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Abstract: The quantum symmetric simple exclusion process (Q-SSEP) is a model for
quantum stochastic dynamics of fermions hopping along the edges of a graphwith Brow-
nian noisy amplitudes and driven out-of-equilibrium by injection-extraction processes
at a few vertices. We present a solution for the invariant probability measure of the one
dimensional Q-SSEP in the infinite size limit by constructing the steady correlation func-
tions of the system density matrix and quantum expectation values. These correlation
functions code for a rich structure of fluctuating quantum correlations and coherences.
Although our construction does not rely on the standard techniques from the theory of
integrable systems, it is based on a remarkable interplay between the permutation groups
and polynomials.We incidentally point out a possible combinatorial interpretation of the
Q-SSEP correlation functions via a surprising connexion with geometric combinatorics
and the associahedron polytopes.
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1. Introduction

Non-equilibrium phenomena, classical or quantum, are ubiquitous in Nature, but their
understanding is more difficult, and thus yet less profound, than the equilibrium ones.
Last decade has witnessed important conceptual progresses in this direction for classical
systems, starting from the exact analysis of simple models [1–3], such as the Sym-
metric Simple Exclusion Process (SSEP) or its assymetric partner (ASEP) [4–7], via
the understanding of fluctuation relations [8–10] and their interplay with time reversal
[11,12]. These progresses culminated in the formulation of the macroscopic fluctuation
theory (MFT) which is an effective theory describing transports and their fluctuations
in diffusive classical systems [13,14].

The questions whether macroscopic fluctuation theory may be extended to the quan-
tum realm and which form this extension will take are still open and timely. If such
theory can be formulated, it should aim at describing not only diffusive transports and
their fluctuations but also quantum coherent phenomena, in particular quantum inter-
ferences, quantum correlations and entanglement spreading and their fluctuations, in
out-of-equilibrium quantum many body systems. A substantial amount of information
has been gained on this question for integrable quantum many-body systems via the for-
mulation of the generalized hydrodynamics [15,16]. But transports in these systems are
mainly ballistic. Other pieces of information on a possible form of such theory for diffu-
sive systems has recently been gained by studying model systems based say on random
quantum circuits for which a membrane picture [17–21] for entanglement production in
many-body systems is starting to emerge.

Another route has been taken in a series of works [22–24] consisting in analysing
model systems which provide quantum extensions of the classical exclusion processes
SSEP or ASEP. One exemple of such models is the quantum symmetric simple exclu-
sion processes, named Q-SSEP [23]. These models are formulated as noisy quantum
many body systems whose mean dynamics reduce to those of the classical exclusion
processes, as a consequence of decoherence phenomena. This quasi-classical reduction
only applies to the average dynamics since decoherence is at play only in the mean
dynamics. Fluctuations are beyond the quasi-classical regime and survive decoherence.
In particular, it has been shown that fluctuations of off-diagonal quantum correlations
and coherences possess a rich structure in Q-SSEP.
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The aim of the following is to give an explicit construction of the invariant steady
probabilitymeasure ofQ-SSEP (under the hypothesis that a locality conjecture,whichwe
checked in few instances, is valid). That is, it aims at constructing the probabilitymeasure
on quantummany-body states or density matrices relevant to Q-SSEP which is invariant
under the stochastic dynamics ofQ-SSEP.Thismeasure encodes for thefluctuations of all
quantum expectation values and in particular of the quantum coherences. We hope that,
in the same way as the solution of the classical SSEP played a role in the formulation
of the classical MFT, this construction will open the route towards a formulation of
the quantum extension of the macroscopic fluctuation theory to quantum many body
systems.

In the following Sect. 2, we start this article by describing the definition of Q-SSEP
and its main expected characteristics. We formulate the problem of constructing the
invariant measure of Q-SSEP in a way that is largely independent of the context of Q-
SSEP (although solving Q-SSEP is of course our motivation for tackling this problem).
A summary of the main results we obtained as well as open questions are also given in
Sect. 2. All proofs and technical details are presented in the remaining Sects. 3, 4, 5, 6, 7
and 8.

2. Summary

2.1. Context. The quantum SSEP is a model for stochastic quantum many-body dy-
namics of fermions hopping on the edges of a graph but with Brownian amplitudes
and injection/extraction processes at a few vertices modelling interaction with external
reservoirs. Here we shall be interested in the one dimensional case (1D) defined on a line
interval with injection/extraction processes at the two ends of the interval. See [22,23].

The bulk dynamics is unitary but stochastic. It induces a unitary evolution of the
system density matrix ρt onto e−idHt ρt eidHt with Hamiltonian increments

dHt = √
D

L−1∑

j=0

(
c†j+1c j dW

j
t + c†j c j+1 dW

j
t

)
, (1)

for a chain of length L , where c j and c
†
j are canonical fermionic operators, one pair for

each site of the chain, with c j c
†
k + c†kc j = δ j;k , and W j

t and W
j
t are pairs of complex

conjugated Brownian motions, one pair for each edge along the chain, with quadratic

variations dW j
t dW

k
t = δ j;k dt . The parameter D has the dimension of a diffusion

constant. See Fig. 1.
The boundary dynamics is deterministic but dissipative. Assuming the interaction

between the chain and the reservoirs to be Markovian, it is modelled by Lindblad terms.
The resulting equations of motion for the density matrix read

dρt = −i[dHt , ρt ] − 1

2
[dHt , [dHt , ρt ]] + Lbdry(ρt )dt, (2)

with dHt as above and Lbdry the boundary Lindbladian. The two first terms result from
expanding the unitary increment ρt → e−idHt ρt eidHt to second order (because the
Brownian increments scale as

√
dt). The third term codes for the dissipative boundary

dynamics with Lbdry = α0L+
0 + β0L−

0 + αLL+
L−1 + βLL−

L−1 and, for j = 0, L − 1,

L+
j (ρ) = c†jρc j − 1

2
(c j c

+
j ρ + ρc j c

†
j ),
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Fig. 1. The open quantum SSEP. Particles are injected and extracted at the left and right boundaries at rates α0,
β0 and αL , βL respectively. In the bulk the fermions undergo stochastic hopping between nearest neighbours

L−
j (ρ) = c jρc

†
j − 1

2
(c†j c jρ + ρc†j c j ),

where the parameters α j (resp. β j ) are the injection (resp. extraction) rates. Equation (2)
is a (classical) stochastic differential equation for (quantum) density matrices.

This model describes stochastic non-equilibrium physics in quantum many-body
systems. At large time, the system reaches a non-equilibrium steady state with a non-
trivial mean density profiles n∗

j := limt→∞ E[Tr(n̂ jρt )], with n̂ j := c†j c j the local
number operator,

n∗
j = na(L + b − j) + nb( j + a)

L + a + b
,

where na := α0
α0+β0

, nb := αL
αL+βL

with a := 1
α0+β0

, b := 1
αL+βL

. In the large size limit,
L → ∞ at x = i/L fixed, this profile, n∗(x) = na + x(nb − na), interpolates linearly
the two boundary mean occupations na and nb [23,25–27].

The fact that the above mean density profile coincides with that in the classical SSEP
[4–7] reflects that decoherence is at work in the mean dynamics. However, as shown in
[23], beyond this quasi-classicalmeanbehavior, quantum-ness persists at large time in the
sub-leading (in L) fluctuations, and a rich structure of fluctuating quantum correlations
and coherences is encoded in the steady probability measure of (2).

We shall be interested in the invariant probability measure of (2), called the Q-SSEP
invariant measure, in the large size limit, and in the steady correlations of the quantum
coherences.

Quantumcoherences are defined as the fermion two-point functionsG ji := Tr(c†i c jρt ).
They specify the system density matrix, since the dynamical equation (2) are quadratic.
They are random as is the density matrix ρt . We shall therefore be interested in their
multiple point connected correlation functions in the Q-SSEP steady probability mea-
sure. For instance, at large size, L → ∞ with x = i/L , y = j/L fixed, their second
moments behave, for 0 ≤ x < y ≤ 1, as [23]

E[Gi jG ji ]c = 1

L
(�n)2 x(1 − y) + O(L−2),

with �n := nb − na the difference between the boundary densities, while the other
two-point functions are E[G2

i i ]c = 1
L (�n)2 x(1 − x) + O(L−2) and E[GiiG j j ]c =

− 1
L2 (�n)2 x(1 − y) + O(L−3).
It has been shown in [23] that, in the large size limit, the leading contributions

among the multi-point expectation valuesE[Gi1 j1 . . .GiP jP ]c come from the correlation
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Fig. 2. A cyclic permutation σ is represented by a loop. Equation (7) involves σ−
j and σ+

j which are obtained
by breaking the loop σ at points j and j + 1 and forming smaller loops with the two remaining strands

functions of cyclic productsGi1iP . . .Gi3i2Gi2i1 . In this limit, these correlation functions
scale proportionally to 1/LP−1, with P the number of insertion points,

E[Gi1iP . . .Gi3i2Gi2i1]c = 1

LP−1 gP(x1, . . . , xP ) + O(
1

LP
),

with xk = ik/L . The expectation values E[Gi1 j1 . . .GiP jP ] are non-vanishing only if
the indices jk’s are permutations of the indices il ’s. To such product Gi1 j1 . . .GiP jP
we may associate an oriented graph (connected or not) with a vertex for each point
ik and an oriented edge from i to j for each occurence of G ji in the product. Cyclic
productsGi1iP . . .Gi3i2Gi2i1 correspond to single oriented loop graphs. See Fig. 2. Other
cumulants of G ji ’s not corresponding to single loop diagrammes are sub-leading and
decrease faster at large L than single loop expectation values. Single loops are thus the
elementary building blocks in the large size limit.

These correlation functions dependonhow theorderingof thepoints x := (x1, . . . , xP )

along the chainmatches or un-matches that along the oriented loop. Fixing an order along
the chain interval, these different orderings are indexed by single cycle permutations of
the permutation group of P elements. The rule for this correspondence is that by turning
around the oriented loop indexed by the single cycle permutation σ one successively
encounters the points labeled as x1, xσ(1), xσ 2(1), . . ., up to closing the loop back to
xσ P (1) = x1. For 0 ≤ x1 < · · · < xP ≤ 1, we denote by [σ ](x) the expectation values
of the loop associated to the single cycle permutation σ ,

E[Gi1iσ P−1(1)
. . .Gi

σ2(1)iσ(1)Giσ(1)i1]c = 1

LP−1 [σ ](x) + O(
1

LP
), (3)

The aim of the following is to determine the expectation values [σ ](x) for all oriented
loops with an arbitrary number of marked points.

2.2. Formulation of the problem. Stationarity of the measure under the Q-SSEP flow
(2) imposes constraints on the correlation functions [σ ](x). The problem of determining
this invariant measure, and more particularly all these correlation functions, can be
formulated algebraically, without making explicit reference to the Q-SSEP – although
Q-SSEP is of course the (initial) motivation to solve this problem.

Let us pick P points on the interval [0, 1] and fix an ordering of them along the chain
interval, say 0 ≤ x1 < · · · < xP ≤ 1.We then consider labeled loops by placing these P
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points on a loop but without respecting the ordering, so that the order of the points on the
clockwise oriented loops may differ from the order of the points on the chain interval.
The order of the points on a given labeled loop is in a one-to-one correspondence with
a single cycle permutation σ , such that a clockwise exploration of the loop successively
reveals the point x1, xσ(1), xσ 2(1), up to xσ P (1) = x1. To each of these labeled loops,
or alternatively to each single cycle permutation σ of P elements, we associated a
function [σ ](x) of x := (x1, . . . , xP ) which we call the loop expectation value or the
loop correlation function. These functions satisfy a series of conditions which are the
conditions for the stationarity of the Q-SSEP measure, see [23]. There are three types
of conditions (bulk relations, boundary conditions and exchange relations) :
(i) Bulk relations and locali t y: For all x j distincts, the function [σ ](x) is harmonic:

∑

j

�x j [σ ](x) = 0, (4)

where�x j is the Laplacian, i.e.�x f (x) := ∇2
x j f (x). We shall look for solutions which

enforce this condition locally. We put this hypothesis as a working conjecture:
Conjecture. We conjecture that:

(c1) The Q-SSEP invariant measure is unique;
(c2) This measure satisfies a locality property, meaning that �x j [σ ](x) = 0 for all j ,

as long as the points in x are distincts.

We shall prove that, assuming the conjecture (c2), the Q-SSEP invariant measure is
unique.

This locality conjecture is supported by the explicit computation of the steady 2, 3
and 4 point functions, at finite size L , done in our previous paper [23].
(ii) Boundary conditions: There are two boundary conditions at the two ends of the
chain interval, for P > 1,

[σ ](x)|x1=0 = 0, [σ ](x)|xP=1 = 0. (5)

(iii) Echange relations: These are relations imposing conditions on [σ ](x) at the

boundary x j = x j+1 and involve the pair of loops σ and τ j ◦ σ := τ jστ−1
j with τ j

the transposition exchanging j and j + 1. The first is a continuity equation,

[σ ](x)|x j=x j+1 = [τ j ◦ σ ](x)|x j=x j+1 . (6)

The second is a Neumann like boundary condition,

(∇x j − ∇x j+1

)([σ ](x) + [τ j ◦ σ ](x)
)
|x j=x j+1 = 2∇x j [σ−

j ](x)∇x j+1[σ +
j ](x), (7)

where σ±
j are the two loops arising from the decomposition of the product τ j σ into its

two connected cycles, with σ−
j containing j and σ +

j containing j +1. Note that both sides
of the above equation are independent of x j and x j+1, since the [σ ](x)’s are polynomials
of degree at most one in each variable.

Hence, by the bulk harmonic condition (4) imposed locally, to any labeled loop, or
alternatively to any single cycle permutation σ , we associate a polynomial [σ ](x) of
degree at most one is each of its variable. By the boundary conditions (5), these polyno-
mials may be factorized as [σ ](x) = x1σ (1)(x), with σ (1)(x) := ∇x1 [σ ](x) independent
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of x1, and σ(x) = σ (P)(x)(1 − xP ), with σ (P)(x) := −∇xP [σ ](x) independent of xP .
The exchange relations (7) relate polynomials associated to different labeled loops. Since
the transpositions τ j generate the group of permutations of P elements, these relations
allow to explore the conjugacy class of all single cycle permutations. Together with the
boundary conditions, they determine uniquely the solution, as we shall prove below.

The case P = 1 is peculiar. From Q-SSEP computations, we know that the expecta-
tion value of a loop with a single point linearly interpolates between the two boundary
densities, that is, [(1)](x) = na + (nb − na)x with na (resp. nb) the densities at the left
(resp. right) boundary of the chain interval. Actually, the only information we shall need
in the following is ∇x [(1)] = (�n) with �n := nb − na .

It is easy to verify that loop expectation values with P points are proportional to
(�n)P , that is : [σ ](x) ∝ (�n)P with P the number of points in the label loop σ . From
the reflexion symmetry exchanging the chain boundaries, we have: [σ ](x1, . . . , xP ) =
(−)P [σ rev](1 − xP , . . . , 1 − x1) with σ rev(k) := σ(P + 1 − k).

In the following, to simplify notation, we shall set �n = 1 (unless explicitly speci-
fied).

2.3. Summary of the results. The aim of the sequel is to present the solution to the
constraints (4,5,6,7) assuming the locality conjecture. Since the gluing condition (7)
relates correlation functions with P points to correlation functions with less points, the
construction of the solution will be recursive on the number of points.

We shall prove that, if the locality conjecture holds, then the solution of the stationarity
conditions (4,5,6,7) is unique and, for any labeled loop σ with P marked points, can be
written as

[σ ](x) =
P−2∑

j=1

x1 . . . x j [σ ]oj+1(x) + x1 . . . xP−1(1 − xP ) [σ ]oP , (8)

with x := (x1, . . . , xP )with 0 ≤ x1 < · · · < xP ≤ 1, where the polynomial coefficients
[σ ]oj+1(x) are called hole coefficients and are given by

[σ ]oj+1(x) = (∇x j+1 · · · ∇x1)

j∑

k=1

[
(τk+1 · · · τ j ◦ σ)−k

]
(x)

[
(τk+1 · · · τ j ◦ σ)+k

]
(x), (9)

for j = 1, . . . , P − 1. This formula relates the hole coefficients of a loop correlation
function with P points to multiple derivatives of smaller loop correlation functions
with less than P points, via a quadratic relation. Most of the following constructions or
arguments will be based on an interplay between hole coefficients, multiple derivatives
and the permutation group. See Theorem 1 and its proof in Sect. 4 for details.

Equation (9) is recursive by construction. It allows to compute loop correlation func-
tions for loops with P points knowing all loop correlation functions for loop with up to
P−1 points. As such one may say that it solves the problem of determining the Q-SSEP
invariant measure (at least the multi-point correlation functions within this invariant
measure). The following results aim at making this recursive procedure more concrete
and at deciphering (part of) the structure underlying it. These results will be formulated
in terms of generating functions coding for (and summing over) loop expectation values
with an arbitrary number of points.
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First we shall notice that the formulas (8,9) becomes rather explicit when dealing
with the loops ωP , which we call the regular loops, for which the order along the chain
and the loop coincide. These are associated to the cyclic permutation ωP := (12 . . . P)

of the P first integers with P the number of points. We introduce the generating function
Ck(z) of multiple derivatives of the regular loop expectation values [ωP ] defined as the
formal power series in z,

Ck(z) :=
∑

N≥0

CN+k+1;k zN ,

with CN+k+1;k := ∇xN+1 · · · ∇x1[ωN+k+1](x). Since [ωN+k+1](x) are polynomials of
degree at most one in each of their variables, by the locality conjecture, all coefficients
CN+k+1;k , and hence also the generating functions Ck(z), depend only on the remaining
k variables xN+k+1, . . . , xN+2 on which the derivatives are not acting. We call them the
floating variables and renamed them as yl := xN+k+1−l for l = 1, . . . , k. The formal
power series Ck(z) sum over the number of points in the regular loops fixing the number
of floating variables. For the regular loops, the formulas (8,9) can be recasted into the
following recurrence relation:

Ck+1(z) =
[(
c(z) +

yk
z

)Ck(z)
]

+
, (10)

where
[ · · · ]+ means the part with positive degrees of the Laurent series and c(z) :=(√

1 + 4z − 1
)
/2z = 1 − z + 2z2 − 5z3 + · · · is the generating function of alternating

Catalan numbers. See the Proposition 1 in Sect. 5 for details. The regular loop expectation
values are recovered from the generating functions Ck(z) by evaluating it at z = 0 via
the reconstruction formula

[ωk+1](x) = x1 Ck(0)(y0 = xk+1, y1 = xk, . . . , yk−1 = x2), (11)

with the initial condition Ck=0(z) = c(z). Furthermore, we shall show that, as a conse-
quence of (10) and (11), there exists yet another formal power series Dω(y0, y1, . . .) of
an infinite number of variables such that, for each P ≥ 2,

[ωP ](x) = x1 Dω(xP , xP−1, . . . , x2, 0, 0, . . .). (12)

This formal power series is recursively constructed using (10). See Theorem 2 in Sect. 5
for details.

Second we shall view any labeled loop as a deformation of a regular loop. Indeed,
because labeled loops are in one-to-one correspondence with single cycle permutations,
they form a closed orbit under the adjoint action of the permutation group. Hence any
labeled loops with P points is of the form μn ◦ ωP := μn ωP μ−1

n with μn some
permutation. Any permutation is characterized by its support which is the minimal
length interval outside which it acts trivially as the identity map. A permutation with
support of length |μ| is canonically associated to an element μ of the permutation group
S|μ| of |μ| elements, which we call the profile of the deformation. Any permutation μn
can be viewed as a translation by n − 1 steps of its canonically associated profile. That
is: the permutation μn possesses the same profile as the permutation μ but starting at
point n instead at point 1: μn( j + n − 1) = μ( j) + n − 1 for j = 1, . . . , |μ|. We then



Solution to the Quantum Symmetric Simple Exclusion Process 1149

introduce generating functions for the expectation values of deformations of the regular
loop of a given profile μ defined as the formal power series in z, for q ≥ 1,

D(μ;q)
k (z) :=

∑

N≥0

C
μq+N
N+k+1;k z

N ,

with C
μq+N
N+k+1;k := ∇xN+1 · · · ∇x1[μq+N ◦ ωN+k+1](x). Here the integer label q codes for

the distance between the location of the insertion of the deformation μq+N and the posi-
tion of the last derivative ∇xN+1 in C

μq+N
N+k+1;k , so that these generating functions sum over

the number of points in the loops and the location of the insertion of the deformations.
As above, the functions D(μ;q)

k (z) depend on k floating variables (y0, . . . , yk−1). We
shall prove in Proposition 3 in Sect. 7 that the formulas (8,9) imply that the following
recurrence relations for these generating functions

D(μ;q)
k+1 (z) =

[(
c(z) +

yk
z

)D(μ;q−1)
k (z)

]

+
, (13)

for q ≥ 2. These relations are structurally of the same form as (11) but they strongly
depart from them by their initial conditions D(μ;q)

k (z) at q = 1. The later is obtained
by a procedure which consists in traversing the deformation starting from the right
end of the chain interval that we describe in Proposition 4 in Sect. 7. The number of
steps involve in this procedure increases with the size of the support of the deformation
(see Proposition 4). The expectation values of deformations of the regular loops are
reconstructed from these generating functions via

[μq ◦ ωk+1](x) = x1D(μ;q)
k (0)(y0 = xk+1, . . . , yk−1 = x2). (14)

Similarly as for the regular loop, as a consequence of (13) and (14), there exists formal

power series D
μ;q

(y0, y1, . . .) of an infinite number of variables such that, for each
P ≥ 2,

[μq ◦ ωP ](x) = x1 D
μ;q

(xP , xP−1, . . . , x2, 0, 0, . . .). (15)

That is: the expectation values of deformations with profile μ and P points are obtained

by evaluating the generating function D
μ;q

but with yl = xP−l , for l = 0, . . . , P − 2,
and all other variables yP−1, yP , . . . set to zero. See Theorem 3 in Sect. 7 for details.

The particular case of deformations implemented by a simple transposition is de-
scribed with some details in Sect. 6.

2.4. Remarks and open questions. The results we have obtained are modulo the locality
conjecture, although we checked it in a few cases. For instance, the formulas (8,9) are
implied by the conditions (4,5,6,7) if we assume that the expectation values [σ ](x) are
harmonic in each of their variables, but we do not provide a full proof that they imply
all conditions encoded in (7). A proof of the later statement will be welcome.

As it will be explicit in the following, in particular in the exemples, the loop expecta-
tion values [σ ](x) are polynomials with integer coefficients. We do not have an a priori
explanation why this should be so, but formulas (8,9) give an a posteriori explanation.
Also, when specialized to all its variables being equal, x j = −t for all j , these polyno-
mials are remarkably generating functions counting objects of certain degree in discrete
and computational geometry [28]. The coefficients of the loop expectation values with
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n + 2 marked points specialized at x j = −t for all j are the number of faces of given
dimension in the associahedron polytope of dimension n, as we shall notice in (41) at the
end of Sect. 5. We do not have a good understanding of this surprising fact. Remarkably,
an interplay between the geometry of associahedron polytopes and scattering theory has
recently been revealed [29]. This remark raises the question whether the polynomials
[σ ](x) have a combinatorial interpretation.

The tools and structures we used to prove the formulas (8,9), or the properties of
the generating functions we introduced, are calling for a deeper algebraic structure.
These proofs rely on one hand on manipulating two simple operations on [σ ](x), the
evaluation at 0 and the derivative with respect to one of the variables, and on the other
hand on finding relations between hole coefficients and multiple derivatives. This is for
instance illustrated by the formula (21) which is the first step towards proving (8,9). On
polynomials of degree at most one in each of its variables, as [σ ](x) are, these operations
can be formulated as annihilating a particle or a hole using a language alluded to at the
end of Sect. 4.2. In this language, formula (21) yields information on the behavior of
[σ ](x) under the move of a hole from one position to the next. An algebraic framework
encompassing this information will be welcome. The computations we present below
resemble the computations of expectation values of algebraic operators or of matrix
product states but, paradoxically, without knowing explicitly these operators. If such
algebraic framework was available, it will most probably be more economical (as, for
instance, it is simpler to write expectation values of creation/annihilation operators than
computing them explicitly using Wick’s theory, if an analogy is needed). It is tempting
to suggest that a proof of the locality conjecture will be more direct using such algebraic
framework, if it exists (as it is with thematrix product state representation of the classical
SSEP invariant measure, if an analogy is needed).

It may be surprising, but remarkable, that explicit expressions (8,9) for [σ ](x) are
available although we did not use any known structure from the theory of integrable
systems [30,31], classical or quantum, besides the permutation group. In a way, at the
present stage, themodel seems to be solvable without being integrable in the usual sense.
Is the potential algebraic structure we discussed above linked to some realisation of the
Yang–Baxter equation or of quantum groups ? Are the quadratic relations we found,
as in (9) or in (10,13), related in some disguised form to bilinear Hirota’s equations or
Sato’s tau functions ? Do cluster algebras, via their connexions with exchange relations
and associahedron polytopes [33–35], play a role in the algebraic structure underlying
Q-SSEP ? We do not know yet how to answer these questions.

In parallel, the generating functions as well as the operations on them which we in-
troduced, such as in (10,13), are reminiscent of vertex operators or Sato’s tau functions.
Since single cycle permutations form an orbit under the adjoint action of the permutation
group, and since these generating functions exist for any element in this orbit, we are
lead to conjecture the existence of vertex like operators representing the action of permu-
tations of any size on these generating functions (which depend on an infinite number
of variables). We hope to report soon on this problem. Permutations may be viewed
as discrete diffeomorphisms [36], and so do the deformations of the regular loop we
considered which can be viewed as discrete diffeomorphisms from the chain interval to
the loops. Adopting this point of view, these vertex operators, if they can be constructed,
are going to implement discrete non-commutative diffeomorphisms.

The scaling of the correlation functions (3) with the system size is such that it ensures
the existence of a large deviation principle for the quantum correlation and coherence
fluctuations [23]. It will be welcome to have a variational principle for determining
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the large deviation rate function, as in the classical SSEP [5–7,37]. This may well be
a possible route towards the quantum extension of the macroscopic fluctuation theory
[13,14] aiming at describing quantum coherence and entanglement fluctuations in out-
of-equilibrium quantum many body systems.

Of course, the first applications of the results presented here may deal with the com-
putation of various entanglement entropy fluctuations or entanglement productions and
spreadings in Q-SSEP systems. It will be interesting to understand whether there ex-
ists a controllable coarse-grained hydrodynamics description of entanglement spreading
and how the later is connected to the recently emerging membrane picture [17–21] for
entanglement production in many-body systems.

3. Preliminaries

Since solving the problem formulated in Sect. 2.2 requires dealing with permutations
and polynomials, we first need to recall a few basics facts and introduce simple notations.

3.1. Permutations, cycles and loops. Let SP be the permutation group of P elements
labeled 1, 2, . . . , P . Any permutation can be decomposed into independent product
of cycles. The number of cycles (counted with multiplicities) specifies the conjugacy
classes in SP . The number of single cycle permutations in SP is (P − 1)!.

Let τ j , for j = 1, . . . , P − 1, be the transpositions of j and j + 1. They generate the
permutation group. Transpositions are involutions: τ 2j = 1. They satisfy the fundamental
relation (known in another context as the Yang–Baxter equation),

τ jτ j+1τ j = τ j+1τ jτ j+1.

The triple product τ jτ j+1τ j is the transposition of j and j + 2.
For σ1 and σ2 any two permutations, the adjoint action of σ2 on σ1 is defined by

σ2 ◦ σ1 := σ2σ1σ
−1
2 . In particular, the adjoint action of the transposition τ j on σ is:

τ j ◦ σ := τ jστ j .

Adjoint actions act on conjugacy classes (by definition) and hence preserve the number
of cycles entering in the decomposition of the permutation into product of cycles. In
particular, if σ is a single cycle permutation so is τ j ◦ σ .

A contrario, if σ is a single cycle permutation then the product τ jσ is not a single
cycle permutation but it decomposes into two cycles, one including j , the other one j +1.
Let us denote these cycles σ±

j , so that τ jσ = σ−
j σ +

j . They are:

σ−
j : j → σ( j) → · · · → σ−1( j + 1) → j,

σ +
j : j + 1 → σ( j + 1) → · · · → σ−1( j) → j + 1.

A similar statement applies to the reversed product στ j .
Oriented labeled loops with P points marked along the loop are in one-to-one cor-

respondence with single cycle permutations, defined by following the ordering of the
points along the loop. For σ a single cycle permutation, the corresponding labeled loop
is 1 → σ(1) → σ 2(1) → · · · → σ P−1(1) → 1. As a consequence, if σ is a single
cycle permutation, then τ jσ is associated to two disconnected loops with less marked
points obtained by cutting the original loop σ at the point j and j + 1.
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To simplify notation, when needed, we shall denote (as usual) a single cycle permu-
tation σ , or equivalently an oriented labeled loop, by specifying its ordered sequence of
points (i1i2 . . . iP ), with ik := σ k−1(1).

More information, and notations, shall be needed to construct the generating functions
of expectation values of arbitrary loop. We prefer to postpone the introduction of these
notations to Sect. 7.

3.2. Polynomials. By construction, solving the problem of Sect. 2.2 requires dealing
with polynomials of degree at most one in each of its variables. We need to introduce an
appropriate triangular decomposition of such polynomials, which amounts to introduce
an order among monomials. We call it the hole decomposition.

Let Q(x), with x := (x1, . . . , xP ), be a polynomial in P variables of degree at most
one in each of its variables. It can be uniquely written as

Q(x) =
P∑

j=0

x1 . . . x j Q
o
j+1(x), (16)

with Qo
j+1(x) independent of x1, . . . , x j , x j+1, and where by convention the first term

is Qo
1(x), independent of x1, and the last term involve a coefficient Qo

P+1 independent
of all variables. The polynomial coefficients Qo

j+1(x) are called the hole coefficients of
Q. They are defined as

Qo
j+1(x) := ∇x j · · · ∇x1Q(x)|x j+1=0,

for j=1, . . . , P−1.Byconvention,Qo
1(x)=Q(x)|x1=0 andQo

P+1 := ∇xP · · · ∇x1Q(x).
Indeed, sinceQ(x)−Q(x)|x1=0 vanishes at x1 = 0,wecanwriteQ(x)−Q(x)|x1=0 =

x1Qr
1(x), with Qr

1(x) independent of x1 and of degree at most one in all other vari-
ables. We can then expand Qr

1(x) in power series of x2 (up to degree one) and write
Qr

1(x) = Qo
2(x) + x2Qr

2(x) so that Q(x) − Q(x)|x1=0 = x1 Qo
2(x) + x1x2 Qr

2(x), with
Qo

2(x) := ∇x1Q(x)|x2=0 and Qr
2(x) independent of x1 and x2 and of degree at most

one in all other variables. We can then expand Qr
2(x) in power series of x3, etc. Hence,

by iteration, we can write,

Q(x) − Q(x)|x1=0 =
k∑

j=1

x1 . . . x j Q
o
j+1(x) + x1 . . . xk+1 Q

r
k+1(x),

with both Qo
j+1(x) := ∇x j · · · ∇x1Q(x)|x j+1=0 and Qr

j+1(x) independent of x1, . . . , x j+1
and of degree one in all other variables. This can be pushed up to j = P − 1.

The construction belowwill be grounded on an interplay between the hole coefficients
andmultiple derivative of the polynomials. Thus, let us define strings of derivatives acting
on polynomials,

Dk Q(x) := ∇xk · · · ∇x1Q(x), (17)

which depends on the P − k variables xk+1, . . . , xP . Clearly, we have

Dk Q(x) = Qo
k+1(x) +

P∑

j=k+1

xk+1 . . . x j Q
o
j+1(x),

or equivalently,
Dk Q(x) = Qo

k+1(x) + xk+1Dk+1Q(x). (18)
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Remark. One may use an alternative language to describe the monomials entering into
polynomials of degree at most one by declaring that, if the variable x j is raised to the
power 0 in that monomial then there is a hole at position j and if x j is raised to the
power 1 then there is a particle at position j . Alternatively, we can speak about spins
by declaring that the spin is down at position j is there a hole at that position and up if
there is particle. The hole decomposition consists then in introducing a basis of states in
the spin system in which the spins from position 1 to j are up, with j running along the
chain.

In the following we set ∇ j := ∇x j .

4. Solution to Q-SSEP in the Continuum

The construction is going to be recursive since, for any labeled loops with P points,
the data entering the right hand side of the gluing condition (7) involve loops with a
smaller number of points. Thus we assume to have solved for the stationarity conditions
(4,5,6,7) for all labeled loop expectation values up to P − 1 points and look for the P
point expectation values.

4.1. Local moves. The first step consists at looking at the consequences of the exchange
relations (6,7).

For any given labeled loop σ and [σ ](x) its associated polynomial, let us single out its
dependency on the pair of neighbour variables x j and x j+1. Since [σ ](x) is a polynomial
of degree at most one in each of its variables, it can be decomposed as,

[σ ](x) = A j (σ ) + Bj (σ )x j + C j (σ )x j+1 + Dj (σ )x j x j+1,

where all coefficients A j , Bj ,C j , Dj are independent of x j and x j+1 but depend on all
other variables in x and on σ .

Lemma 1. The exchange relations (6, 7) are equivalent to:

A j (τ j ◦ σ) = A j (σ ), (19a)

Bj (τ j ◦ σ) = C j (σ ) + ∇ j∇ j+1[σ−
j · σ +

j ], (19b)

C j (τ j ◦ σ) = Bj (σ ) − ∇ j∇ j+1[σ−
j · σ +

j ], (19c)

Dj (τ j ◦ σ) = Dj (σ ). (19d)

The second and third relations (19b,19c) are actually equivalent (because ∇ j∇ j+1[σ−
j ·

σ +
j ] is invariant upon replacing σ by τ j ◦ σ ). Here and in the following, we set [σ−

j ·
σ +
j ](x) := [σ−

j ](x)[σ +
j ](x).

Proof. The continuity condition at x j = x j+1 is equivalent to

A j (τ j ◦ σ) = A j (σ ),

Bj (τ j ◦ σ) + C j (τ j ◦ σ) = Bj (σ ) + C j (σ ),

Dj (τ j ◦ σ) = Dj (σ ).

The Neumann like gluing condition is equivalent to
(
Bj (τ j ◦ σ) − C j (τ j ◦ σ)

)
+

(
Bj (σ ) − C j (σ )

) = 2∇ j∇ j+1[σ−
j · σ +

j ].
Solving the above equations for Bj and C j yields eqs.(19). ��



1154 D. Bernard, T. Jin

These relations inducemoves inside the conjugacy class of single cycle permutations.

Lemma 2. The moves (19) define an action of the permutation group into the set of
polynomials of degree one in each P variables, provided the polynomials [σ±

j ] in less
variables satisfy the exchange relations (19).

Proof. We have to check the fundamental relation of the permutation group

τ jτ j+1τ j = τ j+1τ jτ j+1.

To verify it, we pick a triplet of points j , j + 1, j + 2, and decompose the polynomials
[σ ](x) accordingly:

[σ ](x) = a(σ ) + b0(σ )x j + b1(σ )x j+1 + b2(σ )x j+2
+c01(σ )x j x j+1 + c02(σ )x j x j+2 + c12(σ )x j+1x j+2 + d(σ )x j x j+1x j+2,

with all coefficients a, b0, etc., dependent on all variables except the triplet x j , x j+1, x j+2.
To compute the actions of τ jτ j+1τ j and τ j+1τ jτ j+1 on polynomials we have to apply
successively the moves (19) for the pairs ( j, j + 1) and ( j + 1, j + 2), in the appropriate
order. Since a and d are both invariant under τ j and τ j+1, the action of the group generated
by τ j and τ j+1 on them is clearly compatible. Next, for the pair ( j, j + 1) we have

b0(τ j ◦ σ) + c02(τ j ◦ σ)x j+2 = b1(σ ) + c12(σ )x j+2 + ∇ j∇ j+1
[
σ−
j · σ +

j

]
,

b1(τ j ◦ σ) + c12(τ j ◦ σ)x j+2 = b0(σ ) + c02(σ )x j+2 − ∇ j∇ j+1
[
σ−
j · σ +

j

]
,

while a, b2, c01, d are τ j -invariant. For the pair ( j + 1, j + 2) we similarly have

b1(τ j+1 ◦ σ) + c01(τ j ◦ σ)x j = b2(σ ) + c02(σ )x j + ∇ j+1∇ j+2
[
σ−
j+1 · σ +

j+1

]
,

b2(τ j+1 ◦ σ) + c02(τ j ◦ σ)x j = b1(σ ) + c12(σ )x j − ∇ j+1∇ j+2
[
σ−
j+1 · σ +

j+1

]
,

while a, b0, c12, d are τ j+1-invariant. Using these relations, we can evaluate all coeffi-
cients bk(τ jτ j+1τ j ◦σ) and ckl(τ jτ j+1τ j ◦σ), aswell as all coefficients bk(τ j+1τ jτ j+1◦σ)

and ckl(τ j+1τ jτ j+1◦σ). Since τ j+1τ jτ j+1 = τ jτ j+1τ j is the permutation τ j; j+2 exchang-
ing j and j + 2, these computations yield formulas of the form

b0(τ jτ j+1τ j ◦ σ) = b2(σ ) + “extra terms (a)′′,
b0(τ j+1τ jτ j+1 ◦ σ) = b2(σ ) + “extra terms (b)′′,

and similar formulas for b1, b2 and for c01, c02, c12. The compatibility conditions with
the fundamental relation in the permutation group are then that the "extra terms" of type
(a) and (b) should coincide. These conditions reduce to the following one (equivalent to
a set of two relations because it is polynomial of degree one in y)

∇ j∇ j+1
[
(τ j; j+2 ◦ σ)−j · (τ j; j+2 ◦ σ)+j

]|x j+2=y

+∇ j+1∇ j+2
[
(τ j; j+2 ◦ σ)−j+1 · (τ j; j+2 ◦ σ)+j+1

]|x j=y

= ∇ j∇ j+1
[
σ−
j · σ +

j

]|x j+2=y + ∇ j+1∇ j+2
[
σ−
j+1 · σ +

j+1

]|x j=y, (20)

with y a book-keeping variable (with x j−1 < y < x j+3). To finish the proof of the
compatibility of themoves (19),we have to show that this relation is satisfied provided the
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exchange relations for cycles with less points are fulfilled. We remark that (τ j; j+2 ◦σ)±j
is identical to σ±

j+1 up to permuting j and j + 2, since

τ j; j+2 ◦ (τ j+1σ) = τ j (τ j; j+2 ◦ σ),

because τ j; j+2τ jτ j; j+2 = τ j+1. Thus we can compare ∇ j∇ j+1
[
(τ j; j+2 ◦ σ)−j · (τ j; j+2 ◦

σ)+j

]|x j+2=y and ∇ j+1∇ j+2
[
σ−
j+1 · σ +

j+1

]|x j=y using the exchange relations (19) (applied

to σ±
j+1 depending to which component j belongs to) and write

∇ j∇ j+1
[
(τ j; j+2 ◦ σ)−j · (τ j; j+2 ◦ σ)+j

]|x j+2=y

= ∇ j+1∇ j+2
[
σ−
j+1 · σ +

j+1

]|x j=y + ∇ j∇ j+1∇ j+2[σ (0)
j; j+1 · σ

(1)
j; j+1 · σ

(2)
j; j+1],

where the three cyclesσ (α)
j; j+1, containing j+α respectively,α = 0, 1, 2, are those entering

the decomposition of the product τ j+1τ jσ . Similarly, using again (19), we have

∇ j+1∇ j+2
[
(τ j; j+2 ◦ σ)−j+1 · (τ j; j+2 ◦ σ)+j+1

]|x j=y

= ∇ j∇ j+1
[
σ−
j · σ +

j

]|x j+2=y − ∇ j∇ j+1∇ j+2[σ (0)
j; j+1 · σ

(1)
j; j+1 · σ

(2)
j; j+1].

Adding the two last equations yields (20) and hence proves the compatibility of the
moves (19), provided that the lower point correlation functions do satisfy the exchange
relations (6,7). ��
Remark. If [σ ](x) is a family of polynomials satisfying the moves (19), then adding to
them polynomials Qσ (x) invariant by simultaneous transpositions of the variables x j
and x j+1 and of their positions inside the loop provides another solution.

This follows from the fact that such polynomials Qσ (x) are solutions of the equations
(19)without the non-linear terms in the right hand side. Indeed, because they are invariant
under the simultaneous transformations σ → τ j ◦ σ , x j → x j+1, x j+1 → x j , such
polynomials can be decomposed as

Qσ (x) = a j (σ ) + b j (σ )x j + c j (σ )x j+1 + d j (σ )x j x j+1,

witha j (τ j◦σ) = a j (σ ),b j (τ j◦σ) = c j (σ ), c j (τ j◦σ) = b j (σ ), andd j (τ j◦σ) = d j (σ ).

4.2. Forward propagation. The second step consists at examining the consequences of
the boundary conditions (5) and their compatibility with the exchange relations (6,7).
Indeed, on one hand, although they allow to move within the single cycle conjugacy
classes, the exchange relations (6,7) do not fully specify the polynomials [σ ](x), as we
noted above. On the other hand, the moves (19) implied by the exchange relations (6,7)
do not preserve the boundary condition unless the polynomials [σ ](x) satisfy peculiar
conditions. The determination of the polynomials [σ ](x) will come from using the
interplay between the boundary conditions (5) and the moves (19).

The moves (19), and in particular the second relation (19b), Bj (σ ) = C j (τ j ◦ σ) +
∇ j∇ j+1

[
σ−
j · σ +

j

]
, which we rewrite as,

∇ j [σ ](x)|x j+1=0 = ∇ j+1[τ j ◦ σ ](x)|x j=0 + ∇ j∇ j+1
[
σ−
j · σ +

j

]
(x), (21)
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allow to move within the conjugacy class of single loop but also along the chain, as
it exchanges derivatives and evaluations at 0 at points x j and x j+1. The strategy to
determine the polynomials [σ ](x) will consist in moving recursively the evaluation at 0
to the point x1 where it vanishes thanks to the boundary condition.

Given a single loop σ , let us decompose [σ ](x) on the pair of the two first variables
x1 and x2 as [σ ](x) = A1(σ )+ B1(σ )x1 +C1(σ )x2 +D1(σ )x1x2, with A1, B1, C1, D1
independent of x1 and x2. The boundary [σ ](x)|x1=0 = 0 then imposes that A1 = 0 and
C1 = 0, so that

[σ ](x) = x1
(
B1(σ ) + D1(σ )x2

)
.

The move (21) then tell us that

B1(σ )(x) = ∇1[σ ](x)|x2=0 = ∇2∇1
[
σ−
1 · σ +

1

]
(x).

Note that B1(σ ) = B1(τ1 ◦σ). Thus, ∇1σ(x)|x2=0 is determined since, by the induction
hypothesis, we assumed having solved for the single loop correlation functions with
P ′ < P marked points and σ±

1 are single loops with less than P points. We can iterate
this procedure to get

Lemma 3. By iterating the move (21), for any single loop σ and for j = 1, . . . , P − 1,
we have,

(∇1 · · · ∇ j )[σ ](x)|x j+1=0

= (∇1 · · · ∇ j+1)

j∑

k=1

[
(τk+1 · · · τ j ◦ σ)−k · (τk+1 · · · τ j ◦ σ)+k

]
(x), (22)

where the last term in the sum is [σ−
j · σ +

j

]
(x) by convention. Notice that, for all k > 1,

(τk+1 · · · τ j ◦ σ)±k are loops with less than P points.

Proof. We shall prove (22) by induction. For j = 1, we already proved that

∇1[σ ](x)|x2=0 = ∇2∇1
[
σ−
1 · σ +

1

]
(x).

To understand how the induction is at work, let us now do it for j = 2. We look at the
move (21) for j = 2,

∇2[σ ](x)|x3=0 = ∇3[τ2 ◦ σ ](x)|x2=0 + (∇3∇2)
[
σ−
2 · σ +

2

]
(x).

Taking the derivative w.r.t. x1 yields,

∇2∇1[σ ](x)|x3=0 = ∇3∇1[τ2 ◦ σ ](x)|x2=0 + (∇3∇2∇1)
[
σ−
2 · σ +

2

]
(x).

Now,∇1[τ2◦σ ](x)|x2=0 has beenpreviously identified as (∇2∇1)
[
(τ2◦σ)−1 ·(τ2◦σ)+1

]
(x).

Hence we get

∇2∇1[σ ](x)|x3=0 = (∇3∇2∇1)
([(τ2 ◦ σ)−1 · (τ2 ◦ σ)+1](x) + [σ−

2 · σ +
2 ](x)

)
,

as in (22) for j = 2. For higher j , we assume (22) to be valid up j − 1 for all single
loops. We then start with (21),

∇ j [σ ](x)|x j+1=0 = ∇ j+1[τ j ◦ σ ](x)|x j=0 + ∇ j∇ j+1
[
σ−
j · σ +

j

]
(x),



Solution to the Quantum Symmetric Simple Exclusion Process 1157

and act on it with the successive derivatives ∇ j−1 · · · ∇1 to get

∇ j∇ j−1 · · · ∇1[σ ](x)|x j+1=0

= ∇ j+1∇ j−1 · · · ∇1[τ j ◦ σ ](x)|x j=0 + ∇ j+1∇ j∇ j−1 · · · ∇1
[
σ−
j · σ +

j

]
(x),

Now, by the induction hypothesis ∇ j−1 · · · ∇1[τ j ◦ σ ](x)|x j=0 is given by (22) but for
j − 1. Inserting this formula in the above equation yields (22). ��

Notice that (∇ j · · · ∇1)[σ ](x)|x j+1=0 is independent of x1, . . . , x j+1 but depends
on the other variables x j+2, . . . , xP (both sides of (22) are indeed independent of
x1, . . . , x j+1).

Remark. Since [σ ](x) are polynomials of degree at most one in each of its variables,
evaluating at the origin and taking derivatives are two basic and fundamental operations.
Knowing their actions on [σ ] determine it completely. Eq.(21) can be interpreted as a
move exchanging derivative at point x j and evaluation at x j+1 = 0 with evaluation at
x j = 0 and derivative at x j+1. In terms of the particle/hole language we eluded to in
Sect. 3.2, equation (21) codes for the moves exchanging particle and hole at nearby
positions j and j + 1. The strategy for proving (22) consists in moving the holes to
position 1 where it is annihilated.

4.3. Synthesis. The end of the proof consists now in using the formula (22) to reconstruct
the correlation functions [σ ](x). In the l.h.s. of (22) we recognize the hole coefficients
of the polynomials [σ ](x).

Recall that, according to the hole decomposition as we defined it in Sect. 3.2, the
polynomials [σ ](x) can be written as

[σ ](x) = [σ ]o1(x) +
P−1∑

j=1

x1 . . . x j [σ ]oj+1(x) + x1 . . . xP [σ ]oP+1,

where [σ ]ok+1 are the hole coefficients of [σ ] with [σ ]o1(x) := [σ ](x)|x1=0 and

[σ ]oj+1(x) := ∇ j · · · ∇1[σ ](x)|x j+1=0,

for j = 1, . . . , P−1, and [σ ]oP+1 a constant independent on all variables. These polyno-
mial coefficients [σ ]oj+1, whichwe called the hole coefficients of [σ ](x), are independent
of the first j + 1 variables x1, . . . , x j+1.

The boundary condition (5) further constraints this hole decomposition. We have
[σ ]o1(x) = 0 since [σ ](x)|x1=0 = 0 by (5). Similarly, we have [σ ]oP+1 = −[σ ]oP by
the boundary condition [σ ](x)|xP=1 = 0. This boundary condition also imposes that
[σ ]oj+1(x)|xP=1 = 0, for j = 1, . . . , P − 2.

Collecting the information about this presentation of [σ ](x), about the boundary
conditions and about the formula (22) for the hole coefficients of [σ ](x), we get

Theorem 1. Assuming the locality conjecture of Sect. 2.2 to be true, for any single loop
σ with P marked points, the solution of the stationarity conditions (4, 5, 6, 7), is given
by

[σ ](x) =
P−2∑

j=1

x1 . . . x j [σ ]oj+1(x) + x1 . . . xP−1(1 − xP ) [σ ]oP , (23)
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with [σ ]oj (x) := ∇ j · · · ∇1[σ ](x)|x j+1=0 given by, for j = 1, . . . , P − 1,

[σ ]oj+1(x) = (∇ j+1 · · · ∇1)

j∑

k=1

[
(τk+1 · · · τ j ◦ σ)−k · (τk+1 · · · τ j ◦ σ)+k

]
(x). (24)

The last term in the sum is [σ−
j · σ +

j

]
(x) by convention.

Proof. This theorem is direct consequence of the analysis of the previous Sects. 4.1
and 4.2. Of course it relies on assuming the locality conjecture. ��

A first (immediate) consequence of (23) is that the top hole coefficients are actually
independent of σ .

Corollary 1. The top hole coefficients are independent ofσ , i.e. [σ ]oP+1 = −[σ ]oP := CP
for all σ , but not on P, the number of points. They satisfy the recurrence relation

CP = −
P−1∑

n=1

CnCP−n . (25)

They are equal to the alternating Catalan numbers (up to themultiplicative factor (�n)P

which we set to 1 by convention).

Proof. This is proved by induction on P . Recall that [σ ]oP+1 = ∇P · · · ∇1[σ ]. By the
boundary conditions (5), we have [σ ]oP+1 = −[σ ]oP . The later [σ ]oP is given by formula
(24) with j = P − 1, which thus involves the derivatives with respect to all P points.
The r.h.s. of (24) then involves the derivatives of loop correlation functions w.r.t. all
their points. These derivatives are thus independent of the loop (but not of the number
of points) by the induction hypothesis. Hence, [σ ]oP+1 is independent of the labeled loop
σ and satisfy the recurrence relation (25). ��

The above recurrence relation is solved by introducing a generating function:

c(z) :=
∑

N≥0

zN CN+1 = C1 + z C2 + · · · (26)

Eq.(25) then reads zc(z)2 + c(z) −C1 = 0. Recall that C1 = ∇1[(1)] = �n and that we
choose to set �n = 1, so that (25) becomes zc(z)2 + c(z) − 1 = 0. Hence,

c(z) :=
√
1 + 4z − 1

2z
= 1 − z + 2z2 − 5z3 + 14z4 + · · ·

is the solution of zc2 + c − 1 = 0 that is non-singular at 0, which is known to be the
generating function for (alternating sign) Catalan numbers.

Remark. What has been (really) proved in the above theorem is that (23) is the only
possible solution assuming the locality property. The conditions (i) and (ii), and in
particular the boundary conditions, are satisfied by construction. Formula (22) on which
equation (23) is based is extracted by taking derivatives of the exchange relations (iii),
and it is therefore a priori not equivalent to it, although it may be a posteriori (and it is
conjecturally equivalent to it).We have checked directly on various exemples that indeed
(23) is a solution of all exchange relations (6,7), thus checking the locality conjecture in
few cases. See below Sect. 4.4 and Appendix 8.1.
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4.4. Exemples. Let us compute the first few loop correlation functions. Since these
correlation functions are invariant by reversing the loop orientation, there are (P−1)!/2
inequivalent loop correlation functions with P marked points.

By construction, for P = 1, we have ∇1[(1)] = (�n) with �n = 1 by convention.
For P = 2, the only single loop corresponds to the permutation τ1 = (12) of the two

points. We have [(12)](x1, x2)] = (�n)2 x1(1 − x2).
For P = 3, there is only one independent loop configuration. It is the cyclic per-

mutation of (123). As in (23), we decompose [(123)](x) as (with coj := [σ ]oj+1 for
σ = (123))

[(123)](x1, x2, x3) = x1c
o
1 + x1x2(1 − x3)c

o
2,

with

co1 = ∇1∇2[(1)][(23)] = (�n)3(1 − x3),

co2 = ∇1∇2∇3
([(3)][(12)] + [(1)][(23)]) = (�n)3(−2).

Thus we get
[(123)](x1, x2, x3) = (�n)3 x1(1 − 2x2)(1 − x3), (27)

as expected (see [23]).
For P = 4, there are three independent loop configurations corresponding to the

three permutations (1234), (1324) and (1342). Let us compute them using (23). For
(1234), we write (with coj := [σ ]oj+1 for σ = (1234))

[(1234)](x) = x1c
o
1 + x1x2c

o
2 + x1x2x3(1 − x4)c

o
3,

with

co1 = ∇1∇2[(1)][(234)] = (�n)4(1 − 2x3)(1 − x4),

co2 = ∇1∇2∇3
([(2)][(134)] + [(24)][(13)]) = (�n)4(−3)(1 − x4),

co3 = ∇1∇2∇3∇4
([(134)][(2)] + [(24)][(13)] + [(3)][(124)]) = (�n)4(+5).

Thus we get

[(1234)](x1, x2, x3, x4) = (�n)4 x1(1 − 3x2 − 2x3 + 5x2x3)(1 − x4). (28)

For (1324), we write (with coj := [σ ]oj+1 for σ = (1324))

[(1324)](x) = x1c
o
1 + x1x2c

o
2 + x1x2x3(1 − x4)c

o
3,

with

co1 = ∇1∇2[(14)][(23)] = (�n)4(1 − x3)(1 − x4),

co2 = ∇1∇2∇3
([(3)][(124)] + [(2)][(134)]) = (�n)4(−4)(1 − x4),

co3 = ∇1∇2∇3∇4
([(143)][(2)] + [(2)][(143)] + [(32)][(14)]) = (�n)4(+5).

Thus we get

[(1324)](x1, x2, x3, x4) = (�n)4 x1(1 − 4x2 − x3 + 5x2x3)(1 − x4). (29)
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For (1342), we write (with coj := [σ ]oj+1 for σ = (1342))

[(1342)](x) = x1c
o
1 + x1x2c

o
2 + x1x2x3(1 − x4)c

o
3,

with

co1 = ∇1∇2[(1)][(234)] = (�n)4(1 − 2x3)(1 − x4),

co2 = ∇1∇2∇3
([(21)][(34)] + [(2)][(134)]) = (�n)4(−3)(1 − x4),

co3 = ∇1∇2∇3∇4
([(14)][(23)] + [(142)][(3)] + [(3)][(142)]) = (�n)4(+5).

Thus we get

[(1342)](x1, x2, x3, x4) = (�n)4 x1(1 − 3x2 − 2x3 + 5x2x3)(1 − x4). (30)

For P = 5, there are 4!/2 = 12 independent loop configurations. We compute the
correlation function for the circular cyclic permutation (12345) using (23) – see below
– and checked the exchange relation (19) for it. We have

[(12345)](x) = (�n)4 x1(1−4x2−3x3−2x4+9x2x3+7x2x4+5x3x4−14x2x3x4)(1−x5)
(31)

It is easy to checked that it satisfies the reversing symmetry x → xrev = 1− x. Eqs.(19)
for the pair (1; 2) is satisfied by construction, eqs.(19) for the pairs (4; 5) and (3; 4) are
respectively equivalent to those for the pairs (1; 2) and (2; 3), by the reversing symmetry.
Thus we only have to check (19) for the pair (2; 3) for P = 5. Using (23), we get

[(13245)](x) = (�n)4 x1(1−6x2−x3−2x4+9x2x3+10x2x4+2x3x4−14x2x3x4)(1−x5).
(32)

It is then easy to verify that (19) are indeed fulfilled.

Remark. Quite generally, if the exchange relations (19) hold, then

[τ1 ◦ σ ](x) = [σ ](x),

for any loop σ . Indeed, using the boundary condition at x1 = 0 for both [τ1 ◦ σ ] and
[σ ], and the moves (19), we have A1(τ1 ◦ σ) = A1(σ ) = 0, C1(τ1 ◦ σ) = C1(σ ) = 0,
as well as B1(τ1 ◦ σ) = ∇1∇2[σ−

1 · σ +
1 ] = B1(σ ) and D1(τ1 ◦ σ) = D1(σ ). Hence

[τ1 ◦ σ ] = [σ ].

5. The Regular Loop

A special role is played by the circular cyclic permutation (123 . . . P), which we denote
as ωP . For this permutation, the orders along the chain and along the loop coincide.
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5.1. Recurrence relations. We are interested in the regular loop expectation values
[ωP ](x). For 0 ≤ k ≤ P , let us define multiple derivatives as in Sect. 3.2

Dk|P−k(x≥k+1) := ∇k · · · ∇1[ωP ](x), (33)

which depend on the P − k variables x≥k+1 := (xk+1, . . . , xP ). In particular, D0|P :=
[ωP ] and DP|0 = CP is independent on all variables and equal to the alternating Catalan
numbers as defined in (26). We have

Lemma 4. The hole coefficients of the regular loops [ωP ] with P points are given by

[ωP ]oj+1 =
j∑

n=1

Dn|0Dj+1−n|P− j−1(x≥ j+2) (34)

or alternatively, the regular loop correlation functions are:

[ωP ](x) =
P−2∑

j=1

x1 . . . x j

j∑

n=1

Dn|0Dj+1−n|P− j−1(x≥ j+2)

+x1 . . . xP−1(1 − xP )

P−1∑

n=1

Dn|0DP−n|0. (35)

This yields recurrence relations for the multiple derivatives Dk|P−k and the hole coeffi-
cients of [ωP ](x).

Proof. The proof relies on the fact that cutting the loop ωP = (12 . . . P) according
to the formula (23,24) produces smaller loops which also preserve the ordering of the
points. Let us do it progressively. First, we have:

(ωP )−j : ( j),

(ωP )+j : (12 . . . , j − 1, j + 1, . . . P).

Let us now look at the permutation τk+1 · · · τ j ◦ ωP entering (24). By adjoint action the
product τk+1 · · · τ j amounts to slide the point k +1 along the loop so that τk+1 · · · τ j ◦ωP
is the following cycle:

(12 . . . k, k + 2, k + 3, . . . , j + 1, k + 1, j + 2 . . . P).

By breaking it at the pair (k; k + 1) according to formula (24), we get the following
smaller loops

(τk+1 · · · τ j ◦ ωP )−k : (k, k + 2, k + 3, . . . , j + 1),

(τk+1 · · · τ j ◦ ωP )+k : (12 . . . , k − 1, k + 1, j + 2, . . . P).

In both of these loops, the order along the loop coincides with that along the chain
(even if the labelling is not regular). Hence, the formula (24) only involves correlation
functions of well ordered loops, of different sizes, for which the order along the loop
and along the chain coincide. Applying formula (23,24) gives (35). ��
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Another way of writing equation (35) is (by renaming the indices)

[ωP ](x) =
P−2∑

n=1

Cn

P−n−1∑

k=1

x1 . . . xn+k−1Dk|P−n−k(x≥k+n+1)

−x1 . . . xP−1(1 − xP )CP . (36)

where we used that Dn|0 = Cn and
∑P−1

n=1 CnCP−n = −CP (which can be again
checked from (35)). Notice that the terms factorizingCn at n fixed all involve loops with
P − n points and their multiple derivatives.

5.2. Generating functions. The previous recursive construction of the regular loop cor-
relation functions may be compactly written using generating functions carrying the
same information as [ωP ] and generalizing the observation that the top hole coefficients
CP are alternating Catalan numbers.

Because the previous construction involves strings of derivatives w.r.t. x1, . . . , xP
and thus involves functions which depend on the remaining variables attached to the
right end of the chain interval, let us first rename the variables and set

xk =: yP−k, for k = 1, . . . P. (37)

That is: xP = y0, xP−1 = y1, and so on.
Let us also rename the multiple derivatives and the hole coefficients of the regular

loop expectation values asCP;k := DP−k|k(x≥P−k+1) and SP;k := [ωP ]oP−k(x≥P−k+1),
and define generating functions Ck(z) and Ok(z) for them by

Ck(z) =
∑

N≥0

CN+k+1;k zN , with CN+k+1;k := DN+1|k, (38a)

Ok(z) =
∑

N≥0

SN+k+2;k zN , with SN+k+2;k := [ωN+k+2]oN+2, (38b)

for k ≥ 0. These functions depend on the k variables (yk−1, . . . , y1, y0), i.e. on the last
k positions. Notice that CN ;0 = CN , the alternating Catalan numbers. We have

Proposition 1. The relations (35) for the regular loop expectation values are equivalent
to

Ck+1(z) = Ok(z) + ykz
−1(Ck(z) − Ck(0)

)
, (39a)

Ok(z) = c(z)Ck(z), (39b)

for k ≥ 0 with the initial condition C0(z) = c(z). These equations are equivalent to (10).

Proof. Using yk = xP−k , the general relation (18) between multiple derivatives and
hole coefficients (for [ωP ] the regular loop correlation function) translates into,

CP,k = SP;k−1 + yk−1CP;k−1,

for k ≥ 1. Similarly, the recurrence relation (34) for the hole coefficients of the regular
loop correlation function translates into

SP;k =
P−k−1∑

n=1

CnCP−n;k,
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for P − 2 ≥ k ≥ 0. Using Ck+1;k = Ck(0), these equations are easily shown to be
equivalent to (39). ��

Equation (39) provide recurrence relations to determine the regular loop expectation
values, and their derivatives and hole coefficients. It starts with C0(z) = c(z). Eq.(39a)
gives O0(z) = c(z)2 = z−1(1 − c(z)), then eq.(39a) yields C1(z) = c(z)2(1 − y0),
similarly C2(z) = (

c(z)3 + y1z−1(c(z)2 − 1)
)
(1 − y0), etc. Notice that, by induction,

(1 − y0) always factorizes in Ck(z), as it should.
Furthermore, there is a remarkable stabilization phenomena which ensures that there

exists a single formal power series of an infinite number of variables coding for the
regular loop expectation values for each P ≥ 2.

Theorem 2. There exists a single formal power series Dω(y0, y1, . . .) of an infinite
number of variables such that, for each P ≥ 2,

[ωP ](x) = x1 Dω(xP , xP−1, . . . , x2, 0, 0, . . .). (40)

That is, [ωP ] is obtained by putting all variables y j with j ≥ P to zero and otherwise
by setting yk = xP−k , for k = 0, . . . , P − 1.

Proof. The relation (39b) implies that Sk+2;k = Ck+1;k , with the convention �n = 1
(a relation which also follows from (34) without appealing to generating functions).
Observe then that Ck+1;k = ∇1[ωk+1] and [ωk+1] = x1∇1[ωk+1] so that [ωk+1] =
x1Ck+1;k . Observe also that Sk+2;k is the first hole coefficient of [ωk+2] so that Sk+2;k =
∇1[ωk+2]|x2=0, that is Sk+2;k = Ck+2;k+1|yk=0. Thus, we have the claimed stabilisation
phenomena,

Ck+1;k = Ck+2;k+1|yk=0.

Since Ck+1;k = Ck(0) we can alternatively write

[ωk+1] = x1 Ck(0)(y0, . . . , yk−1)

= x1 Ck+1(0)(y0, . . . , yk−1, yk = 0).

By iterating at infinitum, we infer that there exists a function Dω depending an infinite
number of variables y0, y1, . . . such that (40) holds. ��

The recurrence relations (39) can be translated into equations for Dω, adding recur-
sively one y-variable at a time, starting from Dω(0, 0, . . .) = 1.

As an illustration, keeping only the 5 first variables, one finds

Dω(y0, y1, y2, y3, y4, 0, . . .) = (
42 y1 y2 y3 y4 − 28 y2 y3 y4 − 23 y1 y3 y4 + 14 y3 y4

−19 y1 y2 y4 + 12 y2 y4 + 9 y1 y4 − 5 y4 − 14 y1 y2 y3
+9 y2 y3 + 7 y1 y3 − 4 y3 + 5 y1 y2
−3 y2 − 2 y1 + 1

)
(1 − y0).

One may also check that setting y4 = 0 reproduces (31) as the stabilisation phenomena
requires.
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Remark. Surprisingly [38], the expectation values [ωn+1](x) connect to objects in dis-
crete and computational geometry, and in particular to the so-called associahedron, also
called Stasheff polytopes [28]. Let us specialize [ωn+1](x) to x j = −t , for all j . It can
then be written as

[ωn+1](x)|x j=−t = −t 
n(t) (1 + t),

with 
(t) a polynomial of degree n − 1 and positive integer coefficients. For instance,


2(t) = 1 + 2t,


3(t) = 1 + 5t + 5t2,


4(t) = 1 + 9t + 21t2 + 14t3,


5(t) = 1 + 14t + 56t2 + 84t3 + 42t4. (41)

These polynomials count the (n − k) dimensional faces in the associahedron of order
n [28]. This coincidence actually extends to any loop expectation values as they are all
equal once specialized to x j = −t , for all j , thanks to the continuity condition (6).We do
not have a good understanding of this connection except that both structures are related
to the moduli spaces of configurations of particles on the line. Anyway, it is remarkable
that the loop expectation values are polynomials with integer coefficients (of alternating
signs).

6. Simple Deformations of the Regular Loop

We now look at the action of the transposition τn , exchanging n and n+1, on the circular
cyclic permutation ωP and its correlation functions. To first deal with this peculiar
deformation before the cases of general deformations will allow to reveal the structures
we expect to be valid in general. We have τn ◦ ωP = (1, 2, . . . , n − 1, n + 1, n, n +
2, . . . , P).

6.1. Transpositions on the regular loop. We look at the expectation values [τn ◦ωP ](x).
As above, we introduce a notation for its multiple derivatives and hole coefficients.
Generalising the definition of previous Section, we set

D(n)
k|P−k(x≥k+1) := ∇k · · · ∇1[τn ◦ ωP ](x). (42)

In particular, D(n)
0|P := [τn ◦ ωP ] and D(n)

P|0 = CP independently of n and equal to
the alternating Catalan numbers defined in (26). Recall also the definition of the hole
coefficients,

[τn ◦ ωP ]ok+1(x≥k+2) := ∇k · · · ∇1[τn ◦ ωP ](x)|xk+1=0, (43)

as well as the relation (18) between the multiple derivatives and the hole coefficients.
We have

Lemma 5. The hole coefficients of [τn ◦ ωP ] satisfy the following recurrence relations,
with j ≥ n + 1 in the first line, and 1 ≤ j ≤ n − 2 in the last line :

[τn ◦ ωP ]oj+1 =
n∑

k=1

D(n−k+1)
j+1−k|0Dk|P− j−1(x≥ j+2) +

j∑

k=n+1

Dj+1−k|0D(n)
k|P− j−1(x≥ j+2),

(44a)
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[τn ◦ ωP ]on+1 =
n−1∑

k=1

Dn−k|0Dk+1|P−n−1(x≥n+2) + D1|0Dn|P−n−1(x≥n+2), (44b)

[τn ◦ ωP ]on =
n−1∑

k=1

Dn−k|1(xn+1)Dk|P−n−1(x≥n+2), (44c)

[τn ◦ ωP ]oj+1 =
j∑

k=1

Dj+1−k|0D(n+k− j−1)
k|P− j−1 (x≥ j+2). (44d)

with x≥ j := (x j , . . . , xP ). Recall that D(m)
j |0 = C j for all m, j .

Proof. Thanks to (24), we have to look at all sub-loops (τk+1 · · · τ j ◦ (τn ◦ ωP ))±k , for
j = 1, . . . , P − 1 and k = 1, . . . , j . Let us introduce a notation:

ωn
k; j |P := τk+1 · · · τ j ◦ (τn ◦ ωP )

Let us prove it by inspection, on a case by case basis (this is not the simplest proof but
it allows to learn how to deal with (24), and this will be useful when dealing with the
general case). We shall use repeatedly the fact that τk+1 · · · τ j is the cyclic permutation
(k + 1, k + 2, . . . , j + 1).
- For j ≥ n+3,we have (τn◦ωP )−j = ( j) and (τn◦ωP )+j = τn◦(1 . . . , j−1, j+1, . . . P).
Then, by induction, one easily proves that, for k ≥ n + 2,

(ωn
k; j |P )−k = (k, k + 2, . . . , j + 1),

(ωn
k; j |P )+k = τn ◦ (1 . . . , k − 1, k + 1, j + 2, . . . P).

For j ≥ n + 3 and k = n + 1, one has (ωn
k; j |P )−n+1 = (n + 1, n, n + 3, . . . , j + 1) and

(ωn
k; j |P )+n+1 = (1 . . . , n − 1, n + 2, j + 2, . . . P). For j ≥ n + 3 and k = n, one has

(ωn
k; j |P )−n = (n, n+3, . . . , j +1) and (ωn

k; j |P )+n = (1 . . . , n−1, n+2, n+1, j +2, . . . P).
For j ≥ n + 3 and k ≤ n − 1, one find

(ωn
k; j |P )−k = (k, k + 2, . . . , n, n + 2, n + 1, n + 3, . . . , j + 1),

(ωn
k; j |P )+k = (1 . . . , k − 1, k + 1, j + 2, . . . P).

- For j = n + 2, we have (τn ◦ ωP )−n+2 = (n + 2) and (τn ◦ ωP )+n+2 = τn ◦ (1, . . . , n +
1, n + 3, . . . P). For j = n + 2 and k = n + 1, we have (ωn

k; j |P)−n+1 = (n + 1, n, n + 3)
and (ωn

k; j |P)+n+1 = (1, . . . , n − 1, n + 2, n + 4, . . . P). By induction, one proves that for
j = n + 2 and k ≤ n − 1,

(ωn
k; j |P )−k = (k, k + 2, . . . , n, n + 2, n + 1, n + 3),

(ωn
k; j |P )+k = (1 . . . , k − 1, k + 1, n + 4, . . . P).

- The cases with j = n + 1 yields similar results and we leave it to the reader.
- For j = n, we have (τn◦ωP )−n = (1, . . . , n−1, n, n+2, . . . P) and (τn◦ωP )+n = (n+1).
For j = n and k = n−1, we have (ωn

k; j |P )−n−1 = (n−1) and (ωn
k; j |P )+n−1 = (1, . . . , n−

2, n, n + 1 . . . P). then, by induction, for j = n and k ≤ n − 2

(ωn
k; j |P )−k = (k, k + 2, . . . , n − 1, n),
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(ωn
k; j |P )+k = (1 . . . , k − 1, k + 1, n + 1, n + 2 . . . P).

- For j = n − 1 and k ≤ n − 1, we have

(ωn
k; j |P )−k = (k, k + 2, . . . , n + 1),

(ωn
k; j |P )+k = (1 . . . , k − 1, k + 1, n + 2 . . . P).

- Finally, the cases j ≤ n − 2 are simple because the decomposition of the loop does
not touch the pair (n, n + 1) on which the transposition is acting. We get

(ωn
k; j |P )−k = (k, k + 2, . . . , j + 1),

(ωn
k; j |P)+k = (1 . . . , k − 1, k + 1, j + 2 . . . P).

Using these decompositions in (24) and taking the derivatives ∇1 · · · ∇ j+1 yields (44).
��

The twomiddle equations (44b,44c) involve hole coefficients with indices in the zone
where the transposition is acting and, as a consequence, they are structurally different
from equations (34) for the hole coefficients of the regular loop. The two other equations
(44a,44d) involve hole coefficients away from the zone where the transposition is acting
and are structurally similar to (34). As a consequence

Corollary 2. We have:

(i) D(n)
P−k|k = DP−k|k independently of n for P ≥ P − k ≥ n + 1.

(ii) The pair [ωP ] and [τn ◦ ωP ] satisfy the exchange relation (19).

Proof. (i) The proof is by induction as above. Recall the relation (18) between multiple
derivatives and hole coefficients which in the present case reads

D(n)
k|P−k = [τn ◦ ωP ]ok+1 + xk+1D

(n)
k+1|P−k−1. (45)

Recall that [τn ◦ ωP ]oP+1 = −[τn ◦ ωP ]oP are independent of n and that D(n)
j |0 = C j , for

all n, j ≥ 1. Using this fact, (44a) can be simplified into

[τn ◦ ωP ]oj+1 =
n∑

l=1

C j+1−l Dl|P− j−1 +
j∑

l=n+1

C j+1−l D
(n)
l|P− j−1.

For j = P − 1, this equation only involves factors D(n)
k|P− j−1 = D(n)

k|0 = Ck . Hence

[τn ◦ ωP ]oP = [ωP ]oP independently of n and, from (45), D(n)
P−1|1 is independent of n.

The proof now is by induction on k. Assume that D(n)
P−l|l = DP−l|l holds for l up to k

for 0 ≤ k ≤ P − n − 2 for all P ≥ n + 1. Write (44a) for j = P − k to get

[τn ◦ ωP ]oP−k+1 =
n∑

l=1

C j+1−l Dl|k−1 +
P−k∑

l=n+1

C j+1−l D
(n)
l|k−1.

By the induction hypothesis D(n)
l|k−1 = Dl|k−1 for l ≤ P−k and hence [τn ◦ωP ]oP−k+1 =

[ωP ]oP−k+1 and thus D
(n)
P−k|k = DP−k|k from (45). The induction stops at P −k = n +1.

(ii) The proof is given in Appendix 8.1. ��
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The fact that the pair [ωP ] and [τn ◦ωP ] satisfies the exchange relation (19) provides
an independent check of the locality conjecture.

Remark. From (44) with n = 1 one can check that [τ1 ◦ ωP ] = [ωP ] as expected. See
the remark at the end of Sect. 4.4.

6.2. Generating functions for transpositiondeformations. Generating functions for these
deformations have to include summations over the location of the deformation. Thus
let us again renamed the coefficients (42,43) by setting C (n)

P;k := D(n)
P−k|k(x≥P−k+1) and

S(n)
P;k := [τn ◦ ωP ]oP−k(x≥P−k+1). Let us now introduce generating functions for these

deformed loops defined by, for k ≥ 0, q ≥ 0,

D(q)
k (z) :=

∑

N≥0

C (q+N )

N+k+1;k z
N , with C (q+N )

N+k+1;k := D(q+N )
N+1|k , (46a)

S(q)
k (z) :=

∑

N≥0

S(q+N+1)
N+k+2;k z

N with S(q+N+1)
N+k+2;k := [τq+N+1 ◦ ωN+k+2]oN+2. (46b)

These generating functions include sums over the number of points. They depend on
the k variables (yk−1, . . . , y1, y0), i.e. on the last k positions, which we call the floating
variables. Recall that we set yk = xP−k with P the number of points. For D(q)

k (z) the
number of points is N + k + 1, the derivatives act on the first N + 1 points, there are k
floating variables. The deformation is located at (q + N ; q + N + 1) so that it is inside
the ‘floating variable zone’ for q ≥ 2. For S(q)

k (z), the number of points are N + k + 2
and there are k floating variables. In both cases, q parametrizes the distance between the
deformation and the boundary between the two zones (independently of the total number
of points). Hence this generating functions involve summing over different locations of
the deformation.

We shall look at (44) in reverse order.

Proposition 2. We have:

(i) The generating functions D(q)
k (z) and S(q)

k (z) are related by

D(q+1)
k+1 (z) = S(q)

k (z) + ykz
−1(D(q)

k (z) − D(q)
k (0)

)
, (47)

for k ≥ 0 and all q ≥ 0.
(ii) Equation (44) are equivalent to

S(q)
k+2(z) = c(z)D(q)

k+2(z), for q ≥ 2, (48a)

S(1)
k+1(z) = C1(z) Ck(z), for q = 1, (48b)

S(0)
k (z) = c(z)

(Ck(z) − Ck(0)
)
+ c(0) Ck(z), for q = 0, (48c)

D(0)
k (z) = Ck(z), for q = 0. (48d)

In (48b), the floating variable in C1(z) is yk . Recall that c(0) = 1 (by convention
�n = 1).
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Proof. (i) Eq.(47) is a direct consequence of the relation D(n)
j |P− j = [σ (n)

P ]oj+1 +

x j+1D
(n)
j+1|P− j−1 which is equivalent to C (n)

P;k+1 = S(n)
P;k + ykC

(n)
P;k .

(ii) By checking (carefully) that the generating functions reproduce the correct equations.
Eq.(44d) codes for the cases for which the deformation is inside the ‘floating variable
zone’. Eqs.(44b,44c) involve quantities at the location of the deformation.
Eqs. (44a) implies that D(n)

P−k|k = DP−k|k for 0 ≤ k ≤ P − n − 1 which is equivalent

to D(n)
N+1|k = DN+1|k for N ≥ n, that is D(0)

k (z) = Ck(z). ��

Let us discuss a bit how to solve these equations recursively. First notice thatD(q)
k (0) =

D(q)
1|k = C (q)

k+1;k , which is the derivative w.r.t. x1 of the deformed loop. Thus

[τq ◦ ck+1](x1, . . . , xk+1) = x1D(q)
k (0)(y0, . . . , yk−1), with x j = yk+1− j . (49)

Hence, to determine the correlation functions of the deformed loops τn ◦ ωP we have to
solve forD(q)

k (0), for q ≥ 1. This is done by iterating (47) and (48a), using (48b,48c,48d)
as initial conditions.At this stage,we assume the functionsCk(z), associated to the regular
loop, to be known from (39).

Indeed, from (48d), we have D(0)
k (z) = Ck(z) and from (48c) we know S(0)

k (z).

Applying (47), we then get to know D(1)
k (z) via

D(1)
k+1(z) = (

yk + zc(z)
)Ck(z) − Ck(0)

z
+ c(0)Ck(z).

Then, from (48b) we have a formula for S(1)
k (z), and applying again (47), we know

D(2)
k (z) via

D(2)
k+1(z) = yk

(
yk−1

Ck−1(z) − Ck−1(0) − zC′
k−1(0)

z2
+ 2c(z)

Ck−1(z) − Ck−1(0)

z

+c(0)(Ck−1(z) − Ck−1(0))
)
+ C1(z) Ck−1(z).

We can propagate the induction by alternating recursively the two equations (47) and
(48a). Indeed, given D(2)

k (z), we get S(2)
k (z) = c(z)D(2)

k (z) by (48a), then (47) yields

D(3)
k (z), etc...
As a check we can verify that deforming by τ1 = (12) has no effect. Indeed, from the

formula above, we have D(1)
k+1(0) = ykC′

k(0) + c(0)Ck(0). On the other hand, we know
that Ck+1(z) = yk(Ck(z)−Ck(0))z−1 + c(0)Ck(z), hence Ck+1(0) = ykC′

k(0)+ c(0)Ck(0),
and D(1)

k+1(0) = Ck+1(0) as expected.
Similarly, we note thatD(2)

k+1(0) = yk
( 1
2 yk−1C′′

k−1(0)+2c(0)C′
k−1(0)

)
+C1(0)Ck−1(0),

that is:

[τ2 ◦ ck+2](x) = yk+1
(
yk

(1
2
yk−1C′′

k−1(0) + 2c(0)C′
k−1(0)

)
+ C1(0)Ck−1(0)

)
,

with yl = xk−l+2 and Ck−1 depends on (y0, . . . , yk−2) and C1 on yk−1.
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We can check it for k = 3 and q = 2 (which we computed before in (32)). We have
C0(z) = c(z), C1(z) = c(z)2(1 − y0), C2(z) = (

c(z)3 + y1z−1(c(z)2 − 1)
)
(1 − y0) with

c(z) = 1 − z + 2z2 − 5z3 + · · · . Hence we have
C2(0) = (1 − 2 y1)(1 − y0),

C′
2(0) = (−3 + 5 y1)(1 − y0),

C′′
2 (0) = 2(9 − 14 y1)(1 − y0),

and thus

[(13245)] = y4
(
1 − 2y1 − y2 − 6y3 + 2y1y2 + 10y1y3 + 9y2y3 − 14y1y2y3

)
(1 − y0),

which coincides with (32) once the substitution yl = x5−l has been done.

7. General Deformations of the Regular Loop

We now look at expectation values of generic labeled loops. These loops are in the orbit
of the regular loop under the action of the permutation group because they are in one-
to-one correspondence with single cycle permutations which form a conjugacy class of
the permutation group. Hence any generic labeled loops is the image of the regular loop
by the adjoint action of the permutation, say μn , on the regular cyclic permutation. We
call this permutation μn the deformation.

From the analysis of the transposition deformation done in previous Sect. 6, the
strategy to deal with generic deformations of the regular loop is clear:

(a) Away from the support of the deformation towards the right boundary (i.e. on the
x = 1 side), the multiple derivatives and hole coefficients of the correlation functions
are undeformed and identical to those of the regular loop, their generating functions
are simply expressed in terms of the functions Ck(z) of the regular loop;

(b) Outside the support of the deformation but toward the left boundary (i.e. on the x = 0
side), the generating functions the multiple derivatives and hole coefficients will be
coupled as above and recurrence relations of the form (39), or (47,48a), can be applied
once the initial condition is known.

(c) This initial condition is obtained by propagating the multiple derivatives and hole
coefficients generating functions through the deformation (starting from the unde-
formed side).

Of course, the difficulty resides in the last step which codes for the peculiarities of each
deformation. As above, the construction relies on an interplay between multiple deriva-
tives and hole coefficients and on using the formulas (23,24) relating hole coefficients
and multiple derivatives of smaller loops. These relations can be summarized into gen-
erating functions which encoded for both the profile of the deformation and its location
along the chain interval.

7.1. Preliminaries. Given a permutation in SP and its associated deformation of the
regular loop, we define its support as the smallest interval such that the permutation acts
trivially as the identity on its complement. Because it acts bijectively on its support, a
permutation of support of size |μ| can be viewed as an element ofS|μ|. Givenμ ∈ S|μ| we
defineμn as the permutation having the same profile asμ butwith support [n, |μ|+n−1],
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so that the associated deformation of the regular μn ◦ ωP is the following single cycle
permutation

1 → 2 → · · · → n − 1 → μn(n) → μn(n + 1) · · · → μn(n + |μ| − 1) → n + |μ| → · · · → P,

or equivalently,

(12 . . . , n − 1, μn(n), μn(n + 1), . . . , μn(n + |μ| − 1), n + |μ|, . . . , P).

Theμq ’s are translation versions of each other such thatμn( j)+n′−n = μn′( j +n′−n).
In particular, μn( j + n − 1) = μ( j) + n − 1 for j = 1, . . . , |μ|.

To describe below the recurrence relations between the multiple derivatives and the
hole coefficients of the loop expectation values within the support of their deforma-
tion we have to introduce some notations. (The main difficulty is to introduce a good
enough notation). We shall define different truncations of a deformation which we call
extractions.

Let μ ∈ S|μ| be a deformation of length |μ| and μn its translation. Let m and M in
[1, |μ|] be two integers ordered according to μ, ie. along the cycle associated to μ, that
is such that 1 ≤ μ−1(m) < μ−1(M) ≤ |μ|.
– We define μ(m,M) the truncation of μ between m and M as the restriction of μ on the
interval between μ−1(m) (included) to μ−1(M) − 1 (included). I.e. μ(m,M) is the map
(the map is read from the top line to the bottom line)

μ(m,M) :=
(

μ−1(m) μ−1(m) + 1 · · · μ−1(M) − 1
m μ(μ−1(m) + 1) · · · μ(μ−1(M) − 1)

)

Its support has length |μ(m,M)| := μ−1(M) − μ−1(m). The map μ(m,M) are bijections
but between different spaces as their image spaces are in general not the ordered integer
numbers between μ−1(m) and μ−1(M) − 1. However, what matters is not the exact
labeling of the points in the image space but their ordering. Since there is a unique map
between the set of images of μ(m,M) and [1, |μm)(M |] preserving the order, we may
identify the truncation μ(m,M) with a deformation in S|μ(m,M)|.
–Wedefine the complementary truncationμm)(M has the restrictionofμon [1, μ−1(m)−
1] ∪ [μ−1(M), |μ|]. Ie. μm)(M is the map

μm)(M :=
(

1 · · · μ−1(m) − 1 μ−1(M) · · · |μ|
μ(1) · · · μ(μ−1(m) − 1) M · · · μ(|μ|)

)

Its length is |μ| +μ−1(m) − μ−1(M) =: |μm)(M |. Of course |μ| = |μm)(M | + |μm)(M |.
Similarly, it can be identified as a deformation in S|μm)(M |.
– We extend this definition for non ordered pair of numbers m and M (choosing the
obvious definition) by exchanging the role of m and M depending whether μ−1(m) <

μ−1(M) or μ−1(M) < μ−1(m). We set

μ[m,M] := μ(m,M), μm][M := μm)(M , if μ−1(m) < μ−1(M),

μ[m,M] := μ(M,m), μm][M := μM)(m, if μ−1(M) < μ−1(m).

By construction, μ[m,M] and μm][M are complementary in μ.
– We define μm], with length |μm]| := μ−1(m) − 1, by

μm] :=
(

1 · · · μ−1(m) − 1
μ(1) · · · μ(μ−1(m) − 1)

)
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and μ[M :, with length |μ[M | := |μ| − μ−1(M), by

μ[M :=
(

μ−1(M) + 1 · · · |μ|
μ(μ−1(M) + 1) · · · μ(|μ|)

)

The two extractions μ[M and μM] are not complementary in μ since the point M is
missing in the union of their images.
– For 1 ≤ � ≤ M , let ω�

M be the cyclic permutation ω�
M := (�, � + 1, . . . , M). In

particular ω1
M = ωM in the cyclic permutation of the M first integers. We define the

following composition

μM]
� := ω1

M μM] , μ[M
� := ω1

M μ[M ,

μ[m,M]
� := ωm+1

M μ[m,M] , μm][M
� := ωm+1

M μm][M .

We used the implicit convention that ω�
M acts trivially as the identity on all integers not

in {�, � + 1, . . . , M}.
Given these extractions of the deformation, we define the number of points, greater

than M , which are in the support of their images. Namely, we set

k[m,M] = #{ j ∈ [M + 1, |μ|] s.t. j ∈ Imμ[m,M]
� }

kM] = #{ j ∈ [M + 1, |μ|] s.t. j ∈ ImμM]
� }

7.2. Recurrence relations. We aim at computing [μn ◦ωP ] for any deformation μn and
any number of points P > |μn|. As before we define multiple derivatives and hole
coefficients but adapting the notation such that it is directly suitable for the generating
functions:

Cμn
N+k+1;k := ∇1 · · · ∇N+1[μn ◦ ωN+k+1], (50a)

Sμn
N+k+2;k := ∇1 · · · ∇N+1[μn ◦ ωN+k+2]|xN+2=0, (50b)

with N + k + 1 points in total for Cμn
N+k+1;k and N + k + 2 points for Sμn

N+k+2;k . In both
cases there are k floating variables (yk−1, . . . , y0) where we set yl = xP−l as before.
We recall the relation (24) between the hole coefficients and the multiple derivatives

Sμn
N+k+2;k = ∇N+2 · · · ∇1

N+1∑

l=1

[
(τl+1 · · · τN+1 ◦ μ̂n)

−
l (τl+1 · · · τN+1 ◦ μ̂n)

+
l

]
, (51)

with μ̂n := μn ◦ ωN+k+1. We will proceed by induction on N to find the coefficients
(50a), (50b). To compute (51), one has to go through a case by case inspection of the
different possible configurations, depending on the interplays between the support of
the deformation μ, that of the permutations τl+1 · · · τN+1, and that of the derivatives
∇1 · · · ∇N+2. The different cases are labelled from I to VI and are summed up in Fig. 3.
To make all notations clear, specific examples of the different situations are presented
in the Appendix 8.2 as well.

Away from the deformation, we have the simple relations.

Lemma 6. We have:
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Fig. 3. The different possible configurations depending on how the support of the derivatives, the deformations
and the permutations overlap with each other

(i) for N ≤ n − 3,

Sμn
N+k+2;k =

N+1∑

m=1

CmC
μn−m
N+k+2−m;k . (52)

(ii) for N ≥ n + |μ| − 2,
Cμn
N+k+1;k = CN+k+1;k, (53)

independently of the deformation μ, where Cn are the alternating Catalan numbers
(26). This implies that Sμn

N+k+2;k = SN+k+2;k for N + 1 ≥ n + |μ| − 2.

Proof. To simplify notation let μ̂n := μn ◦ωN+k+1 and μl
n := τl+1 · · · τN+1μn . Recall

that τl+1 · · · τN+1 is the following cyclic permutation

τl+1 · · · τN+1 = (l + 1, l + 2, . . . , N + 1, N + 2).

(i) We start from (51).
- Case I: For N ≤ n − 3, the permutation τl+1 · · · τN+1 never touches the support of μn .
As a consequence,

(τl+1 · · · τN+1 ◦ μ̂n)
−
l = (l, l + 2, . . . , N + 2),

(τl+1 · · · τN+1 ◦ μ̂n)
+
l = (1, . . . , l − 1, l + 1, N + 3, . . .) = μn+l−N−2.

Setting l = N + 2 − m, with 1 ≤ m ≤ N + 1, proves (52).
(ii) We prove it by induction on the size of the support of the deformation, assuming it to
be true for all deformations of size smaller than |μ|. For N ≥ n + |μ|−2, the derivatives
∇1 · · · ∇N+2 act on all the deformation zone. Again we start from (51) and look at the
different contributions (τl+1 · · · τN+1 ◦ μ̂n)

±
l .

- Case II: For N + 1 ≥ l ≥ n + |μ|, the cut at points l and l + 1 are away from the
deformation zone and we have

(τl+1 · · · τN+1 ◦ μ̂n)
−
l = (l, l + 2, . . . , N + 2),
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(τl+1 · · · τN+1 ◦ μ̂n)
+
l = (1, . . . , l − 1, l + 1, N + 3, . . .).

In (τl+1 · · · τN+1 ◦ μ̂n)
−
l , there are m = N + 2 − l points, and the derivatives act on all

of them. These terms contribute for
∑N+2−n−|μ|

m=1 CmC
μn
N+k+2−m;k in (51).

- Case III: For n ≤ l ≤ n + |μ| − 1, the cut at points l and l + 1 is inside the deformation
zone. Hence it produces smaller cycles with deformation of size strictly smaller than
|μ|. Let j∗ := μ−1

n (l) the pre-image of l by μn . Since l is left invariant by τl+1 · · · τN+1,
it is also the pre-image of l by μl

n , i.e. μl
n( j∗) = l. The two sub-cycles obtained by

cutting at l and l + 1 are:

(τl+1 · · · τN+1 ◦ μ̂n)
−
l = (l, μl

n( j∗ + 1),μl
n( j∗ + 2), . . . , μl

n(n + |μ| − 1), n + |μ| + 1, . . . , N + 2)

(τl+1 · · · τN+1 ◦ μ̂n)
+
l = (1, . . . , μl

n( j∗ − 1), l + 1, N + 3, . . .)

The string of derivatives ∇1 · · · ∇N+2 acts on all the points inside the deformation. By
construction, as l goes from n to n + |μ| − 1, its pre-image j∗ takes every value between
n and n + |μ| − 1 once. Using additionally that Cσ

k;0 is independent of σ , these terms

contribute for
∑N+2−n

m=N+3−n−|μ| CmCN+k+2−m;k .
- Case IV: For 1 ≤ l ≤ n − 1, the cut is before the deformation zone and we have

(τl+1 · · · τN+1 ◦ μ̂n)
−
l = (l, l + 2, . . . , n, [· · · μ · · · ], n + |μ| + 1, . . . , N + 2),

(τl+1 · · · τN+1 ◦ μ̂n)
+
l = (1, . . . , l − 1, l + 1, N + 3, . . .),

where the notation [· · ·μ · · · ] means that we insert the sequence defined by the defor-
mation μ shifted by the cyclic permutation τl+1 · · · τN+1. The derivatives ∇1 · · · ∇N+2
act on all points of (τl+1 · · · τN+1 ◦ μ̂n)

−
l which contains the deformation. Again, using

that Cσ
k;0 is independent of σ , these terms contribute for

∑N+1
m=N+3−n CmCN+k+2−m in

(51). Hence,

Sμn
N+k+2;k =

N+2−n−|μ|∑

m=1

CmC
μn
N+k+2−m;k +

N+1∑

m=N+3−n−|μ|
CmCN+k+2−m;k,

The rest of the proof is by induction on N . For N + 2 = n + |μ|, the first term is absent
and hence Sμn

n+|μ|+k;k = Sn+|μ|+k;k , independently ofμ, and thusCμn
n+|μ|+k;k = Cn+|μ|+k;k .

Next, for N + 2 = n + |μ|, the first sum is CmC
μn
n+|μ|+k;k , but we just proved that

Cμn
n+|μ|+k;k = Cn+|μ|+k;k , so that it completes the second sum, and thus Sμn

n+|μ|+k+1;k =
Sn+|μ|+k+1;k . And so on by iteration. ��

With N + 2 = M + n − 1 and 1 ≤ M ≤ |μ|, the hole coefficients Sμn
N+k+2;k involve a

deformation starting at n, derivatives w.r.t. the N +1 first x-variables, and the evaluation
at zero for the (N + 2)-th variables. If M = 1, the series of derivatives are up to the last
position before the support of the deformation and the evaluation at zero is at the first
position of the deformation, if |μ| ≤ M ≤ 2, the last derivative and the evaluation are
both inside the support of the deformation.

To describe the relations within the deformation we use to the notions of extractions
of a deformation introduced in the previous Sect. 7.1. With these definitions we can
formulate the following
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Lemma 7. For n ≤ N + 2 ≤ n + |μ| − 1, set N + 2 = M + n − 1 with 1 ≤ M ≤ |μ|.
For k ≥ |μ| − M, we let P = N + k + 2. We have:

Sμn
P;k =

n−1∑

l=1

C (μ
M]
� )n−l+1

n−l+|μM]|;kM] C
(μ

[M
� )l+1

P−n+l−|μM]|;k−kM]

+
M−1∑

m=1

Cμ
[m,M]
�

|μ[m;M]|;k[m;M] C
(μ

m][M
� )n

P−|μ[m;M]|;k−k[m;M] , (54)

The numbers k[m;M] and kM] are the number of floating variables in the corresponding
extractions of the deformation μ:

k[m,M] = #{ j ∈ [M + 1, |μ|] s.t. j ∈ Imμ[m,M]
� }

kM] = #{ j ∈ [M + 1, |μ|] s.t. j ∈ ImμM]
� }

The floating variables inμ
M]
� are those x j+n−1 = yk+M− j with j ∈ Imμ

M]
� ∩[M+1, |μ|],

and similarly for the other extractions μ
[M
� , μ

[m,M]
� and μ

m][M
� . The total number of

floating variables in the deformation zone is p := |μ| − M.

Proof. The proof follows from a case by case analysis (and part of the difficulty is in the
writing). Recall we set P = N +2+k and N +2 = M +n−1 with 1 ≤ M ≤ |μ|. We start
from (51),with l running from1 to N+1. It involves the action of the product τl+1 · · · τN+1
on the deformation and the breaking of the deformation twisted by this product at the
points l and l + 1. Recall that τl+1 · · · τN+1 is the following cyclic permutation

τl+1 · · · τN+1 = (l + 1, l + 2, . . . , N + 1, N + 2).

As in the previous lemma, let μ̂n := μn ◦ ωN+k+1 and μl
n := τl+1 · · · τN+1μn . Let

I∗ be the pre-image of M by μ, i.e. I∗ = μ−1(M) or equivalently μ(I∗) = M so that
μn(I∗ + n − 1) = N + 2 and μl

n(I∗ + n − 1) = l + 1.
- Case V: Let us first start with N +1 ≥ l ≥ n, and set l = m+n−1 with M−1 ≥ m ≥ 1
(hence these contributions are not present for M = 1). All points between l and N + 2
are inside the deformation. Let i∗ be the pre-image of m by μ, i.e. i∗ = μ−1(m) or
equivalently μ(i∗) = m so that μn(i∗ + n − 1) = μl

n(i∗ + n − 1) = l. From (24), we
have to extract the sub-cycles (τl+1 · · · τN+1 ◦ μ̂n)

±
l . We have

(τl+1 · · · τN+1 ◦ μ̂n)
−
l = (μl

n(i∗ + n − 1), . . . , μl
n(I∗ + n − 2)),

(τl+1 · · · τN+1 ◦ μ̂n)
+
l

= (1, . . . , n − 1,μl
n(n), . . . , μl

n(i∗ + n − 2),

μl
n(I∗ + n − 1), . . . , μl

n(|μ| + n − 1), n + |μ|, . . .),
if i∗ < I∗ and μl

n(n) �= l (i.e. i∗ �= 1). For μl
n(n) = l (i.e. i∗ = 1),

(τl+1 · · · τN+1 ◦ μ̂n)
+
l = (1, . . . , n − 1,μl

n(I∗ + n − 1), . . . , μl
n(|μ| + n − 1), n + |μ|, . . .).

Recall thatμl
n(i∗+n−1) = l andμl

n(I∗+n−1) = l+1. Hence, (τl+1 · · · τN+1◦μ̂n)
−
l

is equivalent toμ
(m,M)
� and (τl+1 · · · τN+1◦μ̂n)

+
l toμ

m)(M
� but starting at the n-th position.
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The sub-cycles are thus obtained by translating the extractions of μ obtained by cutting
at m and M , and we have

(τl+1 · · · τN+1 ◦ μ̂n)
−
l = μ(m,M)

� ,

(τl+1 · · · τN+1 ◦ μ̂n)
+
l = (

μm)(M
�

)
n,

ifm andM are naturally ordered along the cycleμ, i.e. ifμ−1(m) < μ−1(M). Similarly,

(τl+1 · · · τN+1 ◦ μ̂n)
−
l = (

μM)(m
�

)
n,

(τl+1 · · · τN+1 ◦ μ̂n)
+
l = μ(M,m)

� ,

if m and M are anti-ordered along the cycle μ, i.e. if μ−1(M) < μ−1(m).
- Case VI: Let us now consider l such that 1 ≤ l ≤ n − 1. The action of the permutation
τl+1 · · · τN+1 within the deformation is stable, in the sense that it is l independent, except
that N + 2 → l + 1. Outside the deformation, it acts as (1, . . . , n − 1) → (1, . . . , l, l +
2, . . . , n). Hence, when breaking it by cutting at l and l + 1, we break it before the
deformation zone at point l and inside the deformation zone at the image point of N + 2
(which is the translation of the point M by n − 1 step). As a consequence,

(τl+1 · · · τN+1 ◦ μ̂n)
−
l = (l, l + 2, . . . , n,μl

n(n), . . . , μl
n(I∗ + n − 2)),

(τl+1 · · · τN+1 ◦ μ̂n)
+
l = (1, . . . , l − 1, l + 1,μl

n(I∗ + n)), . . . , μl
n(n + |μ| − 1), n + |μ|, . . .).

Now, in the string of numbers (μl
n(n), . . . , μl

n(I∗ + n − 2)) we recognize μ
M]
� but

inserted at the n−l+1-th position, and the string of numbers (μl
n(I∗+n)), . . . , μl

n(n+
|μ| − 1)) coincides with μ

[M
� but inserted at the l-th position, thus

(τl+1 · · · τN+1 ◦ μ̂n)
−
l = (

μM]
�

)
n−l+1,

(τl+1 · · · τN+1 ◦ μ̂n)
+
l = (

μ[M
�

)
l+1.

This proves (54).
- Since (24) involves the successive derivatives∇1 · · · ∇N+2, with N +2 = M +n−1, it is
clear that the remaining floating variables within the deformation zone are the x j+n−1’s
with j = M+1, . . . , |μ|. These variables are attached to the various extractions involved
in (54) according to the images of those extractions. Finally, note that x j+n−1 = yk+M− j
for P = N + 2 + k. ��
Remark. The above formula reproduce the formulas (44) for the simple transposition.
Let the deformation be the transposition (12), ie. μ := (12) = (

1 2
2 1

)
, with length

|μ| = 2.

For M = 1, there is only the first term in (54). We have μ1] = (
1
2

)
and μ[1 = ∅, and

since ω1
M is trivial in this case, μ1]

� = (
1
2

)
and μ

[1
� = ∅. As element of S1, they are both

trivial. The number of floating variable in the deformation is |μ|− M = 1. It is attached
to the extraction μ

1]
� since it is the element of [M + 1, |μ|] = {2} in the image of the

extractions. Hence, in this case

Sμn
P;k =

n−1∑

l=1

Cn−l+1CP+l−n−1;k−1.
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For M = 2, the two types of terms in (54) contribute. For the first terms, we have
μ2] = ∅ and μ[2 = (

2
1

)
, and since ω1

M = (12), we have μ
2]
� = ∅ and μ

[2
� = Id.

We have |μ2]| = 0 and |μ[2| = 1. For the second terms, with m = 1, M = 2, we
have μ[m,M] = μ(2,1) = (

1
2

)
and μm][M = μ2)(1 = (

2
1

)
, and since ωm+1

M is trivial,

μ
[1,2]
� = (

1
2

)
and μ

1][2
� = (

2
1

)
. we have |μ[1,2]| = |μ1][2| = 1. As element of S1, they

are both trivial. There are no floating variables. Hence, in this case

Sμn
P;k =

n−1∑

l=1

Cn−lCP+l−n;k + C1CP−1;k .

This coincides with (44).

7.3. Generating functions. We first introduce the generating functions associated to the
relations away from the deformation. For any permutation μ ∈ Sμ we let, for q ≥ 1 and
k ≥ |μ|,

D(μ;q)
k (z) :=

∑

N≥0

C
μq+N
N+k+1;k z

N , (55a)

S(μ;q)
k (z) :=

∑

N≥0

S
μq+N+1
N+k+2;k z

N . (55b)

As in Sect. 6, the labels μ code for the profile of the deformation and q for its location
along the chain interval. These functions depend on the k variables (y0, . . . , yk−1). We
have D(μ;q)

k (0) = C
μq

k+1;k , which is the derivative w.r.t. x1 of the deformed loop. Thus

[μq ◦ ωk+1](x1, . . . , xk+1) = x1D(μ;q)
k (0)(y0, . . . , yk−1), with x j = yk+1− j . (56)

Hence, we have to solve for D(q)
k (0), for q ≥ 1. This is done in a series of Propositions.

Proposition 3. The following recurrence relations hold, for k ≥ |μ|:
D(μ;q)

k+1 (z) = S(μ;q−1)
k (z) + ykz

−1 (D(μ;q−1)
k (z) − D(μ;q−1)

k (0)
)
, (57a)

S(μ;q)
k (z) = c(z)D(μ;q)

k (z), for q ≥ 2. (57b)

These equations are equivalent to (13).

Proof. (i) Eq.(57a) is a direct consequence of Cμn
P;k+1 = Sμn

P;k + ykC
μn
P;k .

(ii) Eq.(57b) follows by checking that it is equivalent to the first equation in (52). ��
Wenow introduce generating functions appropriate for the recurrence relationswithin

the bulk of the deformation, with k′ ≥ 0 (k = k′ + p′) and 0 ≤ p′ ≤ |μ| − 1 (M =
|μ| − p′),

D̂μ

k′;p′(z) :=
∑

N ′≥0

C
μN ′+1
N ′+k′+|μ|;k′+p′ zN

′
, (58)

Ŝμ

k′;p′(z) :=
∑

N ′≥0

S
μN ′+1
N ′+k′+|μ|;k′+p′ zN

′
, (59)
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The first term in Ŝμ

k′;p′(z) for p′ = |μ|−1 is ill defined, we set it to 0 by convention. The
sums are over the locations of the deformation, fixing the number k′ of floating variables
after the deformation and the number p′ of variables inside the deformation. The total
number of variables is k = k′ + p′, the total number of points is N ′ + k′ + |μ| and the
position of the deformation is n = N ′ + 1.

We have

D(μ;1)
k+|μ|(z) = D̂μ

k+1;|μ|−1(z), (60a)

S(μ;1)
k+|μ|(z) = z−1(Ŝμ

k+1;|μ|−1(z) − Ŝμ

k+1;|μ|−1(0)
)
. (60b)

We can then recast the recurrence relation (54).

Proposition 4. We have:

(i) For all 0 ≤ p′ ≤ |μ| − 1, and M = |μ| − p′, we have:

D̂μ

k′;p′+1(z) = Ŝμ

k′;p′(z) + yk′+p′ D̂μ

k′;p′(z), (61a)

Ŝμ

k′;p′(z) = z−1
(
D̂μ

M]
�

0;kM](z) − D̂μ
M]
�

0;kM](0)
) (

D̂μ
[M
�

k′;k[M (z) − D̂μ
[M
�

k′;k[M (0)
)

+
M−1∑

m=1

D̂μ
[m,M]
�

0;k[m,M](0)D̂μ
m][M
�

k′;km][M (z), (61b)

with k[M + kM] = p′ and km][M + k[m,M] = p′ (recall that p′ is the number of
variables in the deformation zone). By convention, the last sum in (61b) is absent for
p′ = |μ| − 1 (M = 1), and we choose the normalization Ŝμ

k′;|μ|−1(0) = 0.

These floating variables in μ
M]
� are those x j+n−1 = yk+M− j with j ∈ Imμ

M]
� ∩[M +

1, |μ|], and similarly for the other extractions μ
[M
� , μ

[m,M]
� and μ

m][M
� . The total

number of floating variables in the deformation zone is p := |μ| − M, the other
variables yk′−1, . . . , y0 are away from the deformation zone.

(ii) Moreover,

D̂μ

k′;0(z) =
[
z1−|μ| Ck′(z)

]

+
, (62)

where
[ · · · ]+ means the part with positive degrees of the Laurent series.

Proof. (i) Eq.(61a) is a direct consequence of Cμn
P;k+1 = Sμn

P;k + ykC
μn
P;k .

(ii) To verify that (61b) is equivalent to (54) we rewrite the later. In eq.(54), we set
n = N ′ + 1, k = k′ + p′ with M + p′ = |μ| so that P = N + 2 + k = N ′ + k′ + |μ|. Then
(54) can be written as

S
μN ′+1
N ′+k′+|μ|;k′+p′ =

N ′∑

l=1

C
(μ

M]
� )N ′−l+2

N ′+|μM]|−l+1;kM] C
(μ

[M
� )l+1

k′+|μ[M |+l;k′+k[M

+
M−1∑

m=1

Cμ
[m,M]
�

|μ[m;M]|;k[m;M] C
(μ

m][M
� )N ′+1

N ′+k′+μm][M |;k′+km][M ,

where |μM]|+ |μ[M | = |μ| − 1, |μ[m,M]|+ |μm][M | = |μ| are the respective sizes of the
extractions, and kM] + k[M = p′, k[m,M] + km][M = p′ the respecting number of floating
variables on those extractions.



1178 D. Bernard, T. Jin

(ii) Eq.(62) is equivalent to Cμn
N+k+1;k = CN+k+1;k for N ≥ n + |μ| − 2, independently

of the deformation μ. ��
Moreover, the stabilisation phenomena observed in the case of the regular loop hold in

general. For any deformation, there exists a generating function for the loop expectation
values with an arbitrary number of points.

Theorem 3. For all deformationsμ, of finite size support, and all locations q ≥ 2, there

exists a generating function D
μ;q

depending an infinite number of variables y0, y1, . . .
such that

[μq ◦ ωk+1](x) = x1 D
μ;q

(y0, . . . , yk−1, 0, 0, . . .), (63)

with k ≥ |μ| and yl = xk+1−l .
That is: the expectation values with k+1 points are obtained by evaluating the generating

function D
μ;q

with all variables yk, yk+1, . . . set to zero. This function D̄μ;q is recursively
constructed using (57,61) with initial condition (62).

Proof. The relation (57b), S(μ;q)
k (z) = c(z)D(μ;q)

k (z), for q ≥ 2 and k ≥ |μ|, evaluated
at z = 0 implies that S(μ;q)

k (0) = D(μ;q)
k (0), or equivalently, Sμ;q

k+2;k = Cμ;q
k+1;k . By the

definition of the hole decomposition Sμ;q
k+2;k = Cμ;q

k+2;k+1|x2=0. Hence,

D(μ;q)
k (0)(y0, . . . , yk−1) = D(μ;q)

k+1 (0)(y0, . . . , yk−1, yk = 0),

since D(μ;q)
k (0) = Cμ;q

k+1;k . By iterating at infinitum, we infer that there exists a function

D̄μ;q depending an infinite number of variables y0, y1, . . . such that

D(μ;q)
k (0)(y0, . . . , yk−1) = D

μ;q
(y0, . . . , yk−1, 0, 0, . . .).

Since D(μ;q)
k (0) = ∇1[μq ◦ ωk+1] = x−1

1 [μq ◦ ωk+1] this proves (63). ��
Eqs.(61) with the initial condition (62) allow to determine D̂μ

k′;p′(z) and Ŝμ

k′;p′(z)
recursively, starting from p′ = 0 and increasing p′ up to |μ| − 1. Indeed, starting from
the initial condition (62) for D̂μ

k′;0(z) and Ŝμ

k′;0(z) given by (61b) we compute D̂μ

k′;1(z)
using (61a). Then by iteration using the just determined D̂μ

k′;1(z) and Ŝ
μ

k′;0(z) from (61b),

we get D̂μ

k′;2(z) using (61a). This continues up to determining D̂μ

k′;|μ|−1(z). Eq.(61b) for

p′ = |μ| − 1 gives Ŝμ

k′;|μ|−1(z). This yields D
(μ;1)
k+|μ|(z) and S(μ;1)

k+|μ|(z) since,

D(μ;1)
k+|μ|(z) = D̂μ

k+1;|μ|−1(z),

S(μ;1)
k+|μ|(z) = z−1(Ŝμ

k+1;|μ|−1(z) − Ŝμ

k+1;|μ|−1(0)
)

Once we know D(μ;1)
k+|μ|(z) and S(μ;1)

k+|μ|(z), we can iterate the recurrence relations (57) and
determine D(μ;q)

k+|μ|(z) for all q ≥ 1, and thus all expectation values [μq ◦ ωk+1](x) via
the reconstruction formula (56).

Remark. Let us show how to recover the results (61) for a simple permutation from the
above formulation. We have to match the different definitions of generating functions.
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For M = 1 (p′ = 1), the extraction μ
1]
� and μ

[1
� are trivial with |μ1]| = 1, k1] = 1 and

|μ[1| = 0, k[1 = 0, and we have

D̂μ
1]
�

0;1 (z) − D̂μ
1]
�

0;1 (0) = z C1(z), D̂μ
[1
�

k′;0(z) − D̂μ
[1
�

k′;0(0) = z Ck′(z).

Eq.(61b) becomes (with the convention Ŝμ

k′;1(0) = 0)

Ŝμ

k′;1(z) = z C1(z) Ck′(z)

For M = 2 (p′ = 0), we have μ
2]
� = ∅ and μ

[2
� = Id with |μ2]

� | = 0 and |μ[2
� | = 1, so

that

D̂μ
2]
�

0;0 (z) − D̂μ
2]
�

0;0 (0) = zc(z), D̂μ
[2
�

k′;0(z) = Ck′(z).

We also have that μ[1,2]
� and μ

1][2
� are both trivial with |μ[1,2]| = |μ1][2| = 1 so that

D̂μ
[1,2]
�

0;0 (0) = c(0) = 1, D̂μ
1][2
�

k′;0 (z) = Ck′(z).

Eq.(61b) becomes

Ŝμ

k′;0(z) = c(z)
(Ck′(z) − Ck′(0)

)
+ c(0) Ck′(z).

From the definition of the generating functions for a transposition deformation, we have

D(1)
k+1(z) = D̂k;1(z) , D(0)

k (z) − D(0)
k (0) = z D̂k;0(z),

z S(1)
k+1(z) = Ŝk;1(z) − Ŝk;1(0) , S(0)

k (z) = Ŝk;0(z).

The initial condition is D̂k;0(z) = D̂μ

k;0(z) = [
z−1 Ck′(z)

]
+ = z−1

(Ck(z) − Ck(0)
)
.

Making the correspondence between those quantities then shows that the system (57,61)
coincides with (48).

8. Appendix

8.1. The exchange relations for [ωP ] and [τn ◦ωP ]. Here we give the proof that the pair
[ωP ] and [τn ◦ ωP ] satisfy the exchange relation (19), as claimed in Sect. 6.1.

Proof. The proof will be by induction on n for all P . Let us recall the decomposition
[σ ] = An(σ ) + Bn(σ )xn + Cn(σ )xn+1 + Dn(σ )xnxn+1.
- Let us first prove (19d) for the pair [ωP ] and [τn ◦ ωP ]. It amounts to show that
∇n∇n+1[τn ◦ ωP ] = ∇n∇n+1[ωP ]. For any σ we have

Dn(σ ) =
n−2∑

j=1

x1 . . . x j∇n∇n+1[σ ]oj+1 +
P∑

j=n+1

∇n∇n+1x1 . . . x j [σ ]oj+1.

The last terms with j ≥ n + 1 coincide for σ = ωP and σ = τn ◦ ωP , thanks to (44a).
The terms with j ≤ n − 2 for σ = τn ◦ ωP reads

∇n∇n+1[τn ◦ ωP ]oj+1 =
j∑

k=1

Dj+1−k|0∇n∇n+1D
(n+k− j−1)
k|P− j−1 (x≥ j+2).
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But D(n+k− j−1)
k|P− j−1 (x≥ j+2) = ∇1 · · · ∇k[τn+k− j−1 ◦ cP− j−1] by definition. Hence,

∇n∇n+1D
(n+k− j−1)
k|P− j−1 (x≥ j+2) = ∇n∇n+1Dk|P− j−1(x≥ j+2)

and ∇n∇n+1[τn ◦ ωP ]oj+1 = ∇n∇n+1[ωP ]oj+1 for j ≤ n − 2.
- Let us now prove (19c,19b) for the pair [ωP ] and [τn ◦ ωP ]. For any σ we have,

Bn(σ ) =
n−2∑

j=1

x1 . . . x j∇n[σ ]oj+1|xn+1=0 + x1 . . . xn−1[σ ]on+1,

Cn(σ ) =
n−2∑

j=1

x1 . . . x j∇n+1[σ ]oj+1|xn=0 + x1 . . . xn−1∇n+1[σ ]on .

Thanks to the expression (44d) of [τn ◦ ωP ]oj+1 in terms of D(n+k− j−1)
k|P− j−1 (x≥ j+2), for

j ≤ n − 2, the contributions of the terms x1 . . . , x j in this decomposition fulfil the
moves (19c,19c) by the induction hypothesis.
Proving (19c,19b) for the terms x1 . . . xn1 in this decomposition amounts to verify that

[τn ◦ ωP ]on+1 = ∇n+1[ωP ]on + D1|0Dn|P−n−1(x≥n+2), (64a)

∇n+1[τn ◦ ωP ]on = [ωP ]on+1 − D1|0Dn|P−n−1(x≥n+2). (64b)

To prove (64a), recall that [ωP ]oj+1 = ∑ j
k=1 Dj+1−k|0Dk|P− j−1(x≥ j+2) so that

∇n+1[ωP ]on =
n−1∑

k=1

Dn−k|0∇n+1Dk|P−n(x≥n+1)

=
n−1∑

k=1

Dn−k|0Dk+1|P−n−1(x≥n+2)

= [τn ◦ ωP ]on+1 − D1|0Dn|P−n−1(x≥n+2),

where in the last linewe use formula (44b) expressing [τn◦ωP ]on in terms of the Dk|P−k’s.
To prove (64b), we notice that, from (44c) and ∇n+1Dn−k|1(xn+1) = Dn+1−k|0, we have

∇n+1[τn ◦ ωP ]on =
n−1∑

k=1

Dn+1−k|0Dk|P−n−1(x≥n+2)

= [ωP ]on+1 − D1|0Dn|P−n−1(x≥n+2).

- Finally, we have to prove (19a) for the pair [ωP ] and [τn ◦ ωP ]. For any σ we have,

An(σ ) =
n−1∑

j=1

x1 . . . x j [σ ]oj+1|xn=0=xn+1 .

Again the contribution of the terms x1 . . . x j for 1 ≤ j ≤ n − 2 in this decomposition
fulfil (19a) thanks to the induction hypothesis and the formula (44d) for [τn ◦ ωP ]oj+1
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for 1 ≤ j ≤ n − 2. Let thus look at the term x1 . . . xn−1. Using Dn−k|1(xn+1) =
−Dn+1−k|0(1 − xn+1), we have

[τn ◦ ωP ]on|xn+1=0 =
n−1∑

k=1

Dn−k|1(xn+1)|xn+1=0Dk|P−n−1(x≥n+2),

= −
n−1∑

k=1

Dn+1−k|0Dk|P−n−1(x≥n+2).

On the other hand, since [ωP ]oj+1 = ∑ j
k=1 Dj+1−k|0Dk|P− j−1(x≥ j+2) and

Dk|P−n(xn+1, x≥n+2) = [ωP+k−n]ok+1, we have

[ωP ]on|xn+1=0 =
n−1∑

k=1

Dn−k|0Dk|P−n(x≥ j+2)|xn+1=0

=
n−1∑

k=1

Dn−k|0
k∑

l=1

Dk+1−l|0Dl|P−n−1(x≥ j+2)

= −
n−1∑

k=1

Dn+1−k|0Dk|P−n−1(x≥n+2) = [τn ◦ ωP ]on|xn+1=0,

where we used Dm|0 = −∑m−1
n=1 Dn|0Dm−n|0 in the last line. Thus we proved the

exchange relations (19) for the pair [ωP ] and [τn ◦ ωP ]. ��

8.2. Examples of extractions. In order to make the notations from Sect. 7 clear, we
illustrate the different cases pictured in Fig. 3 on specific examples. For a deformation
μn , let μ̂n = μn ◦ ωP with ωP the regular with P , as in the main text.
I. For N ≤ n − 3, l ≤ N + 1,
let P = 10, n = 7, l = 2, N = 4, |μ| = 2.

μ =
(
1 2
2 1

)
,

μn =
(
1 2 3 4 5 6 7 8 9 10
1 2

l
3
l+1

4 5 6
N+2

8 7 9 10

)
,

τl+1 · · · τN+1μn =
(
1 2 3 4 5 6 7 8 9 10
1 2

l
4 5 6

N+2
3
l+1

8 7 9 10

)
,

(τl+1 · · · τN+1 ◦ μ̂n)
−
l =

(
2
l
4 5 6

N+2

)
,

(τl+1 · · · τN+1 ◦ μ̂n)
+
l =

(
1 3

l+1
8 7 9 10

)
.

II. For N ≥ n + |μ| − 2, N + 1 ≥ l ≥ n + |μ|,
let P = 10, n = 3, l = 6, N = 7, |μ| = 2.

μ =
(
1 2
2 1

)
,
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μn =
(
1 2 3 4 5 6 7 8 9 10
1 2 4 3 5 6

l
7
l+1

8 9
N+2

10

)
,

τl+1 · · · τN+1μn =
(
1 2 3 4 5 6 7 8 9 10
1 2 4 3 5 6

l
8 9

N+2
7
l+1

10

)
,

(τl+1 · · · τN+1 ◦ μ̂n)
−
l =

(
6
l
8 9

N+2

)
,

(τl+1 · · · τN+1 ◦ μ̂n)
+
l =

(
1 2 4 3 5 7

l+1
10

)
.

III. For N ≥ n + |μ| − 2, n ≤ l ≤ n + |μ| − 1,
let P = 10, n = 3, l = 4, N = 7, |μ| = 4,

μ =
(
1 2 3

j∗
4

3 4 2 1

)
,

μn =
⎛

⎝
1 2 3 4 5

j∗
6 7 8 9 10

1 2 5
l+1

6 4
l
3 7 8 9

N+2
10

⎞

⎠ ,

τl+1 · · · τN+1μn =
(
1 2 3 4 5 6 7 8 9 10
1 2 6 7 4

l
3 8 9

N+2
5
l+1

10

)
,

(τl+1 · · · τN+1 ◦ μ̂n)
−
l =

(
4
l
3 8 9

N+2

)
,

(τl+1 · · · τN+1 ◦ μ̂n)
+
l =

(
1 2 6 7 5

l+1
10

)
.

IV. For N ≥ n + |μ| − 2, and 1 ≤ l ≤ n − 1,
let P = 10, l = 2, n = 4, N = 8, |μ| = 2,

μ =
(
1 2
2 1

)
,

μn =
(
1 2 3 4 5 6 7 8 9 10
1 2

l
3
l+1

5 4 6 7 8 9 10
N+2

)
,

τl+1 · · · τN+1μn =
(
1 2 3 4 5 6 7 8 9 10
1 2

l
4 6 5 7 8 9 10

N+2
3
l+1

)
,

(τl+1 · · · τN+1 ◦ μ̂n)
−
l =

(
2
l
4 6 5 7 8 9 10

N+2

)
,

(τl+1 · · · τN+1 ◦ μ̂n)
+
l =

(
1 10

l+1

)
.

V. For N + 1 ≥ l ≥ n, M − 1 ≥ m ≥ 1,
let P = 10, n = 3, l = 4, N = 5, M = N + 2 − (n − 1) = 5,m = l − (n − 1) =
2, |μ| = 7.

μ =
(
1
i∗
2 3 4 5 6 7

I∗
2 6 4 7 3 1 5

)
,
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τm+1 · · · τM−1μ = ωm+1
M μ =

(
1 2 3 4 5 6 7
2 6 5 7 4 1 3

)
,

μn =
(
1 2 3 4 5 6 7 8 9 10
1 2 4

l
8 6 9 5

l+1
3 7

N+2
10

)
,

τl+1 · · · τN+1μn =
(
1 2 3 4 5 6 7 8 9 10
1 2 4

l
8 7

N+2
9 6 3 5

l+1
10

)
,

(τl+1 · · · τN+1 ◦ μ̂n)
−
l =

(
4
l
8 7

N+2
9 6 3

)
,

(τl+1 · · · τN+1 ◦ μ̂n)
+
l =

(
1 2 5

l+1
10

)
.

μ(m,M)
� = ωm+1

M

(
μ−1(m) μ−1(m) + 1 · · · μ−1(M) − 1

m μ(μ−1(m) + 1) · · ·μ( μ−1(M) − 1)

)

=
(
1 2 3 4 5 6
2 6 5 7 4 1

)
≡

(
3 4 5 6 7 8
4
l
8 7

N+2
9 6 3

)

�⇒ (τl+1 · · · τN+1 ◦ μ̂n)
−
l

(μm)(M
� )n =

(
ωm+1
M

(
1 · · · μ−1(m) − 1 μ(−1)(M) · · · |μ|

μ(1) · · · μ(μ−1(m) − 1) M · · · μ(|μ|)
) )

n

=
((

7
3

) )

n
=

(
1 2 9 10
1 2 5l+1 10

)

�⇒ (τl+1 · · · τN+1 ◦ μ̂n)
+
l

VI. For 1 ≤ l ≤ n − 1,
let P = 14, n = 6, l = 3, N = 7, M = N + 2 − (n − 1) = 4, |μ| = 7:

μ =
(
1 2 3 4 5

I∗
6 7

2 5 7 6 4 1 3

)

τ1 · · · τM−1μ = ω1
Mμ =

(
1 2 3 4 5 6 7
3 5 7 6 1 2 4

)

μn =
(
1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 3

l
4
l+1

5 7 10 12 11 9
N+2

6 8 13 14

)

τl+1 · · · τN+1μn =
(
1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 2 3

l
5 6 8 10 12 11 4

l+1
7 9

N+2
13 14

)

(τl+1 · · · τN+1 ◦ μ̂n)
−
l = (

3l 5 6 8 10 12 11
) ≡ (

1 3 4 6 8 10 9
)

(τl+1 · · · τN+1 ◦ μ̂n)
+
l =

(
1 2 4

l+1
7 9

N+2
13 14

)

μM] =
(

1 · · · μ−1(M) − 1
μ(1) · · · μ(μ−1(M) − 1)

)

=
(
1 2 3 4
2 5 7 6

)

ω1
MμM] =

(
1 2 3 4
3 5 7 6

)
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(μM]
� )n−l+1 =

(
1 2 3 4 5 6 7
1 2 3 6 8 10 9

)
≡

(
3 4 5 6 7 8 9
3l 5 6 8 10 12 11

)

�⇒ (τl+1 · · · τN+1 ◦ μ̂n)
−
l

μ[M =
(

μ−1(M) + 1 · · · |μ|
μ(μ−1(M) + 1) · · · μ(|μ|)

)

=
(
6 7
1 3

)

ω1
Mμ[M =

(
6 7
2 4

)

(μ[M
� )l+1 = (ω1

Mμ[M )l+1 =
(
1 2 3 9 10 13 14
1 2 3 5 7 13 14

)
≡

(
1 2 10 11 12 13 14
1 2 4

l+1
7 9

N+2
13 14

)

�⇒ (τl+1 · · · τN+1 ◦ μ̂n)
+
l
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