4.11 via the propo-
sitions given in Sect. 5.1. The remaining cases are also obtained almost in the same
way, but we have to care the normalization factor q1/2 + q−1/2 of quantum root vectors,
which is given by the begining of Sect. 5.1. Here, we only present the proof for �(233|1).
Similarly to Lemma 4.11, by considering (5.22) and (5.23), h : U+

q (sl(3)) → U+
q (so(5))

defined by e1 �→ e1, e2 �→ e(23)3 gives an algebra homomorphism. Also, dα2+2α3 = dα2

is satisfied where the left hand side is for U+
q (so(5)) and the right hand side is for

U+
q (sl(3)), so [m]qdα2+α3 ! = [m]qdα2 ! holds. Therefore, by applying h on (4.25) for the

case , we obtain

e(a)
(23)3e

(b)
1((23)3)e

(c)
1 =

∑

i, j,k

(q1/2 + q−1/2)i+ j−a−bR
a,b,c
i, j,k e

(k)
1 e( j)

((23)3)1e
(i)
(23)3, (5.195)

The 3DR satisfies theweight conservation law:Ra,b,c
i, j,k = 0 if i+ j 
= a+b or j+k 
= b+c.

We then obtain (5.152) for �(233|1) = R. ��
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The phase factors given by (4.79) and (5.173) are now ρ1 = ρ2 = ρ3 = 0 and
η1 = η2 = η3 = 0. Then, (5.186) is specialized as follows:
∑

Ro4,o5,o6
y4,y5,y6R

y4,o8,o9
x4,y8,y9J

o3,y5,o7,y9
x3,x5,x7,x9R

o2,y6,x9
y2,x6,i9

R
y2,x5,y8
x2,i5,x8

J
o1,x6,x7,x8
x1,i6,i7,i8

J
x1,x2,x3,x4
i1,i2,i3,i4

=
∑

Jo1,o2,o3,o4x1,y2,x3,y4J
x1,o6,o7,o8
i1,y6,x7,y8

R
y2,o5,y8
x2,y5,x8R

x2,y6,o9
i2,x6,y9

J
x3,y5,x7,y9
i3,x5,i7,x9

R
y4,x8,x9
x4,i8,i9

R
x4,x5,x6
i4,i5,i6

,
(5.196)

where all indices are defined on Z≥0. This is exactly the 3D reflection equation (3.27):

R456R489J3579R269R258J1678J1234 = J1234J1678R258R269J3579R489R456. (5.197)

We then get the following result:

Corollary 5.19. The 3D reflection equation (3.27) is characterized as the identity of the
transition matrices of the quantum superalgebra associated with .

We note that although Corollary 5.19 is a corollary of the Kuniba–Okado–Yamada
theorem [28], the above calculation gives a direct derivation of the 3D reflection equation
(3.27) without using any results for quantum coordinate rings.

5.3.2. The case (II) In this case, the corresponding symmetrized Car-
tan matrix is given by

DA =
⎛

⎝
0 −1 0

−1 2 −1
0 −1 1

⎞

⎠ , (5.198)

and the corresponding positive roots are given by

�̃+
even = {α2, α3, α2 + α3, α2 + 2α3}, (5.199)

�̃+
iso = {α1, α1 + α2, α1 + α2 + 2α3}, (5.200)

�̃+
aniso = {α1 + α2 + α3, α1 + 2α2 + 2α3}. (5.201)

Similarly to Lemma 5.18, by using the propositions given in Sect. 5.1, we can show the
following lemma:

Lemma 5.20. For the quantum superalgebra associated with , we have
(5.149)–(5.160) where �(x), �(y) are given by

�(x) = M (x = 2|1, 2|1233, 2|3321, 233|1, 332|1, 233|21, 332|12),

�(y) =
{
J (y = 3|2),
X (y = 3|21, 3|12, 23|1, 32|1).

(5.202)

The phase factors given by (4.79) and (5.173) are now ρ1 = ρ2 = ρ3 = 0 and
η1 = η2 = η3 = 0. Then, (5.186) is specialized as follows:

∑
Mo4,o5,o6

y4,y5,y6M
y4,o8,o9
x4,y8,y9X

o3,y5,o7,y9
x3,x5,x7,x9M

o2,y6,x9
y2,x6,i9

M
y2,x5,y8
x2,i5,x8

X
o1,x6,x7,x8
x1,i6,i7,i8

J
x1,x2,x3,x4
i1,i2,i3,i4

=
∑

Jo1,o2,o3,o4x1,y2,x3,y4X
x1,o6,o7,o8
i1,y6,x7,y8

M
y2,o5,y8
x2,y5,x8M

x2,y6,o9
i2,x6,y9

X
x3,y5,x7,y9
i3,x5,i7,x9

M
y4,x8,x9
x4,i8,i9

M
x4,x5,x6
i4,i5,i6

,

(5.203)

where ok, ik, xk, yk ∈ {0, 1} (k = 5, 6, 8, 9) and the other indices are defined on Z≥0.
We then get the following result, which gives a new solution to the 3D reflection equation.
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Corollary 5.21. As the identity of the transition matrices of the quantum superalgebra
associated with , we have the 3D reflection equation given by

M456M489X3579M269M258X1678J1234 = J1234X1678M258M269X3579M489M456.

(5.204)

5.3.3. The case (III) In this case, the corresponding symmetrized Car-
tan matrix is given by

DA =
⎛

⎝
0 1 0
1 0 −1
0 −1 1

⎞

⎠ , (5.205)

and the corresponding positive roots are given by

�̃+
even = {α3, α1 + α2, α1 + α2 + α3, α1 + α2 + 2α3}, (5.206)

�̃+
iso = {α1, α2, α2 + 2α3, α1 + 2α2 + 2α3}, (5.207)

�̃+
aniso = {α2 + α3}. (5.208)

Similarly to Lemma 5.18, by using the propositions given in Sect. 5.1, we can show the
following lemma:

Lemma 5.22. For the quantum superalgebra associated with , we have
(5.149)–(5.160) where �(x), �(y) are given by

�(x) =
{
L (x = 2|1233, 2|3321, 233|21, 332|12),
N(q−1) (x = 2|1, 233|1, 332|1),

�(y) =

⎧
⎪⎨

⎪⎩

J (y = 3|21, 3|12),
X (y = 3|2),
Y(q−1) (y = 23|1, 32|1).

(5.209)

The phase factors given by (4.79) and (5.173) are now ρ1 = ρ2 = ρ3 = 0 and
η1 = η2 = η3 = 0. Then, (5.186) is specialized as follows:

∑
Lo4,o5,o6

y4,y5,y6N(q−1)
y4,o8,o9
x4,y8,y9Y(q−1)

o3,y5,o7,y9
x3,x5,x7,x9N(q−1)

o2,y6,x9
y2,x6,i9

L
y2,x5,y8
x2,i5,x8

J
o1,x6,x7,x8
x1,i6,i7,i8

X
x1,x2,x3,x4
i1,i2,i3,i4

=
∑

Xo1,o2,o3,o4
x1,y2,x3,y4J

x1,o6,o7,o8
i1,y6,x7,y8

L
y2,o5,y8
x2,y5,x8N(q−1)

x2,y6,o9
i2,x6,y9

Y(q−1)
x3,y5,x7,y9
i3,x5,i7,x9

N(q−1)
y4,x8,x9
x4,i8,i9

L
x4,x5,x6
i4,i5,i6

,

(5.210)

where ok, ik, xk, yk ∈ {0, 1} (k = 2, 4, 5, 9) and the other indices are defined on Z≥0.
We then get the following result, which gives a new solution to the 3D reflection equation.

Corollary 5.23. As the identity of the transition matrices of the quantum superalgebra
associated with , we have the 3D reflection equation given by

L456N(q−1)489Y(q−1)3579N(q−1)269L258J1678X1234

= X1234J1678L258N(q−1)269Y(q−1)3579N(q−1)489L456.
(5.211)
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5.3.4. The case (IV) In this case, the corresponding symmetrized Car-
tan matrix is given by

DA =
⎛

⎝
2 −1 0

−1 2 −1
0 −1 1

⎞

⎠ , (5.212)

and the corresponding positive roots are given by

�̃+
even = {α1, α2, α1 + α2, α2 + 2α3, α1 + α2 + 2α3, α1 + 2α2 + 2α3}, (5.213)

�̃+
iso = {}, (5.214)

�̃+
aniso = {α3, α2 + α3, α1 + α2 + α3}. (5.215)

Similarly to Lemma 5.18, by using the propositions given in Sect. 5.1, we can show the
following lemma:

Lemma 5.24. For the quantum superalgebra associated with , we have
(5.149)–(5.160) where �(x), �(y) are given by

�(x) = R (x = 2|1, 2|1233, 2|3321, 233|1, 332|1, 233|21, 332|12),
�(y) = Z (y = 3|2, 3|21, 3|12, 23|1, 32|1). (5.216)

The phase factors given by (4.79) and (5.173) are now ρ1 = ρ2 = ρ3 = 0 and
η1 = η2 = η3 = 0. Then, (5.186) is specialized as follows:

∑
Ro4,o5,o6

y4,y5,y6R
y4,o8,o9
x4,y8,y9Z

o3,y5,o7,y9
x3,x5,x7,x9R

o2,y6,x9
y2,x6,i9

R
y2,x5,y8
x2,i5,x8

Z
o1,x6,x7,x8
x1,i6,i7,i8

Z
x1,x2,x3,x4
i1,i2,i3,i4

=
∑

Zo1,o2,o3,o4
x1,y2,x3,y4Z

x1,o6,o7,o8
i1,y6,x7,y8

R
y2,o5,y8
x2,y5,x8R

x2,y6,o9
i2,x6,y9

Z
x3,y5,x7,y9
i3,x5,i7,x9

R
y4,x8,x9
x4,i8,i9

R
x4,x5,x6
i4,i5,i6

,

(5.217)

where all the indices are defined on Z≥0. We then get the following result, which gives
a new solution to the 3D reflection equation.

Corollary 5.25. As the identity of the transition matrices of the quantum superalgebra
associated with , we have the 3D reflection equation given by

R456R489Z3579R269R258Z1678Z1234 = Z1234Z1678R258R269Z3579R489R456. (5.218)

5.3.5. The case (V) In this case, the corresponding symmetrizedCartan
matrix is given by

DA =
⎛

⎝
2 −1 0

−1 0 1
0 1 −1

⎞

⎠ , (5.219)

and the corresponding positive roots are given by

�̃+
even = {α1, α2 + α3, α1 + 2α2 + 2α3, α1 + α2 + α3}, (5.220)

�̃+
iso = {α2, α1 + α2, α2 + 2α3, α1 + α2 + 2α3}, (5.221)

�̃+
aniso = {α3}. (5.222)

Similarly to Lemma 5.18, by using the propositions given in Sect. 5.1, we can show the
following lemma:
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Lemma 5.26. For the quantum superalgebra associated with , we have
(5.149)–(5.160) where �(x), �(y) are given by

�(x) =
{
L (x = 2|1, 233|1, 332|1),
N(q−1) (x = 2|1233, 2|3321, 233|21, 332|12),

�(y) =
{
J (y = 23|1, 32|1),
Y(q−1) (y = 3|2, 3|21, 3|12).

(5.223)

The phase factors given by (4.79) and (5.173) are now ρ1 = ρ2 = ρ3 = 0 and
η1 = η2 = η3 = 0. Then, (5.186) is specialized as follows:

∑
N(q−1)o4,o5,o6y4,y5,y6L

y4,o8,o9
x4,y8,y9J

o3,y5,o7,y9
x3,x5,x7,x9L

o2,y6,x9
y2,x6,i9

N(q−1)
y2,x5,y8
x2,i5,x8

Y(q−1)
o1,x6,x7,x8
x1,i6,i7,i8

Y(q−1)
x1,x2,x3,x4
i1,i2,i3,i4

=
∑

Y(q−1)o1,o2,o3,o4x1,y2,x3,y4Y(q−1)
x1,o6,o7,o8
i1,y6,x7,y8

N(q−1)
y2,o5,y8
x2,y5,x8L

x2,y6,o9
i2,x6,y9

J
x3,y5,x7,y9
i3,x5,i7,x9

L
y4,x8,x9
x4,i8,i9

N(q−1)
x4,x5,x6
i4,i5,i6

,

(5.224)

where ok, ik, xk, yk ∈ {0, 1} (k = 2, 4, 6, 8) and the other indices are defined on Z≥0.
We then get the following result, which gives a new solution to the 3D reflection equation.

Corollary 5.27. As the identity of the transition matrices of the quantum superalgebra
associated with , we have the 3D reflection equation given by

N(q−1)456L489J3579L269N(q−1)258Y(q−1)1678Y(q−1)1234

= Y(q−1)1234Y(q−1)1678N(q−1)258L269J3579L489N(q−1)456.
(5.225)

5.3.6. The case (VI) In this case, the corresponding symmetrized Car-
tan matrix is given by

DA =
⎛

⎝
2 −1 0

−1 0 1
0 1 −1

⎞

⎠ , (5.226)

and the corresponding positive roots are given by

�̃+
even = {α1, α3, α1 + 2α2 + 2α3}, (5.227)

�̃+
iso = {α2, α1 + α2, α2 + 2α3, α1 + α2 + 2α3}, (5.228)

�̃+
aniso = {α2 + α3, α1 + α2 + α3}. (5.229)

Similarly to Lemma 5.18, by using the propositions given in Sect. 5.1, we can show the
following lemma:
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Lemma 5.28. For the quantum superalgebra associated with , we have
(5.149)–(5.160) where �(x), �(y) are given by

�(x) =
{
L (x = 2|1, 233|1, 332|1),
N(q−1) (x = 2|1233, 2|3321, 233|21, 332|12),

�(y) =
{
X(q−1) (y = 3|2, 3|21, 3|12),
Z (y = 23|1, 32|1).

(5.230)

The phase factors given by (4.79) and (5.173) are now ρ1 = η1 = 0 and ρ2 = ρ3 =
η2 = η3 = 1. Then, (5.186) is specialized as follows:

∑
(−1)x3y8+x5+y4o7+y5+o3y6+y2x7

× N(q−1)o4,o5,o6y4,y5,y6L
y4,o8,o9
x4,y8,y9Z

o3,y5,o7,y9
x3,x5,x7,x9L

o2,y6,x9
y2,x6,i9

N(q−1)
y2,x5,y8
x2,i5,x8

X(q−1)
o1,x6,x7,x8
x1,i6,i7,i8

X(q−1)
x1,x2,x3,x4
i1,i2,i3,i4

=
∑

(−1)x3x8+y5+x4i7+x5+i3x6+x2x7

× X(q−1)o1,o2,o3,o4x1,y2,x3,y4X(q−1)
x1,o6,o7,o8
i1,y6,x7,y8

N(q−1)
y2,o5,y8
x2,y5,x8L

x2,y6,o9
i2,x6,y9

Z
x3,y5,x7,y9
i3,x5,i7,x9

L
y4,x8,x9
x4,i8,i9

N(q−1)
x4,x5,x6
i4,i5,i6

,

(5.231)

where ok, ik, xk, yk ∈ {0, 1} (k = 2, 4, 6, 8) and the other indices are defined on Z≥0.
We then get the following result:

Corollary 5.29. As the identity of the transition matrices of the quantum superalgebra
associated with , we have the 3D reflection equation up to sign factors
given by (5.231).

5.3.7. The case (VII) In this case, the corresponding symmetrized
Cartan matrix is given by

DA =
⎛

⎝
0 −1 0

−1 2 −1
0 −1 1

⎞

⎠ , (5.232)

and the corresponding positive roots are given by

�̃+
even = {α2, α2 + 2α3, α1 + α2 + α3}, (5.233)

�̃+
iso = {α1, α1 + α2, α1 + α2 + 2α3, α1 + 2α2 + 2α3}, (5.234)

�̃+
aniso = {α3, α2 + α3}. (5.235)

Similarly to Lemma 5.18, by using the propositions given in Sect. 5.1, we can show the
following lemma:

Lemma 5.30. For the quantum superalgebra associated with , we have
(5.149)–(5.160) where �(x), �(y) are given by

�(x) = M (x = 2|1, 2|1233, 2|3321, 233|1, 332|1, 233|21, 332|12),

�(y) =
{
Z (y = 3|2),
Y (y = 3|21, 3|12, 23|1, 32|1).

(5.236)



Three-Dimensional Integrability and PBW Bases 533

The phase factors given by (4.79) and (5.173) are now ρ3 = η3 = 0 and ρ1 = ρ2 =
η1 = η2 = 1. Then, (5.186) is specialized as follows:

∑
(−1)o1i9+x5+x7+x3y8+x5+x1i5+o3y6

× Mo4,o5,o6
y4,y5,y6M

y4,o8,o9
x4,y8,y9Y

o3,y5,o7,y9
x3,x5,x7,x9M

o2,y6,x9
y2,x6,i9

M
y2,x5,y8
x2,i5,x8

Y
o1,x6,x7,x8
x1,i6,i7,i8

Z
x1,x2,x3,x4
i1,i2,i3,i4

=
∑

(−1)i1o9+x7+y5+x3x8+y5+x1o5+i3x6

× Zo1,o2,o3,o4
x1,y2,x3,y4Y

x1,o6,o7,o8
i1,y6,x7,y8

M
y2,o5,y8
x2,y5,x8M

x2,y6,o9
i2,x6,y9

Y
x3,y5,x7,y9
i3,x5,i7,x9

M
y4,x8,x9
x4,i8,i9

M
x4,x5,x6
i4,i5,i6

,

(5.237)

where ok, ik, xk, yk ∈ {0, 1} (k = 5, 6, 8, 9) and the other indices are defined on Z≥0.
We then get the following result:

Corollary 5.31. As the identity of the transition matrices of the quantum superalgebra
associated with , we have the 3D reflection equation up to sign factors
given by (5.237).

5.3.8. The case (VIII) In this case, the corresponding symmetrized
Cartan matrix is given by

DA =
⎛

⎝
0 1 0
1 0 −1
0 −1 1

⎞

⎠ , (5.238)

and the corresponding positive roots are given by

�̃+
even = {α1 + α2, α2 + α3, α1 + α2 + 2α3}, (5.239)

�̃+
iso = {α1, α2, α2 + 2α3, α1 + 2α2 + 2α3}, (5.240)

�̃+
aniso = {α3, α1 + α2 + α3}. (5.241)

Similarly to Lemma 5.18, by using the propositions given in Sect. 5.1, we can show the
following lemma:

Lemma 5.32. For the quantum superalgebra associated with , we have
(5.149)–(5.160) where �(x), �(y) are given by

�(x) =
{
L (x = 2|1233, 2|3321, 233|21, 332|12),
N(q−1) (x = 2|1, 233|1, 332|1),

�(y) =

⎧
⎪⎨

⎪⎩

X(q−1) (y = 23|1, 32|1),
Y (y = 3|2),
Z (y = 3|21, 3|12).

(5.242)

The phase factors given by (4.79) and (5.173) are now ρ2 = η2 = 0 and ρ1 = ρ3 =
η1 = η3 = 1. Then, (5.186) is specialized as follows:

∑
(−1)o1i9+x5+x7+y4o7+y5+x1i5+y2x7

× Lo4,o5,o6
y4,y5,y6N(q−1)

y4,o8,o9
x4,y8,y9X(q−1)

o3,y5,o7,y9
x3,x5,x7,x9N(q−1)

o2,y6,x9
y2,x6,i9

L
y2,x5,y8
x2,i5,x8

Z
o1,x6,x7,x8
x1,i6,i7,i8

Y
x1,x2,x3,x4
i1,i2,i3,i4

=
∑

(−1)i1o9+x7+y5+x4i7+x5+x1o5+x2x7

× Yo1,o2,o3,o4x1,y2,x3,y4Z
x1,o6,o7,o8
i1,y6,x7,y8

L
y2,o5,y8
x2,y5,x8N(q−1)

x2,y6,o9
i2,x6,y9

X(q−1)
x3,y5,x7,y9
i3,x5,i7,x9

N(q−1)
y4,x8,x9
x4,i8,i9

L
x4,x5,x6
i4,i5,i6

,

(5.243)
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where ok, ik, xk, yk ∈ {0, 1} (k = 2, 4, 5, 9) and the other indices are defined on Z≥0.
We then get the following result:

Corollary 5.33. As the identity of the transition matrices of the quantum superalgebra
associated with , we have the 3D reflection equation up to sign factors
given by (5.243).

6. Crystal Limit

6.1. Crystal limit of transition matrices of rank 2. In this section, we consider some
transition matrices obtained in Sects. 4 and 5 at q = 0, which is known as the crystal
limit [22]. First, we note that the crystal limit of transition matrices for non-super cases
reproduces so-called transitionmaps of Lusztig’s parametrizations of the canonical basis
[5,32]. For type A and B, we set the crystal limits of the 3D R and 3D J by

Ra,b,c
i, j,k = lim

q→0
R(q)

a,b,c
i, j,k , J a,b,c,d

i, j,k,l = lim
q→0

J(q)
a,b,c,d
i, j,k,l . (6.1)

Then, these elements are explicitly given as follows [5]:

Ra,b,c
i, j,k = δa,i+ j−min(i,k)δb,min(i,k)δc, j+k−min(i,k), (6.2)

J a,b,c,d
i, j,k,l = δa,i+2 j+k−x1δb,x1−x2δc,2x2−x1δd, j+k+l−x2 , (6.3)

where x1 = min(i + 2min( j, l), k + 2l), x2 = min(i + min( j, l), k + l). (6.2) and (6.3)
follow from the fact that diagonal elements of transition matrices from PBWbases to the
canonical basis is 1 and off-diagonal elements are in qZ[q]. They define the non-trivial
bijections on (Z≥0)

3 and (Z≥0)
4, respectively. There also exists the crystal limit of the

tetrahedron equation (3.7) and the 3D reflection equation themselves, so they gives the
combinatorial solutions to them. See also related results given in [25].

Here, we present a super analog of these results. Let us begin with the case of type
A of rank 2. We set the crystal limits of the 3D L, M and N by

La,b,c
i, j,k = lim

q→0
L(q)

a,b,c
i, j,k , (6.4)

Ma,b,c
i, j,k = lim

q→0
M(q)

a,b,c
i, j,k , (6.5)

N a,b,c
i, j,k = lim

q→0

( [b]q !
[ j]q !N(q)

a,b,c
i, j,k

)

. (6.6)

We note that the normalization change in (6.6) corresponds to use unnormalized PBW
bases for . This is consistent with earlier observations given in [9, Section
5.3]. Then, we have the following results by direct calculations:

Proposition 6.1. The crystal limit of the 3D L defines a non-trivial bijection on {0, 1}2×
Z≥0. The elements are given by

L0,0,c
0,0,k = L1,1,c

1,1,k = δk,c, L1,0,c
0,1,k = δk+1,c, L1,0,0

1,0,0 = 1, L0,1,c
1,0,k = δk−1,c, (6.7)

where La,b,c
i, j,k = 0 other than (6.7).
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Corollary 6.2. The crystal limit of the 3D M defines a non-trivial bijection on Z≥0 ×
{0, 1}2. The elements are given by Ma,b,c

i, j,k = Lc,b,a
k, j,i .

Proposition 6.3. The crystal limit of the 3D N defines a non-trivial bijection on {0, 1}×
Z≥0 × {0, 1}. The elements are given by

N 0,b,1
0, j,1 = N 1,b,0

1, j,0 = δ j,b, N 1,b,1
0, j,0 = δ j−1,b, N 0,0,0

0,0,0 = 1, N 0,b,0
1, j,1 = δ j+1,b, (6.8)

where N a,b,c
i, j,k = 0 other than (6.8).

Next, we proceed to the case of type B of rank 2. We set the crystal limits of the 3D
X and 3D Y by

X a,b,c,d
i, j,k,l = lim

q→0

( [c]q−1/2,(−1)!
[k]q−1/2,(−1)!

X(q)
a,b,c,d
i, j,k,l

)

, (6.9)

Ya,b,c,d
i, j,k,l = lim

q→0

( [c]q−1/2 !
[k]q−1/2 !Y(q)

a,b,c,d
i, j,k,l

)

. (6.10)

We note that the normalization changes in (6.9) and (6.10) correspond to use partially
unnormalized PBW bases for and , respectively. Then, we have
the following results by direct calculations:

Proposition 6.4. The crystal limit of the 3D X defines a non-trivial bijection on Z≥0 ×
{0, 1} × Z≥0 × {0, 1}. The matrix elements are given by

X a,0,c,0
i,0,k,0 = δi,aδk,cθ(a ≥ 1 or a = c = 0), (6.11)

X a,0,c,0
i,0,k,1 = δi,a+1δk,c−1θ(a = 0), (6.12)

X a,1,c,0
i,0,k,1 = δi,a+2δk,c, (6.13)

X a,0,c,1
i,0,k,0 = δi,a−1δk,c+1θ(a = 1), (6.14)

X a,0,c,1
i,1,k,0 = δi,a−2δk,c, (6.15)

X a,0,c,1
i,0,k,1 = δi,aδk,cθ(a = 0), (6.16)

X a,1,c,1
i,1,k,1 = δi,aδk,c, (6.17)

where X a,b,c,d
i, j,k,l = 0 otherwise, and we used θ defined by θ(true) = 1 and θ(false) = 0.

Proposition 6.5. The crystal limit of the 3D Y defines a non-trivial bijection on Z≥0 ×
{0, 1} × Z≥0 × {0, 1}. The matrix elements are given by

Ya,0,c,0
i,0,k,0 = δi,aδk,cθ(a ≥ 1 or a = c = 0), (6.18)

Ya,0,c,0
i,0,k,1 = δi,a+1δk,c−1θ(a = 0), (6.19)

Ya,1,c,0
i,0,k,1 = δi,a+2δk,c(−1)a, (6.20)

Ya,0,c,1
i,0,k,0 = δi,a−1δk,c+1θ(a = 1), (6.21)

Ya,0,c,1
i,1,k,0 = δi,a−2δk,c(−1)a, (6.22)
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Ya,0,c,1
i,0,k,1 = δi,aδk,cθ(a = 0), (6.23)

Ya,1,c,1
i,1,k,1 = δi,aδk,c, (6.24)

where Ya,b,c,d
i, j,k,l = 0 otherwise, and we used θ defined by θ(true) = 1 and θ(false) = 0.

Here, the bijections obtained by the crystal limit of the 3D X and 3D Y are actually
same, but have different sign factors. Actually, Ya,b,c,d

i, j,k,l takes not only 0, 1 but also −1.
This is a new aspect not arising for non-super cases.

We can also observe the crystal limit of the 3D Z although we do not have an explicit
formula for it. We set the crystal limit of the 3D Z by

Za,b,c,d
i, j,k,l = lim

q→0
Z(q)

a,b,c,d
i, j,k.l . (6.25)

Supported by computer experiments, we conjecture the crystal limit of the 3D Z
also defines a non-trivial bijection on (Z≥0)

4. For example, the list of all the non-
zero elements of Za,b,c,d

0,1,1,2 is given in Example 5.16. The crystal limit of them gives

Za,b,c,d
0,1,1,2 = δa,1δb,1δc,0δd,3. We note that the negative factor also appears for the 3D Z.

For example, the following is the list of all the non-zero elements of Za,b,c,d
2,0,1,0 :

Z
2,0,1,0
2,0,1,0 = −(1 − q2 + q3), (6.26)

Z
1,1,0,0
2,0,1,0 = q(1 − q)2, (6.27)

Z
3,0,0,1
2,0,1,0 = q. (6.28)

The crystal limit of them gives Za,b,c,d
2,0,1,0 = −δa,2δb,0δc,1δd,0.

The above results give a super analog of Lusztig’s parametrizations of the canonical
basis. To the best of my knowledge, there is no such a study considering transition
maps for super cases at present. We note that there are some earlier results attempting to
construct the canonical basis from PBW bases for super cases recently [9,10] although
they mainly deal with the distinguished Dynkin diagrams and the canonical basis not
depending on reduced expressions has obtained only for . As
we considered for the 3D N, it seems our results are consistent with them. On the other
hand, further investigations should be done for negative factors, which is also remarked
in [10, Remark 7.10].

6.2. Crystal limit of transition matrices of rank 3. Here, we remark for the case of rank
3. In contrast to the case of rank 2, we can not take the crystal limit for all cases. For
example, we obtained the tetrahedron equation for given by (4.106):

N(q−1)123N(q−1)145R246L356 = L356R246N(q−1)145N(q−1)123. (6.29)

This equation is not consistent with the crystal limits introduced in the previous section
because of their staggered q-dependence of the components.

Among the Dynkin diagrams dealt with Sects. 4.3 and 5.3, we can take the limit for
the following cases:

, ,

, , ,
(6.30)
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where we omit the non-super cases. Actually, by setting the normalization factors appro-
priately, we obtain solutions to the tetrahedron and 3D reflection equations which are
compositions of bijections. Such solutions are often called set-theoretical or combina-
torial, here we use the latter term.

Corollary 6.6. We have the combinatorial solution to the tetrahedron equation given by

L123L145L246R356 = R356L246L145L123, (6.31)

and the combinatorial solution up to sign factors given by
∑

(−1)i1o6+x4+x2x5Lo1,o2,o3
x1,x2,x3N

x1,o4,o5
i1,x4,x5

N x2,x4,o6
i2,i4,x6

Mx3,x5,x6
i3,i5,i6

=
∑

(−1)o1i6+x4+x2x5Mo3,o5,o6
x3,x5,x6N

o2,o4,x6
x2,x4,i6

N o1,x4,x5
x1,i4,i5

Lx1,x2,x3
i1,i2,i3

.
(6.32)

where summations are taken on xk (k = 1, . . . , 6).

Corollary 6.7. We have the combinatorial solution to the 3D reflection equation given
by

M456M489X3579M269M258X1678J1234 = J1234X1678M258M269X3579M489M456.

(6.33)

Conjecture 6.8. We have the combinatorial solution to the 3D reflection equation given
by

R456R489Z3579R269R258Z1678Z1234 = Z1234Z1678R258R269Z3579R489R456,

(6.34)

and the combinatorial solution up to sign factors given by
∑

(−1)o1i9+x5+x7+x3y8+x5+x1i5+o3y6

× Mo4,o5,o6
y4,y5,y6M

y4,o8,o9
x4,y8,y9Yo3,y5,o7,y9

x3,x5,x7,x9Mo2,y6,x9
y2,x6,i9

My2,x5,y8
x2,i5,x8

Yo1,x6,x7,x8
x1,i6,i7,i8

Zx1,x2,x3,x4
i1,i2,i3,i4

=
∑

(−1)i1o9+x7+y5+x3x8+y5+x1o5+i3x6

× Zo1,o2,o3,o4
x1,y2,x3,y4Y

x1,o6,o7,o8
i1,y6,x7,y8

My2,o5,y8
x2,y5,x8Mx2,y6,o9

i2,x6,y9
Y x3,y5,x7,y9
i3,x5,i7,x9

My4,x8,x9
x4,i8,i9

Mx4,x5,x6
i4,i5,i6

.

(6.35)

where summations are taken on xk (k = 1, . . . , 9) and yk (k = 2, 4, 5, 6, 8, 9).

7. Concluding Remarks

In this paper, we studied transition matrices of PBW bases of the nilpotent subalgebra
of quantum superalgebras of type A and B in the case of rank 2 and 3, and obtained
explicit formulae for many cases. By considering the case of rank 3, we obtained the
“mother” solution to the tetrahedron equation (4.87) and 3D reflection equation (5.186)
as identities of transition matrices attributed to compositions of transition matrices of
rank 2 in twoways. Then,we reduced them to special cases and obtained several solutions
to the tetrahedron and 3D reflection equation. The parts of them are summarized as the
following table:
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Type A:
Dynkin diagram Transition matrix

R (3.2)
L (3.6)
M (3.10)
N (4.51)

Type B:
Dynkin diagram Transition matrix

J (3.21)
X (5.83)–(5.98)
Y (5.106)–(5.121)
Z (5.141)

It is important that our proofs exploit higher-order relations for quantum superalgebras
given in Sects. 4.1 and 5.1, and did not use any result for quantum coordinate rings.

For the case of , our approach exactly reproduced matrix elements of
the 3D L (3.6), and the associated tetrahedron equation (3.7) for .
That is one of the remarkable result of this paper. It was known that the 3D L also
satisfies another tetrahedron equation (3.18). We obtained the similar equation (4.111)
for , but it involves nonlocal sign factors, so we can not write it as
a matrix equation at present, in the sense explained in Remark 3.3. It is open whether
we can attribute (3.18) to (4.111). If we can, it is also interesting whether the procedure
“eliminating nonlocal sign factors” can be applied to other tetrahedron equations (4.116)
and (4.121), and the 3D reflection equations (5.231), (5.237) and (5.243) for the case of
type B.

We further obtained the new solution to the tetrahedron equation by considering
, which we call the 3D N (4.51). The associated equation (4.106) was obtained

by considering . We found matrix elements of the 3D N are related
to ones of the 3D L as (4.62). It is interesting whether, in general, transition matrices
associated with a pair of Cartan data mapped to each other via odd reflections are
attributed to each other or not.

Our framework also can be applied to the case of type B.We derived the new solutions
to the 3D reflection equation (5.204), (5.211), (5.218) and (5.225). As parts of the
equations, we introduced the 3D X, Y and Z and obtained explicit formulae for the 3D X
and 3DY given by (5.83)–(5.98) and (5.106)–(5.121), respectively. Although we did not
for the 3DZ, we can calculate anymatrix elements by recurrence equations like Example
5.16. We hope to report an explicit formula for the 3D Z in a future publication.

We also discussed the crystal limit of transitionmatrices for super cases, and obtained
a super analog of transition maps of Lusztig’s parametrizations of the canonical basis.
We hope that our result gives a new insight into recent studies for a super analog of the
canonical basis [9,10]. It is also an interesting question whether a geometric lifting [5]
for them exists or not.

Our result stimulates to challenge whether the Kuniba–Okado–Yamada theorem can
be generalized to the case of quantum superalgebras, or not. This question is quite inter-
esting but needs hard works because there is no theory about irreducible representations
of quantum super coordinate rings like Soibelman’s theory for the non-super case [42].
To construct a super version of Soibelman’s theory, it seems that the Weyl groupoid
plays important roles [15]. More concretely, as we mentioned in Sect. 1, [40] seems to
give a related result. We hope to report this issue in a future publication.
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Appendix A. Proof of Theorem 5.12

By considering (2.34), it is sufficient to prove γ̃
a,b,c,d
i, j,k,l = X

d,c,b,a
l,k, j,i . Our proof is motivated

by the proof of Proposition 2. of [28]. If we obtain an explicit formula for Xa,b,c,d
i, j,k,l defined

by

ea1e
b
21e

c
2(21)e

d
2 =

∑

i,k∈Z≥0, j,l∈{0,1}
Xa,b,c,d
i, j,k,l e

l
2e

k
(12)2e

j
12e

i
1, (A.1)

we can obtain γ̃
a,b,c,d
i, j,k,l by

γ̃
a,b,c,d
i, j,k,l = [ j]q−1/2,(−1)![l]q1/2 !

[b]q−1/2,(−1)![d]q1/2 !
Xa,b,c,d
i, j,k,l . (A.2)

Then, in order to prove γ̃
a,b,c,d
i, j,k,l = X

d,c,b,a
l,k, j,i , it is sufficient to show Xa,b,c,d

i, j,k,l is given by

X0,b,0,d
0, j,0,l = δ j,bδl,d(1 − (1 − (−q)b)qd),

X0,b,0,d
0, j,1,l = −δ j,b−1δl,d−1

q1/2(1 − (−q)b)(1 − qd)

1 − q
, (A.3)

X0,b,0,d
1, j,0,l = δ j,b−1δl,d+1q

d(1 − q)(1 − (−q)b),

X0,b,0,d
1, j,1,l = −δ j,b−2δl,dq

d+1/2(1 − (−q)b−1)(1 − (−q)b), (A.4)

X0,b,1,d
0, j,0,l = −δ j,b+1δl,d+1q

d+1/2(1 − q), X0,b,1,d
0, j,1,l = δ j,bδl,dq

d+1, (A.5)

X0,b,1,d
1, j,0,l = δ j,bδl,d+2q

d+1/2(1 − q)2, X0,b,1,d
1, j,1,l = −δ j,b−1δl,d+1q

d+1(1 − q)(1 − (−q)b),

(A.6)

X1,b,0,d
0, j,0,l = δ j,b+1δl,d−1

1 − qd

1 − q
, X1,b,0,d

0, j,1,l = δ j,bδl,d−2
q−d+3/2(1 − qd−1)(1 − qd)

(1 − q)2
,

(A.7)

X1,b,0,d
1, j,0,l = δ j,bδl,dq

d , X1,b,0,d
1, j,1,l = δ j,b−1δl,d−1

q1/2(1 − (−q)b)(1 − qd)

1 − q
, (A.8)

X1,b,1,d
0, j,0,l = −δ j,b+2δl,dq

d+1/2, X1,b,1,d
0, j,1,l = −δ j,b+1δl,d−1

q(1 − qd)

1 − q
, (A.9)

X1,b,1,d
1, j,0,l = δ j,b+1δl,d+1q

d+1/2(1 − q), X1,b,1,d
1, j,1,l = δ j,bδl,d(1 − (1 − (−q)b+1)qd+1).

(A.10)
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A.1. Recurrence Equations. Our strategy to derive (A.3)–(A.10) is using recurrence
equations for X . For simplicity, we write b1 = e1, b2 = e21, b3 = e2(21), b4 = e2 and

Fi, j,k,l
1 = bi1b

j
2b

k
3b

l
4, F

l,k, j,i
2 = χ(Fi, j,k,l

1 ). Then, (A.1) with q → q−1 is represented
by

Fa,b,c,d
1 =

∑

i,k∈Z≥0, j,l∈{0,1}
Xa,b,c,d
i, j,k,l Fl,k, j,i

2 . (A.11)

The elements bi satisfy the following relations:

b2b1 = −qb1b2, b3b1 = −q2b1b3 − q1/2b22, b4b1 = qb1b4 + b2, (A.12)

b3b2 = −qb2b3, b4b2 = b2b4 + (q1/2 + q−1/2)b3, b4b3 = q−1b3b4. (A.13)

We can easily prove the following relations for n ∈ N by induction.

b2b
n
1 = (−q)nbn1b2, (A.14)

b4b
n
1 = qnbn1b4 +

1 − (−1)n

2
qn−1bn−1

1 b2, (A.15)

b4b
n
2 = bn2b4 + q−1/2(1 − (−1)nqn)bn−1

2 b3, (A.16)

b4b
n
3 = q−nbn3b4, (A.17)

bn4b1 = qnb1b
n
4 +

1 − qn

1 − q
b2b

n−1
4 +

(1 + q)(1 − qn)(1 − qn−1)

(1 − q)(1 − q2)
q−n+3/2b3b

n−2
4 ,

(A.18)

bn3b1 = (−1)nq2nb1b
n
3 − 1 − (−1)n

2
q2n−3/2b22b

n−1
3 , (A.19)

bn2b1 = (−q)nb1b
n
2 , (A.20)

bn3b2 = (−q)nb2b
n
3 . (A.21)

Then, the left multiplication of b1, b2, b4 on Fa,b,c,d
1 and Fl,k, j,i

2 are given by

b1F
a,b,c,d
1 = Fa+1,b,c,d

1 , (A.22)

b2F
a,b,c,d
1 = (−q)a Fa,b+1,c,d

1 , (A.23)

b4F
a,b,c,d
1 = qa−cFa,b,c,d+1

1 + qa−1/2(1 − (−1)bqb)Fa,b−1,c+1,d
1

+
1 − (−1)a

2
qa−1Fa−1,b+1,c,d

1 , (A.24)

b1F
l,k, j,i
2 = (−1) j+kq j+2k+l Fl,k, j,i+1

2 − 1 − (−1)k

2
q2k+l−3/2Fl,k−1, j+2,i

2

+
1 − ql

1 − q
(−q)k Fl−1,k, j+1,i

2

+
(1 + q)(1 − ql)(1 − ql−1)

(1 − q)(1 − q2)
q−l+3/2Fl−2,k+1, j,i

2 , (A.25)

b2F
l,k, j,i
2 = (−1) j+kq j+2k+l(1 − q2)Fl+1,k, j,i+1

2

− 1 − (−1)k

2
q2k+l−3/2(1 − q2)Fl+1,k−1, j+2,i

2
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+ (−q)k(1 − (1 + q)ql)Fl,k, j+1,i
2 − q1/2

(1 + q)(1 − ql)

1 − q
Fl−1,k+1, j,i
2 ,

(A.26)

b4F
l,k, j,i
2 = Fl+1,k, j,i

2 , (A.27)

where the left multiplication of b2 on Fl,k, j,i
2 can be calculated only using the right

multiplication of b1, b4 on Fi, j,k,l
1 via b2F

l,k, j,i
2 = χ(Fi, j,k,l

1 (b1b4 − qb4b1)). By con-
sidering the leftmultiplication of b1, b2, b4 on (A.11),we obtain the following recurrence
equations:

Xa+1,b,c,d
i, j,k,l = (−1) j+kq j+2k+l Xa,b,c,d

i−1, j,k,l − 1 − (−1)k+1

2
q2k+l+1/2Xa,b,c,d

i, j−2,k+1,l

+
1 − ql+1

1 − q
(−q)k Xa,b,c,d

i, j−1,k,l+1

+
(1 + q)(1 − ql+2)(1 − ql+1)

(1 − q)(1 − q2)
q−l−1/2Xa,b,c,d

i, j,k−1,l+2, (A.28)

Xa,b+1,c,d
i, j,k,l = (−1) j+k+aq j+2k+l−a−1(1 − q2)Xa,b,c,d

i−1, j,k,l−1

− 1 − (−1)k+1

2
(−q)−aq2k+l−1/2(1 − q2)Xa,b,c,d

i, j−2,k+1,l−1

+ (−q)k−a(1 − (1 + q)ql)Xa,b,c,d
i, j−1,k,l

− (−q)−aq1/2
(1 + q)(1 − ql+1)

1 − q
Xa,b,c,d
i, j,k−1,l+1, (A.29)

Xa,b,c,d+1
i, j,k,l = qc−a Xa,b,c,d

i, j,k,l−1 − qc−1/2(1 − (−1)bqb)Xa,b−1,c+1,d
i, j,k,l

− 1 − (−1)a

2
qc−1Xa−1,b+1,c,d

i, j,k,l . (A.30)

A.2. 1-parameter family. We first construct the 1-parameter family for Xa,b,c,d
i, j,k,l by using

(A.29), which has generic j, b and takes as small as possible l, d for each i, k, a, c ∈
{0, 1}. By the same discussion as (4.35), we obtain the following weight conservation:

Xa,b,c,d
i, j,k,l = 0 (i + j + k 
= a + b + c or j + 2k + l 
= b + 2c + d). (A.31)

(1) For the case (i, k, a, c) = (0, 0, 0, 0), the non-trivial case for (A.29) is j = b+1, l =
d by (A.31). Then, if we set d = 0, (A.29) gives

X0,b+1,0,0
0,b+1,0,0 = −qX0,b,0,0

0,b,0,0 = (−q)b+1X0,0,0,0
0,0,0,0 . (A.32)

It is easy to verify X0,0,0,0
0,0,0,0 = 1, so we obtain

X0,b,0,0
0,b,0,0 = (−q)b. (A.33)

Later, we use the case d = 1. By setting d = 1, (A.29) gives

X0,b+1,0,1
0,b+1,0,1 = −q1/2(1 − q2)X0,b,0,1

0,b−1,1,0 + (1 − q − q2)X0,b,0,1
0,b,0,1. (A.34)
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(2) For the case (i, k, a, c) = (0, 1, 0, 0), the non-trivial case for (A.29) is j = b, l =
d − 1 by (A.31). Then, if we set d = 1, (A.29) gives

X0,b+1,0,1
0,b,1,0 = q2X0,b,0,1

0,b−1,1,0 − q1/2(1 + q)X0,b,0,1
0,b,0,1 (A.35)

= q2
[
q2X0,b−1,0,1

0,b−2,1,0 − q1/2(1 + q)X0,b−1,0,1
0,b−1,0,1

]

− q1/2(1 + q)
[
−q1/2(1 − q2)X0,b−1,0,1

0,b−2,1,0 + (1 − q − q2)X0,b−1,0,1
0,b−1,0,1

]

(A.36)

= q(1 + q − q2)X0,b−1,0,1
0,b−2,1,0 − q1/2(1 − q2)X0,b−1,0,1

0,b−1,0,1 (A.37)

= q(1 − (−q)b−1 − (−q)b)X0,1,0,1
0,0,1,0 − q1/2(1 − (−q)b)X0,1,0,1

0,1,0,1,

(A.38)

where we use (A.34). It is easy to verify X0,1,0,1
0,0,1,0 = −q1/2(1 + q), X0,1,0,1

0,1,0,1 =
1 − q − q2, so we obtain

X0,b+1,0,1
0,b,1,0 = −q3/2(1 + q)(1 − (−q)b−1 − (−q)b) − q1/2(1 − (−q)b)(1 − q − q2)

(A.39)

= −q1/2(1 − (−q)b+1). (A.40)

Similarly, we can derive the following formulae for other i, k, a, c ∈ {0, 1}:
X0,b+1,0,0
1,b,0,1 = (1 − q)(1 − (−q)b+1), X0,b+2,0,0

1,b,1,0 = −q1/2(1 − (−q)b+1)(1 − (−q)b+2),

(A.41)

X0,b,1,0
0,b+1,0,1 = −q1/2(1 − q), X0,b,1,0

0,b,1,0 = q, (A.42)

X0,b,1,0
1,b,0,2 = q1/2(1 − q)2, X0,b+1,1,0

1,b,1,1 = −q(1 − q)(1 − (−q)b+1), (A.43)

X1,b,0,1
0,b+1,0,0 = 1, X1,b,0,2

0,b,1,0 = q−1/2(1 + q), (A.44)

X1,b,0,0
1,b,0,0 = 1, X1,b+1,0,1

1,b,1,0 = q1/2(1 − (−q)b+1), (A.45)

X1,b,1,0
0,b+2,0,0 = −q1/2, X1,b,1,1

0,b+1,1,0 = −q, (A.46)

X1,b,1,0
1,b+1,0,1 = q1/2(1 − q), X1,b,1,0

1,b,1,0 = 1 − q − (−q)b+2. (A.47)

A.3. 2-parameter family. Next, we lift the 1-parameter family to the 2-parameter family
by using (A.30) and (A.28), which has generic j, k, b, d for each i, k, a, c ∈ {0, 1}.
(I) For the case (a, c) = (0, 1), (A.30) gives

X0,b,1,d+1
i, j,k,l = qX0,b,1,d

i, j,k,l−1 = qα+1X0,b,1,d−α
i, j,k,l−α−1, (A.48)

where α is specified below.
(i) For the case (i, k) = (0, 0), the non-trivial case for (A.48) is j = b + 1, l = d + 2

by (A.31). In that case, (A.48) gives

X0,b,1,d+1
0,b+1,0,d+2 = qd+1X0,b,1,0

0,b+1,0,1, (A.49)

∴ X0,b,1,d
0,b+1,0,d+1 = −qd+1/2(1 − q). (A.50)
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(ii) For the case (i, k) = (0, 1), the non-trivial case for (A.48) is j = b, l = d + 1 by
(A.31). In that case, (A.48) gives

X0,b,1,d+1
0,b,1,d+1 = qd+1X0,b,1,0

0,b,1,0, (A.51)

∴ X0,b,1,d
0,b,1,d = qd+1. (A.52)

(iii) For the case (i, k) = (1, 0), the non-trivial case for (A.48) is j = b, l = d + 3 by
(A.31). In that case, (A.48) gives

X0,b,1,d+1
1,b,0,d+3 = qd+1X0,b,1,0

1,b,0,2, (A.53)

∴ X0,b,1,d
1,b,0,d+2 = qd+1/2(1 − q)2. (A.54)

(iv) For the case (i, k) = (1, 1), the non-trivial case for (A.48) is j = b− 1, l = d + 2
by (A.31). In that case, (A.48) gives

X0,b,1,d+1
1,b−1,1,d+2 = qd+1X0,b,1,0

1,b−1,1,1, (A.55)

∴ X0,b+1,1,d
1,b,1,d+1 = −qd+1(1 − q)(1 − (−q)b+1). (A.56)

(II) For the case (a, c) = (0, 0), (A.30) gives

X0,b,0,d+1
i, j,k,l = X0,b,0,d−α

i, j,k,l−α−1 − q−1/2(1 − (−1)bqb)
1 − qα+1

1 − q
X0,b−1,1,d−α
i, j,k,l−α , (A.57)

where α is specified below.
(i) For the case (i, k) = (0, 0), the non-trivial case for (A.57) is j = b, l = d + 1

by (A.31). In that case, (A.57) gives

X0,b,0,d+1
0,b,0,d+1 = X0,b,0,0

0,b,0,0 − q−1/2(1 − (−1)bqb)
1 − qd+1

1 − q
X0,b−1,1,0
0,b,0,1 , (A.58)

∴ X0,b,0,d
0,b,0,d = (−q)b + (1 − (−q)b)(1 − qd) (A.59)

= 1 − (1 − (−q)b)qd . (A.60)

(ii) For the case (i, k) = (0, 1), the non-trivial case for (A.57) is j = b − 1, l = d
by (A.31). In that case, (A.57) gives

X0,b,0,d+1
0,b−1,1,d = X0,b,0,1

0,b−1,1,0 − q−1/2(1 − (−1)bqb)
1 − qd

1 − q
X0,b−1,1,1
0,b−1,1,1 (A.61)

= X0,b,0,1
0,b−1,1,0 − q1/2(1 − (−1)bqb)

1 − qd

1 − q
X0,b−1,1,0
0,b−1,1,0, (A.62)

∴ X0,b+1,0,d+1
0,b,1,d = −q1/2(1 − (−q)b+1) − q3/2(1 − (−q)b+1)

1 − qd

1 − q
(A.63)

= −q1/2(1 − (−q)b+1)(1 − qd+1)

1 − q
. (A.64)
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(iii) For the case (i, k) = (1, 0), the non-trivial case for (A.57) is j = b−1, l = d+2
by (A.31). In that case, (A.57) gives

X0,b,0,d+1
1,b−1,0,d+2 = X0,b,0,0

1,b−1,0,1 − q−1/2(1 − (−1)bqb)
1 − qd+1

1 − q
X0,b−1,1,0
1,b−1,0,2, (A.65)

∴ X0,b+1,0,d
1,b,0,d+1 = (1 − q)(1 − (−q)b+1) − (1 − q)(1 − (−q)b+1)(1 − qd)

(A.66)

= qd(1 − q)(1 − (−q)b+1). (A.67)

(iv) For the case (i, k) = (1, 1), the non-trivial case for (A.57) is j = b−2, l = d+1
by (A.31). In that case, (A.57) gives

X0,b,0,d+1
1,b−2,1,d+1 =X0,b,0,0

1,b−2,1,0 − q−1/2(1 − (−1)bqb)
1 − qd+1

1 − q
X0,b−1,1,0
1,b−2,1,1, (A.68)

∴ X0,b+2,0,d
1,b,1,d = −q1/2(1 − (−q)b+1)(1 − (−q)b+2)

+ q1/2(1 − (−q)b+1)(1 − (−q)b+2)(1 − qd) (A.69)

= −qd+1/2(1 − (−q)b+1)(1 − (−q)b+2). (A.70)

Similarly to (II), we can derive the following formulae for (a, c) = (1, 1):

X1,b,1,d
0,b+2,0,d = −qd+1/2, X1,b,1,d+1

0,b+1,1,d = −q(1 − qd+1)

1 − q
, (A.71)

X1,b,1,d
1,b+1,0,d+1 = qd+1/2(1 − q), X1,b,1,d

1,b,1,d = 1 − (1 − (−q)b+1)qd+1. (A.72)

Finally, we consider the case (a, c) = (1, 0). (A.28) with (a, c) = (0, 0) gives

X1,b,0,d
i, j,k,l = (−1) j+kq j+2k+l X0,b,0,d

i−1, j,k,l − 1 − (−1)k+1

2
q2k+l+1/2X0,b,0,d

i, j−2,k+1,l

+
1 − ql+1

1 − q
(−q)k X0,b,0,d

i, j−1,k,l+1

+
(1 + q)(1 − ql+2)(1 − ql+1)

(1 − q)(1 − q2)
q−l−1/2X0,b,0,d

i, j,k−1,l+2, (A.73)

(i) For the case (i, k) = (0, 0), the non-trivial case for (A.73) is j = b + 1, l = d − 1
by (A.31). In that case, (A.73) gives

X1,b,0,d
0,b+1,0,d−1 = −qd−1/2X0,b,0,d

0,b−1,1,d−1 +
1 − qd

1 − q
X0,b,0,d
0,b,0,d (A.74)

= −qd−1/2
(

−q1/2(1 − (−q)b)(1 − qd)

1 − q

)

+
1 − qd

1 − q

(
1 − (1 − (−q)b)qd

)
(A.75)

= 1 − qd

1 − q
, (A.76)

∴ X1,b,0,d+1
0,b+1,0,d =1 − qd+1

1 − q
. (A.77)
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(ii) For the case (i, k) = (0, 1), the non-trivial case for (A.73) is j = b, l = d − 2 by
(A.31). In that case, (A.73) gives

X1,b,0,d
0,b,1,d−2 = −q

1 − qd−1

1 − q
X0,b,0,d
0,b−1,1,d−1

+
(1 + q)(1 − qd−1)(1 − qd)

(1 − q)(1 − q2)
q−d+3/2X0,b,0,d

0,b,0,d (A.78)

= −q
1 − qd−1

1 − q

(

−q1/2(1 − (−q)b)(1 − qd)

1 − q

)

+
(1 + q)(1 − qd−1)(1 − qd)

(1 − q)(1 − q2)
q−d+3/2

(
1 − (1 − (−q)b)qd

)

(A.79)

= q−d+3/2(1 − qd−1)(1 − qd)

(1 − q)2
, (A.80)

∴ X1,b,0,d+2
0,b,1,d = q−d−1/2(1 − qd+1)(1 − qd+2)

(1 − q)2
. (A.81)

(iii) For the case (i, k) = (1, 0), the non-trivial case for (A.73) is j = b, l = d by
(A.31). In that case, (A.73) gives

X1,b,0,d
1,b,0,d = (−1)bqb+d X0,b,0,d

0,b,0,d − qd+1/2X0,b,0,d
1,b−2,1,d +

1 − qd+1

1 − q
X0,b,0,d
1,b−1,0,d+1

(A.82)

= (−q)bqd
(
1 − (1 − (−q)b)qd

)

− qd+1/2
(
−qd+1/2(1 − (−q)b−1)(1 − (−q)b)

)

+
1 − qd+1

1 − q

(
qd(1 − q)(1 − (−q)b)

)
(A.83)

= qd . (A.84)

(iv) For the case (i, k) = (1, 1), the non-trivial case for (A.73) is j = b− 1, l = d − 1
by (A.31). In that case, (A.73) gives

X1,b,0,d
1,b−1,1,d−1 = (−q)bqd X0,b,0,d

0,b−1,1,d−1 − q
1 − qd

1 − q
X0,b,0,d
1,b−2,1,d

+
(1 + q)(1 − qd)(1 − qd+1)

(1 − q)(1 − q2)
q−d+1/2X0,b,0,d

1,b−1,0,d+1 (A.85)

= (−q)bqd
(

−q1/2(1 − (−q)b)(1 − qd)

1 − q

)

− q
1 − qd

1 − q

(
−qd+1/2(1 − (−q)b−1)(1 − (−q)b)

)

+
(1 + q)(1 − qd)(1 − qd+1)

(1 − q)(1 − q2)
q−d+1/2

(
qd(1 − q)(1 − (−q)b)

)

(A.86)



546 A. Yoneyama

= q1/2(1 − (−q)b)(1 − qd)

1 − q
, (A.87)

∴ X1,b+1,0,d+1
1,b,1,d = q1/2(1 − (−q)b+1)(1 − qd+1)

1 − q
. (A.88)

Therefore, (A.50), (A.52), (A.54), (A.56), (A.60), (A.64), (A.67), (A.70), (A.71), (A.72),
(A.77), (A.81), (A.84) and (A.88) exactly correspond to (A.3)–((A.10)).

Appendix B. Recurrence Equations for the 3D Z

In order to calculate matrix elements of the 3D Z, it is sufficient to calculate γ̃
a,b,c,d
i, j,k,l by

the relation (2.34). If we obtain a formula for Z defined by

ea1e
b
21e

c
2(21)e

d
2 =

∑

i, j,k,l∈Z≥0

Za,b,c,d
i, j,k,l e

l
2e

k
(12)2e

j
12e

i
1, (B.1)

we can obtain γ̃
a,b,c,d
i, j,k,l by

γ̃
a,b,c,d
i, j,k,l = [i]q ![ j]q1/2,(−1) ![k]q ![l]q1/2,(−1)!

[a]q ![b]q1/2,(−1)![c]q ![d]q1/2,(−1)!
Za,b,c,d
i, j,k,l . (B.2)

Then, it is sufficient to calculate Za,b,c,d
i, j,k,l . In this section, we derive recurrence equations

for Z . By the same discussion as (4.35), we obtain the following weight conservation:

Za,b,c,d
i, j,k,l = 0 (i + j + k 
= a + b + c or j + 2k + l 
= b + 2c + d). (B.3)

For simplicity, we write b1 = e1, b2 = e21, b3 = e2(21), b4 = e2 and Fi, j,k,l
1 =

bi1b
j
2b

k
3b

l
4, F

l,k, j,i
2 = χ(Fi, j,k,l

1 ), where χ is the anti-algebra automorphism given by
(2.20). Then, (B.1) is represented by

Fa,b,c,d
1 =

∑

i, j,k,l∈Z≥0

Za,b,c,d
i, j,k,l Fl,k, j,i

2 . (B.4)

The elements bi satisfy the following relations:

b2b1 = q−1b1b2, b3b1 = b1b3 + q−1/2b22, b4b1 = qb1b4 + b2,

b3b2 = q−1b2b3, b4b2 = −b2b4 + (q1/2 + q−1/2)b3, b4b3 = q−1b3b4.
(B.5)

We can easily prove the following relations for n ∈ N by induction.

b2b
n
1 = q−nbn1b2, (B.6)

b3b
n
1 = bn1b3 +

1 − q2n

1 − q2
q−2n+3/2bn−1

1 b22, (B.7)

b3b
n
2 = q−nbn2b3, (B.8)

b4b
n
1 = qnbn1b4 + [n]qbn−1

1 b2, (B.9)
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b4b
n
2 = (−1)nbn2b4 + q−n+1/2(1 − (−1)nqn)bn−1

2 b3, (B.10)

b4b
n
3 = q−nbn3b4, (B.11)

bn4b1 = qnb1b
n
4 − (−1)n

1 − (−1)nqn

1 + q
b2b

n−1
4

+ q−n+3/2 (1 − (−1)nqn)(1 − (−1)n−1qn−1)

1 − q2
b3b

n−2
4 , (B.12)

bn3b1 = b1b
n
3 + q−2n+3/2 1 − q2n

1 − q2
b22b

n−1
3 , (B.13)

bn2b1 = q−nb1b
n
2 , (B.14)

bn3b2 = q−nb2b
n
3 . (B.15)

Then, the left multiplication of b2, b3, b4 on Fa,b,c,d
1 are given by

b2F
a,b,c,d
1 = q−a Fa,b+1,c,d

1 , (B.16)

b3F
a,b,c,d
1 = q−bFa,b,c+1,d

1 +
1 − q2a

1 − q2
q−2a+3/2Fa−1,b+2,c,d

1 , (B.17)

b4F
a,b,c,d
1 = (−1)bqa−cFa,b,c,d+1

1

+ qa−b+1/2(1 − (−1)bqb)Fa,b−1,c+1,d
1 + [a]q Fa−1,b+1,c,d

1 , (B.18)

and the right multiplication of b1, b4 on Fi, j,k,l
1 are given by

Fi, j,k,l
1 b1 = ql− j Fi+1, j,k,l

1 + ql−2k+3/2 1 − q2k

1 − q2
Fi, j+2,k−1,l
1

− (−1)lq−k 1 − (−1)lql

1 + q
Fi, j+1,k,l−1
1

+ q−l+3/2 (1 − (−1)lql)(1 − (−1)l−1ql−1)

1 − q2
Fi, j,k+1,l−2
1 , (B.19)

Fi, j,k,l
1 b4 = Fi, j,k,l+1

1 . (B.20)

Calculating Fi, j,k,l
1 (b1b4 − qb4b1) and Fi, j,k,l

1 (b1b24 + (1− q)b4b1b4 − qb24b1)/(q
1/2 +

q−1/2), then by using χ , we get

b2F
l,k, j,i
2 = ql− j (1 − q2)Fl+1,k, j,i+1

2 + ql−2k+3/2(1 − q2k)Fl+1,k−1, j+2,i
2

− (−1)lq−k(1 − (−q)l(1 − q))Fl,k, j+1,i
2

+ (−1)lq1/2(1 − (−q)l)Fl−1,k+1, j,i
2 , (B.21)

b3F
l,k, j,i
2 = ql− j+1/2(1 − q2)Fl+2,k, j,i+1

2 + ql−2k+2(1 − q2k)Fl+2,k−1, j+2,i
2

+ ql−k+1/2(1 − q)Fl+1,k, j+1,i
2 − ql+1Fl,k+1, j,i

2 , (B.22)

b4F
l,k, j,i
2 = Fl+1,k, j,i

2 . (B.23)
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By considering the left multiplication of b2, b3, b4 on (B.4), we obtain the following
recurrence equations:

Za,b,c,d
i, j,k,l = qa

[
ql− j−1(1 − q2)Za,b−1,c,d

i−1, j,k,l−1 + ql−2k−3/2(1 − q2k+2)Za,b−1,c,d
i, j−2,k+1,l−1

− (−1)lq−k(1 − (−q)l(1 − q))Za,b−1,c,d
i, j−1,k,l

+(−1)l+1q1/2(1 − (−q)l+1)Za,b−1,c,d
i, j,k−1,l+1

]
, (B.24)

Za,b,c,d
i, j,k,l = qb

[
ql− j−3/2(1 − q2)Za,b,c−1,d

i−1, j,k,l−2 + ql−2k−2(1 − q2k+2)Za,b,c−1,d
i, j−2,k+1,l−2

+ ql−k−1/2(1 − q)Za,b,c−1,d
i, j−1,k,l−1 − ql+1Za,b,c−1,d

i, j,k−1,l

−1 − q2a

1 − q2
q−2a+3/2Za−1,b+2,c−1,d

i, j,k,l

]

, (B.25)

Za,b,c,d
i, j,k,l = (−1)bqc−a

[
Za,b,c,d−1
i, j,k,l−1 − [a]q Za−1,b+1,c,d−1

i, j,k,l

−qa−b+1/2(1 − (−1)bqb)Za,b−1,c+1,d−1
i, j,k,l

]
, (B.26)

which (B.24) holds for b ≥ 1, (B.25) holds for c ≥ 1 and (B.26) holds for d ≥ 1.
We can calculate Za,b,c,d

i, j,k,l by using the above reccurence equations (B.24)–(B.26) as

follows. First, we can reduce Za,b,c,d
i, j,k,l to the case of d = 0 by using (B.26). Second, we

can reduce Za,b,c,0
i, j,k,l to the case of c = 0 by using (B.25) keeping d = 0. Finally, we

can reduce Za,b,0,0
i, j,k,l to the case of b = 0 by using (B.24) keeping c = d = 0. Then, by

considering the weight conservation (B.3), we find Zi,0,0,0
i, j,k,l 
= 0 for j = k = l = 0 and

a = i . In that case, we can easily obtain Zi,0,0,0
i,0,0,0 = 1 by (B.1). Therefore, we can obtain

any matrix elements of Z by the above procedure. See Example 5.16 for the cases of
(i, j, k, l) = (0, 1, 1, 2).
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