
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-021-04092-0
Commun. Math. Phys. 386, 1011–1049 (2021) Communications in

Mathematical
Physics

Einstein Metrics of Cohomogeneity One with S
4m+3 as

Principal Orbit

Hanci Chi

Sun Yat-Sen University, Guangzhou, Guangdong, China. E-mail: chihc@mail.sysu.edu.cn

Received: 12 October 2020 / Accepted: 5 April 2021
Published online: 24 April 2021 – © The Author(s), under exclusive licence to Springer-Verlag GmbH
Germany, part of Springer Nature 2021

Abstract: In this article, we construct non-compact complete Einstein metrics on two
infinite series of manifolds. The first series of manifolds are vector bundles with S4m+3 as
principal orbit andHP

m as singular orbit. The second series of manifolds areR4m+4 with
the same principal orbit. For each case, a continuous 1-parameter family of complete
Ricci-flat metrics and a continuous 2-parameter family of complete negative Einstein
metrics are constructed. In particular, Spin(7) metrics A8 and B8 discovered by Cvetič
et al. in 2004 are recovered in the Ricci-flat family. A Ricci flat metric with conical
singularity is also constructed on R4m+4. Asymptotic limits of all Einstein metrics con-
structed are studied. Most of the Ricci-flat metrics are asymptotically locally conical
(ALC). Asymptotically conical (AC) metrics are found on the boundary of the Ricci-
flat family. All the negative Einstein metrics constructed are asymptotically hyperbolic
(AH).
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1. Introduction

A Riemannian manifold (M, g) is Einstein if its Ricci curvature satisfies Ric(g) = �g
for some constant �. A Riemannian manifold (M, g) is of cohomogeneity one if a Lie
Group G acts isometrically on M with principal orbit G/K of codimension one. The
Einstein equations of a cohomogeneity one manifold is reduced to a dynamic system.

In this article we focus on constructing non-compact cohomogeneity one Einstein
metrics. Known examples include the first inhomogeneous Einstein metric in [Cal75],
which has Kähler holonomy. More non-compact Kähler–Einstein metrics of coho-
mogeneity one were constructed in [BB82,DW98,WW98,DS02]. Non-compact coho-
mogeneity one G2 and Spin(7) metrics, which are motivations to this article, were
constructed in [BS89,GPP90,CGLP04,FHN18]. Fixing the principal orbit G/K =
Sp(m + 1)U (1)/Sp(m)�U (1), we aim to look into the full dynamic system of co-
homogeneity one Einstein metrics without imposing any special holonomy condition.
Odd dimensional cohomogeneity one Einstein metrics with generic holonomy include
those constructed in [BB82,WW98,Che11]. The case where the isotropy representa-
tion of the principal orbit consists of exactly two inequivalent irreducible summands
was studied in [Böh99,Win17]. Examples where the principal orbit is a product of irre-
ducible homogeneous spaces was constructed in [Böh99]. In [Chi19b], Ricci-flat metrics
with Wallach spaces as principal orbits were constructed. The isotropy representation
of Wallach spaces consists of three inequivalent irreducible summands, two of which
are from the singular orbit, allowing the singular orbit to be squashed. In this article,
the principal orbit also consists of three irreducible summands. Our main results are the
following.

Theorem 1.1. Let M be theR4-bundle overHP
m given by the group triple (G, H, K ) =

(Sp(m + 1)U (1), Sp(m)Sp(1)U (1), Sp(m)�U (1)). There exists a continuous
2-parameter family of smooth Einstein metrics {ζ(s1,s2,s3) | (s1, s2, s3) ∈ S

2, s1 >

0, s2, s3 ≥ 0} of cohomogeneity one on M. Specifically,

1. ζ(s1,s2,0) is a continuous 1-parameter family of complete Ricci-flat metrics on M. A
metric in this family is AC if s2 = 0, it is ALC otherwise. For m = 1, each ζ(s1,s2,0)

has holonomy Spin(7) on M8. For m > 1, each ζ(s1,s2,0) with s2 > 0 has generic
holonomy.

2. ζ(s1,s2,s3) with s3 > 0 is a continuous 2-parameter family of complete AH negative
Einstein metrics on M.

Some known Einstein metrics are recovered in this family. In the case where m = 1,
ζ(1,0,0) is the Spin(7) metric in [BS89,GPP90]. The 1-parameter family of Spin(7)
metrics ζ(s1,s2,0) was constructed in [CGLP04]. For all m ≥ 1, metrics ζ(s1,0,s3) are of
two summands type. They were constructed in [Böh99,Win17]. All the other metrics in
ζ(s1,s2,s3) are new to the author.

On R4m+4, we have the following.

Theorem 1.2. There exists a continuous 2-parameter family of smooth Einstein metrics
{γ(s1,s2,s3) | (s1, s2, s3) ∈ S

2, s1, s2, s3 ≥ 0} of cohomogeneity one on R
4m+4. Specifi-

cally,
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1. γ(s1,s2,0) is a continuous 1-parameter family of complete Ricci-flat metric on R
4m+4.

A metric in this family is AC if s2 = 0, it is ALC otherwise. For m = 1, γ( 1√
5
, 2√

5
,0
) is

Spin(7) onR8 and all the other Ricci-flat metrics have generic holonomy. For m > 1,
each γ(s1,s2,0) with s2 > 0 has generic holonomy.

2. γ(s1,s2,s3) with s3 > 0 is a continuous 2-parameter family of complete AH negative
Einstein metric on R4m+4. In particular, γ(0,0,1) is the hyperbolic cone with base the
standard S

4m+3.

Although not included in the theorem above, the parameter (s1, s2, s3) can be the
origin for γ(s1,s2,s3). The metric represented is the Euclidean metric on R4m+4, as shown
in Sect. 3. Metrics γ(0,s2,s3) are of two summand type. They first appeared in [BB82].
Metrics γ(s1,0,s3) is also of two summands type. They were constructed in [Chi19a]. In
the case where m = 1, γ( 1√

5
, 2√

5
,0
) is the Spin(7) metric with the opposite chirality to

the metricA8 constructed in [CGLP04]. All the other metrics in γ(s1,s2,s3) are new to the
author.

In some sense, the 2-dimensional parameter (s1, s2, s3) ∈ S
2 in Theorem 1.1 and

Theorem 1.2 controls the asymptotic limit of the metric represented. The non-vanishing
of s2 in (s1, s2, 0) gives the ALC asymptotics. The parameter also describes how the
principal orbit is squashed near the singular orbit. More details are discussed in Sect. 3.
The non-vanishing of s3 gives the AH asymptotics. As discussed in Sect. 2, the dynamic
system of the negative Einstein metrics has a subsystem that can represent the Ricci-flat
system. Integral curves with s3 = 0 are solutions of this subsystem.

New Taub-NUT metrics on R
4m+4 with conical singularity at the origin are also

constructed.

Theorem 1.3. There exists a continuous 1-parameter family of Einstein metrics {�s |
s ∈ [0, ε)} of cohomogeneity one on R

4m+4. They all have conical singularity at the
origin. Specifically,

1. �0 a singular ALC Ricci-flat metric on R
4m+4. For m = 1, the metric is Spin(7) on

R
8. For m > 1, the metric has generic holonomy.

2. �s with s > 0 is a continuous 1-parameter family of singular AH negative Einstein
metric on R

4m+4.

Consider the holonomy of the Ricci-flat metrics in Theorems 1.1–1.3. Combining
our Lemma 6.5 with Theorem 2.1 in [Hit74] and [Wan89], we obtain the following.

Theorem 1.4. All negative Einstein metrics in Theorem 1.1–1.3 does not have any par-
allel spinors. Ricci-flat metrics ζ(s1,s2,0) and �0 on M8, Ricci-flat metrics γ( 1√

5
, 2√

5
,0
) on

R
8 have 1 parallel spinor. All the other ALC Ricci-flat metrics in Theorem 1.1–1.3 does

not have any parallel spinor.

In particular for m = 1, the continuous family of Ricci-flat metrics γ(s1,s2,0) has the
Spin(7) metric A8 lies in the interior and all the other Ricci-flat metrics have generic
holonomy. Hence the parallel spinor onA8 is not preserved under a continuous deforma-
tion of Ricci-flat metrics through the family γ(s1,s2,0). Such a phenomenon also occurs
for G2 holonomy [Chi19b]. Parallel spinors are preserved under a continuous deforma-
tion of Ricci-flat metrics if the manifold is compact. Please see Theorem A in [Wan91]
for more details.
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Principal orbit of manifolds studied in this article are from the group triple (G, H, K )

given by
(Sp(m + 1)U (1), Sp(m)Sp(1)U (1), Sp(m)�U (1)).

The principal orbit is the total space of quaternionic Hopf fibration

S
3 ↪→ S

4m+3 → HP
m . (1.1)

TakeS4m+3 as the space of unit quaternionic vector inHm+1. ThefibrationS4m+3 → HP
m

is given by (q1, . . . , qm+1) �→ [q1 : . . . : qm+1]. The transitive action of G on S
4m+3 is

given by

(A, z) · q := Aqz̄ (1.2)

for each (A, z) ∈ G. The isotropy group for (0, . . . , 0, 1) ∈ S
4m+3 is K . The action of

G passes down to the base. The isotropy group for [0 : . . . : 0 : 1] is H . Therefore,
the quaternionic Hopf fibration is indeed the homogeneous fibration H/K ↪→ G/K →
G/H . More details of the isotropy representation are discussed in the next section.

Let M be the cohomogeneity one manifold with principal orbit G/K and singular
orbit G/H . Then M is an R4 bundle overHP

m . A cohomogeneity one metric on M has
the form of dt2 + gG/K (t), where gG/K (t) is an invariant metric on each {t} × G/K
with t > 0 and it collapse to an invariant metric on G/H as t → 0. We also construct
cohomogeneity one Einstein manifolds where the singular orbit for these manifolds is a
singleton. In that scenario, the homogeneous part gG/K (t) vanishes as t → 0. Since the
principal orbit is S4m+3, the cohomogeneity one manifold is topologically R

4m+4.
One feature of the case in this article that differs from the one in [Chi19b] is that

the singular orbit is irreducible and the fiber is of two irreducible summands. Moreover,
irreducible summands in g/k all have different dimensions, as shown in Sect. 2. The
cohomogeneity one dynamic systems have less symmetry than the one in [Chi19b]. It is
worth mentioning that the cohomogeneity one equation in the article shares some degree
of similarity with the one that appears in [Rei11]. The study may help shed some light
on the global existence question of Spin(7) metric with an Aloff–Wallach space as the
principal orbit.

Remark 1.5. There exists an intermediate group L := Sp(m)U (1)U (1) between H and
K . With the same group action (1.2) of G, we can see that the group triple (G, L , K )

gives the complex Hopf fibration

S
1 ↪→ S

4m+3 → CP
2m+1. (1.3)

Let M̃ be the vector bundle with principal orbit G/K and singular orbit G/L . It is a
natural question to ask if there are more complete cohomogeneity one Einstein metrics
on M̃ besides those constructed in [BB82]. Specifically, isotropy representation of G/L
has two irreducible summands that allow each {t}×G/L with t > 0 to be squashed and
gG/K (t) is a G-invariant metric on a circle bundle over a squashed CP

2m+1.

The Einstein metrics constructed and recovered in this article have three kinds of
asymptotic behaviors. We give definitions in the following.

Definition 1.6. Let (M, gM ) be a Riemannian manifold of dimension n+1. Let (N , gN )

be an n-dimensional Riemannian manifolds and (C(N ), dt2 + t2gN ) be the metric cone
with base N . Let • denote the tip of the cone. M is asymptotically conical (AC) if for
some p ∈ M , we have lim

l→∞((M, p), 1
l gM ) = ((C(N ), •), dt2 + t2gN ) in the pointed

Gromov–Hausdorff sense.
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Remark 1.7. Note that if (N , gN ) in Definition 1.6 is a standard sphere Sn , the metric
dt2 + t2gN is the Euclidean metric on Rn+1. Then M is asymptotically Euclidean (AE).

Definition 1.8. Let (M, gM ) be a Riemannian manifold of dimension n+2. Let (N , gN )

be an n-dimensional Riemannian manifolds and (C(N ), dt2 + t2gN ) be the metric cone
with base N . M is asymptotically locally conical (ALC) if for some p ∈ M , we have
lim
l→∞((M, p), 1

l gM ) = (Ĉ(N ), •), dt2+Cds2+t2gN ) in the pointedGromov–Hausdorff

sense, where Ĉ(N ) is some S1-bundle over C(N ) and C > 0 is a constant.

Definition 1.9. Let (M, gM ) be a Riemannian manifolds of dimension n + 1 with a
boundary ∂M . M is conformally compact if there exists a positive function f such that
(M, f 2gM ) extends to a smooth metric on M .

In Definition 1.9, it can be checked that sectional curvature of gM approaches to
−‖d f ‖ f 2gM near ∂M . If (M, gM ) is negative Einstein, then the sectional curvature must
approach to a constant near ∂M . With normalization, we fix ‖d f ‖ f 2gM = 1. Hence
a conformally compact Einstein manifold is also called an asymptotically hyperbolic
(AH) manifold.

This article is structured as the following. In Sect. 2, we derive the cohomogeneity one
Einstein equation with principal orbitG/K . Then finding a cohomogeneity one Einstein
metric is equivalent to finding an integral curve defined on [0,∞). Then we apply
coordinate change inspired by the one in [DW09a,DW09b]. In the new coordinate, initial
conditions and the asymptotic limits of the original system are transformed to critical
points. Then the construction of Einstein metrics boils down to finding integral curves
that emanate from one critical point and tend to the other. Proving the completeness of
the metric is equivalent to showing that the new integral curve is defined on R.

In Sect. 3, we compute linearizations of some critical points with geometric signif-
icance of the new system. There are three critical points that represents different initial
conditions. One of them gives the smooth extension of the metric to G/H ; one gives the
smooth extension of the metric to the origin of R4m+4; and third one gives the singular
extension to the origin of R4m+4. There are two types of critical points that represent
different asymptotic limits. One of them represents the ALC limit and the other type
serves as the AH limit for the integral curves.

In Sect. 4, we construct a compact invariant set that contains sellected critical points in
the previous section on its boundary. Linearization in the previous section helps to prove
that some integral curves that emanate from these points are in the compact invariant set
initially. Hence the completeness of the represented metrics follows. The technique we
use is very similar to the one in [Chi19a].

In Sect. 5, we give a rigorous proof for the asymptotic behaviour of the complete
integral curves. We prove that all the new Ricci-flat metrics constructed are ALC, gener-
alizing the conclusion in [CGLP04] and [Baz07].We also prove that all the new negative
Einstein metrics constructed are AH.

In Sect. 6, we recover some well-known examples, including the Kähler–Einstein
metrics in [BB82], the quaternionic Kähler metric in [Swa91], the G2 and Spin(7)
metrics in [BS89,GPP90] and the Spin(7) metric in [CGLP04]. Then we show that all
the ALC Ricci-flat metrics constructed have generic holonomy.

2. Einstein Equation

We derive the Einstein equation in this section. We first introduce some notation re-
garding representation theory. Let I be the trivial representation. Let μm be the matrix
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multiplication representation (over complex numbers) of Sp(m). Let σ l denote the l-th
symmetric tensor power of the matrix multiplication representation (over complex num-
bers) of Sp(1) (hence μ1 = σ 1). Let tl denote the complex representation of U (1) of
weight l. Define the inner product for g as Q(X,Y ) = −tr(XY ). Note that Q is non-
degenerate on g and equal to a multiple of the Killing form of sp(m + 1) when restricted
to Sp(m + 1).

The action of G on TeK (G/K ) is equivalent to the adjoint action of G on g/k. Let
(G, H, K ) = (Sp(m + 1)U (1), Sp(m)Sp(1)U (1), Sp(m)�U (1)). We have the follow-
ing Q-orthogonal decomposition for g.

g = h ⊕ [μm ⊗ σ 1]R as a H -module

= l ⊕ [t2]R ⊕ [μm ⊗ t1]R as an L-module

= k ⊕ I ⊕ [t2]R ⊕ [μm ⊗ t1]R as a K -module

. (2.1)

Consider Sp(m + 1) = U (2m + 2) ∩ Sp(2m + 2;C) and embed G in Sp(2m + 4;C).
IdentifyHm+1 withC2m+2 = C

m+1⊕ jCm+1. The isotropy representation ofG/K hence
has a Q-orthonormal basis {E1, E2, E3, El1l2 | l1 = 1, . . . ,m, l2 = 1, 2, 3, 4}, where

E1 = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

O
. . .

O
−i 0
0 i

i 0
0 −i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

E2 = 1√
2

⎡
⎢⎢⎢⎢⎢⎢⎣

O
. . .

O
0 1

−1 0
O

⎤
⎥⎥⎥⎥⎥⎥⎦

, E3 = 1√
2

⎡
⎢⎢⎢⎢⎢⎢⎣

O
. . .

O
0 i
i 0

O

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(2.2)

and each El1l2 is given by

El1l2 = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

O O
. . .

...

. . . Al2
. . .

...

O . . . −A∗
l2

. . . O
O

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, l1 = 1, . . . ,m, l2 = 1, 2, 3, 4,

with

O =
[
0
0

]
, A1 =

[
1 0
0 1

]
, A2 =

[
i 0
0 −i

]
, A3 =

[
0 i
i 0

]
, A4 =

[
0 −1
1 0

]
.

The trivial representation I is spanned by E1, which is orthogonal to k. Note that Q =
− 1

4 B1 = − 1
2m+4 B2, where B1 and B2 are respectively the Killing form for Sp(2;C)
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and Sp(2m + 2;C). We abuse the notation by using Q to denote the invariant metric on
G that is induced by the inner product. Take Q as the background metric. By Schur’s
Lemma, an invariant metric on G/K has the form of

gG/K = a2 Q|I + b2 Q|[t2]R + c2 Q|g/h . (2.3)

By Corollary 7.39 in [Bes08], the formula of the scalar curvature for gG/K is

Rs = 4

b2
+
4m(m + 2)

c2
− 1

2

a2

b4
− m

4

a2

c4
− m

b2

c4
.

Compute the first variation of the Hilbert–Einstein functional on G/K . The Ricci endo-
morphism is given by

ra = 1

2

a2

b4
+
m

4

a2

c4

rb = 2

b2
− 1

2

a2

b4
+
m

2

b2

c4

rc = m + 2

c2
− 1

8

a2

c4
− 1

2

b2

c4

. (2.4)

Note that M\(G/H) and R
4m+4\{0} are both G-diffeomorphic to (0,∞) × G/K .

We construct Einstein metrics g = dt2 + gG/K (t) by setting (0,∞) as a geodesic and
assign G-invariant metric gG/K on each {t} × G/K . Then (2.3) becomes a S2(g/k)K -
valued function on t , where S2(g/k)K is the space of K -invariant symmetric 2-tensor.
By [EW00], the cohomogeneity one Einstein system is

ä

a
−
(
ȧ

a

)2

= −
(
ȧ

a
+ 2

ḃ

b
+ 4m

ċ

c

)
ȧ

a
+
1

2

a2

b4
+
m

4

a2

c4
− �

b̈

b
−
(
ḃ

b

)2

= −
(
ȧ

a
+ 2

ḃ

b
+ 4m

ċ

c

)
ḃ

b
+

2

b2
− 1

2

a2

b4
+
m

2

b2

c4
− �

c̈

c
−
(
ċ

c

)2

= −
(
ȧ

a
+ 2

ḃ

b
+ 4m

ċ

c

)
ċ

c
+
m + 2

c2
− 1

8

a2

c4
− 1

2

b2

c4
− �

(2.5)

with conservation law
(
ȧ

a
+ 2

ḃ

b
+ 4m

ċ

c

)2

−
(
ȧ

a

)2

− 2

(
ḃ

b

)2

− 4m

(
ċ

c

)2

= Rs − (4m + 2)� . (2.6)

There are three possible initial conditions for (2.5). The first possibility is having
G/H as the singular orbit. The cohomogeneity one manifold M is an R

4-bundle over
HP

m . The principal orbit G/K becomes the zero section G/H as t → 0. In order to
smoothly extend the metric on the tubular neighbourhood around G/H , we have the
following proposition.

Proposition 2.1. The necessary and sufficient conditions for the metric g = dt2 +
gG/K (t) to extend smoothly to a metric in a tubular neighborhood of G/H is

lim
t→0

(a, b, c, ȧ, ḃ, ċ) =
(
0, 0, h, 1,

√
2

2
, 0

)
(2.7)

for some h > 0.
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Proof. Since the unit sphere in q+ is generated by E1, E2 and E3. It is clear that Q|I +
1
2 Q|[t2]R is the standard metric for H/K = S

3. The initial condition is then derived by
Lemma 9.114 in [Bes08]. 
�

Another possible initial condition is G/K collapsing to a singleton as t → 0. Since
G/K = S

4m+3, the cohomogeneity one manifold is topologically R
4m+4. In order to

extend the metric on the neighborhood of the origin of R4m+4, we have the following
proposition.

Proposition 2.2. The necessary and sufficient conditions for the metric g = dt2 +
gG/K (t) to extend smoothly to a metric in a tubular neighborhood of origin in R4m+4 is

lim
t→0

(a, b, c, ȧ, ḃ, ċ) =
(
0, 0, 0, 1,

√
2

2
,
1

2

)
. (2.8)

Proof. The unit sphere S4m+3 is generated by E1, E2, E3 and El j ’s. Therefore, if

gG/K (t) = t2
(
Q|I + 1

2
Q|[t2]R +

1

4
Q|g/h

)
,

g = dt2 + gG/K (t) is the flat metric on R
4m+4. The initial condition is obtained by

Lemma 9.114 in [Bes08]. 
�
Note thatG/K admits two homogeneous Einstein metrics. Hence for a cohomogene-

ity one metric of Taub-NUT type, G/K can also degenerate to a point as a Jensen sphere
[Jen73]. Then the corresponding initial condition is given by

lim
t→0

(a, b, c, ȧ, ḃ, ċ) =
(
0, 0, 0, β,

√
2

2
β,

√
2m + 3

2
β

)
, (2.9)

where (4m + 3)(4m + 2)β2 = 6 + 16m(m+2)(2m+3)−12m
(2m+3)2

. In other words, if

gG/K (t) = β2t2
(
Q|I + 1

2
Q|[t2]R +

2m + 3

4
Q|g/h

)
,

then dt2 + gG/K (t) is a singular cone metric on R4m+4 with the Jensen sphere S4m+3 as
its base.

As pointed out in Remark 2.9 in [Chi19b], in the Ricci-flat case, changing h in (2.7)
is essentially the homothetic change of the solution around G/H . Moreover, (2.7) does
not fully determine the metric in a tubular neighborhood of G/H . This is also the case
for (2.8). Using Lemma 1.1 in [EW00], we can prove that there exists a free parameter
for a−b of order 3 for (2.7) and (2.8). We consider (2.7) bellow. Statements concerning
(2.8) can be obtained without substantial change of the argument.

We first rephrase Lemma 1.1 in [EW00] for M below.

Lemma 2.3 ([EW00]). Let χ be the slice representation for M. Let
Wi = Hom(Si (χ), S2(χ ⊕ g/h))H be the space of H-equivariant homogeneous poly-
nomials of degree i . Consider a smooth curve g(t) : [0,∞) → S2(χ ⊕ g/h)K with
Taylor expansion

∑∞
i=0 gi t

i around t = 0. The curve can be smoothly extended to G/H
as a symmetric 2-tensor if and only if each gi is an evaluation of some element in Wi at
v0 = (1, 0, 0, 0) ∈ χ .
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Since χ = [
σ 1 ⊗ t1

]
R
and g/h = [

μm ⊗ σ 1
]
R
are inequivalent, we have decompo-

sition

Wi = W+
i ⊕ W−

i := Hom(Si (χ), S2(χ))H ⊕ Hom(Si (χ), S2(g/h))H

By induction, we have

S2k(χ) ⊗ C =
k−1∑
l=0

l∑
j=0

(
σ 2k−2 j ⊗ t2k−2l + σ 2k−2 j ⊗ t−(2k−2l)

)
+

k∑
l=0

σ 2k−2l

S2k+1(χ) ⊗ C =
k∑

l=0

l∑
j=0

(
σ 2k+1−2 j ⊗ t2k+1−2l + σ 2k+1−2 j ⊗ t−(2k+1−2l)

) (2.10)

as H -modules. In particular, we have

S2(χ) = [σ 2 ⊗ t2]R + [σ 2]R + I.

We also have

S2(g/h) =
{[

μ2
m ⊗ σ 2

]
R
+
[
μm∧̊μm

]
R
+ I m �= 1[

σ 2 ⊗ σ 2
]
R
+ I m = 1

, (2.11)

where
[
μm∧̊μm

]
R
+ I = [μm ∧ μm]R. Hence it is clear that

W+
2k =

{
R k = 0
R
3 k ≥ 1

W+
2k+1 = 0 W−

2k = R W−
2k+1 = 0.

Proposition 2.4. For initial condition (2.7), there exists a free parameter for a − b of
order 3.

Proof. Identify g = dt2+gG/K (t) as amapD(t)⊕J (t),whereD(t) : [0,∞) → S2(χ)K

and J (t) : [0,∞) → S2(g/k)K . In that way, the standard inner product on each fiber χ

is given by dt2 + t2(Q|I + 1
2 Q|[t2]R).

The Taylor expansion can be written as

D(t) = D0 + D1t + D2t
2 + . . .

J (t) = J0 + J1t + J2t
2 + . . .

. (2.12)

Since W−
2k+2

∼= W−
2k for k ≥ 0 and W−

0 is spanned by the identity matrix, we learn that
J (t) is determined by J0 = h2Id. Hence no free variable of higher order comes from
the c component.

The generator for W+
0 is the identity matrix Id. Hence one of the generators of W+

2 is
(
∑3

i=0 x
2
i )Id.Note that the identitymap inW+

2 is clearly H -equivariant.Hence thematrix

, where 
i j = xi x j is another generator of W+

2 . By straightforward computation, the
third generator ofW+

2 is� the projection map from S2(χ) to the 3-dimensional subspace
of S2(χ).



1020 H. Chi

� =

⎡
⎢⎢⎣

x21 + x22 − x23 − x24 0 2(x2x4 − x1x3) −2(x1x4 + x2x3)
0 x21 + x22 − x23 − x24 2(x1x4 + x2x3) 2(x2x4 − x1x3)

2(x2x4 − x1x3) 2(x1x4 + x2x3) −x21 − x22 + x23 + x24 0
−2(x1x4 + x2x3) 2(x2x4 − x1x3) 0 −x21 − x22 + x23 + x24 .

⎤
⎥⎥⎦ .

Evaluate these three generators at v0 and take into account that t is a unit speed
geodesic. We learn that D0 = Id and D2 is a multiple of

p

((
3∑

i=0

x2i

)
Id − 


)
(v0) + q

((
3∑

i=0

x2i

)
Id − �

)
(v0) =

⎡
⎢⎣
0
p
p + 2q

p + 2q

⎤
⎥⎦

for some p, q ∈ R. Since W+
2 /W+

0
∼= R

2, there are in principle two free variables for
D(t) to extend smoothly aroundG/H as a 2-tensor. However, with the geometric setting
that t is a unit geodesic, the parameter p is determined. Therefore, g can be extended
smoothly around G/H if

a2 = t2 + At4 + O(t6)

b2 = t2 + Bt4 + O(t6)

c2 = h2 + O(t2),

(2.13)

where (
...
a − ...

b )(0) = 3(A − B) = −3q for some q ∈ R. 
�
Remark 2.5. Proposition 2.4 can be carried over to (2.8) by thinking R

4m+4 as a vector
bundle over a singleton. In this case, K is the isotropy representation at (1, 0, . . . , 0).
The space to consider is Hom(Si (χ̃), S2(χ̃))G , where χ̃ is the slice representation by
the action of G. Lemma 2.3 can then be applied with no extra difficulties. Besides the
discussion above, there is an alternative procedure to derive the smoothness condition.
More details are presented in [VZ20].

Inspiredby [DW09a,DW09b],weapply coordinate changedη =
(
ȧ
a + 2 ḃ

b + 4m ċ
c

)
dt .

The quantity ȧ
a + 2 ḃ

b + 4m ċ
c is the trace of the shape operator of the hypersurface orbit.

Define

X1 =
ȧ
a

ȧ
a + 2 ḃ

b + 4m ċ
c

, X2 =
ḃ
b

ȧ
a + 2 ḃ

b + 4m ċ
c

, X3 =
ċ
c

ȧ
a + 2 ḃ

b + 4m ċ
c

,

Y1 = a

b
, Y2 =

1
b

ȧ
a + 2 ḃ

b + 4m ċ
c

, Y3 =
b
c2

ȧ
a + 2 ḃ

b + 4m ċ
c

, W̃ = 1
ȧ
a + 2 ḃ

b + 4m ċ
c

.

(2.14)

Define functions on η

R1 = 1

2
Y 2
1 Y

2
2 +

m

4
Y 2
1 Y

2
3

R2 = 2Y 2
2 − 1

2
Y 2
1 Y

2
2 +

m

2
Y 2
3

R3 = (m + 2)Y2Y3 − 1

8
Y 2
1 Y

2
3 − 1

2
Y 2
3

Rs = R1 + 2R2 + 4mR3, G = X2
1 + 2X2

2 + 4mX2
3

. (2.15)
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Let ′ denote the derivative with respect to η. The Einstein equations (2.5) become a
polynomial system

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

X1
X2
X3
Y1
Y2
Y3
W̃

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

′

= V (X1, X2, X3,Y1,Y2,Y3, W̃ )

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1(G + �W̃ 2 − 1) + R1 − �W̃ 2

X2(G + �W̃ 2 − 1) + R2 − �W̃ 2

X3(G + �W̃ 2 − 1) + R3 − �W̃ 2

Y1(X1 − X2)

Y2(G + �W̃ 2 − X2)

Y3(G + �W̃ 2 + X2 − 2X3)

W̃ (G + �W̃ 2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.16)

with conservation law (2.6) becomes

C : 1 − G = Rs − (4m + 2)�W̃ 2 (2.17)

It is clear that X1 + 2X2 + 4mX3 ≡ 1 from the definition of coordinate change. In fact,
let

H = {(X1, X2, X3,Y1,Y2,Y3, W̃ ) | X1 + 2X2 + 4mX3 = 1},
one can check that C ∩ H ∩ {W̃ ≥ 0} is a flow-invariant 5-dimensional manifold in R

7

with a 4-dimensional boundary C ∩ H ∩ {W̃ ≡ 0}.
Remark 2.6. For (2.16) with� < 0, the variable t and functions a, b and c are recovered
by

t =
∫ η

η0

W̃dη̃, a = Y1W̃

Y2
, b = W̃

Y2
, c = W̃√

Y2Y3
. (2.18)

Remark 2.7. If we assume � = 0 in (2.20). Since W̃ ′ = GW̃ in this case, we have

W̃ = exp

(∫ η

η̃0

Gdη̃

)
.

Since dη = 1
W̃
dt = exp

(
− ∫ η

η̃0
Gdη̃

)
dt , the variable t and functions a, b and c can be

recovered without W̃ . Therefore, for cohomogeneity one Ricci-flat metrics, we consider
the vector field VRF on the 4-dimensional invariant manifold

CRF = {(X1, X2, X3,Y1,Y2,Y3) | 1−G = R1 +2R2 +4mR3, X1 +2X2 +4mX3 = 1}
given by (2.16) with all W̃ terms deleted.

On the other hand, it is clear (2.16) has a subsystem restricted on C ∩H ∩ {W̃ ≡ 0}.
Consider the map � : CRF → C by (X1, X2, X3,Y1,Y2,Y3) �→ (X1, X2, X3,Y1,Y2,
Y3, 0). It is clear that (CRF , VRF ) and (C ∩H, V |C∩H∩{W̃≡0}) are �-related. Therefore,
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cohomogeneity one Ricci-flat metrics can be represented by integral curves on C ∩H∩
{W̃ ≡ 0}, even though the quantity 1

ȧ
a +2

ḃ
b +4m

ċ
c

does not actually vanish on the Ricci-flat

manifold.

Remark 2.8. Note that (2.5) is not invariant under homothety change if � < 0. We fix
� = −(4m + 3) in this article to fix the homothety for negative Einstein metrics.

If � = 0 in (2.5), then the original system is invariant under homothety change. The
homothety change is transformed to the shifting of η for an integral curve, while the
graph of the integral curve remains unchanged. Combining with Remark 2.7, we know
that each integral curve for V restricted on C ∩ H ∩ {W̃ ≡ 0} represents a solution in
the original coordinate up to homothety.

For a technical reason that is further discussed in Remark 3.1 in Sect. 3, instead of
studying system (2.16) on C∩H, we study a dynamic system that is equivalent to (2.16).
Remark 2.6, Remark 2.7 and Remark 2.8 are carried over.

On R6, define

E = {(X1, X2, X3,Y1,Y2,Y3) | 1 − G − Rs ≥ 0, X1 + 2X2 + 4mX3 = 1}.
It is a 5-dimensional surface in R6 with a boundary. Define

� : E → C ∩ H ∩ {W̃ ≥ 0}. (2.19)

by sending (X1, X2, X3,Y1,Y2,Y3) to
(
X1, X2, X3,Y1,Y2,Y3,

√
1−G−Rs−(4m+2)�

)
. It is

straightforward to check that � is a diffeomorphism. On E , define function W =√
1−G−Rs−(4m+2)� . Consider the dynamic system

⎡
⎢⎢⎢⎢⎢⎣

X1
X2
X3
Y1
Y2
Y3

⎤
⎥⎥⎥⎥⎥⎦

′

= V�≤0(X1, X2, X3,Y1,Y2,Y3)

:=

⎡
⎢⎢⎢⎢⎢⎢⎣

X1(G + �W 2 − 1) + R1 − �W 2

X2(G + �W 2 − 1) + R2 − �W 2

X3(G + �W 2 − 1) + R3 − �W 2

Y1(X1 − X2)

Y2(G + �W 2 − X2)

Y3(G + �W 2 + X2 − 2X3)

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.20)

on E . By straightforward computation, we have

(G + Rs)
′ = 2(G + Rs − 1)(G + �W 2), (2.21)

from which we deduce
W ′ = W (G + �W 2).

Therefore, the boundary

∂E := {(X1, X2, X3,Y1,Y2,Y3) | 1 − G − Rs = 0, X1 + 2X2 + 4mX3 = 1}
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is flow-invariant. Moreover, (E, V�≤0) and (C ∩ H ∩ {W̃ ≥ 0}, V ) are �-related. We
have the following commutative diagram.

(
C ∩ H ∩ {W̃ ≡ 0}, V |C∩H∩{W̃≡0}

)
−−−−→ (C ∩ H ∩ {W̃ ≥ 0}, V )

�⏐⏐�|∂E
�⏐⏐�

(∂E, V�≤0
∣∣
∂E ) −−−−→ (E, V�≤0)

(2.22)

The variable t and functions a, b and c can be recovered by replacing W̃ with W in
Remark 2.6 and Remark 2.7. By Remark 2.7 and Remark 2.8, we fix � = −(4m + 3)
in V�≤0 in order to fix the homothety for negative Einstein metrics. Each integral curve
for V�≤0 restricted on ∂E represents a Ricci-flat solution in the original coordinate up
to homothety. Define P = {(X1, X2, X3,Y1,Y2,Y3) | Y1,Y2,Y3 ≥ 0}. It is clear that
E ∩P is flow-invariant. By the discussion above, it is justified to denote ∂E ∩P as BRF .

Proposition 2.9. If � = 0 in (2.5), the solution for the original system is defined on
(0,∞) if the corresponding integral curve is defined on R. If � < 0 in (2.5), the
solution for the original system is defined on (0,∞) if the corresponding integral curve
is defined on R and Rs ≥ 0 along the curve.

Proof. The Ricci-flat case was proven in Lemma 5.1 [BDW15]. As for the negative
Einstein case, since Rs ≥ 0 along the corresponding integral curve, it is clear that W is
increasing along the curve. Hence we have lim

η→∞ t = ∞. The proof is complete. 
�
To some extent, by the proposition above, the problem of constructing a cohomo-

geneity one Einstein metric dt2 + gG/K (t) on (0,∞) × G/K is transformed to finding
an integral curve of (2.20) on E that is defined on R. The initial conditions at t = 0 are
transformed to limits of these integral curves as η → −∞. In Sect. 3, we see that initial
conditions (2.7), (2.8) and (2.9) are transformed to critical points of the new system.
Hence the next step is to show that integral curves that emanate from theses critical
points are defined on R.

There are some integral curves already known to be defined on R. These curves lie
in several subsystems of (2.20) besides BRF . We give a short summary in the following.

Straightforward computation shows that

BRd := E ∩ P ∩ {X1 − X2 ≡ 0,Y 2
1 ≡ 2}

is flow-invariant. Integral curves on this set represents metrics with a2 ≡ 2b2 imposed.
Hence the 3-sphere H/K is round (hence the subscript “Rd”) and the subsystem is of
two summands type. This case is studied in [Win17,Böh99]. Furthermore, for m = 1,
there exists an integral curve that represents the Spin(7) metric in [BS89,GPP90]. The
metric can be represented by a straight line in terms of variables in (2.14).

One can also see that

BFS := E ∩ P ∩ {2Y2 − Y3 ≡ 0, X2 − X3 ≡ 0}
is flow-invariant. Integral curves on this set represents cohomogeneity one metrics with
b2 ≡ 2c2 imposed. Under this setting, the homogeneousmetric onCP2m+1 is the Fubini–
Study metric and it is Kähler–Einstein. The imposed equation is also part of the Kähler
condition shown in [DW98]. The circle bundle Prin(k) over CP2m+1 is classified by the
multiple k of an indivisible integral cohomology class in H2(CP2m+1,Z). For our case
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in BFS , the principal orbit G/K is the circle bundle Prin(1) over the Kähler–Einstein
CP

2m+1. This case is included in [BB82].
The reduced system on the invariant set

BALC := E ∩ P ∩ {Y1 ≡ 0, X1 ≡ 0}
carries two pieces of information. On one hand, if a = O(1) while b, c = O(t) at the
infinity of some cohomogeneity one Einstein metrics, variables Y1 and X1 converge to
zero along the corresponding integral curve. Hence BALC serves as the “invariant set of
ALC limit”. On the other hand, the subsystem onBALC is essentially the one that appears
in [Win17,Böh99] with respect to the group triple (Sp(m)U (1), Sp(m)Sp(1), Sp(m +
1)). Form = 1, there exists aG2 metric on the cohomogeneity one space [BS89,GPP90].
The metric can be represented by a straight line in terms of variables in (2.14).

Finally, for m = 1, there exists a pair of invariant sets B±
Spin(7) that represent the

Spin(7) conditions of positive/negative chirality. This case is studied in [CGLP04] and
a continuous 1-parameter family of Spin(7) metrics is discovered. On one boundary of
this family lies the Spin(7) metric in [BS89,GPP90]. This case is discussed in more
details in Sect. 6.3.

3. Critical Points

We study critical points of vector field V�≤0 in (2.20) in this section. Let P be a critical
point of V�≤0. If an integral curve defined on R has P as its limit as η → −∞, then the
coordinates of P represent the initial condition for the metric dt2 + gG/K (t) as t → 0
up to the first order. Indeed, we see that initial conditions (2.7), (2.8) and (2.9) are
transformed to critical points. On the other hand, if the integral curve has P as its limit
as η → ∞, then P represents the asymptotic limit for the metric as t → ∞ up to first
order. A critical point can carry these two pieces of information simultaneously.

Through computing linearizations at these points, we are able to prove the existence
of Einstein metrics that are defined on a tubular neighbourhood around G/H and a
neighbourhood around the origin of R4m+4. The proof for the completeness of these
metrics then boils down to showing that these integral curves are defined on R.

On BRF = ∂E ∩ P , where the function W vanishes, we have the following critical
points and boundary conditions.

1. P0 :=
(
1
3 ,

1
3 , 0,

√
2,

√
2
3 , 0

)

2. PAC−i := ( 1
4m+3 ,

1
4m+3 ,

1
4m+3 , y1, y2, y3

)
, i = 1, 2

(a) PAC−1 : y1 = √
2, 2y2 = y3 = 2

√
2

4m+3

(b) PAC−2 : y1 = √
2, 2y2 = (2m + 3)y3 = 4m+6

4m+3

√
4m+2

(2m+3)2+2m

3. PALC−i := (
0, 1

4m+2 ,
1

4m+2 , 0, y2, y3
)
, i = 1, 2

(a) PALC−1 : 2y2 = y3 = 1
2m+1

√
4m+1
2m+2

(b) PALC−2 : 2y2 = (m + 1)y3 = m+1
4m+2

√
8m+2

(m+1)2+m

4. PALC−0 :=
(
0, 1

2 , 0, 0,
√
2
4 , 0

)

5.

(
0,− 1

2 ,
1
2m , 0, 0, 1

m

√
2−m
2

)
, m ≤ 2
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6. (a, a, b, y1, 0, 0), y1 �= 0, 3a2 + 4mb2 = 3a + 4mb = 1
7. (x1, x2, x3, 0, 0, 0), x21 + 2x22 + 4mx23 = x1 + 2x2 + 4mx3 = 1

On int(E) ∩ P , we have the following.

1. PAH (y1) = ( 1
4m+3 ,

1
4m+3 ,

1
4m+3 , y1, 0, 0

)
, y1 ≥ 0, W =

√
1

−�(4m+3)

2. PQK =
(

1
2m+3 ,

1
2m+3 ,

1
4m+6 ,

√
2, 0,

√
2

2m+3

)
, W = 1

2m+3

√
m+3
−�

3.
(

m+2
4(m+1)2+m+2

, 2m+2
4(m+1)2+m+2

, m+1
4(m+1)2+m+2

, 0, 0,
√

2
4(m+1)2+m+2

)
,

W =
√

m+2
−�(4(m+1)2+m+2)

In this article, we mainly focus on critical points P0, PAC−1, PAC−2, PALC−2 and
PAH (y1).With the help of the softwareMaple,we compute the linearizationLof (2.20) at
these critical points and compute the eigenvalues and eigenvectors. As we only consider
system (2.20) restricted on E . We only focus on eigenvectors that are tangent to E , i.e.,
orthogonal to NE the normal vector field on E . Note that ∂E is the intersection of E
and the algebraic surface 1 − G − Rs = 0. Therefore, for integral curves that stay in
∂E , eigenvectors are orthogonal to the normal vector field N∂E on the algebraic surface
1 − G − Rs = 0 in addition to NE (Fig. 1). We have

NE =

⎡
⎢⎢⎢⎢⎢⎣

1
2
4m
0
0
0

⎤
⎥⎥⎥⎥⎥⎦

, N∂E =

⎡
⎢⎢⎢⎢⎢⎣

2X1
4X2
8mX3

−Y1Y 2
2 − m

2 Y1Y
2
3−Y 2

1 Y2 + 8Y2 + 4m(m + 2)Y3
−m

2 Y
2
1 Y3 − 2mY3 + 4m(m + 2)Y2

⎤
⎥⎥⎥⎥⎥⎦

.

3.1. P0. For an integral curve that emanates from P0 =
(
1
3 ,

1
3 , 0,

√
2,

√
2
3 , 0

)
, one can

show that the point is (2.7) under the new coordinate (2.20). Integral curves emanating
from this point represent smooth Einsteinmetrics on the tubular neighbourhood ofG/H .
The linearization at the point is

L(P0) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 8m+6
18m+9

8m
18m+9 0 (12m+8)

√
2

54m+27
4m

√
2

6m+3 − 4m(m+2)
√
2

18m+9

4m
18m+9 − 4m+6

18m+9 0 − (12m+4)
√
2

54m+27
4m

√
2

6m+3 − 4m(m+2)
√
2

18m+9

− 1
6m+3 − 2

6m+3 − 2
3

√
2

18m+9 −
√
2

2m+1
(m+2)

√
2

6m+3√
2 −√

2 0 0 0 0

(4m+3)
√
2

18m+9
(2m+3)

√
2

18m+9 0 − 2
54m+27

2
6m+3

4m(m+2)
18m+9

0 0 0 0 0 2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.1)

Eigenvalues, along with their respective eigenvectors that are tangent to E , are the fol-
lowing.
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Fig. 1. Critical Points in E ∩ P Projected on Y -space

λ1 = λ2 = λ3 = 2

3
, λ4 = −2

3
, λ5 = −4

3

v1 =

⎡
⎢⎢⎢⎢⎢⎣

−4m(m + 2)
−4m(m + 2)
3(m + 2)

0
−2

√
2m(m + 2)
6
√
2

⎤
⎥⎥⎥⎥⎥⎦

, v2 =

⎡
⎢⎢⎢⎢⎢⎣

−4
2
0

−9
√
2

−√
2

0

⎤
⎥⎥⎥⎥⎥⎦

, v3 =

⎡
⎢⎢⎢⎢⎢⎣

−4m
−4m
3
0

−2(m + 1)
√
2

0

⎤
⎥⎥⎥⎥⎥⎦

,

v4 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−4m
√
2

−4m
√
2

3
√
2

0
4m
0

⎤
⎥⎥⎥⎥⎥⎥⎦

, v5 =

⎡
⎢⎢⎢⎢⎢⎣

−4
√
2

2
√
2

0
9
1
0

⎤
⎥⎥⎥⎥⎥⎦

(3.2)
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Hence the general linearized solution emanating from P0 is of the form

P0 + s1e
2η
3 v1 + s2e

2η
3 v2 + s3e

2η
3 v3 (3.3)

for some constants si ∈ R. Note that the correspondence between germs of linearized
solution (3.3) and (s1, s2, s3) ∈ R

3 is not 1 to 1. For example, (1, 1, 1) and (2, 2, 2)
give the same linearized solution. The redundancy is cut out by fixing

∑3
i=1 s

2
i = 1.

By Hartman–Grobman theorem, there is a 1 to 1 correspondence between each choice
of (s1, s2, s3) ∈ S

2 and an actual solution curve that emanates P0. Hence we can use
ζ(s1,s2,s3) to denote the actual solution that approaches to (3.3) near P0. Moreover, by
the unstable version of Theorem 4.5 in [CL55], there is some δ > 0 that

ζ(s1,s2,s3) = P0 + s1e
2η
3 v1 + s2e

2η
3 v2 + s3e

2η
3 v3 + O

(
e

(
2
3 +δ

)
η
)

. (3.4)

Remark 3.1. Here we explain the advantage of using system (2.20) instead of (2.16). The
linearization of (2.16) at P0 has two distinct positive eigenvalues. Hence the error term
of a linearized solution may dominates terms with the smaller eigenvalues, which create
extra difficulties in estimating a function near P0. In (3.4), we only have one positive
eigenvalue. As the error of the linearized solution is dominated near P0, we can safely
make an estimate using the linearized solution.

In this article, we consider ζ(s1,s2,s3) with s1 > 0 and s2, s3 ≥ 0. In order the let
ζ(s1,s2,s3) enter E ∩P initially, we must have s1 > 0 so that Y3 is positive initially along
the curve. The geometric meaning of having s2 ≥ 0 is to allow H/K to be squashed in
a way that a2 ≤ 2b2 for dt2 + a2 Q|I + b2 Q|[t2]R + c2 Q|q− . Whether there exists a
complete metric that is represented by ζ(s1,s2,s3) with s2 < 0 is to be known. In order to
let ζ(s1,s2,s3) enter E ∩ P initially, we must have s3 ≥ 0.

It is clear that P0 ∈ ∂E . Since N∂E (P0) is parallel to
⎡
⎢⎢⎢⎢⎢⎢⎣

3
6
0

−√
2

9
√
2

6
√
2m(m + 2)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

one can check that v1 and v2 are orthogonal to N∂E (P0). Therefore, the 1-parameter
family ζ(s1,s2,0) stays in the invariant set BRF . Hence each ζ(s1,s2,0) near P0 in E ∩ P
represents a Ricci-flat metric defined on the tubular neighborhood around HP

m . Each
ζ(s1,s2,s3) with s3 > 0 near P0 represents a negative Einstein metric defined on the tubular
neighborhood around HP

m .
There are some ζ(s1,s2,s3) known to be defined on R. Note that ζ(s1,0,s3) lies on BRd .

These integral curves are of two summands type. By [Win17,Böh99], we know that each
ζ(1,0,0) is an integral curve on R that originates from P0 and tends to PAC−2 and each
ζ(s1,0,s3) with s3 > 0 is an integral curves that originates from P0 and tend to PAH (

√
2).

ζ(s1,s2,0) with s2 > 0 in the casem = 1 were studied in [CGLP04]. These integral curves
all tend to PALC−2. In Sect. 4, we construct a compact invariant set that contains all
ζ(s1,s2,s3) with s1, s2, s3 ≥ 0.
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3.2. PAC−1 and PAC−2. Consider PAC−1 =
(

1
4m+3 ,

1
4m+3 ,

1
4m+3 ,

√
2,

√
2

4m+3 ,
2
√
2

4m+3

)
. It

is clear that the point corresponds to the initial condition (2.8). We have

L(PAC−1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 4m+2
4m+3 0 0 8

√
2(2m+1)(m+1)
(4m+3)3

− 8
√
2m(m+1)

(4m+3)2
4
√
2m(m+1)

(4m+3)2

0 − 4m+2
4m+3 0 − 4

√
2(m+1)

(4m+3)3
− 8

√
2m(m+1)

(4m+3)2
4
√
2m(m+1)

(4m+3)2

0 0 − 4m+2
4m+3 − 4

√
2(m+1)

(4m+3)3
6
√
2(m+1)

(4m+3)2
− 3

√
2(m+1)

(4m+3)2

√
2 −√

2 0 0 0 0
√
2

(4m+3)(2m+1) − (2m−1)
√
2

(4m+3)(2m+1)
4
√
2m

(4m+3)(2m+1) − 2
(4m+3)3

4m+6
(4m+3)2

2m
(4m+3)2

2
√
2

(4m+3)(2m+1)
(4m+6)

√
2

(4m+3)(2m+1) − 4
√
2

(4m+3)(2m+1) − 4
(4m+3)3

8m+12
(4m+3)2

4m
(4m+3)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.5)

Eigenvectors, along with their respective eigenvalues, that are tangent to C ∩ H are the
following.

λ1 = λ2 = λ3 = 2

4m + 3
, λ4 = λ5 = −4m + 4

4m + 3

v1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−4m
√
2

−4m
√
2

3
√
2

0
4m

−(8m + 12)

⎤
⎥⎥⎥⎥⎥⎥⎦

, v2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−(4m + 2)
√
2√

2√
2

−(4m + 3)2

−(4m + 3)
−(8m + 6)

⎤
⎥⎥⎥⎥⎥⎥⎦

, v3 =

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
0

−1
−2

⎤
⎥⎥⎥⎥⎥⎦

,

v4 =

⎡
⎢⎢⎢⎢⎢⎣

−4
√
2m(m + 1)
0√

2(m + 1)
2m(4m + 3)

0
2

⎤
⎥⎥⎥⎥⎥⎦

, v5 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−4
√
2(m + 1)2

2
√
2(m + 1)√
2(m + 1)

(4m + 3)(2m + 3)
1
0

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.6)

Therefore, there exists a 2-parameter family of integral curvesγ(s1,s2,s3) with (s1, s2, s3) ∈
S
2 that emanate from PAC−1 such that

γ(s1,s2,s3) = PAC−1 + s1e
2η

4m+3 v1 + s2e
2η

4m+3 v2 + s3e
2η

4m+3 v3 + O

(
e

(
2

4m+3 +δ
)
η
)

. (3.7)

In this article, we consider γ(s1,s2,s3) with s1, s2, s3 ≥ 0. The choice for s1 ≥ 0 is to
allow the CP

2m+1 in G/K to be squashed in a way that b2 ≤ 2c2 for dt2 + a2 Q|I +
b2 Q|[t2]R + c2 Q|q− . The geometric meaning of having s2 ≥ 0 is the same as the one
for ζ(s1,s2,s3). In order the let γ(s1,s2,s3) enter E ∩ P initially, we must have s3 ≥ 0.

One can check that PAC−1 ∈ ∂E . Since N∂E (PAC−1) is parallel to⎡
⎢⎢⎢⎢⎢⎢⎣

4m + 3
2(4m + 3)
4m(4m + 3)

−(2m + 1)
√
2

(2m + 3)(2m + 1)
√
2

m(2m + 1)
√
2

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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it is clear that γ(s1,s2,0) is a 1-parameter family of integral curves that stay in BRF .
Hence one obtain a 1-parameter family of Ricci-flat metrics and a 2-parameter family
of negative Einstein metrics on the neighborhood around the origin in R

4m+4.
Some γ(s1,s2,s3) are known to be defined on R. A trivial example is γ(0,0,0) that

represent the standard Euclidean metric. With s1 > 0 and s2 ≥ 0, γ(s1,0,s2) stays in
BRd , with lim

η→∞ γ(1,0,0) = PAC−2 and lim
η→∞ γ(s1,0,s2) = PAH (

√
2) for s2 > 0 [Chi19a].

Moreover, γ(0,0,1) is simply the hyperbolic cone with the standard sphere as its base. It is
also known that γ(0,s2,s3) stays inBFS . In particular, γ(0,1,0) is the almost Kähler–Einstein
metric with PALC−1 as its limit [BB82] [Bes08, Theorem 9.130]. For s2, s3 > 0, we
know that lim

η→∞ γ(0,s2,s3) = PAH (y1) for some y1 ∈ [0,√2). As shown in Sect. 6.2, there

also exists an isolated example for another value of (s1, s2, s3), which is the quaternionic
Kähler metric constructed in [Swa91].

As for PAC−2 =
(

1
4m+3 ,

1
4m+3 ,

1
4m+3 ,

√
2, y2, y3

)
, where y2 = 2m+3

4m+3

√
4m+2

(2m+3)2+2m

and y3 = 2
4m+3

√
4m+2

(2m+3)2+2m
, the point corresponds to initial condition (2.9). Moreover,

by Lemma 4.4 in [Chi19b], we know that if an integral curve defined on R converges to
PAC−2, then the Einstein metric represented has an AC asymptotic limit as

dt2 + β2t2
(
Q|I + 1

2
Q|[t2]R +

2m + 3

4
Q|q−

)
,

where (4m + 3)(4m + 2)β2 = 6 + 16m(m+2)(2m+3)−12m
(2m+3)2

.
Eigenvalues of L(PAC−2), whose corresponding eigenvectors are tangent to E , are

λ1 = 2

4m + 3
, ρ1, ρ2, σ1 σ2,

where ρ2 < 0 < 2
4m+3 < ρ1 are two roots of

y = (64m4 + 320m3 + 516m2 + 342m + 81)x2

+ (64m4 + 304m3 + 448m2 + 264m + 54)x

− (64m3 + 240m2 + 248m + 72).

and σ2 < σ1 < 0 are two roots of

y = (64m4 + 320m3 + 516m2 + 342m + 81)x2

+ (64m4 + 304m3 + 448m2 + 264m + 54)x

+ (32m3 + 96m2 + 88m + 24).

The eigenvectors that correspond to 2
4m+3 and ρ1 are respectively

v1 =

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
0

−(2m + 3)
−2

⎤
⎥⎥⎥⎥⎥⎦

, v2 =

⎡
⎢⎢⎢⎢⎢⎣

−2ρ1
ρ1
0

−3
√
2

−y2
y3

⎤
⎥⎥⎥⎥⎥⎦

.
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It is straightforward to check that PAC−2 ∈ ∂E and v2 is orthogonal to N∂E (PAC−2).
Therefore there exists an integral curve � on ∂E such that

� = PAC−2 + eρ1ηv2 + O
(
e(ρ1+δ)η

)
.

On the other hand, it is easy to check that PAC−2 + e
2η

4m+3 v1 is the hyperbolic cone with
Jensen sphere as its base. In fact, the critical point is actually a sink in the subsystem
restricted on BRd ∩ BRF and v1 is the only unstable eigenvector for PAC−2 in the
subsystem BRd . In order to obtain new integral curves, we consider linearized solution
in the form of

PAC−2 + e
2η

4m+3 v1 + seρ1ηv2

for some s ∈ R. If some actual solution �s corresponds to the linearized solution with
s �= 0, then as discussed in Remark 3.1, we have

�s = PAC−2 + e
2η

4m+3 v1 + seρ1ηv2 + O

(
e

(
2

4m+3 +δ
)
η
)

for some δ > 0. However, the third term can possibly be merged into O

(
e

(
2

4m+3 +δ
)
η
)

since it is possible that 2
4m+3 + δ < ρ1. In that way, the value of s is difficult to trace.

3.3. PALC−2 and PAH (y1). Einstein metrics constructed in this article are represented
by integral curves that emanate from P0, PAC−1 and PAC−2. In Sect. 5, we show that
most of the integral curves of Ricci-flat metrics converges to PALC−2.

Recall that PALC−2 =
(
0, 1

4m+2 ,
1

4m+2 , 0,
m+1
8m+4

√
8m+2

(m+1)2+m
, 1
4m+2

√
8m+2

(m+1)2+m

)
. We

claim the following.

Proposition 3.2. If an integral curve defined on R converges to PALC−2, then the Ein-
stein metric represented is ALC.

Proof. By the assumption, we have

lim
t→∞ ḃ = lim

η→∞
X2

Y2
= 2

m + 1

√
(m + 1)2 + m

8m + 2
,

lim
t→∞ ċ = lim

η→∞
X3

Y3
=
√

(m + 1)2 + m

8m + 2
,

lim
t→∞

ȧ

ḃ
= lim

η→∞
X1Y1
X2

= 0

Hence it is necessary that lim
t→∞ ȧ = 0. The metric represented has asymptotic limit as

dt2 + C Q|I + t2
(

2((m + 1)2 + m)

(m + 1)2(4m + 1)
Q|[t2]R +

(m + 1)2 + m

8m + 2
Q|q−

)

for some constant C > 0 
�
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Proposition 3.3. PALC−2 is a sink in
(
∂E, V�≤0

∣∣BRF

)

Proof. We prove the proposition by computing the linearization of (2.20) at PALC−2

and then show that all unstable eigenvectors are not tangent to E . Let α =
√

8m+2
(m+1)2+m

.

The linearization of (2.16) at this point is

L(PALC−2)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 4m+1
4m+2 − 1

(2m+1)2
− 2m

(2m+1)2
0 − (m2+3m+1)α

(2m+1)2
− (m2+3m+1)mα

2(2m+1)2

0 − 8m3+10m2+4m
(2m+1)3

m
(2m+1)3

0 (4m3+3m2+3m+1)α
2(2m+1)3

− (4m4+5m3−m2−m)α

4(2m+1)3

0 1
2(2m+1)3

− 16m3+20m2+6m+1
2(2m+1)3

0 − (m2−2m−1)α
2(2m+1)3

(3m3+6m2+2m)α

4(2m+1)3

0 0 0 − 1
4m+2 0 0

0 − (m+1)(2m2−1)α
2(2m+1)3

(4m3+7m2+3m)α

2(2m+1)3
0 4m2+5m+1

2(2m+1)3
4m3+5m2+m
4(2m+1)3

0 2(m+1)2

(2m+1)3
− (m+1)α

(2m+1)3
0 4m+1

(2m+1)3
4m2+m
2(2m+1)3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
(3.8)

Eigenvalues are the following.

λ1 = − 1

4m + 2
, λ2 = λ3 = −4m + 1

4m + 2
, λ4 = ρ1, λ5 = ρ2, λ6 = 1

2m + 1

where ρ1 < ρ2 < 0 are roots of

y = (8m4+32m3+34m2+14m+2)x2+(8m4+30m3+27m2+9m+1)x+(4m3+5m2+m).

Since BRF is a 4-dimensional invariant set, four of the eigenvectors must be tangent to
BRF . Since λ6 is the only non-negative eigenvalue, in order to show that PALC−2 is a

sink in
(
∂E, V�≤0

∣∣BRF

)
, it is sufficient to show that the eigenvector corresponds to λ6

is not tangent to BRF . Indeed, computation shows that the eigenvector corresponds to
λ6 and normal vector field of ∂E at PALC−2 are

v6 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−(4m + 2)
√

(m + 1)2 + m√
(m + 1)2 + m√
(m + 1)2 + m

0
(m + 1)2

√
8m + 2

(2m + 2)
√
8m + 2

⎤
⎥⎥⎥⎥⎥⎥⎦

,

N∂E (PALC−2) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
2

2m+1
4m

2m+1
0

2
2m+1

√
((m + 1)2 + m)(8m + 2)

m
2m+1

√
((m + 1)2 + m)(8m + 2)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

which are not orthogonal. Hence the vector is not tangent to ∂E . The proof is
complete. 
�



1032 H. Chi

It is straightforward toverify that the set of all PAH (y1) = ( 1
4m+3 ,

1
4m+3 ,

1
4m+3 , y1, 0, 0

)
is a 1-dimensional invariant set in the interior of E . For any fix y1, we have

L(PAH (y1)) =

⎡
⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
y1 −y1 0 0 0 0
0 0 0 0 − 1

4m+3 0
0 0 0 0 0 − 1

4m+3

⎤
⎥⎥⎥⎥⎥⎦

(3.9)

Eigenvectors, along with their respective eigenvalues, that are tangent to C ∩ H are the
following.

λ1 = 0, λ2 = λ3 = − 1

4m + 3
, λ4 = λ5 = −1

v1 =

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
1
0
0

⎤
⎥⎥⎥⎥⎥⎦

, v2 =

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
0
1
0

⎤
⎥⎥⎥⎥⎥⎦

, v3 =

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎦

, v4 =

⎡
⎢⎢⎢⎢⎢⎣

−2
1
0
3y1
0
0

⎤
⎥⎥⎥⎥⎥⎦

, v5 =

⎡
⎢⎢⎢⎢⎢⎣

−4m
−4m
3
0
0
0

⎤
⎥⎥⎥⎥⎥⎦

Therefore, PAH := {PAH (y1) | y1 ≥ 0} is a 1-dimensional invariant stable manifold.
We say a critical point P is a (p, q)-saddle if P has unstable direction of dimension

p and stable direction of dimension q. In summary, we have the following lemma.

Lemma 3.4. In the subsystem of (2.20) restricted on BRF = ∂E:
1. P0 is a (2, 2)-saddle.
2. PAC−1 is a (2, 2)-saddle. PAC−2 is a (1, 3)-saddle.
3. PALC−2 is a sink.

Lemma 3.5. In system of (2.20) on E:
1. P0 is a (3, 2)-saddle.
2. PAC−1 is a (3, 2)-saddle. PAC−2 is a (2, 3)-saddle.
3. PALC−2 is a (1, 4)-saddle.
4. PAH is a 1-dimensional stable manifold.

Remark 3.6. It is worth mentioning that linearizations at P0, PAC−1 and PAC−2 can
be carried over to the compact case where � > 0. The short existing integral curves
correspond to positive Einstein metrics on the tubular neighborhood aroundHP

m or the
origin of R4m+4. In [PP86], numerical analysis indicates that there exists an inhomoge-
neous Einstein metric on HP

m+1#HPm+1. If such a metric does exist, its restriction on
the neighborhood aroundHP

m is represented by some integral curve that emanates from
P0. For a cohomogeneity one Einstein metric on HP

m+1#HPm+1, the trace of the shape
operator is supposed to vanish at some t∗ > 0. Therefore, one may need some other
coordinate change in order to construct positive cohomogeneity one Einstein metrics.
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Fig. 2. “Picture proof” of the Compactness of S

4. Compact Invariant Set

This section is dedicated to constructing a compact invariant set that contains critical
points studied above in its boundary.

Proposition 4.1. Let

A1 =
{
(X1, X2, X3,Y1,Y2,Y3) | X1 − X2 ≤ 0, Y 2

1 ≤ 2
}

The set E ∩ P ∩ A1 is flow-invariant.

Proof. Computation shows that

〈∇(Y 2
1 ), V≤0〉 |Y 2

1 =2 = 2Y 2
1 (X1 − X2) ≤ 0 (4.1)

in E ∩ A1. Moreover, we have

〈∇(X1 − X2), V≤0〉 |X1−X2=0

= (X1 − X2)(G + �W 2 − 1) +
m

4
Y 2
3 (Y 2

1 − 2) + Y 2
2 (Y 2

1 − 2)

≤ 0

(4.2)

in E ∩ A1. The proof is complete. 
�
Define

A2 = {(X1, X2, X3,Y1,Y2,Y3) | 2Y2 − Y3 ≥ 0,
√
2

2
(2Y2 − Y3) + X3 − X2 ≥ 0, X2 ≤ 1

2
, X3 ≥ 0

}
.

(4.3)

We want to show that the set S := E ∩P ∩A1 ∩A2 is a flow-invariant compact set. We
prove the compactness first.

Proposition 4.2. The set S is compact.
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Proof. From (2.17), it is clear that the compactness is proven once we can show that
Yi ’s are bounded above. By the definition ofA1, we know that Y1 is bounded above. By
the definition of A2, we know that Y3 is bounded above by 2Y2. From the definition of
E , we have

1 ≥ G + Rs

= G + 4Y 2
2 − mY 2

3 + 4m(m + 2)Y2Y3 − 1

2
Y 2
1 Y

2
2 − m

4
Y 2
1 Y

2
3

≥ G + 3Y 2
2 − mY 2

3 + 4m(m + 2)Y2Y3 − m

2
Y 2
3 since Y 2

1 ≤ 2

≥ 1

4m + 3
+ 3Y 2

2 +

(
2m2 +

5m

2

)
Y 2
3 since 2Y2 ≥ Y3

≥ 1

4m + 3
+ 3Y 2

2

(4.4)

Hence Y 2
2 < 1

3 . The proof is complete. An illustration of the projection of S on Y -space
is given in Fig. 2. 
�

Before we prove that S is flow-invariant, we need to prove the following technical
proposition.

Proposition 4.3. If
√
2
2 (2Y2 − Y3) + X3 − X2 = 0 on S, then
√
2

4
+
m − 1

2
Y3 − Y2 +

1

8
Y 2
1 (2Y2 + Y3) ≥ 0

on S.
Proof. If

√
2
2 (2Y2 − Y3) + X3 − X2 = 0, the by (2.17), we have

1 = X2
1 + 2X2

2 + 4mX2
3 − (4m + 2)�W 2

+ 4Y 2
2 − mY 2

3 + 4m(m + 2)Y2Y3 − 1

2
Y 2
1 Y

2
2 − m

4
Y 2
1 Y

2
3

≥ 2

(
X3 +

√
2

2
(2Y2 − Y3)

)2

+ 4Y 2
2 − mY 2

3 + 4m(m + 2)Y2Y3 − 1

2
Y 2
1 Y

2
2 − m

4
Y 2
1 Y

2
3 .

(4.5)

Since X3 ≥ 0 and 2Y2−Y3 ≥ 0 inS, we can drop termswith X3 above. The computation
continues as

1 ≥ (2Y2 − Y3)
2

+ 4Y 2
2 − mY 2

3 + 4m(m + 2)Y2Y3 − 1

2
Y 2
1 Y

2
2 − m

4
Y 2
1 Y

2
3

=
(
8 − 1

2
Y 2
1

)
Y 2
2 +

(
1 − m − m

4
Y 2
1

)
Y 2
3 + (4m(m + 2) − 4)Y2Y3

≥
(
8 − 1

2
Y 2
1

)
Y 2
2 +

(
2m2 +

5

2
m − 1

)
Y 2
3 since 2Y2 − Y3 ≥ 0 and Y 2

1 ≤ 2

≥
(
8 − 1

2
Y 2
1

)
Y 2
2 as coefficient for Y 2

3 is positive

.(4.6)
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Since Y 2
1 ≤ 2, we know that

Y 2
2 ≤ 1

8 − 1
2Y

2
1

in S if
√
2
2 (2Y2 − Y3) + X3 − X2 = 0 holds. Moreover, the inequality above implies

(√
2

4

1

1 − 1
4Y

2
1

)2

≥ 1

8 − 1
2Y

2
1

≥ Y 2
2

as Y 2
1 ≤ 2. Hence

√
2

4
− Y2 +

1

4
Y 2
1 Y2 ≥ 0

Therefore. √
2

4
+
m − 1

2
Y3 − Y2 +

1

8
Y 2
1 (2Y2 + Y3) ≥ 0

on S. 
�
Lemma 4.4. The compact set S is flow-invariant.

Proof. We have two check three inequalities in A2. Firstly, we have

〈∇(X3), V≤0〉 |X3=0 = (m + 2)Y2Y3 − 1

8
Y 2
1 Y

2
3 − 1

2
Y 2
3 − �W 2

≥ m + 2

2
Y 2
3 − 3

4
Y 2
3

≥ 0

. (4.7)

Note that X2 ≤ 1
2 is equivalent to X1 + 4mX3 ≥ 0 in C ∩ H. We have

〈∇(X1 + 4mX3), V≤0〉 |X1+4mX3=0

= 1

2
Y 2
1 Y

2
2 +

m

4
Y 2
1 Y

2
3 + 4m

(
(m + 2)Y2Y3 − 1

8
Y 2
1 Y

2
3 − 1

2
Y 2
3

)

− (1 + 4m)�W 2

≥ 0

. (4.8)

As for inequalities concerning Yi ’s, we have

〈∇(2Y2 − Y3), V≤0〉 |2Y2−Y3=0 = 2Y3(X3 − X2)

≥ √
2Y3(Y3 − 2Y2)

= 0

. (4.9)
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Finally, we have
〈
∇
(√

2

2
(2Y2 − Y3) + X3 − X2

)
, V

〉∣∣∣∣∣√
2
2 (2Y2−Y3)+X3−X2=0

=
(√

2

2
(2Y2 − Y3) + X3 − X2

)
(G + �W 2 − 1) +

√
2Y2(1 − X2)

−
√
2

2
Y3(1 + X2 − 2X3)

+ (2Y2 − Y3)

(
1

8
Y 2
1 (2Y2 + Y3) +

m + 1

2
Y3 − Y2

)

= (2Y2 − Y3)

(√
2

2
−

√
2

2
X2 +

m − 1

2
Y3 − Y2 +

1

8
Y 2
1 (2Y2 + Y3)

)

on replacing all X3 with X2 +

√
2

2
(Y3 − 2Y2)

≥ (2Y2 − Y3)

(√
2

4
+
m − 1

2
Y3 − Y2 +

1

8
Y 2
1 (2Y2 + Y3)

)
since X2 ≤ 1

2
inS

(4.10)

By Proposition 4.3, the computation result above is non-negative. The proof is
complete. 
�

By looking into the linearization of (2.20) at P0, PAC−1 and PAC−2 in Sect. 3.
We learn that ζ(s1,s2,s3) is in S initially for s1, s2, s3 ≥ 0; γ(s1,s2,s3) is in S initially
for s1, s2, s3 ≥ 0; �s is in S initially for s ∈ [0, ε) for some ε > 0. Therefore, all
these integral curves are defined on R. It is clear that R1, R2, R3 ≥ 0 in S. Hence by
Proposition 2.9, we obtain the following lemma, using the same notation for the integral
curve and the metric represented.

Lemma 4.5. The following metrics are complete.

1. Smooth metrics ζ(s1,s2,s3), s1 > 0, s2, s3 ≥ 0 defined on M;
2. Smooth metrics γ(s1,s2,s3), s1, s2, s3 ≥ 0 defined on R4m+4;
3. Singular metrics �s with s ∈ [0, ε) defined on R

4m+4.

5. Asymptotics

We divide this section into two parts. We first study the asymptotics for the Ricci-flat
metrics obtained in Theorem 1.1–1.3. Then we study the asymptotics for the negative
Einstein metrics. Without further specifying, we use � to denote any of the Einstein
metrics in Lemma 4.5. A general property for a � is the following.

Proposition 5.1. All Xi ’s are positive along each �.

Proof. By the definition of S, we know that X3 > 0 along each of the integral curves. It
is also clear that Ri ’s are non-negative in S. Suppose X2 reaches zero for some η∗ ∈ R

along �. Then at that point we have

d

dη

∣∣∣∣
η=η∗

X2(�(η)) = (X2(G + �W 2 − 1) + R2 − �W 2)(�(η∗)) ≥ R2(�(η∗)) ≥ 0,
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a contradiction. Similar argument can be used to prove that X1 must be positive along
�. 
�

5.1. Asymptotics for Ricci-flat Metrics. All discussion in this section is restricted on
BRF , where the functionW vanishes. In the casem = 1, the asymptotic limit for γ(s1,s2,0)
was rigorously proven to be ALC by [Baz07]. In this section, we provide another proof
and generalize the result for m ≥ 1.

Proposition 5.2. Let � be any of ζ(s1,s2,0) with s2 > 0, γ(s1,s2,0) with s2 > 0 or � in
Theorem 1.1–1.3, we have lim

η→∞ Y1(�(η)) = 0 and lim
η→∞ X1(�(η)) = 0.

Proof. Since Y ′
1 = Y1(X1 − X2) < 0 along each of the integral curves, we know that Y1

decreases to some l ∈ [0,√2) along �. Suppose l �= 0, then there exists some sequence
{ηk}∞k=1 with lim

k→∞ ηk = ∞ that lim
k→∞(X2 − X1)(�(ηk)) = 0.

On the other hand, we claim that there exists some δ > 0 such that R2 − R1 ≥ δ

along �. Suppose not, then there exists some sequence {η̃k}∞k=1 with lim
k→∞ η̃k = ∞ such

that

lim
k→∞(R2 − R1)(�(η̃k)) = lim

k→∞

[
(2 − Y 2

1 )
(
Y 2
2 +

m

4
Y 2
3

)]
(�(η̃k)) = 0.

Therefore, for the same sequence {η̃k}∞k=1, it is necessary that

lim
k→∞ Y2(�(η̃k)) = lim

k→∞ Y3(�(η̃k)) = 0.

Since 1 − G − Rs = 0 on BRF , we conclude that there exists a point in the ω-limit set
of � of the form (a, a, b, y1, 0, 0), with y1 �= 0 and 3a2 + 4mb2 = 3a + 4mb = 1. Such
a point is a critical point of type 6 as in Sect. 3. It is clear that one of a and b must be
negative, a contradiction to Proposition 5.1.

Observe (4.2), we can find a small enough ε > 0 such that X2 − X1 ≤ ε implies

(X2 − X1)
′ = (X2 − X1)(G − 1) + R2 − R1

≥ (X2 − X1)(G − 1) + δ

≥ −ε|G − 1| + δ

> 0

(5.1)

Hence X2 − X1 stays positive and does not tend to zero along �. We reach a contra-
diction. The limit for Y1 must be 0.

Note that
√
2m + 1Y1 − X1 is positive initially along each �. Suppose

√
2m + 1Y1 −

X1 = 0 for the first time at some η∗, then at �(η∗) we have

(
√
2m + 1Y1 − X1)

′(�(η∗)) = √
2m + 1Y1(X1 − X2 − G + 1) − R1 (5.2)

By the identity X1 + 2X2 + 4mX3 = 1, we have

G = X2
1 + 2X2

2 + 4mX2
3

= 2m + 1

2m
X2

(
2X2 − 2

2m + 1
(1 − X1)

)
+
4m + 1

4m
X2
1 − X1

2m
+

1

4m

. (5.3)
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Since 1− X1 − 2X2 = 4mX3 ≥ 0 by Proposition 5.1, the first term of the computation

above is no larger than 2m+1
2m

(
1−X1
2

) (
1 − X1 − 2

2m+1 (1 − X1)
)
for any fixed X1. Hence

we have

G ≤ 3

2
X2
1 − X1 +

1

2
(5.4)

by replacing X2 with
1−X1
2 in (5.3). As X2 ≥ X1 in S, it is clear that X1 ∈ [

0, 1
3

]
. Hence

we know that G ≤ 1
2 at �(η∗). Then (5.2) continues as

(
√
2m + 1Y1 − X1)

′(�(η∗)) ≥ √
2m + 1Y1

(
X1 − X2 +

1

2

)
− R1

= √
2m + 1Y1

(
3

2
X1 + 2mX3

)
− R1

≥ 3

2

√
2m + 1Y1X1 − R1 as X3 ≥ 0 inS

= Y 2
1

(
3(2m + 1)

2
− 1

2
Y 2
2 − m

4
Y 2
3

)
on replacing X1 with

√
2m + 1Y1

≥ Y 2
1

(
3(2m + 1)

2
− 2m + 1

2
Y 2
2

)
since 2Y2 − Y3 ≥ 0

≥ 0 by (4.4)

. (5.5)

Hence
√
2m + 1Y1 − X1 ≥ 0 along �. As lim

η→∞ Y1(�(η)) = 0, we must have lim
η→∞

X1(�(η)) = 0. 
�

Remark 5.3. The Böhm functional introduced in [Böh99] becomes
Y 2m+3
2 Y 2m

3
Y1

and it is
clear that (

Y 2m+3
2 Y 2m

3

Y1

)′
= Y 2m+3

2 Y 2m
3

Y1
((4m + 3)G − 1) ≥ 0.

Since Y1 converges to 0, the functional blow up at infinity instead of converging to a
finite number. This brings up a difficulty in describing the ω-limit set, which does not
occur in two-summand case. One may consider the Böhm functional Y 2m+2

2 Y 2m
3 for

the two-summand type subsystem on BALC . However, the functional only demonstrate
monotonicity in the subsystem.

Asymptotic limit for integral curves of two-summand type are known [Win17,Chi19a].
For BRd , we know that lim

η→∞ γ(1,0,0) = lim
η→∞ ζ(1,0,0) = PAC−2. As for BFS , we have the

following.

Lemma 5.4. For all m ≥ 1, we have lim
η→∞ γ(0,1,0) = PALC−1.

Proof. The integral curve γ(0,1,0) lies in BFS , where X2 ≡ X3 and 2Y2 ≡ Y3. By the
definition of S, we know that

(4m + 3)X2 ≥ X1 + (4m + 2)X2 = 1.
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Combining Proposition 5.1, we know that X2 ∈ [ 1
4m+3 ,

1
4m+2

]
along γ(0,1,0). Along the

integral curve we have

Y ′
2 = Y2(G − X2)

= Y2((4m + 2)X2 − 1)((4m + 3)X2 − 1)

on replacing X1 with 1 − (4m + 2)X2 and X3 with X2

≤ 0

. (5.6)

Hence Y2 converges along γ(0,1,0). Since we know that X1 and Y1 converge to 0 along
γ(0,1,0) by Proposition 5.2, we learn that lim

η→∞ X2
(
γ(0,1,0)(η)

) = 1
4m+2 . Hence the limit

must be PALC−1. 
�
In order to study the asymptotics of the other integral curves of Ricci-flat metrics,

we need the following propositions.

Proposition 5.5. Let � be any of γ(s1,s2,0) with s2 > 0, ζ(s1,s2,0) with s2 > 0 or �0 in

Theorem 1.1–1.3. There exists a neighborhood U around PALC−1 such that
(√

2
2 (2Y2 −

Y3) + X3 − X2
)′
(�(η)) > 0 as long as �(η) ∈ U ∩ {X2 − X3 > 0}.

Proof. Fix any η ∈ R. Let ε1 = (X2 − X3)(�(η)) and ε2 = (2Y2 − Y3)(�(η)). We

know that ε2 and
√
2
2 ε2 − ε1 are positive since � is in S. Note that

(√
2

2
(2Y2 − Y3) + X3 − X2

)′

=
(√

2

2
(2Y2 − Y3) + X3 − X2

)
G − (X3 − X2) − √

2Y2X2

−
√
2

2
Y3(X2 − 2X3)

+ (2Y2 − Y3)

(
1

8
Y 2
1 (2Y2 + Y3) +

m + 1

2
Y3 − Y2

)

=
(√

2

2
(2Y2 − Y3) + X3 − X2

)
G − (X3 − X2) −

√
2

2
(2Y2 − Y3)X3

−
√
2

2
(2Y2 + Y3)(X2 − X3)

+ (2Y2 − Y3)

(
1

8
Y 2
1 (2Y2 + Y3) +

m + 1

2
Y3 − Y2

)

≥
(√

2

2
ε2 − ε1

)
G + ε1 −

√
2

2
ε2X3 −

√
2

2
(2Y2 + Y3)ε1

+ ε2

(
m + 1

2
Y3 − Y2

)

≥ ε1

(
1 −

√
2

2
(2Y2 + Y3)

)
+ ε2

(
m + 1

2
Y3 − Y2 −

√
2

8m

)

. (5.7)
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It is straightforward to check that coefficients of ε1 and ε2 above are positive at PALC−1.
Hence we can find a neighborhoodU around PALC−1 in which coefficients of ε1 and ε2
above are positive. If �(η∗) ∈ U ∩ {X2 − X3 > 0}, then we see that(√

2
2 (2Y2 − Y3) + X3 − X2

)′
(�(η∗)) must be positive. 
�

Lemma 5.6. Let � be any of γ(s1,s2,0) with s2 > 0, ζ(s1,s2,0) with s2 > 0 and �0 in
Theorem 1.1–1.3, we have lim

η→∞ �(η) = PALC−2

Proof. Suppose the function X3 − X2 vanishes finitely many times along �. Then

it eventually has a sign. Since
(
Y2
Y3

)′ = 2Y2
Y3

(X3 − X2), the function Y2
Y3

eventually

monotonic decreases or increases. Hence lim
η→∞

Y2
Y3

(�(η)) = l for some l. If l = 0,

then we must have lim
η→∞ Y2(�(η)) = lim

η→∞ Y3(�(η)) = 0. By Proposition 5.2, we

conclude that lim
η→∞(�(η)) = (0, a, b, 0, 0, 0), where 2a + 4mb = 2a2 + 4mb2 = 1.

But then one of a and b must be negative, a contradiction to Proposition 5.1. Hence
we must have l > 0. Then we learn that the ω-limit set of � contains some element
in
{(
0, 1

4m+2 ,
1

4m+2 , 0, y2, y3
) | y2

y3
= l

}
∩ ∂E = {PALC−1, PALC−2}. Suppose PALC−1

were in the ω-limit set. Then Y2
Y3

converges to 1
2 . Since

1
2 is the minimum value for Y2

Y3
in S and X3 − X2 is assumed to have a sign eventually, we know that X3 − X2 must be
negative eventually. Consider

(X3 − X2)
′ = (X3 − X2)(G − 1) + R3 − R2

= −(X3 − X2)(R1 + 2R2 + 4mR3)

+ (2Y2 − Y3)

(
1

8
Y 2
1 (2Y2 + Y3) +

m + 1

2
Y3 − Y2

). (5.8)

Since Y2
Y3

tends to 1
2 and it is clear that Rs = R1 + 2R2 + 4mR3 ≥ 0 in S, (X3 − X2)

′ is
eventually positive along �. Hence X3 − X2 eventually monotonic increases. Then we
conclude that � has to converge to PALC−1. But that implies � eventually enters the set
U ∩{X2 − X3 > 0} constructed in Proposition 5.5 and does not come out, which means

that the function
√
2
2 (2Y2 − Y3) + X3 − X2 cannot converges to zero along �. Hence we

reach a contradiction. Therefore, PALC−2 is in the ω-limit set of �. Since the point is a
sink in BRF , we have lim

η→∞ �(η) = PALC−2.

Suppose the function X3 − X2 vanishes infinitely many times along �. Then it is
necessary that the function R3 − R2 changes sign infinitely many times along �. But

R3 − R2 = (2Y2 − Y3)

(
1

8
Y 2
1 (2Y2 + Y3) +

m + 1

2
Y3 − Y2

)

and Y1 converges to 0 by Proposition 5.2. Hence there exists a sequence {ηk}∞k=1 with
lim
k→∞ ηk = ∞ such that lim

k→∞(2Y2 − (m + 1)Y3)(ηk) = 0 and (X3 − X2)(ηk) ≥ 0 for

each k. Therefore, combining Proposition 5.1, the ω-limit set of � must contain some
point P∗ in the set

{(0, x2, x3, 0, y2, y3) | x2, x3 ≥ 0, 2x2 + 4mx3 = 1, 2y2 − (m + 1)y3 = 0} ∩ ∂E .
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If P∗ = PALC−2, then � converges to PALC−2 since the point is a sink in the subsystem
restricted on BRF . Suppose P∗ �= PALC−2, then it is not a critical point. Since BALC
is a 2-dimensional invariant set and the ω-limit set is flow-invariant, the ω-limit set
of � must contain the integral curve �̃ that contains P∗ and lies on BALC . Note that
the reduced system on BALC is essentially the two-summand type cohomogeneity one
system. Based on the study in [Win17,Chi19a], we know that �̃ must converges to
PALC−2. Specifically, recall Remark 5.3 and consider the Böhm functional Y 2m+2

2 Y 2m
3 .

We have

(Y 2m+2
2 Y 2m

3 )′ = Y 2m+2
2 Y 2m

3 ((4m + 2)G − 1) ≥ 0

when restricted on BALC . Hence Y 2m+2
2 Y 2m

3 increases monotonically to some positive
number along �̃, and the ω-limit set of �̃ contains some element in {PALC−1, PALC−2}.
Since PALC−1 is in the boundary of the 2-dimensional invariant set S ∩ BALC while
PALC−2 is in the interior, one can exclude PALC−1 by perturbing the boundary of S ∩
BALC . Hence �̃ converges to PALC−2 and therefore PALC−2 is in the ω-limit set of �.
The proof is complete. 
�

The asymptotic limits of all integral curves that representRicci-flatmetrics are known,
as summarized in the following lemma.

Lemma 5.7. Asymptotic limits of integral curves in Lemma 4.5 are the following.

lim
η→∞ ζ(s1,s2,0) =

{
PAC−2 s2 = 0
PALC−2 s1, s2 > 0

, lim
η→∞ γ(s1,s2,0) =

⎧⎪⎨
⎪⎩

PAC−2 s2 = 0
PALC−2 s1, s2 > 0
PALC−1 s1 = 0

,

lim
η→∞ �0 = PALC−2.

(5.9)

5.2. Asymptotics for negative einstein metrics.

Proposition 5.8. Points in S with G + �W 2 = 0 must lie in the 1-dimensional stable
manifold PAH .

Proof. By the definition of the function W , we have 1 − G − Rs = −(4m + 2)�W 2 in
E . Since X1 + 2X2 + 4mX3 = 1 is held, we obtain the lower bound for G ≥ 1

4m+3 using
Cauchy–Schwarz inequality. We have

1 − 1

4m + 3
≥ 1 − G

≥ −(4m + 2)�W 2 since Rs ≥ 0 inS
. (5.10)

Hence−�W 2 ≤ 1
4m+3 inS.But by the assumptionon thepoint,wehave0 = G+�W 2 ≥

1
4m+3 + �W 2. Hence we are forced to have −�W 2 = 1

4m+3 and G = 1
4m+3 . Then Rs is

forced to vanish at such a point. The point must lie in PAH . 
�
Lemma 5.9. Let� be any of integral curves ζ(s1,s2,s3) with s3 > 0, γ(s1,s2,s3) with s3 > 0
or �s in Lemma 4.5 with s > 0. We have lim

η→∞ � = PAH (y1) for some y1 ∈ [0,√2].
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Proof. Since these integral curves are trapped in S, we have 1− 1
4m+3 ≥ −(4m+2)�W 2

as in (5.10). Then W ′ = W (G + �W 2) ≥ 0. Hence the function W is increasing along
� and converges to some positive number. Then there exists a sequence {ηk}∞k=1 with
lim
k→∞ ηk = ∞ such that limk→∞(G + �W 2)(�(ηk)) = 0. Therefore, some subset

of PAH is in the ω-limit set of these integral curves by Proposition 5.8. The proof is
complete by Lemma 3.5. 
�

For ζ(s1,0,s3) and γ(s1,0,s3), we know that they converge to PAH (
√
2). We are yet to

determine what point in PAH that ζ(s1,s2,s3) and γ(s1,s2,s3) converges to if s2 > 0. Note
that although Y1 decreases in this case, it does not necessarily need to converge to zero.

6. Relation to Special Holonomy

In this section, we check the holonomy of Einstein metrics in Theorem 1.1–1.3. Some
known results are recovered.

6.1. Negative Kähler–Einstein and Calabi–Yau. We recover Kähler–Einstein metrics
with a complex structure I in [DW98] that is preserved by the action of G. Recall
Remark 1.5 that L = Sp(m)U (1)U (1). If dt2 + gG/K (t) is Kähler–Einstein, then the
coadjoint orbit G/L = CP

2m+1 is Kähler for each t . Consequently, the cohomogeneity
one Kähler–Einstein condition boils down to

cċ = a

4
2c2 = b2

. (6.1)

The second equation above is equivalent to the coadjoint orbit G/L being Kähler. In the
new coordinate with variables defined in (2.14), integral curves that represent Kähler–
Einstein metrics must lie in

BK E := BFS ∩
{
X3 ≡ 1

4
Y1Y3

}
.

We check the following.

Proposition 6.1. The set BK E is invariant.

Proof. It is clear that BFS is invariant. If X3 = 1
4Y1Y3 in BFS , then X1 = 1 − 2X2 −

4mX3 = 1 − (4m + 2)X3 = 1 − 2m+1
2 Y1Y3 in BFS . Hence on BK E , we can eliminate

all Xi ’s and Y2 in (2.17) and obtain the following.

m + 1

2
Y 2
3 +

2m + 1

8
Y 2
1 Y

2
3 − 1

2
Y1Y3 − �W 2 = 0 (6.2)
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On the other hand, we have
〈
∇
(
X3 − 1

4
Y1Y3

)
, V≤0

〉∣∣∣∣
X3− 1

4Y1Y3=0

=
(
X3 − 1

4
Y1Y3

)
(G + �W 2 − 1)

+ (m + 2)Y2Y3 − 1

8
Y 2
1 Y

2
3 − 1

2
Y 2
3 − �W 2 − 1

4
Y1Y3(1 + X1 − 2X3)

= m + 2

2
Y 2
3 − 1

8
Y 2
1 Y

2
3 − 1

2
Y 2
3 − �W 2 − 1

4
Y1Y3(2 − (m + 1)Y1Y3)

Use definition ofBK E to eliminate Y2 and Xi ’s

= m + 1

2
Y 2
3 +

2m + 1

8
Y 2
1 Y

2
3 − 1

2
Y1Y3 − �W 2

= 0 by (6.2)

. (6.3)

Hence BK E is invariant. 
�
Hence BK E is an 2-dimensional invariant set. It straightforward to check that BK E

only contains critical points PAC−1, (1, 0, 0, 0, 0, 0) and
(− 4m+1

4m+3 ,
2

4m+3 ,
2

4m+3 , 0, 0, 0
)

listed in Sect. 3. The last two critical points are of type 7 in Sect. 3. Since BK E does
not contain P0, PAC−2, PALC−1, PALC−2 or any point on PAH , no integral curve of
Theorem 1.1–1.3 lies in BK E .

One can check that there are integral curves emanating from (1, 0, 0, 0, 0, 0). They
represent Kähler–Einstein metrics constructed in [BB82] [Bes08, Theorem 9.129]. In
particular, BK E ∩BRF is a 1-dimensional invariant set that contains PAC−1 and (1, 0, 0,
0, 0, 0). The part that “joins” these two critical points is exactly the image of the integral
curve that emanates from (1, 0, 0, 0, 0, 0) and tends to PAC−1, representing aCalabi–Yau
metric with a CP2m+1 bolt and an AE limit.

6.2. Quaternionic Kähler and Hyper-Kähler. By [DS99], the existence of the triple
of almost complex structures forces a and b to be linear function in t and a

b = √
2.

Therefore, any integral curve that represents a hyperKähler metric or a quaternionic
Kähler metric must lie in the invariant set BRd . For a quaternionic Kähler metric with
normalized Einstein constant� = −(4m +3), the closedness of the fundamental 4-form
implies

cċ = a

4

2c2 = b2 +
2

m + 3
�W 2

. (6.4)

Therefore, integral curves that represent quaternionic Kähler metrics must lie in the
following set.

BQK := BRd ∩
{
Y 2
3 − 2Y2Y3 +

2

m + 3
�W 2 ≡ 0

}
∩
{
X3 − 1

4
Y1Y3 ≡ 0

}
.

Proposition 6.2. The set BQK is invariant.
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Proof. It is clear that BRd is invariant. Moreover, X3 = 1
4Y1Y3 becomes X3 =

√
2
4 Y3 in

BRd and X1 = X2 = 1−4mX3
3 = 1−m

√
2Y3

3 in BRd . Hence on BQK , we can eliminate Y1,
W and all Xi ’s in (2.17) and obtain the following.

0 =
(
1 − 2m + 3

2

√
2Y3 +

3

2

√
2Y2

)(
1 +

4m + 3

2

√
2Y3 − 3

2

√
2Y2

)
(6.5)

Note that by the definition of BQK , we must have Y3 ≥ 2Y2. Hence computation above
implies

1 − 2m + 3

2

√
2Y3 +

3

2

√
2Y2 = 0

on BQK .
On the other hand, we have

〈
∇
(
X3 − 1

4
Y1Y3

)
, V≤0

〉∣∣∣∣
X3− 1

4Y1Y3=0

=
(
X3 − 1

4
Y1Y3

)
(G + �W 2 − 1)

+ (m + 2)Y2Y3 − 1

8
Y 2
1 Y

2
3 − 1

2
Y 2
3 − �W 2 − 1

4
Y1Y3(1 + X1 − 2X3)

= (m + 2)Y2Y3 − 3

4
Y 2
3 +

m + 3

2
(Y 2

3 − 2Y2Y3)

−
√
2

4
Y3

(
4

3
− 2m + 3

6

√
2Y3

)

Use definition ofBRd to eliminate Y1, W and X ′
i s

=
√
2

3
Y3

(
2m + 3

2

√
2Y3 − 3

2

√
2Y2 − 1

)

= 0 by (6.5)

(6.6)

and

〈
∇
(
Y 2
3 − 2Y2Y3 +

2

m + 3
�W 2

)
, V≤0

〉∣∣∣∣
Y 2
3 −2Y2Y3+

2
m+3�W 2=0

= 2

(
Y 2
3 − 2Y2Y3 +

2

m + 3
�W 2

)
(G + �W 2)

+ Y 2
3 (2X2 − 4X3) + 4Y2Y3X3

= 2

3
Y 2
3

(
1 − 2m + 3

2

√
2Y3 +

3

2

√
2Y2

)

Use definition ofBRd to eliminate X ′
i s

= 0 by (6.5)

. (6.7)

Therefore the proof is complete. 
�
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Critical points PAC−1 and PQK are in the set BQK and the set is 1-dimensional. The
quaternionic Kähler metric in [Swa91] is realized as the integral curve
γ(

− 1√
(4m+12)2+1

,0, 4m+12√
(4m+12)2+1

). At infinity, the exponential index for a and b is twice the

one of c. As Y3 ≥ 2Y2 in BQK , we know that such an integral curve is not contained in
S hence it is not any one of the metrics in Theorem 1.1–1.3. Note that the hyper-Kähler
metric is represented by the critical point PAC−1, which is the flat metric γ(0,0,0) on
R
4m+4.

6.3. Spin(7). In the case m = 1, it is known that there exists Spin(7) metrics on M8

and R
8 [CGLP04]. From [Hit01,CGLP04], we can write down the Spin(7) condition.

ȧ

a
= 1

2

a

b2
− 1

2

a

c2

ḃ

b
= √

2
1

b
−

√
2

2

b

c2
− 1

2

a

b2

ċ

c
=

√
2

2

b

c2
+
1

4

a

c2

. (6.8)

Define

F1 = X1 − 1

2
Y1Y2 +

1

2
Y1Y3

F2 = X2 − √
2Y2 +

√
2

2
Y3 +

1

2
Y1Y2

F3 = X3 −
√
2

2
Y3 − 1

4
Y1Y3

. (6.9)

The Spin(7) condition (6.8) is transformed to Fi = 0 in the new coordinates. Define

B−
Spin(7) = BRF ∩ {F1 ≡ F2 ≡ F3 ≡ 0}.

We can check the following.

Proposition 6.3. The set B−
Spin(7) is invariant.

Proof. On BRF , we have

〈∇F1, V≤0〉
= F1(G − 1) − Y1Y2(F1 + 2F3) + Y1Y3(F1 + F2 + F3)

〈∇F2, V≤0〉
= F2(G − 1) − √

2Y2(F1 + F2 + 4F3)

+

√
2

2
Y3(F1 + 3F2 + 2F3) + Y1Y2(F1 + 2F3)

〈∇F3, V≤0〉

= F3(G − 1) −
√
2

2
Y3(F1 + 3F2 + 2F3) − 1

2
Y1Y3(F1 + F2 + F3)

. (6.10)

Computations show the above all vanish on B−
Spin(7). The proof is complete. 
�
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Fig. 3. Integral curves that represents Spin(7) metrics (black) and G2 metrics (red)

Although the definition of B−
Spin(7) consists of 6 equalities, one can show that X1 +

2X2 + 4mX3 = 1 holds once all Fi ’s and 1 − G − Rs vanish. Therefore, B
−
Spin(7) is a

2-dimensional surface and its projection to the Y -space is a level set given by

1 +
1

2
Y1Y2 − 1

2
Y1Y3 − 2

√
2Y2 − √

2Y3 = 0.

By changing the sign of a. we obtain the Spin(7) condition with the opposite chirality.

H1 = X1 +
1

2
Y1Y2 − 1

2
Y1Y3

H2 = X2 − √
2Y2 +

√
2

2
Y3 − 1

2
Y1Y2

H3 = X3 −
√
2

2
Y3 +

1

4
Y1Y3

(6.11)

and
B+
Spin(7) = BRF ∩ {H1 ≡ H2 ≡ H3 ≡ 0}.

With the similar computation in the proof of Proposition 6.3, we can show thatB+
Spin(7) is

invariant. Both invariant sets are presented in Fig. 3. In our new coordinate, the Spin(7)
metric and the G2 metric in [BS89,GPP90] are realized as straight line segments that
lie in B−

Spin(7).

Linearization at P0 shows that ζ(s1,s2,s3) lie in B−
Spin(7) for all (s1, s2, 0) ∈ S

2 with
s1 > 0 and s2 ≥ 0. ζ(1,0,0) is the AC Spin(7) metric found in [BS89,GPP90] and the
1-parameter family ζ(s1,s2,0) with s2 > 0 is the family of ALC Spin(7) metrics found in
[CGLP04]. Specifically, for we obtain

ζ(s1,s2,0) =
⎧⎨
⎩

B
+
8 2s1 > s2

B8 2s1 = s2
B

−
8 2s1 < s2

Another new Spin(7) metric A8 was found on R
8 in [CGLP04]. This metric is locally

the same as B8 although they differ globally. This property is reflected in our pictures
as both metrics are lie in the 1-dimensional invariant set

B−
Spin(7) ∩

{√
2Y2 − √

2Y3 − Y1Y2 = 0
}

.
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Fig. 4. A8 and B8

Simply change the sign of Y1, then we can present A8 with the opposite chirality in
the compact invariant set S. It is realized by the integral curve γ( 1√

5
, 2√

5
,0
) (Fig. 4).

Remark 6.4. In [CGLP02], the sign change occurs in one of the b component in order to
obtain non-trivially different system since a2

b2
is not necessarily 2. A 1-parameter family

of Spin(7) metric C8 was found in [CGLP02]. They are metrics with Fubini–Study
CP

2m+1 bolt. At the infinity, one of the b component tends to a constant while the other
grow linearly as the same rate as a. Therefore, thesemetrics are not realized in this article
as the 3-sphere H/K is really controlled by three functions instead of two. However,
if one further impose 2c2 = b2, then the metric is the Calabi–Yau metrics described in
Sect. 6.1.

Recall in Sect. 3.2, we know that there exists a unique unstable eigenvector of
L(PAC−2) that is tangent to ∂E and �0 emanates from PAC−2 via this vector. Compu-
tation shows that this eigenvector is tangent to B−

Spin(7). Hence �0 is a singular Spin(7)
metric.

In general, we have the following Lemma.

Lemma 6.5. Consider the case m = 1. Metrics ζ(s1,s2,0) and �0 on M8 and metrics
γ(s1,s2,0) on R

8 all have holonomy group no smaller than Spin(7). In particular,

1. Metrics ζ(s1,s2,0) and �0 on M are Spin(7).
2. Metrics γ( 1√

5
, 2√

5
,0
) on R

8 is Spin(7).

3. Metrics γ(s1,s2,0) with (s1, s2, 0) �=
(

1√
5
, 2√

5
, 0
)
on R

8 have generic holonomy.

For the case m > 1, metrics ζ(s1,s2,0) with s2 > 0 and �0 on M and metrics γ(s1,s2,0)

with s2 > 0 on R
4m+4 have generic holonomy.

Proof. Consider the casem = 1. By the discussion above, it is clear that metrics ζ(s1,s2,0)

and �0 on M8, metrics γ( 1√
5
, 2√

5
,0
) on R8 are Spin(7). It suffices to prove γ(s1,s2,0) with

(s1, s2, 0) �=
(

1√
5
, 2√

5
, 0
)
on R8 have generic holonomy. By Lemma 5.7, we know that

lim
η→∞ γ(s1,s2,0) =

⎧
⎨
⎩

PAC−2 s2 = 0
PALC−2 s1, s2 > 0
PALC−1 s1 = 0

.
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Hence the limit space is one of the following.

1. The metric cone over Jensen 7-sphere, its holonomy is Spin(7).
2. An S1-bundle over the metric cone over a nearly KählerCP3, whose holonomy group

contains a subgroup G2.
3. An S

1-bundle over the metric cone over a Fubini–Study CP
3. The holonomy group

contains a subgroup SO(7).

Suppose the metric γ(s1,s2,0) admits a Kähler structure. By passing the Kähler structure
to the limit space, we learn that the holonomy group of the limit space must be contained
in SU (4).

Note that SU (4) is 15-dimensional and simply connected. Both Spin(7) and SO(7)
have dimension larger than 15, hence they are not contained in SU (4). If the holonomy
group that contains G2 were also contained in SU (4), then it must be SU (4) itself. But
if G2 were contained in SU (4), then SU (4)/G2 must be a circle, a contradiction to the
fact that SU (4) is simply connected. We conclude that G2 is not contained in SU (4).

Therefore, γ(s1,s2,0) with (s1, s2, 0) �=
(

1√
5
, 2√

5
, 0
)
onR8 must have generic holonomy.

Consider the case m > 1. With s2 > 0 and Lemma 5.7, we have

lim
η→∞ γ(s1,s2,0) =

{
PALC−2 s1 > 0
PALC−1 s1 = 0 , lim

η→∞ ζ(s1,s2,0) = lim
η→∞ �0 = PALC−2.

Then the limit space must have holonomy group that contains a subgroup SO(4m + 3).
Since the dimension of SO(4m + 3) is larger than the one of SU (2m + 2) if m ≥ 1. We
conclude that the Ricci-flat metrics above have generic holonomy. 
�

By Lemma 6.5 and by Theorem 2.1 in [Hit74] and [Wan89], Theorem 1.4 is proven.
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