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Abstract: In this paper we obtain the following stability result for periodic multi-
solitons of the KdV equation: We prove that under any given semilinear Hamiltonian
perturbation of small size ¢ > 0, a large class of periodic multi-solitons of the KdV
equation, including ones of large amplitude, are orbitally stable for a time interval of
length at least O (¢2). To the best of our knowledge, this is the first stability result of
such type for periodic multi-solitons of large size of an integrable PDE.
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1. Introduction

The Korteweg-de Vries (KdV) equation
du = —02u + 6ud,u (1.1)

is one of the most important model equations for describing dispersive phenomena.
It is named after the two Dutch mathematician Korteweg and de Vries [29] (cf. also
Boussinesq [14], Raleigh [40]) and originally was proposed as a model equation in
one space dimension for long surface waves of water in a narrow and shallow channel.
Today it is used in many branches of physics as well as in the engineering sciences.
The seminal discovery in the late sixties that (1.1) admits infinitely many conservation
laws ([34,38]), and the development of the inverse scattering transform method ( [24])
led to the modern theory of integrable systems of finite and infinite dimension (see e.g.
[20,22], and references therein). More recently, as one of the most prominent examples
among dispersive equations, (1.1) played a major role in the development of the theory
of dispersive PDEs to which many of the leading analysts of our times contributed. In
particular, the (globally in time) well-posedness theory of (1.1) has been established in
various setups in great detail — see [19].

A distinguished feature of Eq. (1.1) is the existence of sharply localized traveling
wave solutions of arbitrarily large amplitude and particle like properties. Kruskal and
Zabusky, who studied them in numerical experiments in the early sixties (cf. [30]), coined
the name ’soliton’ for them. More generally, they found solutions, which are localized
near finitely many points in space, referred to as multi-solitons. In the periodic setup,
these solutions often are referred to as periodic multi-solitons or finite gap solutions.
Due to their importance in applications, various stability aspects have been considered
such as the long time asymptotics of solutions with initial data near (periodic) multi-
solitons (orbital stability, soliton resolution conjecture). Two major questions arise in
connection with the structural stability of (1.1). One of them concerns the persistence
of the (periodic) multi-solitons under perturbations of (1.1), and the other one concerns
the long time asymptotics of solutions of perturbations of (1.1) with initial data close
to a (periodic) multi-soliton. In the periodic setup, the first question has been studied
quite extensively by developing KAM methods, pioneered by Kolmogorov, Arnold, and
Moser to treat perturbations of finite dimensional integrable system, for PDEs (cf. [1,8,
12,15,28,31-33,35,39,41], and references therein), whereas the second one turned out
to be quite challenging and little is known so far. Our goal is to address this longstanding
open problem.

The aim of this paper is to study in the periodic setup the long time asymptotics of the
solutions of Hamiltonian perturbations of (1.1) with initial data close to a periodic multi-
soliton of arbitrary large amplitude. To describe the class of perturbations considered,
recall that (1.1) with the space periodic variable x € T| := R/Z can be written in
Hamiltonian form

1

du = VH""w),  H"w) ;:/ (%(8xu)2+u3)dx, (1.2)
0
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where V H*4" (1) denotes the L?—gradient of H*“” and where , is the Poisson structure,
corresponding to the Poisson bracket defined for functionals F, G by

1
(F,G}u) = / VF3,VGdx. (1.3)
0

We consider semilinear Hamiltonian perturbations of (1.1) of the form
du = —02u + 6udyu + e F(u) (1.4)
where 0 < ¢ < 1 is a small parameter and F is a semilinear Hamiltonian vector field
F(u) = 0,V Pr(u). (1.5)

Here Py is a Hamiltonian of the form

1
Pr(u) ::/O f(x,u(x))dx (1.6)

and f a C*°—smooth density
fiTixR—>R, x,0)~ f(x,0), (1.7)
so that with f'(x, £) := 8 f (x, ¢) and f"(x,¢) == 97 f (x, ©),

F(u)(x) = s VPy(u)(x) = 35 f'(x, u(x) + £ (x, u(x))dcu(x).

To state our main results, we first need to introduce some more notations. Since
u +— (i), = fol u dx is a Casimir for the Poisson bracket (1.3) and hence a prime
integral of (1.4), we restrict our attention to spaces of functions with zero mean (cf. [28],
Section 13) and choose as phase spaces of (1.4) the scale of Sobolev spaces Hj(T1),
NS Z>0,

1
H(Ty) :={q € H(Ty) : fo g(x)dx =0},  L3(Ty) = HJ(Ty),

where
HY(T)=H*'(T\,R):={q=)_ que”™" : q, € C, q_n=7, Yn € Z, ||qlly <00},
nez
(1.8)
and

lals = (3> 1g.P)° . ()= max{l,|n}, ¥neZ.

nez

On L%(Tl ), the Poisson structure 9, is nondegenerate and the corresponding symplectic
form is given by

1
1.
Wia(u, v) = / (E)x_lu)v dx, 8;114 = Z e Yu,v € L%(T]).
0 0 1n
n#0
(1.9)
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Note that the Hamiltonian vector field X 5 («) = 0,V H (1), associated with the Hamil-
tonian H, satisfies d H (u)[-] = WL% Xy, ).

Our results can informally be stated as follows: forany f € C°°(T| xR), s sufficiently
large, ¢ > O sufficiently small, and for most of the finite gap solutions g : ¢ — ¢(¢, -) of
(1.1), the following holds: for any initial data ug € Hy(T1), which is e-close in Hg(T1)
to the orbit O, := {g(¢, ) : t € R} of ¢, the perturbed equation (1.4) admits a unique
solution ¢ +> u(z,-) in Hj(Ty) with initial data u(0, -) = ug and life span at least
[—=T,T], T = O(¢2). The solution u(, -) stays e-close in Hg(Ty) to the orbit O,,.

To state our results in precise terms, we need to define the notion of finite gap solution
and the invariant tori, on which they evolve, and explain for which of these solutions
the above stability results hold. Since these finite gap solutions are not small, we need
to introduce coordinates to describe them. Most conveniently, this can be done in terms
of a Euclidean version of action angle coordinates, referred to as Birkhoff coordinates.
Let us now explain this in detail.

According to [28], the KdV equation (1.2) on T is an integrable PDE in the strongest
possible sense, meaning that it admits globally defined canonical coordinates on L%(Tl)
so that when expressed in these coordinates, (1.2) can be solved by quadrature.

To describe these coordinates in more detail, we introduce for any s € Zx¢ the
weighted £2—sequence spaces

By = {(Wanzo € ).+ w_p =W, Vu = 1}, €5 = h),
where hyy . = h*(Z\{0}, C) is given by
1
R e o= {w = (Wp)nzo : wy € C V0 £0, Jwlly < 00}, [wlg:=()_ Inl*wal?)>.
n#0

By [28] there exists a real analytic diffeomorphism, referred to as (complex) Birkhoff
map,

QMY LE(T)) > €5, q > w(g) == (Wa(g))n0 -
which is canonical in the sense that

1
{w,, w_,} = / Vw,0,Vw_, dx = 2mwin, VYn #0, (1.10)
0

whereas the brackets between all other coordinate functions vanish, and which has
the property that for any s € N, the restriction of ®*4? to H(Ty) is a real analytic

diffeomorphism with range hy, pkdv . Hj(Ty) — hy, so that the KdV Hamiltonian,
when expressed in the coordinates wy, n # 0, is in normal form. More precisely,

gkdv o ykdv :h(l) >R, whdv . (@kdvy-1
is a real analytic function H*?V of the actions I (w) = (I, (w))n>1 alone,
HEAV 013 SR T MR, Iy(w) = 2mnwaw_y, Yn > 1,
where Ei’3 denotes the positive quadrant of the weighted ¢! —sequence space,

o0
(B3 =03 R) = {1 = U)p=1 CR : Zn3lln| <oo}, N:=2Z.

n=1
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Equation (1.2), when expressed in the coordinates w,, n # 0, then takes the form
Wy = it (Dw,,  ¥n £0, (1.11)
where wﬁd” (1), n # 0, denote the KdV frequencies

k(1) = 9, HMY(D) M) = =0k (D), Yn> 1. (1.12)

—n

Since by (1.10) the action variables Poisson commute, {1, I,,}, Vn, m > 1, it follows
that they are prime integrals of (1.2) and so are the frequencies w’;d”(l ), n # 0. As
a consequence, (1.11) can be solved by quadrature. Finally, the differential do®*?" :
L3(Ty) — €3 of @9V at ¢ = 0 is the Fourier transform (cf. [28], Theorem 9.8)

1
F LTy — €5, g+ (@nto, qn = / q(x)e 2 dx,
0

and hence doW*?" is given by the inverse Fourier transform F~!. We remark that the
coordinates wi, = w4,(q), referred to as (complex) Birkhoff coordinates, are related
to the (real) Birkhoff coordinates x,,, y,, n > 1, introduced in [28], by

Wy + W_y W, — Wy

b ¥ = 1—7
2./nm n 2/nmw

where /- denotes the principal branch of the square root, /- = /-.
The Birkhoff coordinates are well suited to describe the finite gap solutions of (1.2).
For any finite subset Sy C N, let

xnz Vnzla

S:=8,U(=8), St:=7Z\(Su{o).
We denote by M the submanifold of L%(']I‘l), given by
Mg = {q = pkdv(y)) . wy(q) =0 Vn e SJ‘},

whose elements are referred to as S-gap potentials, and by M¢ the open subset of My,
consisting of the so called proper S-gap potentials,

M¢:={qeMs : w,(q) #0 Yn € S}.

Note that My is contained in Ng>q Hg (T1) and hence consists of C°°-smooth potentials
and that Mg can be parametrized by the action-angle coordinates 6 = (6x)kes, € TS+,
and I = (Iy)res, € R,

Ws, 1 MG =TS x RY) — Mg, (60, 1) > Vs, (0, 1) := ¥ (w(, 1))
where T := R/27xZ and w(0, I) = (w, (9, 1))n0 is defined by
Win =1,/ Qrn)e™ vn e S,, wp =0, VnesSt.  (1.13)
Introduce

no={wehi iw, =w, Yne S}, hl =h(ST0).



1876 T. Kappeler, R. Montalto

For notational convenience, we view ./\/l‘g X hj_ as a subset of h8~ Its elements are
denoted by

0 = (911)]1654.9 I = (In)n€S+, w = (wn)ngsl-
and it is endowed with the canonical Poisson bracket, given by
(.0, =1, VneS,, {wpw_,}=1i2rn, VneS:=5'nN,

whereas the brackets between all other coordinate functions vanish.
It is convenient to introduce the frequency vector w (/) (cf. (1.12)),

() = (@ (1,0)),cs, - (1.14)

By [11], the action to frequency map o : Ri*o — RS, I + w([), is a local diffeo-

morphism. Throughout the paper, we denote by E C RSO the closure of a bounded,
open, nonempty set so that the restriction of w to E is a diffeomorphism onto its image
IT := w(E) and so that for some § > 0,

E + Bs,(8) CRY,

where Bg, () is the ball in RS+ of radius 8 > 0, centered at the origin. We remark that for

any [/ € E+ Bg, (8), the nth action [, = I,,(w), n € Sy, is of the form I,,(w) = 1,§°> +y

(0) (0)

where I, O._ = 2mnwy E and

0 0 0
Vo = (wy, — wﬁlo))w(_,), + w,(lo)(w,n — w(_,z) + (w, — w,go))(w,n — w(_,z). (1.15)
The inverse of @ : & — I1 is denoted by p,
u:Ill— 2, o uw).

In what follows, we will consider the frequency vector w as a parameter. For any w € I1,
a S—gap solution of (1.2) is defined as a solution of the form

gt x;0) = Vs, (09 +or, p@)(x), 09 eT, (1.16)

whereas a finite gap solution of (1.2) is a solution of the form (1.16) for some § =
S+ U (—S4) with §4 C N finite. The S—gap solution ¢ — ¢(z, x; @) is a curve on the
|S+|—dimensional torus

Tu) = Ws, (T% x {u().

We note that T, () is invariant under (1.2) and Lyapunov stable in Hj(T1) forany s > 0.
More precisely, for any ¢ > 0 there exists § > 0, depending on s, so that for any initial
data ug € Hg(Ty) with

distir (w0 Tuw) <8, distas (w0, uw) =l fuo—qlly,  (117)
q ()

the solution u (¢, -) of (1.2) with u(0, -) = ug satisfies

distgs (u(r,), Tuw)) <€, VieR.
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Finally, we introduce the so called normal frequencies,
Qj() == " (u(),0), jeSt well, (1.18)
and for any given t > |S,], the subsets IT,, of I,
M, =n_ 0%, 0<y<l, (1.19)
where H](,i), 0 <i <3, are given by
# Ve e Z5\(0}}

NP ={wel : |o-£+Qw)| =

Ny :={wel : |o-f >

14
(e

NP ={well : |o-£+Q) ) +Q,w)| =

VL, j) € Z% x St}

)4
(o (1.20)
V(L i, j2) € 2% x ST x ST with (€, i, j2) # (0, ji. —jD}

14
(07 (j1)2(72)*()a)?
YL, ji, ja, j3) € Z% x ST x ST x St with ji + jm #£0 Yk, m € {1,2,3}} .

N9 :={well : |o-£+Q),)+Q)@) +Qj ()] =

Here we used the standard notation for vectors y in R",

n
(y) ==max{L [y]}, Iyl:==OQ Iy VyeR". (1.21)
j=1

We refer to Hg,] ), 0 < j < 3, as the jth Melnikov conditions and note that the third
Melnikov conditions allow for ’aloss of derivatives in space’—see item (i7) in Comments
on Theorem 1.1 below.

The goal of this paper is to prove a long time stability result of finite gap solutions
(1.16) of the Korteweg-de Vries equation on T'. To state it, we denote for any Banach
space X with norm || - || x, integer m > 0, and interval J C R, by C™(J, X) the Banach
space of functions f : J — X, which are m times continuously differentiable, endowed

with the supremum norm, ||f||C,m ‘= maxo<;<m sup{||8,jf(t)||x 1teJ;0<j<m}

Theorem 1.1. Let f be a function in C*°(T| x R) (c¢f. (1.6)), Sy be a finite subset of N,
and t be a number with t > |Sy| (c¢f. (1.20)). Then for any integer s sufficiently large
and any w € I1),, 0 < y < 1, there exists 0 < g9 = &o(s, y) < 1 with the following
properties: for any 0 < & < &y and any initial data uy € Hg(Ty), satisfying

dist s (uo, Su(w)) <e&, (1.22)
equation (1.4) admits a unique solution
t > u(t, )inCO((=T, T1, Hy(T1) N C (=T, T1, Hy—>(T1))

with initial data u(0, x) = ug(x) and T = T 5, = O (¢72). Moreover, u satisfies the
estimate

distps (u(r, ), Tpw)) Ssp €2 ¥ —T <t =T,
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where the distance function distys is defined in (1.17). Furthermore, there exists 0 <
a < 1 sothat forany 0 <y < 1, the Lebesgue measure |II\I1, | of TI\I1,, satisfies

ITI\IT, | < y®, implying that lim0|1'[V| = |IT] . (1.23)
Vg

Here and in the sequel, the notation h <. ... g means that the real valued function h,
depending on various variables, satisfies an estimate of the form h < Cg where g is
also a real valued function, typically small, and the constant C > 0 only depends on the
parameters «, . . .. For notational convenience, the dependence of the constant C on f,
S+, and T is not indicated.

Comments on Theorem 1.1

(i) Initial data. Note that the size of the distance of the initial value u to the considered
S —gap solution of the KdV equation (cf. (1.22)) is assumed to be of the same order

of magnitude as the size of the perturbation & F (u) in (1.4).
(ii) Measure estimate (1.23). The proof of the measure estimates (1.23) requires that

the third Melnikov conditions 1'[5,3) in (1.20) allow for a loss of derivatives in space.
Furthermore, a key ingredient into the proof of (1.23) is the case n = 3 of Fermat’s
Last Theorem, proved by Euler [21] (cf. Lemma 8.3).

(iii) Assumptions in Theorem 1.1. The results of Theorem 1.1 hold for any density

f(x,¢) of class C? with o sufficiently large. Furthermore, corresponding results
hold for (invariant tori of) finite gap solutions of the KdV equation in the affine
spaces ¢ + Hj (T1), c € R. We assume in this paper that f is C°°—smooth and that
¢ = 0 merely to simplify the exposition.
In order to limit the size of the paper, we assume the perturbation ¢ F () to be
semilinear (cf. (1.5)), leaving the case of a quasilinear one for future work. Most
likely, the elaborate method designed in [23] will allow to transform quasilinear
perturbations into normal form while preserving the Hamiltonian structure of the
equation.

(iv) Time of stability. It seems unlikely that the stability results of Theorem 1.1 in the
generality stated are valid for time intervals of size larger than O (¢~2) since the
conditions, required to hold for the frequencies Q2;, j € SL, so that the normal
form procedure could be implemented, are too strong. See Remark 8.1 at the end
of Sect. 8. Actually, it might be possible that the (almost) resonances of the KdV
frequencies of degree four can be used to prove instability results for solutions of
the perturbed equation (1.4)—see [16,25] and references therein for related results
for Schrodinger equations in two space dimension.

(v) Conservation of momentum. If the density f of the perturbation Py(u) = fol
f(x,u(x))dx does not explicitely depend on x, then the momentum M (u) :=
% fT| u® dx is a prime integral of Eq. (1.4). We plan to prove in future work that
the stability time can be improved in such a case.

(v) Integrable PDEs. The method of proof of Theorem 1.1 is quite general. We expect
that for any integrable PDE, admitting coordinates of the type constructed in [27], a
corresponding version of Theorem 1.1 holds, up to the measure estimates related to
the nonresonance conditions for the frequencies of the integrable PDE considered.
These estimates might require specific arithmetic properties of the frequencies—
see item (i) above.

To explain the main ideas of the proof, we first need to introduce some terminology
and additional notations. They will be used throughout the paper.
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Notations and terminology. For any finite subset Sy C N, Li (Ty) is the subspace, given
by

L3(T) ={w= Y wye™ e LT}, St =7Z\(SU(=S)U{0}). (1.24)

neS+

and I, denotes the L?—orthogonal projector onto the subspace L2l (Ty).Forany s > 0,
we set

HS (Ty) := H (T1) N LA (Ty),  HY(Ty) := L3 (Ty). (1.25)
By & we denote the phase space and by E; the corresponding tangent space, given by

E =T x RS x H{ (T, £€=&, E;:= RS x RS+ x H{(Ty), E=E,
(1.26)

where Ty = R/Z and T = R/2nZ. Elements of £ are denoted by r = (0, y, w) and
the ones of its tangent space E byT = (9,7, w). Fors > 0, H 1 (T1)* denotes the dual
space of H{ (Ty), which is canonically identified with the Sobolev space Hf (Ty) of
distributions. The spaces £_; and E_; are then defined as in (1.26). On E, we denote
by (-, -) £ the inner product defined by

(@1, 51, D), 62,52, W), =01 - 02 + 31 - V2 + (D1, D) (1.27)

where (-, -) is the standard real scalar product on Li. For notational convenience, IT |
also denotes the projector of E; onto its third component,

M, :E — H{(Ty)), B,5.0)— 0.

For any 0 < § < 1, we denote by By, () the open ball in RS+ of radius § centered at 0
and by B7 (8), s > 0, the corresponding one in H7} (T}). Fors = 0, we also write B (§)
instead of Bﬂ (8). These balls are used to define the following open neighborhoods in
ESv N Z Oa

V'(8) :=T;* x Bs,(8) x BS.(8), V(©) =18, 0<5<1. (1.28)

For notational convenience, often without stating it explicitly, § > 0 will take on different
values in the course of our arguments. In particular, § > 0 typically will depend on s.
(Note thatby (1.15), the coordinates y = (y,)nes, are of the same order as the coordinates

w = (wn)neSL)
Forany k > 1, 3;% : L?(Ty) — L3(T)) is the linear operator, defined by

a—k[ 271inx] — 1

27i —k _
' Wé’ X , Vn 75 0, and 8x [1] =0.

The space V*(§) is endowed with the symplectic form
W= (Zjes+dyj AdB;) W, (1.29)

where W, is the restriction to Lf_(Tl) of the symplectic form WL(Z) defined in (1.9).
Throughout the paper, the Hamiltonians considered depend on the small parameter ¢ €
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[0,&0], 0 < g9 < 1, and are C*°-smooth maps, V*(§) x [0, 9] — R. Given such a
Hamiltonian H, we often do not indicate the dependence of H on the parameter €. The
Hamiltonian vector field of H is denoted by Xg. It is given by

Xu@ =JVH® = (- VyH@), VeH ), 0 VLH()) (1.30)
where 7 is the Poisson structure, associated to the symplectic form W,
J:Es— Ex1, (6,5,0) > (=5,6,0,0) (1.31)

and where V| H(¢) = V,, H (¢) denotes the L2 — gradient of H with respectto the variable
w. For notational convenience, we denote by {F, G} the Poisson bracket corresponding

to J,
{F,G} =W(XF,Xg) =(VF, JVG),
= —VoF -VyG+V,F -VyG+(V.F, 0,V.G). (1.32)

Given a Hamiltonian vector field X : V*(8) x [0, e9] — E; with Hamiltonian F,
we denote by ®p(t, ) or Py, (7, ) the flow generated by X r. For the vector fields
X F considered in this paper, there exists 0 < 8’ < § so that for any t € [—1, 1], the
flow map V*(8') — V3(8), t > ®p(t,1) is well defined. The Taylor expansion of
T+> H o ®p(r,r) at t = 0 can be computed as

1
Ho®p(t,p) = H( +t{H, F}(;)+12/ (I =0D{{H, F}, F}o ®p(tr,p)dt. (1.33)
0

We will also need to consider C°°-smooth vector fields, which are not necessarily
Hamiltonian,

X=X xO X5 : V) x [0,e0] > Ey,
where X X©) and X are the components of X,
X xOVs8) x [0,60] = RS, XL :V5(8) x [0, e0] — HS(Ty).

The corresponding flow is denoted by @ x (z, -). Again we will only consider vector fields
X with the property that there exists 0 < 8’ < § so that for any T € [—1, 1], ®x(z, -) is
well defined on V* (§'). Given two C*°-smooth vector fields X, Y : V*(8) x[0, 9] — Ej,
the commutator [X, Y] is defined as

[X,Y]@) =dXOY©] -dY©IX@®]. (1.34)

The pull-back of a vector field X : V*(§) — E; by a C*°-smooth diffeomorphism
® : V¥(8') — V*(8) is defined as,

P*X(x) :=dd@) ' X (1)), Vi e V(8. (1.35)

If ®,(-) = ®y(z, ) is the flow of a vector field Y, then the Taylor expansion of t
®¥ X (r) at T = O reads

1
PTX (@) =X(2£)+T/0 dP (T, 1)~ [X, YI(D (1, 1)) di
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1
=X +7[X, Y] +T2fo (1 =0@dP@r, )" [[X, Y], YI(® (T, 1)) dr .

(1.36)

In the case T = 1, we will often write ®} X instead of ®7X. Clearlyif X = Xp,Y = Yr
are Hamiltonian vector fields, then

[X.Y]=Xur). (@y(t, )X = XHody(z,) -

Given two linear operators A, B, acting on L%(T)) (or Li('ﬂ‘ 1)), their commutator is
conveniently denoted by [A, Bljin,

[A, Bliin = AB — BA. (1.37)

Moreover, given a densely defined linear operator A : Lf_(Tl) — Lzl(Tl), whose

. . =/
domain contains the elements of the Fourier basis ¢27/* j € S+ we denote by Aj- or

[A]j:/ the (Fourier) matrix coefficients of A,
-/ 1 . ./ . .
Aj‘ ::A A[6127Tj X]e—IZHJX dx, j, J-/ c Sl.

Given a Banach space (X, || - ||x), we denote by C;O(VS (8) x [0, e0], X) the space of
C functions V*(8) x [0, 9] — X with all derivatives bounded.

In our normal form procedure, we need to take into account the order of vanishing with
respect to the variables y, w and the small parameter ¢. The following definition turns
out to be convenient.

Definition 1.1. Let (B, || - || ) be a Banach space and p € Z>g. A C*°-smooth map
g:V'(8) x[0,e0] = B, (r, &) > g(x, &)

is said to be small of order p ifforany 8 € Z;*O and ki, ko € Zsowith |B|+k1+ka < p—1

d?90981¢(6,0,0,00=0, Vo eT. (1.38)

Note that if g is small of order p, then
lg@ ells Sg Uyl +lwls+e)”,  Yr=(8,y,w) € V'), Ve €0, &,

and for any o € Zi*o, g g is small of order p as well.

Given two Banach spaces (X, || - [|x), (Y, || - |ly), we denote by B(X, Y) the space
of bounded linear operators X — Y. If X = Y, we write 5(X) instead of B(X, X).
Moreover for any integer p > 2, we denote by B,(X, Y), the space of bounded, p-
multilinear maps M : X? — Y, equipped with the standard norm,

IMliB,x.v) = sup (Mluy,...,upllly, MeB,(X,Y). (1.39)
flerllx, o llupllx <1
If X =Y, we write B,(X) instead of B, (X, X). Furthermore, given open sets U C X
and V C Y, we denote by C;O(U, V) the space of maps f : U — V which are
C*°-smooth and together with each of its derivatives, bounded.

Overview of the proof of Theorem 1.1. We prove Theorem 1.1 by the means of a
normal form procedure. A key ingredient are canonical coordinates near a torus T, («)
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of arbitrary size, constructed in [27]. They are obtained by first linearizing the Birkhoff
map dFV at % .() and then constructing a symplectic corrector. The new coordinates

yield a family of canonical transformations dDﬁd”, parametrized by u = pu(w), w € I1.
One of the main features of these transformations is that they admit expansions in terms
of pseudo-differential operators up to a remainder of arbitrary negative order. To prove
Theorem 1.1 we then follow a strategy developed in [7] in the context of water waves.

In a first step, referred to as Step 1, we write the perturbed Hamiltonian H*4V + ¢ P 1
in the new coordinates (cf. Theorem 4.1). More precisely, in Theorem 4.1, we rephrase
[27, Theorem 1.1] in a form taylored to our needs and in Corollary 4.1, we compute
for any given 1 = p(w), w € I, and ¢t = (¥, y, w) € V!(8) the Taylor expansion of
He = (de” +ePyr)o Cbﬁ‘i” at (@, 0, 0) up to order three in the variables y, w, and ¢,

Hen (0, y, w) = Ny (y, w) + Pe (0, y, w), (1.40)
1 1
Nu(y, w) =0 y+5Qs, @)1yl y+ §<Di QL@w, w), (141

where Qg, (@) is given by the Si x Sy matrix (9y; a)f.‘d”(u, 0))i,jes, and where DJ__1 :
L3 (Ty) — L% (T)) and Q| (0) = Qg1 (») : L3 (T1) — L2 (Ty) are Fourier multipli-
ers in diagonal form,

D' [w] = Z — W Q (w)[w] = Z Qp(@)w, e 2™ (1.42)

neS+ nesSt

with 2, (w) given by (1.18). In order to simplify notation, in the sequel, we often will not
indicate the dependence of quantities such as Hy ;;, Pe p, Q1 (@), ... oneg, u = u(w),
and w.

We note that 2 is an unbounded operator. For any r = (6, y, w), P(xr) can be
expanded as

P) = &(Poo©®) + Pio(0) - y + (Po1(6), w) + Pe(r) , (1.43)

where P, (r) is small of order three (cf. Definition (1.1)). The Hamiltonian vector field
X7, associated to H, is given at any pointr = (6, y, w) by

—VyH () —w — Qg [y] = eP1o(0) — VyP.(r)
Xn@=| VeH® | =]eVo(Poo(®) +Pio®) - y+ (Poi(0), w)) + VoPe(r)
xVLIH®) Q1w + €3, Po1(0) + 9x V1 Pe(r)

(1.44)

We also show that the normal component 9,V P, of the Hamiltonian vector field Xp,
is the sum of a para-differential vector field of order one (cf. Definition 3.1 in Sect. 3)
and a smoothing vector field (cf. Definition 3.3 in Sect. 3), i.e., forr = (6, y, w),

N+1

RVIP(®) =T Y Ty e “w+ Ry Q). (1.45)
k=0

where for any 0 < k < N + 1, Ty,_,(p) is the operator of para-multiplication with

aj—k(x) € H5(Ty) (cf. (2.1) in Sect. 2), which is small of order one, and where Rﬁ ()
is a regularizing vector field, which is small of order two.
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In Step 2, we apply a regularization procedure, which conjugates the vector field
(1.44) to another one, which is a smoothing perturbation of a vector field in diagonal
form. Since the torus T, () in the coordinates (6, y, w) is described by {y = 0, w = 0},
the variables y, w can be used to measure the distance of a solution of the equation

360 = —V,H
&y = VoH (1.46)
dw =9,V H

from €, (. Theorem 1.1 follows from Theorem 4.2 in Sect. 4, which states that for p in
a large subset of E and for any initial data ro = (8o, Yo, wo), satisfying |yol, [[wolls < &

with s > 0 large enough, the solution ¢ + r(¢) = (0(¢), y(), w(t)) of (1.46) exists on
a time interval of the form [-T, T| with T =T 5, = 0(8_2) and

lyOL lw®lls Ss.p 6 Ve €[-T,T].

We deduce Theorem 4.2 from Theorem 4.3 and a local existence Theorem (cf. Ap-
pendix C), using energy estimates (cf. Sect. 7). Theorem 4.3 provides coordinates hav-
ing the property that the vector field in (1.46), when expressed in these coordinates,
is a vector field X = (X©@, X, x1) with the following two features: (F1) The y-
component X of X is small of order three. (F2) The normal component X (r) of
X(x)atr = (0, y, w) reads

Xt () =iQ w +DH@[w] + [ Ty dyw + RE(1) (1.47)

where D (r) is a skew-adjoint Fourier multiplier of order one (depending nonlinearly
onyp), a(r) € H*(Ty) is small of order two, and the remainder Rt (r) is small of order
three. In broad terms, our normal form procedure diagonalizes the normal component
X1 of the vector field X up to a term, which is small of order three and which can be
controlled by energy estimates. The procedure consists in eliminating/normalizing the
terms of the Taylor expansion (1.40)—(1.43) of X4, which are p-homogeneous in y, w,
e with 0 < p < 2 (cf. Definition 1.1).

Based on the normal form procedure, developed in Sects. 5 and 6, Theorem 4.3 is
proved in Sect. 7. In Sect. 8 we show that the Lebesgue measure |IT\I1,, | of IT\IT,, (cf.
(1.20)) satisfies |IT\IT,,| < y* for some 0 < a < 1. As already mentioned in item (ii)
of Comments on Theorem 1.1, akey ingredient of the proof is the case n = 3 of Fermat’s
Last Theorem, proved by Euler [21] (cf. Lemma 8.3). Sections 2 and 3 are prelimimary
where para-differential calculus and para-differential vector fields are discussed to the
extent needed in the paper.

We finish our overview of the proof of Theorem 1.1 by describing in some more
detail the normal form procedure, developed in Sects. 5-6, to prove Theorem 4.3. In order
to setup such a procedure in an effective way, we introduce, in the spirit of [7,18,23],
various classes of para-differential and smoothing vector fields, which possibly depend
in a nonlinear fashion on x = (0, y, w), and develop a symbolic calculus for them—see
Sect. 3. The order of homogeneity in our symbol classes is computed with respect to
v, w, ¢ where we recall that y, w (together with ) are phase space variables and ¢ is
the perturbation parameter appearing in (1.4) and (1.22). Our normal form procedure is
split into two steps which we now describe.

In a first step, presented in Sect. 5, we normalize the terms in the Taylor expansion of
the Hamiltonian H, which are linear with respect to the normal variable w and homoge-
neous of order at most three in (y, w, €). Equivalently, this means that we normalize the
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terms in the Taylor expansion of the Hamiltonian vector field X7; which do not contain
w and are homogeneous of order at most two. This is achieved by a standard normal
form procedure which consists in constructing a canonical transformation, given by the
time one flow map ® x of a Hamiltonian vector field Xz with a Hamiltonian F of the
form

FO,y,w):=Fo@,y)+ <.7-'1(6’, y), w), (1.48)

with the property that X r is a smoothing Hamiltonian vector field (cf. Lemma 3.19).
Hence its flow is a smoothing perturbation of the identity, implying that the Hamiltonian
vector field of the Hamiltonian H o ®# has a normal component, which is again of
the form (1.45) (cf. Lemma 3.17). To construct F, we only need to impose zeroth
and first Melnikov conditions on w, i.e., w € Hg,o) N Hg,l) (cf. (1.20)). For notational
convenience, the Hamiltonian vector field obtained in this way is again denoted by
X=X @ x» x J-). The y—component X ) is small of order three and the normal
component X L of X at r = (0, y, w) has the form

Xt =iQ) [w]+ X710, y)[w] + X3 (0)[w, w] + term small of order three ~ (1.49)

where

N+1

X{O, wl =T Y Ty 0.0 w+Ry (0, y)wl,
k=0
N+1

Xy O)w, wl =T Y Ta,_@owdy " w+Ry @) w, wl,
k=0

(1.50)

and forany O < k < N + 1, aj_¢(0, y) is small of order one, w > Aj_;(0)[w] is a
linear operator, whereas w RJA-, 1@, y)[w]is a linear smoothing operator (smoothing

of order N +1), and w RJ/\; »(0)[w, w]is a quadratic smoothing operator (smoothing
of order N + 1). The term in (1.49), which is small of order three, is the sum of a
para-differential vector field of order one and a smoothing vector field.

The second step of our normal form procedure is developed in Sect. 6. Since H)(,3)
(cf. (1.20)) allows for a loss of derivatives in space, we first need to reduce the terms in
the Taylor expansion of the normal component X+ of X, which are linear and quadratic
in w, to constant coefficients up to smoothing terms—see Sect. 6.1. This regularization
procedure is achieved by constructing a transformation which is not canonical, but
nevertheless preserves the following important property, needed for the energy estimates:
the linearization of X+ at w = Oequals X IL (6, y) and hence is Hamiltonian. In particular,
the diagonal elements of the Fourier matrix representation of the linear operator X f— @, y)
are purely imaginary,

[Xi©. )] €iR,  Vjest. (1.51)
We remark that in the spirit of [23], one could construct a canonical transformation, but

the construction of the one in Sect. 6.1 is technically simpler and due to (1.51) suffices
for our purposes.
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We now describe the second step of our normal form procedure in more detail. We
begin by normalizing the operator

I T4y 0,y)0x + 1L T4, 0)[w)0x = T1L Ty (6,y)+4,(60)[w]Ox

in the expansion of the vector field X7 (6, y)[w]+ X5 (0)[w, w] (cf. (1.49), (1.50)). We
transform the vector field in (1.49) by the means of the time one flow map ®y of the
vector field

Y@, y,w) = (0, 0, T T, p)+B0)wdy ' w)

with b and B given by

1
b, y) := 58;1(<a1(9, M —ai(0,y)),

1
B@)[w] := 58;1((A1(9)[w])x — A1(O)[w]). (1.52)

(Recall that for a € L%(Ty), (a)y = fol a dx.) Note that b and B satisfy
30xb(0, ) +a1(0,y) = (a1(0, y))x, 33:B@O)[wl+A1(0)[w] = (A1(O)[wl)x. (1.53)

For notational convenience, we denote the transformed vector field also by X| =

(X%g), X%y), X{5). We show that X%y) is small of order three and that X{ (6, y, w) has
the form

Q1w+ D (0, Y[w] + D50, w)wl + Xi-, (0, y)[w]

+X 1L,2 (6)[w, w] + term small of order three (1.54)
with

D10, y) i=(a1(6,y))xdx. D50, w) := (A1 (O)[w])ydx .
N+1

Xi 0, ] =TI Y Ty 0.0 “w+Ry 10, ylwl,
k=1
N+1

th(Q)[W, w] =TI, Z TAl,lfk(g)[wJG;_kw + Rﬁz(G)[w, w],
k=1

where forany 1 <k < N+1,ay,1-«(0, y) is small of order one and w — A 1—4(0)[w]
is a linear operator. Furthermore, Rﬁ 1 (8, y) is a smoothing linear operator and Riz @)
is a smoothing bilinear operator. The term in (1.54), which is small of order three, is
the sum of a para-differential vector field of order one and a smoothing vector field. We
also show that the linear vector field X f?l (6, y)[w] in (1.54) satisfies the property (1.51),

ie., [Xil(e, y)]'J’: € iR for any j € S+, and that the Fourier multiplier Dﬁl(e, y) is
skew-adjoint. By iterating this procedure N + 2 times, one gets a vector field, which we
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denote by X4 = (Xfle), Xfly ), X i‘) (cf. Proposition 6.1), with the following properties:
X ‘(‘y ) is small of order three and X 4L (60, y, w) has the form

iQ w+ Dy (0, Y[w] + Dy, 0, w)wl+ Ry, (0, y)[w]

N (1.55)
+RN’2(9)[u), w] + term small of order three .
Here Di 10, y) and Diz(é’, w) are Fourier multipliers of the form
N+1 N+1
Dy (0, y) =) k0,007, Dip@,w) =Y Af (O)[wld] ™, (1.56)
k=0 k=0

where for any 0 < k < N+ 1, A1_x(@,y) € R is small of order one and w >
Af;k (@)[w] € R is a linear operator. The remainder RJ,\; (0, y) is a smoothing linear

operator and Ri ,(6) is a smoothing bilinear operator. In addition, the Fourier multiplier
D4Ll (@, y) is skew-adjoint. Moreover we show that

[Ry (0.0, iR, Vje st (1.57)

Since the transformation ®y and the subsequent transformations constructed in the
interative procedure are not canonical, the linear operator Djjz(Q, w) is not necessarily

skew-adjoint. However the leading order term AlL (@)[w]oy of D4l,2 (6, w) is skew-adjoint
since A7 (0)[w] € R.
In Sect. 6.2 we design a normal form procedure to remove

N+1

> A @) wla) (1.58)

k=1

from Di‘z (6, w) which requires to impose first Melnikov conditions on w (cf. definition

(1.20) of I"I,(,l)). We transform the vector field X4 (cf. (1.55)) by the means of the time
one flow map of a vector field, which in view of (1.58) is chosen to be of the form

N+1

(0, 0, Zul (O [w]d! Fw) (1.59)

where forany 1 < k < N + 1, the linear functional w — E; k(@)[w] is a solution of
w - 0 Ef_k(e)[w] ul (O w]+ A @) [w]=0. (1.60)

The latter equation can be solved if w € 1'15,1) (first Melnikov conditions). The trans-
formed vector field is denoted by X5 = (X ée), X éy ), X é‘). We show that X gy ) is small
of order three and that X é‘ (6, y, w) has the form

iQ w+ D5 (0, y, ww] + Ry @, V[w]+ Ry @) [w, w]

(1.61)
+ term small of order three,
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where
Dy (1) := Di (0, y) + AT (O)[w]d, (1.62)

and R+ N1 RN 5 are as in (1.55). Clearly, the Fourier multiplier Dl (r) is skew-adjoint.
Finally in Sect. 6.3 we normalize the term in the Taylor expansmn of the 6-component

X §0) of X5, which is quadratic in w, and normalize the smoothing vector fields R N

and Rf;,_z in X §- Let us explain in more detail how to achieve the latter. We transform
the vector field X5 by the time one flow map generated by the vector field

(0, 0, Si@, MIw] + S5 (O)[w, wl) (1.63)

where Sll (@, y) is a smoothing linear operator and Sj (0) is a smoothing bilinear oper-
ator. They are chosen to be solutions of

— - ¥ SO, y) +[IQL, SO, Vlin + Ry 10, y) = 2 () (1.64)
and, respectively,

—w - 3 S5 (O)[w, w] +iR1 ST O)[w, w] — S5 (O) (IQLw, w] + [w, iR w])
+Ry @) [w, w] =0, (1.65)

where

Zh(y) 1= diag; s Ry (0. ). [Ry, (0. 0] = /T Ry, @)1} do.

(1.66)

(2m)5+

Equation (1.64) can be solved by imposing the second Melnikov conditions on w, i.e.,
w € H)(,z), and Eq. (1.65) by imposing the third Melnikov conditions, @ € Hgf) -
see Lemma 6.1. Note that in Eq. (1.65), the right hand side vanishes, meaning that
the left hand side does not contain any resonant terms. Finally we get a vector field

X6 = (Xég), Xéy ), Xé-) where X(()y ) is small of order three and X é‘ (r) has the form
Xz () = iQ w + D (1)[w] + Z+(y)[w] + term small of order three.  (1.67)

By the property (1.57) and the definition (1.66) of Z-(y), it follows that Z+(y) and
hence DSL @) + ZL(y) are skew-adjoint Fourier multiplier. Finally one shows that X GL
in (1.67) has the form stated in (1.47).

Related work. Prior to our work, no results have been obtained on the long time asymp-
totics of the solutions of Hamiltonian perturbations of integrable PDEs such as the
KdV or the nonlinear Schrédinger equation on T with initial data close to a periodic
multi-soliton of possibly large amplitude. For Hamiltonian perturbations of linear inte-
grable PDEs on T, which satisfy nonresonance conditions, a by now standard normal
form method has been developed allowing to prove the stability of the equilibrium so-
lution u = 0 of (Hamiltonian) perturbations for time intervals of large size—see e.g.
[2-4,7,13,17,18,23,37] and references therein. More recently, these techniques have
been refined so that in specific cases, such results can also be proved for Hamiltonian
perturbations of resonant linear integrable PDEs by approximating the perturbed equa-
tion by nonlinear integrable systems, satisfying nonresonance conditions—see [5,13]
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for Hamiltonian perturbations of the linear Schrodinger equation and [6] for such per-
turbations of the Airy equation as well as the linearized Benjamin-Ono equation. We
remark that for the Airy equation, the Hamiltonian perturbations considered in [6] are
of the form 9,V Py (cf. (1.6)—(1.7)) with the density f (u(x)) not explicitly depending
on x and f(z) being analytic in a neighborhood of z = 0 in C.

Finally, we mention the recent paper [8] where it is proved by KAM methods that
many periodic multi-solitons persist under quasi-linear perturbations of the KdV equa-
tion. As in this paper, a key ingredient are the normal form coordinates, constructed in
[27].

2. Para-Differential Calculus

In this section we review some standard notions and results of the para-differential
calculus, needed throughout the paper. For details we refer to [37].
We begin with reviewing the notion of para-product. To this end we need the following

Definition 2.1. A function ¢ € C*°(R x R) is said to be an admissible cut-off function,
if there exist 0 < &’ < & < 1 so that

supp(¥) S {(n, &) e Rx R[] < &(§)},
Y (n,§) =1 V(0§ € R x Rwith ] < &(§),

and
182029 (0. )| Sap (E)7F . V@, B) € Lo x Lo

where by (1.21) (§) = max{1, |£]}.

Given a cut-off function ¥ as in Definition 2.1, the para-product T,u of a function
a € H'(T}) with a function u € H*(Ty), s > 1, is defined as

T u(x) := o4(x, D)u(x) = Zoa(x, S)ﬁ(g)eﬁngx ’

Eel

Oa(x, &) 1=y Y, )atm)e ™™, 2.1)

A

where a(n), also denoted by ay, is the nth Fourier coefficient of a,

1 .
am) = / a(x)e gy
0

Lemma 2.1. Foranya € H' (Ty) and s > 1, T, is in B(H*(T1), H*(T1)) and
1 TallBers 1sy Ss llalln (2.2)

Furthermore, for any s > 1, the map H'(T\) — B(H*(Ty), H*(T1)), a +> T, is
linear.
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Given two functions a, u € H*(T) with s > 1, their product can be split as
au = Tyu+Tya+RP (a,u), (2.3)

where the remainder R®) (a, u) is given by

RPN a, u)x)= ") 0O, OAMAEET TN wn, &) :=1-Y 1, &) —¥(E n).

n.E€Z
24
Note that the support supp(w) of w : Z x Z — R satisfies
{n.&) eZ?:e() <l < i—)} U{(0,0)} < supp(w)
c{m & eZ?:&E) <Inl < (f—,)} U{©,0)}. (2.5)

The main feature of R 5 (a, u) is that it is a regularizing bilinear operator in the following
sense.

Lemma 2.2. For any s, 52 > 0,
RE - HH(T)) x H2(T)) — HYP2(T)), (a,u) — R®(a, u)
is a bilinear map, satisfying
IR (@, wllsy 45 Ssioso lallsysillully,  Va e H'N(T), u € H*(T1). (2.6)

~

Next, we discuss the standard symbolic calculus for para-differential operators to the
extent needed in this paper. It suffices to consider operators of the form

T,0", acH\(T), meZ, 2.7)
where we recall that for any m € Z, the Fourier multiplier 97" is defined by
[P = (R2m )" eI, Vi £0,  M[1]:=0.
Alternatively, 07' can be written as the pseudo-differential operator Op((i27&)" x (£))

with symbol (i277&)™ x (&) where x : R — R is a C*°—smooth cut-off function, satis-
fying

2 1
x@) =1, Vlélzg, x©&) =0, Vlélfg- (2.8)
The symbol of an operator of the form (2.7) is given by

Oa(x,8) =YY (. £)a(n)(i27wE)" >

neZL
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Lemma 2.3. Let a, b € HV*3(T) with N € N. Then
T,oTy, =Ty +Ry(a,b)
where for any s > 0,
Ry : HNP(Ty) x HYP(Ty) — B(HY(Ty), H**N*(T))). (a.b) > Ry(a.b),
is a bilinear map, satisfying
IRN (@, D)l ges sewety Ssov lallnasllblives . Ya,be HNS(T)).

Lemma 2.4. Let m € 7Z, N € N. Then there exist an integer oy > N + m and combi-
natorial constants (K, m)1<n<N+m, With K1 m, = m so that for any a € H°N (T})

N+m

O 0Ty =T, + Y KnmTopady ™" + Ry m(@).

X
n=1

where for any s > 0, the map
Rm : HV(T1) — BH®(Ty), H*N(T)), a = Rym(a)
is linear and satisfies the estimate
IRNm @ Bers, mssn+ty SsomN lalloy . Ya € HON(Ty),
and where we use the customary convention that the sum Z;\:{" equals Oif N +m < 1.

Combining Lemmas 2.3 and 2.4 yields the following

Lemma 2.5. Let m,m’ € Z, N € N. Then there exists an integer oy > N + m so that
foranya,b € H°N(T)),

N+m+m’
Tad 0 Tyd!" = Tupd™ + Y Knum Taogp ™™ ™" + Ry o (. b) . (2.9)

n=1

where K, ,, are the combinatorial constants of Lemma 2.4 and where for any s > 0, the
map

RN+ HON(T1) x HO¥(Ty) — B(H*(Ty), H*N*(T))), (a,b) = Ry mm(a.b)
is bilinear and satisfies the estimate
IR N mm (@, D ers, msenery Ssmn Nalloy 1blloy s Ya, b e HON(Ty).

According to Lemma 2.3, in the case m = 0, a possible choiceisoy = N+3, K, 0 =0
forl<n <N+m'

Using that K1 ,, = m, one infers from Lemma 2.5 an expansion of the commutator
(7203, Tp0y" liin-
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Corollary 2.1 (Commutator expansion). Let m,m’ € 7Z, N € N. Then there exists

oy > N +m+m’ so that for any a, b € H°N(T)), [T,07" , Tba;g"]lm has an expansion
of the form

, N+m+m’ ,
1 _
Tmaaxb—m/biixaa;n+m + Z (K"«’"Taa)'(’b - Kil,m/ThE))'('a)aJ’ann "t ’R]Cv’m,m/(a’ b) (210)
n=2

where for any s > 0, the map

RS o+ HOV(T1) x HON(Ty) — B(H*(Ty), H™V*N(T), (a,b) = RS, (@, b)

N,m,m’

is bilinear and satisfies

RS, (@ D) seazs ooty Ssmm' . Nalloy 1Blloy s Va,b € HOV(TY).

N,m,m

According to Lemma 2.3, in the case m = 0,m’ = 0, [T,, Tpliin = Rn(a,b) —
R (b, a). Hence a possible choice isoy = N +3, K, 0 =0for1 <n <N.

Finally, we discuss the adjoint 7" of T, with respect to the standard L% —inner
product.

Lemma 2.6. Ler a € HYN*Y(T) with N € N. Then TaT = T, + R1(a) where for any
s > 0, the map

Rt : HNN(T)) — B(H(T1), HN(TY)), a = R1(a),

is linear and for any a € HN*'(T)) satisfies IRT (@ Bas msev+ty Ssov llallnsr
Combining Lemmas 2.4 and 2.6 yields the following

Corollary 2.2. Letm € Z, N € N. Then there exists an integer oy > N + m so that for
any a € H°N(T), (T, 8;”)—'— admits the expansion

N+m

(T T = (=D T8 + (=1)" Y KpmTorady" + R n.m (@),

n=1

where K, ,, are the combinatorial constants of Lemma 2.4, and where for any s > 0,
the map

RT Nm : HV(T1) — BH*(Ty), H*NY(TY), a v Rt vm(a),

is linear and for any a € H°N (Ty) satisfies | Rt n.m(@) | gias gs+v+1) Seon lalloy-

3. Para-Differential Vector Fields

In this section we introduce several classes of vector fields, compute the commutators
between vector fields from these classes and study their flows. As part of the proof of
Theorem 1.1, these vector fields are used to transform equation (1.4) into normal form.
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3.1. Definitions.

Definition 3.1 (Para-differential vector fields). Let N, p € Nand m € Z. A vector field
X in normal direction, defined on a subset of £ and depending on the parameters ¢ and
W, is said to be of class OB(m, N), X+ € OB(m, N), if it is of the form

N+m

XT@ =M1 ) Top iy w 3.1)
k=0

and has the following property: there are integers o, sy > 0so thatforany s > sy there
exist0 <8 =08(s, N) <land0 < gg = ¢o(s, N) < I sothatforany0 <k < N +m

Am—k 2 VTN (8) x [0, 80] = H*(T1), (x,8) > am—i(x) = am—k (2, &)

is C°°—smooth and together with each of its derivatives bounded. X is said to be of
class OB?(m, N) if it is in OB(m, N) and in addition, the functions a,,_; are small of
order p — 1.

Remark 3.1. (i) If N + m < 01in (3.1), the sum is defined to be the zero vector field.
As a consequence, OB(m, N) = {0} if N + m < 0. Throughout the paper, the same
convention holds for any sum of terms, indexed by an empty set, and for any of the
used classes of vector fields.

(i) We point out that the bounds are uniform in the parameter p, but no regularity as-
sumptions with respect to u are required. Throughout the paper, the same convention
holds.

Definition 3.2 (Fourier multiplier vector fields). Let N, p € N and m € Z. A vector
field M~ in normal direction, defined on a subset of £ and depending on the parameters
¢ and p, is said to be of class OF (m, N), M~ € OF (m, N), if it is of the form

N+m
M@ =) ha @ w 32)
k=0

and has the following property: there exist an integer oy > 0,0 < § = §(N) < 1, and
0<eg=¢e9(N) < lsothatforany0 <k < N +m,

Am—k 2 VOV (8) x [0, 80] = R, (x, &) = An—ic(©) = Ak (x, &)

is C°°-smooth and together with each of its derivatives bounded. M is said to be of
class OF?(m, N) if itis in OF (m, N) and in addition, the functions A,, _; are small of
order p — 1.

Definition 3.3 (Smoothing vector fields). Let N, p € N. A vector field R, defined on a
subset of £ and depending on the parameters ¢ and , is said to be of class OS(N), R €
OS(N), if there exist sy > 0 so that for any s > sy, there exist 0 < § = §(s, N) < 1
and 0 < g9 = ¢o(s, N) < 1 with the property that

R V() x [0, e0] = Esin+1, (1, 8) = R@) = R(1, €)

is C*°-smooth and together with each of its dervatives bounded. R is said to be of class
OSP(N) ifitis in OS(N) and in addition is small of order p.
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Remark 3.2. For notational convenience, in the sequel, we refer to a function, which is
C®°-smooth and together with each of its derivatives bounded, as a function which is
C*°-smooth and bounded.

Next we introduce special classes of vector fields which are small of order 2 with
respect to y, w, €.

Definition 3.4. Let N € Nand m € Z.

(i) Assume that X1 (r) = IT | ZZZ(I)V Tamfk(;)af_kw is of class OB%(m, N).

(i1) X is said to be of class 083) (m, N) if it is linear with respect to w. As a con-
sequence, for any 0 < k < m + N, the coefficient a,,_ is small of order one
and independent of w. More precisely, there is an integer sy > 0 so that for any
s > sy, thereexist0 < 6 =46(s, N) < 1 and g9 = go(s, N) > 0 with the property
that

am—i : TS xBs, (8) x [0, eg]— H*(T1), (0, y, ) = am—i (O, y) = am—i(©6,y, &)

is C>°-smooth and bounded (cf. Remark 3.2). In this case, we often write X (6, y)
[w] instead of X L(;) where

N+m

XE0,y) =11 ) To, .00 "
k=0

(i2) X is said be of class OBzww(m, N) if it is quadratic with respect to w and inde-
pendent of y. As a consequence, for any 0 < k < m + N, the coefficient a,,_ is
linear with respect to w and independent of y. More precisely, there are integers
sy > 0, on > 0 so that for any s > sy there exist 0 < § = §(s, N) < 1 and
0 < &9 = ¢go(s, N) < 1 with the property that

am—i : TS HT' N x [0, 80] — H*(T1), (0, w, &) = am—i (0, w) = Ap_k(O)[w],
with
Ak 2 T x [0, 801 — B(H™Y(Ty), H*(T1)), (0, 8) = Ap—k(©) = Ap_i(6, €)

being C*°-smooth and bounded. In this case we often write X L0, w)[w] instead
of X (r) where

N+m

X0, w) =T1 Y Ta, @y "
k=0

(i) Assume that M=+ (x) = Z,’(V:(’)” An—k (£ w is of class OF2(m, N).
(iil) M= is said to be of class O]—"?U (m, N) if it is linear with respect to w. More
precisely, there exist 0 < § = §(N) < 1l and 0 < g9 = g9(N) < 1 with the
property that forany 0 <k <m + N,

)\mfk : TS+ X BS+(8) X [Os 80] — Rs (05 y’ 8) g )"M7k(99 y) = )"mfk(ev y7 8)

is C*°-smooth and bounded.
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(ii2) M* is said to be of class OF2  (m, N) if it is quadratic with respect to w and
independent of y. More precisely, there existanintegeroy > 0,0 < g9 = g9(N) <
1, and for any 0 < k < m + N a C*®°—smooth map

Ami 2 T x [0, 0] > B(HTY(T1), R), 0 > Ap1(0) = Api (0, ),

so that A, (r) = Am—i (0)[w].
(iii) Assume that ‘R is a smoothing vector field of class OS%(N).
(iiil) R is said to be of class 082w (N) if R(x) of the form R(0, y)[w] with R having
the following property: there is an integer sy > 0 so that for any s > sy, there
exist0 <8 =68(s, N) < land 0 < g9 = go(s, N) < 1 with the property that

R : T x By, (8) x [0, o] — B(H*(T1), H**N*(T1)), 0, y. €)
= R0, y) = RO, y; ¢)
is C*°-smooth, bounded, and small of order one. In the sequel, we will also write
RO, y)[w] for RO, y)[w].
(iii2) R is said to be of class OS2 (N) if R is quadratic with respect to w and inde-
pendent of y. More precisely, R(r) is of the form P3(0)[w, w] with R having the

following property: there is an integer sy > 0 so that for any s > sy there exists
0 < &g = g9(s, N) < 1 with the property that

R T x [0, e0] — Ba(H{ (T1), HPN(TY)), (0, 8) > R(O) = RO, &)

is C°°-smooth and bounded. In the sequel, we will often write R(6)[w, w] instead
of R(O)[w, w].

Remark 3.3. For any N € N and m € Z, the following inclusions between the classes
of vector fields introduced above hold:

OF(@m,N) € OB(m, N), OFP(m, N) € OB (m, N),
OF2 (m,N) € OB%(m,N), OF2 (m,N)< OB% (m,N).

These inclusions hold since by (2.1) the operator T) of para-multiplication with any
constant A € R satisfies IT | T; = AIT ;.

For notational convenience, we will often not distinguish between a vector field X
of the form (0, 0, X1) and its normal component X L. Given two vector fields X and Y,
defined on a subset of £ and depending on the parameters ¢ and ., we write

X=Y+O01+---+0,

if forany 1 < j < n, there exists a vector field X; € O sothat X = Y + X +-- -+ X,.
Here O; denotes any of the classes of vector fields introduced above.

3.2. Commutators.
Lemma 3.1 (Commutators I). Let N, p, and q be in N.

(i) For any smoothing vector fields R, Q € OS(N), the commutator [R, Q] is also in
OS(N).
(ii) Foranyvector fields ReOSP (N)and Q € OS4(N), one has[R, Q] € OSP*1~1(N)
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Proof. The two items follow from Definition 3.3 (smoothing vector fields) and the
definition (1.34) of the commutator. |

Lemma 3.2 (Commutators II). Let N, p, ¢ € Nandm € Z.
If X = (0,0, X) with X+ € OB(m,N) and R = (R®, R, RL) € OS(N), then

[(0.0, X1), R]= (0,0, Cx )+ Rix.r1-  Cix.ry € OB, N),
Rix.Rr) € OS(N —m). (3.3)

IfX* € OBP(m,N) and R € OSU(N), thenCj | € OBP*~! (m, N) and Rix ) €
OSPH=1 (N —m).
Proof. By (3.1), X can be written as X (¢) := ZN+m X (xr) where

Xi@) = (0,0, 11Ty, ,yd" *w), VO<k<N+m.

For any 0 < k < N + m, the commutator [ Xy, R](x) = d Xk (t)[R(@)] — dR@®)[ Xk (®)]
can be computed as

Xk, RI@) = (0,0, 11 Ty, @™ RE@)+0, 0, T Ty, oiR1 8" Fw) — dR@®I[Xk(®)],

where R = (R@, RY, R1). Note that dR(¢)[ Xk (r)] € OS(N — m) and that for any
0<k<N+m,

(0,0, LTy, d" *R-1)) € OS(N — (m — k)) € OS(N — m).

Formula (3.3) then follows by setting C[Jg( R (r) =11, ZZZ(])V Tya, , (;)[R(x),a;”—kw
and

m+N
Rix.r)® = Y (0,0, ML Ty, ) *RE@) — dR@[Xx(x)].
k=0
The remaining part of the lemma is proved by using similar arguments. O

Lemma 3.3 (Commutators IIl). Let N, p, g € N, m, m’ € Z, and let m, := max{m +
m' — 1, m, m'}. For any X+ € OB(m, N) and Y+ € OB(m', N), one has

(Xt vyt =ck +RE ct € OB(my, N), R

Ly € OS(N).

xLi,vd
Ifin fact X+ € OBP(m, N) and Y+ € OBY(m’, N), then

Cixiyiy € OB e, N),  Riyi yiy € OSPHTH(N),

Proof. By formula (3.1), X+ € OB(m, N) and Y+ € OB(m’, N) are of the form

[XJ_ YJ-] ) XJ_ YJ_]

N+m N+m'
Xt =MLY Ty o w, YO =MLY T, 0¥ ‘v
k=0 k=0

With X+ = YV Xihand Y+ = ZNW YLonegets

N+m N+m'

(XE vt =" Y Xt vt

k=0 j=0
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where
XE@ =TT, 0" *w, YVO<k<N+m,
Vi@ =TT, o Jw. YO<j<N+n'

To compute [X ,ﬂ-, Y].J-] for k, j in the corresponding ranges, for notational convenience
we let

XP=Xp, Y=Y a® = ana©, b® =byj@, ni=m—k n:=m'—].
One computes

(X Yl = ML L0y s T8 Jinw + T Ty oyt 3w — T T bt o -
Using the formula

M, 7,97 o T, Tpd" =Tl o (T,d” o Tpd" + T,d" o (I — 1d)Tyd!"),

and the corresponding one for HLTba)’Z/ o I, 7,97, one obtains [X*L, Y*L] = Cf + Rll
where
J_ . ’ !
Cr (@ = MLlTady, Tpdy Jinw + LTy gyt @ — DTy porxtedx W
and
R () i= T Ty o (T — 1d) Th(y 3" w — T Tpr)d? o (T — Id) Ty(r)d" w .

Since by assumption, there exist integers sy > 0, oy > 0, so that for any s > sy

there is 0 < 6 = §(s, N) < 1l and 0 < g9 = go(s, N) < 1 with the property that

a,b VSN (8) x [0, &9] — H*(T;) are C*°-smooth and bounded, it then follows that
M1 T v idiw € OB, N), - T T poix, 5 w € OB@', N),

and, in view of Corollary 2.1, that

M [T,0", Tyd" linw = OB(n+n' — 1, N) + OS(N).

Furthermore, since IT; — Id is a smoothing operator, one concludes that Rf‘ e OS(N).

Altogether, we have proved that [ X i‘, Y:-] is of the form C[J)-( Lyl + R& Lyl where
C[J)‘(*L’Y*l] € OB(ny, N), ny=max{n+n —1,n,n'} <m,, Rf}ff&l] € OS(N).

If in fact X*L € OB?(m, N) and Y*l € OBY(m’, N), then a is small of order p — 1, b
is small of order ¢ — 1 and it follows that

ML Ty, aoyt endvw € OBP 7 N LTy popxs o w € OBl N,
L [T,0", Tpd" Lipw = OBP* ' (n+n' — 1, N) + OSP*~\(N), R e 087~ (N).

One then infers that CX

iyl € OBP*~(n,, N) and R € OSPYI(N). O

X+, v

Lemma 3.4 (Commutators 1V). Let N, p, g € N, m, m" € Z, and let m, := max{m +
m —1, m, m'}.
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(i) For any M+ € OF (m, N) and M- € OF (m’, N)
(M, M e O]:(m vm', N).
If in fact M+ € OFP(m,N) and M'+ € OF1(m’, N), then [M+, M'*] €

OFP*~ m v m', N).
(ii) For any X+ € OB(m, N) and M+ € OF (m’', N),

X5 MYI=Cli p * Rixi oty Cixioe) € OB, N). - Riyi i) € OS(N).

If X+ e OBP(m, N) and M+ € OF1(m', N), then

Cixiamig € OB 7 e, N), - Rixi pq1, € OSPHTHN),

(iii) For any M = (0,0, M*) with M+ € OF (m, N) and R = (R®), R™), R*) €
OS(N)

[M,R1=(0,0,Cl m)) + RiMR1: Ciagr) € OF(m, N),  Ripmr) € OS(N —m)

If M+ € OFP(m, N) and R € OS9(N), then Cls( ro; € OF P~ (m, N) and
Rim.R) € OSp+q_l(N).

Proof. Since the claims of the lemma follow by arguing as in the proofs of Lemma 3.2
and Lemma 3.3, the details of the proofs are omitted. m]

3.3. Flows of para-differential vector fields. In this subsection we study the flow of
para-differential vector fields of the form ¥ = (0, 0, YL) with

Yt() =M,7,,yHd"w e OB (m,N), N,p>1,m<0. (3.4)

By Definition 3.1, there are integers sy > 0, oy > 0 so that for any s > sy there exist
0<8§=6(s,N) <land 0 < g9 = go(s, N) < 1 with the property that

am VTN (8) x [0, 0] — H*(T1), (r, &) = am(x) = am(x, &)

is C*°—smooth and bounded. In the sequel, we will often zacitly increase sy, oy and
decrease § = 6(s, N), g9 = eo(s, N), whenever needed.

Denote by @y (7, -) the flow associated with Y. By the standard ODE theorem in
Banach spaces, for any s > sy, there exist 0 < § = §(s,N) < I, and 0 < g9 =
eo(s, N) < §,sothatforany —1 <t <1,

Dy (r.-) € C° (VS () x [0, g0, V*(29)) . (3.5)
It then follows that for —1 < t < 1 and ¢ € V*(8), one has ®y(—1, Py(1,1)) = 1.

Remark 3.4. For notational convenience, ®y(—1, -) is referred to as the inverse of
®y (t, -) and we write ®y (7, -) ! = ®y (-, -). In particular, @y (1, )~ = Oy (-1, ).
Using our convention of tacitly decreasing § and &y, if needed, ®y (7, ~)’1 is defined
for (r, ) € V*(8) x [0, eg]. More generally, a similar convention is used for diffeomor-
phisms between neighborhoods of TS+ x 0 x 0 in & throughout the paper.

The following lemma provides a para-differential expansion of the flow ®y (7, -).
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Lemma 3.5. Let N, p € Nand assume that the normal component Y+ of Y = (0,0, Y1)
satisfies (3.4). Then for any —1 < t < 1, ®y(t, ) admits an expansion of the form

Py (r,r) =1+ (0,0, TH(z,1) + Ry (7, 1))

where
N+m

T =M1 Ty, epdl we OB (m N), Ry(r.r)eO0S*P(N).
k=0

Proof. The normal component <I>f; (7, ) of the flow ®y (7, 1) satisfies the integral equa-
tion

T
v (7,1) = w+/0 YY(®y@,p)dt, V-l<t<l. (3.6)

To solve it, we make the ansatz that <I>§(r, 1) admits an expansion of the form

N+m

Pyt =w+ T (.Y +RyT.0). Y @)=TLY T @ndy “w. 3.7
k=0

with the property that there exist sy > 0, o > 0 so that the following holds: for any

s > sy, there exist 0 < § = §(s, N) < 1 and 0 < g9 = go(s, N) < 1 so that for any
—1l<t<land0<k <N+m,

bp—k(t,) € C5° (V”"N (&) x [0, &1, H® (Tl)), by small of order p — 1,
Ry (z,-) € OSP(N). (3.8)
To determine (b k), -y, a0d Ry, in terms of the coefficient a,, of Y= in (3.4), we
compute the expansion of the right hand side of the Eq. (3.6) by substituting the ansatz

(3.7) into the integrand yl (Dy(t, ). In view of definition (3.4) of YL, one gets for any

YH(@y(1,1) = T Ty @y (1.0 0" Oy (£, 1)

N+m
= [ Ty d (0 + 1L Y Thy 080 ™ w + R (LD
. (3.9)
Using that I[T; — Id is a smoothing operator and that
Dy (t,-) € CF(V°(8) x [0, &0, V*(28))
one gets
N+m p=1
T T, @y O3 (ML = 1d) D Ty, 1000w € OS™7H(N) 'S OSP(N).
k=0 (3.10)

N+m
_ _ =
Mo Y Tau@randy T 40w e OSP7H(N) 'S OSP(N)
k=N+14+2m
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where we recall that m < 0 and that by our convention, a sum of terms over an empty
index set equals 0. Moreover, by increasing sy, oy if needed, it follows that for any
s>syand—1 <t < 1,themap A(t, 1) := I, Ty, (o, (r,r)) 0y satisfies (after decreasing
§ and gy if necessary)

A(t, ) € CR (VN (8) x [0, eol, B(H{™M*!(Ty)))

and hence in view of (3.8),

=
A(t, )[Ry (t, )] € OS?P~L(N) € OSP(N). (3.11)
In view of (3.10)—(3.11), we rewrite (3.9) as

Y@y (1, 1)) = T Ty @y .0 9w + T Y 00" T @y 1,200 Ty, 0 K w0 + OSP(N).
(3.12)

Since a,, and by, are small of order p — 1 (cf. (3.8)), it follows from Lemma 2.5 that
forany 0 < k < N +2m, the term Ty, (& (1.1)) 9" Th,,_, (r.1)0™ *w has an expansion of
the form

N+2m—k
2m—k : 2m—k—j 2p-1
Tan @y eopbnr0de" W+ D KGm)T, oy w+OS*H(N)
P

(3.13)
with the constants K (j, m) given as in Lemma 2.5, implying that
N+2m N+2m
ML Y Tap@y o)y To 4000w =TI Y T @y by .00 w
k=0 k=0

N+2m N+2m—k
. 2m—k—j _
LB KGmT, ayonmion 0% Tw+OSHTHN)

k=0  j=I
N+2m

=T Y o i 'w+OSPH(N), (3.14)
i=0

where g2, (t, 1) = am (Py(t,1))by (¢, r) and forany 1 <i < N +2m,

i—1
8om—i (1, 1) = an(Py (t, Db (1, 1) + Y K (i =k, m)an (Py (1, ) byi (2, 7).
k=1
(3.15)

Combining (3.6)—(3.15) then yields the following identity,

N+m T

HJ‘ Z Tbmfk(fvff)a.;nikw = HL(\/(;

T

Ty (@y (1,p)d1) 3Y'w + HL(/ T @y (10 1.0)A1) D7 W
0

k=0

N+2m T

+1 ) / Topitpydt) 07" " 'w + OS*~I(N) .
: 0
i=1
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Let us first consider the case where m < —1. We then require that the coefficients b, _,
0 <k < N + m, satisfy the following system of equations,

T
b (T, 1) :/ am(Py (1, 1)) dt, bu—i(t,r) =0, V1I<k<|m|—-1,
0
T
bzm(T»ZC)Z/ am (Py (2, 0)bim (2, ) dt, (3.16)
0
T
b1 (7, 1) Z/ gm—k(t,0)dt, ¥Yim|+1 <k <N +2m.
0

Since forany |m|+1 < k < N+2m, g;,—i only depends on b, _j» withk’ < k+m < k—1
(cf. (3.15)), the coefficients b,,_; are determined inductively in terms of a,,. One then
verifies that the properties of the coefficients b,,_, stated in ansatz (3.8), are satisfied.
The remainder Ri then satisfies the following integral equation

Ry (t,1) = O (T,1) + /O A, )[Ry (r, ldt (3.17)

where Qﬁ(r, ) e O8?P~H(N) is given by the sum of the two terms in (3.10) and the
operator A(z, r) is defined in (3.11). By increasing sy if needed, it follows that for any
S = SN,

T
IRN (T, D llsens1 < up QN (T, Dllsn+1 + /0 A O35 () IRV (@ D) v dt

and hence by the Gronwall Lemma, one infers that RJA-, satisfies

1
||R*I(Ts Olls+n+1 Ssov exp(/ Az, ;)”B(HYN“(TD) dl) sup ||QJ]\7(I1 Dlls+N+1
—1 te[—1,1]

implying that || R (7, ©)lls+n+1 Ss.v (€ + [yl + [wll5)?P~L. Similar estimates hold for
the derivatives of Rﬁ Altogether we have shown that Rﬁ e 0O8*P~1(N).

Finally let us consider case m = 0. We then require that the coefficients b_x, 0 <
k < N, satisty the following system of equations,

T

bo(,¥) 2/0 aO(‘bY([»X))dt"'/(; ao(Py (1, 1)bo (1, v) dt,
b_i(t,p) = /rg—k(t,x)dt, V1<k=<N.
0

The solution by then reads bg(t, ) = elo a@y(tx)dt _ | The remaining part of the
proof then follows as in the case m < —1. O

Lemma 3.6. Let N, p € Nandlet @y (t, r) denote the flow map considered in Lemma 3.5,
corresponding to the vector field Y = (0,0, Y1), with Y+ () = T, Ty, )" w and
m < 0, satisfying (3.4). Then for any —1 < t < 1, d®y (z, r) " '[t] admits an expansion
of the form

doy(r, ) E =T+ (0,0, T (z, »[F + Ry (z, IF]) ,
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N+m N+m

TR =1L Y Th, et KD+ Y T, enmde Fw (3.18)
k=0 k=0

with the following properties: there exist sy, oy > N so that for any s > sy, there
exist 6 = 6(s, N) > 0and 0 < g9 = go(s, N) < 1 so that the following holds: for any
O<k<N+mand —1 <71 <1,

bm—k(t,-) € CZ (VTN (8) x [0, 0], H*(T1)),

By (t,-) € C2 (V7N (8) x [0, £0], B(Essoy. H*(T1))) .

Ry(t, ) € C° (V¥ () x [0, e0l, B(H*(Ty), H{™M(Ty)))

with by, (7, ), Bpu—i(t, -), and RJA‘/ (t, -) being small of order p — 1, and the expansion
above holds for any ¢ € VS*°N (8) andt € Essoy -

Proof. First we note that forany —1 < 7 < 1,d®y(r,1)~! = d®y(—1, ®y(z,1)) and
that by Lemma 3.5,

N+m

Py (t, 1) =1+ (0, 0, I Z Tbm,k(r,;;cby)af_kw + Ry (T, 1 CDY))
k=0
with b,,_r(z, -; ®y) € COO(V”"N (8) x [0, eol, HS(’]I‘l)) being small of order p — 1
andR (7, ,q)y) e OSP(N). To simplify notation, let bm (T, 1) = by—i (7,1 Py)

and 72L (t,1) =R (‘L’, r; @y). Then the normal component of d Py (7, 1)~ 'F] =T can
be computed as follows

N+m N+m
T —k - —k &L
MY T ooy O+ Y T Cooyemmdn  PF @D
k=0 k=0

+d Ry (—7, Py (z, D)[E].
By expanding the terms T, (_+ ¢, (z.1))[F af’kd%(t, r) with the help of Lemma 2.5,
one is led to define b, (7, ), Bm—x (7, r), and RJA-, (7, r) with the claimed properties. O

Combining Lemmas 3.5 and 3.6, one obtains an expansion of the pullback of various
types of vector fields by the time one flow map ®y (1, -):

Lemma 3.7. Let N, p, g € N and let Oy (1, ) denote the time one flow map, corre-
sponding to the vector field Y = (0,0, Yl), with Yl(;) =M,Tg,, 07 wand m <0,
satisfying (3.4) (cf. Lemma 3.5). Then the following holds:

(i) Forany X := (0,0, X1) with X+ € OB%(n, N) and n > 0, the pullback ®% X (x) =
doy(1, ):)_IX(CD)/(L v) of X by ®y(1, -) admits an expansion of the form

DX = (0,0, X1@) + Y1) + Ry (@)

where Y+ € OBP*~'(n, N) and Ry € OSPH=1(N).
(ii) For any X in OS?(N), the pullback ®} X of X by ®y (1, -) admits an expansion of
the form

PYX () = X@® + (0,0, TH(®) + Ry ()

where Y+ € OBP* Y (m, N) and Ry € OSP4~ (N).
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Proof. We only prove item (i) since item (ii) can be proved by similar arguments. Since
by (1.36) with = 1

1
PyX () = X(v) +/0 dPy (. )" [X, YI(Py(t, 1) dt,
we analyze for any ¢ € [0, 1] the vector field

Z(t, 1) = @Py(t,0) " [X, YI(Py (1, 1) (3.19)

Recall that Y1 (r) = II 1T, 07w € OBP(m, N). Taking into account that m, =
max{n +m — 1,m,n} = n (since n > 0 > m), it follows from Lemma 3.3 that
[X,Y]=(0,0,[X*, Y1) satisfies

(Xt vt =ct +R- C

p+q—1
[XJ-,YJ'] [XJ-,YJ-]’ e OS (N)

c OB ', N), R

L L
[XJ-,YJ'] [XJ-,YJ-]

By Definitions 3.1-3.3, and Lemma 3.5, Lemma 3.6, as well as Lemma 2.5, one obtains

1
/ Z(t,vydt = (0,0, Y1) + Ry (1) (3.20)
0

with YL (x) € OBP*~ ! (n, N) and Ry (x) € OSPH~1(N). O
Next we analyze the pullback @ X nr of the Hamiltonian vector field X (r) with A/
being the following Hamiltonian in normal form (cf. (4.15)),

N@) = (a)+86)-y+Q(y)+%(DI_1§2J_w,w), well, ®eR%, (321)

where the Fourier multipliers DII and Q) = Q) (w) are given by (1.42) and Q is
assumed to be a map in C;°(Byg, (8) x [0, go], R) with Q(0) = 0 and V,Q(0) = 0.
Since 0y DEQL =12, the vector field X or(x) then reads

—V,N(@® —w — &0 — Vy0(y)
Xn@=| VeNQ@ | = 0 (3.22)
0 VIN (@) 12w

and its differential is given by

0—-dyVy,0(y) 0
dXny@® =10 0 0 . (3.23)
0 0 Q2

Note that N () does not depend on @, but only on y, w, and ¢. For notational convenience,
we will often write AV/(y, w) instead of N (¢). The following result on the expansion of
12| can be found in [27].

Lemma 3.8 ([27, Lemma C.7]). For any N € N, the Fourier multiplier i2) has an
expansion of the form
N
Q) =—0]+> cadF+Ry .
k=1

where c_; = c_r(w) are real constants, depending only on the parameter w € Il, and
Ry = Ry (o) is in B(HS (Ty), H{™N1(Ty)) for any s € R.
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Lemma 3.9. Let X \r be the vector field given by (3.22) and Y = (0,0, Y1) be the
vector field with Y (r) = M, Ty, 00w and m < 0, satisfying (3.4) with p, N € N.
Furthermore let ®y (1, t) be the time one flow map corresponding to the vector field Y
(cf. Lemma 3.5). Then the following holds:

(i) If in addition Y+ (r) = 1 Ty,@)00 w is in OB%U(m, N), hence ay (x) = a,, (0, y)
independent of w, and if (an, (r))x = O, then [ X nr, Y]is of the form (O, 0, [ X\, Y]L)
with [Xpr, Y1+ € OB*(2 +m, N) and admits an expansion of the form

[Xnr, YT Q) = T T 35,4, (002" w + CH (1) + Ray (x) + OB (m, N),

where C*(x) € (’)62 (1+m, N) and R+ v € (’)82 (N). Moreover C*(r) and R+ v @®
are of the form CL(;) cto, y)[w] and, respectively, RL (r) = 7'\’,l @, y)[w], and
the diagonal matrix elements of C+(0, y) and Rﬁ (0, y) vanish,

[C*@,»1, =0, [Ry® =0, Vjest.

(ii) If in addition Y- (¢) is in OBzww(m, N), hence ay, (x) of the form A, (0)[w], then
XA, Y1) is of the form (0,0, [Xx, YH1(x) with [Xpr, Y1 € OB*(2+m, N)
and admits an expansion of the form

[Xnr YIH @) = T T35, 4, 0)[w] 92" w + CH (1) + Ry (x) + OB (m, N)
where C(x) € OB2,,(1+m, N) and Ry (x) € OS%, (N).

Proof. (i) Since Y1 (r) =TT, T4, ()07 w is in OBzw (m, N), a;, is independent of w and
for any s > sy,

am € Cp° (V”(’N (8) x [0, &), H® (Tl)) small of order one. (3.24)

For notational convenience, we write Y -(6, y)[w] instead of Y (¢) (similarly as we
write a,, (6, y) instead of a,, (r)). Then

(XA Y@ =dX (@, wY (@©)] —dY (@[ XA (y, w)]

can be computed as

0 —dy(Vy0(») 0 0
eI SR o0 o |0
0 0 iQ ) \rt@m
0 0 0 —w—ew—V,0(y) 0
— 0 0 0 0 = 0
WY@ 9, Y1) Y0,y i w [Xn Y1H ()

(3.25)

where

X V1@ = (9 YH0, )i + @+ 68) - 8 Y0, ) + ¥, 00) - 0 Y20, 1) ) [w]
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By (3.21), V, O(y) is small of order one and hence

w3 Y0, Y)w] = M1 Tya, 0,y 00w € OB (m, N),
£@ - 09 Y0, Y)w] = T Ta.050,,6.) 04w € OB (m, N) ,
VyO(y) - 99 YJ‘(Q, y[w] = 1 Tv,0(y)-0 am(g’y)ajcnw € 083(1’1’1, N).

Furthermore by (3.24), Corollary 2.1, and Lemma 3.8, one sees that

[iQL. Y50, )], w =TT 35.0,0.9)0 " w+CP O, y)[w] + Ry @, y)[w],
¢V, y)w) € OBX(1+m, N), Ry, y)[w] € OS2(N). (3.26)

Altogether we have shown that

(XA YIE (@) = T T 30,0,,6.9) 07" w + CH(0, y)[w] + Ry (0, y)[w] + OB*(m, N)
O, yw] :=CV@, ylwl+w- 0¥, y)[w] € OB (1 +m, N).

For any j € SL, the diagonal matrix element [w - 9y ¥ L0, y)]j vanishes,

[0+ 3 Y0, 9))] = - 8p(an (0. y)) (27))" =0,

since by assumption (a, (¢, y))x = 0, and so does the diagonal matrix element
[[iQJ_ , YJ-(G, y)]lin]j., implying together with (3.26)

[CH@. =0,  [Ry@.» =0,  Vjes.

(ii) Since Y1 (r) =11, T4, (07 wisin OBﬁ)w(m, N), it follows from Definition 3.4 that
a;, (¢) is of the form a,, (r) = A, (6)[w] and that for any s > sy,

Ap € CP(TS, B(HYN (Ty), H*(Ty)) . (3.27)

For notational convenience, we write a,, (6, w) instead of a,, (r). Arguing as in (3.25),
one sees that [X a7, Y](z) = dXn(y, w)[Y ()] —dY @) [X A (y, w)] can be computed

as
0 —dy(Vy0(y) 0 0
(XA, Y1) =10 0 0 0
0 0 iQ /] \rt@m
0 0 0 —w—e0— V,0(y) 0
- 0 O 0 0 = 0
dgY*(x) 0d Y+ () 1Qw (XA YT+ ()
(3.28)
where

(Xnn Y@ =iQuY )] —d Y@L w] + (@+0) - 3 Y1) + V4 0(0) - 3 Y1 (1) .
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Since by (3.21), V, Q(y) is small of order one, one infers that
@+ 3 Y1) = 11 Ty A, @)1 w € OB, (m, N),
£ - 09 Y1) = el T, A, 0)[w] 9" w € OB (m, N), (3.29)
V() -3 Y@ = ML 79, 0(y)-85 An(@)[w]dy W € OB} (m, N).
Furthermore, iQ | [Y L(zc)] —d) Y (p)[i€2) w] can be computed as

QT T, @0)[u1 9y w — TLLTa,, @)1 9y 121w — T Ta,, o), w) 0y
=T [iQL, Ta,@w1dy ],
By (3.27), Corollary 2.1, and Lemma 3.8 one has

w
(3.30)
w — T T4, @2, wdy W

M1 T, @i, wd"w € OB, (m, N),
NL[iQ1 ., Ta,@mwdy |,;,w = 11 T30, A, @[3 w + CV (1) + Ry 1) + OB (m, N),
¢V eOB,,(1+m N), Ry@ e0OS%, (N). (3.31)
Altogether, the identities (3.29)—(3.31) yield
[Xnn, YT @) = T T 30, 4, 0)[w] 027" w + CH(1) + Ry (1) + OB (m, N)
@ = CV @) + 1L T, a4, @11 w — T Ta, @i, w) ' w € OB, (1+m, N)
and hence item (i) is proved. |
Lemma 3.10. Let X v/ be the vector field given by (3.22) and let Y (t) = (0,0, Y*(x))
where Y+ (x) = (0,0, Yo (x) + Yﬁ(?)) and
Yo @) = Y50, y)lw] = M1 Ty, 9.0)00" w € OB, (m, N),
Yit(x) = 1, Ta,, 0)[w)d"w € OB2, (m, N), (3.32)

with N € N and m < 0. If in addition {(a, (0, y))x = O, then the pullback X ¢ =
&% X\ of the vector field X pr by be the time one flow map ®y (1, -) corresponding to
Y has an expansion of the form

Xno@® = (—o—ed—V,0). 0. Xj )
where
1 _ 24m 1 1
Xy o® =121 w+ 11T 3y, (4,0, 0)+A4, @[y w+Cy @, Mwl+Ci ()
+ Ry 0(0, Mwl+ Ry (1) + OB* 2 +m, N) + OS*(N)

and Cd‘ @, y), Rio((?, y), and Cf‘ (v), Ril(zc) are given by Lemma 3.9. Hence these
terms satisfy

Co (0. y[wl € OB, (1+m,N), Ry @, »[wl e OS5 (N).
Cit(x) € OB2 (1 +m, N), Ry 1) € 085, (N)

ww

and the diagonal matrix elements of Cd‘ 0, y) and RJI\‘,’O(Q, y) vanish,

[Co 0, ), =0,  [Ry o0, »F=0,  Vjest.
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Proof. By (1.36), X nr ¢ can be expanded as
XN =Py Xy =Xy +[XN. Y]+ Z,

1
Z(v) I=/0 (1 =) dPy (1, 1)~ [[Xpr, Y1, YI(®y (1, 1)) dt.

ByLemma3.9,onehas [Xar, Y] = (0, 0, [Xnr, Y]*) with (X, Y]+ € OB*(2+m, N)
given by

T T30, (an (6, )+ A @10 05w + Cy (6, V) [w]
+Ry .00, W] +Ci- () + Ry @) + OB (m, N) (3.33)

where Cg-(@, y), Rio(e, y), and Cf-(;), RJA-,’I (r) are given as in Lemma 3.9. In partic-

ular, the diagonal matrix elements of C(J)- (@, y) and RJA;’O(G, y) vanish. Furthermore, by
Lemmata 3.2, 3.3, one infers that

(X YL Y1@®) = (0. 0, Cy (1) + Ry, (). C3 € OB*2+m,N), Ry, e OS(N),
(3.34)

and hence concludes by Lemma 3.7 that
Z@ =(0.0. Cy @+ Ry 3®). C3 € OB 2+m.N). Ry 3OS (N). (3.35)
The claimed statement then follows by (3.33)—(3.35). O

3.4. Flows of Fourier multiplier vector fields and smoothing vector fields. In this sub-
section we discuss additional properties of Fourier multiplier vector fields and smooth
vector fields and their flows, needed in Sect. 6.2.

We begin by considering the flows corresponding to Fourier multiplier vector fields.
Let M be a vector field of the form (0, 0, M*') with M+ € OFP(0, N)and N, p € N
(cf. Definition 3.2). Then M- (¢) has an expansion of the form M (r)= Z,I{VZO Ak ()0, k
w with the property that there existoy > 0,0 < § =5(N) < l,and0 < g9 = g9(N) <
1,sothat forany 0 <k < N,

Aok VIN(8) x [0, 80l = R, (¥, 8) = Am—ik () = A—k(r, ©)
is C*°-smooth and bounded. We denote by ® (7, -) the flow corresponding to the
vector field M. By the standard ODE theorem in Banach spaces, there exist sy > 0 so
that for any s > sy, there exist 0 < § = §(s, N) < 1,and 0 < g9 = go(s, N) < 6, so
that
Dr(t, ) € CR(V(8) x [0, 601, V(28)), V-—-l=<t<I.

The following lemma can be proved arguing as in the proof of Lemma 3.5 (actually, the
proof is simpler).
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Lemma 3.11. For any t € [—1, 1], the flow map ® p(7, -) admits an expansion of the
form

Oa(t, 1) =1 +(0,0, T(7,1) + Ry (1, 1))

where Y1 (z,) € OFP(0, N) and Ry; € OS*P~1(N).
The following lemma can be proved arguing as in the proof of Lemma 3.6.

Lemma 3.12. Let ® (7, t) denote the flow map considered in Lemma 3.11, corre-
sponding to the vector field M = (0,0, ML) with M+ € OFP(0, N)and N, p € N.
Then d® pq(t, ¥) "' [¥] admits an expansion of the form

do (T, 'F =T+ (0,0, TH(z, D[] + Ry (r, DIE]), (3.36)
N N
T, OE = ) hw(m D D+ ) nw(r, DIEI; W,
k=0 k=0

with the following properties: there exist sy, oy > N so that for any s > sy, there exist
0<6=08(s,N) <1and0 < gy = ¢eo(s, N) < 1 so that the following holds: for any
0<k=<Nand—-1=<7t <1,

Aok € CRPOVON () x [0,80l, R),  n—i € Cp2(V¥ () x [0, &0l, B(Eqy,R)),
Ry € C¥(V*(9) x [0, eol, B(HE (Ty), HT™ (1)),

and A_y(t, ), n—i(t, ), and RJI\‘/(‘E, -) are small of order p — 1.
The following lemma can be proved arguing as in the proof of Lemma 3.7.

Lemma 3.13. Let ® (1, 1) denote the time one flow map considered in Lemma 3.11,
corresponding to the vector field M = (0, 0, M), with ML € OFP (@, N) and N,
p € N. Then the following holds:

(i) For any X := (0,0, XJ-) with X+ € OBY(n,N)and g > 1, n > 0, the pullback
CID*/‘MX of X by ® (1, -) admits an expansion of the form

DX @) = (0,0, X0+ TH@) + Ry Q).
Tt e OB (n, N), Ry € OSPH~Y(N).

(it) For any M| = (0, O,Mf‘) with Mf‘ € OFi(n,N)and g > 1, n > 0, the
pullback @’y M of My by ® (1, -) admits an expansion of the form

DM@ = (0,0, My () + TH@) + Ry @),
Tt e OFP*=1(n, N), Ry € OSPH~I(N).

(iii) For any X € OS9(N), the pullback %X of X by ®\(1, -) admits an expansion
of the form

PX@ =X@®+ (0,0, TH@®) + Ry @)

where Y+ € OFP*=1(0, N) and Ry € OSP*1~1(N).
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Next we consider M := (0, 0, M*) with M+ € OF2 (0, N)and N € N (cf. Defi-
nition 3.4-(ii2)),i.e., M (x) = M0, w)[w]with M0, w) = Sy A (0)[w]d;*
where, for some integer oy > 0 and some 0 < g9 = g9(N) < 1,

A2 T x [0, 801 = B(HIY(T1), R), 6 > A_() = A_x(6,¢), 0<k<N,
(3.37)

are C°°—smooth. To obtain an expansion of the pullback q)jvt X\ of the vector field
X\, defined in (3.22), by @ 4 (1, ), we first need to compute the one of the commutator
[Xpn, M.

Lemma 3.14. The commutator [ X nr, M](x) admits an expansion of the form
[XAr MI@®) = (0,0, @ dp (MO, w)w]) — M@, iQLw)[w] + OF (0, N)) .
Proof. By (3.37) the differential of M can be computed as
dM@E = (0, 0, MO, w)[]+ MO, B)[w] +dp (MO, w)[w])[0]) .
By (3.22), (3.23), the commutator

[Xar, MI@®) = dX n(y, w)[IM@)] — dM@[ XN (y, w)]
is given by

[Xar, MI@) = (0,0, iQL MO, w)[w])
— (0,0, M0, WL W] + M0, iQLw)[w] — do (M0, w)[w])[w+ed + Vy, O()])
= (0,0, [iR1, MO, w)linw — M6, 12, w)[w]
+(@+ed+Vy0(»)) - 9 (MO, w)w])).

Since ML(Q, w) and i€2 are both Fourier multipliers, the linear commutator [i€2] ,
ML(Q, w) |sin vanishes. The lemma then follows in view of the fact that

(D + Vy (1)) - 3p (M0, w)[w])

N
=3 €@+ V,0() - 3) (A O)[w)); [w]

k=0
c OF0, N).

O

Lemma 3.15. The pullback @ (X r of the vector field X nr by @ p(1, ) with M given
by (3.37) admits an expansion of the form

—w—¢eo—V,0()
QXN Q) = 0 .
iQ w+w- MO, ww]) — MO, i w)[w]+OF 0, N) + OS3(N)
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Proof. We argue as in the proof of Lemma 3.10. By (1.36), 7, X »/ can be expanded
as

MEN = XN+ [ X M+ Z,
1
Z(p) = /o (1= DdPpq(z, D] XA, M M@ pa (T, 1)) dT

The claimed statement then follows by applying Lemmata 3.4, 3.11, 3.12,3.14. O

Finally, we consider smoothing vector fields. Given a smoothing vector field Q €
OS?(N) with N, p € N (cf. Definition 3.3), we denote by ® o (z, -) the flow correspond-
ing to the vector field Q. By the standard ODE theorem in Banach spaces, there exists
sy > Osothatfors > sy, thereexistO < é =68(s, N) < land0 < g9 = gg(s, N) < 4,
so that

Do(r.:) € CP(V° () x [0. g0l V°(29)).,
®o(r,-) —Id smalloforderp, V —-1=<7<1. (3.38)

Lemma 3.16. Let Q € OSP(N) with N, p € N. For any —1 < 1 < 1, the following
holds.

(i) The flow map ®g(t, -) admits an expansion of the form
Po(r.p) =r+Rn(r.0), Rn(z,") € OS(N).
(ii) The map d®s(t, r)~" admits an expansion of the form
dPo(r.y) ™' [{l =T+ Ry (r. 0[]

where there exists sy > 0 so that for any s > sy there are ) < § = 6(s, N) < 1
and 0 < gy = go(s, N) < 1 such that

R (t,) € CPOV’©) x [0, &0, B(Ey, Eyns1)), VY -l<t<l

Proof. To prove item (i) one uses the Volterra integral equation (cf. (3.6)) and (3.38)
(cf. proof of Lemma 3.5). To prove item (ii), one argues as in the proof of Lemma 3.6,
using the identity d® o (7, = dog(—1, Pgo(r,1)), —1 < v <1 (cf. Remark 3.4).

O

Lemma 3.17. For any Q € OSP(N) with N, p € N, the following holds:

(i) Forany X := (0,0, X ) with X+ € OB%(m, N) andm € Z, q € N, the pullback
CD*QX of X by ®g(1, -) admits an expansion of the form

PHX® = (0,0, X @+ Y@ +Ry), T e0OB™ m, N), RyeOS*(N).

(ii) For any M = (0,0, ML) with M+ € OF4(m,N) and m € 7, g € N, the
pullback (I)*Q/\/l of M by ®o(1, ) admits an expansion of the form
HM@ = (0,0, M) + T (@) + Ry (¥)) .
Tt e OFP*(m, N), Ry € OSP*~Y(N).

(iii) For any Q1 € OS9(N) with g € N, the pullback <I>*QQ1 of Q1 by ®o(1, -) admits
an expansion of the form Cb*QQl = Q; + OSP*~1(N).
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Proof. (i) By (1.36), dD*QX(zc) can be expanded as
1
S5X@©=XW+Z, Z:= fo Ao, v) ' [X. QU(Po(r, 1) d1 .

By applying Lemma 3.2, one gets that
[X. Q1= (0,0, T + R o). T+ e€OB* ', N), R g €OS"" (N+m).

Item (i) then follows by the definition of Z, the property (3.38), and Lemma 3.16. Items
(ii) and (iii) can be proved similarly, using in addition Lemma 3.1 and Lemma 3.4. O

We now consider a smoothing vector field Q@ € OS(N), N € N, of the form Q :=
Qo + Q1 where

Qp = (0,0, Q7), Qi (1) = Qp (0, y)[w] € OS%(N),
Q1 :=(F,0,91), 9f@) = 9f®)Iw, w]e OS2, (N),

(cf. Definition 3.4(iii) for the definitions of 082w (N) and OSi)w(N )) and where for
some oy > 0and 0 < g9 = go(N) < 1, F; has the form

(3.39)

Fi(6,w) := Fi@)[w,wl,  F € C®(TS% x [0, l, Bo(H]" (T1), R)), (3.40)

(cf. (1.39) for the definition Bz(Hj_TN (T}, R%)). In the next lemma we compute an
expansion of dD*QX A Where X\ is the normal form vector field defined in (3.22).

Lemma 3.18. For Q = Qg + Q as in (3.39), the following holds.
(i) The commutator [ X nr, Qo] € (’)82(N — 3) has the form YD + 083 (N) where

TO@) = (0,0, (iR, Q0. )lin +0- 8 QF @, )w]).

(ii) The commutator [X \r, Q1] € OS8%(N — 3) has the form Y + OS83(N) where
w - I F1(0)[w, w] — F1(O)[IQLw, w] — F1(0)[w, 2 w]
TP =

0
Q1 QF () [w, w] — QF O)[iQLw, w] — QF (O)[w, IQLw] +w - % QF (O)[w, w]

(iii) The pullback @G X 7 is of the form X pr + YV + 1@ + OS3(N) with YD given
by item (i) and Y® given by item (ii).

Proof. (i) Arguingasin the proof of Lemma 3.9(i) (cf. (3.25)), one sees that [ X o7, Qp](x)
is of the form (0, 0, [Xn, QO]J‘(F)) where

X Qo) = ([i20, QF 0. 1]y, + (@ +63) - D0 QF O, 3) +V,00) - 8 Q5 0, ) ) [w] .
One has

w-39Qy (0, y)wl € OSE(N),  ed-9Qy (6, y)w] € OS*(N),
Vy Q(y) - 86 Qg (0, y)[w] € OS*(N),

andsince i€, isaFourier multiplier of order three, it follows that [iQ2 ., Qg (6, y)] Jin W
€ OS2 (N — 3). The claimed statement then follows.
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(ii) Arguing as in the proof of Lemma 3.9(ii) (cf. (3.28)), and using that F(0)[w, w]
and Qf-(@)[w, w] are quadratic forms with respect to w, one sees that ¥ :=
[ XA, Q1] is of the form Y = Y@ 0, Y1) where

YO = (0+e@) - 09 F1(0)[w, w]
—FONiQrLw, w] — F(O)[w, i w]+ Vy,0(y) - 3 F1(0)[w, w]
Y@ =iQ191 O)w, w] — Q1 (O)[iQLw, w]
— Q1 (O)[w, iQLw] + (0 +£d) - 39 Qi ()[w, w]
+Vy Q(y) - 35 Q1 (O)[w, w].
By (3.40), w - 9p F1(0)[w, w], F1(0)[12, w, w], and F;(0)[w, 12, w] are smooth
functions and small of order two, whereas @ - 9 F1(0)[w, w] and V,Q(y) -
dg F1(0)[w, w] are smooth functions and small of order three. (Here we used
that by (3.21), V,, O(y) is small of order one.) Furthermore, by the definition of
Qi one has w - 3 QF ()[w, w] € OS2, (N), whereas e& - 3 Q7 (0)[w, w] and

ww
V,0(y) -0 Qll (0)[w, w] are in OS3(N). Finally, since i€2] is a Fourier multiplier
of order three,

i, 01 (0)[w, w] — QL O)[iQL w, w] — QL (O)[w, iR w] € OS2 (N —3).

The claimed statement then follows.
(iii) By (1.36), <I>*QXN(;) can be expanded as

1
PoXN = XN +[XN. QI+ Z, Z() = /0. (1 =0dPg(t,p) " [[Xn, Q1 QU (1, 1)) dt .

By items (i) and (ii), the commutator [X s, Q] is in OS8%*(N — 3), hence by
Lemma 3.1, [[Xa, Q], Q] € OS3(N - 3). By applying Lemma 3.17-(iii), one
then infers that Z € OS> (N — 3). The claimed expansion then follows by items
(i) and (ii). |

In Sect. 5, we use Hamiltonian vector fields X 7, corresponding to Hamiltonians F,
which are affine functions with respect to the normal component w. More precisely, F
is assumed to be of the form

F(o) i= Fo@®, y) +(F16,y), w) (3.41)
where
Fo € C3°(T% x B, () x [0, e0l, R), (3.42)
Fi € C°(T5 x B, (8) x [0, e0l, H} (T1)), Vs=>0.

The Hamiltonian vector field generated by the Hamiltonian F is given by

Xr@) = (= VoF @), VyF(@), 0. F1(6. y)). (3.43)
The following lemma can be easily deduced by (3.41)—(3.43).

Lemma 3.19. The vector field X r is a smoothing vector field of arbitrary order, i.e.,
Xr € OS(N) for any N € N. Moreover, if in addition Fy is small of order p and F)
is small of order q, then Vo F is small of order min{p, q + 1}, V,F is small of order
min{p — 1, g} and 0, F) is small of order q.
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4. Reformulation of Theorem 1.1 and Normal Form Theorem

The goal of this section is to describe the normal form coordinates provided by [27,
Theorem 1.1], specifically constructed to analyze perturbations of the KdV equations
near finite gap solutions and then to express Eq. (1.4) with respect to these coordinates.
The main results of this section are Theorem 4.2, which reformulates Theorem 1.1 in
these novel coordinates, and Theorem 4.3 (Normal Form Theorem), which is the key
ingredient into the proof of Theorem 4.2.

We begin by rephrasing [27, Theorem 1.1] in a form, adapted to our needs. Without
further references, we use the notations introduced in Sect. 1.
Theorem 4.1. Let Sy € N be finite and E C Ri*o be compact. Then for § > 0 suffi-

ciently small with B + Bg, (§) C Ri*o there exists a C°°- smooth family of canonical
diffeomorphisms
W, 1 V(6) — W, (V(6) € L§(TY) .t q.
parametrized by u € B, with the property that for any u € B, W, (v) satisfies
W, (0,y,0) =V, 0, n+y), YO, y,0) eV(©é),

and is compatible with the scale of Sobolev spaces Hi(T1), s € Z>o (meaning that
v, (V(S) N Es) C Hj(Ty) and Y, : V(8) N E — Hy(Ty) is a C*-diffeomorphism
onto its image), so that the following holds:

(AE1) Forany N e N, u € B, andy = (6,y,w) € V(§), V() = W, (¢) has an
expansion of the form,

N

W) =Ws, (0. p+y)+w+ Y a (e W) w+Ry @ W),
k=1

where Ry (@, y,0; W) = 0 and where for any s € Z=pand 1 <k < N,
V©) = H (T1), t > ap(@ W), V@) > H*V(T), r > Ry W),

are C* maps (cf. (1.28) for the definition of V*(§)).

(AE2) Foranyy = (0, y, w) € V' (8) and u € B, the transpose dy, ()" (with respect
to the standard inner products) of the differential dV,, (x) : E1 — HO1 (Ty) yields
a bounded operator d¥ ()| = dy, ®": HOl (Ty) — Ey. Foranyq € HOl (Ty)
and any integer N > 1, dW (v) " [7] admits an expansion of the form

N N
dU®Tg) = (0,0, g+ Y a @ dW o g + ML Y 07w A dw D))
k=1 k=1

+R (@ d¥ (7]
where for any s € Nand 1 <k <N,
V') — HY(T1), > ax@d¥’), V') — B(Hy(T), H(T), r—> Ag(m:d¥ ),
and
V5(8) > BHS(T1). Egins1), t > Ry(@d¥’),

are C*°-smooth, bounded maps.
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(AE3) For any i € E, the Hamiltonian Hﬁd” = Hkdv o v, V1I(8) — Ris in normal
form up to order three. More precisely, foranyr = (0, y, w) € V(8), the Taylor

expansion of H*V = Hl]jd” at (0,0, 0) with respect to y and w up to order three
reads

1 1,
HY @) =etw-y+ 72,1y + E(Djmw, w)+ PRy (4)

where e := 'Hﬁd” (0,0,0) = HX (W (0, p)),

o= ()" (1, Mnes, . s, = @O0 (1, 0)) kes, -
and for any w = )", _¢1 wy e 2T, Dj_lw = D pest 2ﬂLnu)meiz’”’X, and (cf.
(1.18))
Quw:= Y Quue™, Q= 0), Vnest. (4.2)
neSt

Furthermore, P*4V VI(S) — R is C*°-smooth, satisfies
P @1 S Ayl +lwl)?. Ye=0.y.w) eV'($). Yue &,

and has the following property: for any integer N > 1 there exists an integer
on = N (loss of regularity) so that VP* (r)=(Vy Pk (v), VyPkd”(;), Vi
Pkdv (1)) admits an expansion of the form

N
VP @) = (0, 0, TIL Y T, iy 3 “w ) + Ry (s PEY),
k=0

where there exist integers sy > 0 and oy > 0 so that for any s > sy and any
0<k=<N,
VN () = HY(T1), 1 age @ PEY) VYN E) = Enat, £ Ry (s PHY)

are C*°-smooth and satisfy for any 6 € TS+, JRSHCH

a_(6,0,0; PX") =0, Ry(,0,0; P*") =0,
»RN(O,0,0; P*y =0, diRN(H,0,0; PXY) = 0.

Here T, (,.pkavy denotes the operator of para-multiplication with ax (; Pkdvy (cf. Defi-
nition 2.1).

Remark 4.1. Since Q_, = —Q, forany n € S+ (cf. (1.12), (1.18)), the Fourier multi-
plyer iQ is a real operator. In view of the expansion (4.1) and the identity 3, D! = i,
the component of the Hamiltonian vector field Hlkf’” in the normal direction is given by

VI HM (1) = i w + 3,V PH (1) .

Next, we want to express Eq. (1.4) in the normal form coordinates provided by
Theorem 4.1. To this end we write the nonlinear vector field F (1) in the coordinates
(0, y,2). Recall that F(u) = 9,V Pr(u) where Pr(u) := fol f(x,u(x))dx and f is
given by (1.7).
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Proposition 4.1. Let N € N. Then there exist integers sy > 0, oy > 0 so that for any

perturbation Py(u) = fol f(x,u(x))dx with f C*®-smooth, the following holds. For
any i € g, the gradient of

Pr=Psu:=Pro¥,: V() =R (4.3)
admits an expansion of the form
N
VPs(x) = (0,0, IT; Z To oevPpdy “w) + Ry (@ VPy),
k=0

where for any s > sy and for any 0 < k < N, the maps
VN () — HY(T1), v+ a—x(x; VPr),  V*(8) = Esin+1, £+ Ry(x; VPy)
are C*-smooth.

Proof. One has
VPr(u)(x) =0 f(x,u(x)). 44

By the Bony para-linearization formula (cf. [37, Section 5.2.3]) for the composition
operator, one gets that

VPr(u)(x) =0 f(x,u(x)) = TB?f(x,u(x))u +R () 4.5)

where there exists sy > N (large) so that for any integer s > sy, the map Ry :

HS(T)) — HN*I(T)) is C*°-smooth. Note that R ¢ (u) contains the zeroth order
term d; f'(x, 0) of the Taylor expansion of d; f(x, ¢) at { = 0. By Theorem 4.1-(AE2),
dW (r) " [7] has an expansion of the form

N N
(0. 0. ML)+ ML Y ami(s dW 4G + T Y (07 w) Ak (5 40 DY)
k=1 k=1

+Ry (@ dV )I[G], (4.6)
where the maps V(§) — H*(Ty), t — ax(g; dvT),

VI(8) — B(Hg (T1), H*(T), t > A d¥ ),
VE(8) — B(HS(T1), Essn+1), £+ Ry dv’),

are C°°-smooth, bounded maps. Using the expansion of W (¢) provided by Theorem 4.1-
(AED),

N

V@) = Vs, (0, p+y) +w+ Y a9 Fw+ Ry W) (4.7)
k=1

together with the para-product formula (2.3) and Lemma 2.3, one obtains

N

(VPHWE) =Y Tu_y:vpron)d; “w+ Ry (x; VPro W),
k=0

ao(x; VPy o W) = 37 f(x, W (),

(4.8)
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where there exist integers oy > 0 and sy > 0 so that forany s > sy and0 < k < N,
the maps

VSN — HY(Ty), t > a—i(x; VPr o W), V'(8) = Esin+l, 1+ Ry(r; VPro W),

are C*°-smooth. The expansion of VP, (x) = d\lf(;)T(V P7)(W¥(x)) is then computed

by using the one of dW (x) ", provided by Theorem 4.1-(AE2). Forany 1 <k < N , we
thus need to compute the expansion of the sum

N

D a k@ dW VP (W @) + 0 w) A k@ dW DIV P (W ()]
k=1

By (4.8) and using the para-product formula (2.3) one obtains

N
ML) a k(@ dW o VP (W@) + 0 ‘w) Ak (1 dW DHIVPH (W ()]
k=1

N
=110 ) (T wawny 07 VP (V@) + Tyt p ey ak@ A9 )
k=1

+RB (a_i (e dWT), 975V P (W (1))
N

FTLL Y T4 aw v ppuendc  + Dok, A dW DIV P (¥ ()]
k=1

N
+1L Y R (A k(@ dW DIVP (@)1, 9 w)
k=1

N
—k —k (1)
=Ty (Tafm;d\max VP (V@) +Ta awTive, @@ d w) + Ry ®
k=1

where

N
RY @) =LY Ty py e @k @ YT + Tyt A (65 9 DIV (W ()]
k=1

N (4.9)
+ 1Y (R (ai (e a¥ ), 075V P (W () ’
k=1

+ RO (A4 W DIVP E @], 074 w))

By applying Theorem 4.1-(AE1),(AE2), and Lemma 2.2, one obtains, after increasing
sy ifneeded, thatforany s > sy, themap V*(§) — Egin+1,L Rg\}) (r) is C*°-smooth.
By the expansion given in (4.8) and by applying Lemma 2.5 (composition of para-
differential operators), one then gets the following identity for the normal component
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(VPs)t of VPy,

N

(VP (@) = ML[VPr(W@)]+ 1LY (Ta,k(;;dw)a;"VPfov(zc))
k=1

—k (1)
1A DIV PO w) + Ry ®
N

=MLY Tuuvppdw+RY @, a0 VPy) = 92 f (x, w(x)),
k=0

where there exist constants sy > N and oy > N so that for any s > sy and any
0 <k < N, the maps

VSN (8) — HY(T)), t > ai(x; VPs), V() — HI™V(T)), 1 RP @),

are C°°-smooth. Altogether we obtain

N

VPr(®) =d¥ (@ (VPHWE) = (0.0, TIL Y Tu,vpd; w) + Ry (@ VPy)
k=0

where
Ra (@ VPs) = (0,0, R\7 (1) + Ry (1 d¥ VP (W (@)].

One verifies in a straightforward way that Ry (r; V'Pr) has the stated properties. O

Combining Theorem 4.1 and Proposition 4.1 together with Lemma 2.4 yields the
following corollary.

Corollary 4.1 (Expansion of H,,). Forany p € €, H = H, = (H*" +eP;) o ®, can
be written as

HG) = e+ N@) +PQ), Pk =P +ePr@), (4.10)

where e, N, and P*¥ are given by Theorem 4.1-(AE3) and Py by Proposition 4.1.
More precisely, e = Hﬁd” (0,0, 0) and for any r = (0, y, w) € V1(8),

1 1,
/\/(y,w):w.y+§szs+[y]-y+§(DL Qiw, w), 4.11)

with

1 . .
D'wx) =) Ewneﬁm, Quwx) =Y Qe (4.12)
jest neSt

The perturbation P is of the form (cf. Proposition 4.1)

P@) =ePL®) +Pe®),  Pr) :=Poo(0) +Pio®) -y +{Po1(0), w) (4.13)
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with P, Poo(0), P10(0), and Py1(0) having the following properties: there exist 0 <
6§ <1,0<e¢gg <1, and an integer o > 0 so that

Poo € C®(T5, R), Pig e C®(T>, R), Py € C¥(TS, Hi(Ty)), Vs >0,
P, € C®°0V7(8) x [0, g9, R) small of order three,

Xp, = (X(GE)’ ng)’ X%)e) = (=VyPe, VoPe, 0xVLP,) small of order two,
Xp, =0V P, = OB*(1, N)+ OS*(N), VN €N,

4.14)

(c¢f. Definition 3.1 and Definition 3.3 for the classes of vector fields OB*(1, N) and
respectively, OS?(N)).

Remark 4.2. Since the constant ¢ in (4.10) does not affect the Hamiltonian vector field
X1, by notational convenience, we will suppress it in the sequel. The same convention
will be used for any Hamiltonian under consideration.

We now reformulate Theorem 1.1 in the coordinates, provided by Theorem 4.1. By
Corollary 4.1, the one parameter family of Hamiltonians H = H,, = (H kdv ¢ p )od,,
u € &, is given by

H@) =N (@) +ePL() + Pe(v) (4.15)

with A defined by (4.11) and Py, P, by (4.13) (cf. Remark 4.2). Using that 9, DJ__1 Q) =
iQ2 , the Hamiltonian vector field X3y = ( - VyH, Vo'H, 0,V J_H) can be computed as

—w — Qg [y] = eP10(0) — VyPe(r)
X1(r) = eVoPL(r) + VoP,(v) (4.16)
1w+ &0, Po1(0) + 0, VL P (2)

and the corresponding Hamiltonian equations are
00 = —w — Qg,y — eP10(0) — V, Pe (1),
9y = eVoPL(¥) + VP, (1), (4.17)
w =12 w + €9, Po1(0) + 9,V Pe(r).

Except for the measure estimate (1.23), Theorem 1.1 is an immediate consequence of
the following theorem. (We refer to Sect. 8 for a proof of (1.23).)

Theorem 4.2. Let f € C*°(T| x R, R), Sy be a finite subset of N, T be a number with
T > |84 (¢f (1.20)), and p = p(w) with w € Tl,,, 0 < y < 1. Then for any integer
s sufficiently large, there exists 0 < g9 = €o(s, y) < 1 with the following properties:
forany 0 < & < gg there exists T = T,5, = 0(e72), so that for any initial data
to = (0o, yo, wo) € TS x RS+ x H{ (Ty), satisfying

[yol, llwolls <&, (4.18)

there exists a unique solution t — t(t) = (0(t), y(), w(t)) of (4.17) with £(0) = 1o
and

6 eC ([-T,T1, T%), yeC'([-T,T]R),
we CO(~T,T1, H (1) N C' ([T, T1, H{(T1)).

In addition, the solution satisfies |y ()|, |lw(@®)|ls Ss,y € foranyt € [T, T1.
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Theorem 4.2 is proved in Sect. 7. A key ingredient of its proof is the following result
on normal forms.

Theorem 4.3 (Normal Form Theorem). Let f € C*(T; x R, R), S, be a finite subset
of N, T be a number with t > |Sy| (cf. (1.20)), and n = p(w) withw € I1,,, 0 < y < 1.
Then there exists o, > 0 so that for any integer s > o the following holds: there exist
0<d6=968(0,9) <1,0 < ey =eop(s,y) €6, and Cy = Co(s,y) > 1 with the
property that for any 0 < & < g there exists an invertible map ® with inverse ®~' (cf
Remark 3.4),

dE € CP WV (8), VE(Cod)), &+ (r) — r small of order one,  (4.19)

so that the pull back X = (X, xW x1) = QD*XHM of the vector field Xy, by ®
has the form
~ 0
XO@) =-0-e0+8 @, w) + 0@, XV =0,

X = ia N N (4.20)
P =iQiw+D - @[w]+ I Typorw+R(@),

where & € RS+ and
N® ECI‘,X’ (Bs+ (8)x Bj’_* (8)x[0, &o], RS‘“) small of order one (and independent of 9),
0P, O e CE(V7(8) x [0, sol, RS small of order three,
Dl e C,;’O(V‘T* (8) x [0, e0l, B(H} (Ty), Hj‘_fl('ﬂ‘l))) small of order one,

D' Fourier multiplier of the form pt ©[w] = Z dj (x)wjeiznjx with the properties

jest

dj € C;P(V7(8) x [0, 0], R), ¥j e ST, D skew-adjoint: D-(x)" = —D(p),
a € C°(V**(8) x [0, &0l, H*(T1)) small of order two,
Rt e cy (VS (8) x [0, e0l, H} (']I‘l)) small of order three. 4.21)

The proof of Theorem 4.3 is given in Sect. 7. The transformation & is obtained as
the composition of several transformations, constructed in Sects. 5-6.

5. Smoothing Normal Form Steps

As part of the proof of Theorem 4.3, the aim of this section is to normalize terms in
the Taylor expansion of the Hamiltonian H (cf. (4.15)), which are affine with respect
to the normal coordinate w and homogeneous of order at most three with respect to
the coordinates y, w and the parameter ¢ (cf. Overview of the proof of Theorem 1.1 in
Sect. 1). The main result of this section is the following one.

Proposition 5.1. Let f € C®°(T| x R, R), Sy be a finite subset of N, t be a number
with T > |84 (¢f. (1.20)), and u = p(w) with w € I1,,, 0 < y < 1. Then for any
N € N, there exist integers sy > 0, oy > 0 so that for any s > sy, there exist
0<d=6@s,y,N) <land0 < gy = eo(s,y, N) K & with the following properties:
forany 0 < ¢ < g there exists an invertible symplectic transformation ® with inverse
&~ ! 50 that

dE € PV (8) x [0, 801, VS (28)),  ®E' () — ¢ small of order one, (5.1)
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and so that the Hamiltonian H® = H o & (cf- (4.2)) has the form

—~ L, _

HO@ =NY@+K®, NO@ =0 y+ed-y+(DI'Qw, w)+0).

(5.2)
Here & = &(¢) € RS is an affine function of ¢, Q(y) = Q(y, &) is small of order
two, a polynomial of degree three in y and an affine function of €, and the components
of the Hamiltonian vector field Xx = (X,(Ce), X,(Cy), X,é) = (=V,K, VK, 0,V K),
corresponding to the Hamiltonian K, satisfy the following properties: X,(g)(;c) is of the
form Y3 @) [w, wl+ 1 ) with

1, € CR(T%, By(HT¥ (T1), R%)),
T € CP (VN (8) x [0, eol, RS*), small of order three,
and

XY e CPVN (8) x [0, e0l, RS*), small of order three, Xi(x) = T(x) + Ry ¢,
(5.3)

where
YL =0B2(1,N)+ 0B, (1, N)+ OB*(1, N), Ry = OS82 (N)+ 082 (N)+OS*(N).

In the remaining part of this section we prove Proposition 5.1. The transformation
® is obtained as the composition oD o d®@ o G of three symplectic transformations
oW, 1< <3,

Normalization of P, up to 0(&2).

The aim of this first step is to construct a symplectic transformation ®1) so that

PL) L e (Poo(@)+P10(0)-y+(Po1(8) , w)), when expressed in the new coordinates,

is in normal form up to order £2. We construct ® as the time one flow of a Hamiltonian
flow corresponding to a Hamiltonian of the form

eFD (1) = eF)0) +F ) 0) -y +(F©6), w)
where
Fop € C2(TS, R), Fly) e c=(TS, RS), F} e C=(TS, HI(TD), Vn=0,
(5.4)

will be chosen to serve our needs. The Hamiltonian vector field corresponding to the
Hamiltonian e 7V (¢),

Xoro @ = (= eFi0 ©), e(VaF(g ©) + VoF (g 0) -y + Vol F ), w), e 5 ©))

is small of order one and by Lemma 3.19 arbitrarily smoothing. It means that X, 1) €
OS!(N) for any integer N > 1 (cf. Definition 3.3). Denote by @V (z, ) = @, r) (7, -)
the flow of X, za). For any given N e N, there exists an integer sy > 0 with the
property that for any s > sy, there exist 0 < § = §(s,y, N) < land 0 < gy =
eo(s, ¥, N) < 1 (small), so that D (z,) € CV*(8) x [0, eol, V¥(28)) for any



1920 T. Kappeler, R. Montalto

—1 < t < 1. The inverse of the time one flow map ®(1) := & (1, ) is then given by
(@)=t = &M (—1, ) (cf. Remark 3.4) and by Lemma 3.16,

oV, @) —r € OSY(N), V-1<t<]l. (5.5)

We now compute HD := H o &) by separately expanding the terms appearing in
(4.13). By (1.33) (Lie expansion), (5.5) (properties of &) and (1.32) (Poisson bracket)
one has

1
NodD = N +eN, FD) +82/ A =o){N, FOy, 7Dy oW (¢, ydr,
0

N, FOY = 0 89 F5) 0) + (@ 89 F 1) 0) + s, [VoFoy 0)]1) - v
+{(- 39 +i21)FS} ©), w)
+(Qs,[y] - 3)(Fp(0) - ¥) + (s, [¥] - 86)Fy, (), w)
and by (1.33) (Lie expansion) and (4.14) (properties of P,)

1
ePLodV =¢P, +€2/ (Pr, FMY o @Dz, ydr,
0

P, o @V €% — smooth, small of order three.
Altogether, one obtains
HY = N +6(w-80F 0) +Poo(0)) +&(w- 8sF ) 0) + Pro(6) + s, [VaFoy (0)]) - v
+&{(w - 99 +1Q1)F) + Por, w)+PD, (5.6)
PO =2 [ (1 =N, FO}, FOyo D (z, ) dr +2 [} {Pr, FD) o 0D(z, ) dr
+6(Q2s,[y] - 90) (Fiy 0) - y) +&{(Qs,[¥] - 89) Fg) (0). w) + Pe 0 @V (5.7)

Since the terms appearing in the second line of (5.7) are small of order three, the Hamil-
tonian P! admits an expansion of the form

PO = 2Py ©) + PY (5.8)

where Pé(l)) € C®°(T%,R) and 77,51) is small of order three. In view of (5.6) and since
Qs [Vo .7-'5(1))] has zero average in 6, we consider the following system of homological
equations for .7-'6(1)), F 1((1)), .7-'(5}),

w - 307:(5(1)) +Poo = (Poo)e »

- 307:1((1)) +Pro + Q&W@ﬁ%)] = (P1o)e » (5.9

(-85 +iQ1)FS) +Po1 = 0.

Since by assumption w € I1,,,0 < y < 1, (cf. (1.19)), we can apply Lemmata B.1, B.2,
to conclude that the system (5.9) has a unique solution ]—"é(l)), F 1((1)), ]—"é}) satisfying (5.4)
and (F3))e = 0, (Fiy))e = 0. The Hamiltonian H(), defined in (5.6), then reads

HY = N +eN; +62PG0)+ P, Ni(y) == (Poo)s + (Piods - y - (5.10)
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Since Pél) is small of order three, its Hamiltonian vector field XP(I) is small of order

two. For later use we discuss the normal component X 7L;<1> of the vector field XP(”'

Since X, 1) € OS'(N), and xLe = OB2(1, N) + OS?(N) (cf. (4.14)) it follows from
Lemma 3.17 that X7J5€o<1><1> = OB?*(1, N) + OS?(N). Arguing similarly for all the other
terms in the definition of Pe(l) (cf. (5.7), (5.8)) one can show that

Xj)(,) =8, V., PV = OB*(1, N) + OS*(N). (5.11)

Normalization of ezpé(l)) (6). The aim of this second step is to normalize the term
82’P(§(1)) (0) (small of order 2) in (5.10). To this end we construct a symplectic transfor-

mation &, given again by the time one flow of a Hamiltonian flow, corresponding to
a Hamiltonian of the form £2F® (9) with

FP e c®(T%, R) (5.12)

being a function to be determined. The Hamiltonian vector field corresponding to the
Hamiltonian e2F®(6),

Xporo @ = (0, 2V, F@6), 0).

is small of order two and by Lemma 3.19 arbitrarily smoothing. It means that X,> o) €
OS?(N) for any integer N > 1 (cf. Definition 3.3). Denote by ®(t, -) = Do re)(T, )
the flow of X > 2. Forany given N € N, there exists aninteger sy > 0 with the property
that for any s > sy, there exist 0 < § = (s, ¥, N) < land 0 < g9 = go(s, v, N) < 1
(small), so that @® (7, ) € CP(V*(8) x [0, go], V*(28)) for any —1 < 7 < 1. The
inverse of the time one flow map ®@® := ®@(1,.) is then given by (dP)~! =
®®@ (-1, -) (cf. Remark 3.4) and by Lemma 3.16,

P (r, V1) —r € OS> (N), V-1<t<l. (5.13)

We now compute H® := HD o @ by separately expanding the terms in (5.10). By
(1.33) (Lie expansion), (5.13) (properties of ®@) and (1.32) (Poisson bracket) one has

1

Nod® = N+ 2\, F?) +84/ 1 =D{N, FO), FP)o 0@ (1, ) dr
0
1
:N+82w,39}-<2>(9)+84/ (1 — DN, FO). FO16 0@ (1. ydr .
0
1
N0 d® = o0 463 / W FO) o 0Oz, dr |
0

1
2P 0 @@ = 2P 0) + ¢* /O (P FPy o 0P (z, ) dr
Pe(l) o ®® (> — smooth, small of order three.
Altogether, one obtains

H® = HD 0 0@ = N+ 6N +62(0- 3 FP0) + Py ©)) + P,
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1 1
PO .= 84/ (A =DN, FOy, FOro P (7, ) dr +83/ (N, FPYo @@ (1, ) dr
0 0

1
+s4/ (P, FP o @D (7, ) dr + PV 0 0@ (5.14)
0

Since ’Pe(l) is C*°-smooth and small of order three, so is P@. In view of the formula for
H? in (5.14) we consider the following homological equation for F®,

w- B FP©O)+ P 6) = (P . (5.15)

Since by assumption w € I1,,0 < y < 1, (cf. (1.19)), we can apply Lemmata B.1, B.2,

to conclude that (5.15) has a unique solution F? e C*®(T%+, R) with (F®)s = 0.
The Hamiltonian H® in (5.14) then reads

~ ~ ~ 5.10
HY =N +eNo+ PP A= N +s(79(§(1)>) 1

(Poo)e + (Pio)e - y + 8(7’&1}))9 .
(5.16)

Since P@ is small of order three, its Hamiltonian vector field Xpa) is small of order
two. For later use, we again discuss the normal component X'p(Z) of the vector field
Xpw. Since X270 € OS*(N), and X;m = OB*(1,N) + OS*(N) (cf. (5.11)) it
follows from Lemma 3.17 that X;(” o = OB?(1, N) + OS*(N). Arguing similarly
for all the other terms in P® (cf. (5.14) (5.7), (5.8), (5.10)) one shows that

Xpo =0V PP = OB*(1, N) + OS*(N). (5.17)
Normalization of terms affine in w. The aim of this third step is to construct a symplectic
coordinate transformation &), normalizing the terms in the Taylor expansion of P
(cf. (5.16)) with respect to y, w at (y, w) = (0, 0), which are homogeneous in y, w, €
of order three, of degree at most one in w, and of degree at most two in ¢. The Taylor
expansion of P in y, w,  up to order four reads

PG =3PF ©) + (P 0) - y + (P 0), w))
+e(PRQ Oy, y1+ (PP Oy, w) + (PS 6, »iwl, w)
+ PR Oy, . Y1+ (P Oy, y1, w) + P O)[w, w, w] + 04 x),

where for any n > 0,

Pgo € C(T%, R), Plo € C®(TS, RS, P e C(TS, H{(T)),
P € CX(TS, ByRS), P e C(TS, BRS, HI(T))),
P € C®(T™, B3(RS)), P e CO(TS, By(RS, HY(T)))), (5.18)

P € CO(TS, B3(H!(T1), Py € C(TS x RS x R, B(H(T1))).

O4(x) C*°-smooth, small of order four.

Remark 5.1. Tn the above Taylor expansion of P, we combined the terms which are
of the order (02) and (1 2) in the variables y, w and for notational convenience, denoted

the combined term by (P2 (6, y)[w], w). The map

PR, y,6) > PR, y) =PS5O, v, ¢)

is linear in y, €.
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We split P?) as PP = 771(2) + 7352) + O4 where

P = 2P 0) -y + Py (O)y. 1+ Pig (O)Ly. . y]
+ 2P O), w)+ (PR @Y1, w)+ (PSY Oy, yl w)  (5.19)
PP = S3PE0) + (PG 6, mwl, w) + PR @) [w, w, w].

Note that 771(2) is affine in w and that the Hamiltonian vector field corresponding to the

term 5377(%) (0) is small of order three. The transformation ®® is then defined as the
time one flow of the Hamiltonian vector field X 7@ with a Hamiltonian F ®) of the form

FO@) := 2F0) -y + e F Oy, y1 + F Oy, v, v 520
+2(F0), w)+ el FO O[], w) + (F5 Oy, y1, w)

satisfying for any n > 0,

Fiy € C®(TS, RS, Fyy) € C(T%, By(R%)),

];3(3) c COO(TS+, B3(RS+)), ]:g) c COO(TS+, Hﬁ(Tl))y (5.21)

FiY € COTS, BRS, HI(T1), Fyy € CO(T%, ByRS, HI (T)))).
The functions J:i(]?) will be chosen according to our needs. By (5.20), (5.21), the Hamil-
tonian vector field X £ is small of order two and by Lemma 3.19 arbitrarily smoothing.
It means that X a3 € OS?(N) for any integer N > 1 (cf. Definition 3.3). Denote by
<I>(3)(r, ) = @£ (7, -) the flow of X ). For any given N € N, there exists an integer
sy > 0 with the property that for any s > sy, there exist 0 < § = §(s, ¥, N) < 1 and
0 < g9 = go(s, ¥, N) < 1 (small), so that ¥ (z, -) € C°(V*(8) x [0, &9, V*(28)) for

any —1 < t < 1. The inverse of the time one flow map ®® := & (1, -) is then given
by (@)~ = ®® (1, ) and by Lemma 3.16,

oI (1, )@1) —r€ OS*(N), V-l<t<l. (5.22)
We now compute H® := H® o &> by expanding separately the terms in (5.16). By

(1.33) (Lie expansion), (5.22) (properties of ®®), (5.19) (splitting of P@), (5.20)—
(5.21) (properties of F 3)), and (1.32) (Poisson bracket)

1
Nod® = N+ (N, f<3>}+/ (1 =N, FI), FOY o 0Pz, ) de
0

can be expanded as

Nod® = N+ 2@ 9)FD©) - y+e@- 9)FD Oy, v+ (@ ) FD Oy, v, y]
+&2{(@ - 3 +IQDFDO), w)+e{(@ - 35 +12DFD O)[y], w)
+{(@- 3 +1QDF5) Oy, ¥l w)

1
+(Qs, [y]- 9)FS + / (1= DN, FOL FD o 0¥z, ) dr, (5.23)
0

1
.//\72 o d® =.//\72 +/ {.&72, .7:(3)} o (13(3)(T, Vdt,
0
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1
PP o d® =p? 4 PP +/ (P, 7Yoo (1, )dr .
0

Since PP (cf. (5.16)), F® (cf. (5.20)) are small of order three and in view of the
definition of A, N (cf. (5.16)), {{N, F®}, FOV, e(N>, F@}, and {PP, FO)} are
small of order four. Hence the Hamiltonian H® takes the form

HY = N+ ey + (0 007 0) + PR©)) - v +2(0- 0075 ©) + P @) )1y, ]
+ (a) 09 FS) (0) + P (9)>[y, Vo 1+ (- 89 +1QDFS 0) + P (0), w)
+e((@- 89 +iIQDFT O)y] + P O], w)
+((@- 3 +IQDFS) Oy, 1+ POy, y], w)+ P + 04 (5.24)
where O4 comprises all the terms which are small of order four. In view of (5.24), we
consider the following system of homological equations for ]—'i(;),
w- 9T 0)+ PR ©0) =(P), 1=j=3,
(-0 +IQDFG O) + P O) =0, (03 +iQ)FVO)+PT6) =0,
(-39 +iIR1)F (0) + Py (6) = 0. (5.25)

Since by assumption w € I1,,,0 < y < 1 (cf. (1.19)), we can apply Lemmata B.1, B.2,

to conclude that the system (5.25) has a unique solution ]-',(/3), satisfying the properties

(5.21). The Hamiltonian H® in (5.24) then reads

HO =NO K, NO :=w~y+sa?~y+1(D*‘QLw,w>+Q(y), K:=P®+0,.
2 (5.26)

&= (Pl +e(PRle,  Q0):= %sz&y -y +e(Pgholy, y1+ (P oLy, v, v1.

Here we dropped the irrelevant constant term & (Pog)g + &2 (P(g(l)) Yo from the Hamiltonan
HP (cf. Remark 4.2). By (5.19), (5.26), the components of the Hamiltonian vector field
Xy = (X3, X% X ) read

X (1) = —w — £6 — Vy0(y) — Vy Py (1) — VyOa(x)

X5 @) = Vo PSP (@) + Vo Ou(y) (5.27)

Xy @) = iQLw + 8 VLIPS (1) + 0, V1 Oa1) .
Since Péz) is a C*°—smooth and small of order three and Oy is small of order four,
Vo 7352) is small of order three and Vg Oy is small of order four, implying that

xgg) e CP(VI¥(8) x [0, go], RS*) small of order three (5.28)
for some oy > 0. Towards X ;?3) , note that V(04 is small of order three and that V, 7352)

(cf. (5.19)) is small of order two and has the additional property of being at least quadratic
with respect to w. Therefore

VPP @)+ V,040) = T O)w, wl + 1), (5.29)



On the Stability of Periodic Multi-Solitons of the KdV Equation 1925

where
13" € C°(T, By(HT* (T1), RS)),
T3(0) € COO(VGN (8) x [0, eo], IRS’f) small of order three

for some oy > 0. For later use, we discuss the normal component X ,% of the vector

field Xxc. Since by (5.19), P = 3P @) + (P50, ww], w) + P 0)[w, w, w]
(cf. Remark 5.1) one infers that

Xi(1) = 0, VI PP (@) + 0, VL 04 (1) = 20, P (0, y)[wl + Y5-60)[w, w] + Y5 ()
(5.30)

where T;-(;) is small of order three. Since Xrp € OS*(N) and 3,V P®@

=0B%*(1, N)+OS2%(N) (cf. 5.16, 5.17) and in view of the definition of Q4 (cf. (5.24))
it then follows from Lemma 3.17 that

9, P36, »Iw] = OBL (1, N) + OS2 (1, N),

T3 O)[w, w] = OB, (1, N)+ OS2 (N), T5@) =0B1,N)+0OS*N).
(5.31)

Proof of Proposition 5.1.. We define ® := & o & o &3 where &V, »? oG
are the symplectic coordinate transformations, given in the paragraphs above. Using the
properties (5.5), (5.13), (5.22) of @, @@ and &, respectively one shows that there
exists an integer sy > 0 with the property that for any s > sy there exist 0 < § =
8(s,y,N) < land 0 < g9 = €o(s, ¥, N) < 1 so that (5.1) holds,

ot! ¢ CiP(V*(8) x [0, g0, V*(28)), @+ (1) — ¢ small of order one .

Since K = 2(2) + Oy, the remaining statements of Proposition 5.1 then follow by (5.28)
- (5.31). O

6. Normalization Steps by Para-Differential Calculus

The goal of this section is to normalize terms in the vector field X, which are linear
or quadratic in the variable w, where Xx denotes the Hamiltonian vector field of the
Hamiltonian K of Proposition 5.1. This is achieved in three steps, described in the
following three subsections, by using para-differential calculus.

6.1. Normalization of terms linear or quadratic in w. The aim of this subsection is to
reduce to constant coefficients the terms in the normal component X = Xz of the

vector field X = X4y, which are linear and quadratic in w. Recall that such a reduction
is needed since H](,3) (cf. (1.20)) allows for a loss of derivatives in space.
By Proposition 5.1, X is of the form

(5.3) .
XT@) = X34, = iQuw + X ).

Since €2 is a diagonal Fourier multiplier with constant real coefficients (cf. (1.18),
(1.42)), it remains to normalize X ,% (r) in the above sense.
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By Proposition 5.1, X ,J€ (r) admits an expansion of the form

X = X{ 6, )wl+ X3 @) [w, w]+ OB (1, N) + 0S*(1, N),
X0, Y)w] =T 0, p)wl+ Ry 0, y)[wl, (6.1)
X3 @)[w, w] = T30, w)w]+ Ry ,O)[w, w],

where
N+1
YO, Wl =T Y Tuy o0 we OBL(LN), Ry, 0, yw] € OSL(N),
k=0
N+1 (6.2)
Y5O, w)lwl =T Y Ta @mwds ‘w e OB, (1,N), Ry ,O)w,w] €08, (N).
k=0

By Definition 3.4, for any given N € N, there are integers sy, oy > 0 (large) with
the property that for any s > sy there exist 0 < § = §(s,y,N) < land 0 < g9 =
eo(s,y, N) < 1sothatforany0 <k < N +1

aji—i € leo(']I‘S" x Bg, (8) x [0, o], HS(Tl)) small of order one,

! (6.3)
Aj_ € C®(T x [0, g0l B(H™N (T1), H*(T1))).
Note that X IL (6, y)[w] is a vector field small of order 2 and linear in w, whereas
X2l (6)[w, w] is small of order 2, but quadratic in w. Since the vector field X,% is Hamil-
tonian, every term in the expansion (6.1), which is homogeneous in the coordinates y, w,
is a Hamiltonian vector field as well. In particular, X f‘ (6, y)[w] is such a vector field.

Preliminary analysis of the vector field X f(@, y)[w]. Since X f(@, y)[w] is a Hamil-
tonian vector field which is linear in w, (A.2) in Appendix A implies that the diagonal
operator

diag; g1 [X{(0, y)1 (6.4)

is skew-adjoint,

[XT©0. )1 = —[X{ @, 01,  jest. (6.5)

We will show that the normal form transformations, constructed in this and the following
subsection, preserve this property of X IL(Q, y)[w]. Since this is the only property of the
transformed vector field X f‘(@, y)[w] which is needed in the energy estimates in Sect. 7
we can allow for normal form transformations, which are not necessarily symplectic, as
long as they preserve (6.5).

Our aim is to construct iteratively a coordinate transformation on V¥ (§) so that when
expressed in the new coordinates, the vector field X li(e, y[w]+ X2L (@)[w, w] is again
of the form (6.2) and that the coefficients aj_;(0, y) + A—x(O)[w], 0 <k < N +1,
are independent of x. At the (n + 1)th step, n > 0, we deal with a vector field X, =
(X ,(19) , X ,(,y ) , X nL), defined as the pull back of X by the composition of the transformations
up to the nth step, of the form
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XP@ = —w—eo - V,00) - 1O w v+ 0V . X =00,
X (1) = iQ1w + Dy (0, )[w] + Dy (0, w)[w] + X, (0, y)[w] + X0, (0, w)[w]
+ Ry (0. M[w]+ Ry , 0, w)w] + OB (1, N) + OS*(N)
(6.6)

where for notational convenience, we write Rﬁ i = Ri N, for j = 1,2, and where

D, 1 (0, y)[w] € OF, (1, N), D, (0, w)lw] € OF,, (1, N),
X; 0. »[wl € OBL(1—n,N),  X;» (0, w)w] € Owa( —n,N) 67
Ry 10, y)[w] € OS5 (N), Ry L0, w)w] € OS5, (N) '
(’)59), Ogy) € Cl‘,’o (V"N (8) x [0, &o], RS+) small of order three
for some oy > 0. Moreover
DH(0,y) =D 0, »T, [XF,0, ) = —[X1,0, 0T,
/ ’ / (6.8)

[R.1 (0. )Y, = —[Ry; (0. ). Vjest.

Our goal at the (n+1)th step is to construct a transformation so that when expressed in the
new coordinates, the vector field X,J{,1 ©, y)[w] +XJ-2(9 w)[w]isoforder 1 — (n+1) =

—n. Since X;-, (0, y)[w] € OB, (1 —n, N) and X;-,(0, w)[w] € OB, (1—n, N) we
can write

X 0, »[w] =TTy 0.0, "w+ OBy (—n, N),

| ) (6.9)
Xn)l(e,w)[w] = HLTA,_M)[w]a w+Owa( n,N)

with the property that there are integers sy > 0, oy > 0 so that for any s > sy there
exist) <8 =4(s,y,N) < land 0 < g9 = gp(s, ¥, N) < 1 so that
aj—, € CEO(TS’f x Bg, (8) x [0, o], HS(Tl)) small of order one,

6.10
Ai—p € C®(T5 x [0, eol, B(H™V (Ty), H*(T1))). (10

Hence we need to normalize the vector field I11 Ty, , @.y)+4,_,@)[w]d. " w. In order to
achieve this, we consider a para-differential vector field of the form

Y50,y w) = Y50, y)[w]+ Y50, w)w],
Y0, »w] =1 Th, 0,0 'w € OB (—n — 1, N) (6.11)
Y50, w)w] =1 Ts,@)mwd " 'w € OB, (—n — 1, N),

and make the ansatz that b, (0, y), B, (6)[w] are smooth functions (satisfying conditions
as in (6.10)) and

(bn(@, )x =0,  (Ba(@)[w])x =0.

To determine b, and B,, we compute the pullback X,;; := ®} X, of X, by the
time one flow map @y, . corresponding to the vector field Y, . By Lemmata 3.7, 3.10,
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3.13 and the induction hypothesis (6.8), one infers that the components of X,+1 =
x@ x9 XL ) satisty

n+l> “*n+l>
Xh® = —0—e0 - V,00) - 07O w1+ 0 @), X0 = O(y)(zc)
X;h (1) =iQuw +DL1(9 »wl+ Dy 20, w)w] + 1L T35,5,0.y)+a)_ 6. Y
+ T1L T35, B, 0)[wl+A;_, @)[w] 0. "W + Xn+1,1 @, [wl+ RN,l @, »[w]
+ X1 20, w) W]+ Ry, @) [w, w]+ OB (1, N) + OS3(N)
(6.12)
where
X110, 0)[w]l € OB (—n, N),  Xpy 20, w)w] € OB}, (—n, N)
Ry 10, »w] € OSL,(N), Ry 20, w)[w] € OS5, (N), (6.13)
(’)ge), (’);y) € C°(V°(8) x [0, e0], R%) small of order three

and the diagonal matrix elements of the operators X -
imaginary, namely

16, 3), Ry (6, y) are purely

n+l,

[X;H 116,01, [Ry @, y)] ciR, Vjest. (6.14)
We then choose b, (0, y) and B, (0)[w] to be solutions of

—30xbu (0, y) +a1-n(0,y) = (a1-n(0, y))x ,

6.15)
=30y B (0)[w]+ A1—n(O)[w] = (A1—n(O)[w])x . (
More precisely, we define
1
bn(0,y) = gax (31—11(09 y) —{a1-n (0, y))x) )
| (6.16)
By (0)[w] := gax_l(Alfn(e)[w] — (A1 O)[w])y) -
Since IT1 Ty, 6, y))x 81 w = {a;_, 0, y))xai_"w and
ML Tia,@wn, 8y "w = (A1_a(@)[w])xdy " w
one infers from (6.10) that
Dy 1 0. MWl =Dy (0, y)[w]+ (a1—a(®, )0y "w € OF 5 (1, N), 6.1

Dyt 20, w)w] := Dy, (0, w)[w] + (A (O)[w])d; "w € OF (1, N).

Since aj_, (0, y) is real valued, the Fourier multiplier (a1_, (0, y))x0 I=n ig skew-adjoint
if n is even. Futhermore, by the induction hypothesis (6.8) and Lemmata A.1, A.2 in
Appendix A, one has

(611_;1(9, y))x =0 ifnisodd.

Hence the Fourier multiplier Dn +1.1(0, y) is skew-adjoint. Altogether we showed that
the vector field X, = L1 is of the form
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Xit ) (©) = iQuw+ Doy (0, )[wl+ Diyy 50, w)lwl+ X,y (6, y)[w]
+Xi1 2O, W]+ Ry (O, [w] + Ry 0, w)w] + OB (1, N) + OS*(N) .
(6.18)
We thus have proved the following

Proposition 6.1. For any N € N, there exist sy, on > 0 with the following property:
for any s > sy there exist 0 < § = §(s,y,N) < 1,0 < g9 = go(s,y,N) < 1 s0
that the following holds: there exists a transformation WY with inverse (W)= (cf.
Remark 3.4),
WDE e c (V5 (8) x [0, e0], V¥ (28)), Vs >sy, (¥ E(r) — 1 small of order two,
(6.19)

so that the transformed vector field X4 = (‘Il(l))*XH (X(g) Xf‘y), Xi-) has the
following properties:
X @) = —0 -6 - 9,00 - T Olw, wl+ 0@ . X © =0,

X3 @ =iQuw + Dy (0, Y)[w]l + Dy, 0, w)w] + Ry 1 (0, y)[w] + Ry 56, w)[w]

+OB*(1, N) + OS*(N) (6.20)
where
Dy (0, y)wl € OFL(1,N), Dy,0, w)w] € OF,,(1,N),
R.1 (0, mw] € OS5 (N), Ry 20, w)w] € 0S5, (N), (6.21)
O, 0% € Cg°(VoN (8) x [0, el, RS*) small of order three.
Moreover

Di(0.y) =—(D3,0.y)".  [Ry, 0.0, iR, Vjest. (6.22)

6.2. Normalization of Fourier multiplier quadratic in w. The goal of this subsection is
to normalize the vector field Diz (0, w)[w] in (6.20). According to Proposition 6.1 and
Definitions (3.2), (3.4),

D50, w)[w] = AT (O)[w]dyw +Di, (@, w)[w],
N+1
D@, w)w] =Y At (O)[w]d} *w € OF2, (0. N),
k=1
(6.23)

where forany 0 <k < N +1, A{, € C®(T5, B(H",R)) for some oy > 0 (large).
Since A (0)[w] is real valued, the leading order operator A (9)[w]d, is a skew-adjoint
Fourier multiplier and hence has the property needed for the energy estimates in Sect. 7.
This however is not true for D4 » (8, w)[w]. The goal of this section is to eliminate it. To
this end, we consider a vector field of the form

N+1
M@ = (0,0, M@, w)w]), M@ w)lwl= Y Ef ,O)wld FweOF,, 0, N),
k=1
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(6.24)

where E 1 k (0) will be chosen so that the time one flow map @ 5, generated by the vector
field X o4, is a coordinate transformation serving our needs. In more detail, consider the

pullback X5 := CD*MX4 = (X('g), X(}) Xé-) of the vector field X4 of Proposition 6.1
by @ . By Lemmata 3.13, 3.15, one has

X0 = -0 -0 - V,00) - 1TV O)w, wl+ 0 ®), X =0,
X3 () =iQuw + Dy (0, y)[w]+ A1O)[wldsw + Ry (0, y)[w] + Ry, (6, w)[w]
+w - MO, w)w] — M0, 1921 w)[w] + D426, w)[w]
+0OB*(1, N) + OS*(N) (6.25)

where for some integer oy > 0, (9(9), Ogy) are in C}° (V"N (8) x [0, &o], RS*) and small
of order three. The vector field M- (6, w)[w] is chosen to be a solution the following
homological equation

w - MO, w)[w] — M (0,12 w)[w] +Di, @, w)[w] =0, (6.26)

or in view of (6.23), (6.24) equivalently, that forany | <k < N +1, ul (@[wlisa
solution of

w- 09 B L (O)[w] — B (O)[iIQLw]+ At (O)[w] =0. (6.27)

Since A1 ko u] i € C®(TS+ x [0, &o], B(HUN (Ty1), R)), there exist uniquely deter-
mined maps a,1 ,agy in C®(T5 x [0, eol, H, “¥(T})) so that

At (O)[w] = <“A1£k(9)’ w),  E{@[w]= <"Etk(9)’ w).
Equation (6.27) then reads

(w09 ags (0). w)— (aal{k ), iszlw)+(aA]L_k ), w)=0. (6.28)

Since i is skew-adjoint, one has —<aEIL (), iQw)= (iQLaEIL (©), w). We choose

S

Aol . as the solution of
(w - 0p + 1Ql)a31{k @)+ N @) =0. (6.29)

This equation can be solved by expanding agl (0) and a AL, (0) in Fourier series with
respect to 6 and x,

aE]L k(@) = Z a\Ell k(g’ j)eiZ-GeiZJzj’
(£, j)eZS+ x S+
_ ~ o €0 127 jx
ayL @)= Y @y (€ et

(L, j)eZS+ x S+
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Since by assumption w € Hg,l), 0 <y < 1, (cf. (1.20)), Eq. (6.29) can be solved. The
solution agi (0) is given by

OV
i(w-€+9Q))

agl = —(w- 3 +iQ1) 'a,u = Z oi00 pi2mjx
g L

- (L, j)eZS+x S+

(6.30)

Since a, 1 € C>®(T5+, H "¥(T})), one infers that ag. € C®(TS+, H """ (Ty))

and therefore (6.24) is verified and Eq. (6.26) is solved. Finally, the vector field X g- is

of the form
X3 () =iQiw + Ds@[w] + Ry 1 (0, y)[w] + Ry , (0. w)[w]
+OB*(1,N) + OS*(N) ,
Dy ()[w] := Dy, (0, y)[w] + A{(O)[w]d,w € OF*(1, N), (6.31)

where the remainders RJA—, 10, M[w], ’RJ[\; 5 (8, w)[w] are given in Proposition 6.1. Fur-
thermore, DSL (r) is skew-adjoint,

Di@) =D ). (6.32)
We summarize our findings of this subsection as follows.
Proposition 6.2. For any N € N, there exists an integer sy > 0 with the property that
for any s > sy there exist ) < § = 6(s,y,N) < 1l and 0 < g9 = go(s,y, N) < 1 s0
that the following holds: there exists a transformation W with inverse (W)~ (cf.
Remark 3.4),

(WEL e C2(V(8) x [0, g1, V$(28)), Vs =sy, (¥Y)EL @) —1 small of order two,
(6.33)

so that the transformed vector field X5 := (WD) x, = (Xge), ng), Xé‘) has the form

X @ = —0—5-,00) - T O)lw. wl+ 030). X © = 03
X3 () = iQiw + Dy @[w]+ Ry @, Vw]+ Ry 0, w)w]+ OB (1, N) + OS*(N)
(6.34)

where
Dy ®lwl € OF*(IL,N),  Ds@ =-D5@® " (6.35)
and the smoothing remainders RJA;J 0, y)[w], RJ}\_/,z(e’ w)[w] are given by Proposi-

tion 6.1.

6.3. Normalization of the smoothing remainders. In this subsection, we normalize the
vector field
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(0 @) [w., wl, 0, Ry ;0. wl+ Ry H@)[w, wl),

which is part of the vector field X5 defined in (6.34). Note that all the terms are either
linear or quadratic in the variable w. We consider a smoothing vector field of the form

S@® = (8P O)w, wl, 0, i@, N[w]+ 85 O)w, w])
where we make the ansatz that for some oy > 0,8@ € C®(T5* %[0, g1, Bo(H™ (T1),
RS+)) and
St@, »[wl € OS2 (N - 1),  SHO)[w,wle OS? (N-5). (6.36)
We then consider the time one flow map &g, associated to the vector field S, and

compute the pullback X¢ := CD:"SXs = (X(g), Xé’V), Xé‘) of the vector field X5 by ®5.
By Lemmata 3.17, 3.18 and in view of Remark (3.3), X¢ is of the form

XV W) = —0— 00— V,000) + - 3 SO O)[w, w] — SPO)[IQLw, w]
— 8D O)[w, i w] — 15" O)[w, w]+ 05 @),
X @) = 05 ),
Xg© = i20w+ DE@Lw] + (0 %SEO, )+ 2L, SEO, Vin +RE 16, 7)) [w]
+ -3 Sy (0)[w, w] +iQ1 Sy @) [w, w] — Sy (O)[IQLw, w]
— S O)[w, iQLw]+ Ry ,O)[w, w]+ OB (1, N) + OS* (N — 6)
(6.37)

where Oée), (’)gy ) denote terms which are small of order three. The components S ® and
SIL, SzL are now chosen as the solutions of the following homological equations,

w -3 SO O[w, w] — SPO)IQLw, w] — SP©O)[w, 12, w]
1 O)[w, w] = —Z@[w, w],
ZOmw, wl= )" wjw_; (X O)[7*, 2],
jest
w9 ST (O, y) + (2L, ST O, Win + Ry 16, y) = 21().,
ZH(y) = diag 51 [Ry 10, 1)1,
w - 99 SE(O)[w, w] +iR1 S5 (O)[w, w] — S (O)[iQL w, w)
— Sy (O)[w, i w] + Ry ,O)[w, w] =0.
Homological equations of this form can be solved by applying the following lemma.
Lemma 6.1. Let N € N. (i) Let M@ e C®(T% x [0, 9], Bo(H](Ty), R5)) for
some o > 0 and assume that € I1,, 0 < y < 1 (¢f. (1.20)). Then there exists
S@ e C®(TS x [0, eol, Bo2(H{H(T1), RS+)) solving
w -3 SO O[w, w] — SPO)IQLw, w] — SP©O)[w, 12, w]
- MPO)w, wl = -Z2V(w, w],
2}’(9)[w7 w] = Z wiw_; (M(G)(Q)[eibrjx’ e—i2njx]>9 .
jest

(6.38)

(6.39)
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(ii) Let ’RJA‘,J(H, V[w] € (’)Si}(N) and w € I1,, 0 < y < 1(cf. (1.20)). Then there
exists Sf‘ @, y)[w] € (’)Szw(N — 1) which solves the equation

w9 SO, y) +[iQ1L, SO, )i + Rﬁl(@, y) = ZH(y),
Z4(y) = diag; s [Ri 1 (0. )1 (6.40)

(iii) LetRJA;,Z(Q)[w, w] € (’)Slsz(N) and assume thatw € I1,,0 < y < 1 (cf. (1.20)).
Then there exists 82l @) [w, w] € OSzww (N — 5) which solves the equation

w - 39 S5 (O)[w, w] +i21 S (O)[w, w] — SF(O)[IQ w, w]

6.41
— S O)[w, iQLw]+ Ry ,O)[w, w] =0. 4D

Proof. Since items (i), (ii) can be proved by arguments similar to the ones used in
the proof of item (iii), we only prove the latter. By assumption, Riz(é?, w)[w] =

Rﬁz(G)[w, w] € (’)Szww(N ). Hence there exists an integer sy > 0 with the property
that for any s > sy, there exists 0 < g9 = €o(s) < 1 so that
Rzt T x 0,80l = Bas.n, (0.6) = Ry 2(0) = Ry, (0, ¢)
By = Bo(H*(Ty), H¥V(T))),

is C*°-smooth and bounded (cf. (1.39), Defintion 3.4). A a consequence, for any multi-
index @ € Z‘;*O,

13§ RN L OBy, Sas 1 (6.42)

Expanding ’RJA-,’Z(Q) in its Fourier series, Rﬁa(@) = ZZGZS+ Rﬁ’z(ﬁ)eiz'g, the latter
estimates imply

—

IRY H(OllBys y Sas (07, VYaeZdy, Yeez. (6.43)

Since for any ¢ € Z5+, Riz(é) € By s v, one has for any w, v € H{ (Ty)

Ri,Olw vl = Y wjvpRy (0. Riy,(0)(x) = Rig ,(O)[e* e277].
j.jest

(6.44)

In particular, for w = e27/* y = 127/ ' one infers from (6.43) that

—

IRY 2 (0 lsen+1 Sas OGN G, YaeZdy, €eZ™, ). j e st
(6.45)

Expanding also 82L () in its Fourier series, 82l ©) = yezse 82l (£)e't? | one has for
any w, v € Hi(’]I‘l),

SEOw.vl= > wivpSE @), S@)(x) 1= Sy (O[T, 2
jii'es*
(6.46)
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By expanding 52l (£)jj(x) and R%-(E) jji/(x) with respect to the variable x € T; in
Fourier series,

Sy(0) ;) =D Sy (t,m) e, Ry L (@) (x) = Y Ry (L, n) jjre™™
neS+ nesS+

(6.47)

the homological equation (6.41) yields the following equations for the coefficients
Sy, n) i of S(0),

(- €+ Q— Q) — Q) S )y + R (€ m) ;5 = 0. (6.48)
Since w € l'[g,3), 0 < y < 1 (cf. (1.20)), the latter equations admit solutions. They are

given by

—

Ry (6 )i
i(a)~£+§2n —Qj —Qj/)

S(,n) i =— . YeeZ% n, j, j est,

(6.49)

and satisfy the estimate |SA2i(z, )il < OTGY )2y T Ry L (8 n) jjr| (of. (1.20)).
— — 1

By (6.47), one has [|S5 (0) jjr lsan—1 = (X pest (m)?SN=DIS5H (¢, n);;|%)? and hence

1

1550 lleww—1 = (@7 (PG~ (32 02N DR .m0
nest (6.50)

— (6.45)
= (O Gy T HIRY 2O i lssner Sas (O7 G272y ~"

Forany w,v € H i+3 (Ty), one then obtains by the Cauchy—Schwarz inequality,

155 @lw. olllsan—1= > Twylloj 1 1S3 @) o1
j.i'est
(6.50) ‘ '
SC\!,S (ﬁ)f—lﬁtly—l Z <])3+2|wll<]/)b+2|vj/| (651)
Jj.j'est

- -1
Soos (O y T Hwllsa3llvlls43 -

Writing s for s + 3, we thus have proved that there exists sy > 0 (large) so that
ol - - S
IS5 1Bys yos Sees Oy ™ Vo e ZZ s = sy

implyingthatSzJ- e C®(TS+x[0, &ol, Ba.s, (N—5)+1) forany s > sN.HenceSzJ-(Q)[w, w]
€082 (N—-5). O
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By Lemma 6.1 and in view of (6.37), (6.38), the vector field X¢ = (X, X, x2)
takes the form

X = —w—ed - V,00) — 29w, wl+ O @, xP @ =00,
Xg @) = iQiw+Dg @[wl+ OB (1, N) + OS*(N —6),  Dg@):=Ds@)+2(y),
Ogg), Ogy) € C;°([0, 0] x VN (8), R%")  terms small of order three (6.52)

for some oy > 0. Since by (6.22), [Ry (6, y)]jﬁ € iR, j € S, and 21(y) =
diag jest [Rf‘ (0, y)]j: , the operator Z +( y) is a skew-adjoint Fourier multiplier and hence

by (6.35) so is Dg- (r). We summarize our findings as follows.

Proposition 6.3. Forany N € Zxg¢, there exists an integer sy > N with the property that
forany s > sy, there exist 0 < § = 5(s,y, N) < land 0 < gy = ¢o(s,y,N) < 1 so
that the following holds. There exists a map W3 with inverse (¥ )~ (cf. Remark 3.4),

(WOEL e c2 (V5 (8) x [0, e0l, VE(28)), Vs = sy, (W)E () =1 small of order two,

(6.53)
so that the transformed vector field X¢ 1= (TPy* x5 = (X¢ ©) , X¢ ) , X é‘) has the form
X @) = —0—e5 — Vy0(0) — ZOw, w]+ 0 ), X @ =0, 654

XE (@) =iQLw + DF@[w]l + OB (1, N) + OS*(N - 6),

where Dé‘ (v) is a Fourier multiplier of order one given by (6.52) and satisfies Dé‘ ) =
—Dé‘ )", where

2@ e By(H{N, R¥), (6.55)
200w, wl =Y wjw_; (X (O)[ 2, T2,
jest
Ywe HV(T)), (6.56)

for some o > 0, and where (’)ée), Oéy ) comprises terms which are small of order three.

7. Proofs of Theorem 4.2 and Theorem 4.3

First we prove Theorem 4.3.

Proof of Theorem 4.3.. We apply Propositions 5.1, 6.1, 6.2, 6.3. Choose N = 6 and
define

D=0V oy®@,yd (7.1)

By (5.1), (6.19), (6.33), (6.53), @ satisfies property (4.19). Moreover X = X¢g = ®* Xy
is given in (6.54) with N = 6. Hence by setting

ti=Dy, NG, w):=-V,00) - Z2Vw, ],
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one has that DJ-, N, Og@)’ Ogy ) satisfy the properties stated in (4.21). Since N = 6,
the remainder term OB (1, 6) + OS*(0) in the expansion of X (r) = XZ (r) in (6.54)
has the form (cf. Definitions 3.1, 3.3)

7

ML Y Tayp ) Fw+ Ry (@)
k=0

with the following property: there are integers s., 0 > 0 so that for any s > s, there
exist) <8 =48(s,y) < land0 < gy = g9(s, y) < 1 so that

aj_y € CEO(V”"(S) x [0, go], HS(']I‘l)) small of order two, VO<k<7 1.2)
Ry € C2(V*(8) x [0, e9], H}(T1)) small of order three. ’
We then define
6
a@®=a@. R =MLY Tu,md  w+Ry@.
k=0

One shows that R+ € Cr(V*(8) x [0, &0l, H] (Ty)) for any s > s, + o and that Rt
is small of order three. Indeed, by (7.2) and the estimate (2.2) (paraproduct), it follows
that for any ¢ € V*(§),
IR @5 sy maxozk<7llar—@l1llwlls + (& + [y ]l + lwlly)?
oy maxo<k<7llar— @[5, lwlls + (e + [yl + [w]ls)?
Sop @+ Y1+ wllseso)® + (e + Iyl + wlls).

Hence we proved that for any s > s, + o,

IR @5 Sy (6 +1Iy1+ Twlls).

Theorem 4.3 then follows by choosing o, := 54 + 0. O

Let us now turn to the proof of Theorem 4.2. It is based on energy estimates for the
solutions of the equation 9,y = X (r) where X is the vector field provided by Theorem 4.3
(cf. (4.20), (4.21))

36(t) = —w — s + N (y, w) + OF (1)
iy = 05 (v) (73)
dw(t) =iQ w + D@ [w] + I Tyr)drw + R ().

Choose 0, > 0 and forany s > 0,0 < 8§ =8(s,y) < 1,0 < g9 = go(s, y) K 8 as
in Theorem 4.3. For any s > o, and 0 < ¢ < go(s, y) we then consider the Cauchy
problem of (7.3) with small initial data ro = (6o, yo, wo) € TS x RS+ x H3 (Ty),

Iyol, llwolls < & (7.4)

Increasing o, and decreasing &y, if needed, it follows from Proposition C.1 that for any
s > oy and 0 < & < gg there exists T = T, > 0 so that the Cauchy problem
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of (7.3) for any initial data xg = (6o, Yo, wo) satisfying (7.4) has a unique solution
t () = (0(1), y(@), w()) with

0eC'(-T.T),T%), yeC'(-T,T1.R%),
we CO(=T,T1, H} (T\) N C' ([T, T1, H{(T1)). (7.5)
In addition, by Proposition C.1 there exists Cx = C,(y) > 1 so that
Iy, lw@®)lls, 1©@)| < Cye, Yt e[-T,TI, (7.6)

where
t
O@) :=0(t) — 0y + (w+ew)t — / Ne(y(r), w(t))dr, tel[-T,T]. (7.7)
0

We now prove that the time 7' of existence of the solution can be chosen to be of size

&

Proposition 7.1. Let 0, and 0 < g9 = eo(s,y) < 1, s > oy be given as above. Then
for any s > oy there exists a constant Cyy = Cyi (s, v) > 0 so that for any 0 < ¢ < g,
the time of existence T of the solution r(t) can be chosen as T, 5, = Core 2.

To prove the latter proposition, we first need to make some preliminary considerations.
Lets > o, and 0 < ¢ < g9. By (4.21), a is small of order two and RL, Ogg), Ogy) are
small of order three, and by applying the estimates (7.6), one has

() )
09 @)l 105 @@ Sy 2. la@®)lls, Sy &2 78)
IR @)y Sop €. Ve e[-T.T].
First we prove the following lemma.

Lemma 7.1. Given any s > oy, there exists a constant Ko = Ko(s, y) > 0 (large) so
that the solutions (7.5) satisfy

O] < KoTe,  [y®l, lw®lls < &+ Koe'T, Viel-T,T]. (7.9
As a consequence, for any T > 0 satisfying T < KLOS_Z, one has
@0 <e  IyOI, lw®ls <2, Vtel[-T,T]. (7.10)

Proof of Lemma 7.1.. Let s > o,. First we prove the claimed estimates for ®(¢) and
y(t). By the definition (7.7) of ® and (7.3) (Hamiltonian equations), one has

OO =0, 801 =05 ).
implying that
t
@(t):/ O (x(v)) dr .
0

Moreover by (7.3),

t
y(6) = yo+ /0 oY (x(2)) dr .
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By (7.4) and (7.8), one then concludes that there exists a constant C1 = Ci(s, y) > 0
so that

0@ < CiTe?,  |y@)| <e+C Te, Vie[-T,T]. (7.11)
It remains to estimate the H*-norm of w (). To this end recall that for any w € H{ (T),

1
lwls = (Y 1P 1w ?)? = 85wl
jest

where [|0j w]|| denotes the L2-norm of djw. Then

Fldiw) 1> = (358,w(0), Bw(®)+(dw(r), 3dw(r))
T (93 (i@ w + DL @ [w] + T Tudew + RE@) , 85w) (7.12)
+(05w, 35(i2Lw + DT @) [w] + [T1 Ty dew + RT(1))) .

Since €| and D (¢) are both Fourier multipliers, the linear commutators with the Fourier
multiplier 9§ vanish,

(05, 21 1in =0,  [35, D @in =0.

Using in addition that D (¢) is skew-adjoint (cf. (4.21)) and hence (iQ, + D (1)) " =
—iQ | — Dt (p), one infers

(85 (iQLw + Dt @Iw]), dw)+ (3w, 35 (iQLw + D) [w]))
= ((iQL +DM @) 3w, Bw)+ (3w, (1L +DH1)d5w) (7.13)
= ((iQL +DM@)alw, oSw)+((iQL + DT (@) dw, dw)=0.
Moreover
(03 Tudcw, Bw)+ (0w, 95Ty dxw)

= (Ta dx 05w, w)+ (83w, Tuwdxdyw)+([8Y, Tagdxlw , 3w)+ (93w, [85, T dxIw)
= ((Tu@ 3 + (Tad0) T)A3w , 33w) + ([0, Tug dxlw, w) + (33w, [0}, Tuge) dxIw).

(7.14)
By increasing o, if needed one gets by Corollary 2.2 (with N = 1, m = 1)
(7.8)
ITTL T + T (Tae @0 gz ) S la@lle, <5 &
and hence by the Cauchy—Schwarz inequality,
((Ta) 8x + (T3 3w, w)l <, 205wl <, e*lwl?. (7.15)

Moreover, arguing as in [9, Lemma A.1], one has

0.22.008)
1003, Tuydx w2 Ss la@ll2llwlls  Ss,y e llwlls .
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The latter estimate, together with the Cauchy—Schwarz inequality, imply that
135, Tugoydxlw . 3jw)+ (35w, (8, Taydxlw) ey eXlwli.  (7.16)

~

Finally, by using the Cauchy—Schwarz inequality once more and the estimate (7.8) for
RL, one gets

(BERE@), w)+ (5w, BERE®) S IRT@sllwls Sy & lwlly. (717

Thus, collecting (7.12)—(7.17), and since by (7.6), |lw(t)||s < Cye forany t € [-T, T],
one gets

19 105w ?] S5,y €t Ve e [T, T)

We then conclude that there exists a constant C; = C;(s, ) > 0 so that

lwOls < (Jwol? + C2TeHY? < e(1+ C2aTe?)V? < e+ CaTe?, Ve e [-T,T). (7.18)
The claimed statement then follows with Ko(s, y) := max{Ci(s, y), Ca(s, y)}. O

Proof of Proposition 7.1.. For any given s > oy, 0 < ¢ < g9, and initial data satisfying
(7.4), consider the solution ¢ — r(¢) in (7.5) of (7.3). It satisfies the estimates (7.9)—
(7.10) of Lemma 7.1. Let

v 1
T:=sup{0<T < K—8_2 22001 lyOl llw®lls < 2e, Vit € [-T,T1},
0

where Ko = Ko (s, y) is given by Lemma 7.1, and define

M(T) := lrtr‘liv;{2|®(t)|, YOl lw®ls}, T el0,T).

Assume that T < %Kloe_z. By the definition of T and Proposition C.1 it then follows
that sup,. _7 M(T) = 2¢. On the other hand, from Lemma 7.1 one infers that

. . 3
M(T) <e+Koe’T <e(1+1/2) < 2

Hence we obtained a contradiction and thus conclude that T = 0(e7?). |

Proof of Theorem 4.2.. Lett +— r(t) = (6(¢), y(t), w(t)) be a curve satistying (7.4)-
(7.6). By Theorem 4.3 (Normal Form Theorem), p() = (6(¢), y(t), w(t)) is a solution
of (7.3) if and only if

@) =00,y 0, w'®) =)

is a solution of (4.17) with initial data pE) = O (xg).
By (4.19) (properties of the transformation ®), for any ¢ in V*(8) with ' := ®(x) €
V$(8) one has t = &~ (¢') and

Y1 lw'lls < Csap)(e+ Iyl +lwls) . Iyl lwlls < Cls, ) (e + 1T+ 11w'lls)

for some constant C(s, y) > 0. Hence, if r(r) satisfies (7.4)—(7.6), then r;, € TS+ x
RS+ x H{ (Ty) with |yjl. [wplls < C(s. y)e and

6’ e Cl([-T,T1, T5), y eC'([-T, TR,
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w' e CO—=T,T1, H{(T)) N C' (=T, T1, H{>(Ty))
with
Y @)1, lw' (@) ly <2C(s,y)e, Viel[-T,T].

By Proposition 7.1, T can be chosen as T¢ 5, = O (¢72). This proves Theorem4.2. O

8. Measure Estimates

In this section we prove the measure estimate (1.23) of the set I1,, defined in (1.19),
(1.20). More precisely we show the following

Proposition 8.1. There exists a € (0, 1) so that forany 0 < j <3 andany0 <y < 1,
immy’| < y2.

We will concentrate on the proof of the claimed measure estimate of H§,3). The ones

of 1'[§,0), l'[g,l), and 1'[5,2) can be obtained in a similar way and are in fact a bit easier to
prove. Recall that

1%
(O (2 (2)%(j3)?
V(L 1, ja, 3) € Z5 x ST x ST x St with i+ jm £0, Vk,m e {l,2, 3}]

ny = {a)e M-+ Q) (@) + Q) () + Qs (@)] =

(8.1)

where for any j € S+, Qj(w) = w’j‘."”(u(a)), 0). One has
H\HS) C U Rejijjs (v)
€eZ5%  ji, ja.jzeSH
Jk+tim#0,Vk,me{1,2,3}
where
4
Reiinin(y) = {wel'l: - £+ Q5 () + R (@) + Qi ()] < _r }
s ! " : (€)7 (j1)*(j2)(J3)?

First we need to establish the following regularity properties and asymptotics for the
normal frequencies Q2 (w), j € St

Lemma 8.1. The map
QM — L¥(STR), @ > (@) jest . Qi) = j(Q () — 2rj)’).
is real analytic. Furthermore, uniformly on a complex neighborhood of T1 in C5+,

Qj(w) = Qe +0(™" asj— +oo. (8.2)
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Proof. Since by [26, Theorem 1.2 ()], & — €*(S}, R), I > ([*"(1,0)) ;g1 is real
analytic and since by [26, Theorem 1.2 (iii)]
E— (S5, R), 1~ (j@h(1,0) — 27))))

jest

is locally bounded in a complex neighborhood of IT in C5+, it follows from [28, Theorem
A.3] that the latter map is real analytic. Furthermore, by [28, Theorem 15.4], the action
to frequency map

E— T, I =())jes, = @(1,0)jes,

is real analytic and by the definition of & and TI, it is a diffeomorphism. Hence its
inverse u : I[1 — E, w > wu(w) is also a real analytic diffeomorphism. Since for any
welandje St Qj(w) = a)lj‘.d”(u(a)), 0) and ;(w) = —Q_;(w) we altogether
have proved that the composition

QT — L2(SYR), 0> (j (@ (@), 0) — 27))) jest

is real analytic. Since IT C RS+ is compact, Q* is actually bounded on a complex
neighborhood of IT in C5+ and hence the claimed asymptotics hold. O

Lemma 8.2. There exist constants Co > 0 and C; > 0 so that for any ji, j», j3 € S+
and any £ € 75+ with |€| > C;

Roi i C :
[Reji jjs (V)] = 0<e)f(j1)2(j2>2<j3)2

Proof. Let £ € Z5+\{0}. Choose v € RS+ with v - £ = 0 and introduce s > w(s) :=
s% +v. Then £ - w(s) = s|¢| and hence for any ji, 2. j3 € S* and any s € R with
w(s) e I,

@(s) ==L w(s) + Q2 (@(5)) + 82, (@(5)) + 823 (w(s))
=5+ Qj (w(s)) + Q2j(w(s)) + Q2 j(w(s)).

By Lemma 8.1 and Cauchy’s theorem there exists C > 0, independent of j;, j», jz € ST,
so that

d
(2 (@(5)) + Qjy () + Qs (@(s)]| < C.

%

It then follows that |¢’(s)| > 1 for any [£| > C} := C + 1. This implies the claimed
estimate. m|

Lemma 8.3. There exist constants Cy > 0, Co > 0 so that for ji, jo, j3 € S+ with

min{| j1], | j21, | j31}
> (C» one has

, Ve Z5\{0}. (8.3)

Y
Rojnn) =9 IR pin 1= Corprng s
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Proof. First we consider the case £ = 0. By the asymptotics (8.2) it follows that for any
. jo. j3 € ST,

C
min{l /1], | j21, [/31}

1R, + Qj, + Q| = 87177 + j5 + j3| —
for some constant C > 0. By the case n = 3 of Fermat’s Last Theorem (cf. [21])
i+ 73+ 3= 1.

Requesting that min{| j1 [, | j21, | 3]} = C2 :=2C, one gets |2, + 2, + Q| > 473 and
hence Ryj, j, j;(y) = ¥ for any such ji, j2, j3 in St

Now let us consider the case ¢ € Z5+\{0}. For any given ji, j2, j3 € ST, define
s > @(s) as in the proof of Lemma 8.2,

@(s) = [L]s + Q2 (@(5)) + 2, (@(5)) + 2 j; (@(5)) .

By Lemma 8.1 there exists C > 0, independent of ji, jo, j3 € ST, so that

d
Q@) =C, VI<k=3,

By increasing C; if needed, it follows that for ji, j2, j3 € st satisfyingmin{| j1 |, | j2|, | j3}>
Cy,

3C
'O =l - ———————— =
min{| ji1, | j2|, |j31}

| =

This implies the claimed measure estimate (8.3). O

Lemma 8.4. There exists a constant C3 > max{Cy, C1}, where C; is the constant of
Lemma 8.3 and C the constant of Lemma 8.2, so that

Rej jjs(¥) =0 VL€ Z5 with|€| < Cy and ¥ ji, ja, j3 € S* satisfying (x)

where

G) gkt im #0. Vhome (1,23}, min{ljil. il 1jsl} < C2. max{|jl. 2l 1j3l} = C3.
Proof. Let € € Z5 with |¢| < Cy and ji, j2, j3 € ST with min{|j1]. | 2], |j3]} < C2

and ji + j, # 0 forany k, m € {1, 2, 3}. First consider the case where | j»|, |j3| < C».
By Lemma 8.1 one then has for |j;| > C3 with C3 > 0 chosen large enough,

|- €+ Qj, +Qj + Q] = 8 (il =12 = 13 = C = lwIC1 = 3 -2C3 = C —o|C = 1,
implying that Ry, j, j;(v) = 0.
Let us now turn to the case where |ji|, |j2| = Cz and |j3| < C,. If j; and j, have

the same sign, then one concludes again that

- €+Q), +Qj, + Q| = 8 (1] + 12’ = 1j3) = C = |0]C1 = 2C5 — C5 — C — |0lC) = 1
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by increasing C3 if needed. Hence again Ry, j, ;(¥) = ¥. Now assume that j; and j»
do not have the same sign. Since by assumption, ji + jo» 7# 0, one has |ji| — |j2] # O
and it then follows that
- £+ Qj + Q) + Q| = (11 = |2l = 13 = € = Cilo]
= (il = 12Dl P + il 2l + 121 = €3 = € = Cilo]
>3C3—-C3—C—Cilo| > 1

by increasing C3 once more if needed. We conclude that also in this case Ryj, j, j; (v) = 0.
O

Proof of Proposition 8.1. As already mentioned, we concentrate on the proof of the

claimed estimate for |l'[\1'[§,3)|. In view of Lemmas 8.2-8.4, it remains to estimate the
measure of the finite union

U Reji jpj3(v)
[e|<Cy
[j1l1721:1/31=C3

where C; > 0 is given by Lemma 8.2 and C3 > 0 by Lemma 8.4. By Lemma 8.1, for
any € € Z%, ji, jo, j3 € St with [¢] < Cy and |ji], | j2], | j3] < C3, the function

o o0 -+ Q) (w)+ Q) () +RQj; (0
is real analytic and by [28, Proposition 15.5], does not vanish identically. Hence by the

Weierstrass Preparation Theorem (cf. [8, Lemma 9.7], [10, Proposition 3.1]), for any
given C > 0 there exists a € (0, 1) so that

| U loe: o t+Q)(w)+Q) ) + Q@) < Cy}| S y?

[£]<Cy
[J1l121.1/31=C3

and the claimed estimate for |l'[\1'[7(/3)| follows. 0O

Remark 8.1. Note that there exist (many) non-trivial solutions of the diophantine equa-
tion

i+ i+ +ji=0 (8.4)

where (j1, j2, J3, ja) € 7% is said to be a trivial solution if there exist 1 <a<p<4
so that j, = — jg. The following example was suggested by Michela Procesi,

103 +9%+ (=P +(-12)* = 0.

We therefore expect that Lemma 8.3 does not extend to the sets Ryj, j, j;, (), defined
as

4
_ e | y
Ripay) = fwe Mo e ,; %] < G G
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and hence that an estimate for |H\l'[§,4)| of the type as in Proposition 8.1 for |H\H§,3)|
does not hold. Here 1'[5,4) is defined as

4
ow .— m: jw-¢ Q;j .
y =feoel o +; i G

VL, ji. jo, j3. ja) € Z5% x (ST)* with ji + jm # 0 Vk,m € {1,2,3,4}}.
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A. Linear Vector Fields on H j_ (Ty)

In this appendix we discuss properties of linear vector fields on H (T1), used throughout
the main body of the paper. Let X be an unbounded linear vector field on H{ (T1), s € N,

with domain H$*!(Ty),
X : H(Ty) — HN(T)),

which admits an expansion of order N € N,

N+l
X(wl=> a0 *w+Ry[wl. xR YO<k<N+1, (Al
k=0

where the remainder R is (N + 1)-regularizing, Ry € B(H{ (T1), Hj'_*N“ (T)).Ifin
addition, X is a Hamiltonian linear vector field on H j (Ty),

1
X[w] =0, VH[w], Hw) = %/ Alw] - wdx, Yw e H}(Ty),
0

where A : H{(Ty) — Hj(T;) is a symmetric, bounded linear operator, then the

diagonal matrix elements X j of X satisfy

. 1 L o
X = / 0 Al PN e T2 gy € iR, Vj e S*t. (A.2)
0
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Lemma A.1. Let X be a vector field as in (A.1) and assume that its diagonal matrix
elements satisfy X'j/. € iR forany j € S*. Then A _x = 0 forany 0 < k < N + 1 with

1 — k even and (RN)i: ciR forany j € S*.
Proof. Tt follows from the assumptions that for any j € S+,
. . . N+l . .
X1 ==X}, XI =Y na@@r)' T+ Ry)) with A eR, Ry =00V,

k=0

One thus concludes that

N+1 N+1
D M—@rpTr e 0GTV Y = = ) (=D @) T+ 0GTY T
k=0 k=0

and hence A;_; = 0 forany 0 < k < N + 1 with 1 — k even. This implies that

N+1
(Ry)} = X1 — le,k(iznj)l—k ciR, VjesSt
k=0

O

Consider a vector field X : H{ (Ty) — H j_fl (Ty), admitting an expansion of order N
of the form

N+1
Xwl =T Y Ty 0 *w+Rylwl, arxeH(T), YO<k<N+1, (A3)
k=0

where the remainder Ry is (N + 1)-regularizing, Ry € B(H?} (T1), HfN“ (TD)).

Lemma A.2. Let X be a vector field as in (A.3) and assume that X 5 € iR for any
j e St Then (ay_)x =0 forany0 <k < N + 1 with 1 — k even and (RN)§ € iR for
any j € S*t.

Proof. Forany j € S, a direct calculation shows that

N+1
=" na@rp)' ™+ Ry, Mk=(a) €R, VO<k <N+
k=0

Since by assumption X; is purely imaginary, the claimed results then follow from
Lemma A.1. O
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B. Standard Results on Homological Equations

In this appendix we record two standard results on homological equations, used in our
normal form procedure. Without further reference, we use the notations introduced in
the paragraph Notations and terminology in Sect. 1.

Lemma B.1. Ler y € (0, 1), T > 0, and w € RS+, Assume that

- 0] > Ve € Z5\{0},

14
lee’
and that P € C®(TS+, B) where B is a Banach space with norm || - || g. Then there
exists a unique solution F € C®(T5+, B) with zero average of

w0 FO)+P®O) = (P, (Po = F(©)do =0.
TS+

It is denoted by F(0) = —(w - 3p) ! (7)(9) — (P)e).

Lemma B.2. Ler Q| : Lﬁ_(']l‘l) — Li (Ty) be a (possibly unbounded) Fourier multi-
plier of diagonal form, Q| [w] == )", ¢! Quw, e andlet0 <y < 1, T > 0, and
w € RS, Assume that

lw- €+ 2,] > . Y(l,n) eZ5 xSt

(r

and that P € C*(T5+, Hi (Ty)) for any s > 0. Then there exists a unique solution
F € C°(TS+, HE (T1)) of the equation
(w09 +iQ21)F(0) +P(®) =0.

Furthermore, F € C°°(’]TS+, H3 (Ty)) for any s > 0.

C. A Local Existence Result for d;x=X (r)

The goal of this appendix is to state a local existence result for the equation 9;x = X (¢)
where X is the vector field, introduced in Theorem 4.3 (cf. (4.20), (4.21)),

30 = —w — 0 +NO(y, w) + 0P (1)
oy =05 x) C.1)
dw = iQ w +DH@)[w] + I Ty drw + RE(x)

where we assume that the assumptions of Theorem 4.3 are satisfied. In particular, w €
IT),, 0 < ¥y < 1. This local existence result is used in Sect. 7. It reads as follows.

Proposition C.1. There exists o, > 0 (large) so that for any integer s > oy, there exist
0 < e = eo(s,y) < 1 (small) and C, = Cy(s,y) > 1 (large) with the following
property: for any 0 < & < g, there exists T = T, > 0 so that for any initial data
o = (B0, yo, wo) € TS+ x R x HY (Ty) with

lvol <&, [wols <e¢, (C2)
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there exists a unique solution r(t) = (0(t), y(t), w(t)), t € [-T,T], of (C.1) with
1(0) = xo satisfying

6eC ([-T,T1, T), yeC'(-T,T],R),

we CO=T,T1, H (T\)) N C'([~T, T1, H{(T1)). (C.3)
Furthermore,
YO lw®ls, 1©@)] <Cke Viel[-T,T], (C4)
where
t
O(t) :=6(1) — by + (v + D)t — / N (y(1), w(r)) dr. (C.5)
0

The rest of this appendix is devoted to the proof of Proposition C.1, which is based on
an iterative scheme. For any given rq satisfying (C.2), define inductively a sequence
£ () = @™ @), y™ (1), w (1)), n > 0, as follows:

Q0 = 0P, yO ), w 1)) =10 = o, yo, wo) (C.6)

whereas for n > 1, 1™ (t) = (0™ (1), y™ (¢), w" (1)) is defined to be the solution (cf.
Lemma C.1 below) of

360" = —w — £ +NO (YW, w™) + OF (=D,
8y ™ = 05 =), (C.7)
dw™ =iQw™ + D) [w™] + T T, o1y w™ + REE"™D),

with initial data t (0) = ro. The following lemma holds.

Lemma C.1. There exists o, > 0 (large) so that for any integer s > oy, there exist
g0 = €o(s, y) > 0 (small) and Cy. = C«(s, y) > 1 (large) with the following property:
Jorany 0 < & < go(s, y), there exists T = T, 5, > 0 so that for any initial data
to = (6o, yo, wo) € TS x RS+ x HY (Ty) satisfying (C.2) and for any integer n > 0,
the system (C.7) admits a unique solution, satisfying oW e CY([=T, T], TS+), y(”) €
CY([-T, T1, RS), and

w™ e CO~T, T, H{(T\)) N C' ([T, T1, H7>(Ty)). (C.8)
Furthermore,
Y@, lw™ @5, 10™ @) < Ce, Vte[-T,TI, (C.9)

where ® (¢) := 0 and

t
O (1) := 0" (1) — 6y + (w + eD)t — / NO D), w V() dr, n>1.
0
(C.10)
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Proof. We prove the claimed results by induction on n. For n = 0, by the definition
(C.6) of ;(O) (1), the claimed statement holds with 7 = 1 and with oy, &g given as in
Theorem 4.3. Now assume that the claimed statement holds at the step n > 0 of the
induction and let us prove it at the step n + 1. We first need to make some preliminary
considerations. Let s > o, and 0 < ¢ < gg. Since by (4.21), a is small of order

two and RL, Oée), Oéy) are small of order three, it follows from Theorem 4.3 and the
estimates (C.9), which hold by the induction hypothesis, that there exists a constant
Cs = Ci(y) > 0, independent of n, so that forany r € [T, T

0L, 10 )] < Coe, Nla@ ™ (0))]lo, < Cse?,
IR @™ () < Cse?

(C.11)

By the second equation in (C.7), one has

t
YD @) = yo + f 0" (0)) dr,
0
implying that

y D e Cl((=T,T1, RS, |y V(1) <e+TCye® < Cue, Vie[-T,TI,
(C.12)

where we have chosen 7 > 0 so that TCse? < 1 small enough. By (C.11) it then also
follows that
Tla@™)lo, < TCse? < 1. (C.13)

To solve the equation for w”*" in (C.7), we apply Lemma D.2 in Appendix D with
D(t) =i, + D™ (1)), a = a@™ (1)), and f = R (1)) to conclude that there
exists a unique solution w"*! of

dw™ D =iQ w4 D) [w D] + LT, () D w ™D + REE™)
w*D(0) = wy

in CO([~T, T1, H}(T1)) N C'([~T, T1, H>(T})) and that w ™" satisfies

(C.11)
lw™D @) ls, 18w @) |ls—3 S5y e+ TIRTE™) s sy £+ TCse> < Cie
(C.14)

since TCX@2 < 1. We then define
O (1) := 0"V (1) — 6y + (w + ed)t — /[ NO D (), w D () dr. 1 e [-T, T
' (C.15)
By the first equation in (C.7), one gets @D (1) = fot Ogg)(x(”)(r)) dt and hence, using
again (C.11),
o) e (-1, T1.T%), @1 < Ce, Vte[-T.T]. (C.16)

This concludes the proof of the lemma. O
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In order to prove the convergence of the sequence (x, (f)),>0, constructed in Lemma C.1,
we prove

Lemma C.2. Under the assumptions of Lemma C.1, for any n > 1,
1= ="V Olleog,_, - 13O ="V Oleop,, = 27"
Proof. By (C.7), 7™ (1) = @™ (1), 3™ (1), 0" (1)) := t™ (1) — 1"~V (¢) satisfies
3t’\(n) _ f(9 )
A(n) _ f() n) (C.17)
atw<"> =iQ Lw(") +DEE)D® + T T,y 0, 0™ + f,
withT™ (0) = (0, 0, 0), where
FOM = NO (y ) ) _ O (=D =Dy 4 9O () _ @ (=D
f(y,n) — Oéy) (x(n)) _ Og)’) (:C(n—l)) ,
fEm = (DL(I(")) - DL(ZC("fl))>[w("7D] + T T, ) g1y D w ™ ™

FREE) = REETY).

(C.18)

By the properties stated in (4.21) and by the mean value theorem, for some o > 0 large
enough and s > o, one can show that

fO o e =T . TLR), O < I =" Pllcops, .
FOPLS ™ — ¢ D o (C.19)
fE e =T, TLHT @), IS et Ss elle™ =" Pliog, -
Hence we immediately conclude that for any t € [T, T,

6 OIS T =" Dlicog,, TS T =" Dleog, . (€C20)

Furthermore, by applying Lemma D.2, with D(¢) := iQ, + D-@™), a = a@™),
f = f&™ and by the estimate (C.19) for £~ one also deduces that

12 (1) ||5— 1 < <, eT|r™ — (n_l)”C,OEs—l’ Vi e [-T,T]. (C.21

Therefore, collecting (C.20), (C.21), using the induction hypothesis, and by taking T
small enough, one gets ||x"*+1) — ¢ ”C?Exq < 2=+ which is one of the two claimed

estimates at the step n + 1. The estimate for 0; (zc("“) — p(”)) can be proved in a similar
fashion. O

By Lemma C.2 and by a standard telescoping argument, one obtains
FLONNGY y(")—>y, 8,0 — 3,0, aty(") — d;y uniformly for —T7 <t <T.

By the estimates (C.8) and by passing to the limit as n — +00, one then obtains the
bounds (C.3) for ®(¢) and y ().
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Furthermore,
w® = w in CO(-T,T), H{™ YN Cl(~T, T1, H{™(T))).

and (0(t), y(t), w(t)) is a smooth solution of (C.1). Furthermore, arguing as at the end
of the proof of Lemma D.1, one shows that

w e CO(—T, T, H}(Ty))

and in turn, using the equation, that o, w € cO(-T1,T], Hj_73(11‘1 )). One also shows that

w(t) satisfies the claimed bound (C.3) by using the bounds on w® in (C.9). To prove
the uniqueness, take two smooth solutions r1, x> satisfying the same initial condition
r1(0) = ro = r2(0). Then write the equation for the difference r; — x> and argue as in
the proof of Lemma C.2 to conclude that

t
le1 (@) —x2()llE, 5/0 lei(0) —x2(Ole, dr, Vie[-T,T]

for some o > 0 (large). By the Gronwall Lemma, r; = 1. This concludes the proof of
Proposition C.1.

D. On a Class of Linear Para-Differential Equations

In this appendix we discuss a well-posedness result for a linear para-differential equation
of the form

ohw =D@®)[w]+I T,0,w+ f, xeTy, tel[-T,T], (D.1)

in the Sobolev space H7 (T;) for some integer s > o with o > 0 sufficiently large.
Here the linear operator D(¢) is a time-dependent Fourier multiplier of order m > 1,
DHw(x) =Y, csL dn () wye?™™ with
D e CO([-T, T1, B(H{(Ty), H™™(T1))), D(t)=-D(1)', Viel[-T,TI,
(D.2)
and the coefficient a (¢, x) of the operator 7, of para-multiplication by a and the forcing
term f (¢, x) satisfy
aeC'([-T,.T1,H{(T)), fe€CO[=T.T], H{(T))). (D.3)

The main result of this appendix is Lemma D.2 which is used in the proof of Proposi-
tion C.1.
First we consider the initial value problem for Eq. (D.1) with vanishing forcing term,

dw=DO)[w]+ T To,w,  w(z, ) =wo(), (D.4)
where the initial time t isin [T, T'].

Lemma D.1. There exists o > m (large) with the following property: Assume that for
some 0 < T < 1andanys > o, (D.2)~(D.3) hold and ||a||C?H(, < 1. Then for any
wo € H{ (Ty), there exists a unique solution w of (D.4) in co(-r, 11, Hi(T) N
cl-r, 11, H{"(Ty)). Foranyt € [—T, T, it satisfies the estimate

lw®lls , 10w () ls—m <s llwolls - (D.5)
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Proof. The lemma is proved by constructing a sequence of approximating solutions. To
this end we introduce for any integer N > 1 the finite dimensional subspace Hy of
L% (Ty),
Hy :={ue L3 (T)): ulx) = Z U}, Sy =St N[-N,N], (D.6)
jeSﬁ
and denote by Iy the corresponding L?—orthogonal projector ITy : Li(’]I‘ 1) = Hy.
We consider the truncated equation

dw =Ty(DO[w]+ 1 T0w),  w(r, ) =Tywo, (D.7)

where w(t,x) = ) . sk Wn (1)e'?™"* ¢ Hy. The equation in (D.7) is a linear non-
autonomous ODE on the finite dimensional space Hy and hence it admits a unique
solution w'™) € CY([—T, T], Hy). We will show that the sequence (w(N))Nzl admits
a limit, which is the solution of (D.4) with the claimed properties. To this end, in a first
step, we prove estimates for the Sobolev norm [|w™) (1) ;.
BoUND OF [[w™)(#) ;. Note that |w™ (#)[|s = [85w™ (¢)|. Since D(t) is a Fourier
multiplier, the commutator [9{, D(¢)] vanishes and since for any v € Lf_(Tl),
(Miu, v)=(u, v), YueL*T), (Myv, g)=(v, g), Vg e Hy,
one concludes that
3w ™M | = (35(D(O)[w™M ]+ My T,a,w ™), 35w™)
+(@5w™, 35 (DO [w™M+ TN T,8,w™))
= (D®w™, 3w} +(3w™, D@)aiw™) (D.8)
+(05T,0,w™, BSw™)+ (35w™, 3T, 8,w ™). (D.9)
Analysis of the terms in (D.8). Since by assumption D(t)" = —D(1), one has
(D®)3Ew™, 33w™) +(33w™, D@B)3Tw™)
T N N (D.10)
= (D) +D@O) ") aEw™, 33w™)=0.

Analysis of the terms in (D.9). One computes
(0T, 8,w™ | 3Sw™) + (35w ™ | 95 T,8,w™)
= (Taaxajw(N) , 05w + <8§w(N) , Taaxajw(N))
+(105, T, w™ | 35w ™)+ (35w™ | [83, T, 1w™) (D.11)
= ((Tuds + (Tu00) ) 35w ™, 33w ™))
+([05, Tuaxw™ | 35w ™)+ (35w™ | [83, T, 81w ™).
By Corollary 2.2 (with N = 1, m = 1) there exists an integer o > 1 so that
1700 + (Ta) Tl g2y S lallo
and hence by the Cauchy—Schwarz inequality,
(Tt + (Ta0) ) 3w ™, 33w ™)| < Ylallo 195w ™). (D.12)
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Moreover, arguing as in [9, Lemma A.1], one has

o>2
1185, Tud Jw ™| <5 lalllw™lls <5 llalle 185w™ ).

The latter estimate, together with the Cauchy—Schwarz inequality, imply that
(03, Tuoxw™, 83w ™)+ (03w ™) [0, T,0,w™)| < llalle Jw™ 1. (D.13)
Using (D.12)—(D.13), one then infers from (D.11)
35 Tu 0, w™, 85w™) + (35w ™, 95 T,8,w™)| < llallo85w™ 2. (D.14)
Combining (D.8), (D.9), (D.10), (D.14), yields the estimate
| arllogw ™ 17| <5 lallo 33w ™ 12, (D.15)

which implies that
t
150 12, < lwol2 +C() / la()lo 133w ™ ()] di’
T

t
f 85w ™ (") ar’
T

(D.16)

2
<llwolls + C(s)llallco o

for some constant C(s) > 0. The Gronwall Lemma (recall that —7 < ¢, 7 < T) then
implies that

lw™ @013 = 187w™1? < exp(C®)llallcope T)llwolly. V€ [T, T].

Since by assumption 0 < 7 < 1 and ||a||C?HU < 1, it then follows that

lw™@))12 = |25w™ 1> < exp(C)llwoll?, ¥t e[-T,T].  (D.17)

CONVERGENCE. Now we pass to the limit N — +oo. By (D.17) the sequence of func-
tions w™) is bounded in C°([—T, T1, H} (T)) € L®([—T, T1, H}(T})) and, up to
subsequences,

w* . .
w® = w in LO(=T, T] H{(T)),  lwlzeny < liminf w™ | op, . (D.18)

Claim: (w'N)) y= convergestowin CO([—T, T1, H} (T))NC'([—T, T1, H}~"(T)),
and w solves (D.4).
We first prove that w™ is a Cauchy sequence in co(-r, 11, Li(Tl)). Indeed, by

(D.7), the difference h™) := w @O+ — V) golves

3h™) = DO)h"™) + Ty (ML Ty 0ch ™) + (Mygy — Ty Tudw™)
AN (1) = (My41 — Ty)wo,

and therefore

3,||h(N)(t)||2 — <8,h(N), h(N))+<h(N), a,h(N)>
= (DO, K™+ (™, DORY) + (T8, KNV + (RN, T80 ™))
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+ (Mg = O T dew™, 2 N) 4 (N, (Mg = )L T, 0,0 ™).
(D.19)

Arguing as in (D.10), (D.11)—~(D.14), one gets

(DORN, ")+ (K™ D()R™M) = 0,

(D.20)
Tud:h ™, B) + (h ™, T,8,hM))| < Jlallo B2

Moreover

(Mt — AT T8 w™ A™) 4+ (BN (Mg — TN T, 8,w ™))
SNy — T T dew ™ AN | S AN )2 + [(Tyar — Ty T8, w ™)

(N) 12 -2 (N) 2 22,017 (N) 12 -2 2
SN + (N2 T05w ™ 12) S IR+ (N woll3)

>3 (N) 12 ) )
S IR+ (N wolls)” (D.21)
Hence (D.19)—(D.21) imply that
ol ™ 017 < 1B O + N~ flwollg
and, since |A™N) ()| < N~2||wg||2, we deduce from the Gronwall Lemma that
™D — w02 S N2 ugllo exp(CT)?

for some constant C > 0. The above inequality, together with a standard telescoping
argument implies that w®™ is a Cauchy sequence in CY(-T,T], L%_(Tl)). Hence

w™ — % e CO(-T, T1, L3 (T1)). By (D.18) we have
W =we CO~T,T1, L3 (Ty)) N L®([—~T, T1, H(T)).

Next, for any 5 € [0, s) one has by the interpolation inequality

lw™ —wilepg < 1™ —wil < W™ —wljey, . 2=5/s,
and, since w™) is bounded in L>°([—T, T1, H (T1)) (see (D.17)), w € L®([-T, T1,
H$(Ty)), and w™ — w e CO([-T,T], L3 (T1)), we deduce that w™ — w in

CO([—T, T1, H$(T)). Moreover we deduce

dw™ =Ty(DOw™M ]+, T,8w™) —
DO)[w]+ M Tdw in CO(=T,T1, H"™(T1)), V5el0,s).

As a consequence w € C!([-T, T], H{7"(Ty)) and ;w = D(O)[w] + M T, 0,w
solves (D.4).

Finally, arguing as in [42], Proposition 5.1.D, it follows that the function t — |w(?) ||§
is Lipschitz. Furthermore, one can show that if t, —  then w(f,) — w(¢) weakly in
H{ (Ty), because w(t,) — w(t)in H] (Ty) forany 5 € [0, 5). As a consequence the se-
quence w(t,) — w(t) strongly in A7 (Ty). This proves that w € (-1, T1, Hi (Ty))
and therefore 3,w € CO([-T, T1, H{ 7" (Ty)).
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UNIQUENESS. If wy, wy € CO(—T, T1, H{ (T)) N C' ([T, T1, H;""(T1)), s > o,
are solutions of (D.4) with w(t) = wa(r) € H{ (T), then h := w; — wy solves

qh=DOh+T1, Tdeh, h(r)=0.

Arguing as in the proofs of the previous energy estimates, we deduce the energy in-
equality ah@®)|1> < C|lh(@)|?. Since h(t) = 0, the Gronwall Lemma implies that
lh()||? = 0, for any t € [—T, T]. This shows the uniqueness.

The estimate for ||w]|s in (D.5) then follows by (D.17)—(D.18) and the one of ||0;w||s—m
in (D.5) by using the equation. 0O

In the next lemma we consider the inhomogeneous equation (D.1).

Lemma D.2. Let 0 > m and m be given as in Lemma D.1 and assume that for some
0<T < 1lands > o, (D2)~(D.3) hold and ||a||C;>HJ < 1. Then for any wy €

j_(T]), there exists a unique solution t — w(t) of (D.1) in CY9[-T,T], j_(Tl)) N
cl(-r1, 11, H{7"(T1)), with w(0) = wo. For any t € [T, T1 it satisfies,
t
lw®lls Ss llwolls +/ If @lls dt Ss lwolls + Tl fllogs »
0 X

1w (Olls-m Ss lwolls + T fllgosy . Ve € =T T1.

(D.22)

Proof. For any t, v € [T, T], denote by ®(z, t) the flow map of the para-differential
equation (D.4),

oow =D [w]+I1, T,0,w, w(t, ) = wo(-).

By LemmaD.1, ®(z, t) is abounded linear operator H} (T1) — H7} (Ty) foranys > o.
The estimate (D.5) implies that

Iz, Dwolls Ss lwolls, 10, P(x, Dwolls—m Ss llwolls -

The unique solution of the Eq. (D.1)in CO([—T, T1, H{ (Ty)NC' ([~T, T1, H} ™" (T1))
with initial data w(0) = wy is then given by the Duhamel formula w(z) = ®(0, r)wo +
f(; ® (7, 1) f(7)dt and the claimed estimates easily follow. |
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