
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-021-04089-9
Commun. Math. Phys. 385, 1871–1956 (2021) Communications in

Mathematical
Physics

On the Stability of Periodic Multi-Solitons of the KdV
Equation

Thomas Kappeler1 , Riccardo Montalto2

1 Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
E-mail: thomas.kappeler@math.uzh.ch

2 University of Milan, Via Saldini 50, 20133 Milan, Italy.
E-mail: riccardo.montalto@unimi.it

Received: 9 September 2020 / Accepted: 29 March 2021
Published online: 11 May 2021 – © The Author(s) 2021

Abstract: In this paper we obtain the following stability result for periodic multi-
solitons of the KdV equation: We prove that under any given semilinear Hamiltonian
perturbation of small size ε > 0, a large class of periodic multi-solitons of the KdV
equation, including ones of large amplitude, are orbitally stable for a time interval of
length at least O(ε−2). To the best of our knowledge, this is the first stability result of
such type for periodic multi-solitons of large size of an integrable PDE.
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1. Introduction

The Korteweg-de Vries (KdV) equation

∂t u = −∂3x u + 6u∂xu (1.1)

is one of the most important model equations for describing dispersive phenomena.
It is named after the two Dutch mathematician Korteweg and de Vries [29] (cf. also
Boussinesq [14], Raleigh [40]) and originally was proposed as a model equation in
one space dimension for long surface waves of water in a narrow and shallow channel.
Today it is used in many branches of physics as well as in the engineering sciences.
The seminal discovery in the late sixties that (1.1) admits infinitely many conservation
laws ([34,38]), and the development of the inverse scattering transform method ( [24])
led to the modern theory of integrable systems of finite and infinite dimension (see e.g.
[20,22], and references therein). More recently, as one of the most prominent examples
among dispersive equations, (1.1) played a major role in the development of the theory
of dispersive PDEs to which many of the leading analysts of our times contributed. In
particular, the (globally in time) well-posedness theory of (1.1) has been established in
various setups in great detail – see [19].

A distinguished feature of Eq. (1.1) is the existence of sharply localized traveling
wave solutions of arbitrarily large amplitude and particle like properties. Kruskal and
Zabusky,who studied them in numerical experiments in the early sixties (cf. [30]), coined
the name ’soliton’ for them. More generally, they found solutions, which are localized
near finitely many points in space, referred to as multi-solitons. In the periodic setup,
these solutions often are referred to as periodic multi-solitons or finite gap solutions.
Due to their importance in applications, various stability aspects have been considered
such as the long time asymptotics of solutions with initial data near (periodic) multi-
solitons (orbital stability, soliton resolution conjecture). Two major questions arise in
connection with the structural stability of (1.1). One of them concerns the persistence
of the (periodic) multi-solitons under perturbations of (1.1), and the other one concerns
the long time asymptotics of solutions of perturbations of (1.1) with initial data close
to a (periodic) multi-soliton. In the periodic setup, the first question has been studied
quite extensively by developing KAMmethods, pioneered by Kolmogorov, Arnold, and
Moser to treat perturbations of finite dimensional integrable system, for PDEs (cf. [1,8,
12,15,28,31–33,35,39,41], and references therein), whereas the second one turned out
to be quite challenging and little is known so far. Our goal is to address this longstanding
open problem.

The aim of this paper is to study in the periodic setup the long time asymptotics of the
solutions of Hamiltonian perturbations of (1.1) with initial data close to a periodic multi-
soliton of arbitrary large amplitude. To describe the class of perturbations considered,
recall that (1.1) with the space periodic variable x ∈ T1 := R/Z can be written in
Hamiltonian form

∂t u = ∂x∇Hkdv(u) , Hkdv(u) :=
∫ 1

0

(1
2
(∂xu)2 + u3

)
dx , (1.2)
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where∇Hkdv(u) denotes the L2−gradient of Hkdv andwhere ∂x is the Poisson structure,
corresponding to the Poisson bracket defined for functionals F , G by

{F,G}(u) =
∫ 1

0
∇F∂x∇Gdx . (1.3)

We consider semilinear Hamiltonian perturbations of (1.1) of the form

∂t u = −∂3x u + 6u∂xu + εF(u) (1.4)

where 0 < ε < 1 is a small parameter and F is a semilinear Hamiltonian vector field

F(u) = ∂x∇Pf (u). (1.5)

Here Pf is a Hamiltonian of the form

Pf (u) :=
∫ 1

0
f (x, u(x)) dx (1.6)

and f a C∞−smooth density

f : T1 × R→ R, (x, ζ ) �→ f (x, ζ ), (1.7)

so that with f ′(x, ζ ) := ∂ζ f (x, ζ ) and f ′′(x, ζ ) := ∂2ζ f (x, ζ ),

F(u)(x) = ∂x∇Pf (u)(x) = ∂x f
′(x, u(x)) + f ′′(x, u(x))∂xu(x).

To state our main results, we first need to introduce some more notations. Since
u �→ 〈u〉x :=

∫ 1
0 u dx is a Casimir for the Poisson bracket (1.3) and hence a prime

integral of (1.4), we restrict our attention to spaces of functions with zero mean (cf. [28],
Section 13) and choose as phase spaces of (1.4) the scale of Sobolev spaces Hs

0 (T1),
s ∈ Z≥0,

Hs
0 (T1) := {q ∈ Hs(T1) :

∫ 1

0
q(x)dx = 0}, L2

0(T1) ≡ H0
0 (T1),

where

Hs(T1)≡Hs(T1, R) :={q=∑
n∈Z

qne
2π inx : qn ∈ C, q−n=qn ∀n ∈ Z, ‖q‖s <∞

}
,

(1.8)

and

‖q‖s =
(∑
n∈Z
〈n〉2s |qn|2

) 1
2 , 〈n〉 := max{1, |n|} , ∀ n ∈ Z .

On L2
0(T1), the Poisson structure ∂x is nondegenerate and the corresponding symplectic

form is given by

WL2
0
(u, v) :=

∫ 1

0
(∂−1x u)v dx , ∂−1x u =

∑
n �=0

1

in
une

i2πnx , ∀u, v ∈ L2
0(T1).

(1.9)
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Note that the Hamiltonian vector field XH (u) = ∂x∇H(u), associated with the Hamil-
tonian H , satisfies dH(u)[·] =WL2

0
(XH , ·).

Our results can informally be stated as follows: for any f ∈ C∞(T1×R), s sufficiently
large, ε > 0 sufficiently small, and for most of the finite gap solutions q : t �→ q(t, ·) of
(1.1), the following holds: for any initial data u0 ∈ Hs

0 (T1), which is ε-close in Hs
0 (T1)

to the orbit Oq := {q(t, ·) : t ∈ R} of q, the perturbed equation (1.4) admits a unique
solution t �→ u(t, ·) in Hs

0 (T1) with initial data u(0, ·) = u0 and life span at least
[−T, T ], T = O(ε−2). The solution u(t, ·) stays ε-close in Hs

0 (T1) to the orbit Oq .
To state our results in precise terms, we need to define the notion of finite gap solution

and the invariant tori, on which they evolve, and explain for which of these solutions
the above stability results hold. Since these finite gap solutions are not small, we need
to introduce coordinates to describe them. Most conveniently, this can be done in terms
of a Euclidean version of action angle coordinates, referred to as Birkhoff coordinates.
Let us now explain this in detail.

According to [28], the KdV equation (1.2) onT1 is an integrable PDE in the strongest
possible sense, meaning that it admits globally defined canonical coordinates on L2

0(T1)

so that when expressed in these coordinates, (1.2) can be solved by quadrature.
To describe these coordinates in more detail, we introduce for any s ∈ Z≥0 the

weighted �2−sequence spaces
hs0 :=

{
(wn)n �=0 ∈ hs0,c : w−n = wn ∀n ≥ 1

}
, �20 ≡ h00,

where hs0,c ≡ hs(Z\{0}, C) is given by

hs0,c :=
{
w = (wn)n �=0 : wn ∈ C ∀n �= 0, ‖w‖s <∞}

, ‖w‖s :=
(∑
n �=0
|n|2s |wn|2

) 1
2 .

By [28] there exists a real analytic diffeomorphism, referred to as (complex) Birkhoff
map,

�kdv : L2
0(T1)→ �20, q �→ w(q) := (wn(q))n �=0 ,

which is canonical in the sense that

{wn, w−n} =
∫ 1

0
∇wn∂x∇w−n dx = 2π in, ∀n �= 0 , (1.10)

whereas the brackets between all other coordinate functions vanish, and which has
the property that for any s ∈ N, the restriction of �kdv to Hs

0 (T1) is a real analytic
diffeomorphism with range hs0, �kdv : Hs

0 (T1) → hs0, so that the KdV Hamiltonian,
when expressed in the coordinates wn, n �= 0, is in normal form. More precisely,

Hkdv ◦�kdv : h10 → R , �kdv := (�kdv)−1 ,

is a real analytic function Hkdv of the actions I (w) = (In(w))n≥1 alone,

Hkdv : �1,3+ → R, I �→ Hkdv(I ), In(w) := 2πnwnw−n, ∀n ≥ 1,

where �
1,3
+ denotes the positive quadrant of the weighted �1−sequence space,

�1,3 ≡ �1,3(N, R) := {I = (In)n≥1 ⊂ R :
∞∑
n=1

n3|In| <∞} , N := Z≥1 .
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Equation (1.2), when expressed in the coordinates wn , n �= 0, then takes the form

ẇn = iωkdv
n (I )wn , ∀n �= 0, (1.11)

where ωkdv
n (I ), n �= 0, denote the KdV frequencies

ωkdv
n (I ) := ∂InHkdv(I ) , ωkdv−n (I ) := −ωkdv

n (I ), ∀n ≥ 1. (1.12)

Since by (1.10) the action variables Poisson commute, {In, Im}, ∀n,m ≥ 1, it follows
that they are prime integrals of (1.2) and so are the frequencies ωkdv

n (I ), n �= 0. As
a consequence, (1.11) can be solved by quadrature. Finally, the differential d0�kdv :
L2
0(T1)→ �20 of �kdv at q = 0 is the Fourier transform (cf. [28], Theorem 9.8)

F : L2
0(T1)→ �20, q �→ (qn)n �=0, qn :=

∫ 1

0
q(x)e−2π inx dx,

and hence d0�kdv is given by the inverse Fourier transform F−1. We remark that the
coordinates w±n ≡ w±n(q), referred to as (complex) Birkhoff coordinates, are related
to the (real) Birkhoff coordinates xn, yn , n ≥ 1, introduced in [28], by

xn = wn + w−n
2
√
nπ

, yn = i
wn − w−n
2
√
nπ

, ∀ n ≥ 1 ,

where
√· denotes the principal branch of the square root,

√· ≡ +
√· .

The Birkhoff coordinates are well suited to describe the finite gap solutions of (1.2).
For any finite subset S+ ⊆ N, let

S := S+ ∪ (−S+) , S⊥ := Z\(S ∪ {0}) .

We denote by MS the submanifold of L2
0(T1), given by

MS :=
{
q = �kdv(w) : wn(q) = 0 ∀ n ∈ S⊥

}
,

whose elements are referred to as S-gap potentials, and by Mo
S the open subset of MS ,

consisting of the so called proper S-gap potentials,

Mo
S := {q ∈ MS : wn(q) �= 0 ∀ n ∈ S} .

Note that MS is contained in ∩s≥0Hs
0 (T1) and hence consists of C∞-smooth potentials

and that Mo
S can be parametrized by the action-angle coordinates θ = (θk)k∈S+ ∈ T

S+ ,

and I = (Ik)k∈S+ ∈ R
S+
>0,

�S+ :Mo
S := T

S+ × R
S+
>0 → Mo

S, (θ, I ) �→ �S+(θ, I ) := �kdv(w(θ, I ))

where T := R/2πZ and w(θ, I ) = (wn(θ, I ))n �=0 is defined by

w±n :=
√
In/(2πn)e∓iθn , ∀n ∈ S+, wn := 0, ∀n ∈ S⊥ . (1.13)

Introduce

hs⊥ :=
{
w ∈ hs⊥c : w−n = wn ∀n ∈ S⊥

}
, hs⊥c := hs(S⊥, C) .
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For notational convenience, we view Mo
S × hs⊥ as a subset of hs0. Its elements are

denoted by

θ = (θn)n∈S+ , I = (In)n∈S+ , w = (wn)n∈S⊥

and it is endowed with the canonical Poisson bracket, given by

{In, θn} = 1, ∀n ∈ S+, {wn, w−n} = i2πn, ∀n ∈ S⊥+ := S⊥ ∩ N ,

whereas the brackets between all other coordinate functions vanish.
It is convenient to introduce the frequency vector ω(I ) (cf. (1.12)),

ω(I ) := (ωkdv
n (I, 0))n∈S+ . (1.14)

By [11], the action to frequency map ω : R
S+
>0 → R

S+ , I �→ ω(I ), is a local diffeo-

morphism. Throughout the paper, we denote by � ⊂ R
S+
>0 the closure of a bounded,

open, nonempty set so that the restriction of ω to � is a diffeomorphism onto its image
� := ω(�) and so that for some δ > 0,

� + BS+(δ) ⊂ R
S+
>0,

where BS+(δ) is the ball inR
S+ of radius δ > 0, centered at the origin.We remark that for

any I ∈ � + BS+(δ), the nth action In = In(w), n ∈ S+, is of the form In(w) = I (0)
n + y

where I (0)
n := 2πnw

(0)
n w

(0)
−n ∈ � and

yn = (wn − w(0)
n )w

(0)
−n + w(0)

n (w−n − w
(0)
−n) + (wn − w(0)

n )(w−n − w
(0)
−n) . (1.15)

The inverse of ω : �→ � is denoted by μ,

μ : �→ �, ω �→ μ(ω) .

In what follows, we will consider the frequency vectorω as a parameter. For anyω ∈ �,

a S−gap solution of (1.2) is defined as a solution of the form

q(t, x;ω) = �S+(θ
(0) + ωt, μ(ω))(x) , θ(0) ∈ T

S+ , (1.16)

whereas a finite gap solution of (1.2) is a solution of the form (1.16) for some S =
S+ ∪ (−S+) with S+ ⊂ N finite. The S−gap solution t �→ q(t, x;ω) is a curve on the
|S+|−dimensional torus

Tμ(ω) := �S+

(
T
S+ × {μ(ω)}).

Wenote thatTμ(ω) is invariant under (1.2) and Lyapunov stable in Hs
0 (T1) for any s ≥ 0.

More precisely, for any ε > 0 there exists δ > 0, depending on s, so that for any initial
data u0 ∈ Hs

0 (T1) with

distHs
(
u0,Tμ(ω)

) ≤ δ , distHs
(
u0,Tμ(ω)

) := inf
q∈Tμ(ω)

‖u0 − q‖s , (1.17)

the solution u(t, ·) of (1.2) with u(0, ·) = u0 satisfies

distHs
(
u(t, ·),Tμ(ω)

) ≤ ε , ∀ t ∈ R.
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Finally, we introduce the so called normal frequencies,

� j (ω) := ωkdv
j (μ(ω), 0), j ∈ S⊥, ω ∈ �, (1.18)

and for any given τ > |S+|, the subsets �γ of �,

�γ := ∩3i=0�(i)
γ , 0 < γ < 1 , (1.19)

where �
(i)
γ , 0 ≤ i ≤ 3, are given by

�(0)
γ :=

{
ω ∈ � : |ω · �| ≥ γ

〈�〉τ ∀� ∈ Z
S+\{0}} ,

�(1)
γ :=

{
ω ∈ � : |ω · � + � j (ω)| ≥ γ

〈�〉τ ∀(�, j) ∈ Z
S+ × S⊥

}
,

�(2)
γ :=

{
ω ∈ � : |ω · � + � j1(ω) + � j2(ω)| ≥ γ

〈�〉τ
∀(�, j1, j2) ∈ Z

S+ × S⊥ × S⊥ with (�, j1, j2) �= (0, j1,− j1)
}
,

�(3)
γ :=

{
ω ∈ � : |ω · � + � j1(ω) + � j2(ω) + � j3(ω)| ≥ γ

〈�〉τ 〈 j1〉2〈 j2〉2〈 j3〉2
∀(�, j1, j2, j3) ∈ Z

S+ × S⊥ × S⊥ × S⊥ with jk + jm �= 0 ∀k,m ∈ {1, 2, 3}} .

(1.20)

Here we used the standard notation for vectors y in R
n ,

〈y〉 := max{1, |y|}, |y| := (

n∑
j=1
|y j |2)1/2, ∀ y ∈ R

n . (1.21)

We refer to �
( j)
γ , 0 ≤ j ≤ 3, as the jth Melnikov conditions and note that the third

Melnikov conditions allow for ’a loss of derivatives in space’—see item (i i) inComments
on Theorem 1.1 below.

The goal of this paper is to prove a long time stability result of finite gap solutions
(1.16) of the Korteweg-de Vries equation on T1. To state it, we denote for any Banach
space X with norm ‖ · ‖X , integer m ≥ 0, and interval J ⊂ R, by Cm(J, X) the Banach
space of functions f : J → X , which arem times continuously differentiable, endowed
with the supremum norm, ‖ f ‖Cm

t
:= max0≤ j≤m sup{‖∂ j

t f (t)‖X : t ∈ J ; 0 ≤ j ≤ m}.
Theorem 1.1. Let f be a function in C∞(T1 ×R) (cf. (1.6)), S+ be a finite subset of N,
and τ be a number with τ > |S+| (cf. (1.20)). Then for any integer s sufficiently large
and any ω ∈ �γ , 0 < γ < 1, there exists 0 < ε0 ≡ ε0(s, γ ) < 1 with the following
properties: for any 0 < ε ≤ ε0 and any initial data u0 ∈ Hs

0 (T1), satisfying

distHs
(
u0,Tμ(ω)

) ≤ ε , (1.22)

equation (1.4) admits a unique solution

t �→ u(t, ·)inC0([−T, T ], Hs
0 (T1)) ∩ C1([−T, T ], Hs−3

0 (T1))

with initial data u(0, x) = u0(x) and T ≡ Tε,s,γ = O(ε−2). Moreover, u satisfies the
estimate

distHs
(
u(t, ·),Tμ(ω)

)
�s,γ ε , ∀ − T ≤ t ≤ T ,
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where the distance function distHs is defined in (1.17). Furthermore, there exists 0 <

a < 1 so that for any 0 < γ < 1, the Lebesgue measure |�\�γ | of �\�γ satisfies

|�\�γ | � γ a , implying that lim
γ→0
|�γ | = |�| . (1.23)

Here and in the sequel, the notation h �α,... g means that the real valued function h,
depending on various variables, satisfies an estimate of the form h ≤ Cg where g is
also a real valued function, typically small, and the constant C > 0 only depends on the
parameters α, . . .. For notational convenience, the dependence of the constant C on f ,
S+, and τ is not indicated.

Comments on Theorem 1.1

(i) Initial data.Note that the size of the distance of the initial value u0 to the considered
S−gap solution of the KdV equation (cf. (1.22)) is assumed to be of the same order
of magnitude as the size of the perturbation εF(u) in (1.4).

(i i) Measure estimate (1.23). The proof of the measure estimates (1.23) requires that
the thirdMelnikov conditions�

(3)
γ in (1.20) allow for a loss of derivatives in space.

Furthermore, a key ingredient into the proof of (1.23) is the case n = 3 of Fermat’s
Last Theorem, proved by Euler [21] (cf. Lemma 8.3).

(i i i) Assumptions in Theorem 1.1. The results of Theorem 1.1 hold for any density
f (x, ζ ) of class Cσ with σ sufficiently large. Furthermore, corresponding results
hold for (invariant tori of) finite gap solutions of the KdV equation in the affine
spaces c + Hs

0 (T1), c ∈ R. We assume in this paper that f is C∞−smooth and that
c = 0 merely to simplify the exposition.
In order to limit the size of the paper, we assume the perturbation εF(u) to be
semilinear (cf. (1.5)), leaving the case of a quasilinear one for future work. Most
likely, the elaborate method designed in [23] will allow to transform quasilinear
perturbations into normal form while preserving the Hamiltonian structure of the
equation.

(iv) Time of stability. It seems unlikely that the stability results of Theorem 1.1 in the
generality stated are valid for time intervals of size larger than O(ε−2) since the
conditions, required to hold for the frequencies � j , j ∈ S⊥, so that the normal
form procedure could be implemented, are too strong. See Remark 8.1 at the end
of Sect. 8. Actually, it might be possible that the (almost) resonances of the KdV
frequencies of degree four can be used to prove instability results for solutions of
the perturbed equation (1.4)—see [16,25] and references therein for related results
for Schrödinger equations in two space dimension.

(v) Conservation of momentum. If the density f of the perturbation Pf (u) = ∫ 1
0

f (x, u(x)) dx does not explicitely depend on x , then the momentum M(u) :=
1
2

∫
T1

u2 dx is a prime integral of Eq. (1.4). We plan to prove in future work that
the stability time can be improved in such a case.

(v) Integrable PDEs. The method of proof of Theorem 1.1 is quite general. We expect
that for any integrable PDE, admitting coordinates of the type constructed in [27], a
corresponding version of Theorem 1.1 holds, up to the measure estimates related to
the nonresonance conditions for the frequencies of the integrable PDE considered.
These estimates might require specific arithmetic properties of the frequencies—
see item (i i) above.

To explain the main ideas of the proof, we first need to introduce some terminology
and additional notations. They will be used throughout the paper.
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Notations and terminology. For any finite subset S+ ⊂ N, L2⊥(T1) is the subspace, given
by

L2⊥(T1) :=
{
w =

∑
n∈S⊥

wne
i2πnx ∈ L20(T1)

}
, S⊥ = Z\(S+ ∪ (−S+) ∪ {0}) , (1.24)

and�⊥ denotes the L2−orthogonal projector onto the subspace L2⊥(T1). For any s > 0,
we set

Hs⊥(T1) := Hs(T1) ∩ L2⊥(T1), H0⊥(T1) := L2⊥(T1) . (1.25)

By Es we denote the phase space and by Es the corresponding tangent space, given by

Es := T
S+ × R

S+ × Hs⊥(T1) , E ≡ E0 , Es := R
S+ × R

S+ × Hs⊥(T1) , E ≡ E0 ,

(1.26)

where T1 = R/Z and T = R/2πZ. Elements of E are denoted by x = (θ, y, w) and
the ones of its tangent space E by x̂ = (θ̂ , ŷ, ŵ). For s > 0, Hs⊥(T1)

∗ denotes the dual
space of Hs⊥(T1), which is canonically identified with the Sobolev space H−s⊥ (T1) of
distributions. The spaces E−s and E−s are then defined as in (1.26). On E , we denote
by 〈·, ·〉E the inner product defined by

〈
(θ̂1, ŷ1, ŵ1), (θ̂2, ŷ2, ŵ2)

〉
E := θ̂1 · θ̂2 + ŷ1 · ŷ2 +

〈
ŵ1, ŵ2

〉
(1.27)

where 〈·, ·〉 is the standard real scalar product on L2⊥. For notational convenience, �⊥
also denotes the projector of Es onto its third component,

�⊥ : Es → Hs⊥(T1) , (θ̂ , ŷ, ŵ) �→ ŵ .

For any 0 < δ < 1, we denote by BS+(δ) the open ball in R
S+ of radius δ centered at 0

and by Bs⊥(δ), s ≥ 0, the corresponding one in Hs⊥(T1). For s = 0, we also write B⊥(δ)

instead of B0⊥(δ). These balls are used to define the following open neighborhoods in
Es , s ≥ 0,

Vs(δ) := T
S+
1 × BS+(δ)× Bs⊥(δ) , V(δ) ≡ V0(δ) , 0 < δ < 1 . (1.28)

For notational convenience, oftenwithout stating it explicitly, δ > 0will take on different
values in the course of our arguments. In particular, δ > 0 typically will depend on s.
(Note that by (1.15), the coordinates y = (yn)n∈S+ are of the sameorder as the coordinates
w = (wn)n∈S⊥ .)

For any k ≥ 1, ∂−kx : L2(T1)→ L2
0(T1) is the linear operator, defined by

∂−kx [e2π inx ] =
1

(2π in)k
e2π inx , ∀n �= 0 , and ∂−kx [1] = 0 .

The space Vs(δ) is endowed with the symplectic form

W := (∑
j∈S+dy j ∧ dθ j

)⊕W⊥ (1.29)

where W⊥ is the restriction to L2⊥(T1) of the symplectic form WL2
0
defined in (1.9).

Throughout the paper, the Hamiltonians considered depend on the small parameter ε ∈
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[0, ε0], 0 < ε0 < 1, and are C∞-smooth maps, Vs(δ) × [0, ε0] → R. Given such a
Hamiltonian H , we often do not indicate the dependence of H on the parameter ε. The
Hamiltonian vector field of H is denoted by XH . It is given by

XH (x) = J∇H(x) = (−∇y H(x), ∇θ H(x), ∂x∇⊥H(x)
)

(1.30)

where J is the Poisson structure, associated to the symplectic form W ,

J : Es → Es−1 , (θ̂ , ŷ, ŵ) �→ (−ŷ, θ̂ , ∂x ŵ) (1.31)

andwhere∇⊥H(x) ≡ ∇wH(x)denotes the L2−gradient of H with respect to the variable
w. For notational convenience, we denote by {F,G} the Poisson bracket corresponding
to J ,

{F,G} = W(XF , XG) = 〈∇F , J∇G〉E
= −∇θ F · ∇yG + ∇y F · ∇θG +

〈∇⊥F , ∂x∇⊥G
〉
. (1.32)

Given a Hamiltonian vector field XF : Vs(δ) × [0, ε0] → Es with Hamiltonian F ,
we denote by �F (τ, ·) or �XF (τ, ·) the flow generated by XF . For the vector fields
XF considered in this paper, there exists 0 < δ′ < δ so that for any τ ∈ [−1, 1], the
flow map Vs(δ′) → Vs(δ), x �→ �F (τ, x) is well defined. The Taylor expansion of
τ �→ H ◦�F (τ, x) at τ = 0 can be computed as

H ◦�F (τ, x) = H(x) + τ {H, F}(x) + τ2
∫ 1

0
(1− t){{H, F}, F} ◦�F (tτ, x) dt . (1.33)

We will also need to consider C∞-smooth vector fields, which are not necessarily
Hamiltonian,

X = (X (θ), X (y), X⊥) : Vs(δ)× [0, ε0] → Es ,

where X (θ), X (y), and X⊥ are the components of X ,

X (θ), X (y) : Vs(δ)× [0, ε0] → R
S+ , X⊥ : Vs(δ)× [0, ε0] → Hs⊥(T1) .

The corresponding flow is denoted by�X (τ, ·). Againwewill only consider vector fields
X with the property that there exists 0 < δ′ < δ so that for any τ ∈ [−1, 1], �X (τ, ·) is
well defined onVs(δ′). Given twoC∞-smooth vector fields X,Y : Vs(δ)×[0, ε0] → Es ,
the commutator [X,Y ] is defined as

[X,Y ](x) := dX (x)[Y (x)] − dY (x)[X (x)] . (1.34)

The pull-back of a vector field X : Vs(δ) → Es by a C∞-smooth diffeomorphism
� : Vs(δ′)→ Vs(δ) is defined as,

�∗X (x) := d�(x)−1X (�(x)) , ∀x ∈ Vs(δ′) . (1.35)

If �τ (·) ≡ �Y (τ, ·) is the flow of a vector field Y , then the Taylor expansion of τ �→
�∗τ X (x) at τ = 0 reads

�∗τ X (x) = X (x) + τ

∫ 1

0
(d�(tτ, x))−1[X,Y ](�(tτ, x)) dt
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= X (x) + τ [X,Y ](x) + τ 2
∫ 1

0
(1− t)(d�(tτ, x))−1[[X,Y ],Y ](�(tτ, x)) dt .

(1.36)

In the case τ = 1, wewill often write�∗Y X instead of�∗1X . Clearly if X = XH , Y = YF
are Hamiltonian vector fields, then

[X,Y ] = X{H,F}, (�Y (τ, ·))∗X = XH◦�Y (τ,·) .

Given two linear operators A, B, acting on L2(T1) (or L2⊥(T1)), their commutator is
conveniently denoted by [A, B]lin ,

[A, B]lin = AB − BA . (1.37)

Moreover, given a densely defined linear operator A : L2⊥(T1) → L2⊥(T1), whose

domain contains the elements of the Fourier basis ei2π j x , j ∈ S⊥, we denote by A j ′
j or

[A] j ′j the (Fourier) matrix coefficients of A,

A j ′
j :=

∫ 1

0
A[ei2π j ′x ]e−i2π j x dx, j, j ′ ∈ S⊥ .

Given a Banach space (X, ‖ · ‖X ), we denote by C∞b (Vs(δ) × [0, ε0], X) the space of
C∞ functions Vs(δ)× [0, ε0] → X with all derivatives bounded.
In our normal form procedure, we need to take into account the order of vanishing with
respect to the variables y, w and the small parameter ε. The following definition turns
out to be convenient.

Definition 1.1. Let (B, ‖ · ‖B) be a Banach space and p ∈ Z≥0. A C∞-smooth map

g : Vs(δ)× [0, ε0] → B, (x, ε) �→ g(x, ε)

is said to be small of order p if for anyβ ∈ Z
S+≥0 and k1, k2 ∈ Z≥0 with |β|+k1+k2 ≤ p−1

dk2⊥ ∂β
y ∂k1ε g(θ, 0, 0, 0) = 0 , ∀ θ ∈ T

S+ . (1.38)

Note that if g is small of order p, then

‖g(x, ε)‖B �g (|y| + ‖w‖s + ε)p , ∀ x = (θ, y, w) ∈ Vs(δ), ∀ ε ∈ [0, ε0] ,
and for any α ∈ Z

S+≥0, ∂α
θ g is small of order p as well.

Given two Banach spaces (X, ‖ · ‖X ), (Y, ‖ · ‖Y ), we denote by B(X,Y ) the space
of bounded linear operators X → Y . If X = Y , we write B(X) instead of B(X, X).
Moreover for any integer p ≥ 2, we denote by Bp(X,Y ), the space of bounded, p-
multilinear maps M : X p → Y , equipped with the standard norm,

‖M‖Bp(X,Y ) := sup
‖u1‖X ,...,‖u p‖X≤1

‖M[u1, . . . , u p]‖Y , M ∈ Bp(X,Y ) . (1.39)

If X = Y , we write Bp(X) instead of Bp(X, X). Furthermore, given open sets U ⊂ X
and V ⊂ Y , we denote by C∞b

(
U, V

)
the space of maps f : U → V which are

C∞-smooth and together with each of its derivatives, bounded.

Overview of the proof of Theorem 1.1. We prove Theorem 1.1 by the means of a
normal form procedure. A key ingredient are canonical coordinates near a torus Tμ(ω)
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of arbitrary size, constructed in [27]. They are obtained by first linearizing the Birkhoff
map �kdv at Tμ(ω) and then constructing a symplectic corrector. The new coordinates
yield a family of canonical transformations �kdv

μ , parametrized by μ ≡ μ(ω), ω ∈ �.
One of the main features of these transformations is that they admit expansions in terms
of pseudo-differential operators up to a remainder of arbitrary negative order. To prove
Theorem 1.1 we then follow a strategy developed in [7] in the context of water waves.

In a first step, referred to as Step 1, we write the perturbed Hamiltonian Hkdv + εPf
in the new coordinates (cf. Theorem 4.1). More precisely, in Theorem 4.1, we rephrase
[27, Theorem 1.1] in a form taylored to our needs and in Corollary 4.1, we compute
for any given μ ≡ μ(ω), ω ∈ �, and x = (θ, y, w) ∈ V1(δ) the Taylor expansion of
Hε,μ := (Hkdv + εPf ) ◦�kdv

μ at (θ, 0, 0) up to order three in the variables y, w, and ε,

Hε,μ(θ, y, w) = Nμ(y, w) + Pε,μ(θ, y, w) , (1.40)

Nμ(y, w) := ω · y + 1

2
�S+(ω)[y] · y + 1

2

〈
D−1⊥ �⊥(ω)w , w

〉
, (1.41)

where �S+(ω) is given by the S+ × S+ matrix (∂I j ω
kdv
i (μ, 0))i, j∈S+ and where D−1⊥ :

L2⊥(T1)→ L2⊥(T1) and �⊥(ω) ≡ �S⊥(ω) : L2⊥(T1)→ L2⊥(T1) are Fourier multipli-
ers in diagonal form,

D−1⊥ [w] :=
∑
n∈S⊥

1

2πn
wne

i2πnx , �⊥(ω)[w] :=
∑
n∈S⊥

�n(ω)wne
i2πnx , (1.42)

with�n(ω) given by (1.18). In order to simplify notation, in the sequel, we often will not
indicate the dependence of quantities such asHε,μ, Pε,μ, �⊥(ω), . . . on ε, μ ≡ μ(ω),
and ω.

We note that �⊥ is an unbounded operator. For any x = (θ, y, w), P(x) can be
expanded as

P(x) = ε
(P00(θ) + P10(θ) · y + 〈P01(θ), w〉) + Pe(x) , (1.43)

where Pe(x) is small of order three (cf. Definition (1.1)). The Hamiltonian vector field
XH, associated toH, is given at any point x = (θ, y, w) by

XH(x) =
⎛
⎝
−∇yH(x)

∇θH(x)

∂x∇⊥H(x)

⎞
⎠ =

⎛
⎜⎝

−ω −�S+ [y] − εP10(θ)−∇yPe(x)

ε∇θ

(P00(θ) + P10(θ) · y + 〈P01(θ), w〉) + ∇θPe(x)

i�⊥w + ε∂xP01(θ) + ∂x∇⊥Pe(x)

⎞
⎟⎠ .

(1.44)

We also show that the normal component ∂x∇⊥Pe of the Hamiltonian vector field XPe

is the sum of a para-differential vector field of order one (cf. Definition 3.1 in Sect. 3)
and a smoothing vector field (cf. Definition 3.3 in Sect. 3), i.e., for x = (θ, y, w),

∂x∇⊥Pe(x) = �⊥
N+1∑
k=0

Ta1−k (x)∂
1−k
x w +R⊥N (x) , (1.45)

where for any 0 ≤ k ≤ N + 1, Ta1−k(x) is the operator of para-multiplication with
a1−k(x) ∈ Hs(T1) (cf. (2.1) in Sect. 2), which is small of order one, and where R⊥N (x)
is a regularizing vector field, which is small of order two.
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In Step 2, we apply a regularization procedure, which conjugates the vector field
(1.44) to another one, which is a smoothing perturbation of a vector field in diagonal
form. Since the torus Tμ(ω) in the coordinates (θ, y, w) is described by {y = 0, w = 0},
the variables y, w can be used to measure the distance of a solution of the equation⎧⎪⎨

⎪⎩
∂tθ = −∇yH
∂t y = ∇θH
∂tw = ∂x∇⊥H

(1.46)

from Tμ(ω). Theorem 1.1 follows from Theorem 4.2 in Sect. 4, which states that forμ in
a large subset of � and for any initial data x0 = (θ0, y0, w0), satisfying |y0|, ‖w0‖s ≤ ε

with s > 0 large enough, the solution t �→ x(t) = (θ(t), y(t), w(t)) of (1.46) exists on
a time interval of the form [−T, T ] with T ≡ Tε,s,γ = O(ε−2) and

|y(t)|, ‖w(t)‖s �s,γ ε, ∀t ∈ [−T, T ] .
We deduce Theorem 4.2 from Theorem 4.3 and a local existence Theorem (cf. Ap-
pendix C), using energy estimates (cf. Sect. 7). Theorem 4.3 provides coordinates hav-
ing the property that the vector field in (1.46), when expressed in these coordinates,
is a vector field X = (X (θ), X (y), X⊥) with the following two features: (F1) The y-
component X (y) of X is small of order three. (F2) The normal component X⊥(x) of
X (x) at x = (θ, y, w) reads

X⊥(x) = i�⊥w + D⊥(x)[w] + �⊥Ta(x)∂xw +R⊥(x) , (1.47)

where D⊥(x) is a skew-adjoint Fourier multiplier of order one (depending nonlinearly
on x), a(x) ∈ Hs(T1) is small of order two, and the remainder R⊥(x) is small of order
three. In broad terms, our normal form procedure diagonalizes the normal component
X⊥ of the vector field X up to a term, which is small of order three and which can be
controlled by energy estimates. The procedure consists in eliminating/normalizing the
terms of the Taylor expansion (1.40)–(1.43) of XH, which are p-homogeneous in y, w,
ε with 0 ≤ p ≤ 2 (cf. Definition 1.1).

Based on the normal form procedure, developed in Sects. 5 and 6, Theorem 4.3 is
proved in Sect. 7. In Sect. 8 we show that the Lebesgue measure |�\�γ | of �\�γ (cf.
(1.20)) satisfies |�\�γ | � γ a for some 0 < a < 1. As already mentioned in item (ii)
ofComments on Theorem 1.1, a key ingredient of the proof is the case n = 3 of Fermat’s
Last Theorem, proved by Euler [21] (cf. Lemma 8.3). Sections 2 and 3 are prelimimary
where para-differential calculus and para-differential vector fields are discussed to the
extent needed in the paper.

We finish our overview of the proof of Theorem 1.1 by describing in some more
detail the normal formprocedure, developed in Sects. 5–6, to proveTheorem4.3. In order
to setup such a procedure in an effective way, we introduce, in the spirit of [7,18,23],
various classes of para-differential and smoothing vector fields, which possibly depend
in a nonlinear fashion on x = (θ, y, w), and develop a symbolic calculus for them—see
Sect. 3. The order of homogeneity in our symbol classes is computed with respect to
y, w, ε where we recall that y, w (together with θ ) are phase space variables and ε is
the perturbation parameter appearing in (1.4) and (1.22). Our normal form procedure is
split into two steps which we now describe.

In a first step, presented in Sect. 5, we normalize the terms in the Taylor expansion of
the HamiltonianH, which are linear with respect to the normal variable w and homoge-
neous of order at most three in (y, w, ε). Equivalently, this means that we normalize the
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terms in the Taylor expansion of the Hamiltonian vector field XH which do not contain
w and are homogeneous of order at most two. This is achieved by a standard normal
form procedure which consists in constructing a canonical transformation, given by the
time one flow map �F of a Hamiltonian vector field XF with a Hamiltonian F of the
form

F(θ, y, w) := F0(θ, y) +
〈F1(θ, y), w

〉
, (1.48)

with the property that XF is a smoothing Hamiltonian vector field (cf. Lemma 3.19).
Hence its flow is a smoothing perturbation of the identity, implying that the Hamiltonian
vector field of the Hamiltonian H ◦ �F has a normal component, which is again of
the form (1.45) (cf. Lemma 3.17). To construct F , we only need to impose zeroth
and first Melnikov conditions on ω, i.e., ω ∈ �

(0)
γ ∩ �

(1)
γ (cf. (1.20)). For notational

convenience, the Hamiltonian vector field obtained in this way is again denoted by
X = (X (θ), X (y), X⊥). The y−component X (y) is small of order three and the normal
component X⊥ of X at x = (θ, y, w) has the form

X⊥(x) = i�⊥[w] + X⊥1 (θ, y)[w] + X⊥2 (θ)[w,w] + term small of order three (1.49)

where

X⊥1 (θ, y)[w] = �⊥
N+1∑
k=0

Ta1−k (θ,y)∂
1−k
x w +R⊥N ,1(θ, y)[w] ,

X⊥2 (θ)[w,w] = �⊥
N+1∑
k=0

TA1−k (θ)[w]∂1−kx w +R⊥N ,2(θ)[w,w] ,
(1.50)

and for any 0 ≤ k ≤ N + 1, a1−k(θ, y) is small of order one, w �→ A1−k(θ)[w] is a
linear operator, whereasw �→ R⊥N ,1(θ, y)[w] is a linear smoothing operator (smoothing

of order N +1), andw �→ R⊥N ,2(θ)[w,w] is a quadratic smoothing operator (smoothing
of order N + 1). The term in (1.49), which is small of order three, is the sum of a
para-differential vector field of order one and a smoothing vector field.

The second step of our normal form procedure is developed in Sect. 6. Since �
(3)
γ

(cf. (1.20)) allows for a loss of derivatives in space, we first need to reduce the terms in
the Taylor expansion of the normal component X⊥ of X , which are linear and quadratic
in w, to constant coefficients up to smoothing terms—see Sect. 6.1. This regularization
procedure is achieved by constructing a transformation which is not canonical, but
nevertheless preserves the following important property, needed for the energy estimates:
the linearization of X⊥ atw = 0 equals X⊥1 (θ, y) and hence isHamiltonian. In particular,
the diagonal elements of the Fouriermatrix representation of the linear operator X⊥1 (θ, y)
are purely imaginary,

[X⊥1 (θ, y)] jj ∈ iR, ∀ j ∈ S⊥ . (1.51)

We remark that in the spirit of [23], one could construct a canonical transformation, but
the construction of the one in Sect. 6.1 is technically simpler and due to (1.51) suffices
for our purposes.



On the Stability of Periodic Multi-Solitons of the KdV Equation 1885

We now describe the second step of our normal form procedure in more detail. We
begin by normalizing the operator

�⊥Ta1(θ,y)∂x + �⊥TA1(θ)[w]∂x = �⊥Ta1(θ,y)+A1(θ)[w]∂x

in the expansion of the vector field X⊥1 (θ, y)[w] + X⊥2 (θ)[w,w] (cf. (1.49), (1.50)). We
transform the vector field in (1.49) by the means of the time one flow map �Y of the
vector field

Y (θ, y, w) = (
0, 0, �⊥Tb(θ,y)+B(θ)[w]∂−1x w

)

with b and B given by

b(θ, y) := 1

3
∂−1x

(〈a1(θ, y)〉x − a1(θ, y)
)
,

B(θ)[w] := 1

3
∂−1x

(〈A1(θ)[w]〉x − A1(θ)[w]). (1.52)

(Recall that for a ∈ L2(T1), 〈a〉x =
∫ 1
0 a dx .) Note that b and B satisfy

3∂xb(θ, y) + a1(θ, y) = 〈a1(θ, y)〉x , 3∂x B(θ)[w] + A1(θ)[w] = 〈A1(θ)[w]〉x . (1.53)

For notational convenience, we denote the transformed vector field also by X1 =
(X (θ)

1 , X (y)
1 , X⊥1 ). We show that X (y)

1 is small of order three and that X⊥1 (θ, y, w) has
the form

i�⊥w +D⊥1,1(θ, y)[w] +D⊥1,2(θ, w)[w] + X⊥1,1(θ, y)[w]
+X⊥1,2(θ)[w,w] + term small of order three (1.54)

with

D⊥1,1(θ, y) := 〈a1(θ, y)〉x∂x , D⊥1,2(θ, w) := 〈A1(θ)[w]〉x∂x ,

X⊥1,1(θ, y)[w] := �⊥
N+1∑
k=1

Ta1,1−k (θ,y)∂
1−k
x w +R⊥N ,1(θ, y)[w] ,

X⊥1,2(θ)[w,w] := �⊥
N+1∑
k=1

TA1,1−k (θ)[w]∂1−kx w +R⊥N ,2(θ)[w,w] ,

where for any 1 ≤ k ≤ N +1, a1,1−k(θ, y) is small of order one andw �→ A1,1−k(θ)[w]
is a linear operator. Furthermore,R⊥N ,1(θ, y) is a smoothing linear operator andR⊥N ,2(θ)

is a smoothing bilinear operator. The term in (1.54), which is small of order three, is
the sum of a para-differential vector field of order one and a smoothing vector field. We
also show that the linear vector field X⊥1,1(θ, y)[w] in (1.54) satisfies the property (1.51),
i.e., [X⊥1,1(θ, y)] jj ∈ iR for any j ∈ S⊥, and that the Fourier multiplier D⊥1,1(θ, y) is
skew-adjoint. By iterating this procedure N + 2 times, one gets a vector field, which we
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denote by X4 = (X (θ)
4 , X (y)

4 , X⊥4 ) (cf. Proposition 6.1), with the following properties:

X (y)
4 is small of order three and X⊥4 (θ, y, w) has the form

i�⊥w +D⊥4,1(θ, y)[w] +D⊥4,2(θ, w)[w] +R⊥N ,1(θ, y)[w]
+R⊥N ,2(θ)[w,w] + term small of order three .

(1.55)

Here D⊥4,1(θ, y) and D⊥4,2(θ, w) are Fourier multipliers of the form

D⊥4,1(θ, y) =
N+1∑
k=0

λ1−k(θ, y)∂1−kx , D⊥4,2(θ, w) :=
N+1∑
k=0

�⊥1−k(θ)[w]∂1−kx , (1.56)

where for any 0 ≤ k ≤ N + 1, λ1−k(θ, y) ∈ R is small of order one and w �→
�⊥1−k(θ)[w] ∈ R is a linear operator. The remainder R⊥N ,1(θ, y) is a smoothing linear

operator andR⊥N ,2(θ) is a smoothing bilinear operator. In addition, the Fourier multiplier

D⊥4,1(θ, y) is skew-adjoint. Moreover we show that

[R⊥N ,1(θ, y)] jj ∈ iR, ∀ j ∈ S⊥. (1.57)

Since the transformation �Y and the subsequent transformations constructed in the
interative procedure are not canonical, the linear operator D⊥4,2(θ, w) is not necessarily

skew-adjoint.However the leading order term�⊥1 (θ)[w]∂x ofD⊥4,2(θ, w) is skew-adjoint

since �⊥1 (θ)[w] ∈ R.
In Sect. 6.2 we design a normal form procedure to remove

N+1∑
k=1

�⊥1−k(θ)[w]∂1−kx (1.58)

fromD⊥4,2(θ, w) which requires to impose first Melnikov conditions on ω (cf. definition

(1.20) of �
(1)
γ ). We transform the vector field X4 (cf. (1.55)) by the means of the time

one flow map of a vector field, which in view of (1.58) is chosen to be of the form

(
0, 0,

N+1∑
k=1

�⊥1−k(θ)[w]∂1−kx w
)

(1.59)

where for any 1 ≤ k ≤ N + 1, the linear functional w �→ �⊥1−k(θ)[w] is a solution of

ω · ∂θ �⊥1−k(θ)[w] −�⊥1−k(θ)[i�⊥w] + �⊥1−k(θ)[w] = 0 . (1.60)

The latter equation can be solved if ω ∈ �
(1)
γ (first Melnikov conditions). The trans-

formed vector field is denoted by X5 = (X (θ)
5 , X (y)

5 , X⊥5 ). We show that X (y)
5 is small

of order three and that X⊥5 (θ, y, w) has the form

i�⊥w +D⊥5 (θ, y, w)[w] +R⊥N ,1(θ, y)[w] +R⊥N ,2(θ)[w,w]
+ term small of order three,

(1.61)
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where

D⊥5 (x) := D⊥4,1(θ, y) + �⊥1 (θ)[w]∂x (1.62)

and R⊥N ,1, R⊥N ,2 are as in (1.55). Clearly, the Fourier multiplier D⊥5 (x) is skew-adjoint.
Finally in Sect. 6.3 we normalize the term in the Taylor expansion of the θ -component
X (θ)
5 of X5, which is quadratic in w, and normalize the smoothing vector fields R⊥N ,1

and R⊥N ,2 in X⊥5 . Let us explain in more detail how to achieve the latter. We transform
the vector field X5 by the time one flow map generated by the vector field

(
0, 0, S⊥1 (θ, y)[w] + S⊥2 (θ)[w,w]) (1.63)

where S⊥1 (θ, y) is a smoothing linear operator and S⊥2 (θ) is a smoothing bilinear oper-
ator. They are chosen to be solutions of

− ω · ∂θ S⊥1 (θ, y) + [i�⊥, S⊥1 (θ, y)]lin +R⊥N ,1(θ, y) = Z⊥(y) (1.64)

and, respectively,

−ω · ∂θ S⊥2 (θ)[w,w] + i�⊥S⊥2 (θ)[w,w] − S⊥2 (θ)
([i�⊥w,w] + [w, i�⊥w])

+R⊥N ,2(θ)[w,w] = 0 , (1.65)

where

Z⊥(y) := diag j∈S⊥[R̂⊥N ,1(0, y)] jj , [R̂⊥N ,1(0, y)] jj :=
1

(2π)S+

∫
TS+
[R⊥N ,1(θ, y)] jj dθ.

(1.66)

Equation (1.64) can be solved by imposing the second Melnikov conditions on ω, i.e.,
ω ∈ �

(2)
γ , and Eq. (1.65) by imposing the third Melnikov conditions, ω ∈ �

(3)
γ -

see Lemma 6.1. Note that in Eq. (1.65), the right hand side vanishes, meaning that
the left hand side does not contain any resonant terms. Finally we get a vector field
X6 = (X (θ)

6 , X (y)
6 , X⊥6 ) where X (y)

6 is small of order three and X⊥6 (x) has the form

X⊥6 (x) = i�⊥w +D⊥5 (x)[w] + Z⊥(y)[w] + term small of order three . (1.67)

By the property (1.57) and the definition (1.66) of Z⊥(y), it follows that Z⊥(y) and
hence D⊥5 (x) + Z⊥(y) are skew-adjoint Fourier multiplier. Finally one shows that X⊥6
in (1.67) has the form stated in (1.47).

Related work. Prior to our work, no results have been obtained on the long time asymp-
totics of the solutions of Hamiltonian perturbations of integrable PDEs such as the
KdV or the nonlinear Schrödinger equation on T1 with initial data close to a periodic
multi-soliton of possibly large amplitude. For Hamiltonian perturbations of linear inte-
grable PDEs on T1, which satisfy nonresonance conditions, a by now standard normal
form method has been developed allowing to prove the stability of the equilibrium so-
lution u ≡ 0 of (Hamiltonian) perturbations for time intervals of large size—see e.g.
[2–4,7,13,17,18,23,37] and references therein. More recently, these techniques have
been refined so that in specific cases, such results can also be proved for Hamiltonian
perturbations of resonant linear integrable PDEs by approximating the perturbed equa-
tion by nonlinear integrable systems, satisfying nonresonance conditions—see [5,13]
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for Hamiltonian perturbations of the linear Schrödinger equation and [6] for such per-
turbations of the Airy equation as well as the linearized Benjamin-Ono equation. We
remark that for the Airy equation, the Hamiltonian perturbations considered in [6] are
of the form ∂x∇Pf (cf. (1.6)–(1.7)) with the density f (u(x)) not explicitly depending
on x and f (z) being analytic in a neighborhood of z = 0 in C.

Finally, we mention the recent paper [8] where it is proved by KAM methods that
many periodic multi-solitons persist under quasi-linear perturbations of the KdV equa-
tion. As in this paper, a key ingredient are the normal form coordinates, constructed in
[27].

2. Para-Differential Calculus

In this section we review some standard notions and results of the para-differential
calculus, needed throughout the paper. For details we refer to [37].

Webeginwith reviewing the notion of para-product. To this endweneed the following

Definition 2.1. A functionψ ∈ C∞(R×R) is said to be an admissible cut-off function,
if there exist 0 < ε′ < ε < 1 so that

supp(ψ) ⊆ {(η, ξ) ∈ R× R : |η| ≤ ε〈ξ 〉} ,
ψ(η, ξ) = 1,∀(η, ξ) ∈ R× R with |η| ≤ ε′〈ξ 〉,

and

|∂α
η ∂

β
ξ ψ(η, ξ)| �α,β 〈ξ 〉−α−β , ∀(α, β) ∈ Z≥0 × Z≥0

where by (1.21) 〈ξ 〉 = max{1, |ξ |}.
Given a cut-off function ψ as in Definition 2.1, the para-product Tau of a function

a ∈ H1(T1) with a function u ∈ Hs(T1), s ≥ 1, is defined as

Tau(x) := σa(x, D)u(x) =
∑
ξ∈Z

σa(x, ξ )̂u(ξ)ei2πξ x ,

σa(x, ξ) :=
∑
η∈Z

ψ(η, ξ )̂a(η)ei2πηx , (2.1)

where â(η), also denoted by aη, is the ηth Fourier coefficient of a,

â(η) =
∫ 1

0
a(x)e−i2πηxdx .

Lemma 2.1. For any a ∈ H1(T1) and s ≥ 1, Ta is in B(Hs(T1), Hs(T1)) and

‖Ta‖B(Hs ,Hs ) �s ‖a‖1 . (2.2)

Furthermore, for any s ≥ 1, the map H1(T1) → B(Hs(T1), Hs(T1)), a �→ Ta, is
linear.
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Given two functions a, u ∈ Hs(T1) with s ≥ 1, their product can be split as

au = Tau + Tua +R(B)(a, u) , (2.3)

where the remainder R(B)(a, u) is given by

R(B)(a, u)(x)=
∑

η,ξ∈Z
ω(η, ξ )̂a(η)̂u(ξ)ei2π(η+ξ)x , ω(η, ξ) :=1−ψ(η, ξ)− ψ(ξ, η) .

(2.4)

Note that the support supp(ω) of ω : Z× Z→ R satisfies

{
(η, ξ) ∈ Z

2 : ε〈ξ 〉 < |η| < 〈ξ 〉
ε

} ∪ {(0, 0)} ⊆ supp(ω)

⊆ {
(η, ξ) ∈ Z

2 : ε′〈ξ 〉 < |η| < 〈ξ 〉
ε′

} ∪ {(0, 0)} . (2.5)

Themain feature ofR(B)(a, u) is that it is a regularizing bilinear operator in the following
sense.

Lemma 2.2. For any s1, s2 ≥ 0,

R(B) : Hs1+1(T1)× Hs2(T1)→ Hs1+s2(T1), (a, u) �→ R(B)(a, u)

is a bilinear map, satisfying

‖R(B)(a, u)‖s1+s2 �s1,s2 ‖a‖s1+1‖u‖s2 ∀ a ∈ Hs1+1(T1), u ∈ Hs2(T1) . (2.6)

Next, we discuss the standard symbolic calculus for para-differential operators to the
extent needed in this paper. It suffices to consider operators of the form

Ta∂
m
x , a ∈ H1(T1), m ∈ Z , (2.7)

where we recall that for any m ∈ Z, the Fourier multiplier ∂mx is defined by

∂mx [ei2π j x ] := (i2π j)mei2π j x , ∀ j �= 0 , ∂mx [1] := 0 .

Alternatively, ∂mx can be written as the pseudo-differential operator Op((i2πξ)mχ(ξ))

with symbol (i2πξ)mχ(ξ) where χ : R→ R is a C∞−smooth cut-off function, satis-
fying

χ(ξ) = 1 , ∀ |ξ | ≥ 2

3
, χ(ξ) = 0 , ∀ |ξ | ≤ 1

3
. (2.8)

The symbol of an operator of the form (2.7) is given by

σa(x, ξ) =
∑
η∈Z

ψ(η, ξ )̂a(η)(i2πξ)mei2πηx .
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Lemma 2.3. Let a, b ∈ HN+3(T1) with N ∈ N. Then

Ta ◦ Tb = Tab +RN (a, b)

where for any s ≥ 0,

RN : HN+3(T1)× HN+3(T1)→ B(Hs(T1), H
s+N+1(T1)

)
, (a, b) �→ RN (a, b) ,

is a bilinear map, satisfying

‖RN (a, b)‖B(Hs ,Hs+N+1) �s,N ‖a‖N+3‖b‖N+3 , ∀ a, b ∈ HN+3(T1).

Lemma 2.4. Let m ∈ Z, N ∈ N. Then there exist an integer σN > N + m and combi-
natorial constants (Kn,m)1≤n≤N+m, with K1,m = m so that for any a ∈ HσN (T1)

∂mx ◦ Ta = Ta∂
m
x +

N+m∑
n=1

Kn,mT∂nx a∂
m−n
x +RN ,m(a) ,

where for any s ≥ 0, the map

RN ,m : HσN (T1)→ B(Hs(T1), H
s+N+1(T1)), a �→ RN ,m(a)

is linear and satisfies the estimate

‖RN ,m(a)‖B(Hs ,Hs+N+1) �s,m,N ‖a‖σN , ∀a ∈ HσN (T1),

and where we use the customary convention that the sum
∑N+m

n=1 equals 0 if N +m < 1.

Combining Lemmas 2.3 and 2.4 yields the following

Lemma 2.5. Let m,m′ ∈ Z, N ∈ N. Then there exists an integer σN > N + m so that
for any a, b ∈ HσN (T1),

Ta∂
m
x ◦ Tb∂m

′
x = Tab∂

m+m′
x +

N+m+m′∑
n=1

Kn,mTa∂nx b∂
m+m′−n
x +RN ,m,m′(a, b) , (2.9)

where Kn,m are the combinatorial constants of Lemma 2.4 and where for any s ≥ 0, the
map

RN ,m,m′ : HσN (T1)× HσN (T1)→ B(Hs(T1), Hs+N+1(T1)), (a, b) �→ RN ,m,m′(a, b)

is bilinear and satisfies the estimate

‖RN ,m,m′(a, b)‖B(Hs ,Hs+N+1) �s,m,N ‖a‖σN ‖b‖σN , ∀ a, b ∈ HσN (T1).

According to Lemma 2.3, in the case m = 0, a possible choice is σN = N + 3, Kn,0 = 0
for 1 ≤ n ≤ N + m′.

Using that K1,m = m, one infers from Lemma 2.5 an expansion of the commutator
[Ta∂mx , Tb∂m

′
x ]lin .
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Corollary 2.1 (Commutator expansion). Let m,m′ ∈ Z, N ∈ N. Then there exists
σN > N +m +m′ so that for any a, b ∈ HσN (T1), [Ta∂mx , Tb∂m

′
x ]lin has an expansion

of the form

Tma∂x b−m′b∂x a∂m+m′−1
x +

N+m+m′∑
n=2

(
Kn,mTa∂nx b

− Kn,m′Tb∂nx a
)
∂m+m′−n
x +RC

N ,m,m′ (a, b) (2.10)

where for any s ≥ 0, the map

RC
N ,m,m′ : HσN (T1)× HσN (T1)→ B(Hs(T1), H

s+N+1(T1)
)
, (a, b) �→ RC

N ,m,m′(a, b)

is bilinear and satisfies

‖RC
N ,m,m′(a, b)‖B(Hs ,Hs+N+1) �s,m,m′,N ‖a‖σN ‖b‖σN , ∀ a, b ∈ HσN (T1) .

According to Lemma 2.3, in the case m = 0,m′ = 0, [Ta , Tb]lin = RN (a, b) −
RN (b, a). Hence a possible choice is σN = N + 3, Kn,0 = 0 for 1 ≤ n ≤ N.

Finally, we discuss the adjoint T�a of Ta with respect to the standard L2−inner
product.

Lemma 2.6. Let a ∈ HN+1(T1) with N ∈ N. Then T�a = Ta + R�(a) where for any
s ≥ 0, the map

R� : HN+1(T1)→ B(Hs(T1), H
s+N+1(T1)

)
, a �→ R�(a) ,

is linear and for any a ∈ HN+1(T1) satisfies ‖R�(a)‖B(Hs ,Hs+N+1) �s,N ‖a‖N+1.

Combining Lemmas 2.4 and 2.6 yields the following

Corollary 2.2. Let m ∈ Z, N ∈ N. Then there exists an integer σN > N +m so that for
any a ∈ HσN (T1), (Ta∂mx )� admits the expansion

(Ta∂
m
x )� = (−1)mTa∂mx + (−1)m

N+m∑
n=1

Kn,mT∂nx a∂
m−n
x +R�,N ,m(a),

where Kn,m are the combinatorial constants of Lemma 2.4, and where for any s ≥ 0,
the map

R�,N ,m : HσN (T1)→ B(Hs(T1), H
s+N+1(T1)), a �→ R�,N ,m(a),

is linear and for any a ∈ HσN (T1) satisfies ‖R�,N ,m(a)‖B(Hs ,Hs+N+1) �s,N ‖a‖σN .

3. Para-Differential Vector Fields

In this section we introduce several classes of vector fields, compute the commutators
between vector fields from these classes and study their flows. As part of the proof of
Theorem 1.1 , these vector fields are used to transform equation (1.4) into normal form.
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3.1. Definitions.

Definition 3.1 (Para-differential vector fields). Let N , p ∈ N and m ∈ Z. A vector field
X⊥ in normal direction, defined on a subset of E and depending on the parameters ε and
μ, is said to be of class OB(m, N ), X⊥ ∈ OB(m, N ), if it is of the form

X⊥(x) = �⊥
N+m∑
k=0

Tam−k(x)∂
m−k
x w (3.1)

and has the following property: there are integers σN , sN ≥ 0 so that for any s ≥ sN there
exist 0 < δ ≡ δ(s, N ) < 1 and 0 < ε0 ≡ ε0(s, N ) < 1 so that for any 0 ≤ k ≤ N + m

am−k : Vs+σN (δ)× [0, ε0] → Hs(T1), (x, ε) �→ am−k(x) ≡ am−k(x, ε)

is C∞−smooth and together with each of its derivatives bounded. X⊥ is said to be of
class OB p(m, N ) if it is in OB(m, N ) and in addition, the functions am−k are small of
order p − 1.

Remark 3.1. (i) If N + m < 0 in (3.1), the sum is defined to be the zero vector field.
As a consequence, OB(m, N ) = {0} if N + m < 0. Throughout the paper, the same
convention holds for any sum of terms, indexed by an empty set, and for any of the
used classes of vector fields.

(ii) We point out that the bounds are uniform in the parameter μ, but no regularity as-
sumptions with respect toμ are required. Throughout the paper, the same convention
holds.

Definition 3.2 (Fourier multiplier vector fields). Let N , p ∈ N and m ∈ Z. A vector
fieldM⊥ in normal direction, defined on a subset of E and depending on the parameters
ε and μ, is said to be of class OF(m, N ), M⊥ ∈ OF(m, N ), if it is of the form

M⊥(x) =
N+m∑
k=0

λm−k(x)∂m−kx w (3.2)

and has the following property: there exist an integer σN ≥ 0, 0 < δ ≡ δ(N ) < 1, and
0 < ε0 ≡ ε0(N ) < 1 so that for any 0 ≤ k ≤ N + m,

λm−k : VσN (δ)× [0, ε0] → R, (x, ε) �→ λm−k(x) ≡ λm−k(x, ε)

is C∞-smooth and together with each of its derivatives bounded. M⊥ is said to be of
classOF p(m, N ) if it is inOF(m, N ) and in addition, the functions λm−k are small of
order p − 1.

Definition 3.3 (Smoothing vector fields). Let N , p ∈ N. A vector field R, defined on a
subset of E and depending on the parameters ε and μ, is said to be of classOS(N ),R ∈
OS(N ), if there exist sN ≥ 0 so that for any s ≥ sN , there exist 0 < δ ≡ δ(s, N ) < 1
and 0 < ε0 ≡ ε0(s, N ) < 1 with the property that

R : Vs(δ)× [0, ε0] → Es+N+1, (x, ε) �→ R(x) ≡ R(x, ε)

is C∞-smooth and together with each of its dervatives bounded.R is said to be of class
OS p(N ) if it is in OS(N ) and in addition is small of order p.
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Remark 3.2. For notational convenience, in the sequel, we refer to a function, which is
C∞-smooth and together with each of its derivatives bounded, as a function which is
C∞-smooth and bounded.

Next we introduce special classes of vector fields which are small of order 2 with
respect to y, w, ε.

Definition 3.4. Let N ∈ N and m ∈ Z.

(i) Assume that X⊥(x) = �⊥
∑m+N

k=0 Tam−k(x)∂
m−k
x w is of class OB2(m, N ).

(i1) X⊥ is said to be of class OB2
w(m, N ) if it is linear with respect to w. As a con-

sequence, for any 0 ≤ k ≤ m + N , the coefficient am−k is small of order one
and independent of w. More precisely, there is an integer sN ≥ 0 so that for any
s ≥ sN , there exist 0 < δ ≡ δ(s, N ) < 1 and ε0 ≡ ε0(s, N ) > 0 with the property
that

am−k : TS+×BS+(δ)× [0, ε0]→Hs(T1), (θ, y, ε) �→ am−k(θ, y) ≡ am−k(θ, y, ε)

isC∞-smooth and bounded (cf. Remark 3.2). In this case, we often write X⊥(θ, y)
[w] instead of X⊥(x) where

X⊥(θ, y) := �⊥
N+m∑
k=0

Tam−k (θ,y)∂
m−k
x .

(i2) X⊥ is said be of class OB2
ww(m, N ) if it is quadratic with respect to w and inde-

pendent of y. As a consequence, for any 0 ≤ k ≤ m + N , the coefficient am−k is
linear with respect to w and independent of y. More precisely, there are integers
sN ≥ 0, σN ≥ 0 so that for any s ≥ sN there exist 0 < δ ≡ δ(s, N ) < 1 and
0 < ε0 ≡ ε0(s, N ) < 1 with the property that

am−k : TS+×Hs+σN⊥ × [0, ε0] → Hs(T1), (θ, w, ε) �→ am−k(θ, w) ≡ Am−k(θ)[w] ,
with

Am−k : TS+ × [0, ε0] → B(Hs+σN⊥ (T1), H
s(T1)), (θ, ε) �→ Am−k(θ) ≡ Am−k(θ, ε)

being C∞-smooth and bounded. In this case we often write X⊥(θ, w)[w] instead
of X⊥(x) where

X⊥(θ, w) = �⊥
N+m∑
k=0

TAm−k (θ)[w]∂m−kx .

(ii) Assume that M⊥(x) =∑N+m
k=0 λm−k(x)∂m−kx w is of class OF2(m, N ).

(ii1) M⊥ is said to be of class OF2
w(m, N ) if it is linear with respect to w. More

precisely, there exist 0 < δ ≡ δ(N ) < 1 and 0 < ε0 ≡ ε0(N ) < 1 with the
property that for any 0 ≤ k ≤ m + N ,

λm−k : TS+ × BS+(δ)× [0, ε0] → R, (θ, y, ε) �→ λm−k(θ, y) ≡ λm−k(θ, y, ε)

is C∞-smooth and bounded.
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(ii2) M⊥ is said to be of class OF2
ww(m, N ) if it is quadratic with respect to w and

independent of y.More precisely, there exist an integerσN ≥ 0, 0 < ε0 ≡ ε0(N ) <

1, and for any 0 ≤ k ≤ m + N a C∞−smooth map

�m−k : TS+ × [0, ε0] → B(HσN⊥ (T1), R), θ �→ �m−k(θ) ≡ �m−k(θ, ε),

so that λm−k(x) = �m−k(θ)[w].
(iii) Assume that R is a smoothing vector field of class OS2(N ).

(iii1) R is said to be of class OS2
w(N ) if R(x) of the form R(θ, y)[w] with R having

the following property: there is an integer sN ≥ 0 so that for any s ≥ sN , there
exist 0 < δ ≡ δ(s, N ) < 1 and 0 < ε0 ≡ ε0(s, N ) < 1 with the property that

R : TS+ × BS+(δ)× [0, ε0] → B(Hs(T1), H
s+N+1(T1)), (θ, y, ε)

�→ R(θ, y) ≡ R(θ, y; ε)
is C∞-smooth, bounded, and small of order one. In the sequel, we will also write
R(θ, y)[w] for R(θ, y)[w].

(iii2) R is said to be of class OS2
ww(N ) if R is quadratic with respect to w and inde-

pendent of y. More precisely, R(x) is of the form R(θ)[w,w] with R having the
following property: there is an integer sN ≥ 0 so that for any s ≥ sN there exists
0 < ε0 ≡ ε0(s, N ) < 1 with the property that

R : TS+ × [0, ε0] → B2
(
Hs⊥(T1), H

s+N+1⊥ (T1)
)
, (θ, ε) �→ R(θ) ≡ R(θ, ε)

is C∞-smooth and bounded. In the sequel, we will often writeR(θ)[w,w] instead
of R(θ)[w,w].

Remark 3.3. For any N ∈ N and m ∈ Z, the following inclusions between the classes
of vector fields introduced above hold:

OF(m, N ) ⊆ OB(m, N ), OF p(m, N ) ⊆ OB p(m, N ) ,

OF2
w(m, N ) ⊆ OB2

w(m, N ), OF2
ww(m, N ) ⊆ OB2

ww(m, N ) .

These inclusions hold since by (2.1) the operator Tλ of para-multiplication with any
constant λ ∈ R satisfies �⊥Tλ = λ�⊥.

For notational convenience, we will often not distinguish between a vector field X
of the form (0, 0, X⊥) and its normal component X⊥. Given two vector fields X and Y ,
defined on a subset of E and depending on the parameters ε and μ, we write

X = Y +O1 + · · · +On

if for any 1 ≤ j ≤ n, there exists a vector field X j ∈ O j so that X = Y + X1 + · · ·+ Xn .
Here O j denotes any of the classes of vector fields introduced above.

3.2. Commutators.

Lemma 3.1 (Commutators I). Let N , p, and q be in N.

(i) For any smoothing vector fieldsR,Q ∈ OS(N ), the commutator [R,Q] is also in
OS(N ).

(ii) For any vector fieldsR∈OS p(N )andQ ∈ OSq(N ), onehas [R,Q] ∈ OS p+q−1(N )



On the Stability of Periodic Multi-Solitons of the KdV Equation 1895

Proof. The two items follow from Definition 3.3 (smoothing vector fields) and the
definition (1.34) of the commutator. ��
Lemma 3.2 (Commutators II). Let N , p, q ∈ N and m ∈ Z.
If X = (0, 0, X⊥) with X⊥ ∈ OB(m, N ) and R = (R(θ),R(y),R⊥) ∈ OS(N ), then

[(0, 0, X⊥), R] = (0, 0, C⊥[X,R]) +R[X,R] , C⊥[X,R] ∈ OB(m, N ) ,

R[X,R] ∈ OS(N − m). (3.3)

If X⊥ ∈ OB p(m, N ) andR ∈ OSq(N ), then C⊥[X,R] ∈ OB p+q−1(m, N ) andR[X,R] ∈
OS p+q−1(N − m).

Proof. By (3.1), X can be written as X (x) :=∑N+m
k=0 Xk(x) where

Xk(x) =
(
0, 0, �⊥Tam−k (x)∂m−kx w

)
, ∀ 0 ≤ k ≤ N + m .

For any 0 ≤ k ≤ N + m, the commutator [Xk,R](x) = dXk(x)[R(x)] − dR(x)[Xk(x)]
can be computed as

[Xk ,R](x) = (0, 0,�⊥Tam−k (x)∂m−kx R⊥(x))+(0, 0,�⊥Tdam−k (x)[R(x)]∂m−kx w)− dR(x)[Xk(x)],
where R = (R(θ),R(y),R⊥). Note that dR(x)[Xk(x)] ∈ OS(N − m) and that for any
0 ≤ k ≤ N + m,(

0, 0, �⊥Tam−x (x)∂m−kx R⊥(x)
) ∈ OS(N − (m − k)) ⊆ OS(N − m).

Formula (3.3) then follows by setting C⊥[X,R](x) := �⊥
∑m+N

k=0 Tdam−k(x)[R(x)]∂m−kx w,
and

R[X,R](x) :=
m+N∑
k=0

(
0, 0, �⊥Tam−k (x)∂m−kx R⊥(x)

)− dR(x)[Xk(x)] .

The remaining part of the lemma is proved by using similar arguments. ��
Lemma 3.3 (Commutators III). Let N , p, q ∈ N, m, m′ ∈ Z, and let m∗ := max{m +
m′ − 1, m, m′}. For any X⊥ ∈ OB(m, N ) and Y⊥ ∈ OB(m′, N ), one has

[X⊥,Y⊥] = C⊥[X⊥,Y⊥] +R⊥[X⊥,Y⊥] , C⊥[X⊥,Y⊥] ∈ OB(m∗, N ), R⊥[X⊥,Y⊥] ∈ OS(N ).

If in fact X⊥ ∈ OB p(m, N ) and Y⊥ ∈ OBq(m′, N ), then

C⊥[X⊥,Y⊥] ∈ OB p+q−1(m∗, N ), R⊥[X⊥,Y⊥] ∈ OS p+q−1(N ).

Proof. By formula (3.1), X⊥ ∈ OB(m, N ) and Y⊥ ∈ OB(m′, N ) are of the form

X⊥(x) = �⊥
N+m∑
k=0

Tam−k(x)∂
m−k
x w , Y⊥(x) = �⊥

N+m′∑
k=0

Tbm′−k (x)∂
m′−k
x w .

With X⊥ =∑N+m
k=0 X⊥k and Y⊥ =∑N+m′

j=0 Y⊥j one gets

[X⊥,Y⊥] =
N+m∑
k=0

N+m′∑
j=0
[X⊥k ,Y⊥j ]
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where

X⊥k (x) = �⊥Tam−k(x)∂m−kx w, ∀ 0 ≤ k ≤ N + m ,

Y⊥j (x) := �⊥Tbm′− j (x)∂
m′− j
x w, ∀ 0 ≤ j ≤ N + m′.

To compute [X⊥k ,Y⊥j ] for k, j in the corresponding ranges, for notational convenience
we let

X⊥∗ := X⊥k , Y⊥∗ := Y⊥j , a(x) := am−k(x), b(x) := bm′− j (x), n := m − k, n′ := m′ − j.

One computes

[X⊥∗ ,Y⊥∗ ] = [�⊥Ta∂nx , �⊥Tb∂n
′

x ]linw + �⊥Td⊥a(x)[Y⊥∗ (x)]∂nx w −�⊥Td⊥b(x)[X⊥∗ (x)]∂n
′

x w.

Using the formula

�⊥Ta∂nx ◦�⊥Tb∂n
′

x = �⊥ ◦
(
Ta∂

n
x ◦ Tb∂n

′
x + Ta∂

n
x ◦ (�⊥ − Id)Tb∂

n′
x

)
,

and the corresponding one for �⊥Tb∂n
′

x ◦�⊥Ta∂nx , one obtains [X⊥∗ , Y⊥∗ ] = C⊥1 +R⊥1
where

C⊥1 (x) := �⊥[Ta∂nx , Tb∂
n′
x ]linw + �⊥Td⊥a(x)[Y⊥∗ (x)]∂nx w −�⊥Td⊥b(x)[X⊥∗ (x)]∂n

′
x w

and

R⊥1 (x) := �⊥Ta(x)∂
n
x ◦ (�⊥ − Id)Tb(x)∂

n′
x w − �⊥Tb(x)∂n

′
x ◦ (�⊥ − Id)Ta(x)∂

n
x w .

Since by assumption, there exist integers sN ≥ 0, σN ≥ 0, so that for any s ≥ sN
there is 0 < δ ≡ δ(s, N ) < 1 and 0 < ε0 ≡ ε0(s, N ) < 1 with the property that
a, b : Vs+σN (δ)× [0, ε0] → Hs(T1) are C∞-smooth and bounded, it then follows that

�⊥Td⊥a(x)[Y∗(x)]∂nx w ∈ OB(n, N ), �⊥Td⊥b(x)[X∗(x)]∂n
′

x w ∈ OB(n′, N ),

and, in view of Corollary 2.1, that

�⊥[Ta∂nx , Tb∂
n′
x ]linw = OB(n + n′ − 1, N ) +OS(N ) .

Furthermore, since �⊥− Id is a smoothing operator, one concludes thatR⊥1 ∈ OS(N ).
Altogether, we have proved that [X⊥∗ , Y⊥∗ ] is of the form C⊥[X⊥∗ , Y⊥∗ ] +R⊥[X⊥∗ , Y⊥∗ ] where

C⊥[X⊥∗ , Y⊥∗ ] ∈ OB(n∗, N ), n∗ = max{n + n′ − 1, n, n′} ≤ m∗ , R⊥[X⊥∗ , Y⊥∗ ] ∈ OS(N ).

If in fact X⊥∗ ∈ OB p(m, N ) and Y⊥∗ ∈ OBq(m′, N ), then a is small of order p − 1, b
is small of order q − 1 and it follows that

�⊥Td⊥a(x)[Y⊥∗ (x)]∂nx w ∈ OB p+q−1(n, N ), �⊥Td⊥b(x)[X⊥∗ (x)]∂n
′

x w ∈ OB p+q−1(n′, N ) ,

�⊥[Ta∂nx , Tb∂
n′
x ]linw = OB p+q−1(n + n′ − 1, N ) +OS p+q−1(N ) , R⊥1 ∈ OS p+q−1(N ) .

One then infers that C⊥[X⊥∗ , Y⊥∗ ] ∈ OB p+q−1(n∗, N ) and R⊥[X⊥∗ , Y⊥∗ ] ∈ OS p+q−1(N ). ��
Lemma 3.4 (Commutators IV). Let N , p, q ∈ N, m, m′ ∈ Z, and let m∗ := max{m +
m′ − 1, m, m′}.



On the Stability of Periodic Multi-Solitons of the KdV Equation 1897

(i) For any M⊥ ∈ OF(m, N ) and M′⊥ ∈ OF(m′, N )

[M⊥, M′⊥] ∈ OF(
m ∨ m′, N

)
.

If in fact M⊥ ∈ OF p(m, N ) and M′⊥ ∈ OFq(m′, N ), then [M⊥,M′⊥] ∈
OF p+q−1(m ∨ m′, N ).

(ii) For any X⊥ ∈ OB(m, N ) and M⊥ ∈ OF(m′, N ),

[X⊥,M⊥]=C⊥[X⊥,M⊥] +R⊥[X⊥,M⊥], C⊥[X⊥,M⊥] ∈ OB(m∗, N ), R⊥[X⊥,M⊥] ∈ OS(N ).

If X⊥ ∈ OB p(m, N ) and M⊥ ∈ OFq(m′, N ), then

C⊥[X⊥,M⊥] ∈ OB p+q−1(m∗, N ), R⊥[X⊥,M⊥] ∈ OS p+q−1(N ).

(iii) For any M = (0, 0,M⊥) with M⊥ ∈ OF(m, N ) and R = (R(θ),R(y),R⊥) ∈
OS(N )

[M,R] = (0, 0, C⊥[M,R]) +R[M,R], C⊥[M,R] ∈ OF(m, N ), R[M,R] ∈ OS(N − m)

If M⊥ ∈ OF p(m, N ) and R ∈ OSq(N ), then C⊥[M,R] ∈ OF p+q−1(m, N ) and

R[M,R] ∈ OS p+q−1(N ).

Proof. Since the claims of the lemma follow by arguing as in the proofs of Lemma 3.2
and Lemma 3.3, the details of the proofs are omitted. ��

3.3. Flows of para-differential vector fields. In this subsection we study the flow of
para-differential vector fields of the form Y = (0, 0, Y⊥) with

Y⊥(x) = �⊥Tam (x)∂
m
x w ∈ OB p(m, N ), N , p ≥ 1 , m ≤ 0 . (3.4)

By Definition 3.1, there are integers sN ≥ 0, σN ≥ 0 so that for any s ≥ sN there exist
0 < δ ≡ δ(s, N ) < 1 and 0 < ε0 ≡ ε0(s, N ) < 1 with the property that

am : Vs+σN (δ)× [0, ε0] → Hs(T1), (x, ε) �→ am(x) ≡ am(x, ε)

is C∞−smooth and bounded. In the sequel, we will often tacitly increase sN , σN and
decrease δ ≡ δ(s, N ), ε0 ≡ ε0(s, N ), whenever needed.

Denote by �Y (τ, ·) the flow associated with Y . By the standard ODE theorem in
Banach spaces, for any s ≥ sN , there exist 0 < δ ≡ δ(s, N ) < 1, and 0 < ε0 ≡
ε0(s, N ) δ, so that for any −1 ≤ τ ≤ 1,

�Y (τ, ·) ∈ C∞b
(Vs(δ)× [0, ε0], Vs(2δ)

)
. (3.5)

It then follows that for −1 ≤ τ ≤ 1 and x ∈ Vs(δ), one has �Y (−τ,�Y (τ, x)) = x.

Remark 3.4. For notational convenience, �Y (−τ, ·) is referred to as the inverse of
�Y (τ, ·) and we write�Y (τ, ·)−1 = �Y (−τ, ·). In particular,�Y (1, ·)−1 = �Y (−1, ·).
Using our convention of tacitly decreasing δ and ε0, if needed, �Y (τ, ·)−1 is defined
for (x, ε) ∈ Vs(δ)× [0, ε0]. More generally, a similar convention is used for diffeomor-
phisms between neighborhoods of T

S+ × 0× 0 in Es throughout the paper.
The following lemma provides a para-differential expansion of the flow �Y (τ, ·).
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Lemma 3.5. Let N, p ∈ Nandassume that the normal component Y⊥ ofY = (0, 0, Y⊥)

satisfies (3.4). Then for any −1 ≤ τ ≤ 1, �Y (τ, x) admits an expansion of the form

�Y (τ, x) = x +
(
0, 0, ϒ⊥(τ, x) +R⊥N (τ, x)

)
where

ϒ⊥(τ, x) = �⊥
N+m∑
k=0

Tbm−k (τ,x)∂
m−k
x w ∈ OB p(m, N ) , R⊥N (τ, x) ∈ OS2p−1(N ) .

Proof. The normal component �⊥Y (τ, x) of the flow �Y (τ, x) satisfies the integral equa-
tion

�⊥Y (τ, x) = w +
∫ τ

0
Y⊥(�Y (t, x)) dt , ∀ − 1 ≤ τ ≤ 1 . (3.6)

To solve it, we make the ansatz that �⊥Y (τ, x) admits an expansion of the form

�⊥Y (τ, x) = w + ϒ⊥(τ, x) +R⊥N (τ, x) , ϒ⊥(τ, x) = �⊥
N+m∑
k=0

Tbm−k(τ,x)∂
m−k
x w , (3.7)

with the property that there exist sN ≥ 0, σN ≥ 0 so that the following holds: for any
s ≥ sN , there exist 0 < δ ≡ δ(s, N ) < 1 and 0 < ε0 ≡ ε0(s, N ) < 1 so that for any
−1 ≤ τ ≤ 1 and 0 ≤ k ≤ N + m,

bm−k(τ, ·) ∈ C∞b
(Vs+σN (δ)× [0, ε0], Hs(T1)

)
, bm−k small of order p − 1 ,

R⊥N (τ, ·) ∈ OS p(N ) . (3.8)

To determine
(
bm−k

)
0≤k≤N+m andR⊥N , in terms of the coefficient am of Y⊥ in (3.4), we

compute the expansion of the right hand side of the Eq. (3.6) by substituting the ansatz
(3.7) into the integrand Y⊥(�Y (t, x)). In view of definition (3.4) of Y⊥, one gets for any
−1 ≤ t ≤ 1,

Y⊥(�Y (t, x)) = �⊥Tam(�Y (t,x))∂
m
x �⊥Y (t, x)

= �⊥Tam(�Y (t,x))∂
m
x

(
w + �⊥

N+m∑
k=0

Tbm−k(t,x)∂
m−k
x w +R⊥N (t, x)

)
.

(3.9)

Using that �⊥ − Id is a smoothing operator and that

�Y (τ, ·) ∈ C∞b
(Vs(δ)× [0, ε0], Vs(2δ)

)
one gets

�⊥Tam(�Y (t,x))∂
m
x (�⊥ − Id)

N+m∑
k=0

Tbm−k(t,x)∂
m−k
x w ∈ OS2p−1(N )

p≥1⊆ OS p(N ) ,

�⊥
N+m∑

k=N+1+2m

Tam (�Y (t,x))∂
m
x Tbm−k(t,x)∂

m−k
x w ∈ OS2p−1(N )

p≥1⊆ OS p(N )

(3.10)
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where we recall that m ≤ 0 and that by our convention, a sum of terms over an empty
index set equals 0. Moreover, by increasing sN , σN if needed, it follows that for any
s ≥ sN and−1 ≤ t ≤ 1, themap A(t, x) := �⊥Tam (�Y (t,x))∂

m
x satisfies (after decreasing

δ and ε0 if necessary)

A(t, ·) ∈ C∞b
(Vs+σN (δ)× [0, ε0], B(Hs+N+1⊥ (T1))

)
and hence in view of (3.8),

A(t, ·)[R⊥N (t, ·)] ∈ OS2p−1(N )
p≥1⊆ OS p(N ) . (3.11)

In view of (3.10)–(3.11), we rewrite (3.9) as

Y⊥(�Y (t, x)) = �⊥Tam (�Y (t,x))∂
m
x w + �⊥

∑N+2m
k=0 Tam (�Y (t,x))∂

m
x Tbm−k (t,x)∂

m−k
x w +OS p(N ).

(3.12)

Since am and bm−k are small of order p − 1 (cf. (3.8)), it follows from Lemma 2.5 that
for any 0 ≤ k ≤ N + 2m, the term Tam(�Y (t,x))∂

m
x Tbm−k(t,x)∂

m−k
x w has an expansion of

the form

Tam (�Y (t,x))bm−k (t,x)∂
2m−k
x w +

N+2m−k∑
j=1

K ( j,m)T
am (�Y (t,x))∂ j

x bm−k (t,x)
∂
2m−k− j
x w +OS2p−1(N )

(3.13)

with the constants K ( j,m) given as in Lemma 2.5, implying that

�⊥
N+2m∑
k=0

Tam(�Y (t,x))∂
m
x Tbm−k (t,x)∂

m−k
x w = �⊥

N+2m∑
k=0

Tam (�Y (t,x))bm−k(t,x)∂
2m−k
x w

+�⊥
N+2m∑
k=0

N+2m−k∑
j=1

K ( j,m)T
am(�Y (t,x))∂ j

x bm−k (t,x)
∂
2m−k− j
x w +OS2p−1(N )

= �⊥
N+2m∑
i=0

Tg2m−i (t,x)∂
2m−i
x w +OS2p−1(N ) , (3.14)

where g2m(t, x) = am(�Y (t, x))bm(t, x) and for any 1 ≤ i ≤ N + 2m,

g2m−i (t, x) = am(�Y (t, x))bm−i (t, x) +
i−1∑
k=1

K (i − k,m)am(�Y (t, x))∂ i−kx bm−k(t, x) .

(3.15)

Combining (3.6)–(3.15) then yields the following identity,

�⊥
N+m∑
k=0

Tbm−k (τ,x)∂
m−k
x w = �⊥

( ∫ τ

0
Tam (�Y (t,x))dt

)
∂mx w + �⊥

( ∫ τ

0
Tam (�Y (t,x))bm (t,x)dt

)
∂2mx w

+ �⊥
N+2m∑
i=1

( ∫ τ

0
Tg2m−i (t,x)dt

)
∂2m−ix w +OS2p−1(N ) .
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Let us first consider the case wherem ≤ −1. We then require that the coefficients bm−k ,
0 ≤ k ≤ N + m, satisfy the following system of equations,

bm(τ, x) =
∫ τ

0
am(�Y (t, x)) dt, bm−k(τ, x) = 0, ∀ 1 ≤ k ≤ |m| − 1,

b2m(τ, x) =
∫ τ

0
am(�Y (t, x))bm(t, x) dt,

bm−k(τ, x) =
∫ τ

0
gm−k(t, x) dt, ∀ |m| + 1 ≤ k ≤ N + 2m.

(3.16)

Since for any |m|+1 ≤ k ≤ N+2m, gm−k only depends on bm−k′ with k′ ≤ k+m ≤ k−1
(cf. (3.15)), the coefficients bm−k are determined inductively in terms of am . One then
verifies that the properties of the coefficients bm−k , stated in ansatz (3.8), are satisfied.
The remainder R⊥N then satisfies the following integral equation

R⊥N (τ, x) = Q⊥N (τ, x) +
∫ τ

0
A(t, x)[R⊥N (t, x)]dt , (3.17)

where Q⊥N (τ, ·) ∈ OS2p−1(N ) is given by the sum of the two terms in (3.10) and the
operator A(t, x) is defined in (3.11). By increasing sN if needed, it follows that for any
s ≥ sN ,

‖R⊥N (τ, x)‖s+N+1 ≤ sup
τ∈[−1,1]

‖Q⊥N (τ, x)‖s+N+1 +
∫ τ

0
‖A(t, x)‖B(Hs+N+1⊥ (T1))

‖R⊥N (t, x)‖s+N+1 dt

and hence by the Gronwall Lemma, one infers thatR⊥N satisfies

‖R⊥N (τ, x)‖s+N+1 �s,N exp
( ∫ 1

−1
‖A(t, x)‖B(Hs+N+1⊥ (T1))

dt
)

sup
t∈[−1,1]

‖Q⊥N (t, x)‖s+N+1 ,

implying that ‖R⊥N (τ, x)‖s+N+1 �s,N (ε + ‖y‖ + ‖w‖s)2p−1. Similar estimates hold for
the derivatives ofR⊥N . Altogether we have shown that R⊥N ∈ OS2p−1(N ).

Finally let us consider case m = 0. We then require that the coefficients b−k , 0 ≤
k ≤ N , satisfy the following system of equations,

b0(τ, x) =
∫ τ

0
a0(�Y (t, x)) dt +

∫ τ

0
a0(�Y (t, x))b0(t, x) dt,

b−k(τ, x) =
∫ τ

0
g−k(t, x) dt, ∀ 1 ≤ k ≤ N .

The solution b0 then reads b0(τ, x) = e
∫ τ
0 a0(�Y (t,x)) dt − 1. The remaining part of the

proof then follows as in the case m ≤ −1. ��
Lemma 3.6. Let N, p ∈ Nand let�Y (τ, x)denote theflowmapconsidered inLemma3.5,
corresponding to the vector field Y = (0, 0, Y⊥), with Y⊥(x) = �⊥Tam (x)∂

m
x w and

m ≤ 0, satisfying (3.4). Then for any−1 ≤ τ ≤ 1, d�Y (τ, x)−1 [̂x] admits an expansion
of the form

d�Y (τ, x)−1 [̂x] = x̂ +
(
0, 0, ϒ⊥(τ, x)[̂x] +R⊥N (τ, x)[̂x]) ,
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ϒ⊥(τ, x)[̂x] := �⊥
N+m∑
k=0

Tbm−k (τ,x)∂
m−k
x [ŵ] + �⊥

N+m∑
k=0

TBm−k (τ,x)[̂x]∂m−kx w (3.18)

with the following properties: there exist sN , σN ≥ N so that for any s ≥ sN , there
exist δ ≡ δ(s, N ) > 0 and 0 < ε0 ≡ ε0(s, N ) < 1 so that the following holds: for any
0 ≤ k ≤ N + m and −1 ≤ τ ≤ 1,

bm−k(τ, ·) ∈ C∞b (Vs+σN (δ)× [0, ε0], Hs(T1)),

Bm−k(τ, ·) ∈ C∞b
(Vs+σN (δ)× [0, ε0], B(Es+σN , Hs(T1))

)
,

R⊥N (τ, ·) ∈ C∞b
(Vs(δ)× [0, ε0], B(Hs(T1), H

s+N+1⊥ (T1))
)

with bm−k(τ, ·), Bm−k(τ, ·), andR⊥N (τ, ·) being small of order p−1, and the expansion
above holds for any x ∈ Vs+σN (δ) and x̂ ∈ Es+σN .

Proof. First we note that for any−1 ≤ τ ≤ 1, d�Y (τ, x)−1 = d�Y (−τ,�Y (τ, x)) and
that by Lemma 3.5,

�Y (τ, x) = x +
(
0, 0, �⊥

N+m∑
k=0

Tbm−k (τ,x;�Y )∂
m−k
x w +R⊥N (τ, x;�Y )

)

with bm−k(τ, ·;�Y ) ∈ C∞b
(Vs+σN (δ) × [0, ε0], Hs(T1)

)
being small of order p − 1

and R⊥N (τ, ·;�Y ) ∈ OS p(N ). To simplify notation, let b̃m−k(τ, x) := bm−k(τ, x;�Y )

and R̃⊥N (τ, x) := R⊥N (τ, x;�Y ). Then the normal component of d�Y (τ, x)−1 [̂x]− x̂ can
be computed as follows

�⊥
N+m∑
k=0

T̃bm−k(−τ,�Y (τ,x))∂
m−k
x ŵ + �⊥

N+m∑
k=0

Tdb̃m−k(−τ,�Y (τ,x))[̂x]∂
m−k
x �⊥Y (τ, x)

+dR̃⊥N (−τ,�Y (τ, x))[̂x] .
By expanding the terms Tdb̃m−k(−τ,�Y (τ,x))[̂x]∂m−kx �⊥Y (τ, x) with the help of Lemma 2.5,

one is led to define bm−k(τ, x), Bm−k(τ, x), andR⊥N (τ, x) with the claimed properties. ��
Combining Lemmas 3.5 and 3.6, one obtains an expansion of the pullback of various

types of vector fields by the time one flow map �Y (1, ·):
Lemma 3.7. Let N, p, q ∈ N and let �Y (1, x) denote the time one flow map, corre-
sponding to the vector field Y = (0, 0, Y⊥), with Y⊥(x) = �⊥Tam(x)∂

m
x w and m ≤ 0,

satisfying (3.4) (cf. Lemma 3.5). Then the following holds:

(i) For any X := (0, 0, X⊥) with X⊥ ∈ OBq(n, N ) and n ≥ 0, the pullback �∗Y X (x) =
d�Y (1, x)−1X (�Y (1, x)) of X by �Y (1, ·) admits an expansion of the form

�∗Y X (x) = (
0, 0, X⊥(x) + ϒ⊥(x) +R⊥N (x)

)

where ϒ⊥ ∈ OB p+q−1(n, N ) and R⊥N ∈ OS p+q−1(N ).
(ii) For any X in OSq(N ), the pullback �∗Y X of X by �Y (1, ·) admits an expansion of

the form

�∗Y X (x) = X (x) +
(
0, 0, ϒ⊥(x)

)
+RN (x)

where ϒ⊥ ∈ OB p+q−1(m, N ) and RN ∈ OS p+q−1(N ).
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Proof. We only prove item (i) since item (i i) can be proved by similar arguments. Since
by (1.36) with τ = 1

�∗Y X (x) = X (x) +
∫ 1

0
(d�Y (t, x))−1[X,Y ](�Y (t, x)) dt,

we analyze for any t ∈ [0, 1] the vector field
Z(t, x) := (d�Y (t, x))−1[X,Y ](�Y (t, x)). (3.19)

Recall that Y⊥(x) = �⊥Tam (x)∂
m
x w ∈ OB p(m, N ). Taking into account that m∗ =

max{n + m − 1,m, n} = n (since n ≥ 0 ≥ m), it follows from Lemma 3.3 that
[X,Y ] = (

0, 0, [X⊥,Y⊥]) satisfies
[X⊥, Y⊥] = C⊥[X⊥,Y⊥] +R⊥[X⊥,Y⊥], C⊥[X⊥,Y⊥] ∈ OB p+q−1(n, N ), R⊥[X⊥,Y⊥] ∈ OS p+q−1(N ).

By Definitions 3.1–3.3, and Lemma 3.5, Lemma 3.6, as well as Lemma 2.5, one obtains
∫ 1

0
Z(t, x) dt = (

0, 0, ϒ⊥(x) +R⊥N (x)
)

(3.20)

with ϒ⊥(x) ∈ OB p+q−1(n, N ) and R⊥N (x) ∈ OS p+q−1(N ). ��
Next we analyze the pullback �∗Y XN of the Hamiltonian vector field XN (x) withN

being the following Hamiltonian in normal form (cf. (4.15)),

N (x) := (ω + εω̂) · y + Q(y) +
1

2

〈
D−1⊥ �⊥w,w

〉
, ω ∈ �, ω̂ ∈ R

S+ , (3.21)

where the Fourier multipliers D−1⊥ and �⊥ ≡ �⊥(ω) are given by (1.42) and Q is
assumed to be a map in C∞b (BS+(δ) × [0, ε0], R) with Q(0) = 0 and ∇y Q(0) = 0.
Since ∂x D

−1
⊥ �⊥ = i�⊥, the vector field XN (x) then reads

XN (x) =
⎛
⎝−∇yN (x)
∇θN (x)

∂x∇⊥N (x)

⎞
⎠ =

⎛
⎝−ω − εω̂ −∇y Q(y)

0
i�⊥w

⎞
⎠ (3.22)

and its differential is given by

dXN (x) =
⎛
⎝0 −dy∇y Q(y) 0
0 0 0
0 0 i�⊥

⎞
⎠ . (3.23)

Note thatN (x) does not depend on θ , but only on y,w, and ε. For notational convenience,
we will often write N (y, w) instead of N (x). The following result on the expansion of
i�⊥ can be found in [27].

Lemma 3.8 ([27, Lemma C.7]). For any N ∈ N, the Fourier multiplier i�⊥ has an
expansion of the form

i�⊥ = −∂3x +
N∑

k=1
c−k∂−kx +R⊥N ,

where c−k ≡ c−k(ω) are real constants, depending only on the parameter ω ∈ �, and
R⊥N ≡ R⊥N (ω) is in B(Hs⊥(T1), Hs+N+1⊥ (T1)) for any s ∈ R.
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Lemma 3.9. Let XN be the vector field given by (3.22) and Y = (0, 0, Y⊥) be the
vector field with Y⊥(x) = �⊥Tam(x)∂

m
x w and m ≤ 0, satisfying (3.4) with p, N ∈ N.

Furthermore let �Y (1, x) be the time one flow map corresponding to the vector field Y
(cf. Lemma 3.5). Then the following holds:

(i) If in addition Y⊥(x) = �⊥Tam(x)∂
m
x w is in OB2

w(m, N ), hence am(x) ≡ am(θ, y)
independent ofw, and if 〈am(x)〉x = 0, then [XN ,Y ] is of the form (

0, 0, [XN ,Y ]⊥)
with [XN ,Y ]⊥ ∈ OB2(2 + m, N ) and admits an expansion of the form

[XN ,Y ]⊥(x) = �⊥T−3∂x am (x)∂
2+m
x w + C⊥(x) +R⊥N (x) +OB3(m, N ),

where C⊥(x) ∈ OB2
w(1+m, N ) andR⊥N (x) ∈ OS2

w(N ).Moreover C⊥(x) andR⊥N (x)

are of the form C⊥(x) = C⊥(θ, y)[w] and, respectively,R⊥N (x) = R⊥N (θ, y)[w], and
the diagonal matrix elements of C⊥(θ, y) and R⊥N (θ, y) vanish,

[C⊥(θ, y)] jj = 0, [R⊥N (θ, y)] jj = 0, ∀ j ∈ S⊥ .

(ii) If in addition Y⊥(x) is in OB2
ww(m, N ), hence am(x) of the form Am(θ)[w], then

[XN ,Y ](x) is of the form (0, 0, [X⊥N ,Y⊥](x)) with [XN ,Y ]⊥ ∈ OB2(2 + m, N )

and admits an expansion of the form

[XN ,Y ]⊥(x) = �⊥T−3∂x Am (θ)[w]∂2+mx w + C⊥(x) +R⊥N (x) +OB3(m, N ) ,

where C⊥(x) ∈ OB2
ww(1 + m, N ) and R⊥N (x) ∈ OS2

ww(N ).

Proof. (i) Since Y⊥(x) = �⊥Tam(x)∂
m
x w is inOB2

w(m, N ), am is independent of w and
for any s ≥ sN ,

am ∈ C∞b
(Vs+σN (δ)× [0, ε0], Hs(T1)

)
small of order one. (3.24)

For notational convenience, we write Y⊥(θ, y)[w] instead of Y⊥(x) (similarly as we
write am(θ, y) instead of am(x)). Then

[XN ,Y ](x) = dXN (y, w)[Y (x)] − dY (x)[XN (y, w)]
can be computed as

[XN ,Y ](x) (3.22),(3.23)=
⎛
⎝0 −dy(∇y Q(y)) 0
0 0 0
0 0 i�⊥

⎞
⎠
⎛
⎝ 0

0
Y⊥(x)

⎞
⎠

−
⎛
⎝ 0 0 0

0 0 0
∂θY⊥(x) ∂yY⊥(x) Y⊥(θ, y)

⎞
⎠
⎛
⎝−ω − εω̂ −∇y Q(y)

0
i�⊥w

⎞
⎠ =

⎛
⎝ 0

0
[XN ,Y ]⊥(x)

⎞
⎠

(3.25)

where

[XN , Y ]⊥(x) :=
(
[i�⊥, Y⊥(θ, y)]lin + (ω + εω̂) · ∂θ Y

⊥(θ, y) + ∇y Q(y) · ∂θ Y
⊥(θ, y)

)
[w]
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By (3.21), ∇y Q(y) is small of order one and hence

ω · ∂θ Y
⊥(θ, y)[w] = �⊥Tω·∂θam (θ,y)∂

m
x w ∈ OB2

w(m, N ) ,

εω̂ · ∂θ Y
⊥(θ, y)[w] = ε�⊥Tω̂·∂θam (θ,y)∂

m
x w ∈ OB3(m, N ) ,

∇y Q(y) · ∂θ Y
⊥(θ, y)[w] = �⊥T∇y Q(y)·∂θ am (θ,y)∂

m
x w ∈ OB3(m, N ) .

Furthermore by (3.24), Corollary 2.1, and Lemma 3.8, one sees that

[
i�⊥,Y⊥(θ, y)

]
linw = �⊥T−3∂x am (θ,y)∂

2+m
x w + C(1)(θ, y)[w] +R⊥N (θ, y)[w] ,

C(1)(θ, y)[w] ∈ OB2
w(1 + m, N ), R⊥N (θ, y)[w] ∈ OS2

w(N ) . (3.26)

Altogether we have shown that

[XN , Y ]⊥(x) = �⊥T−3∂x am (θ,y)∂
2+m
x w + C⊥(θ, y)[w] +R⊥N (θ, y)[w] +OB3(m, N ) ,

C⊥(θ, y)[w] := C(1)(θ, y)[w] + ω · ∂θY
⊥(θ, y)[w] ∈ OB2

w(1 + m, N ) .

For any j ∈ S⊥, the diagonal matrix element [ω · ∂θ Y⊥(θ, y)] jj vanishes,

[ω · ∂θ Y
⊥(θ, y)] jj = ω · ∂θ 〈am(θ, y)

〉
x (i2π j)m = 0,

since by assumption 〈am(θ, y)〉x = 0, and so does the diagonal matrix element[[i�⊥ , Y⊥(θ, y)]lin
] j
j , implying together with (3.26)

[C⊥(θ, y)] jj = 0, [R⊥N (θ, y)] jj = 0 , ∀ j ∈ S⊥ .

(i i) Since Y⊥(x) = �⊥Tam(x)∂
m
x w is inOB2

ww(m, N ), it follows fromDefinition 3.4 that
am(x) is of the form am(x) = Am(θ)[w] and that for any s ≥ sN ,

Am ∈ C∞b
(
T
S+ , B(Hs+σN⊥ (T1), H

s(T1)
)
. (3.27)

For notational convenience, wewrite am(θ, w) instead of am(x). Arguing as in (3.25),
one sees that [XN , Y ](x) = dXN (y, w)[Y (x)]−dY (x)[XN (y, w)] can be computed
as

[XN ,Y ](x) =
⎛
⎝0 −dy(∇y Q(y)) 0
0 0 0
0 0 i�⊥

⎞
⎠
⎛
⎝ 0

0
Y⊥(x)

⎞
⎠

−
⎛
⎝ 0 0 0

0 0 0
dθY⊥(x) 0 d⊥Y⊥(x)

⎞
⎠
⎛
⎝−ω − εω̂ −∇y Q(y)

0
i�⊥w

⎞
⎠ =

⎛
⎝ 0

0
[XN ,Y ]⊥(x)

⎞
⎠

(3.28)

where

[XN , Y ]⊥(x) = i�⊥[Y⊥(x)] − d⊥Y⊥(x)[i�⊥w] + (ω + εω̂) · ∂θ Y
⊥(x) + ∇y Q(y) · ∂θ Y

⊥(x) .
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Since by (3.21), ∇y Q(y) is small of order one, one infers that

ω · ∂θ Y
⊥(x) = �⊥Tω·∂θ Am (θ)[w]∂mx w ∈ OB2

ww(m, N ) ,

εω̂ · ∂θ Y
⊥(x) = ε�⊥Tω̂·∂θ Am (θ)[w]∂mx w ∈ OB3(m, N ) ,

∇y Q(y) · ∂θ Y
⊥(x) = �⊥T∇y Q(y)·∂θ Am (θ)[w]∂mx w ∈ OB3(m, N ) .

(3.29)

Furthermore, i�⊥[Y⊥(x)] − d⊥Y (x)[i�⊥w] can be computed as

i�⊥�⊥TAm (θ)[w]∂mx w −�⊥TAm (θ)[w]∂mx i�⊥w −�⊥TAm (θ)[i�⊥w]∂mx w

= �⊥
[
i�⊥ , TAm (θ)[w]∂mx

]
linw −�⊥TAm (θ)[i�⊥w]∂mx w .

(3.30)

By (3.27), Corollary 2.1, and Lemma 3.8 one has

�⊥TAm (θ)[i�⊥w]∂mx w ∈ OB2
ww(m, N ) ,

�⊥
[
i�⊥ , TAm (θ)[w]∂mx

]
linw = �⊥T−3∂x Am (θ)[w]∂2+mx w + C(1)(x) +R⊥N (x) +OB3(m, N ) ,

C(1)(x) ∈ OB2
ww(1 + m, N ) , R⊥N (x) ∈ OS2

ww(N ) . (3.31)

Altogether, the identities (3.29)–(3.31) yield

[XN , Y ]⊥(x) = �⊥T−3∂x Am (θ)[w]∂2+mx w + C⊥(x) +R⊥N (x) +OB3(m, N ) ,

C⊥(x) := C(1)(x) + �⊥Tω·∂θ Am (θ)[w]∂mx w −�⊥TAm (θ)[i�⊥w]∂mx w ∈ OB2
ww(1 + m, N )

and hence item (i i) is proved. ��
Lemma 3.10. Let XN be the vector field given by (3.22) and let Y (x) = (0, 0, Y⊥(x))
where Y⊥(x) = (

0, 0,Y⊥0 (x) + Y⊥1 (x)
)
and

Y⊥0 (x) ≡ Y⊥0 (θ, y)[w] = �⊥Tam(θ,y)∂
m
x w ∈ OB2

w(m, N ),

Y⊥1 (x) = �⊥TAm (θ)[w]∂mx w ∈ OB2
ww(m, N ), (3.32)

with N ∈ N and m ≤ 0. If in addition 〈am(θ, y)〉x = 0, then the pullback XN ,� ≡
�∗Y XN of the vector field XN by be the time one flow map �Y (1, ·) corresponding to
Y has an expansion of the form

XN ,�(x) = (− ω − εω̂ −∇y Q(y), 0, X⊥N ,�(x)
)

where

X⊥N ,�(x) = i�⊥w + �⊥T−3∂x (am(θ,y)+Am (θ)[w])∂2+mx w + C⊥0 (θ, y)[w] + C⊥1 (x)

+R⊥N ,0(θ, y)[w] +R⊥N ,1(x) +OB3(2 + m, N ) +OS3(N )

and C⊥0 (θ, y), R⊥N ,0(θ, y), and C⊥1 (x), R⊥N ,1(x) are given by Lemma 3.9. Hence these
terms satisfy

C⊥0 (θ, y)[w] ∈ OB2
w(1 + m, N ), R⊥N ,0(θ, y)[w] ∈ OS2

w(N ) ,

C⊥1 (x) ∈ OB2
ww(1 + m, N ), R⊥N ,1(x) ∈ OS2

ww(N ) ,

and the diagonal matrix elements of C⊥0 (θ, y) and R⊥N ,0(θ, y) vanish,

[C⊥0 (θ, y)] jj = 0, [R⊥N ,0(θ, y)] jj = 0, ∀ j ∈ S⊥ .
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Proof. By (1.36), XN ,� can be expanded as

XN ,� = �∗Y XN = XN + [XN ,Y ] + Z ,

Z(x) :=
∫ 1

0
(1− t)(d�Y (t, x))−1[[XN ,Y ],Y ](�Y (t, x)) dt.

ByLemma3.9, one has [XN ,Y ] = (
0, 0, [XN ,Y ]⊥)with [XN ,Y ]⊥ ∈ OB2(2+m, N )

given by

�⊥T−3∂x (am(θ,y)+Am (θ)[w])∂2+mx w + C⊥0 (θ, y)[w]
+R⊥N ,0(θ, y)[w] + C⊥1 (x) +R⊥N ,1(x) +OB3(m, N ) , (3.33)

where C⊥0 (θ, y), R⊥N ,0(θ, y), and C⊥1 (x), R⊥N ,1(x) are given as in Lemma 3.9. In partic-

ular, the diagonal matrix elements of C⊥0 (θ, y) andR⊥N ,0(θ, y) vanish. Furthermore, by
Lemmata 3.2, 3.3, one infers that

[[XN , Y ], Y ](x) = (
0, 0, C⊥2 (x) +R⊥N ,2(x)

)
, C⊥2 ∈ OB2(2 + m, N ), R⊥N ,2 ∈ OS3(N ),

(3.34)

and hence concludes by Lemma 3.7 that

Z(x) = (
0, 0, C⊥3 (x) +R⊥N ,3(x)

)
, C⊥3 ∈ OB3(2 + m, N ), R⊥N ,3 ∈ OS3(N ) . (3.35)

The claimed statement then follows by (3.33)–(3.35). ��

3.4. Flows of Fourier multiplier vector fields and smoothing vector fields. In this sub-
section we discuss additional properties of Fourier multiplier vector fields and smooth
vector fields and their flows, needed in Sect. 6.2.

We begin by considering the flows corresponding to Fourier multiplier vector fields.
LetM be a vector field of the form (0, 0,M⊥) withM⊥ ∈ OF p(0, N ) and N , p ∈ N

(cf.Definition3.2). ThenM⊥(x)has an expansionof the formM⊥(x)=∑N
k=0 λ−k(x)∂−kx

w with the property that there exist σN ≥ 0, 0 < δ ≡ δ(N ) < 1, and 0 < ε0 ≡ ε0(N ) <

1, so that for any 0 ≤ k ≤ N ,

λ−k : VσN (δ)× [0, ε0] → R, (x, ε) �→ λm−k(x) ≡ λ−k(x, ε)

is C∞-smooth and bounded. We denote by �M(τ, ·) the flow corresponding to the
vector field M. By the standard ODE theorem in Banach spaces, there exist sN ≥ 0 so
that for any s ≥ sN , there exist 0 < δ ≡ δ(s, N ) < 1, and 0 < ε0 ≡ ε0(s, N )  δ, so
that

�M(τ, ·) ∈ C∞b
(Vs(δ)× [0, ε0], Vs(2δ)

)
, ∀ − 1 ≤ τ ≤ 1 .

The following lemma can be proved arguing as in the proof of Lemma 3.5 (actually, the
proof is simpler).
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Lemma 3.11. For any τ ∈ [−1, 1], the flow map �M(τ, ·) admits an expansion of the
form

�M(τ, x) = x + (0, 0, ϒ⊥(τ, x) +R⊥N (τ, x))

where ϒ⊥(τ, ·) ∈ OF p(0, N ) and R⊥N ∈ OS2p−1(N ).

The following lemma can be proved arguing as in the proof of Lemma 3.6.

Lemma 3.12. Let �M(τ, x) denote the flow map considered in Lemma 3.11, corre-
sponding to the vector field M = (0, 0, M⊥) with M⊥ ∈ OF p(0, N ) and N , p ∈ N.
Then d�M(τ, x)−1 [̂x] admits an expansion of the form

d�M(τ, x)−1 [̂x] = x̂ +
(
0, 0, ϒ⊥(τ, x)[̂x] +R⊥N (τ, x)[̂x]) , (3.36)

ϒ⊥(τ, x)[̂x] :=
N∑

k=0
λ−k(τ, x)∂−kx ŵ +

N∑
k=0

η−k(τ, x)[̂x]∂−kx w ,

with the following properties: there exist sN , σN ≥ N so that for any s ≥ sN , there exist
0 < δ ≡ δ(s, N ) < 1 and 0 < ε0 ≡ ε0(s, N ) < 1 so that the following holds: for any
0 ≤ k ≤ N and −1 ≤ τ ≤ 1,

λ−k ∈ C∞b (VσN (δ)× [0, ε0], R), η−k ∈ C∞b
(VσN (δ)× [0, ε0], B(EσN , R)

)
,

R⊥N ∈ C∞b
(Vs(δ)× [0, ε0], B(Hs⊥(T1), H

s+N+1⊥ (T1))
)
,

and λ−k(τ, ·), η−k(τ, ·), and R⊥N (τ, ·) are small of order p − 1.

The following lemma can be proved arguing as in the proof of Lemma 3.7.

Lemma 3.13. Let �M(1, x) denote the time one flow map considered in Lemma 3.11,
corresponding to the vector field M = (0, 0, M⊥), with M⊥ ∈ OF p(0, N ) and N,
p ∈ N. Then the following holds:

(i) For any X := (0, 0, X⊥) with X⊥ ∈ OBq(n, N ) and q ≥ 1, n ≥ 0, the pullback
�∗MX of X by �M(1, ·) admits an expansion of the form

�∗MX (x) = (
0, 0, X⊥(x) + ϒ⊥(x) +R⊥N (x)

)
,

ϒ⊥ ∈ OB p+q−1(n, N ), R⊥N ∈ OS p+q−1(N ).

(ii) For any M1 =
(
0, 0,M⊥

1

)
with M⊥

1 ∈ OFq(n, N ) and q ≥ 1, n ≥ 0, the
pullback �∗MM1 of M1 by �M(1, ·) admits an expansion of the form

�∗MM1(x) =
(
0, 0,M⊥

1 (x) + ϒ⊥(x) +R⊥N (x)
)
,

ϒ⊥ ∈ OF p+q−1(n, N ), R⊥N ∈ OS p+q−1(N ).

(iii) For any X ∈ OSq(N ), the pullback �∗MX of X by�M(1, ·) admits an expansion
of the form

�∗MX (x) = X (x) +
(
0, 0, ϒ⊥(x)

)
+RN (x)

where ϒ⊥ ∈ OF p+q−1(0, N ) and RN ∈ OS p+q−1(N ).
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Next we considerM := (0, 0,M⊥)withM⊥ ∈ OF2
ww(0, N ) and N ∈ N (cf. Defi-

nition3.4-(i i2)), i.e.,M⊥(x) =M⊥(θ, w)[w]withM⊥(θ, w) =∑N
k=0 �−k(θ)[w]∂−kx

where, for some integer σN ≥ 0 and some 0 < ε0 ≡ ε0(N ) < 1,

�−k : TS+ × [0, ε0] → B(HσN⊥ (T1), R), θ �→ �−k(θ) ≡ �−k(θ, ε), 0 ≤ k ≤ N ,

(3.37)

are C∞−smooth. To obtain an expansion of the pullback �∗MXN of the vector field
XN , defined in (3.22), by�M(1, ·), we first need to compute the one of the commutator
[XN ,M].
Lemma 3.14. The commutator [XN ,M](x) admits an expansion of the form

[XN ,M](x) = (
0, 0, ω · ∂θ (M⊥(θ, w)[w])−M⊥(θ, i�⊥w)[w] +OF3(0, N )

)
.

Proof. By (3.37) the differential of M can be computed as

dM(x)[̂x] = (
0, 0, M⊥(θ, w)[ŵ] +M⊥(θ, ŵ)[w] + dθ

(M(θ, w)[w])[θ̂]) .

By (3.22), (3.23), the commutator

[XN ,M](x) = dXN (y, w)[M(x)] − dM(x)[XN (y, w)]
is given by

[XN ,M](x) = (
0, 0, i�⊥M⊥(θ, w)[w])

− (
0, 0, M⊥(θ, w)[i�⊥w] +M⊥(θ, i�⊥w)[w] − dθ

(M⊥(θ, w)[w])[ω + εω̂ + ∇y Q(y)])
= (

0, 0, [i�⊥,M⊥(θ, w)]linw −M⊥(θ, i�⊥w)[w]
+ (ω + εω̂ + ∇y Q(y)) · ∂θ

(M⊥(θ, w)[w])) .

Since M⊥(θ, w) and i�⊥ are both Fourier multipliers, the linear commutator [i�⊥,

M⊥(θ, w)]lin vanishes. The lemma then follows in view of the fact that

(εω̂ + ∇y Q(y)) · ∂θ

(M⊥(θ, w)[w])

=
N∑

k=0
(εω̂ + ∇y Q(y)) · ∂θ )(�−k(θ)[w])∂−kx [w]

∈ OF3(0, N ).

��
Lemma 3.15. The pullback �∗MXN of the vector field XN by �M(1, ·) withM given
by (3.37) admits an expansion of the form

�∗MXN (x) =
⎛
⎝ −ω − εω̂ − ∇y Q(y)

0
i�⊥w + ω · ∂θ (M⊥(θ, w)[w])−M⊥(θ, i�⊥w)[w] +OF3(0, N ) +OS3(N )

⎞
⎠ .
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Proof. We argue as in the proof of Lemma 3.10. By (1.36), �∗MXN can be expanded
as

�∗MXN = XN + [XN ,M] + Z ,

Z(x) :=
∫ 1

0
(1− τ)[d�M(τ, x)]−1[[XN ,M],M](�M(τ, x)) dτ .

The claimed statement then follows by applying Lemmata 3.4, 3.11, 3.12, 3.14. ��
Finally, we consider smoothing vector fields. Given a smoothing vector field Q ∈

OS p(N )with N , p ∈ N (cf. Definition 3.3), we denote by�Q(τ, ·) the flow correspond-
ing to the vector field Q. By the standard ODE theorem in Banach spaces, there exists
sN ≥ 0 so that for s ≥ sN , there exist 0 < δ ≡ δ(s, N ) < 1 and 0 < ε0 ≡ ε0(s, N ) δ,
so that

�Q(τ, ·) ∈ C∞b
(Vs(δ)× [0, ε0], Vs(2δ)

)
,

�Q(τ, ·)− Id small of order p, ∀ − 1 ≤ τ ≤ 1 . (3.38)

Lemma 3.16. Let Q ∈ OS p(N ) with N, p ∈ N. For any −1 ≤ τ ≤ 1, the following
holds.

(i) The flow map �Q(τ, ·) admits an expansion of the form

�Q(τ, x) = x +RN (τ, x), RN (τ, ·) ∈ OS p(N ).

(ii) The map d�S(τ, x)−1 admits an expansion of the form

d�Q(τ, x)−1 [̂x] = x̂ +RN (τ, x)[̂x]
where there exists sN ≥ 0 so that for any s ≥ sN there are 0 < δ ≡ δ(s, N ) < 1
and 0 < ε0 ≡ ε0(s, N ) < 1 such that

RN (τ, ·) ∈ C∞b
(Vs(δ)× [0, ε0], B(Es, Es+N+1)

)
, ∀ − 1 ≤ τ ≤ 1.

Proof. To prove item (i) one uses the Volterra integral equation (cf. (3.6)) and (3.38)
(cf. proof of Lemma 3.5). To prove item (i i), one argues as in the proof of Lemma 3.6,
using the identity d�Q(τ, x)−1 = d�Q(−τ,�Q(τ, x)), −1 ≤ τ ≤ 1 (cf. Remark 3.4).

��
Lemma 3.17. For any Q ∈ OS p(N ) with N, p ∈ N, the following holds:

(i) For any X := (0, 0, X⊥) with X⊥ ∈ OBq(m, N ) and m ∈ Z, q ∈ N, the pullback
�∗QX of X by �Q(1, ·) admits an expansion of the form

�∗QX (x) = (
0, 0, X⊥(x) + ϒ⊥(x) +R⊥N

)
, ϒ⊥ ∈ OB p+q−1(m, N ), R⊥N ∈ OS p+q−1(N ).

(ii) For any M := (0, 0,M⊥) with M⊥ ∈ OFq(m, N ) and m ∈ Z, q ∈ N, the
pullback �∗QM of M by �Q(1, ·) admits an expansion of the form

�∗QM(x) = (
0, 0,M⊥(x) + ϒ⊥(x) +R⊥N (x)

)
,

ϒ⊥ ∈ OF p+q−1(m, N ), R⊥N ∈ OS p+q−1(N ) .

(iii) For anyQ1 ∈ OSq(N ) with q ∈ N, the pullback �∗QQ1 ofQ1 by �Q(1, ·) admits
an expansion of the form �∗QQ1 = Q1 +OS p+q−1(N ).
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Proof. (i) By (1.36), �∗QX (x) can be expanded as

�∗QX (x) = X (x) + Z , Z :=
∫ 1

0
d�Q(t, x)−1[X,Q](�Q(t, x)) dt .

By applying Lemma 3.2, one gets that

[X,Q] = (
0, 0, ϒ⊥ +R⊥[X,Q]

)
, ϒ⊥ ∈ OB p+q−1(m, N ), R⊥[X,Q] ∈ OS p+q−1(N + m) .

Item (i) then follows by the definition of Z , the property (3.38), and Lemma 3.16. Items
(i i) and (i i i) can be proved similarly, using in addition Lemma 3.1 and Lemma 3.4. ��

We now consider a smoothing vector field Q ∈ OS(N ), N ∈ N, of the form Q :=
Q0 +Q1 where

Q0 := (0, 0,Q⊥0 ), Q⊥0 (x) ≡ Q⊥0 (θ, y)[w] ∈ OS2
w(N ),

Q1 := (F1, 0,Q⊥1 ) , Q⊥1 (x) ≡ Q⊥1 (θ)[w,w] ∈ OS2
ww(N ),

(3.39)

(cf. Definition 3.4(i i i) for the definitions of OS2
w(N ) and OS2

ww(N )) and where for
some σN ≥ 0 and 0 < ε0 ≡ ε0(N ) < 1, F1 has the form

F1(θ, w) := F1(θ)[w,w] , F1 ∈ C∞
(
T
S+ × [0, ε0], B2(H

σN⊥ (T1), R
S+)

)
,(3.40)

(cf. (1.39) for the definition B2(H
σN⊥ (T1), R

S+)). In the next lemma we compute an
expansion of �∗QXN where XN is the normal form vector field defined in (3.22).

Lemma 3.18. For Q = Q0 +Q1 as in (3.39), the following holds.

(i) The commutator [XN ,Q0] ∈ OS2(N − 3) has the form ϒ(1) +OS3(N ) where

ϒ(1)(x) =
(
0, 0,

([i�⊥, Q⊥0 (θ, y)]lin + ω · ∂θQ⊥0 (θ, y)
)[w]) .

(ii) The commutator [XN ,Q1] ∈ OS2(N − 3) has the form ϒ(2) +OS3(N ) where

ϒ(2)(x) =
⎛
⎝ ω · ∂θ F1(θ)[w, w] − F1(θ)[i�⊥w, w] − F1(θ)[w, i�⊥w]

0
i�⊥Q⊥1 (θ)[w, w] −Q⊥1 (θ)[i�⊥w, w] −Q⊥1 (θ)[w, i�⊥w] + ω · ∂θQ⊥1 (θ)[w, w]

⎞
⎠

(iii) The pullback �∗QXN is of the form XN +ϒ(1) +ϒ(2) +OS3(N ) with ϒ(1) given

by item (i) and ϒ(2) given by item (ii).

Proof. (i) Arguing as in theproof ofLemma3.9(i) (cf. (3.25)), one sees that [XN ,Q0](x)
is of the form

(
0, 0, [XN , Q0]⊥(x)

)
where

[XN ,Q0]⊥(x) =
([
i�⊥,Q⊥0 (θ, y)

]
lin + (ω + εω̂) · ∂θQ⊥0 (θ, y) + ∇y Q(y) · ∂θQ⊥0 (θ, y)

)
[w] .

One has

ω · ∂θQ⊥0 (θ, y)[w] ∈ OS2
w(N ), εω̂ · ∂θQ⊥0 (θ, y)[w] ∈ OS3(N ),

∇y Q(y) · ∂θQ⊥0 (θ, y)[w] ∈ OS3(N ),

and since i�⊥ is aFouriermultiplier of order three, it follows that
[
i�⊥,Q⊥0 (θ, y)

]
linw

∈ OS2
ww(N − 3). The claimed statement then follows.
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(i i) Arguing as in the proof of Lemma 3.9(i i) (cf. (3.28)), and using that F1(θ)[w,w]
and Q⊥1 (θ)[w,w] are quadratic forms with respect to w, one sees that Y :=
[XN ,Q1] is of the form Y = (Y (θ), 0, Y⊥) where

Y (θ)(x) = (ω + εω̂) · ∂θ F1(θ)[w,w]
−F1(θ)[i�⊥w,w] − F1(θ)[w, i�⊥w] + ∇y Q(y) · ∂θ F1(θ)[w,w]

Y⊥(x) = i�⊥Q⊥1 (θ)[w,w] −Q⊥1 (θ)[i�⊥w,w]
−Q⊥1 (θ)[w, i�⊥w] + (ω + εω̂) · ∂θQ⊥1 (θ)[w,w]
+∇y Q(y) · ∂θQ⊥1 (θ)[w,w] .

By (3.40), ω · ∂θ F1(θ)[w,w], F1(θ)[i�⊥w,w], and F1(θ)[w, i�⊥w] are smooth
functions and small of order two, whereas εω̂ · ∂θ F1(θ)[w,w] and ∇y Q(y) ·
∂θ F1(θ)[w,w] are smooth functions and small of order three. (Here we used
that by (3.21), ∇y Q(y) is small of order one.) Furthermore, by the definition of
Q⊥1 one has ω · ∂θQ⊥1 (θ)[w,w] ∈ OS2

ww(N ), whereas εω̂ · ∂θQ⊥1 (θ)[w,w] and
∇y Q(y) ·∂θQ⊥1 (θ)[w,w] are inOS3(N ). Finally, since i�⊥ is a Fourier multiplier
of order three,

i�⊥Q⊥1 (θ)[w,w] −Q⊥1 (θ)[i�⊥w,w] −Q⊥1 (θ)[w, i�⊥w] ∈ OS2
ww(N − 3) .

The claimed statement then follows.
(i i i) By (1.36), �∗QXN (x) can be expanded as

�∗QXN = XN + [XN ,Q] + Z , Z(x) :=
∫ 1

0
(1− t)d�Q(t, x)−1[[XN ,Q],Q](�(t, x)) dt .

By items (i) and (i i), the commutator [XN ,Q] is in OS2(N − 3), hence by
Lemma 3.1, [[XN ,Q],Q] ∈ OS3(N − 3). By applying Lemma 3.17-(i i i), one
then infers that Z ∈ OS3(N − 3). The claimed expansion then follows by items
(i) and (i i). ��

In Sect. 5, we use Hamiltonian vector fields XF , corresponding to Hamiltonians F ,
which are affine functions with respect to the normal component w. More precisely, F
is assumed to be of the form

F(x) := F0(θ, y) +
〈F1(θ, y) , w

〉
(3.41)

where

F0 ∈ C∞b
(
T
S+ × BS+(δ)× [0, ε0], R

)
,

F1 ∈ C∞b
(
T
S+ × BS+(δ)× [0, ε0], Hs⊥(T1)

)
, ∀s ≥ 0 .

(3.42)

The Hamiltonian vector field generated by the Hamiltonian F is given by

XF (x) = (− ∇θF(x), ∇yF(x), ∂xF1(θ, y)
)
. (3.43)

The following lemma can be easily deduced by (3.41)–(3.43).

Lemma 3.19. The vector field XF is a smoothing vector field of arbitrary order, i.e.,
XF ∈ OS(N ) for any N ∈ N. Moreover, if in addition F0 is small of order p and F1
is small of order q, then ∇θF is small of order min{p, q + 1}, ∇yF is small of order
min{p − 1, q} and ∂xF1 is small of order q.
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4. Reformulation of Theorem 1.1 and Normal Form Theorem

The goal of this section is to describe the normal form coordinates provided by [27,
Theorem 1.1], specifically constructed to analyze perturbations of the KdV equations
near finite gap solutions and then to express Eq. (1.4) with respect to these coordinates.
The main results of this section are Theorem 4.2, which reformulates Theorem 1.1 in
these novel coordinates, and Theorem 4.3 (Normal Form Theorem), which is the key
ingredient into the proof of Theorem 4.2.

We begin by rephrasing [27, Theorem 1.1] in a form, adapted to our needs. Without
further references, we use the notations introduced in Sect. 1.

Theorem 4.1. Let S+ ⊆ N be finite and � ⊂ R
S+
>0 be compact. Then for δ > 0 suffi-

ciently small with � + BS+(δ) ⊂ R
S+
>0 there exists a C∞- smooth family of canonical

diffeomorphisms

�μ : V(δ)→ �μ(V(δ)) ⊆ L2
0(T1) , x �→ q,

parametrized by μ ∈ �, with the property that for any μ ∈ �, �μ(x) satisfies

�μ(θ, y, 0) = �S+(θ, μ + y), ∀(θ, y, 0) ∈ V(δ) ,

and is compatible with the scale of Sobolev spaces Hs
0 (T1), s ∈ Z≥0 (meaning that

�μ

(V(δ) ∩ Es
) ⊆ Hs

0 (T1) and �μ : V(δ) ∩ Es → Hs
0 (T1) is a C∞-diffeomorphism

onto its image), so that the following holds:

(AE1) For any N ∈ N, μ ∈ �, and x = (θ, y, w) ∈ V(δ), �(x) ≡ �μ(x) has an
expansion of the form,

�(x) = �S+(θ, μ + y) + w +
N∑

k=1
a−k(x;�) ∂−kx w +RN (x;�) ,

where RN (θ, y, 0;�) = 0 and where for any s ∈ Z≥0 and 1 ≤ k ≤ N,

V(δ)→ Hs(T1), x �→ a−k(x;�), Vs(δ)→ Hs+N+1(T1), x �→ RN (x;�),

are C∞ maps (cf. (1.28) for the definition of Vs(δ)).
(AE2) For any x = (θ, y, w) ∈ V1(δ) and μ ∈ �, the transpose d�μ(x)� (with respect

to the standard inner products) of the differential d�μ(x) : E1→ H1
0 (T1) yields

a bounded operator d�(x)� ≡ d�μ(x)� : H1
0 (T1)→ E1. For any q̂ ∈ H1

0 (T1)

and any integer N ≥ 1, d�(x)�[̂q] admits an expansion of the form

d�(x)�[̂q] =
(
0, 0, �⊥q̂ + �⊥

N∑
k=1

a−k(x; d��)∂−kx q̂ + �⊥
N∑

k=1
(∂−kx w)A−k(x; d��)[̂q]

)

+RN (x; d��)[̂q]
where for any s ∈ N and 1 ≤ k ≤ N,

V1(δ)→ Hs(T1) , x �→ a−k(x; d��) , V1(δ)→ B(H1
0 (T1), H

s(T1)) , x �→ A−k(x; d��) ,

and

Vs(δ)→ B(Hs
0 (T1), Es+N+1), x �→ RN (x; d��) ,

are C∞-smooth, bounded maps.
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(AE3) For any μ ∈ �, the HamiltonianHkdv
μ := Hkdv ◦�μ : V1(δ)→ R is in normal

form up to order three. More precisely, for any x = (θ, y, w) ∈ V1(δ), the Taylor
expansion ofHkdv ≡ Hkdv

μ at (θ, 0, 0) with respect to y and w up to order three
reads

Hkdv(x) = e + ω · y + 1

2
�S+ [y] · y +

1

2

〈
D−1⊥ �⊥w,w

〉
+ Pkdv(x) , (4.1)

where e := Hkdv
μ (0, 0, 0) = Hkdv(�S+(0, μ)),

ω = (ωkdv
n (μ, 0))n∈S+ , �S+ := (∂I j ω

kdv
k (μ, 0)) j,k∈S+ ,

and for any w = ∑
n∈S⊥ wnei2πnx , D

−1
⊥ w := ∑

n∈S⊥ 1
2πnwnei2πnx , and (cf.

(1.18))

�⊥w :=
∑
n∈S⊥

�nwne
i2πnx , �n := ωkdv

n (μ, 0) , ∀n ∈ S⊥ . (4.2)

Furthermore, Pkdv : V1(δ)→ R is C∞-smooth, satisfies

|Pkdv(x)| � (|y| + ‖w‖1)3, ∀ x = (θ, y, w) ∈ V1(δ) , ∀μ ∈ � ,

and has the following property: for any integer N ≥ 1 there exists an integer
σN ≥ N (loss of regularity) so that ∇Pkdv(x)=(∇θPkdv(x),∇yPkdv(x),∇⊥
Pkdv(x)) admits an expansion of the form

∇Pkdv(x) = (
0, 0, �⊥

N∑
k=0

Ta−k(x;Pkdv) ∂−kx w
)
+RN (x;Pkdv),

where there exist integers sN > 0 and σN > 0 so that for any s ≥ sN and any
0 ≤ k ≤ N,

Vs+σN (δ)→ Hs(T1), x �→ a−k(x;Pkdv) , Vs∨σN (δ)→ Es+N+1, x �→ RN (x;Pkdv)

are C∞-smooth and satisfy for any θ ∈ T
S+
1 , μ ∈ �,

a−k(θ, 0, 0;Pkdv) = 0, RN (θ, 0, 0;Pkdv) = 0,

∂yRN (θ, 0, 0;Pkdv) = 0, d⊥RN (θ, 0, 0;Pkdv) = 0.

Here Tak(x;Pkdv) denotes the operator of para-multiplication with ak(x;Pkdv) (cf. Defi-
nition 2.1).

Remark 4.1. Since �−n = −�n for any n ∈ S⊥ (cf. (1.12), (1.18)), the Fourier multi-
plyer i�⊥ is a real operator. In view of the expansion (4.1) and the identity ∂x D−1 = i,
the component of the Hamiltonian vector fieldHkdv

μ in the normal direction is given by

∂x∇⊥Hkdv(x) = i�⊥w + ∂x∇⊥Pkdv(x) .

Next, we want to express Eq. (1.4) in the normal form coordinates provided by
Theorem 4.1. To this end we write the nonlinear vector field F(u) in the coordinates
(θ, y, z). Recall that F(u) = ∂x∇Pf (u) where Pf (u) := ∫ 1

0 f (x, u(x)) dx and f is
given by (1.7).
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Proposition 4.1. Let N ∈ N. Then there exist integers sN > 0, σN > 0 so that for any
perturbation Pf (u) = ∫ 1

0 f (x, u(x)) dx with f C∞-smooth, the following holds. For
any μ ∈ �, the gradient of

P f ≡ P f,μ := Pf ◦�μ : V1(δ)→ R (4.3)

admits an expansion of the form

∇P f (x) =
(
0, 0, �⊥

N∑
k=0

Ta−k(x;∇P f )∂
−k
x w

)
+RN (x; ∇P f ) ,

where for any s ≥ sN and for any 0 ≤ k ≤ N, the maps

Vs+σN (δ)→ Hs(T1), x �→ a−k(x; ∇P f ) , Vs(δ)→ Es+N+1, x �→ RN (x; ∇P f )

are C∞-smooth.

Proof. One has

∇Pf (u)(x) = ∂ζ f (x, u(x)) . (4.4)

By the Bony para-linearization formula (cf. [37, Section 5.2.3]) for the composition
operator, one gets that

∇Pf (u)(x) = ∂ζ f (x, u(x)) = T∂2ζ f (x,u(x))u +R f (u) (4.5)

where there exists sN > N (large) so that for any integer s ≥ sN , the map R f :
Hs(T1) → Hs+N+1(T1) is C∞-smooth. Note that R f (u) contains the zeroth order
term ∂ζ f (x, 0) of the Taylor expansion of ∂ζ f (x, ζ ) at ζ = 0. By Theorem 4.1-(AE2),
d�(x)�[̂q] has an expansion of the form

(
0, 0, �⊥[̂q] + �⊥

N∑
k=1

a−k(x; d��)∂−kx q̂ + �⊥
N∑

k=1
(∂−kx w)A−k(x; d��)[̂q]

)

+RN (x; d��)[̂q] , (4.6)

where the maps V(δ)→ Hs(T1), x �→ ak(x; d��),

V1(δ)→ B(H1
0 (T1), H

s(T1)), x �→ Ak(x; d��),

Vs(δ)→ B(Hs
0 (T1), Es+N+1), x �→ RN (x; d��),

areC∞-smooth, bounded maps. Using the expansion of�(x) provided by Theorem 4.1-
(AE1),

�(x) = �S+(θ, μ + y) + w +
N∑

k=1
a−k(x;�)∂−kx w +RN (x;�) (4.7)

together with the para-product formula (2.3) and Lemma 2.3, one obtains

(∇Pf )(�(x)) =
N∑

k=0
Ta−k(x;∇Pf ◦�)∂

−k
x w +RN (x; ∇Pf ◦�),

a0(x; ∇Pf ◦�) = ∂2ζ f (x, �(x)),

(4.8)
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where there exist integers σN ≥ 0 and sN ≥ 0 so that for any s ≥ sN and 0 ≤ k ≤ N ,
the maps

Vs+σN → Hs(T1), x �→ a−k(x; ∇Pf ◦�), Vs(δ)→ Es+N+1, x �→ RN (x; ∇Pf ◦�),

are C∞-smooth. The expansion of ∇P f (x) = d�(x)�(∇Pf )(�(x)) is then computed
by using the one of d�(x)�, provided by Theorem 4.1-(AE2). For any 1 ≤ k ≤ N , we
thus need to compute the expansion of the sum

N∑
k=1

a−k(x; d��)∂−kx ∇Pf (�(x)) + (∂−kx w)A−k(x; d��)[∇Pf (�(x))].

By (4.8) and using the para-product formula (2.3) one obtains

�⊥
N∑

k=1
a−k(x; d��)∂−kx ∇Pf (�(x)) + (∂−kx w)A−k(x; d��)[∇Pf (�(x))]

= �⊥
N∑

k=1

(
Ta−k(x;d��)∂

−k
x ∇Pf (�(x)) + T

∂−kx ∇Pf (�(x))a−k(x; d��)
)

+R(B)
(
a−k(x; d��), ∂−kx ∇Pf (�(x))

)

+ �⊥
N∑

k=1
TA−k (x;d��)[∇Pf (�(x))]∂−kx w + T

∂−kx w
A−k(x; d��)[∇Pf (�(x))]

+ �⊥
N∑

k=1
R(B)

(A−k(x; d��)[∇Pf (�(x))], ∂−kx w
)

= �⊥
N∑

k=1

(
Ta−k(x;d��)∂

−k
x ∇Pf (�(x)) + TA−k (x;d��)[∇Pf (�(x))]∂−kx w

)
+R(1)

N (x)

where

R(1)
N (x) := �⊥

N∑
k=1

T
∂−kx ∇Pf (�(x))a−k(x; d��) + T

∂−kx w
A−k(x; d��)[∇Pf (�(x))]

+ �⊥
N∑

k=1

(
R(B)

(
a−k(x; d��) , ∂−kx ∇Pf (�(x))

)

+R(B)
(A−k(x; d��)[∇Pf (�(x))] , ∂−kx w

))
.

(4.9)

By applying Theorem 4.1-(AE1),(AE2), and Lemma 2.2, one obtains, after increasing
sN if needed, that for any s ≥ sN , themapVs(δ)→ Es+N+1, x �→ R(1)

N (x) isC∞-smooth.
By the expansion given in (4.8) and by applying Lemma 2.5 (composition of para-
differential operators), one then gets the following identity for the normal component
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(∇P f )
⊥ of ∇P f ,

(∇P f )
⊥(x) = �⊥[∇Pf (�(x))] + �⊥

N∑
k=1

(
Ta−k(x;d��)∂

−k
x ∇Pf (�(x))

+ TA−k (x;d��)[∇Pf (�(x))]∂−kx w
)
+R(1)

N (x)

= �⊥
N∑

k=0
Ta−k(x;∇P f )∂

−k
x w +R(2)

N (x) , a0(x; ∇P f ) = ∂2ζ f (x, w(x)) ,

where there exist constants sN ≥ N and σN ≥ N so that for any s ≥ sN and any
0 ≤ k ≤ N , the maps

Vs+σN (δ)→ Hs(T1), x �→ a−k(x; ∇P f ), Vs(δ)→ Hs+N+1⊥ (T1), x �→ R(2)
N (x),

are C∞-smooth. Altogether we obtain

∇P f (x) = d�(x)�(∇Pf )(�(x)) = (
0, 0, �⊥

N∑
k=0

Ta−k(x;∇P f )∂
−k
x w

)
+RN (x; ∇P f ) ,

where

RN (x; ∇P f ) := (0, 0,R(2)
N (x)) +RN (x; d��)[∇Pf (�(x))].

One verifies in a straightforward way that RN (x; ∇P f ) has the stated properties. ��
Combining Theorem 4.1 and Proposition 4.1 together with Lemma 2.4 yields the

following corollary.

Corollary 4.1 (Expansion ofHμ). For any μ ∈ �,H ≡ Hμ = (Hkdv + εPf ) ◦�μ can
be written as

H(x) = e +N (x) + P(x), P(x) := Pkdv(x) + εP f (x), (4.10)

where e, N , and Pkdv are given by Theorem 4.1-(AE3) and P f by Proposition 4.1.
More precisely, e = Hkdv

μ (0, 0, 0) and for any x = (θ, y, w) ∈ V1(δ),

N (y, w) = ω · y + 1

2
�S+[y] · y +

1

2

〈
D−1⊥ �⊥w , w

〉
, (4.11)

with

D−1⊥ w(x) =
∑
j∈S⊥

1

2πn
wne

i2πnx , �⊥w(x) =
∑
n∈S⊥

�nwne
i2πnx . (4.12)

The perturbation P is of the form (cf. Proposition 4.1)

P(x) = εPL(x) + Pe(x) , PL(x) := P00(θ) + P10(θ) · y + 〈P01(θ) , w
〉

(4.13)
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with Pe, P00(θ), P10(θ), and P01(θ) having the following properties: there exist 0 <

δ < 1, 0 < ε0 < 1, and an integer σ > 0 so that

P00 ∈ C∞(TS+ , R), P10 ∈ C∞(TS+ , R
S+), P01 ∈ C∞(TS+ , Hs⊥(T1)), ∀s ≥ 0 ,

Pe ∈ C∞(Vσ (δ)× [0, ε0], R) small of order three,

XPe = (X (θ)

Pe
, X (y)

Pe
, X⊥Pe

) = (−∇yPe,∇θPe, ∂x∇⊥Pe) small of order two,

X⊥Pe
= ∂x∇⊥Pe = OB2(1, N ) +OS2(N ), ∀N ∈ N ,

(4.14)

(cf. Definition 3.1 and Definition 3.3 for the classes of vector fields OB2(1, N ) and
respectively, OS2(N )).

Remark 4.2. Since the constant e in (4.10) does not affect the Hamiltonian vector field
XH, by notational convenience, we will suppress it in the sequel. The same convention
will be used for any Hamiltonian under consideration.

We now reformulate Theorem 1.1 in the coordinates, provided by Theorem 4.1. By
Corollary 4.1, the one parameter family of HamiltoniansH ≡ Hμ = (Hkdv+εPf )◦�μ,
μ ∈ �, is given by

H(x) = N (x) + εPL(x) + Pe(x) (4.15)

withN defined by (4.11) andPL ,Pe by (4.13) (cf. Remark 4.2). Using that ∂x D
−1
⊥ �⊥ =

i�⊥, the Hamiltonian vector field XH =
(−∇yH,∇θH, ∂x∇⊥H

)
can be computed as

XH(x) =
⎛
⎝−ω −�S+ [y] − εP10(θ)−∇yPe(x)

ε∇θPL(x) + ∇θPe(x)
i�⊥w + ε∂xP01(θ) + ∂x∇⊥Pe(x)

⎞
⎠ (4.16)

and the corresponding Hamiltonian equations are

∂tθ = −ω −�S+ y − εP10(θ)−∇yPe(x),

∂t y = ε∇θPL(x) + ∇θPe(x),

∂tw = i�⊥w + ε∂xP01(θ) + ∂x∇⊥Pe(x).

(4.17)

Except for the measure estimate (1.23), Theorem 1.1 is an immediate consequence of
the following theorem. (We refer to Sect. 8 for a proof of (1.23).)

Theorem 4.2. Let f ∈ C∞(T1 ×R, R), S+ be a finite subset of N, τ be a number with
τ > |S+| (cf. (1.20)), and μ = μ(ω) with ω ∈ �γ , 0 < γ < 1. Then for any integer
s sufficiently large, there exists 0 < ε0 ≡ ε0(s, γ ) < 1 with the following properties:
for any 0 < ε ≤ ε0 there exists T ≡ Tε,s,γ = O(ε−2), so that for any initial data
x0 = (θ0, y0, w0) ∈ T

S+ × R
S+ × Hs⊥(T1), satisfying

|y0| , ‖w0‖s ≤ ε , (4.18)

there exists a unique solution t �→ x(t) = (θ(t), y(t), w(t)) of (4.17) with x(0) = x0
and

θ ∈ C1([−T, T ], T
S+), y ∈ C1([−T, T ], R

S+),

w ∈ C0([−T, T ], Hs⊥(T1)) ∩ C1([−T, T ], Hs−3
⊥ (T1)) .

In addition, the solution satisfies |y(t)| , ‖w(t)‖s �s,γ ε for any t ∈ [−T, T ].
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Theorem 4.2 is proved in Sect. 7. A key ingredient of its proof is the following result
on normal forms.

Theorem 4.3 (Normal Form Theorem). Let f ∈ C∞(T1 ×R, R), S+ be a finite subset
of N, τ be a number with τ > |S+| (cf. (1.20)), and μ = μ(ω) with ω ∈ �γ , 0 < γ < 1.
Then there exists σ∗ > 0 so that for any integer s ≥ σ∗ the following holds: there exist
0 < δ ≡ δ(s, γ ) < 1, 0 < ε0 ≡ ε0(s, γ )  δ, and C0 ≡ C0(s, γ ) > 1 with the
property that for any 0 < ε ≤ ε0 there exists an invertible map � with inverse �−1 (cf.
Remark 3.4),

�±1 ∈ C∞b (Vs(δ),Vs(C0δ)), �±1(x)− x small of order one , (4.19)

so that the pull back X = (X (θ), X (y), X⊥) := �∗XHμ
of the vector field XHμ

by �

has the form

X (θ)(x) =− ω − εω̂ + N(θ)(y, w) +O(θ)
3 (x) , X (y)(x) = O(y)

3 (x) ,

X⊥(x) = i�⊥w + D⊥(x)[w] + �⊥Ta(x)∂xw +R⊥(x) ,
(4.20)

where ω̂ ∈ R
S+ and

N(θ)∈C∞b
(
BS+(δ)×Bσ∗⊥ (δ)×[0, ε0], R

S+
)

small of order one (and independent of θ),

O(θ)
3 , O(y)

3 ∈ C∞b (Vσ∗(δ)× [0, ε0], R
S+) small of order three,

D⊥ ∈ C∞b
(Vσ∗(δ)× [0, ε0], B(Hs⊥(T1), H

s−1
⊥ (T1))

)
small of order one,

D⊥ Fourier multiplier of the form D⊥(x)[w] =
∑
j∈S⊥

d j (x)w j e
i2π j x with the properties

d j ∈ C∞b
(Vσ∗(δ)× [0, ε0], R

)
, ∀ j ∈ S⊥, D⊥ skew-adjoint: D⊥(x)� = −D⊥(x),

a ∈ C∞b
(Vs+σ∗(δ)× [0, ε0], Hs(T1)

)
small of order two,

R⊥ ∈ C∞b
(Vs(δ)× [0, ε0], Hs⊥(T1)

)
small of order three. (4.21)

The proof of Theorem 4.3 is given in Sect. 7. The transformation � is obtained as
the composition of several transformations, constructed in Sects. 5–6.

5. Smoothing Normal Form Steps

As part of the proof of Theorem 4.3, the aim of this section is to normalize terms in
the Taylor expansion of the Hamiltonian H (cf. (4.15)), which are affine with respect
to the normal coordinate w and homogeneous of order at most three with respect to
the coordinates y, w and the parameter ε (cf. Overview of the proof of Theorem 1.1 in
Sect. 1). The main result of this section is the following one.

Proposition 5.1. Let f ∈ C∞(T1 × R, R), S+ be a finite subset of N, τ be a number
with τ > |S+| (cf. (1.20)), and μ = μ(ω) with ω ∈ �γ , 0 < γ < 1. Then for any
N ∈ N, there exist integers sN > 0, σN > 0 so that for any s ≥ sN , there exist
0 < δ ≡ δ(s, γ, N ) < 1 and 0 < ε0 ≡ ε0(s, γ, N )  δ with the following properties:
for any 0 < ε ≤ ε0 there exists an invertible symplectic transformation � with inverse
�−1 so that

�±1 ∈ C∞b (Vs(δ)× [0, ε0],Vs(2δ)) , �±1(x)− x small of order one , (5.1)
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and so that the Hamiltonian H(3) := H ◦� (cf. (4.2)) has the form

H(3)(x) = N (3)(x) +K(x) , N (3)(x) := ω · y + εω̂ · y + 1

2

〈
D−1⊥ �⊥w , w

〉
+ Q(y) .

(5.2)

Here ω̂ ≡ ω̂(ε) ∈ R
S+ is an affine function of ε, Q(y) ≡ Q(y, ε) is small of order

two, a polynomial of degree three in y and an affine function of ε, and the components
of the Hamiltonian vector field XK = (X (θ)

K , X (y)
K , X⊥K) = (−∇yK, ∇θK, ∂x∇⊥K),

corresponding to the Hamiltonian K, satisfy the following properties: X (θ)

K (x) is of the

form ϒ
(θ)
2 (θ)[w,w] + ϒ

(θ)
3 (x) with

ϒ
(θ)
2 ∈ C∞b (TS+ , B2(H

σN⊥ (T1), R
S+)),

ϒ
(θ)
3 ∈ C∞b (VσN (δ)× [0, ε0], R

S+), small of order three,

and

X (y)
K ∈ C∞b (VσN (δ)× [0, ε0], R

S+), small of order three, X⊥K(x) = ϒ⊥(x) +R⊥N (x),

(5.3)

where

ϒ⊥ = OB2
w(1, N ) +OB2

ww(1, N ) +OB3(1, N ) , R⊥N = OS2
w(N ) +OS2

ww(N ) +OS3(N ) .

In the remaining part of this section we prove Proposition 5.1. The transformation
� is obtained as the composition �(1) ◦�(2) ◦�(3) of three symplectic transformations
�( j), 1 ≤ j ≤ 3.

Normalization of PL up to O(ε2).
The aim of this first step is to construct a symplectic transformation �(1) so that

PL(x)
(4.13)= ε

(P00(θ)+P10(θ)·y+〈P01(θ) , w〉),when expressed in the newcoordinates,
is in normal form up to order ε2.We construct�(1) as the time one flow of a Hamiltonian
flow corresponding to a Hamiltonian of the form

εF (1)(x) = εF (1)
00 (θ) + εF (1)

10 (θ) · y + ε〈F (1)
01 (θ) , w〉

where

F (1)
00 ∈ C∞

(
T
S+ , R

)
, F (1)

10 ∈ C∞
(
T
S+ , R

S+
)
, F (1)

01 ∈ C∞
(
T
S+ , Hn⊥(T1)

)
, ∀ n ≥ 0,

(5.4)

will be chosen to serve our needs. The Hamiltonian vector field corresponding to the
Hamiltonian εF (1)(x),

XεF (1) (x) =
(
− εF (1)

10 (θ), ε
(∇θF (1)

00 (θ) + ∇θF (1)
10 (θ) · y + ∇θ 〈F (1)

01 (θ) , w〉) , ε∂xF (1)
01 (θ)

)
,

is small of order one and by Lemma 3.19 arbitrarily smoothing. It means that XεF (1) ∈
OS1(N ) for any integer N ≥ 1 (cf. Definition 3.3). Denote by �(1)(τ, ·) ≡ �εF (1) (τ, ·)
the flow of XεF (1) . For any given N ∈ N, there exists an integer sN > 0 with the
property that for any s ≥ sN , there exist 0 < δ ≡ δ(s, γ, N ) < 1 and 0 < ε0 ≡
ε0(s, γ, N ) < 1 (small), so that �(1)(τ, ·) ∈ C∞b (Vs(δ) × [0, ε0],Vs(2δ)) for any
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−1 ≤ τ ≤ 1. The inverse of the time one flow map �(1) := �(1)(1, ·) is then given by
(�(1))−1 = �(1)(−1, ·) (cf. Remark 3.4) and by Lemma 3.16,

�(1)(τ, ·)(x)− x ∈ OS1(N ) , ∀ − 1 ≤ τ ≤ 1 . (5.5)

We now compute H(1) := H ◦ �(1) by separately expanding the terms appearing in
(4.13). By (1.33) (Lie expansion), (5.5) (properties of�(1)) and (1.32) (Poisson bracket)
one has

N ◦�(1) = N + ε{N , F (1)} + ε2
∫ 1

0
(1− τ){{N , F (1)} , F (1)} ◦�(1)(τ, ·) dτ ,

{N , F (1)} = ω · ∂θF (1)
00 (θ) +

(
ω · ∂θF (1)

10 (θ) + �S+[∇θF (1)
00 (θ)]) · y

+
〈(
ω · ∂θ + i�⊥

)F (1)
01 (θ), w

〉
+ (�S+ [y] · ∂θ )(F (1)

10 (θ) · y) + 〈(�S+ [y] · ∂θ )F (1)
01 (θ), w

〉
and by (1.33) (Lie expansion) and (4.14) (properties of Pe)

εPL ◦�(1) = εPL + ε2
∫ 1

0
{PL ,F (1)} ◦�(1)(τ, ·) dτ ,

Pe ◦�(1) C∞ − smooth, small of order three.

Altogether, one obtains

H(1) = N + ε
(
ω · ∂θF (1)

00 (θ) + P00(θ)
)
+ ε

(
ω · ∂θF (1)

10 (θ) + P10(θ) + �S+ [∇θF (1)
00 (θ)]) · y

+ε
〈(

ω · ∂θ + i�⊥
)F (1)

01 + P01 , w
〉
+ P(1) , (5.6)

P(1) := ε2
∫ 1
0 (1− τ){{N , F (1)} , F (1)} ◦�(1)(τ, ·) dτ + ε2

∫ 1
0 {PL ,F (1)} ◦�(1)(τ, ·) dτ

+ε(�S+ [y] · ∂θ )(F (1)
10 (θ) · y) + ε

〈
(�S+ [y] · ∂θ )F (1)

01 (θ), w
〉
+ Pe ◦�(1). (5.7)

Since the terms appearing in the second line of (5.7) are small of order three, the Hamil-
tonian P(1) admits an expansion of the form

P(1)(x) = ε2P(1)
00 (θ) + P(1)

e , (5.8)

where P(1)
00 ∈ C∞(TS+ , R) and P(1)

e is small of order three. In view of (5.6) and since

�S+[∇θF (1)
00 ] has zero average in θ , we consider the following system of homological

equations for F (1)
00 , F (1)

10 , F (1)
01 ,⎧⎪⎪⎨

⎪⎪⎩

ω · ∂θF (1)
00 + P00 = 〈P00〉θ ,

ω · ∂θF (1)
10 + P10 + �S+[∇θF (1)

00 ] = 〈P10〉θ ,(
ω · ∂θ + i�⊥

)F (1)
01 + P01 = 0 .

(5.9)

Since by assumption ω ∈ �γ , 0 < γ < 1, (cf. (1.19)), we can apply Lemmata B.1, B.2,

to conclude that the system (5.9) has a unique solution F (1)
00 ,F (1)

10 ,F (1)
01 satisfying (5.4)

and 〈F (1)
00 〉θ = 0, 〈F (1)

10 〉θ = 0. The Hamiltonian H(1), defined in (5.6), then reads

H(1) = N + εN̂1 + ε2P(1)
00 (θ) + P(1)

e , N̂1(y) := 〈P00〉θ + 〈P10〉θ · y . (5.10)
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Since P(1)
e is small of order three, its Hamiltonian vector field XP(1)

e
is small of order

two. For later use we discuss the normal component X⊥P(1)
e

of the vector field XP(1)
e
.

Since XεF (1) ∈ OS1(N ), and X⊥Pe
= OB2(1, N )+OS2(N ) (cf. (4.14)) it follows from

Lemma 3.17 that X⊥Pe◦�(1) = OB2(1, N )+OS2(N ). Arguing similarly for all the other

terms in the definition of P(1)
e (cf. (5.7), (5.8)) one can show that

X⊥P(1)
e
= ∂x∇⊥P(1)

e = OB2(1, N ) +OS2(N ). (5.11)

Normalization of ε2P(1)
00 (θ). The aim of this second step is to normalize the term

ε2P(1)
00 (θ) (small of order 2) in (5.10). To this end we construct a symplectic transfor-

mation �(2), given again by the time one flow of a Hamiltonian flow, corresponding to
a Hamiltonian of the form ε2F (2)(θ) with

F (2) ∈ C∞(TS+ , R) (5.12)

being a function to be determined. The Hamiltonian vector field corresponding to the
Hamiltonian ε2F (2)(θ),

Xε2F (2) (x) = (
0, ε2∇θF (2)(θ), 0

)
.

is small of order two and by Lemma 3.19 arbitrarily smoothing. It means that Xε2F (2) ∈
OS2(N ) for any integer N ≥ 1 (cf. Definition 3.3). Denote by�(2)(τ, ·) ≡ �ε2F (2) (τ, ·)
the flowof Xε2F (2) . For any given N ∈ N, there exists an integer sN > 0with the property
that for any s ≥ sN , there exist 0 < δ ≡ δ(s, γ, N ) < 1 and 0 < ε0 ≡ ε0(s, γ, N ) < 1
(small), so that �(2)(τ, ·) ∈ C∞b (Vs(δ) × [0, ε0],Vs(2δ)) for any −1 ≤ τ ≤ 1. The
inverse of the time one flow map �(2) := �(2)(1, ·) is then given by (�(2))−1 =
�(2)(−1, ·) (cf. Remark 3.4) and by Lemma 3.16,

�(2)(τ, ·)(x)− x ∈ OS2(N ) , ∀ − 1 ≤ τ ≤ 1 . (5.13)

We now compute H(2) := H(1) ◦�(2) by separately expanding the terms in (5.10). By
(1.33) (Lie expansion), (5.13) (properties of �(2)) and (1.32) (Poisson bracket) one has

N ◦�(2) = N + ε2{N , F (2)} + ε4
∫ 1

0
(1− τ){{N , F (2)} , F (2)} ◦�(2)(τ, ·) dτ

= N + ε2ω · ∂θF (2)(θ) + ε4
∫ 1

0
(1− τ){{N , F (2)} , F (2)} ◦�(2)(τ, ·) dτ ,

εN̂1 ◦�(2) = εN̂1 + ε3
∫ 1

0
{N̂1,F (2)} ◦�(2)(τ, ·) dτ ,

ε2P(1)
00 ◦�(2) = ε2P(1)

00 (θ) + ε4
∫ 1

0
{P(1)

00 ,F (2)} ◦�(2)(τ, ·) dτ

P(1)
e ◦�(2) C∞ − smooth, small of order three.

Altogether, one obtains

H(2) = H(1) ◦�(2) = N + εN̂1 + ε2
(
ω · ∂θF (2)(θ) + P(1)

00 (θ)
)
+ P(2) ,
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P(2) := ε4
∫ 1

0
(1− τ){{N , F (2)} , F (2)} ◦�(2)(τ, ·) dτ + ε3

∫ 1

0
{N̂1,F (2)} ◦�(2)(τ, ·) dτ

+ε4
∫ 1

0
{P(1)

00 ,F (2)} ◦�(2)(τ, ·) dτ + P(1)
e ◦�(2) . (5.14)

Since P(1)
e is C∞-smooth and small of order three, so is P(2). In view of the formula for

H(2) in (5.14) we consider the following homological equation for F (2),

ω · ∂θF (2)(θ) + P(1)
00 (θ) = 〈P(1)

00 〉θ . (5.15)

Since by assumption ω ∈ �γ , 0 < γ < 1, (cf. (1.19)), we can apply Lemmata B.1, B.2,
to conclude that (5.15) has a unique solution F (2) ∈ C∞(TS+ , R) with 〈F (2)〉θ = 0.
The Hamiltonian H(2) in (5.14) then reads

H(2) = N + εN̂2 + P(2) , N̂2 := N̂1 + ε〈P(1)
00 〉θ

(5.10)= 〈P00〉θ + 〈P10〉θ · y + ε〈P(1)
00 〉θ .

(5.16)

Since P(2) is small of order three, its Hamiltonian vector field XP(2) is small of order
two. For later use, we again discuss the normal component X⊥P(2) of the vector field

XP(2) . Since Xε2F (2) ∈ OS2(N ), and X⊥P(1)
e
= OB2(1, N ) + OS2(N ) (cf. (5.11)) it

follows from Lemma 3.17 that X⊥P(1)
e ◦�(2)

= OB2(1, N ) +OS2(N ). Arguing similarly

for all the other terms in P(2) (cf. (5.14) (5.7), (5.8), (5.10)) one shows that

X⊥P(2) = ∂x∇⊥P(2) = OB2(1, N ) +OS2(N ). (5.17)

Normalizationof termsaffine inw. The aimof this third step is to construct a symplectic
coordinate transformation �(3), normalizing the terms in the Taylor expansion of P(2)

(cf. (5.16)) with respect to y, w at (y, w) = (0, 0), which are homogeneous in y, w, ε

of order three, of degree at most one in w, and of degree at most two in ε. The Taylor
expansion of P(2) in y, w, ε up to order four reads

P(2)(x) = ε3P(2)
00 (θ) + ε2

(P(2)
10 (θ) · y + 〈P(2)

01 (θ), w〉)
+ ε

(P(2)
20 (θ)[y, y] + 〈P(2)

11 (θ)[y], w〉) + 〈P(2)
02 (θ, y)[w], w〉

+ P(2)
30 (θ)[y, y, y] + 〈P(2)

21 (θ)[y, y], w〉 + P(2)
03 (θ)[w,w,w] +O4(x),

where for any n ≥ 0,

P(2)
00 ∈ C∞(TS+ , R) , P(2)

10 ∈ C∞(TS+ , R
S+ ), P(2)

01 ∈ C∞(TS+ , Hn⊥(T1)),

P(2)
20 ∈ C∞(TS+ , B2(R

S+ )), P(2)
11 ∈ C∞

(
T
S+ , B(RS+ , Hn⊥(T1))

)
,

P(2)
30 ∈ C∞(TS+ , B3(R

S+ )) , P(2)
21 ∈ C∞(TS+ , B2(R

S+ , Hn⊥(T1))),

P(2)
03 ∈ C∞(TS+ , B3(H

n⊥(T1)), P(2)
02 ∈ C∞

(
T
S+ × R

S+ × R, B(Hn⊥(T1))
)
,

O4(x) C∞-smooth, small of order four.

(5.18)

Remark 5.1. In the above Taylor expansion of P(2), we combined the terms which are
of the order (0 2) and (1 2) in the variables y, w and for notational convenience, denoted
the combined term by 〈P(2)

02 (θ, y)[w], w〉. The map

P(2)
02 : (θ, y, ε) �→ P(2)

02 (θ, y) ≡ P(2)
02 (θ, y, ε)

is linear in y, ε.
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We split P(2) as P(2) = P(2)
1 + P(2)

2 +O4 where

P(2)
1 := ε2P(2)

10 (θ) · y + εP(2)
20 (θ)[y, y] + P(2)

30 (θ)[y, y, y]
+ ε2

〈P(2)
01 (θ), w

〉
+ ε

〈P(2)
11 (θ)[y], w〉 + 〈P(2)

21 (θ)[y, y], w〉
P(2)
2 := ε3P(2)

00 (θ) + 〈P(2)
02 (θ, y)[w], w〉 + P(2)

03 (θ)[w,w,w] .
(5.19)

Note that P(2)
1 is affine in w and that the Hamiltonian vector field corresponding to the

term ε3P(2)
00 (θ) is small of order three. The transformation �(3) is then defined as the

time one flow of the Hamiltonian vector field XF (3) with a HamiltonianF (3) of the form

F (3)(x) := ε2F (3)
10 (θ) · y + εF (3)

20 (θ)[y, y] + F (3)
30 (θ)[y, y, y]

+ ε2
〈F (3)

01 (θ), w
〉
+ ε

〈F (3)
11 (θ)[y], w〉 + 〈F (3)

21 (θ)[y, y], w〉 (5.20)

satisfying for any n ≥ 0,

F (3)
10 ∈ C∞(TS+ , R

S+), F (3)
20 ∈ C∞(TS+ ,B2(R

S+)),

F (3)
30 ∈ C∞(TS+ ,B3(R

S+)), F (3)
01 ∈ C∞(TS+ , Hn⊥(T1)),

F (3)
11 ∈ C∞(TS+ ,B(RS+ , Hn⊥(T1))), F (3)

21 ∈ C∞(TS+ ,B2(R
S+ , Hn⊥(T1))).

(5.21)

The functions F (3)
i j will be chosen according to our needs. By (5.20), (5.21), the Hamil-

tonian vector field XF (3) is small of order two and by Lemma 3.19 arbitrarily smoothing.
It means that XF (3) ∈ OS2(N ) for any integer N ≥ 1 (cf. Definition 3.3). Denote by
�(3)(τ, ·) ≡ �F (3) (τ, ·) the flow of XF (3) . For any given N ∈ N, there exists an integer
sN > 0 with the property that for any s ≥ sN , there exist 0 < δ ≡ δ(s, γ, N ) < 1 and
0 < ε0 ≡ ε0(s, γ, N ) < 1 (small), so that �(3)(τ, ·) ∈ C∞b (Vs(δ)×[0, ε0],Vs(2δ)) for
any −1 ≤ τ ≤ 1. The inverse of the time one flow map �(3) := �(3)(1, ·) is then given
by (�(3))−1 = �(3)(−1, ·) and by Lemma 3.16,

�(3)(τ, ·)(x)− x ∈ OS2(N ) , ∀ − 1 ≤ τ ≤ 1 . (5.22)

We now compute H(3) := H(2) ◦�(3) by expanding separately the terms in (5.16). By
(1.33) (Lie expansion), (5.22) (properties of �(3)), (5.19) (splitting of P(2)), (5.20)–
(5.21) (properties of F (3)), and (1.32) (Poisson bracket)

N ◦�(3) = N + {N , F (3)} +
∫ 1

0
(1− τ){{N ,F (3)},F (3)} ◦�(3)(τ, ·) dτ

can be expanded as

N ◦�(3) = N + ε2(ω · ∂θ )F (3)
10 (θ) · y + ε(ω · ∂θ )F (3)

20 (θ)[y, y] + (ω · ∂θ )F (3)
30 (θ)[y, y, y]

+ ε2
〈
(ω · ∂θ + i�⊥)F (3)

01 (θ), w
〉
+ ε

〈
(ω · ∂θ + i�⊥)F (3)

11 (θ)[y], w〉
+
〈
(ω · ∂θ + i�⊥)F (3)

21 (θ)[y, y], w〉

+ (�S+ [y] · ∂θ )F (3) +
∫ 1

0
(1− τ){{N ,F (3)},F (3)} ◦�(3)(τ, ·) dτ , (5.23)

N̂2 ◦�(3) = N̂2 +
∫ 1

0
{N̂2 , F (3)} ◦�(3)(τ, ·) dτ,
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P(2) ◦�(3) = P(2)
1 + P(2)

2 +
∫ 1

0
{P(2),F (3)} ◦�(3)(τ, ·) dτ .

Since P(2) (cf. (5.16)), F (3) (cf. (5.20)) are small of order three and in view of the
definition of N , N̂2 (cf. (5.16)), {{N , F (3)}, F (3)}, ε{N̂2,F (3)}, and {P(2),F (3)} are
small of order four. Hence the Hamiltonian H(3) takes the form

H(3) = N + εN̂2 + ε2
(
ω · ∂θF (3)

10 (θ) + P(2)
10 (θ)

)
· y + ε

(
ω · ∂θF (3)

20 (θ) + P(2)
20 (θ)

)
[y, y]

+
(
ω · ∂θF (3)

30 (θ) + P(2)
30 (θ)

)
[y, y, y] + ε2

〈
(ω · ∂θ + i�⊥)F (3)

01 (θ) + P(2)
01 (θ), w

〉

+ ε
〈
(ω · ∂θ + i�⊥)F (3)

11 (θ)[y] + P(2)
11 (θ)[y], w〉

+
〈
(ω · ∂θ + i�⊥)F (3)

21 (θ)[y, y] + P(2)
21 (θ)[y, y], w〉 + P(2)

2 +O4 (5.24)

where O4 comprises all the terms which are small of order four. In view of (5.24), we
consider the following system of homological equations for F (3)

i j ,

ω · ∂θF (3)
j0 (θ) + P(2)

j0 (θ) = 〈P(2)
j0

〉
θ
, 1 ≤ j ≤ 3,

(ω · ∂θ + i�⊥)F (3)
01 (θ) + P(2)

01 (θ) = 0 , (ω · ∂θ + i�⊥)F (3)
11 (θ) + P(2)

11 (θ) = 0 ,

(ω · ∂θ + i�⊥)F (3)
21 (θ) + P(2)

21 (θ) = 0. (5.25)

Since by assumption ω ∈ �γ , 0 < γ < 1 (cf. (1.19)), we can apply Lemmata B.1, B.2,

to conclude that the system (5.25) has a unique solution F (3)
i j , satisfying the properties

(5.21). The Hamiltonian H(3) in (5.24) then reads

H(3) = N (3) +K, N (3) := ω · y + εω̂ · y + 1

2

〈
D−1�⊥w , w

〉
+ Q(y) , K := P(2)

2 +O4 .

ω̂ := 〈P10〉θ + ε〈P(2)
10 〉θ , Q(y) := 1

2
�S+ y · y + ε〈P(2)

20 〉θ [y, y] + 〈P(2)
30 〉θ [y, y, y] .

(5.26)

Here we dropped the irrelevant constant term ε〈P00〉θ + ε2〈P(1)
00 〉θ from the Hamiltonan

H(3) (cf. Remark 4.2). By (5.19), (5.26), the components of the Hamiltonian vector field
XH(3) = (X (θ)

H(3) , X
(y)
H(3) , X

⊥
H(3) ) read

X (θ)

H(3) (x) = −ω − εω̂ −∇y Q(y)−∇yP(2)
2 (x)− ∇yO4(x) ,

X (y)
H(3) (x) = ∇θP(2)

2 (x) + ∇θO4(x) ,

X⊥H(3) (x) = i�⊥w + ∂x∇⊥P(2)
2 (x) + ∂x∇⊥O4(x) .

(5.27)

Since P(2)
2 is a C∞−smooth and small of order three and O4 is small of order four,

∇θP(2)
2 is small of order three and ∇θO4 is small of order four, implying that

X (y)
H(3) ∈ C∞b

(VσN (δ)× [0, ε0], R
S+
)

small of order three (5.28)

for some σN > 0. Towards X (θ)

H(3) , note that∇yO4 is small of order three and that∇yP(2)
2

(cf. (5.19)) is small of order two and has the additional property of being at least quadratic
with respect to w. Therefore

∇yP(2)
2 (x) + ∇yO4(x) = ϒ

(θ)
2 (θ)[w,w] + ϒ

(θ)
3 (x) , (5.29)
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where

ϒ
(θ)
2 ∈ C∞

(
T
S+ , B2(H

σN⊥ (T1), R
S+)

)
,

ϒ
(θ)
3 ∈ C∞

(VσN (δ)× [0, ε0], R
S+
)
small of order three

for some σN > 0. For later use, we discuss the normal component X⊥K of the vector

field XK. Since by (5.19), P(2)
2 = ε3P(2)

00 (θ) + 〈P(2)
02 (θ, y)[w], w〉 + P(2)

03 (θ)[w,w,w]
(cf. Remark 5.1) one infers that

X⊥K(x) = ∂x∇⊥P(2)
2 (x) + ∂x∇⊥O4(x) = 2∂xP(2)

02 (θ, y)[w] + ϒ⊥2 (θ)[w,w] + ϒ⊥3 (x)

(5.30)

where ϒ⊥3 (x) is small of order three. Since XF (3) ∈ OS2(N ) and ∂x∇⊥P(2)

=OB2(1, N )+OS2(N ) (cf. 5.16, 5.17) and in view of the definition of O4 (cf. (5.24))
it then follows from Lemma 3.17 that

∂xP(2)
02 (θ, y)[w] = OB2

w(1, N ) +OS2
w(1, N ) ,

ϒ⊥2 (θ)[w,w] = OB2
ww(1, N ) +OS2

ww(N ) , ϒ⊥3 (x) = OB3(1, N ) +OS3(N ) .

(5.31)

Proof of Proposition 5.1.. We define � := �(1) ◦ �(2) ◦ �(3) where �(1), �(2), �(3)

are the symplectic coordinate transformations, given in the paragraphs above. Using the
properties (5.5), (5.13), (5.22) of �(1), �(2), and �(3), respectively one shows that there
exists an integer sN > 0 with the property that for any s ≥ sN there exist 0 < δ ≡
δ(s, γ, N ) < 1 and 0 < ε0 ≡ ε0(s, γ, N ) < 1 so that (5.1) holds,

�±1 ∈ C∞b (Vs(δ)× [0, ε0], Vs(2δ)) , �±1(x)− x small of order one .

SinceK = P(2)
2 +O4, the remaining statements of Proposition 5.1 then follow by (5.28)

- (5.31). ��

6. Normalization Steps by Para-Differential Calculus

The goal of this section is to normalize terms in the vector field XK, which are linear
or quadratic in the variable w, where XK denotes the Hamiltonian vector field of the
Hamiltonian K of Proposition 5.1. This is achieved in three steps, described in the
following three subsections, by using para-differential calculus.

6.1. Normalization of terms linear or quadratic in w. The aim of this subsection is to
reduce to constant coefficients the terms in the normal component X⊥ ≡ X⊥H3

of the
vector field X ≡ XH3 , which are linear and quadratic in w. Recall that such a reduction

is needed since �
(3)
γ (cf. (1.20)) allows for a loss of derivatives in space.

By Proposition 5.1, X⊥ is of the form

X⊥(x) = X⊥H3
(x)

(5.3)= i�⊥w + X⊥K(x).

Since �⊥ is a diagonal Fourier multiplier with constant real coefficients (cf. (1.18),
(1.42)), it remains to normalize X⊥K(x) in the above sense.
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By Proposition 5.1, X⊥K(x) admits an expansion of the form

X⊥K(x) = X⊥1 (θ, y)[w] + X⊥2 (θ)[w,w] +OB3(1, N ) +OS3(1, N ) ,

X⊥1 (θ, y)[w] := ϒ⊥1 (θ, y)[w] +R⊥N ,1(θ, y)[w],
X⊥2 (θ)[w,w] := ϒ⊥2 (θ, w)[w] +R⊥N ,2(θ)[w,w] ,

(6.1)

where

ϒ⊥1 (θ, y)[w] = �⊥
N+1∑
k=0

Ta1−k (θ,y)∂
1−k
x w ∈ OB2

w(1, N ), R⊥N ,1(θ, y)[w] ∈ OS2
w(N ) ,

ϒ⊥2 (θ, w)[w] = �⊥
N+1∑
k=0

TA1−k (θ)[w]∂1−kx w ∈ OB2
ww(1, N ), R⊥N ,2(θ)[w,w] ∈ OS2

ww(N ) .

(6.2)

By Definition 3.4, for any given N ∈ N, there are integers sN , σN > 0 (large) with
the property that for any s ≥ sN there exist 0 < δ = δ(s, γ, N ) < 1 and 0 < ε0 ≡
ε0(s, γ, N ) < 1 so that for any 0 ≤ k ≤ N + 1

a1−k ∈ C∞b
(
T
S+ × BS+(δ)× [0, ε0], Hs(T1)

)
small of order one,

A1−k ∈ C∞
(
T
S+ × [0, ε0], B(Hs+σN⊥ (T1), H

s(T1))
)
.

(6.3)

Note that X⊥1 (θ, y)[w] is a vector field small of order 2 and linear in w, whereas
X⊥2 (θ)[w,w] is small of order 2, but quadratic inw. Since the vector field X⊥K is Hamil-
tonian, every term in the expansion (6.1), which is homogeneous in the coordinates y, w,
is a Hamiltonian vector field as well. In particular, X⊥1 (θ, y)[w] is such a vector field.

Preliminary analysis of the vector field X⊥1 (θ, y)[w]. Since X⊥1 (θ, y)[w] is a Hamil-
tonian vector field which is linear in w, (A.2) in Appendix A implies that the diagonal
operator

diag j∈S⊥[X⊥1 (θ, y)] jj (6.4)

is skew-adjoint,

[X⊥1 (θ, y)] jj = −[X⊥1 (θ, y)] jj , j ∈ S⊥ . (6.5)

Wewill show that the normal form transformations, constructed in this and the following
subsection, preserve this property of X⊥1 (θ, y)[w]. Since this is the only property of the
transformed vector field X⊥1 (θ, y)[w]which is needed in the energy estimates in Sect. 7
we can allow for normal form transformations, which are not necessarily symplectic, as
long as they preserve (6.5).

Our aim is to construct iteratively a coordinate transformation on Vs(δ) so that when
expressed in the new coordinates, the vector field X⊥1 (θ, y)[w] + X⊥2 (θ)[w,w] is again
of the form (6.2) and that the coefficients a1−k(θ, y) + A1−k(θ)[w], 0 ≤ k ≤ N + 1,
are independent of x . At the (n + 1)th step, n ≥ 0, we deal with a vector field Xn =
(X (θ)

n , X (y)
n , X⊥n ), defined as the pull back of X by the composition of the transformations

up to the nth step, of the form
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X (θ)
n (x) = −ω − εω̂ −∇y Q(y)− ϒ

(θ)
2 (θ)[w,w] +O(θ)

3 (x) , X (y)
n (x) = O(y)

3 (x) ,

X⊥n (x) = i�⊥w +D⊥n,1(θ, y)[w] +D⊥n,2(θ, w)[w] + X⊥n,1(θ, y)[w] + X⊥n,2(θ, w)[w]
+R⊥N ,1(θ, y)[w] +R⊥N ,2(θ, w)[w] +OB3(1, N ) +OS3(N )

(6.6)

where for notational convenience, we writeR⊥N , j ≡ R⊥n,N , j for j = 1, 2, and where

D⊥n,1(θ, y)[w] ∈ OF2
w(1, N ), D⊥n,2(θ, w)[w] ∈ OF2

ww(1, N ),

X⊥n,1(θ, y)[w] ∈ OB2
w(1− n, N ), X⊥n,2(θ, w)[w] ∈ OB2

ww(1− n, N )

R⊥N ,1(θ, y)[w] ∈ OS2
w(N ), R⊥N ,2(θ, w)[w] ∈ OS2

ww(N ) ,

O(θ)
3 ,O(y)

3 ∈ C∞b
(VσN (δ)× [0, ε0], R

S+
)
small of order three

(6.7)

for some σN > 0. Moreover

D⊥n,1(θ, y) = −D⊥n,1(θ, y)�, [X⊥n,1(θ, y)] jj = −[X⊥n,1(θ, y)] jj ,
[R⊥N ,1(θ, y)] jj = −[R⊥N ,1(θ, y)] jj , ∀ j ∈ S⊥.

(6.8)

Our goal at the (n+1)th step is to construct a transformation so that when expressed in the
new coordinates, the vector field X⊥n,1(θ, y)[w]+ X⊥n,2(θ, w)[w] is of order 1−(n+1) =
−n. Since X⊥n,1(θ, y)[w] ∈ OB2

w(1− n, N ) and X⊥n,2(θ, w)[w] ∈ OB2
ww(1− n, N ) we

can write

X⊥n,1(θ, y)[w] = �⊥Ta1−n(θ,y)∂
1−n
x w +OB2

w(−n, N ) ,

X⊥n,1(θ, w)[w] = �⊥TA1−n(θ)[w]∂1−nx w +OB2
ww(−n, N )

(6.9)

with the property that there are integers sN > 0, σN ≥ 0 so that for any s ≥ sN there
exist 0 < δ ≡ δ(s, γ, N ) < 1 and 0 < ε0 ≡ ε0(s, γ, N ) < 1 so that

a1−n ∈ C∞b
(
T
S+ × BS+(δ)× [0, ε0], Hs(T1)

)
small of order one,

A1−n ∈ C∞
(
T
S+ × [0, ε0], B(Hs+σN⊥ (T1), Hs(T1))

)
.

(6.10)

Hence we need to normalize the vector field �⊥Ta1−n(θ,y)+A1−n(θ)[w]∂1−nx w. In order to
achieve this, we consider a para-differential vector field of the form

Y⊥n (θ, y, w) = Y⊥n,1(θ, y)[w] + Y⊥n,2(θ, w)[w] ,
Y⊥n,1(θ, y)[w] := �⊥Tbn(θ,y)∂

−n−1
x w ∈ OB2

w(−n − 1, N ) ,

Y⊥n,2(θ, w)[w] := �⊥TBn(θ)[w]∂−n−1x w ∈ OB2
ww(−n − 1, N ) ,

(6.11)

and make the ansatz that bn(θ, y), Bn(θ)[w] are smooth functions (satisfying conditions
as in (6.10)) and

〈bn(θ, y)〉x = 0, 〈Bn(θ)[w]〉x = 0 .

To determine bn and Bn , we compute the pullback Xn+1 := �∗Yn Xn of Xn by the
time one flow map �Yn . corresponding to the vector field Yn . By Lemmata 3.7, 3.10,
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3.13 and the induction hypothesis (6.8), one infers that the components of Xn+1 =
(X (θ)

n+1, X
(y)
n+1, X

⊥
n+1) satisfy

X (θ)
n+1(x) = −ω − εω̂ −∇y Q(y)−ϒ

(θ)
2 (θ)[w,w] +O(θ)

3 (x) , X (y)
n+1(x) = O(y)

3 (x) ,

X⊥n+1(x) = i�⊥w +D⊥n,1(θ, y)[w] +D⊥n,2(θ, w)[w] + �⊥T−3∂x bn(θ,y)+a1−n(θ,y)∂
1−n
x w

+ �⊥T−3∂x Bn(θ)[w]+A1−n(θ)[w]∂1−nx w + X⊥n+1,1(θ, y)[w] +R⊥N ,1(θ, y)[w]
+ X⊥n+1,2(θ, w)[w] +R⊥N ,2(θ)[w,w] +OB3(1, N ) +OS3(N )

(6.12)

where

X⊥n+1,1(θ, y)[w] ∈ OB2
w(−n, N ), X⊥n+1,2(θ, w)[w] ∈ OB2

ww(−n, N )

R⊥N ,1(θ, y)[w] ∈ OS2
w(N ), R⊥N ,2(θ, w)[w] ∈ OS2

ww(N ) ,

O(θ)
3 ,O(y)

3 ∈ C∞b
(Vσ (δ)× [0, ε0], R

S+
)

small of order three

(6.13)

and the diagonal matrix elements of the operators X⊥n+1,1(θ, y), R⊥N ,1(θ, y) are purely
imaginary, namely

[X⊥n+1,1(θ, y)] jj , [R⊥N ,1(θ, y)] jj ∈ iR , ∀ j ∈ S⊥ . (6.14)

We then choose bn(θ, y) and Bn(θ)[w] to be solutions of
− 3∂xbn(θ, y) + a1−n(θ, y) = 〈a1−n(θ, y)〉x ,

− 3∂x Bn(θ)[w] + A1−n(θ)[w] = 〈A1−n(θ)[w]〉x .
(6.15)

More precisely, we define

bn(θ, y) := 1

3
∂−1x

(
a1−n(θ, y)− 〈a1−n(θ, y)〉x

)
,

Bn(θ)[w] := 1

3
∂−1x

(
A1−n(θ)[w] − 〈A1−n(θ)[w]〉x

)
.

(6.16)

Since �⊥T〈a1−n(θ,y)〉x ∂1−nx w = 〈a1−n(θ, y)〉x∂1−nx w and

�⊥T〈A1−n(θ)[w]〉x ∂1−nx w = 〈A1−n(θ)[w]〉x∂1−nx w

one infers from (6.10) that

D⊥n+1,1(θ, y)[w] := D⊥n,1(θ, y)[w] + 〈a1−n(θ, y)〉x∂1−nx w ∈ OF2
w(1, N ),

D⊥n+1,2(θ, w)[w] := D⊥n,2(θ, w)[w] + 〈A1−n(θ)[w]〉x∂1−nx w ∈ OF2
ww(1, N ) .

(6.17)

Since a1−n(θ, y) is real valued, the Fourier multiplier 〈a1−n(θ, y)〉x∂1−n is skew-adjoint
if n is even. Futhermore, by the induction hypothesis (6.8) and Lemmata A.1, A.2 in
Appendix A, one has

〈a1−n(θ, y)〉x = 0 if n is odd.

Hence the Fourier multiplier D⊥n+1,1(θ, y) is skew-adjoint. Altogether we showed that

the vector field X⊥n+1 is of the form
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X⊥n+1(x) = i�⊥w +D⊥n+1,1(θ, y)[w] +D⊥n+1,2(θ, w)[w] + X⊥n+1,1(θ, y)[w]
+X⊥n+1,2(θ, w)[w] +R⊥N ,1(θ, y)[w] +R⊥N ,2(θ, w)[w] +OB3(1, N ) +OS3(N ) .

(6.18)

We thus have proved the following

Proposition 6.1. For any N ∈ N, there exist sN , σN > 0 with the following property:
for any s ≥ sN there exist 0 < δ ≡ δ(s, γ, N ) < 1, 0 < ε0 ≡ ε0(s, γ, N ) < 1 so
that the following holds: there exists a transformation �(1) with inverse (�(1))−1 (cf.
Remark 3.4),

(�(1))±1 ∈ C∞b (Vs(δ)× [0, ε0], Vs(2δ)), ∀ s ≥ sN , (�(1))±1(x)− x small of order two ,

(6.19)

so that the transformed vector field X4 := (�(1))∗XH3 = (X (θ)
4 , X (y)

4 , X⊥4 ) has the
following properties:

X (θ)
4 (x) = −ω − εω̂ −∇y Q(y)− ϒ

(θ)
2 (θ)[w,w] +O(θ)

3 (x) , X (y)
4 (x) = O(y)

3 (x) ,

X⊥4 (x) = i�⊥w +D⊥4,1(θ, y)[w] +D⊥4,2(θ, w)[w] +R⊥N ,1(θ, y)[w] +R⊥N ,2(θ, w)[w]
+OB3(1, N ) +OS3(N ) (6.20)

where
D⊥4,1(θ, y)[w] ∈ OF2

w(1, N ), D⊥4,2(θ, w)[w] ∈ OF2
ww(1, N ) ,

R⊥N ,1(θ, y)[w] ∈ OS2
w(N ), R⊥N ,2(θ, w)[w] ∈ OS2

ww(N ) ,

O(θ)
3 ,O(y)

3 ∈ C∞b
(VσN (δ)× [0, ε0], R

S+
)

small of order three.

(6.21)

Moreover
D⊥4,1(θ, y) = −(D⊥4,1(θ, y))�, [R⊥N ,1(θ, y)] jj ∈ iR, ∀ j ∈ S⊥ . (6.22)

6.2. Normalization of Fourier multiplier quadratic in w. The goal of this subsection is
to normalize the vector field D⊥4,2(θ, w)[w] in (6.20). According to Proposition 6.1 and
Definitions (3.2), (3.4),

D⊥4,2(θ, w)[w] = �⊥1 (θ)[w]∂xw + D̃⊥4,2(θ, w)[w],

D̃⊥4,2(θ, w)[w] :=
N+1∑
k=1

�⊥1−k(θ)[w]∂1−kx w ∈ OF2
ww(0, N ),

(6.23)

where for any 0 ≤ k ≤ N + 1, �⊥1−k ∈ C∞(TS+ ,B(HσN⊥ , R)) for some σN > 0 (large).
Since �1(θ)[w] is real valued, the leading order operator �1(θ)[w]∂x is a skew-adjoint
Fourier multiplier and hence has the property needed for the energy estimates in Sect. 7.
This however is not true for D̃⊥4,2(θ, w)[w]. The goal of this section is to eliminate it. To
this end, we consider a vector field of the form

M(x) := (
0, 0, M⊥(θ, w)[w]) , M⊥(θ, w)[w] =

N+1∑
k=1

�⊥1−k(θ)[w]∂1−kx w ∈ OF2
ww(0, N ),
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(6.24)

where�⊥1−k(θ)will be chosen so that the time one flowmap�M, generated by the vector
field XM, is a coordinate transformation serving our needs. In more detail, consider the
pullback X5 := �∗MX4 = (X (θ)

5 , X (y)
5 , X⊥5 ) of the vector field X4 of Proposition 6.1

by �M. By Lemmata 3.13, 3.15, one has

X (θ)
5 (x) = −ω − εω̂ −∇y Q(y)−ϒ

(θ)
2 (θ)[w,w] +O(θ)

3 (x) , X (y)
5 = O(y)

3 (x) ,

X⊥5 (x) = i�⊥w +D⊥4,1(θ, y)[w] + �1(θ)[w]∂xw +R⊥4,1(θ, y)[w] +R⊥4,2(θ, w)[w]
+ ω · ∂θM⊥(θ, w)[w] −M⊥(θ, i�⊥w)[w] + D̃4,2(θ, w)[w]

+OB3(1, N ) +OS3(N ) (6.25)

where for some integer σN > 0,O(θ)
3 ,O(y)

3 are inC∞b
(VσN (δ)×[0, ε0], R

S+
)
and small

of order three. The vector field M⊥(θ, w)[w] is chosen to be a solution the following
homological equation

ω · ∂θM⊥(θ, w)[w] −M⊥(θ, i�⊥w)[w] + D̃⊥4,2(θ, w)[w] = 0, (6.26)

or in view of (6.23), (6.24) equivalently, that for any 1 ≤ k ≤ N + 1, �⊥1−k(θ)[w] is a
solution of

ω · ∂θ �⊥1−k(θ)[w] −�⊥1−k(θ)[i�⊥w] + �⊥1−k(θ)[w] = 0 . (6.27)

Since �⊥1−k , �⊥1−k ∈ C∞(TS+ × [0, ε0], B(HσN⊥ (T1), R)), there exist uniquely deter-

mined maps a�⊥1−k
, a�⊥1−k

in C∞(TS+ × [0, ε0], H−σN⊥ (T1)) so that

�⊥1−k(θ)[w] = 〈
a�⊥1−k

(θ) , w
〉
, �⊥1−k(θ)[w] = 〈

a�⊥1−k
(θ) , w

〉
.

Equation (6.27) then reads

〈
ω · ∂θ a�⊥1−k

(θ), w
〉− 〈

a�⊥1−k
(θ), i�⊥w

〉
+
〈
a�⊥1−k

(θ), w
〉 = 0 . (6.28)

Since i�⊥ is skew-adjoint, one has−
〈
a�⊥1−k

(θ), i�⊥w
〉 = 〈

i�⊥a�⊥1−k
(θ), w

〉
.We choose

a�⊥1−k
as the solution of

(
ω · ∂θ + i�⊥

)
a�⊥1−k

(θ) + a�⊥1−k
(θ) = 0 . (6.29)

This equation can be solved by expanding a�⊥1−k
(θ) and a�⊥1−k

(θ) in Fourier series with
respect to θ and x ,

a�⊥1−k
(θ) =

∑
(�, j)∈ZS+×S⊥

â�⊥1−k
(�, j)ei�·θei2π j x ,

a�⊥1−k
(θ) =

∑
(�, j)∈ZS+×S⊥

â�⊥1−k
(�, j)ei�·θei2π j x .
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Since by assumption ω ∈ �
(1)
γ , 0 < γ < 1, (cf. (1.20)), Eq. (6.29) can be solved. The

solution a�⊥1−k
(θ) is given by

a�⊥1−k
= −(ω · ∂θ + i�⊥)−1a�⊥1−k

= −
∑

(�, j)∈ZS+×S⊥

â�⊥1−k
(�, j)

i(ω · � + � j )
ei�·θei2π j x .

(6.30)

Since a�⊥1−k
∈ C∞(TS+ , H−σN⊥ (T1)), one infers that a�⊥1−k

∈ C∞(TS+ , H−σN−τ
⊥ (T1))

and therefore (6.24) is verified and Eq. (6.26) is solved. Finally, the vector field X⊥5 is
of the form

X⊥5 (x) = i�⊥w +D5(x)[w] +R⊥N ,1(θ, y)[w] +R⊥N ,2(θ, w)[w]
+OB3(1, N ) +OS3(N ) ,

D⊥5 (x)[w] := D⊥4,1(θ, y)[w] + �⊥1 (θ)[w]∂xw ∈ OF2(1, N ), (6.31)

where the remaindersR⊥N ,1(θ, y)[w],R⊥N ,2(θ, w)[w] are given in Proposition 6.1. Fur-
thermore, D⊥5 (x) is skew-adjoint,

D⊥5 (x)� = −D⊥5 (x) . (6.32)

We summarize our findings of this subsection as follows.

Proposition 6.2. For any N ∈ N, there exists an integer sN > 0 with the property that
for any s ≥ sN there exist 0 < δ ≡ δ(s, γ, N ) < 1 and 0 < ε0 ≡ ε0(s, γ, N ) < 1 so
that the following holds: there exists a transformation �(2) with inverse (�(2))−1 (cf.
Remark 3.4),

(�(2))±1 ∈ C∞b (Vs(δ)× [0, ε0], Vs(2δ)), ∀ s ≥ sN , (�(2))±1(x)− x small of order two,

(6.33)

so that the transformed vector field X5 := (�(2))∗X4 = (X (θ)
5 , X (y)

5 , X⊥5 ) has the form

X (θ)
5 (x) = −ω − εω̂ −∇y Q(y)−ϒ

(θ)
2 (θ)[w,w] +O3(x) , X (y)

5 (x) = O3(x) ,

X⊥5 (x) = i�⊥w +D⊥5 (x)[w] +R⊥N ,1(θ, y)[w] +R⊥N ,2(θ, w)[w] +OB3(1, N ) +OS3(N )

(6.34)

where

D⊥5 (x)[w] ∈ OF2(1, N ), D⊥5 (x) = −D⊥5 (x)� (6.35)

and the smoothing remainders R⊥N ,1(θ, y)[w], R⊥N ,2(θ, w)[w] are given by Proposi-
tion 6.1.

6.3. Normalization of the smoothing remainders. In this subsection, we normalize the
vector field



1932 T. Kappeler, R. Montalto

(
ϒ

(θ)
2 (θ)[w,w], 0, R⊥N ,1(θ, y)[w] +R⊥N ,2(θ)[w,w]) ,

which is part of the vector field X5 defined in (6.34). Note that all the terms are either
linear or quadratic in the variable w. We consider a smoothing vector field of the form

S(x) := (S(θ)(θ)[w,w], 0, S⊥1 (θ, y)[w] + S⊥2 (θ)[w,w])
wherewemake the ansatz that for someσN > 0,S(θ) ∈ C∞

(
T
S+×[0, ε0], B2(H

σN⊥ (T1),

R
S+)

)
and

S⊥1 (θ, y)[w] ∈ OS2
w(N − 1), S⊥2 (θ)[w,w] ∈ OS2

ww(N − 5) . (6.36)

We then consider the time one flow map �S , associated to the vector field S, and
compute the pullback X6 := �∗S X5 = (X (θ)

6 , X (y)
6 , X⊥6 ) of the vector field X5 by �S .

By Lemmata 3.17, 3.18 and in view of Remark (3.3), X6 is of the form

X (θ)
6 (x) = −ω − εω̂ −∇y Q(y) + ω · ∂θ S(θ)(θ)[w,w] − S(θ)(θ)[i�⊥w,w]

− S(θ)(θ)[w, i�⊥w] − ϒ
(θ)
2 (θ)[w,w] +O(θ)

3 (x),

X (y)
6 (x) = O(y)

3 (x),

X⊥6 (x) = i�⊥w +D⊥5 (x)[w] +
(
ω · ∂θS⊥1 (θ, y) + [i�⊥, S⊥1 (θ, y)]lin +R⊥N ,1(θ, y)

)
[w]

+ ω · ∂θ S⊥2 (θ)[w,w] + i�⊥S⊥2 (θ)[w,w] − S⊥2 (θ)[i�⊥w,w]
− S⊥2 (θ)[w, i�⊥w] +R⊥N ,2(θ)[w,w] +OB3(1, N ) +OS3(N − 6)

(6.37)

whereO(θ)
3 ,O(y)

3 denote terms which are small of order three. The components S(θ) and
S⊥1 , S⊥2 are now chosen as the solutions of the following homological equations,

ω · ∂θ S(θ)(θ)[w,w] − S(θ)(θ)[i�⊥w,w] − S(θ)(θ)[w, i�⊥w]
−ϒ

(θ)
2 (θ)[w,w] = −Z(θ)[w,w],
Z(θ)[w,w] :=

∑
j∈S⊥

w jw− j 〈ϒ(θ)
2 (θ)[ei2π j x , e−i2π j x ]〉θ ,

ω · ∂θ S⊥1 (θ, y) + [i�⊥,S⊥1 (θ, y)]lin +R⊥N ,1(θ, y) = Z⊥(y) ,

Z⊥(y) := diag j∈S⊥[R̂⊥N ,1(0, y)] jj ,
ω · ∂θ S⊥2 (θ)[w,w] + i�⊥S⊥2 (θ)[w,w] − S⊥2 (θ)[i�⊥w,w]
− S⊥2 (θ)[w, i�⊥w] +R⊥N ,2(θ)[w,w] = 0 .

(6.38)

Homological equations of this form can be solved by applying the following lemma.

Lemma 6.1. Let N ∈ N. (i) Let M(θ) ∈ C∞(TS+ × [0, ε0], B2(Hσ⊥(T1), R
S+)) for

some σ > 0 and assume that ω ∈ �γ , 0 < γ < 1 (cf. (1.20)). Then there exists
S(θ) ∈ C∞(TS+ × [0, ε0], B2(Hσ+1⊥ (T1), R

S+)) solving

ω · ∂θ S(θ)(θ)[w,w] − S(θ)(θ)[i�⊥w,w] − S(θ)(θ)[w, i�⊥w]
−M(θ)(θ)[w,w] = −Z(θ)[w,w],

Z(θ)[w,w] :=
∑
j∈S⊥

w jw− j 〈M(θ)(θ)[ei2π j x , e−i2π j x ]〉θ .

(6.39)
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(i i) Let R⊥N ,1(θ, y)[w] ∈ OS2
w(N ) and ω ∈ �γ , 0 < γ < 1 (cf. (1.20)). Then there

exists S⊥1 (θ, y)[w] ∈ OS2
w(N − 1) which solves the equation

ω · ∂θ S⊥1 (θ, y) + [i�⊥, S⊥1 (θ, y)]lin +R⊥N ,1(θ, y) = Z⊥(y) ,

Z⊥(y) := diag j∈S⊥[R̂⊥N ,1(0, y)] jj . (6.40)

(i i i) LetR⊥N ,2(θ)[w,w] ∈ OS2
ww(N ) and assume that ω ∈ �γ , 0 < γ < 1 (cf. (1.20)).

Then there exists S⊥2 (θ)[w,w] ∈ OS2
ww(N − 5) which solves the equation

ω · ∂θ S⊥2 (θ)[w,w] + i�⊥S⊥2 (θ)[w,w] − S⊥2 (θ)[i�⊥w,w]
− S⊥2 (θ)[w, i�⊥w] +R⊥N ,2(θ)[w,w] = 0 .

(6.41)

Proof. Since items (i), (i i) can be proved by arguments similar to the ones used in
the proof of item (i i i), we only prove the latter. By assumption, R⊥N ,2(θ, w)[w] ≡
R⊥N ,2(θ)[w,w] ∈ OS2

ww(N ). Hence there exists an integer sN > 0 with the property
that for any s ≥ sN , there exists 0 < ε0 ≡ ε0(s) < 1 so that

R⊥N ,2 : TS+ × [0, ε0] → B2,s,N , (θ, ε) �→ R⊥N ,2(θ) ≡ R⊥N ,2(θ, ε) ,

B2,s,N := B2(H
s(T1), H

s+N+1(T1)),

is C∞-smooth and bounded (cf. (1.39), Defintion 3.4). A a consequence, for any multi-
index α ∈ Z

S+≥0,

‖∂α
θ R⊥N ,2(θ)‖B2,s,N �α,s 1 . (6.42)

Expanding R⊥N ,2(θ) in its Fourier series, R⊥N ,2(θ) = ∑
�∈ZS+

̂R⊥N ,2(�)e
i�·θ , the latter

estimates imply

‖̂R⊥N ,2(�)‖B2,s,N �α,s 〈�〉−|α|, ∀α ∈ Z
S+≥0 , ∀ � ∈ Z

S+ . (6.43)

Since for any � ∈ Z
S+ , ̂R⊥N ,2(�) ∈ B2,s,N , one has for any w, v ∈ Hs⊥(T1)

̂R⊥N ,2(�)[w, v] =
∑

j, j ′∈S⊥
w jv j ′

̂R⊥N ,2(�) j j ′ ,
̂R⊥N ,2(�) j j ′ (x) := ̂R⊥N ,2(�)[ei2π j x , ei2π j ′x ] .

(6.44)

In particular, for w = ei2π j x , v = ei2π j ′x , one infers from (6.43) that

‖̂R⊥N ,2(�) j j ′ ‖s+N+1 �α,s 〈�〉−|α|〈 j〉s〈 j ′〉s , ∀α ∈ Z
S+≥0, � ∈ Z

S+ , j, j ′ ∈ S⊥.

(6.45)

Expanding also S⊥2 (θ) in its Fourier series, S⊥2 (θ) = ∑
�∈ZS+ Ŝ⊥2 (�)ei�·θ , one has for

any w, v ∈ Hs⊥(T1),

Ŝ⊥2 (�)[w, v] =
∑

j, j ′∈S⊥
w jv j ′ Ŝ⊥2 (�) j j ′ , Ŝ⊥2 (�) j j ′(x) := Ŝ⊥2 (�)[ei2π j x , ei2π j ′x ] .

(6.46)
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By expanding Ŝ⊥2 (�) j j ′(x) and R̂⊥2 (�) j j ′(x) with respect to the variable x ∈ T1 in
Fourier series,

Ŝ⊥2 (�) j j ′(x) =
∑
n∈S⊥

Ŝ⊥2 (�, n) j j ′e
i2πnx , ̂R⊥N ,2(�) j j ′(x) =

∑
n∈S⊥

̂R⊥N ,2(�, n) j j ′e
i2πnx ,

(6.47)

the homological equation (6.41) yields the following equations for the coefficients
Ŝ⊥2 (�, n) j j ′ of Ŝ⊥2 (�),

i
(
ω · � + �n −� j −� j ′

)Ŝ⊥2 (�, n) j j ′ +
̂R⊥N ,2(�, n) j j ′ = 0 . (6.48)

Since ω ∈ �
(3)
γ , 0 < γ < 1 (cf. (1.20)), the latter equations admit solutions. They are

given by

Ŝ⊥2 (�, n) j j ′ = −
̂R⊥N ,2(�, n) j j ′

i
(
ω · � + �n −� j −� j ′

) , ∀ � ∈ Z
S+ , n, j, j ′ ∈ S⊥ ,

(6.49)

and satisfy the estimate |Ŝ⊥2 (�, n) j j ′ | ≤ 〈�〉τ 〈 j〉2〈 j ′〉2〈n〉2γ−1|̂R⊥N ,2(�, n) j j ′ | (cf. (1.20)).
By (6.47), one has ‖Ŝ⊥2 (�) j j ′ ‖s+N−1 =

(∑
n∈S⊥〈n〉2(s+N−1)|Ŝ⊥2 (�, n) j j ′ |2

) 1
2 and hence

‖Ŝ⊥2 (�) j j ′ ‖s+N−1 ≤ 〈�〉τ 〈 j〉2〈 j ′〉2γ−1
( ∑
n∈S⊥
〈n〉2(s+N−1)〈n〉4|̂R⊥N ,2(�, n) j j ′ |2

) 1
2

= 〈�〉τ 〈 j〉2〈 j ′〉2γ−1‖̂R⊥N ,2(�) j j ′ ‖s+N+1

(6.45)
�α,s 〈�〉τ−|α|〈 j〉s+2〈 j ′〉s+2γ−1 .

(6.50)

For any w, v ∈ Hs+3⊥ (T1), one then obtains by the Cauchy–Schwarz inequality,

‖Ŝ⊥2 (�)[w, v]‖s+N−1≤
∑

j, j ′∈S⊥
|w j ||v j ′ | ‖Ŝ⊥2 (�) j j ′ ‖s+N−1

(6.50)
�α,s 〈�〉τ−|α|γ−1

∑
j, j ′∈S⊥

〈 j〉s+2|w j |〈 j ′〉s+2|v j ′ |

�α,s 〈�〉τ−|α|γ−1‖w‖s+3‖v‖s+3 .

(6.51)

Writing s for s + 3, we thus have proved that there exists sN > 0 (large) so that

‖Ŝ⊥2 (�)‖B2,s,N−4 �α,s 〈�〉τ−|α|γ−1 , ∀α ∈ Z
S+≥0, s ≥ sN .

implying thatS⊥2 ∈ C∞(TS+×[0, ε0], B2,s,(N−5)+1) for any s ≥ sN .HenceS⊥2 (θ)[w,w]
∈ OS2

ww(N − 5). ��
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By Lemma 6.1 and in view of (6.37), (6.38), the vector field X6 = (X (θ)
6 , X (y)

6 , X⊥6 )

takes the form

X (θ)
6 (x) = −ω − εω̂ −∇y Q(y)−Z(θ)[w,w] +O(θ)

3 (x) , X (y)
6 (x) = O(y)

3 (x) ,

X⊥6 (x) = i�⊥w +D⊥6 (x)[w] +OB3(1, N ) +OS3(N − 6) , D⊥6 (x) := D⊥5 (x) +Z⊥(y) ,

O(θ)
3 ,O(y)

3 ∈ C∞b ([0, ε0] × VσN (δ), R
S+ ) terms small of order three (6.52)

for some σN > 0. Since by (6.22), [R⊥N ,1(θ, y)] jj ∈ iR, j ∈ S⊥, and Z⊥(y) =
diag j∈S⊥[R̂⊥1 (0, y)] jj , the operatorZ⊥(y) is a skew-adjoint Fouriermultiplier and hence

by (6.35) so is D⊥6 (x). We summarize our findings as follows.

Proposition 6.3. For any N ∈ Z≥6, there exists an integer sN > N with the property that
for any s ≥ sN , there exist 0 < δ ≡ δ(s, γ, N ) < 1 and 0 < ε0 ≡ ε0(s, γ, N ) < 1 so
that the following holds. There exists a map�(3) with inverse (�(3))−1 (cf. Remark 3.4),

(�(3))±1 ∈ C∞b (Vs(δ)× [0, ε0], Vs(2δ)), ∀s ≥ sN , (�(3))±1(x)− x small of order two,

(6.53)

so that the transformed vector field X6 := (�(3))∗X5 = (X (θ)
6 , X (y)

6 , X⊥6 ) has the form

X (θ)
6 (x) = −ω−εω̂ −∇y Q(y)−Z(θ)[w,w] +O(θ)

3 (x), X (y)
6 (x) = O(y)

3 (x) ,

X⊥6 (x) = i�⊥w +D⊥6 (x)[w] +OB3(1, N ) +OS3(N − 6) ,
(6.54)

where D⊥6 (x) is a Fourier multiplier of order one given by (6.52) and satisfies D⊥6 (x) =
−D⊥6 (x)�, where

Z(θ) ∈ B2(H
σN⊥ , R

S+), (6.55)

Z(θ)[w,w] =
∑
j∈S⊥

w jw− j 〈ϒ(θ)
2 (θ)[ei2π j x , e−i2π j x ]〉θ ,

∀w ∈ HσN⊥ (T1), (6.56)

for some σN > 0, and whereO(θ)
3 ,O(y)

3 comprises terms which are small of order three.

7. Proofs of Theorem 4.2 and Theorem 4.3

First we prove Theorem 4.3.

Proof of Theorem 4.3.. We apply Propositions 5.1, 6.1, 6.2, 6.3. Choose N = 6 and
define

� := � ◦�(1) ◦�(2) ◦�(3) . (7.1)

By (5.1), (6.19), (6.33), (6.53),� satisfies property (4.19). Moreover X = X6 = �∗XH
is given in (6.54) with N = 6. Hence by setting

D⊥ := D⊥6 , N(θ)(y, w) := −∇y Q(y)− Z(θ)[w,w] ,
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one has that D⊥, N(θ), O(θ)
3 , O(y)

3 satisfy the properties stated in (4.21). Since N = 6 ,
the remainder term OB3(1, 6) +OS3(0) in the expansion of X⊥(x) = X⊥6 (x) in (6.54)
has the form (cf. Definitions 3.1, 3.3)

�⊥
7∑

k=0
Ta1−k(x)∂

1−k
x w +R⊥0 (x)

with the following property: there are integers s∗, σ > 0 so that for any s ≥ s∗ there
exist 0 < δ ≡ δ(s, γ ) < 1 and 0 < ε0 ≡ ε0(s, γ ) < 1 so that

a1−k ∈ C∞b
(Vs+σ (δ)× [0, ε0], Hs(T1)

)
small of order two, ∀ 0 ≤ k ≤ 7 ,

R⊥0 ∈ C∞b
(Vs(δ)× [0, ε0], Hs⊥(T1)

)
small of order three.

(7.2)

We then define

a(x) := a1(x), R⊥(x) := �⊥
6∑

k=0
Ta−k(x)∂

−k
x w +R⊥0 (x) .

One shows that R⊥ ∈ C∞b (Vs(δ) × [0, ε0], Hs⊥(T1)) for any s ≥ s∗ + σ and that R⊥
is small of order three. Indeed, by (7.2) and the estimate (2.2) (paraproduct), it follows
that for any x ∈ Vs(δ),

‖R⊥(x)‖s �s,γ max0≤k≤7‖a1−k(x)‖1‖w‖s + (ε + ‖y‖ + ‖w‖s)3
�s,γ max0≤k≤7‖a1−k(x)‖s∗‖w‖s + (ε + ‖y‖ + ‖w‖s)3
�s,γ (ε + ‖y‖ + ‖w‖s∗+σ )3 + (ε + ‖y‖ + ‖w‖s)3.

Hence we proved that for any s ≥ s∗ + σ ,

‖R⊥(x)‖s �s,γ (ε + ‖y‖ + ‖w‖s)3.
Theorem 4.3 then follows by choosing σ∗ := s∗ + σ . ��

Let us now turn to the proof of Theorem 4.2. It is based on energy estimates for the
solutions of the equation ∂t x = X (x)where X is the vector field provided by Theorem 4.3
(cf. (4.20), (4.21))

⎧⎪⎨
⎪⎩

∂tθ(t) = −ω − εω̂ + N(θ)(y, w) +O(θ)
3 (x)

∂t y(t) = O(y)
3 (x)

∂tw(t) = i�⊥w + D⊥(x)[w] + �⊥Ta(x)∂xw +R⊥(x).

(7.3)

Choose σ∗ > 0 and for any s ≥ σ∗, 0 < δ ≡ δ(s, γ ) < 1, 0 < ε0 ≡ ε0(s, γ )  δ as
in Theorem 4.3. For any s ≥ σ∗ and 0 < ε ≤ ε0(s, γ ) we then consider the Cauchy
problem of (7.3) with small initial data x0 = (θ0, y0, w0) ∈ T

S+ × R
S+ × Hs⊥(T1),

|y0|, ‖w0‖s ≤ ε . (7.4)

Increasing σ∗ and decreasing ε0, if needed, it follows from Proposition C.1 that for any
s ≥ σ∗ and 0 < ε ≤ ε0 there exists T ≡ Tε,s,γ > 0 so that the Cauchy problem
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of (7.3) for any initial data x0 = (θ0, y0, w0) satisfying (7.4) has a unique solution
t �→ x(t) = (θ(t), y(t), w(t)) with

θ ∈ C1([−T, T ], T
S+), y ∈ C1([−T, T ], R

S+),

w ∈ C0([−T, T ], Hs⊥(T1)) ∩ C1([−T, T ], Hs−3
⊥ (T1)). (7.5)

In addition, by Proposition C.1 there exists C∗ ≡ C∗(γ ) > 1 so that

|y(t)|, ‖w(t)‖s , |�(t)| ≤ C∗ε , ∀t ∈ [−T, T ] , (7.6)

where

�(t) := θ(t)− θ0 + (ω + εω̂)t −
∫ t

0
Nθ (y(τ ), w(τ)) dτ, t ∈ [−T, T ]. (7.7)

We now prove that the time T of existence of the solution can be chosen to be of size
ε−2.

Proposition 7.1. Let σ∗ and 0 < ε0 ≡ ε0(s, γ ) < 1, s ≥ σ∗ be given as above. Then
for any s ≥ σ∗ there exists a constant C∗∗ ≡ C∗∗(s, γ ) > 0 so that for any 0 < ε ≤ ε0,
the time of existence T of the solution x(t) can be chosen as Tε,s,γ := C∗∗ε−2.

Toprove the latter proposition,wefirst need tomake somepreliminary considerations.
Let s ≥ σ∗ and 0 < ε ≤ ε0. By (4.21), a is small of order two and R⊥, O(θ)

3 , O(y)
3 are

small of order three, and by applying the estimates (7.6), one has

|O(θ)
3 (x(t))| , |O(y)

3 (x(t))| �γ ε3, ‖a(x(t))‖σ∗ �γ ε2,

‖R⊥(x(t))‖s �s,γ ε3, ∀ t ∈ [−T, T ] .
(7.8)

First we prove the following lemma.

Lemma 7.1. Given any s ≥ σ∗, there exists a constant K0 ≡ K0(s, γ ) > 0 (large) so
that the solutions (7.5) satisfy

|�(t)| ≤ K0T ε3 , |y(t)|, ‖w(t)‖s ≤ ε + K0ε
3T, ∀ t ∈ [−T, T ] . (7.9)

As a consequence, for any T > 0 satisfying T ≤ 1
K0

ε−2, one has

|�(t)| ≤ ε, |y(t)| , ‖w(t)‖s ≤ 2ε, ∀t ∈ [−T, T ] . (7.10)

Proof of Lemma 7.1.. Let s ≥ σ∗. First we prove the claimed estimates for �(t) and
y(t). By the definition (7.7) of � and (7.3) (Hamiltonian equations), one has

�(0) = 0, ∂t�(t) = O(θ)
3 (x(t)),

implying that

�(t) =
∫ t

0
O(θ)

3 (x(τ )) dτ .

Moreover by (7.3),

y(t) = y0 +
∫ t

0
O(y)

3 (x(τ )) dτ .



1938 T. Kappeler, R. Montalto

By (7.4) and (7.8), one then concludes that there exists a constant C1 ≡ C1(s, γ ) > 0
so that

|�(t)| ≤ C1T ε3, |y(t)| ≤ ε + C1T ε3, ∀ t ∈ [−T, T ] . (7.11)

It remains to estimate the Hs-norm ofw(t). To this end recall that for anyw ∈ Hs⊥(T1),

‖w‖s =
( ∑
j∈S⊥
| j |2s |w j |2

) 1
2 = ‖∂sxw‖ ,

where ‖∂sxw‖ denotes the L2-norm of ∂sxw. Then

∂t‖∂sxw(t)‖2 = 〈
∂sx∂tw(t) , ∂sxw(t)

〉
+
〈
∂sxw(t) , ∂sx∂tw(t)

〉
(7.3)= 〈

∂sx
(
i�⊥w + D⊥(x)[w] + �⊥Ta(x)∂xw +R⊥(x)

)
, ∂sxw

〉
+
〈
∂sxw , ∂sx

(
i�⊥w + D⊥(x)[w] + �⊥Ta(x)∂xw +R⊥(x)

)〉
.

(7.12)

Since�⊥ andD⊥(x) are both Fouriermultipliers, the linear commutatorswith the Fourier
multiplier ∂sx vanish,

[∂sx ,�⊥]lin = 0 , [∂sx ,D⊥(x)]lin = 0 .

Using in addition that D⊥(x) is skew-adjoint (cf. (4.21)) and hence (i�⊥ + D⊥(x))� =
−i�⊥ − D⊥(x), one infers

〈
∂sx
(
i�⊥w + D⊥(x)[w]) , ∂sxw

〉
+
〈
∂sxw , ∂sx

(
i�⊥w + D⊥(x)[w])〉

= 〈(
i�⊥ + D⊥(x)

)
∂sxw , ∂sxw

〉
+
〈
∂sxw ,

(
i�⊥ + D⊥(x)

)
∂sxw

〉
= 〈(

i�⊥ + D⊥(x)
)
∂sxw , ∂sxw

〉
+
〈(
i�⊥ + D⊥(x)

)�
∂sxw , ∂sxw

〉 = 0 .

(7.13)

Moreover

〈
∂sx Ta(x)∂xw , ∂sxw

〉
+
〈
∂sxw , ∂sx Ta(x)∂xw

〉
= 〈

Ta(x)∂x∂
s
xw , ∂sxw

〉
+
〈
∂sxw , Ta(x)∂x∂

s
xw

〉
+
〈[∂sx , Ta(x)∂x ]w , ∂sxw

〉
+
〈
∂sxw , [∂sx , Ta(x)∂x ]w

〉
= 〈(

Ta(x)∂x + (Ta(x)∂x )
�)∂sxw , ∂sxw

〉
+
〈[∂sx , Ta(x)∂x ]w , ∂sxw

〉
+
〈
∂sxw , [∂sx , Ta(x)∂x ]w

〉
.

(7.14)

By increasing σ∗ if needed one gets by Corollary 2.2 (with N = 1, m = 1)

‖�⊥Ta(x)∂x + �⊥(Ta(x)∂x )
�‖B(L2⊥) � ‖a(x)‖σ∗

(7.8)
�γ ε2

and hence by the Cauchy–Schwarz inequality,

|〈(Ta(x)∂x + (Ta(x)∂x )
�)∂sxw , ∂sxw

〉| �γ ε2‖∂sxw‖ �γ ε2‖w‖2s . (7.15)

Moreover, arguing as in [9, Lemma A.1], one has

‖[∂sx , Ta(x)∂x ]w‖L2 �s ‖a(x)‖2‖w‖s
σ∗≥2,(7.8)

�s,γ ε2‖w‖s .
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The latter estimate, together with the Cauchy–Schwarz inequality, imply that

|〈[∂sx , Ta(x)∂x ]w , ∂sxw
〉
+
〈
∂sxw , [∂sx , Ta(x)∂x ]w

〉| �s,γ ε2‖w‖2s . (7.16)

Finally, by using the Cauchy–Schwarz inequality once more and the estimate (7.8) for
R⊥, one gets

|〈∂sxR⊥(x) , ∂sxw
〉
+
〈
∂sxw , ∂sxR⊥(x)

〉| � ‖R⊥(x)‖s‖w‖s �s,γ ε3‖w‖s . (7.17)

Thus, collecting (7.12)–(7.17), and since by (7.6), ‖w(t)‖s ≤ C∗ε for any t ∈ [−T, T ],
one gets

|∂t ‖∂sxw(t)‖2| �s,γ ε4 , ∀ t ∈ [−T, T ].
We then conclude that there exists a constant C2 ≡ C2(s, γ ) > 0 so that

‖w(t)‖s ≤ (‖w0‖2s + C2T ε4)1/2 ≤ ε(1 + C2T ε2)1/2 ≤ ε + C2T ε3, ∀t ∈ [−T, T ] . (7.18)

The claimed statement then follows with K0(s, γ ) := max{C1(s, γ ),C2(s, γ )}. ��
Proof of Proposition 7.1.. For any given s ≥ σ∗, 0 < ε ≤ ε0, and initial data satisfying
(7.4), consider the solution t �→ x(t) in (7.5) of (7.3). It satisfies the estimates (7.9)–
(7.10) of Lemma 7.1. Let

Ť := sup{ 0 < T <
1

K0
ε−2 : 2|�(t)|, |y(t)|, ‖w(t)‖s ≤ 2ε, ∀t ∈ [−T, T ]} ,

where K0 ≡ K0(s, γ ) is given by Lemma 7.1, and define

M(T ) := max|t |≤T {2|�(t)|, |y(t)|, ‖w(t)‖s}, T ∈ [0, Ť ) .

Assume that Ť ≤ 1
2

1
K0

ε−2. By the definition of Ť and Proposition C.1 it then follows
that supT<Ť M(T ) = 2ε. On the other hand, from Lemma 7.1 one infers that

M(Ť ) ≤ ε + K0ε
3Ť ≤ ε(1 + 1/2) ≤ 3

2
ε .

Hence we obtained a contradiction and thus conclude that Ť = O(ε−2). ��
Proof of Theorem 4.2.. Let t �→ x(t) = (θ(t), y(t), w(t)) be a curve satisfying (7.4)–
(7.6). By Theorem 4.3 (Normal Form Theorem), x(t) = (θ(t), y(t), w(t)) is a solution
of (7.3) if and only if

x′(t) = (θ ′(t), y′(t), w′(t)) := �(x(t))

is a solution of (4.17) with initial data x′0 = �(x0).
By (4.19) (properties of the transformation �), for any x in Vs(δ) with x′ := �(x) ∈

Vs(δ) one has x = �−1(x′) and

|y′|, ‖w′‖s ≤ C(s, γ )
(
ε + |y| + ‖w‖s

)
, |y|, ‖w‖s ≤ C(s, γ )

(
ε + |y′| + ‖w′‖s

)

for some constant C(s, γ ) > 0. Hence, if x(t) satisfies (7.4)–(7.6), then x′0 ∈ T
S+ ×

R
S+ × Hs⊥(T1) with |y′0|, ‖w′0‖s ≤ C(s, γ )ε and

θ ′ ∈ C1([−T, T ], T
S+), y′ ∈ C1([−T, T ], R

S+),



1940 T. Kappeler, R. Montalto

w′ ∈ C0([−T, T ], Hs⊥(T1)) ∩ C1([−T, T ], Hs−3
⊥ (T1))

with

|y′(t)|, ‖w′(t)‖s ≤ 2C(s, γ )ε , ∀t ∈ [−T, T ] .

By Proposition 7.1, T can be chosen as Tε,s,γ = O(ε−2). This proves Theorem 4.2 . ��

8. Measure Estimates

In this section we prove the measure estimate (1.23) of the set �γ defined in (1.19),
(1.20). More precisely we show the following

Proposition 8.1. There exists a ∈ (0, 1) so that for any 0 ≤ j ≤ 3 and any 0 < γ < 1,
|�\�( j)

γ | � γ a.

We will concentrate on the proof of the claimed measure estimate of �
(3)
γ . The ones

of �
(0)
γ , �(1)

γ , and �
(2)
γ can be obtained in a similar way and are in fact a bit easier to

prove. Recall that

�(3)
γ =

{
ω ∈ � : |ω · � + � j1 (ω) + � j2 (ω) + � j3 (ω)| ≥ γ

〈�〉τ 〈 j1〉2〈 j2〉2〈 j3〉2 ,

∀(�, j1, j2, j3) ∈ Z
S+ × S⊥ × S⊥ × S⊥ with jk + jm �= 0, ∀k,m ∈ {1, 2, 3}

}

(8.1)

where for any j ∈ S⊥, � j (ω) := ωkdv
j (μ(ω), 0). One has

�\�(3)
γ ⊂

⋃
�∈ZS+ , j1, j2, j3∈S⊥

jk+ jm �=0,∀k,m∈{1,2,3}

R�j1 j2 j3(γ ) ,

where

R�j1 j2 j3(γ ) =
{
ω ∈ � : |ω · � + � j1(ω) + � j2(ω) + � j3(ω)| < γ

〈�〉τ 〈 j1〉2〈 j2〉2〈 j3〉2
}

.

First we need to establish the following regularity properties and asymptotics for the
normal frequencies � j (ω), j ∈ S⊥.

Lemma 8.1. The map

�∗ : �→ �∞(S⊥, R), ω �→ (�∗j (ω)) j∈S⊥ , �∗j (ω) := j
(
� j (ω)− (2π j)3

)
,

is real analytic. Furthermore, uniformly on a complex neighborhood of � in C
S+ ,

� j (ω) = (2π j)3 + O( j−1) as j →±∞ . (8.2)
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Proof. Since by [26, Theorem 1.2 (i)], �→ �∞(S⊥+ , R), I �→ (ωkdv
j (I, 0)) j∈S⊥+ is real

analytic and since by [26, Theorem 1.2 (iii)]

�→ �∞(S⊥+ , R), I �→ (
j (ωkdv

j (I, 0)− (2π j)3)
)
j∈S⊥+

is locally bounded in a complex neighborhood of� inC
S+ , it follows from [28, Theorem

A.3] that the latter map is real analytic. Furthermore, by [28, Theorem 15.4], the action
to frequency map

�→ �, I = (I j ) j∈S+ �→ (ωkdv
j (I, 0)) j∈S+

is real analytic and by the definition of � and �, it is a diffeomorphism. Hence its
inverse μ : � → �,ω �→ μ(ω) is also a real analytic diffeomorphism. Since for any
ω ∈ � and j ∈ S⊥, � j (ω) = ωkdv

j (μ(ω), 0) and � j (ω) = −�− j (ω) we altogether
have proved that the composition

�∗ : �→ �∞(S+, R), ω �→ ( j (ωkdv
j (μ(ω), 0)− (2π j)3) j∈S⊥

is real analytic. Since � ⊂ R
S+ is compact, �∗ is actually bounded on a complex

neighborhood of � in C
S+ and hence the claimed asymptotics hold. ��

Lemma 8.2. There exist constants C0 > 0 and C1 > 0 so that for any j1, j2, j3 ∈ S⊥
and any � ∈ Z

S+ with |�| ≥ C1

|R�j1 j2 j3(γ )| ≤ C0
γ

〈�〉τ 〈 j1〉2〈 j2〉2〈 j3〉2 .

Proof. Let � ∈ Z
S+\{0}. Choose v ∈ R

S+ with v · � = 0 and introduce s �→ ω(s) :=
s �
|�| + v. Then � · ω(s) = s|�| and hence for any j1, j2, j3 ∈ S⊥ and any s ∈ R with

ω(s) ∈ �,

ϕ(s) := � · ω(s) + � j1(ω(s)) + � j2(ω(s)) + � j3(ω(s))

= s|�| + � j1(ω(s)) + � j2(ω(s)) + � j3(ω(s)).

ByLemma8.1 andCauchy’s theorem there existsC > 0, independent of j1, j2, j3 ∈ S⊥,
so that

∣∣ d
ds

(
� j1(ω(s)) + � j2(ω(s)) + � j3(ω(s))

)∣∣ ≤ C .

It then follows that |ϕ′(s)| ≥ 1 for any |�| ≥ C1 := C + 1. This implies the claimed
estimate. ��
Lemma 8.3. There exist constants C0 > 0, C2 > 0 so that for j1, j2, j3 ∈ S⊥ with
min{| j1|, | j2|, | j3|}
≥ C2 one has

R0 j1 j2 j3(γ ) = ∅ , |R�j1 j2 j3(γ )| ≤ C0
γ

〈�〉τ 〈 j1〉2〈 j2〉2〈 j3〉2 , ∀ � ∈ Z
S+\{0}. (8.3)
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Proof. First we consider the case � = 0. By the asymptotics (8.2) it follows that for any
j1, j2, j3 ∈ S⊥,

|� j1 + � j2 + � j3 | ≥ 8π3| j31 + j32 + j33 | −
C

min{| j1|, | j2|, | j3|}
for some constant C > 0. By the case n = 3 of Fermat’s Last Theorem (cf. [21])

| j31 + j32 + j33 | ≥ 1 .

Requesting that min{| j1|, | j2|, | j3|} ≥ C2 := 2C , one gets |� j1 +� j2 +� j3 | ≥ 4π3 and
hence R0 j1 j2 j3(γ ) = ∅ for any such j1, j2, j3 in S⊥.

Now let us consider the case � ∈ Z
S+\{0}. For any given j1, j2, j3 ∈ S⊥, define

s �→ ϕ(s) as in the proof of Lemma 8.2,

ϕ(s) := |�|s + � j1(ω(s)) + � j2(ω(s)) + � j3(ω(s)) .

By Lemma 8.1 there exists C > 0, independent of j1, j2, j3 ∈ S⊥, so that

∣∣ d
ds

jk� jk (ω(s))
∣∣ ≤ C , ∀ 1 ≤ k ≤ 3 .

By increasingC2 if needed, it follows that for j1, j2, j3 ∈ S⊥ satisfyingmin{| j1|, | j2|, | j3|}≥
C2,

|ϕ′(s)| ≥ |�| − 3C

min{| j1|, | j2|, | j3|} ≥
1

2
.

This implies the claimed measure estimate (8.3). ��
Lemma 8.4. There exists a constant C3 ≥ max{C2,C1}, where C2 is the constant of
Lemma 8.3 and C1 the constant of Lemma 8.2, so that

R�j1 j2 j3(γ ) = ∅ ∀� ∈ Z
S+ with |�| < C1 and ∀ j1, j2, j3 ∈ S⊥ satisfying (∗)

where

(∗) jk + jm �= 0, ∀ k,m ∈ {1, 2, 3} , min{| j1|, | j2|, | j3|} < C2 , max{| j1|, | j2|, | j3|} ≥ C3 .

Proof. Let � ∈ Z
S+ with |�| ≤ C1 and j1, j2, j3 ∈ S⊥ with min{| j1|, | j2|, | j3|} ≤ C2

and jk + jm �= 0 for any k,m ∈ {1, 2, 3}. First consider the case where | j2|, | j3| < C2.
By Lemma 8.1 one then has for | j1| ≥ C3 with C3 > 0 chosen large enough,

|ω · � + � j1 + � j2 + � j3 | ≥ 8π3(| j1|3 − | j2|3 − | j3|3)− C − |ω|C1 ≥ C3
3 − 2C3

2 − C − |ω|C1 ≥ 1 ,

implying that R�j1 j2 j3(γ ) = ∅.
Let us now turn to the case where | j1|, | j2| ≥ C3 and | j3| ≤ C2. If j1 and j2 have

the same sign, then one concludes again that

|ω · � + � j1 + � j2 + � j3 | ≥ 8π3(| j1|3 + | j2|3 − | j3|3)− C − |ω|C1 ≥ 2C3
3 − C3

2 − C − |ω|C1 ≥ 1
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by increasing C3 if needed. Hence again R�j1 j2 j3(γ ) = ∅. Now assume that j1 and j2
do not have the same sign. Since by assumption, j1 + j2 �= 0, one has | j1| − | j2| �= 0
and it then follows that

|ω · � + � j1 + � j2 + � j3 | ≥ || j1|3 − | j2|3| − | j3|3 − C − C1|ω|
≥ |(| j1| − | j2|)|(| j1|2 + | j1|| j2| + | j2|2)− C3

2 − C − C1|ω|
≥ 3C2

3 − C3
2 − C − C1|ω| ≥ 1

by increasingC3 oncemore if needed.We conclude that also in this case R�j1 j2 j3(γ ) = ∅.
��
Proof of Proposition 8.1. As already mentioned, we concentrate on the proof of the
claimed estimate for |�\�(3)

γ |. In view of Lemmas 8.2–8.4, it remains to estimate the
measure of the finite union

⋃
|�|≤C1| j1|,| j2|,| j3|≤C3

R�j1 j2 j3(γ )

where C1 > 0 is given by Lemma 8.2 and C3 > 0 by Lemma 8.4. By Lemma 8.1, for
any � ∈ Z

S+ , j1, j2, j3 ∈ S⊥ with |�| ≤ C1 and | j1|, | j2|, | j3| ≤ C3, the function

ω �→ ω · � + � j1(ω) + � j2(ω) + � j3(ω)

is real analytic and by [28, Proposition 15.5], does not vanish identically. Hence by the
Weierstrass Preparation Theorem (cf. [8, Lemma 9.7], [10, Proposition 3.1]), for any
given C > 0 there exists a ∈ (0, 1) so that

∣∣ ⋃
|�|≤C1| j1|,| j2|,| j3|≤C3

{
ω ∈ � : |ω · � + � j1(ω) + � j2(ω) + � j3(ω)| ≤ Cγ

}∣∣ � γ a

and the claimed estimate for |�\�(3)
γ | follows. ��

Remark 8.1. Note that there exist (many) non-trivial solutions of the diophantine equa-
tion

j31 + j32 + j33 + j34 = 0 (8.4)

where ( j1, j2, j3, j4) ∈ Z
4 is said to be a trivial solution if there exist 1 ≤ α < β ≤ 4

so that jα = − jβ . The following example was suggested by Michela Procesi,

(10)3 + 93 + (−1)3 + (−12)3 = 0 .

We therefore expect that Lemma 8.3 does not extend to the sets R�j1 j2 j3 j4(γ ), defined
as

R�j1 j2 j3 j4(γ ) :=
{
ω ∈ � : ∣∣ω · � +

4∑
k=1

� jk (ω)
∣∣ <

γ

〈�〉τ 〈 j1〉2〈 j2〉2〈 j3〉2〈 j4〉2
}
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and hence that an estimate for |�\�(4)
γ | of the type as in Proposition 8.1 for |�\�(3)

γ |
does not hold. Here �

(4)
γ is defined as

�(4)
γ :=

{
ω ∈ � : |ω · � +

4∑
k=1

� jk (ω)| ≥ γ

〈�〉τ 〈 j1〉2〈 j2〉2〈 j3〉2〈 j4〉2
∀(�, j1, j2, j3, j4) ∈ Z

S+ × (S⊥)4 with jk + jm �= 0 ∀k,m ∈ {1, 2, 3, 4}} .
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A. Linear Vector Fields on Hs
⊥(T1)

In this appendixwe discuss properties of linear vector fields on Hs⊥(T1), used throughout
themain body of the paper. Let X be an unbounded linear vector field on Hs⊥(T1), s ∈ N,
with domain Hs+1⊥ (T1),

X : Hs⊥(T1)→ Hs−1
⊥ (T1) ,

which admits an expansion of order N ∈ N,

X [w] =
N+1∑
k=0

λ1−k∂1−kx w +RN [w] , λ1−k ∈ R, ∀ 0 ≤ k ≤ N + 1 , (A.1)

where the remainderRN is (N +1)-regularizing,RN ∈ B(Hs⊥(T1), Hs+N+1⊥ (T1)). If in
addition, X is a Hamiltonian linear vector field on Hs⊥(T1),

X [w] = ∂x∇H [w] , H(w) := 1

2

∫ 1

0
A[w] · wdx , ∀w ∈ Hs⊥(T1),

where A : Hs⊥(T1) → Hs⊥(T1) is a symmetric, bounded linear operator, then the

diagonal matrix elements X j
j of X satisfy

X j
j =

∫ 1

0
∂x A[ei2π j x ] · e−i2π j x dx ∈ iR, ∀ j ∈ S⊥. (A.2)

http://creativecommons.org/licenses/by/4.0/
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Lemma A.1. Let X be a vector field as in (A.1) and assume that its diagonal matrix
elements satisfy X j

j ∈ iR for any j ∈ S⊥. Then λ1−k = 0 for any 0 ≤ k ≤ N + 1 with

1− k even and (RN )
j
j ∈ iR for any j ∈ S⊥.

Proof. It follows from the assumptions that for any j ∈ S⊥,

X j
j = −X

j
j , X j

j =
N+1∑
k=0

λ1−k(i2π j)1−k + (RN )
j
j with λ1−k ∈ R , (RN )

j
j = O( j−N−1) .

One thus concludes that

N+1∑
k=0

λ1−k(i2π j)1−k + O( j−N−1) = −
N+1∑
k=0

λ1−k(−1)1−k(i2π j)1−k + O( j−N−1)

and hence λ1−k = 0 for any 0 ≤ k ≤ N + 1 with 1− k even. This implies that

(RN )
j
j = X j

j −
N+1∑
k=0

λ1−k(i2π j)1−k ∈ iR , ∀ j ∈ S⊥.

��
Consider a vector field X : Hs⊥(T1)→ Hs−1

⊥ (T1), admitting an expansion of order N
of the form

X [w] = �⊥
N+1∑
k=0

Ta1−k∂
1−k
x w +RN [w], a1−k ∈ Hs(T1) , ∀ 0 ≤ k ≤ N + 1 , (A.3)

where the remainder RN is (N + 1)-regularizing, RN ∈ B(Hs⊥(T1), Hs+N+1⊥ (T1)).

Lemma A.2. Let X be a vector field as in (A.3) and assume that X j
j ∈ iR for any

j ∈ S⊥. Then 〈a1−k〉x = 0 for any 0 ≤ k ≤ N + 1 with 1− k even and (RN )
j
j ∈ iR for

any j ∈ S⊥.

Proof. For any j ∈ S⊥, a direct calculation shows that

X j
j =

N+1∑
k=0

λ1−k(i2π j)1−k + (RN )
j
j , λ1−k := 〈a1−k〉x ∈ R, ∀0 ≤ k ≤ N + 1 .

Since by assumption X j
j is purely imaginary, the claimed results then follow from

Lemma A.1. ��
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B. Standard Results on Homological Equations

In this appendix we record two standard results on homological equations, used in our
normal form procedure. Without further reference, we use the notations introduced in
the paragraph Notations and terminology in Sect. 1.

Lemma B.1. Let γ ∈ (0, 1), τ > 0, and ω ∈ R
S+ . Assume that

|ω · �| ≥ γ

|�|τ , ∀� ∈ Z
S+\{0},

and that P ∈ C∞(TS+ , B) where B is a Banach space with norm ‖ · ‖B. Then there
exists a unique solution F ∈ C∞(TS+ , B) with zero average of

ω · ∂θ F(θ) + P(θ) = 〈P〉θ , 〈P〉θ :=
∫
TS+

F(θ)dθ = 0 .

It is denoted by F(θ) = −(ω · ∂θ )
−1(P(θ)− 〈P〉θ

)
.

Lemma B.2. Let �⊥ : L2⊥(T1) → L2⊥(T1) be a (possibly unbounded) Fourier multi-
plier of diagonal form, �⊥[w] :=∑

n∈S⊥ �nwnei2πnx , and let 0 < γ < 1, τ > 0, and
ω ∈ R

S+ . Assume that

|ω · � + �n| ≥ γ

〈�〉τ , ∀ (�, n) ∈ Z
S+ × S⊥,

and that P ∈ C∞(TS+ , Hs⊥(T1)) for any s ≥ 0. Then there exists a unique solution
F ∈ C∞(TS+ , H0⊥(T1)) of the equation

(
ω · ∂θ + i�⊥

)F(θ) + P(θ) = 0 .

Furthermore, F ∈ C∞(TS+ , Hs⊥(T1)) for any s ≥ 0.

C. A Local Existence Result for ∂tx=X(x)

The goal of this appendix is to state a local existence result for the equation ∂t x = X (x)
where X is the vector field, introduced in Theorem 4.3 (cf. (4.20), (4.21)),

⎧⎪⎨
⎪⎩

∂tθ = −ω − εω̂ + N(θ)(y, w) +O(θ)
3 (x)

∂t y = O(y)
3 (x)

∂tw = i�⊥w + D⊥(x)[w] + �⊥Ta(x)∂xw +R⊥(x)

(C.1)

where we assume that the assumptions of Theorem 4.3 are satisfied. In particular, ω ∈
�γ , 0 < γ < 1. This local existence result is used in Sect. 7. It reads as follows.

Proposition C.1. There exists σ∗ > 0 (large) so that for any integer s ≥ σ∗, there exist
0 < ε0 ≡ ε0(s, γ ) < 1 (small) and C∗ = C∗(s, γ ) > 1 (large) with the following
property: for any 0 < ε ≤ ε0, there exists T = Tε,s,γ > 0 so that for any initial data
x0 = (θ0, y0, w0) ∈ T

S+ × R
S+ × Hs⊥(T1) with

|y0| ≤ ε , ‖w0‖s ≤ ε , (C.2)
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there exists a unique solution x(t) = (θ(t), y(t), w(t)), t ∈ [−T, T ], of (C.1) with
x(0) = x0 satisfying

θ ∈ C1([−T, T ], T
S+), y ∈ C1([−T, T ], R

S+),

w ∈ C0([−T, T ], Hs⊥(T1)) ∩ C1([−T, T ], Hs−3
⊥ (T1)). (C.3)

Furthermore,

|y(t)|, ‖w(t)‖s , |�(t)| ≤ C∗ε ∀t ∈ [−T, T ] , (C.4)

where

�(t) := θ(t)− θ0 + (ω + εω̂)t −
∫ t

0
N(θ)(y(τ ), w(τ)) dτ. (C.5)

The rest of this appendix is devoted to the proof of Proposition C.1, which is based on
an iterative scheme. For any given x0 satisfying (C.2), define inductively a sequence
x(n)(t) = (θ(n)(t), y(n)(t), w(n)(t)), n ≥ 0, as follows:

x(0)(t) = (θ(0)(t), y(0)(t), w(0)(t)) := x0 = (θ0, y0, w0) (C.6)

whereas for n ≥ 1, x(n)(t) = (θ(n)(t), y(n)(t), w(n)(t)) is defined to be the solution (cf.
Lemma C.1 below) of

⎧⎪⎨
⎪⎩

∂tθ
(n) = −ω − εω̂ + N(θ)(y(n), w(n)) +O(θ)

3 (x(n−1)),
∂t y(n) = O(y)

3 (x(n−1)),
∂tw

(n) = i�⊥w(n) + D⊥(x(n−1))[w(n)] + �⊥Ta(x(n−1))∂xw
(n) +R⊥(x(n−1)),

(C.7)

with initial data x(n)(0) = x0. The following lemma holds.

Lemma C.1. There exists σ∗ > 0 (large) so that for any integer s ≥ σ∗, there exist
ε0 ≡ ε0(s, γ ) > 0 (small) and C∗ ≡ C∗(s, γ ) > 1 (large) with the following property:
for any 0 < ε ≤ ε0(s, γ ), there exists T = Tε,s,γ > 0 so that for any initial data
x0 = (θ0, y0, w0) ∈ T

S+ × R
S+ × Hs⊥(T1) satisfying (C.2) and for any integer n ≥ 0,

the system (C.7) admits a unique solution, satisfying θ(n) ∈ C1([−T, T ], T
S+), y(n) ∈

C1([−T, T ], R
S+), and

w(n) ∈ C0([−T, T ], Hs⊥(T1)) ∩ C1([−T, T ], Hs−3
⊥ (T1)). (C.8)

Furthermore,

|y(n)(t)|, ‖w(n)(t)‖s , |�(n)(t)| ≤ C∗ε , ∀t ∈ [−T, T ] , (C.9)

where �(0)(t) := 0 and

�(n)(t) := θ(n)(t)− θ0 + (ω + εω̂)t −
∫ t

0
N(θ)(y(n−1)(τ ), w(n−1)(τ )) dτ, n ≥ 1 .

(C.10)



1948 T. Kappeler, R. Montalto

Proof. We prove the claimed results by induction on n. For n = 0, by the definition
(C.6) of x(0)(t), the claimed statement holds with T = 1 and with σ∗, ε0 given as in
Theorem 4.3. Now assume that the claimed statement holds at the step n ≥ 0 of the
induction and let us prove it at the step n + 1. We first need to make some preliminary
considerations. Let s ≥ σ∗ and 0 < ε ≤ ε0. Since by (4.21), a is small of order
two and R⊥, O(θ)

3 , O(y)
3 are small of order three, it follows from Theorem 4.3 and the

estimates (C.9), which hold by the induction hypothesis, that there exists a constant
Cs ≡ Cs(γ ) > 0, independent of n, so that for any t ∈ [−T, T ]

|O(θ)
3 (x(n)(t))| , |O(y)

3 (x(n)(t))| ≤ Csε
3, ‖a(x(n)(t))‖σ∗ ≤ Csε

2,

‖R⊥(x(n)(t))‖s ≤ Csε
3

(C.11)

By the second equation in (C.7), one has

y(n+1)(t) = y0 +
∫ t

0
O(y)

3 (x(n)(τ )) dτ,

implying that

y(n+1) ∈ C1([−T, T ], R
S+), |y(n+1)(t)| ≤ ε + TCsε

3 ≤ C∗ε, ∀ t ∈ [−T, T ] ,
(C.12)

where we have chosen T > 0 so that TCsε
2 ≤ 1 small enough. By (C.11) it then also

follows that

T ‖a(x(n))‖σ∗ ≤ TCsε
2 ≤ 1 . (C.13)

To solve the equation for w(n+1) in (C.7), we apply Lemma D.2 in Appendix D with
D(t) = i�⊥ + D⊥(x(n)(t)), a = a(x(n)(t)), and f = R⊥(x(n)(t)) to conclude that there
exists a unique solution w(n+1) of{

∂tw
(n+1) = i�⊥w(n+1) + D⊥(x(n))[w(n+1)] + �⊥Ta(x(n))∂xw

(n+1) +R⊥(x(n))

w(n+1)(0) = w0

in C0([−T, T ], Hs⊥(T1)) ∩ C1([−T, T ], Hs−3
⊥ (T1)) and that w(n+1) satisfies

‖w(n+1)(t)‖s, ‖∂tw(n+1)(t)‖s−3 �s,γ ε + T ‖R⊥(x(n))‖s
(C.11)
�s,γ ε + TCsε

3 ≤ C∗ε
(C.14)

since TCsε
2 ≤ 1. We then define

�(n+1)(t) := θ(n+1)(t)− θ0 + (ω + εω̂)t −
∫ t

0
N(θ)(y(n+1)(τ ), w(n+1)(τ )) dτ. t ∈ [−T, T ].

(C.15)

By the first equation in (C.7), one gets�(n+1)(t) = ∫ t
0 O(θ)

3 (x(n)(τ )) dτ and hence, using
again (C.11),

θ(n+1) ∈ C1([−T, T ], T
S+), |�(n+1)(t)| ≤ C∗ε, ∀t ∈ [−T, T ] . (C.16)

This concludes the proof of the lemma. ��
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In order to prove the convergence of the sequence (xn(t))n≥0, constructed in LemmaC.1,
we prove

Lemma C.2. Under the assumptions of Lemma C.1, for any n ≥ 1,

‖x(n)(·)− x(n−1)(·)‖C0
t Es−1 , ‖∂t (x(n)(·)− x(n−1)(·))‖C0

t Es−4 ≤ 2−n .

Proof. By (C.7), x̂(n)(t) = (θ̂ (n)(t), ŷ(n)(t), ŵ(n)(t)) := x(n)(t)− x(n−1)(t) satisfies
⎧⎪⎨
⎪⎩

∂t θ̂
(n) = f (θ,n) ,

∂t ŷ(n) = f (y,n) ,

∂t ŵ
(n) = i�⊥ŵ(n) + D⊥(x(n))ŵ(n) + �⊥Ta(x(n))∂x ŵ

(n) + f (⊥,n),

(C.17)

with x̂(n)(0) = (0, 0, 0), where

f (θ,n) := N(θ)(y(n), w(n))− N(θ)(y(n−1), w(n−1)) +O(θ)
3 (x(n))−O(θ)

3 (x(n−1)) ,

f (y,n) := O(y)
3 (x(n))−O(y)

3 (x(n−1)) ,

f (⊥,n) :=
(
D⊥(x(n))− D⊥(x(n−1))

)
[w(n−1)] + �⊥Ta(x(n))−a(x(n−1))∂xw

(n−1)

+R⊥(x(n))−R⊥(x(n−1)) .

(C.18)

By the properties stated in (4.21) and by the mean value theorem, for some σ > 0 large
enough and s ≥ σ , one can show that

f (θ,n), f (y,n) ∈ C0([−T, T ], R
S+), | f (θ,n)| � ‖x(n) − x(n−1)‖C0

t Eσ
,

| f (y,n)| � ε2‖x(n) − x(n−1)‖C0
t Eσ

,

f (⊥,n) ∈ C0([−T, T ], Hs−1
⊥ (T1)), ‖ f (⊥,n)‖C0

t H
s−1
x

�s ε‖x(n) − x(n−1)‖C0
t Es−1 .

(C.19)

Hence we immediately conclude that for any t ∈ [−T, T ],
|θ̂ (n)(t)| � T ‖x(n) − x(n−1)‖C0

t Eσ
, |̂y(n)(t)| � T ε2‖x(n) − x(n−1)‖C0

t Eσ
. (C.20)

Furthermore, by applying Lemma D.2, with D(t) := i�⊥ + D⊥(x(n)), a = a(x(n)),
f = f (⊥,n), and by the estimate (C.19) for f (⊥,n), one also deduces that

‖ŵ(n)(t)‖s−1 �s εT ‖x(n) − x(n−1)‖C0
t Es−1 , ∀t ∈ [−T, T ] . (C.21)

Therefore, collecting (C.20), (C.21), using the induction hypothesis, and by taking T
small enough, one gets ‖x(n+1)− x(n)‖C0

t Es−1 ≤ 2−(n+1) which is one of the two claimed

estimates at the step n + 1. The estimate for ∂t (x
(n+1) − x(n)) can be proved in a similar

fashion. ��
By Lemma C.2 and by a standard telescoping argument, one obtains

θ(n)→θ, y(n)→y , ∂tθ
(n) → ∂tθ , ∂t y

(n) → ∂t y uniformly for − T ≤ t ≤ T .

By the estimates (C.8) and by passing to the limit as n → +∞, one then obtains the
bounds (C.3) for �(t) and y(t).
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Furthermore,

w(n) → w in C0([−T, T ], Hs−1
⊥ ) ∩ C1([−T, T ], Hs−4

⊥ (T1)) .

and (θ(t), y(t), w(t)) is a smooth solution of (C.1). Furthermore, arguing as at the end
of the proof of Lemma D.1, one shows that

w ∈ C0([−T, T ], Hs⊥(T1))

and in turn, using the equation, that ∂tw ∈ C0([−T, T ], Hs−3
⊥ (T1)). One also shows that

w(t) satisfies the claimed bound (C.3) by using the bounds on w(n) in (C.9). To prove
the uniqueness, take two smooth solutions x1, x2 satisfying the same initial condition
x1(0) = x0 = x2(0). Then write the equation for the difference x1 − x2 and argue as in
the proof of Lemma C.2 to conclude that

‖x1(t)− x2(t)‖Eσ �
∫ t

0
‖x1(τ )− x2(τ )‖Eσ dτ, ∀t ∈ [−T, T ]

for some σ > 0 (large). By the Gronwall Lemma, x1 = x2. This concludes the proof of
Proposition C.1.

D. On a Class of Linear Para-Differential Equations

In this appendix we discuss a well-posedness result for a linear para-differential equation
of the form

∂tw = D(t)[w] + �⊥Ta∂xw + f , x ∈ T1, t ∈ [−T, T ], (D.1)

in the Sobolev space Hs⊥(T1) for some integer s ≥ σ with σ > 0 sufficiently large.
Here the linear operator D(t) is a time-dependent Fourier multiplier of order m ≥ 1,
D(t)w(x) =∑

n∈S⊥ dn(t)wnei2πnx with

D ∈ C0([−T, T ], B(Hs⊥(T1), H
s−m
⊥ (T1))

)
, D(t) = −D(t)�, ∀t ∈ [−T, T ] ,

(D.2)

and the coefficient a(t, x) of the operator Ta of para-multiplication by a and the forcing
term f (t, x) satisfy

a ∈ C0([−T, T ], Hσ⊥(T1)
)
, f ∈ C0([−T, T ], Hs⊥(T1)

)
. (D.3)

The main result of this appendix is Lemma D.2 which is used in the proof of Proposi-
tion C.1.
First we consider the initial value problem for Eq. (D.1) with vanishing forcing term,

∂tw = D(t)[w] + �⊥Ta∂xw , w(τ, ·) = w0(·) , (D.4)

where the initial time τ is in [−T, T ].
Lemma D.1. There exists σ ≥ m (large) with the following property: Assume that for
some 0 < T ≤ 1 and any s ≥ σ , (D.2)–(D.3) hold and ‖a‖C0

t Hσ
x
≤ 1. Then for any

w0 ∈ Hs⊥(T1), there exists a unique solution w of (D.4) in C0([−T, T ], Hs⊥(T1)) ∩
C1([−T, T ], Hs−m

⊥ (T1)). For any t ∈ [−T, T ], it satisfies the estimate
‖w(t)‖s , ‖∂tw(t)‖s−m �s ‖w0‖s . (D.5)
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Proof. The lemma is proved by constructing a sequence of approximating solutions. To
this end we introduce for any integer N ≥ 1 the finite dimensional subspace HN of
L2⊥(T1),

HN :=
{
u ∈ L2⊥(T1) : u(x) =

∑
j∈S⊥N

une
i2πnx} , S⊥N := S⊥ ∩ [−N , N ] , (D.6)

and denote by �N the corresponding L2−orthogonal projector �N : L2⊥(T1)→ HN .
We consider the truncated equation

∂tw = �N
(D(t)[w] + �⊥Ta∂xw

)
, w(τ, ·) = �Nw0 , (D.7)

where w(t, x) = ∑
n∈S⊥N wn(t)ei2πnx ∈ HN . The equation in (D.7) is a linear non-

autonomous ODE on the finite dimensional space HN and hence it admits a unique
solution w(N ) ∈ C1([−T, T ], HN ). We will show that the sequence (w(N ))N≥1 admits
a limit, which is the solution of (D.4) with the claimed properties. To this end, in a first
step, we prove estimates for the Sobolev norm ‖w(N )(t)‖s .
Bound of ‖w(N )(t)‖s . Note that ‖w(N )(t)‖s = ‖∂sxw(N )(t)‖. Since D(t) is a Fourier
multiplier, the commutator [∂sx , D(t)] vanishes and since for any v ∈ L2⊥(T1),

〈
�⊥u, v

〉 = 〈
u, v

〉
, ∀ u ∈ L2(T1) ,

〈
�Nv, g

〉 = 〈
v, g

〉
, ∀ g ∈ HN ,

one concludes that

∂t‖∂sxw(N )‖ = 〈
∂sx
(D(t)[w(N )] + �N�⊥Ta∂xw(N )

)
, ∂sxw

(N )
〉

+
〈
∂sxw

(N ), ∂sx
(D(t)[w(N )] + �N�⊥Ta∂xw(N )

)〉
= 〈D(t)∂sxw

(N ), ∂sxw
(N )

〉
+
〈
∂sxw

(N ), D(t)∂sxw
(N )

〉
(D.8)

+
〈
∂sx Ta∂xw

(N ), ∂sxw
(N )

〉
+
〈
∂sxw

(N ), ∂sx Ta∂xw
(N )

〉
. (D.9)

Analysis of the terms in (D.8). Since by assumption D(t)� = −D(t), one has
〈D(t)∂sxw

(N ), ∂sxw
(N )

〉
+
〈
∂sxw

(N ), D(t)∂sxw
(N )

〉
= 〈(D(t) +D(t)�

)
∂sxw

(N ), ∂sxw
(N )

〉 = 0 .
(D.10)

Analysis of the terms in (D.9). One computes
〈
∂sx Ta∂xw

(N ) , ∂sxw
(N )

〉
+
〈
∂sxw

(N ) , ∂sx Ta∂xw
(N )

〉
= 〈

Ta∂x∂
s
xw

(N ) , ∂sxw
(N )

〉
+
〈
∂sxw

(N ) , Ta∂x∂
s
xw

(N )
〉

+
〈[∂sx , Ta∂x ]w(N ) , ∂sxw

(N )
〉
+
〈
∂sxw

(N ) , [∂sx , Ta∂x ]w(N )
〉

= 〈(
Ta∂x + (Ta∂x )

�)∂sxw(N ) , ∂sxw
(N )

〉
+
〈[∂sx , Ta∂x ]w(N ) , ∂sxw

(N )
〉
+
〈
∂sxw

(N ) , [∂sx , Ta∂x ]w(N )
〉
.

(D.11)

By Corollary 2.2 (with N = 1, m = 1) there exists an integer σ ≥ 1 so that

‖Ta∂x + (Ta∂x )
�‖B(L2) � ‖a‖σ

and hence by the Cauchy–Schwarz inequality,

|〈(Ta∂x + (Ta∂x )
�)∂sxw(N ) , ∂sxw

(N )
〉| � ‖a‖σ ‖∂sxw(N )‖2 . (D.12)
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Moreover, arguing as in [9, Lemma A.1], one has

‖[∂sx , Ta∂x ]w(N )‖ �s ‖a‖2‖w(N )‖s
σ≥2
�s ‖a‖σ ‖∂sxw(N )‖ .

The latter estimate, together with the Cauchy–Schwarz inequality, imply that

|〈[∂sx , Ta∂x ]w(N ), ∂sxw
(N )

〉
+
〈
∂sxw

(N ) , [∂sx , Ta∂x ]w(N )
〉| �s ‖a‖σ ‖∂sxw(N )‖2 . (D.13)

Using (D.12)–(D.13), one then infers from (D.11)

|〈∂sx Ta∂xw(N ), ∂sxw
(N )

〉
+
〈
∂sxw

(N ), ∂sx Ta∂xw
(N )

〉| �s ‖a‖σ ‖∂sxw(N )‖2 . (D.14)

Combining (D.8), (D.9), (D.10), (D.14), yields the estimate

| ∂t‖∂sxw(N )‖2| �s ‖a‖σ ‖∂sxw(N )‖2, (D.15)

which implies that

‖∂sxw(N )(t)‖2L2 ≤ ‖w0‖2s + C(s)
∣∣∣
∫ t

τ

‖a(t ′)‖σ ‖∂sxw(N )(t ′)‖2 dt ′
∣∣∣

≤‖w0‖2s + C(s)‖a‖C0
t Hσ

x

∣∣∣
∫ t

τ

‖∂sxw(N )(t ′)‖2 dt ′
∣∣∣

(D.16)

for some constant C(s) > 0. The Gronwall Lemma (recall that −T ≤ t, τ ≤ T ) then
implies that

‖w(N )(t)‖2s = ‖∂sxw(N )‖2 ≤ exp
(
C(s)‖a‖C0

t Hσ
x
T
)‖w0‖2s , ∀t ∈ [−T, T ] .

Since by assumption 0 < T ≤ 1 and ‖a‖C0
t Hσ

x
≤ 1, it then follows that

‖w(N )(t)‖2s = ‖∂sxw(N )‖2 ≤ exp(C(s))‖w0‖2s , ∀t ∈ [−T, T ] . (D.17)

Convergence. Now we pass to the limit N → +∞. By (D.17) the sequence of func-
tions w(N ) is bounded in C0([−T, T ], Hs⊥(T1)) ⊆ L∞([−T, T ], Hs⊥(T1)) and, up to
subsequences,

w(N ) w∗
⇀ w in L∞([−T, T ], Hs⊥(T1)) , ‖w‖L∞t Hs

x
≤ lim inf

N→+∞‖w
(N )‖L∞t Hs

x
. (D.18)

Claim: (w(N ))N≥1 converges tow inC0([−T, T ], Hs⊥(T1))∩C1([−T, T ], Hs−m
⊥ (T1)),

and w solves (D.4).
We first prove that w(N ) is a Cauchy sequence in C0([−T, T ], L2⊥(T1)). Indeed, by
(D.7), the difference h(N ) := w(N+1) − w(N ) solves

∂t h
(N ) = D(t)h(N ) + �N+1(�⊥Ta∂xh(N )) + (�N+1 −�N )�⊥Ta∂xw(N ) ,

h(N )(τ ) = (�N+1 −�N )w0 ,

and therefore

∂t‖h(N )(t)‖2 = 〈
∂t h

(N ), h(N )
〉
+
〈
h(N ), ∂t h

(N )
〉

= 〈D(t)h(N ), h(N )
〉
+
〈
h(N ), D(t)h(N )

〉
+
〈
Ta∂x h

(N ), h(N )
〉
+
〈
h(N ), Ta∂x h

(N ))
〉
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+
〈
(�N+1 −�N )�⊥Ta∂xw(N ), h(N )

〉
+
〈
h(N ), (�N+1 −�N )�⊥Ta∂xw(N )

〉
.

(D.19)

Arguing as in (D.10), (D.11)–(D.14), one gets
〈D(t)h(N ), h(N )

〉
+
〈
h(N ), D(t)h(N )

〉 = 0 ,

|〈Ta∂xh(N ), h(N )
〉
+
〈
h(N ), Ta∂xh

(N ))| � ‖a‖σ ‖h(N )‖2 .
(D.20)

Moreover

|〈(�N+1 −�N )�⊥Ta∂xw(N ), h(N )
〉
+
〈
h(N ), (�N+1 −�N )�⊥Ta∂xw(N )

〉|
� ‖(�N+1 −�N )�⊥Ta∂xw(N )‖‖h(N )‖ � ‖h(N )‖2 + ‖(�N+1 −�N )�⊥Ta∂xw(N )‖2

� ‖h(N )‖2 + (N−2‖Ta∂xw(N )‖2
)2 (2.2),(D.17)

� ‖h(N )‖2 + (N−2‖w0‖3
)2

σ≥3
� ‖h(N )‖2 + (N−2‖w0‖σ

)2
. (D.21)

Hence (D.19)–(D.21) imply that

∂t‖h(N )(t)‖2 � ‖h(N )(t)‖2 + N−4‖w0‖2σ
and, since ‖h(N )(τ )‖ ≤ N−2‖w0‖2, we deduce from the Gronwall Lemma that

‖w(N+1) − w(N )‖C0
t L2

x
� N−2‖w0‖σ exp(CT )

1
2

for some constant C > 0. The above inequality, together with a standard telescoping
argument implies that w(N ) is a Cauchy sequence in C0([−T, T ], L2⊥(T1)). Hence
w(N ) → w̃ ∈ C0([−T, T ], L2⊥(T1)). By (D.18) we have

w̃ = w ∈ C0([−T, T ], L2⊥(T1)) ∩ L∞([−T, T ], Hs⊥(T1)).

Next, for any s̄ ∈ [0, s) one has by the interpolation inequality

‖w(N ) − w‖L∞t H s̄
x
≤ ‖w(N ) − w‖1−λ

L∞t L2
x
‖w(N ) − w‖λL∞t Hs

x
, λ := s̄/s,

and, since w(N ) is bounded in L∞([−T, T ], Hs⊥(T1)) (see (D.17)), w ∈ L∞([−T, T ],
Hs⊥(T1)), and w(N ) → w ∈ C0([−T, T ], L2⊥(T1)), we deduce that w(N ) → w in
C0([−T, T ], Hs̄⊥(T1)). Moreover we deduce

∂tw
(N ) = �N

(D(t)[w(N )] + �⊥Ta∂xw(N )
)→

D(t)[w] + �⊥Ta∂xw in C0([−T, T ], Hs̄−m
⊥ (T1)) , ∀s̄ ∈ [0, s) .

As a consequence w ∈ C1([−T, T ], Hs̄−m
⊥ (T1)) and ∂tw = D(t)[w] + �⊥Ta∂xw

solves (D.4).
Finally, arguing as in [42], Proposition 5.1.D, it follows that the function t → ‖w(t)‖2s
is Lipschitz. Furthermore, one can show that if tn → t then w(tn) ⇀ w(t) weakly in
Hs⊥(T1), because w(tn)→ w(t) in Hs̄⊥(T1) for any s̄ ∈ [0, s). As a consequence the se-
quencew(tn)→ w(t) strongly in Hs⊥(T1). This proves thatw ∈ C0([−T, T ], Hs⊥(T1))

and therefore ∂tw ∈ C0([−T, T ], Hs−m
⊥ (T1)).
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Uniqueness. If w1, w2 ∈ C0([−T, T ], Hs⊥(T1)) ∩ C1([−T, T ], Hs−m
⊥ (T1)), s ≥ σ ,

are solutions of (D.4) with w1(τ ) = w2(τ ) ∈ Hs⊥(T1), then h := w1 − w2 solves

∂t h = D(t)h + �⊥Ta∂xh , h(τ ) = 0 .

Arguing as in the proofs of the previous energy estimates, we deduce the energy in-
equality ∂t‖h(t)‖2 ≤ C‖h(t)‖2. Since h(τ ) = 0, the Gronwall Lemma implies that
‖h(t)‖2 = 0, for any t ∈ [−T, T ]. This shows the uniqueness.
The estimate for ‖w‖s in (D.5) then follows by (D.17)–(D.18) and the one of ‖∂tw‖s−m
in (D.5) by using the equation. ��
In the next lemma we consider the inhomogeneous equation (D.1).

Lemma D.2. Let σ ≥ m and m be given as in Lemma D.1 and assume that for some
0 < T ≤ 1 and s ≥ σ , (D.2)–(D.3) hold and ‖a‖C0

t Hσ
x
≤ 1. Then for any w0 ∈

Hs⊥(T1), there exists a unique solution t �→ w(t) of (D.1) in C0([−T, T ], Hs⊥(T1)) ∩
C1([−T, T ], Hs−m

⊥ (T1)), with w(0) = w0. For any t ∈ [−T, T ] it satisfies,

‖w(t)‖s �s ‖w0‖s +
∫ t

0
‖ f (τ )‖s dτ �s ‖w0‖s + T ‖ f ‖C0

t Hs
x
,

‖∂tw(t)‖s−m �s ‖w0‖s + T ‖ f ‖C0
t Hs

x
, ∀t ∈ [−T, T ].

(D.22)

Proof. For any t, τ ∈ [−T, T ], denote by �(τ, t) the flow map of the para-differential
equation (D.4),

∂tw = D(t)[w] + �⊥Ta∂xw , w(τ, ·) = w0(·) .

By LemmaD.1,�(τ, t) is a bounded linear operator Hs⊥(T1)→ Hs⊥(T1) for any s ≥ σ .
The estimate (D.5) implies that

‖�(τ, t)w0‖s �s ‖w0‖s, ‖∂t�(τ, t)w0‖s−m �s ‖w0‖s .

Theunique solutionof theEq. (D.1) inC0([−T, T ], Hs⊥(T1))∩C1([−T, T ], Hs−m
⊥ (T1))

with initial data w(0) = w0 is then given by the Duhamel formula w(t) = �(0, t)w0 +∫ t
0 �(τ, t) f (τ ) dτ and the claimed estimates easily follow. ��
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