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Abstract: For an attracting periodic orbit (limit cycle) of a deterministic dynamical
system, one defines the isochron for each point of the orbit as the cross-section with
fixed return time under the flow. Equivalently, isochrons can be characterized as stable
manifolds foliating neighborhoods of the limit cycle or as level sets of an isochron
map. In recent years, there has been a lively discussion in the mathematical physics
community on how to define isochrons for stochastic oscillations, i.e. limit cycles or
heteroclinic cycles exposed to stochastic noise. The main discussion has concerned
an approach finding stochastic isochrons as sections of equal expected return times
versus the idea of considering eigenfunctions of the backward Kolmogorov operator.
We discuss the problem in the framework of random dynamical systems and introduce a
new rigorous definition of stochastic isochrons as random stable manifolds for random
periodic solutions with noise-dependent period. This allows us to establish a random
version of isochron maps whose level sets coincide with the random stable manifolds.
Finally, we discuss links between the random dynamical systems interpretation and the
equal expected return time approach via averaged quantities.

1. Introduction

Periodic behavior is ubiquitous in the natural sciences and in engineering. Accordingly,
many mathematical models of dynamical systems, usually given by ordinary differential
equations (ODEs), are characterized by the existence of attracting periodic orbits, also
called limit cycles. Interpreting the limit cycle as a “clock” for the system, one can ask
which parts of the state space can be associated with which “time” on the clock.

It turns out that one can generally divide the state space into sections, called isochrons,
intersecting the asymptotically stable periodic orbit. Trajectories starting on a particular
isochron all converge to the trajectory starting at the intersection of the isochron and
the limit cycle. Hence, each point in the basin of attraction of the limit cycle can be
allocated a time on the periodic orbit, by belonging to a particular isochron. Isochrons
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can then be characterized as the sections intersecting the limit cycle, such that the return
time under the flow to the same section always equals the period of the attracting orbit
and, hence, the return time is the same for all isochrons. The analysis of ODEs provides
additional characterizations of isochrons, involving, for example, an isochron map or
eigenfunctions of associated operators.

Clearly, mathematical models are simplifications which often leave out parameters
and details of the described physical or biological system. Hence, a large number of
degrees of freedom is inherent in the modeling. The introduction of random noise is
often a suitable way to integrate such non-specified components into themodel such that,
for example, an ODE becomes a stochastic differential equation (SDE). Examples for
stochastic oscillators/oscillations can be found in a wide variety of applications such as
neuroscience [4,12,31,43], ecology [37,39], bio-mechanics [25,35], geoscience [6,33],
among many others. In addition, stochastic oscillations have become a recently very
active research topic in the rigorous theory of stochastic dynamical systems with small
noise [3,7,8,26].

Lately, there has been a lively discussion [34,45] in the mathematical physics com-
munity about how to extend the definition and analysis of isochrons to the stochastic
setting. As pointed out above, there are several different characterizations in the de-
terministic case inspiring analogous stochastic approaches. So far, there are two main
approaches to define stochastic isochrons in the physics literature, both focused on
stochastic differential equations. One approach, due to Thomas and Lindner [44], fo-
cuses on eigenfunctions of the associated infinitesimal generatorL. The other one is due
to Schwabedal and Pikovsky [41], who introduce isochrons for noisy systems as sec-
tionsWE(x) with the mean first return time to the same sectionWE(x) being a constant
T̄ , equaling the average oscillation period. Cao, Lindner and Thomas [13] have used
the Andronov–Vitt–Pontryagin formula, involving the backward Kolmogorov operator
L, with appropriate boundary conditions to establish the isochron functions for WE(x)
more rigorously.

These approaches have in common that they focus on the “macroscopic” or “coarse-
grained” level by considering averaged objects and associated operators. We comple-
ment the existing suggestions by a new approach within the theory of random dynamical
systems (see e.g. [1]) which has proven to give a framework for translating many deter-
ministic dynamical concepts into the stochastic context. A random dynamical system in
this sense consists of a model of the time-dependent noise formalized as a a dynamical
system θ on the probability space, and a model of the dynamics on the state space for-
malized as a cocycle ϕ over θ . This point of view considers the asymptotic behaviour of
typical trajectories. As trajectories of random dynamical systems depend on the noise
realization, any convergent behaviour of individual trajectories to a fixed attractor can-
not be expected. The forward in time evolution of sets under the same noise realization
yields the random forward attractor A which is a time-dependent object with fibers
A(θtω). An alternative view point is to consider, for a fixed noise realization ω ∈ �,
the flow of a set of initial conditions from time t = −T to a fixed endpoint in time, say
t = 0, and then take the (pullback) limit T → ∞. If trajectories of initial conditions
converge under this procedure to fibers Ã(ω) of some random set Ã, then this set is
called a random pullback attractor.

In this paper, we will consider mainly situations where the random dynamical system
is induced by an SDE and there exists a random (forward and/or pullback) attractor A
which is topologically equivalent to a cycle for each noise realization, i.e. a attracting
random cycle, whose existence can be made generic in a suitably localized setup around
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a deterministic limit cycle. We will extend the definition of a random periodic solution
ψ [46] living on such a random attractor to situations where the period is random, giving
a pair (ψ, T ). Isochrons can then be defined as random stable manifolds W f(ω, x)
for points x on the attracting random cycle A(ω), in particular for random periodic
solutions. We usually consider situations with a spectrum of exponential asymptotic
growth rates, the Lyapunov exponents λ1 > λ2 > · · · > λp, which allows to transform
the idea of hyperbolicity to the random context. Additionally, we can introduce a time-
dependent random isochron map φ̃, such that the isochrons are level sets of such a map.
Hence, on a pathwise level, we achieve a complete generalization of deterministic to
random isochronicity, which is the key contribution of this work. The main results can
be summarized in the following theorem:

Theorem A. Assume the random dynamical system (θ, ϕ) on R
m has a hyperbolic

random limit cycle, supporting a randomperiodic solutionwith possibly noise-dependent
period. Then, under appropriate assumptions on smoothness and boundedness,

1. The random forward isochrons are smooth invariant randommanifolds which foliate
the stable neighbourhood of the random limit cycle on each noise fibre,

2. There exists a smooth and measurable (non-autonomus) random isochron map φ̃

whose level sets are the random isochrons and whose time derivative along the
random flow is constant.

The remainder of the paper is structured as follows. Section 2 gives an introduction
to the deterministic theory of isochrons, summarizing the main properties that we can
then transform into the random dynamical systems setting. The latter is discussed in
Sect. 3, where we elucidate the notions of Lyapunov exponents, random attractors and,
specifically, random limit cycles and their existence. Section 4 establishes the two main
statements, contained in Theorem A: in Sect. 4.1, we show Theorem 2, summarizing
different scenarios in which random isochrons are random stable manifolds foliating the
neighbourhoods of the random limit cycle. InSect. 4.2,weproveTheorem3, generalizing
characteristic properties of the isochron map to the random case. We conclude Sect. 4
with an elaboration on the relationship between expected quantities of the RDS approach
and the definition of stochastic isochrons via mean first return times, i.e., one of the main
physics approaches. Additionally, the paper contains a brief conclusion with outlook,
and an appendix with some background on random dynamical systems.

2. The Deterministic Case

The basic facts about isochrons have been established in [27]. Here we summarize
some facts restricted to the state space X = R

m but the theory easily lifts to ordinary
differential equations (ODEs) on smooth manifolds M = X . Consider an ODE

x ′ = f (x), x(0) = x0 ∈ R
m, (2.1)

where f is Ck for k ≥ 1. Let 	(x0, t) = x(t) be the flow associated to (2.1) and
suppose γ = {γ (t)}t∈[0,τγ ] is a hyperbolic periodic orbit with minimal period τγ > 0.
A cross-section N ⊂ R

m at x ∈ γ is a submanifold such that x ∈ N , N̄ ∩ γ = {x},
and

TxN ⊕ Txγ = TxR
m 
 R

m,
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i.e. the submanifold N and the orbit γ intersect transversally.
Let g : N → N be the Poincaré map defined by the first return of y ∈ N under the

flow 	 withN (see Fig. 1); locally near any point x ∈ γ the map g is well-defined. For
simplicity (and with the look forward towards the noisy case) let us assume that γ is a
stable hyperbolic periodic orbit, i.e. the eigenvalues μi of Dg(x), also called character-
istic multipliers, satisfy μ1 = 1 and |μ2| , . . . , |μm | < 1, counting multiplicities. The
numbers

λi = 1

T
lnμi

are called the characteristic exponents (for more background on the stability of linear
non-autonomous systems and associated Floquet theory see e.g [14, Chapter 2.4]). We
call such a stable hyperbolic periodic orbit a stable (hyperbolic) limit cycle since there
is a neighbourhood U of γ such that for y ∈ U we have d(	(y, t), γ ) → 0, as t →∞,
where d is the Euclidean metric on R

m . In particular, note that there is a lower bound on
the speed of exponential convergence to the limit cycle, given by

λ := min
i :λi �=0

�(−λi ) > 0.

We give a definition of isochrons as stable sets and then establish its equivalence to level
sets of a specific map. We further find these level sets to be cross-sections to γ for which
the time of first return is identical to the period τγ , explaining the name isochrons.

Definition 1. The isochron W (x) of a point on a hyperbolic limit cycle x ∈ γ is given
by its stable set

W (x) :=
{
y ∈ R

m : lim
t→+∞ d(	(x, t),	(y, t)) = 0

}
. (2.2)

In particular, due to hyperbolicity, we have that for every λ̃ ∈ (0, λ)

W (x) =
{
y ∈ R

m : sup
t≥0

eλ̃t d(	(x, t),	(y, t)) <∞
}

. (2.3)

It is by now classical that stable sets are manifolds and for each x ∈ γ , we get a stable
manifold W s(x) diffeomorphic to R

m−1, precisely coinciding with the isochron W (x).
We can foliate a neighbourhood U of γ by the manifolds W (x) and these manifolds are
permuted by the flow since

W (	(x, t)) = 	(W (x), t) ∀t ∈ R. (2.4)

We summarize these crucial observations in the following theorem.

Theorem 1 (TheoremA in [27], Theorem 2.1 in [26]).Consider the flow	 : Rm×R →
R
m for the ODE (2.1) with hyperbolic stable limit cycle γ = {γ (t)}t∈[0,τγ ]. Then the

following holds:

1. For each x ∈ γ , the isochron W (x) is an (m − 1)-dimensional manifold transverse
to γ , in particular it is a cross-section of γ , of the same regularity as the vector field
f in the ODE (2.1) (i.e. Ck if f is Ck).
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2. The stable manifold W s(γ ) contains a full neighbourhood of γ and can be written
as

W s(γ ) =
⋃
x∈γ

W (x),

where the union of isochrons is disjoint.
3. The map ξ : W s(γ )→ R mod τγ , also called the isochron map, is given for every

y ∈ W s(γ ) as the unique t such that y ∈ W (γ (t)), i.e.

lim
s→+∞ d(	(γ (ξ(y)), s),	(y, s)) = lim

s→+∞ d(γ (s + ξ(y)),	(y, s)) = 0 , (2.5)

and ξ is also Ck.

Using the properties established in Theorem 1, we can derive the following well-known
characterizations of the isochrons W (x), x ∈ γ , and of the isochron map ξ .

Proposition 1. Assume that we are in the situation of Theorem 1. We have that

1. For each x ∈ γ , the isochron W (x) is precisely the level set of ξ(x), i.e.

W (x) = {
y ∈ W s(γ ) : ξ(y) = ξ(x)

}
, (2.6)

2. The isochron map ξ : W s(γ )→ R mod τγ satisfies

d

dt
ξ(	(y, t)) = 1 for all t ≥ 0, y ∈ W s(γ ) , (2.7)

3. The isochron W (x) is the cross-section Nx at x such that

	(Nx , τγ ) ⊆ Nx , (2.8)

i.e. the cross-section on which all starting points return in the same time τγ .

Proof. The first statement follows from the fact that γ (ξ(x)) = x for all x ∈ γ and
Eq. (2.5) in combination with the definition ofW (x): in more detail, we have y ∈ W (x)
if and only if lims→∞ d(	(x, s),	(y, s)) = 0 which is equivalent to lims→∞ d(γ (s +
ξ(x)),	(y, s)) = 0 which holds if and only if ξ(x) = ξ(y).

The second statement can be deduced from the invariance property 	(·, t)W (x) =
W (	(x, t)) for any x ∈ γ since it implies for y ∈ W (x), i.e. ξ(y) = ξ(x), that

ξ(	(y, t)) = ξ(	(x, t)) = ξ(x) + t mod τγ = ξ(y) + t mod τγ ,

which is equivalent to the claim.
The third statement can be easily derived from the fact that for all y ∈ W s(γ )

lim
t→+∞ d(γ (t + ξ(y)),	(	(y, τγ ), t) = lim

t→+∞ d(γ (t + ξ(y)),	(y, t + τγ ))

= lim
s→+∞ d(γ (s − τγ + ξ(y)),	(y, s))

= lim
s→+∞ d(γ (s + ξ(y)),	(y, s)) = 0 .

This finishes the proof.
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Fig. 1. Sketch of isochrons for limit cycle γ in example (1), with h ≡ 1 (a) where the isochrons are simply
given by Eq. (2.10), and with h′(r1) �= 0 (b) where the isochrons are curved

Summarizing, we can view isochronsW (x) as stable manifolds of points on the limit
cycle. The sets W (x) are uniquely defined and have codimension one. They locally
foliate neighborhoods of the limit cycle. They can also be characterized and computed
as level sets of a specific isochron map whose total derivative along the flow is equal to
1, by looking for sections of fixed return time under the flow. In the course of this article,
we will transform all the discussed properties to the random case.

Guckenheimer [27] tackles additional questions regarding the boundary of W s(γ ).
These questions concern global properties of isochrons. Sincewewant to first understand
a neighbourhood U of γ in the stochastic setting, we skip these problems here. With
this in mind, we consider an adjustment of the main planar example in [27] which does
not involve the boundary ofW s(γ ). The example is simple but illuminating and already
contains the main aspects of the difficulties in extending isochronicity to the stochastic
context, as we will see later.

Example 1. Consider the ODE
ϑ ′ = h(r),
r ′ = r(r21 − r2),

(2.9)

in polar coordinates (ϑ, r) ∈ [0, 2π)× (0,+∞), where r1 > 0 is fixed, h(r) ≥ K > 0
for some constant K , and h is smooth, such that there is always the periodic orbit
γ = {r = r1}. If h(r) ≡ 1, then one easily checks that the isochrons of γ are (see
Fig. 1a)

W ((ϑ∗, r∗)) = {(ϑ, r) : r ∈ (0,∞), ϑ = ϑ∗}. (2.10)

However, if we consider h such that h′(r1) �= 0, then the isochrons bend into curves,
instead of being “cut-linear” rays. Indeed, the periodic orbit has period τγ = 2π/h(r1)
but the return time to the same ϑ-coordinate changes near γ (see Fig. 1b).

Our considerations indicate that, in order to find isochrons in the stochastic case, a
first approach is to consider “stable manifolds” also for this situation. The most suitable
framework for this approach turns out to be the one of randomdynamical systems (RDS).
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3. Stochastically Driven Limit Cycles in the Framework of Random Dynamical
Systems

In the following, we develop a theory of isochrons within the framework of random
dynamical systems. A continuous-time random dynamical system on a topological state
space X consists of

(i) A model of the noise on a probability space (�,F , P), formalized as a measurable
flow (θt )t∈R of P-preserving transformations θt : �→ �,

(ii) A model of the dynamics on X perturbed by noise formalized as a cocycle ϕ over θ .

This setting is very helpful to understand properties of dynamical systems under the
influence of stochastic noise. In technical detail, the definition of a random dynamical
system is given as follows [1, Definition 1.1.2].

Definition 2 (Random dynamical system). Let (�,F , P) be a probability space and X
be a topological space. A random dynamical system (RDS) is a pair of mappings (θ, ϕ).

• The (B(R) ⊗ F , F)-measurable mapping θ : R × � → �, (t, ω) �→ θtω, is a
metric dynamical system, i.e.
(i) θ0 = id and θt+s = θt ◦ θs for t, s ∈ R,
(ii) P(A) = P(θt A) for all A ∈ F and t ∈ R.
• The (B(R) ⊗ F ⊗ B(X ), B(X ))-measurable mapping ϕ : R × � × X →
X , (t, ω, x) �→ ϕ(t, ω, x), is a cocycle over θ , i.e.

ϕ(0, ω, ·) = id and ϕ(t + s, ω, ·) = ϕ(t, θsω, ϕ(s, ω, ·)) for all ω ∈ � and t, s ∈ R .

The random dynamical system (θ, ϕ) is called continuous if (t, x) �→ ϕ(t, ω, x) is
continuous for every ω ∈ �. We still speak of a random dynamical system, if its cocycle
is only defined in forward time, i.e. if the mapping ϕ is only defined on R

+
0 × � × X .

We will make it noticeable whenever this is the case.

In the following, the metric dynamical system (θt )t∈R is often even ergodic, i.e. any
A ∈ F with θ−1t A = A for all t ∈ R satisfies P(A) ∈ {0, 1}. Note that we define θ in
two-sided time whereas ϕ can be restricted to one-sided time. This is motivated by the
fact that a large part of this article will deal with random dynamical systems generated by
stochastic differential equations (SDEs). Hence, we are interested in random dynamical
systems adapted to a suitable filtration and of white noise type (see “Appendix A.1”).
In this context, we can understand ϕ as the “stochastic flow” induced by solving the
corresponding SDE and θt as a time shift on the canonical space � of all continuous
paths starting at 0, equipped with the Wiener measure.

Additionally note that the RDS generates a skew product flow, i.e. a family of maps
(�t )t∈T from �× X to itself such that for all t ∈ T and ω ∈ �, x ∈ X

�t (ω, x) = (θtω, ϕ(t, ω, x)) . (3.1)

3.1. Differentiability and Lyapunov exponents. The random dynamical system (θ, ϕ) is
called Ck if ϕ(t, ω, ·) ∈ Ck for all t ∈ T and ω ∈ �, where again T ∈ {R, R

+
0}. As

in the deterministic case, let us assume that the state space is X = R
m (the following

can also be extended to smooth m-dimensional manifolds as in “Appendix .1”) and that
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(θ, ϕ) is C1. The linearization or derivative Dϕ(t, ω, x) of ϕ(t, ω, ·) at x ∈ R
m is the

Jacobian m × m matrix

Dϕ(t, ω, x) = ∂ϕ(t, ω, x)

∂x
.

Differentiating the equation

ϕ(t + s, ω, x) = ϕ(t, θsω, ϕ(s, ω, x))

on both sides and applying the chain rule to the right hand side yields

Dϕ(t + s, ω, x) = Dϕ(t, θsω, ϕ(s, ω, x))Dϕ(s, ω, x) = Dϕ(t,�s(ω, x))Dϕ(s, ω, x) ,

i.e. the cocycle property of the fiberwise mappings with respect to the skew product
maps (�t )t∈T (see Eq. (3.1)). Let us further assume that the random dynamical system
possesses an invariant measure μ (see “Appendix .1”). This implies that (�,Dϕ) is a
random dynamical system with linear cocycle Dϕ over the metric dynamical system
(�× R

m,F × B(Rm), (�t )t∈T), see e.g. [1, Proposition 4.2.1].
The main models in this article are stochastic differential equation in Stratonovich

form

dXt = b(Xt )dt +
n∑

i=1
σi (Xt ) ◦ dWi

t , X0 = x ∈ R
m, (3.2)

where Wi
t are independent real valued Brownian motions, b is a Ck vector field, k ≥ 1,

and σ1, . . . , σn are Ck+1 vector fields satisfying bounded growth conditions, as e.g.
(global) Lipschitz continuity, in all derivatives to guarantee the existence of a (global)
random dynamical system for ϕ and Dϕ. We write the equation in Stratonovich form
when differentiation is concerned as the classical rules of calculus are preserved. We
can apply the conversion formula to the Itô integral to obtain the situation of (A.1).
According to [2], the derivative Dϕ(t, ω, x) applied to an initial condition v0 ∈ R

m

solves uniquely the variational equation given by

dv = Db(ϕ(t, ω)x)v dt +
n∑

i=1
Dσi (ϕ(t, ω)x)v ◦ dWi

t , where v ∈ R
m . (3.3)

The hyperbolicity of such a differentiable RDS with ergodic invariant measure μ

and random cycle A is expressed via its Lyapunov spectrum which is given due to the
Multiplicative Ergodic Theorem (MET) (see Theorem A.3 in “Appendix .1”) under the
integrability assumption

sup
0≤t≤1

log+ ‖Dϕ(t, ω, ·)‖ ∈ L1(μ), (3.4)

where ‖Dϕ(t, ω, ·)‖ denotes the operator norm of the Jacobian as a linear operator from
TxR

m to Tϕ(t,ω,x)R
m induced by the Euclidean norm and log+(a) = max{log(a); 0}.

Analogously to the characteristic exponents discussed for the deterministic case in
Sect. 2, the spectrum of p ≤ m Lyapunov exponents λ1 > λ2 > · · · > λp quantifies the
asymptotic exponential rates of infinitesimally close trajectories.
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3.2. Random attractors. Let (θ, ϕ) be a white noise random dynamical system on R
m .

(Note that the following can be formulated more generally in complete metric spaces
(X , d) but that we again restrict ourselves to the Euclidean case for reasons of clarity).
Due to the non-autonomous nature of theRDS, there are no fixed attractors for dissipative
systems and different notions of a random attractor exist. We introduce these related but
different definitions of random attractors in the following, with respect to tempered
sets. Specific random attractors, attracting random cycles, will play a crucial role in the
following chapters. A random variable R : �→ R is called tempered if

lim
t→±∞

1

|t | ln
+ R(θtω) = 0 for almost all ω ∈ �,

see also [1, p. 164]. A set D ∈ F ⊗B(Rm) is called tempered if there exists a tempered
random variable R such that

D(ω) ⊂ BR(ω)(0) for almost all ω ∈ �,

where BR(ω)(0) denotes a ball centered at zero with radius R(ω) and D(ω) := {x ∈
R
m : (ω, x) ∈ D}. D is called compact if D(ω) ⊂ R

m is compact for almost all ω ∈ �.
Denote by D the set of all compact tempered sets D ∈ F ⊗ B(Rm) and by

dist(E, F) := sup
x∈E

inf
y∈F d(x, y)

the Hausdorff seperation or semi-distance, where d denotes again the Euclidean metric.
We now define different notions of a random attractor with respect to a family of sets
S ⊂ D, see also [28, Definition 14.3] and [17, Definition 15].

Definition 3 (Random attractor). The set A ∈ S ⊂ D that is strictly ϕ-invariant, i.e.

ϕ(t, ω)A(ω) = A(θtω) for all t ≥ 0 and almost all ω ∈ �,

is called

(i) A random pullback attractor with respect to S if for all D ∈ S we have

lim
t→∞ dist

(
ϕ(t, θ−tω)D(θ−tω), A(ω)

) = 0 for almost all ω ∈ �,

(ii) A random forward attractor with respect to S if for all D ∈ S we have

lim
t→∞ dist

(
ϕ(t, ω)D(ω), A(θtω)

) = 0 for almost all ω ∈ �,

(iii) A weak random attractor if it satisfies the convergence property in (i) (or (ii)) with
almost sure convergence replaced by convergence in probability,

(iv) A (weak) random (pullback or forward) point attractor if it satisfies the corre-
sponding properties above for S = {D ⊂ R

m : D = {y} for some y ∈ R
m},

i.e. for single points y ∈ R
m .

Note that due to the P-invariance of θt for all t ∈ R, it is easy to derive that weak
attraction in the pullback and the forward sense are the same and, hence, the notion of
a weak random attractor in Definition 3 (iii) is consistent. However, random pullback
attractors and random forward attractors with almost sure convergence, as defined above,
are generally not equivalent (see [38] for counter-examples). In the following, we will
be careful with this distinction, yet in our main examples the random pullback attractor
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and random forward attractor will be the same. In this case we will simply speak of the
random attractor.

Before we introduce random cycles and random periodic solutions, we add some
remarks on Definition 3.

Remark 1. Note that we require that the random attractor is measurable with respect to
F ⊗ B(Rm), in contrast to a weaker statement often used in the literature (see also [17,
Remark 4]).

Remark 2. Inmany cases, the family of setsS is chosen to be the family of all bounded or
compact (deterministic) subsets B ⊂ R

m , as for example in [23]. Note that our definition
of random attractors is a generalization of this weaker definition.

3.2.1. Attracting random cycles and random periodic solutions Consider a random dy-
namical system (θ, ϕ) on R

m . In the situation of a deterministic limit cycle, the limit
cycle is the attractor for all subsets of a neighbourhood of this attractor. Analagously,
we give the following definition for the random setting.

Definition 4 (Attracting Random Cycle). We call a random (forward or pullback) at-
tractor A for (θ, ϕ), with respect to a collection of sets S, an attracting random cycle if
for almost all ω ∈ � we have A(ω) ∼= S1, i.e. every fiber is homeomorphic to the circle.

Furthermore, we need to find a stochastic analogue to the limit cycle as a periodic
orbit. Firstly, we follow [46] for introducing the notion of random periodic solutions:

Definition 5 (Random periodic solution). Let T ∈ {R, R
+
0}. A random periodic solution

is an F-measurable periodic function ψ : �× T → R
m of period T > 0 such that for

all ω ∈ �

ψ(t +T, ω) = ψ(t, ω) and ϕ(t, ω,ψ(t0, ω)) = ψ(t + t0, θtω) for all t, t0 ∈ T . (3.5)

Note that this definition assumes that T ∈ R does not depend on the noise realization
ω. We will see the limitations of that concept in Example 3, extending the following
example which we introduce first.

Example 2. Similarly to [46], consider the planar stochastic differential equation

dx = (
x − y − x

(
x2 + y2

))
dt + σ x ◦ dWt ,

dy = (
x + y − y

(
x2 + y2

))
dt + σ y ◦ dWt .

(3.6)

where σ ≥ 0,Wt denotes a one-dimensional standard Brownian motion and the noise is
of Stratonovich type. We denote the cocycle of the induced random dynamical system
by ϕ = (ϕ1, ϕ2). Equation (3.6) can be transformed into polar coordinates (ϑ, r) ∈
[0, 2π)× [0,∞)

dϑ = 1 dt,
dr = (r − r3) dt + σr ◦ dWt .

(3.7)

Therefore, in the situation without noise (σ = 0), the system is as in Example 1 with
h ≡ 1 and attracting limit cycle at radius r = 1. With noise switched on (σ > 0),
Eq. (3.7) has an explicit unique solution given by

ϕ̂(t, ω, (ϑ0, r0)) =
⎛
⎜⎝ϑ0 + t mod 2π,

r0et+σWt (ω)

(
1 + 2r20

∫ t
0 e

2(s+σWs (ω))ds
)1/2

⎞
⎟⎠

=: (ϑ(t, ω, ϑ0), r(t, ω, r0)) .
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Moreover, there is a stationary solution for the radial component, satisfying r(t, ω, r∗(ω))

= r∗(θtω), and given by

r∗(ω) =
(
2
∫ 0

−∞
e2s+2σWs (ω)ds

)−1/2
. (3.8)

Furthermore, one can see from a straightforward computation that for all (x, y) �= (0, 0)
and almost all ω ∈ �

(
ϕ1(t, θ−tω, x)2 + ϕ2(t, θ−tω, y)2

)1/2 → r∗(ω) as t →∞ ,

and also
(
ϕ1(t, ω, x)2 + ϕ2(t, ω, y)2

)1/2 → r∗(θtω) as t →∞ .

Hence, the planar system (3.6) has a random attractor A in the pullback and forward
sense, with respect to S = D\{{0}}, where D denotes the set of all compact tempered
sets D ∈ F ⊗ B(R2) (see also Sect. .1), and the fibers of A are given by (see Fig. 2)

A(ω) = {r∗(ω)(cosα, sin α) : α ∈ [0, 2π)}. (3.9)

The system possesses, for any fixed ϑ0 ∈ [0, 2π), the random periodic solutionψ which
is defined by

ψ(t, ω) = r∗(ω)(cos(ϑ0 + t), sin(ϑ0 + t)) .

Indeed, it is easy to check that ψ(t, ω) = ψ(t + 2π,ω) and ϕ(t, ω,ψ(t0, ω)) = ψ(t +
t0, θtω) for all t, t0 ≥ 0.

Example 3. (a)Nowconsider a stochastic version ofExample 1when the phase dynamics
depends on the amplitude, i.e.

dϑ = h(r) dt,
dr = (r − r3) dt + σr ◦ dWt ,

(3.10)

where the smooth function h : R → R with h ≥ Kh > 0 is non-constant. The random
attractor A for the corresponding planar system

dx =
(
x − h

(√
x2 + y2

)
y − x

(
x2 + y2

))
dt + σ x ◦ dWt ,

dy =
(
h
(√

x2 + y2
)
x + y − y

(
x2 + y2

))
dt + σ y ◦ dWt .

(3.11)

is exactly the same as before, as illustrated in Fig. 2. We observe for a point a(ω) :=
r∗(ω)(cosϑ0, sin ϑ0) ∈ A(ω), where r∗ is the random variable defined in Eq. (3.8) and
ϑ0 ∈ [0, 2π), that the cocycle satisfies

ϕ(t, ω, a(ω)) = r∗(θtω)

(
cos

(
ϑ0 +

∫ t

0
h(r∗(θsω))ds

)
, sin

(
ϑ0 +

∫ t

0
h(r∗(θsω))ds

))
.

There cannot be a random periodic solution in the sense of Definition 5, since noise-
independent periodicity is not possible if h is non-constant.
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Fig. 2. Numerical simulations in (x, y)-coordinates, using Euler-Marayama integration with step size dt =
10−2, of forward and pullback dynamics of system (3.6) for a set B of initial conditions generated by a
trajectory of (3.6) ((a) and (e)). In (b)–(d), we show the numerical approximation of ϕ(T, ω, B) for some
ω ∈ �, approaching the fiber A(θT ω) of the random attractor, changing in forward time. In (f)–(h), we show
the numerical approximation of ϕ(−T, θ−T ω, B) for some ω ∈ �, approaching the fiber A(ω) of the random
attractor, fixed by the pullback mechanism

(b) Naturally, we can also consider the case where the phase amplitude is additionally
perturbed by noise, i.e.

dϑ = h(r) dt + h̃(r) ◦ dW 2
t ,

dr = (r − r3) dt + σr ◦ dW 1
t ,

(3.12)

where Wt = (W 1
t ,W 2

t ) is now two-dimensional Brownian motion and h, h̃ : R → R

are smooth functions.

Example 3 motivates us to introduce the following notion of a more general form of
random periodic solution. The potential relevance of finding such a generalization was
first discussed by Hans Crauel;1 hence, we have chosen the name.

Definition 6 (Crauel random periodic solution). Let T ∈ {R, R
+
0}. A Crauel random

periodic solution (CRPS) is a pair (ψ, T ) consisting of F-measurable functions ψ :
�× T → R

m and T : �→ R such that for all ω ∈ �

ψ(t, ω) = ψ(t +T (θ−tω), ω) and ϕ(t, ω,ψ(t0, ω)) = ψ(t + t0, θtω) for all t, t0 ∈ T .

(3.13)

In particular, note that condition (3.13) implies ψ(0, ω) = ψ(T (ω), ω) (see Fig. 3
for further details). Furthermore, observe that the classical random periodic solution
according to Definition 5 is simply a Crauel random periodic solution with constant T .
We show that Definition 6 applies to system (3.10), demonstrating the suitability of this
definition.

Proposition 2. (a) The planar system associated with (3.10) has a family of Crauel
random periodic solutions (ψϑ, T ) which is defined for every ϑ ∈ [0, 2π) by

ψϑ(t, ω) = r∗(ω)

(
cos

(
ϑ +

∫ 0

−t
h(r∗(θsω))ds

)
, sin

(
ϑ +

∫ 0

−t
h(r∗(θsω))ds

))
,

(3.14)

1 Through personal communication.
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and ∫ 0

−T (ω)

h(r∗(θsω))ds = 2π , (3.15)

for almost all ω ∈ � and all t ∈ R
+
0 .

(b) The system associated with (3.12) has a family of Crauel random periodic solutions
(ψϑ, T ) which is defined for every ϑ ∈ [0, 2π) by ψϑ analogously to (3.14), just
adding

∫ 0
−t h̃(r∗(θsω)) ◦ dW 2

s (ω) to the angular direction, and

T (ω) = inf

{
t > 0 :

∣∣∣∣
∫ 0

−t
h(r∗(θsω))ds +

∫ 0

−t
h̃(r∗(θsω)) ◦ dW 2

s (ω)

∣∣∣∣ = 2π

}
.

(3.16)
for almost all ω ∈ � and all t ∈ R

+
0 .

Proof. Without loss of generality let ϑ = 0.

(a) The fact that T : �→ R is well defined can be seen as follows: fix ω ∈ � and let

gω(t) =
∫ 0

−t
h(r∗(θsω))ds − 2π.

Then gω(0) < 0 and gω(2π/Kh) > 0 and, hence, the existence of T (ω) follows
from the intermediate value theorem. Moreover, we have by a change of variables
that

2π =
∫ 0

−T (θ−tω)

h(r∗(θs−tω))ds =
∫ −t

−(t+T (θ−tω))

h(r∗(θsω))ds .

We use this observation to conclude that for almost all ω ∈ � and any t ≥ 0

ψ(t + T (θ−tω), ω) = r∗(ω)

(
cos

(∫ 0

−(t+T (θ−tω))

h(r∗(θsω))ds

)
, sin

(∫ 0

−(t+T (θ−tω))

h(r∗(θsω))ds

))

= r∗(ω)

(
cos

(
2π +

∫ 0

−t
h(r∗(θsω))ds

)
, sin

(
2π +

∫ 0

−t
h(r∗(θsω))ds

))

= ψ(t, ω) .

Furthermore, we observe that for almost all ω ∈ � and t, t0 ≥ 0

ϕ(t, ω,ψ(t0, ω)) = r∗(θtω)

(
cos

(∫ t

−t0
h(r∗(θsω))ds

)
, sin

(∫ t

−t0
h(r∗(θsω))ds

))

= r∗(θtω)

(
cos

(∫ 0

−t0−t
h(r∗(θs+tω))ds

)
, sin

(∫ 0

−t0−t
h(r∗(θs+tω))ds

))

= ψ(t + t0, θtω) .

(b) The fact that T : � → R is well defined almost surely in this case follows directly
from the properties of SDEs on compact intervals, in this case [−2π, 2π ]. Moreover,
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Fig. 3. Sketch of Crauel random periodic solutions (CRPS), following two points along the dynamics
from A(θ−tω) via A(ω) to A(θtω). The point ψ(0, θ−tω) is mapped by ϕ(t, θ−tω, ·) to ψ(t, ω) which
is then mapped by ϕ(t, ω, ·) to ψ(2t, θtω), in each case preserving the period T (θ−tω). Similarly, the point
ψ(−t, θ−tω) is mapped by ϕ(t, θ−tω, ·) to ψ(0, ω) which is then mapped by ϕ(t, ω, ·) to ψ(t, θtω), in each
case preserving the period T (ω). The arrows indicate that the CRPS parametrizes the fiber of the attractor as
A(ω) = {ψ(t, ω) : t ∈ [0, T (ω))}

we have by a change of variables that

2π =
∣∣∣∣
∫ 0

−T (θ−tω)

h(r∗(θs−tω))ds +
∫ 0

−T (θ−tω)

h̃(r∗(θs−tω)) ◦ dW 2
s (θ−tω)

∣∣∣∣

=
∣∣∣∣
∫ 0

−T (θ−tω)

h(r∗(θs−tω))ds +
∫ 0

−T (θ−tω)

h̃(r∗(θs−tω)) ◦ dW 2
s−t (ω)

∣∣∣∣

=
∣∣∣∣
∫ −t

−(t+T (θ−tω))

h(r∗(θsω))ds +
∫ −t

−(t+T (θ−tω))

h̃(r∗(θsω)) ◦ dW 2
s (ω)

∣∣∣∣ .

We use this observation to conclude ψ(t + T (θ−tω), ω) = ψ(t, ω) as in (a). Fur-
thermore, we observe that for almost all ω ∈ � and t, t0 ≥ 0

∫ t

−t0
h̃(r∗(θsω)) ◦ dW 2

s (ω) =
∫ 0

−t0−t
h̃(r∗(θs+tω)) ◦ dW 2

s+t (ω)ds

=
∫ 0

−t0−t
h̃(r∗(θs(θtω))) ◦ dW 2

s (θtω)ds ,

such that ϕ(t, ω,ψ(t0, ω)) = ψ(t + t0, θtω) follows as in (a). This finishes the proof.
��

Note that in Example 3, and by that also the simpler subcase Example 2, it is easy to
check that the Lyapunov exponents satisfy λ1 = 0 and λ2 < 0. We want to make three
additional remarks on Proposition 2, also concerning Definition 6.

Remark 3. The proof of Proposition 2 shows why we require ψ(t + T (θ−tω), ω) =
ψ(t, ω) in Definition 6 instead of choosing T (ω) or T (θtω) in such a formula. It is
precisely the relation we obtain from Eqs. (3.14) and (3.15). Instead of Eq. (3.15), one
might alternatively consider

∫ T (ω)

0
h(r∗(θsω))ds = 2π ,
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and replace the time integral inψϑ(t, ω) (3.14) accordingly. However, it is easy to check
that the invariance requirementϕ(t, ω,ψϑ(t0, ω)) = ψϑ(t+t0, θtω) is not satisfied in this
situation. Hence, the choice of period in Definition 6 turns out to be the appropriate one
for an application to Example 3 which we see as the fundamental model for extending
random periodic solutions to noise-dependent periods. Additionally note that, when
h̃ �= 0 in Eq. (3.12), the direction of periodicity depends on the noise realization ω.

Remark 4. Note that for any ϑ ∈ [0, 2π) we have ψϑ(t, ω) ∈ A(ω) for all t ≥ 0,
ω ∈ �, where A is the random attractor given in Eq. (3.9). Hence, we have established
the analogous situation to the deterministic case in the sense that the attracting random
cycle corresponds to a random periodic solution; see also Fig. 3.

Remark 5. One may ask what happens when h, h̃ in Eq. (3.12) also depend on ϑ . Then
there can, of course, still be a CRPS but we do not know a priori the existence of some
stationary processϑ∗ similarly to r∗ whichwe need towrite down for an explicit solution
such as (3.14).

We will see later in Proposition 6 that we can determine E[T (ω)] <∞, using a variant
of the Andronov–Vitt–Pontryagin formula (cf. [40]).

3.2.2. Chaotic random attractors and singletons More generally, i.e., in addition to the
case with first Lyapunov exponent λ1 = 0, we want to consider the situations where
λ1 > 0 and λ1 < 0 (always assuming volume contraction to an attractor expressed by∑

j λ j < 0). Forλ1 < 0, this typicallymeans that the randomattractor is a singleton (see,
for example, [23]) and one speaks of complete synchronization. In such a situation, the
dynamics on the random attractor is trivial, so there is no natural notion of isochronicity.
In the case λ1 > 0, one typically speaks of a chaotic random attractor which is not a
singleton. We can illustrate these two cases by the following example very similar to the
previous ones.

Example 4. Weconsider the following stochastic differential equations onR
2 with purely

external noise of intensity σ ≥ 0,

dx = (x − y − (x − by)(x2 + y2))dt + σ ◦ dW 1
t ,

dy = (y + x − (bx + y)(x2 + y2))dt + σ ◦ dW 2
t ,

(3.17)

where b ∈ R and W 1
t ,W 2

t denote independent one-dimensional Brownian motions. In
polar coordinates the system can be written as

dr =
(
r − r3

)
dt + σ(cosϑ ◦ dW 1

t + sin ϑ ◦ dW 2
t ),

dϑ = (1 + br2) dt +
σ

r
(− sin ϑ ◦ dW 1

t + cosϑ ◦ dW 2
t ). (3.18)

This form illustrates the role of the parameter b inducing a shear force: if b > 0, the phase
velocity dϑ

dt depends on the amplitude r . Since Gaussian random vectors are invariant
under orthogonal transformations, one might think of writing the problems with the
independent Wiener processes

dWr = cosϑ dW 1
t + sin ϑ dW 2

t ,

dWϑ = − sin ϑ dW 1
t + cosϑ dW 2

t .
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However, the pathwise properties of the processes seen as random dynamical systems
change under this transformation. In (3.18), the radial components of the trajectories
depend on ϑ which appears in the diffusion term and destroys the skew-product structure
we had in the previous example 3.

It has been shown in [20] that for b small enough the first Laypunov exponent λ1 < 0
is negative such that the corresponding random attractor A is indeed a singleton. For b
large, one can see numerically that the attractor becomes chaotic. A proof of λ1 > 0
has been obtained in [22] for a simplified model of (4.20) in cylindrical coordinates and
recently also in the setting of restricting the state space on a bounded domain and only
considering the dynamics conditioned on survival in this domain, using a computer-
assisted proof technique [11].

One can characterize chaotic random attractors as non-trivial geometric objects and
supports of SRB measures, i.e. sample measures with densities on unstable manifolds.
For details see [10,29] and for further discussions relevant for our setting e.g. [9,21].
Due to the compactness and the minimality property of random attractors there must be
recurrence on these objects and one may even find Crauel Random Periodic Solutions
there. However, it is questionable to what extent one can speak of isochronicity, given the
very irregular recurrence properties. This already makes isochronicity a difficult issue
for deterministic chaotic oscillators, see e.g. [42].

3.3. Random limit cycles as normally hyperbolic random invariant manifolds. As we
have seen in Sect. 3.2.2, we can generally not expect the persistence of periodic orbits
from the deterministic to the stochastic case under (global) white noise perturbations.
A point of view that is only considering local, bounded noise perurbations of normally
hyperbolic manifolds, i.e. implicitly also hyperbolic limit cycles, is presented in [30],
where normally hyperbolic random invariant manifolds and their foliations are studied.
Inmore details, consider theODE (2.1)with a small randomperturbation, i.e. the random
differential equation

ẋ = f (x) + εF(θtω, x), (3.19)

where ε > 0 is a small parameter and F is C1, uniformly bounded in x , C0 in t for
fixed ω, and measurable in ω. In several cases, SDEs can be transformed into a random
differential Eq. (3.19), in particular when the noise is additive or linear multiplicative;
however, in this case, F is generally not uniformly bounded. Hence, for an application
of the following, one has to truncate the Brownian motion by a fixed large constant, as
we will discuss later. Let us firstly give the following definition:

Definition 7. Arandom invariantmanifold for anRDS is a collection of nonempty closed
random setsM(ω), ω ∈ �, such that each M(ω) is a manifold and

ϕ(t, ω,M(ω)) =M(θtω) for all t ∈ R, ω ∈ �.

The random invariant manifold M is called normally hyperbolic if for almost every
ω ∈ � and any x ∈M(ω), there exists a splitting which is C0 in x and measurable:

R
m = Eu(ω, x)⊕ Ec(ω, x)⊕ Es(ω, x)

of closed subspaces with associated projections �u(ω, x),�c(ω, x) and �s(ω, x) such
that
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(i) the splitting is invariant

Dϕ(t, ω, x)Ei (ω, x) = Ei (θtω, ϕ(t, ω, x)), for i = u, c,

and

Dϕ(t, ω, x)Es(ω, x) ⊂ Es(θtω, ϕ(t, ω, x)),

(ii) Dϕ(t, ω, x)|Ei (ω,x) : Ei (ω, x) → Ei (θtω, ϕ(t, ω, x)) is an isomorhpism for i =
u, c, s and Ec(ω, x) is the tangent space ofM(ω) at x ,

(iii) there are (θ, ϕ)-invariant random variables ᾱ, β̄ : M → (0,∞), ᾱ < β̄, and a
tempered random variable K (ω, x) :M→ [1,∞) such that

‖Dϕ(t, ω, x)�s(ω, x)‖ ≤ K (ω, x)e−β̄(ω,x)t for t ≥ 0, (3.20)

‖Dϕ(t, ω, x)�u(ω, x)‖ ≤ K (ω, x)eβ̄(ω,x)t for t ≤ 0, (3.21)

‖Dϕ(t, ω, x)�c(ω, x)‖ ≤ K (ω, x)eᾱ(ω,x)|t | for −∞ < t <∞. (3.22)

We can then deduce the following statements:

Proposition 3. Assume that	 is aCk flow, k ≥ 1, inR
m which has a hyperbolic periodic

orbit γ , with exponents ᾱ = 0 < β̄ characterizing the normal hyperbolicity as in (3.20),
(3.22). Then there exists a δ > 0 such that for any random C1 flow ϕ(t, ω, ·) in R

m, as
for example induced by an RDE (3.19), with

‖	(t, ·)− ϕ(t, ω, ·)‖C1 < δ, for all t ∈ [0, 1], ω ∈ �,

we have that

(i) The randomflowϕ(t, ω, ·) has aC1 normally hyperbolic invaraint randommanifold
M(ω) in a small neighbourhood of γ ,

(ii) If ϕ(t, ω, ·) is Ck, thenM(ω) is a Ck manifold diffeomorphic to γ for each ω ∈ �,
(iii) There exists a stable manifold Ws(ω) of M(ω) under ϕ(t, ω, ·), i.e. for all x ∈

Ws(ω)

lim
t→∞ dist

(
ϕ(t, ω, x),M(θtω)

) = 0 for almost all ω ∈ �

(iv) The manifold M(ω) is, in fact, a random limit cycle in the sense of Definition 4.

Proof. The statements (i)–(iii) follow directly from [30, Theorem 2.2]. It is clear from
(iii) thatM(ω) is a random forward attractor with respect to the collectionS of tempered
random setswhose fibers S(ω) are contained inWs(ω). Additionally, from (ii), it follows
directly that M(ω) is diffeomorphic to the unit circle, and, hence, we can conclude
statement (iv). ��

4. Random Isochrons

4.1. Isochrons as stable manifolds.
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4.1.1. Definition of forward isochrons Let A be an attracting random cycle for the
random dynamical system (θ, ϕ) where A is a random forward attractor (and possibly
also a random pullback attractor). One may think of equations of the type (3.12), (3.18)
or similar such that almost sure forward and pullback convergence coincide (see e.g.
[20, Proof of Theorem B] or [38, Example 2.7 (i)]). We further assume that we are in
the situation of a differentiable hyperbolic random dynamical system as discussed in
Sect. 3.1.

In the typical setting of attracting random cycles, we may assume that λ1 = 0 with
single multiplicity and λi < 0 for all 2 ≤ i ≤ p. In analogy to the stable manifolds
of points on a deterministic limit cycle, we can then establish the following key novel
definition (see also Fig. 4).

Definition 8. The random forward isochron W f(ω, x) of a pair (ω, x) ∈ �× R
m with

x ∈ A(ω) is given by the stable set

W f(ω, x) :=
{
y ∈ R

m : lim
t→+∞ d(ϕ(t, ω, y), ϕ(t, ω, x)) = 0

}
, (4.1)

for almost all ω ∈ � and all x ∈ A(ω). In particular, we have for all λ̃ ∈ (0,−λ2),
where λ2 denotes the largest nonzero Lyapunov exponent,

W f(ω, x) =
{
y ∈ R

m : sup
t≥0

eλ̃td(ϕ(t, ω, y), ϕ(t, ω, x)) <∞
}

. (4.2)

Remark 6. It is clear from the definition why we exclude the case λ1 < 0. In this
situation, the set W f(ω, x) is the whole absorbing set and, hence, no information about
the decomposition of the state space by the dynamics can be obtained that way.

As indicated in Sect. 3.2.2, a chaotic random attractor, characterized by λ1 > 0, also
exhibits recurrence properties such thatDefinition 8 can principally be also applied to this
situation. However, it is arguable to what extent one can speak of isochronicity, given
the irregular recurrence properties. Since this already makes isochronicity a difficult
issue for deterministic chaotic oscillators [42], we leave a detailed analysis of random
isochrons for chaotic random attractors as a topic for future work.

It is easy to observe that for all s ≥ 0 we have

ϕ(s, ω)W f(ω, x) = W f(θsω, ϕ(s, ω, x)), (4.3)

i.e. the forward isochrons are ϕ-invariant, as depicted in Fig. 4.

4.1.2. Existence and properties of random stable sets In the literature on (global) ran-
domdynamical systems, the existence of stable sets such asW f(ω, x) as stablemanifolds
is often first established for discrete time, see e.g. [36] or [32, Chapter III]. (Arnolds
treatment [1, Chapter 7] is limited to equilibria.) Even though the local view in [30],
as described in Sect. 3.3, is different, we need to also account for the global situation
in order to provide the full picture. Hence, we begin with adopting the discrete-time
approach by reducing the analysis to time-one maps ϕ(1, ω, ·) and its concatenations

ϕ(n, ω, x) = (ϕ(1, θn−1ω, ·) ◦ ϕ(1, θn−2ω, ·) ◦ · · · ◦ ϕ(1, ω, ·))(x), n ∈ N . (4.4)
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Fig. 4. Sketch of isochrons W f(ω, x) at A(ω) and W f(θtω, ϕ(t, ω, x)) at A(θtω) as an illustration of Defini-
tion 8 and the invariance relation (4.3), for A(ω) being a random limit cycle

First we want to conclude for all λ̃ ∈ (0,−λ2) that

W̃ s(ω, x) :=
{
y ∈ R

m : sup
n≥0

eλ̃nd(ϕ(n, ω, y), ϕ(n, ω, x)) <∞
}

(4.5)

is an (m − 1)-dimensional immersed Ck-submanifold under sufficient boundedness
assumptions which would be immediately satisfied if the state space X is a compact
manifold (cf. [32,Chapter III, Theorem3.2]).Wewill state such conditions for our setting
X = R

m in the following. The transition to the time-continuous case, i.e. establishing
W f(ω, x) = W̃ s(ω, x), then follows immediately from the integrability assumption (3.4)
for the MET, as one can observe with the proof of [32, Chapter V, Theorem 2.2].

One possible approach can be found in [9]: consider the maps (4.4). For x ∈ R
m , we

define the local linear shift function

fx : R
m ∼= TxR

m → R
m, y �→ fx (y) := x + y .

Further, we define the map

F(ω,x),n : Tϕ(n,ω,x)R
m → Tϕ(n+1,ω,x)R

m;
F(ω,x),n := f −1ϕ(n+1,ω,x) ◦ ϕ(1, θnω, ·) ◦ fϕ(n,ω,x) ,

which is the evolution process of the linearization around the trajectory starting at x ∈
R
m . Assume that there is an invariant probability measure P × ρ for (�t )t≥0 on (� ×

R
m,F∞0 × B(Rm)) (see “Appendix A.1” and .1). If the RDS is induced by an SDE,

the measure ρ is exactly the stationary measure of the associated Markov process. The
integrability condition of the MET with respect to this measure reads

log+ ‖Dϕ(1, ω, ·)‖ ∈ L1(P× ρ) . (4.6)

The crucial boundedness assumption that compensates for the lack of compactness in
the proof of a stable manifold theorem reads

log

(
sup

ξ∈B1(x)
‖D2

ξ F(ω,x),0‖
)
∈ L1(P× ρ) , (4.7)
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whereD2 is the second derivative operator and B1(x) denotes the ball of radius 1 centered
at x ∈ R

m .
In the situation where the maps (4.4) of the discrete-time RDS are the time-one maps

of the continuous-time RDS induced by the SDE (3.2) with the stationary distribution
fulfilling ∫

Rm
log(‖x‖ + 1)1/2 dρ(x) <∞ , (4.8)

we have the following requirements on b, σi ∈ Ck+1, 1 ≤ i ≤ n, k ≥ 2, such that
assumption (4.7) is satisfied:

‖b‖k,δ +
n∑

i=1
‖σi‖k,δ <∞ , (4.9)

where 0 < δ ≤ 1 and with multi index notation α = (α1, . . . , αm), |α| = ∑m
i=1 |αi |,

for f ∈ Ck

‖ f ‖k,δ = sup
x∈Rm

‖ f (x)‖
1 + ‖x‖ +

∑
1≤|α|≤k

sup
x∈Rm

‖Dα f (x)‖ +
∑
|α|=k

sup
x �=y

‖Dα f (x)− Dα f (y)‖
‖x − y‖δ .

(4.10)
This means that the coefficients of the SDE have at most linear growth, globally bounded
derivatives and the k-th derivatives have bounded δ-Hölder norm. In [9], also the back-
ward flow and a condition similar to (4.7) for the inverse are considered, but these are
not needed when we purely regard the stable manifold problem. These conditions on the
drift b are generally too restrictive since already examples (3.6), (3.10) and (3.11) are
not covered. Of course, one can always consider the dynamics on a compact domain K,
with absorbing or reflecting boundary conditions at the boundary of the domain, as will
see later in Sect. 4.3 for the averaged problem on the level of the Kolmogorov equations.
However, this involves further technicalities for the random dynamical systems approach
which we try to avoid here. The easiest way of reduction to a compact domain K is to
assume compact support of the noise and absorption to K through the drift dynamics
such that neither global nor boundary conditions are needed (see Theorem 2 (iii)).

Additionally we consider [23, Section 3] which discusses conditions for synchro-
nization to a singleton random attractor for random dynamical systems induced by an
SDE (3.2) with additive noise, i.e. n = m and, for all 1 ≤ i, j ≤ n, σ j

i = σδi, j where

σ > 0 and σ
j
i denotes the j-th entry of the vector σi . The authors formulate a special lo-

cal stable manifold theorem for the case λ1 < 0, which is, however, based on [36] where
stable manifold theorems are considered in full generality. The assumption for deducing
the local stable manifold theorem amounts to a (weaker) combination of conditions (4.6)
and (4.7), and reads

E

∫

Rm
log+ ‖ϕ(1, ω, · + x)− ϕ(1, ω, x)‖C1,δ (B1(0))

dρ(x) <∞ , (4.11)

where C1,δ is the space of C1-functions whose derivatives are δ-Hölder continuous for
some δ ∈ (0, 1) and ρ denotes the stationary measure of the associated Markov process.
We introduce a classical dissipativity condition, the one-sided Lipschitz condition

〈b(x)− b(y), x − y〉 ≤ κ ‖x − y‖2 , (4.12)
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for all x, y ∈ R
m and κ > 0. According to [23, Lemma 3.9], condition (4.11) is satisfied

in the case of additive noise if b ∈ C2(Rm) fulfills (4.12), admits at most polynomial
growth of the second derivative, i.e.

∥∥∥D2b(x)
∥∥∥ ≤ C(‖x‖M + 1) for all x ∈ R

m and some C > 0, M ∈ N , (4.13)

and the stationary distribution ρ satisfies
∫

Rm
log+(‖x‖)dρ(x) <∞ . (4.14)

4.1.3. Main theorem about random isochrons Assumptions (4.12) and (4.13) on the
drift are weaker than condition (4.9) but, in [23], only applied to situations with additive
noise whereas at least linear multiplicative noise as in (3.10) is a desirable model for
random periodicity. We address this issue in Remark 7 and point (iii) of the following
theorem, which summarizes the findings from above:

Theorem 2 (Forward isochrons are stable manifolds). Consider an ergodic Ck, k ≥
2, random dynamical system (θ, ϕ) on Rm with random attractor A, satisfying the
integrability assumption (3.4) of the Multiplicative Ergodic Theorem such that λ1 = 0
with single multiplicity and λi < 0 for all 2 ≤ i ≤ p. Let further one of the following
assumptions be satisfied:

(i) TheRDS (θ, ϕ) is induced by an SDEof the form (3.2) such that the unique stationary
measure ρ satisfies (4.8) and the drift and diffusion coefficients satisfy (4.9),

(ii) The RDS (θ, ϕ) is induced by an SDE of the form (3.2) with n = m and, for all
1 ≤ i, j ≤ n, σ j

i = σδi, j where σ > 0, such that the unique stationary measure ρ

satisfies (4.14) and the drift satisfies conditions (4.12) and (4.13),
(iii) The RDS (θ, ϕ) is induced by an SDE of the form (3.2) such that supp(σ ) ⊂ R

m

is compact, the drift b satisfies condition (4.12) with κ < 0 for all ‖x‖, ‖y‖ > R
for some R > 0 and there is a unique stationary measure ρ with supp(ρ) ⊂ R

m

compact.
(iv) The RDS satisfies the conditions of Proposition 3.

Then for almost all ω ∈ � and all x ∈ A(ω) the random forward isochrons W f(ω, x)
(see (4.2)) are a uniquely determined Ck−1 in x family of Ck (m − 1)-dimensional
submanifolds (at least locally, i.e. within a neighbourhood U of x) of the stable manifold
Ws(ω) such that

Ws(ω) = ∪x∈A(ω)W
f(ω, x),

where the union is disjoint.

Proof. As already discussed, in most of the cited literature, the stable manifold the-
orem is shown for discrete time. However, the transition to the time-continuous case,
i.e. establishing W f(ω, x) = W̃ s(ω, x), follows immediately from the integrability as-
sumption (3.4) for theMET, as one can observewith the proof of [32,ChapterV, Theorem
2.2]. Hence, the fact that the sets W f(ω, x) are a uniquely determined Ck−1 in x family
of Ck (m− 1)-dimensional submanifolds of the stable manifoldWs(ω) can be deduced
in various situations as follows:

Assumption (i) is derived from [9, Theorem 4.7 and Theorem 9.1], where W f(ω, x)
are global stable manifolds. Assumption (ii) is derived from [23, Lemma 3.9] showing
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that the conditions for the local stable manifold theorem [36, Theorem 5.1] are satisfied,
i.e.W f(ω, x) is aCk submanifold ofR

m of dimensionm−1, at least within a neighbour-
hood U of x . Furthermore, it is obvious from the assumptions that condition (4.11) is
satisfied and, hence, assumption (iii) is derived similarly to assumption (ii). Assmuption
(iv) can be taken according to [30, Theorem 2.4].

This leaves to prove the foliation property in all these cases: the proof that

Ws(ω) = ∪x∈A(ω)W
f(ω, x),

can be deducted in direct analogy to the proof of [30, Proposition 9 (iv)]. The fact that
the union is disjoint can be seen as follows: assume there is a y ∈ W f(ω, x)∩W f(ω, x ′)
for x �= x ′. Since A(ω) is an invariant hyperbolic limit cycle and x, x ′ ∈ A(ω), we have
that d(ϕ(t, ω, x), ϕ(t, ω, x ′)) ≥ δ > 0 for all t ≥ 0. Hence, we obtain by definition of
W f and the triangle inequality that

1 ≤ d(ϕ(t, ω, x), ϕ(t, ω, y)) + d(ϕ(t, ω, y), ϕ(t, ω, x ′))
d(ϕ(t, ω, x), ϕ(t, ω, x ′))

→ 0,

which is a contradiction (see proof of [30, Proposition 9 (iii)] for a similar argument).
��
Remark 7. (i) One could also try to extend Theorem 2 (ii) to the situation with any

diffusion coefficients satisfying (4.9) instead of only additive noise. For showing
this, first notice that under the assumptions on σ the drift b̂ = b + b0 with the
Itô-Stratonovich-conversion term

b0 := 1

2

n∑
i=1

m∑
j=1

σ
j
i

∂

∂x j
σi

still satisfies assumptions (4.12) and (4.13). Due to the mild behaviour (4.9) of
the diffusion coefficients, one could then try to make analogous estimates as in [23,
Lemma3.9] to induce that condition (4.11) is satisfied. Sincewe aremainly interested
in the local behavior, we refrain from conducting such estimates here, but point out
that this would be an interesting general extension.

(ii) Consider the example Eq. (3.11) (and by that Eq. (3.10)): the drift b is polynomial
such that condition (4.13) is satisfied and we have

〈b(x)− b(y), x − y〉 = ‖x − y‖2 − ‖x‖4 − ‖y‖4 + 〈x, y〉(‖x‖2 + ‖y‖2))
= ‖x − y‖2 − ‖x‖4 − ‖y‖4 + 1

2
(‖x‖2 + ‖y‖2)2

− 1

2
(‖x‖2 + ‖y‖2)‖x − y‖2

=
(
1− 1

2
(‖x‖2 + ‖y‖2)

)
‖x − y‖2 − 1

2
(‖x‖2 − ‖y‖2)2

≤ ‖x − y‖2. (4.15)

Hence, also condition (4.12) is satisfied. Furthermore, the unique stationary distri-
bution ρ has a density

p(x, y) = 1

Z

(
x2 + y2

) 1
σ2
−1

exp

(
− x2 + y2

σ 2

)
, (4.16)
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solving the stationary Fokker-Planck equation. Hence, also condition (4.14) is ful-
filled. Since the noise term is linear, we obviously have

∑n
i=1 ‖σi‖k,δ < ∞ for all

k ≥ 2, δ ∈ (0, 1]. Hence, we could deduce the assertions of Theorem 2 if we had
proven the extension as discussed in (i).

However, for our purposes, this is not necessary: we additionally have, using the same
transformation as in estimate (4.15), that for R = √3 and ‖x‖, ‖y‖ > R

〈b(x)− b(y), x − y〉 ≤
(
1− 1

2
(‖x‖2 + ‖y‖2)

)
‖x − y‖2

≤ −κ‖x − y‖2,
where κ = R2/2 − 1. Now choosing a smooth cut-off of σ , say σ̃ , such that σ = σ̃

on BR∗(0) for some large R∗ > R and σ̃ ≡ 0 on R
m\BR∗+1(0), we obtain a stationary

density p̃ with p̃ = p/Z̃ on BR∗(0), where Z̃ > 0 is a normalization constant, and
p̃ ≡ 0 on R

m\BR∗+1(0). Hence, we can apply Theorem 2 (iii). In particular, note that
this construction allows, when σ̃ is small enough, for a transformation into the random
ODE (3.19) with sufficiently small bounded noise such that Proposition 3 and, by that,
Theorem 2 (iv) can be applied. This procedure is, of course, independent from the
particular form of Eq. (3.11) and can be used for any SDEs around deterministic limit
cycles when the transformation into the randomODE (3.19) is possible (which is always
the case for additive and linear multiplicative noise).

Given (4.2), we further assume that there exists a Crauel random periodic solution
(ψ, T ) such that ψ(t, ω) ∈ A(ω) for all ω ∈ � and t ≥ 0, as for example seen in
Proposition 2. Then we can investigate the behaviour of

W f(ω,ψ(0, ω)) =
{
y ∈ R

m : lim
t→+∞ d(ϕ(t, ω, y), ψ(t, θtω)) = 0

}
.

If, as in Proposition 2, each x ∈ A(ω) can be identified asψx (ω, 0) for some Crauel ran-
dom periodic solution, then Tx (ω) is the period we can associate withW f(ω,ψx (0, ω)).
We summarize this insight in the following definition:

Definition 9 (Period of random forward isochron). Let (ψ, T ) be a Crauel random pe-
riodic solution for the RDS (θ, ϕ) such that ψ(t, ω) ∈ A(ω) for all ω ∈ � and t ≥ 0,
where A is an attracting random cycle or chaotic random attractor. Then the we call
T (ω) the period of the corresponding random forward isochron W f(ω,ψ(0, ω)) for all
ω ∈ �.

The natural question arises whether

ϕ(Tx (ω), ω,Nx (ω)) ⊂ Nx (θTx (ω)ω)

holds for some measurable family Nx (ω) of cross-sections, in particular, whether we
can identify Nx (ω) = W f(ω,ψx (0, ω)). What we observe, is the following:

Proposition 4. Let (θ, ϕ) be a random dynamical system with random attractor A and
the isochrons W f(ω, x) as given in (4.1) such that each x ∈ A(ω) can be identified with
ψx (0, ω) for some Crauel random periodic solution (ψx , Tx ). Then we have

ϕ(Tx (ω), ω,W f(ω,ψx (0, ω))) ⊂ W f(θTx (ω)ω,ψx (Tx (ω), θTx (ω)ω)). (4.17)



1626 M. Engel, C. Kuehn

Proof. Let y ∈ W f(ω,ψx (0, ω)). Then

lim
t→+∞ d(ϕ(t, θTx (ω)ω, ϕ(Tx (ω), ω, y)), ψx (t + Tx (ω), θt+Tx (ω)ω))

= lim
t→+∞ d(ϕ(Tx (ω) + t, ω, y), ψx (t + Tx (ω), θt+Tx (ω)ω))

= lim
s→+∞ d(ϕ(s, ω, y), ψx (s, θsω)) = 0.

Hence, the statement follows directly. ��

4.1.4. Pullback isochrons In analogy to the different notions of a random attractor, one
could also consider defining fiberwise isochrons for random dynamical systems in a
pullback sense, as follows:

Again assume there is a Crauel random periodic solution (ψ, T ) on an attracting
random cycle A (or chaotic random attractor A). Then the random pullback isochrons
could only be defined as

W p(ω,ψ(0, ω)) :=
{
y ∈ R

m : lim
t→+∞ d(ϕ(t, θ−tω, y), ϕ(t, θ−tω,ψ(0, θ−tω)) = 0

}

=
{
y ∈ R

m : lim
t→+∞ d(ϕ(t, θ−tω, y), ψ(t, ω)) = 0

}
, (4.18)

for almost all ω ∈ �.
In contrast to the random forward isochronW f(ω,ψ(0, ω)), the setW p(ω,ψ(0, ω))

is not given as a stable set for the point ψ(0, ω) but as the set of points whose pullback
trajectories converge to the trajectories starting in ψ(0, θ−tω) as t →∞. Hence, such a
definition cannot coincide with a stable manifold for a given point on a given fiber of the
random attractor and, in particular, there does not seem to be a way to connect the set
W p(ω,ψ(0, ω)) to the setW f(ω,ψ(0, ω)). In other words, it is not clear what geometric
interpretation such a random pullback isochron could have and it is apparent that the
definition in forward time, i.e. Definition 8, yields the most immediately meaningful
object in this context.

4.2. The random isochron map. For the following, recall the stochastic differential
Eq. (3.2) as

dXt = b(Xt )dt +
n∑

i=1
σi (Xt ) ◦ dWi

t , X0 = x, (4.19)

where Wi
t are independent real valued Brownian motions, b is a Ck vector field, k ≥ 1,

and σ1, . . . , σn are Ck+1 vector fields satisfying bounded growth conditions, as e.g.
(global) Lipschitz continuity, in all derivatives to guarantee the existence of a (global)
random dynamical system with cocycle ϕ and derivative cocycle Dϕ.

Example 5. As before, the main examples we have in mind are two-dimensional. In
particular, we may consider the corresponding stochastic differential equation in polar
coordinates (ϑ, r) ∈ [0, 2π)× [0,∞)

dϑ = f1(ϑ, r) dt + σ1g1(ϑ, r) ◦ dW 1
t ,

dr = f2(ϑ, r) dt + σ2g2(ϑ, r) ◦ dW 2
t .

(4.20)

As in Examples 3 and 4, we usually regard a situation such that in the deterministic case
σ1 = σ2 = 0 there is an attracting limit cycle at r = r∗ > 0.
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From Theorem 1 recall the isochron map ξ : W s(γ ) → R mod τγ for a limit
cycle γ with period τγ , which is given for every y ∈ W s(γ ) as the unique t such that
y ∈ W s(γ (t)), i.e.

lim
s→+∞ d(	(γ (ξ(y)), s),	(y, s)) = lim

s→+∞ d(γ (s + ξ(y)),	(y, s)) = 0 .

Analogously, we now introduce the following new notion for the random case; recall
that for a CRPS (ψ, T )we have, in particular, thatψ(0, ω) = ψ(T (ω), ω) for allω ∈ �.

Theorem 3. Consider the SDE (4.19) such that the induced RDS has a random attractor
A with CRPS (ψ, T ) and parametrization A(ω) = {ψ(t + s, ω) : t ∈ [0, T (θ−sω))}
for all ω ∈ �, s ∈ R. Then

1. There exists the random isochron map φ̃, i.e. a measurable function φ̃ : R
m ×�×

R → R, Ck in the phase space variable, such that in a neighbourhood U(ω) of A(ω)

we have

φ̃(·, ω, s) : U(ω)→ [s, s + T (θ−sω))

and for each y ∈ U(ω), s ∈ R

lim
t→+∞ d(ϕ(t, ω, y), ϕ(t, ω,ψ(φ̃(y, ω, s), ω)))

= lim
t→+∞ d(ϕ(t, ω, y), ψ(t + φ̃(y, ω, s), θtω)) = 0, (4.21)

2. For any ω ∈ �, s ∈ R and t ∈ [0, T (θ−sω)), the random φ̃-isochron Ĩ (ω,ψ(t +
s, ω), s) given by

Ĩ (ω,ψ(t + s, ω), s) = {y ∈ U(ω) : φ̃(y, ω, s) = φ̃(ψ(t + s, ω), ω, s)} (4.22)

satisfies
Ĩ (ω,ψ(t + s, ω), s) = W f(ω,ψ(t + s, ω)). (4.23)

3. For any ω ∈ �, s ∈ R and y ∈ U(ω)

φ̃(ϕ(s, ω, y), θsω, s) = φ̃(y, ω, 0) + s , (4.24)

or, equivalently,
d

ds
φ̃(ϕ(s, ω, y), θsω, s) = 1. (4.25)

Proof. Since A(ω) is a random attractor, we have that for given y ∈ U(ω) there is an
x ∈ A(ω) such that y ∈ W f(ω, x). Due to the assumptions, for any s ∈ R there is
a tx ∈ [0, T (θ−sω)) such that x = ψ(s + tx , ω). Then φ̃(y, ω, s) := tx + s satisfies
the required properties, where measurability follows from the measurability of T and,
writing t = tx , differentiability from

Ĩ (ω,ψ(t + s, ω), s) = W f(ω,ψ(t + s, ω)),

which can be deduced as follows: we have y ∈ Ĩ (ω,ψ(t + s, ω), s) if and only if
φ̃(y, ω, s) = φ̃(ψ(t + s, ω), ω, s) = t + s which, according to Eq. (4.21), is equivalent
to

lim
r→+∞ d(ϕ(r, ω, y), ϕ(r, ω,ψ(t + s, ω))) = 0,
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which is the case if and only if y ∈ W f(ω,ψ(t + s, ω)).
It remains to show the third point: firstly, we derive from the invariance of the stable

manifolds and equality (4.23) that

ϕ(s, ω, ·) Ĩ (ω,ψ(t, ω), 0) = ϕ(s, ω, ·)W f(ω,ψ(t, ω))

= W f(θsω,ψ(t + s, θsω)) = Ĩ (θsω,ψ(t + s, θsω), s) . (4.26)

This means that for x ∈ U(θsω) we have that x = ϕ(s, ω, y) for some y ∈ U(ω) with
φ̃(y, ω, 0) = t ∈ [0, T (ω)) if and only if

φ̃(x, θsω, s) = φ̃(ψ(t + s, θsω), θsω, s) = t + s .

Hence, we obtain Eq. (4.24), or equivalently Eq. (4.25), for any y ∈ U(ω). ��
Note that, due to the time dependence, we always give the image of the random isochron
map φ̃(·, ω, s) as an interval [s, s + T (θ−sω)), in distinction from the deterministic case
where the values of the isochron map ξ lie in R mod τγ , which can be identified with
[0, τγ ), for fixed period τγ (see Proposition 1).We are adding a couple of further remarks
to the last theorem in order to highlight its coherence with the above and the analogy to
the deterministic case.

Remark 8. (i) As seen in theproof ofTheorem3, note that for all s ∈ R, t ∈ [0, T (θ−sω))

φ̃(ψ(t + s, ω), ω, s) = t + s, (4.27)

and, in particular,

φ̃(ϕ(t, θ−tω,ψ(0, θ−tω)), θt (θ−tω), 0) = φ̃(ψ(t, ω), ω, 0) = t for all t ∈ [0, T (ω)).

(4.28)
Additionally, observe that the parametrization of the random attractor in Theorem 3
is generally possible when there is a CRPS; with Definition 6 we have for all s ≥ 0
that ψ(s + T (ω), θsω) = ψ(s, θsω) and, hence, we can also consider

A(θsω) = {ψ(t + s, θsω) : t ∈ [0, T (ω))},
for which we find, for t ∈ [0, T (ω)),

φ̃(·, θsω, s) : U(θsω) → [s, s + T (ω)), φ̃(ψ(t + s, θsω), θsω, s) = t + s.

(ii) From Proposition 1 recall that the isochron map ξ : W s(γ ) → R mod τγ for a
deterministic limit cycle γ satisfies Eq. (2.7)

d

dt
ξ(	(y, t)) = 1 for all t ≥ 0, y ∈ W s(γ ) .

Equation (4.25) is the analogous equation for the random dynamical system.
(iii) In certain cases, it may be convenient to anchor the random φ̃-isochrons at the

deterministic limit cycle to compare with the averaging approaches from the physics
literature later on. Consider for example the SDE (4.20) with attracting limit cycle
at r = r∗ > 0 in the deterministic case σ1 = σ2 = 0. We can then write the random
isochron map φ̃ : [0, 2π)× [0,∞)×�× R → R such that in a neighbourhood U
of the circle {r = r∗} we have

φ̃(·, ω, s) : U → [s, s + T (θ−sω))
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and, based on Eqs. (4.25) and (4.24),

φ̃(ϕ(s, ω, (ϑ0, r0)), θsω, s) = φ̃((ϑ0, r0), ω, 0) + s , (4.29)

or equivalently
d φ̃(ϕ(s, ω, (ϑ0, r0)), θsω, s) = 1 ds , (4.30)

for any (ϑ0, r0) ∈ U , s ∈ R and ω ∈ �. For any ϑ ∈ [0, 2π), s ∈ R and ω ∈ �, we
can write Ĩϑ(ω, s) for the level set

Ĩϑ(ω, s) = {(ϑ̃, r̃) ∈ U : φ̃((ϑ̃, r̃), ω, s) = φ̃((ϑ, r∗), ω, s)}. (4.31)

Following Theorem 3, we can simply define isochrons for any point x ∈ U(ω) by
setting

Ĩ (ω, x, s) := Ĩ (ω,ψ(t + s, ω), s) for x ∈ Ĩ (ω,ψ(t + s, ω), s), t ∈ [0, T (θ−sω)) .

(4.32)
We can then show the invariance of Ĩ (ω, x, 0) under the RDS, similarly to the invari-

ance property (4.3) of the forward isochrons, extending property (4.26) to any x ∈ U(ω).

Proposition 5. The random φ̃-isochrons Ĩ (ω, x, 0) for x ∈ U(ω) where U(ω) is an
attracting neighbourhood of A(ω), are forward-invariant under the RDS cocycle, i.e.

ϕ(s, ω) Ĩ (ω, x, 0) ⊂ Ĩ (θsω, ϕ(s, ω, x), s) for almost all ω∈� and all x ∈U(ω), s≥0.
(4.33)

Proof. Let y ∈ ϕ(s, ω) Ĩ (ω, x, 0). This means that there is a z ∈ R
m such that y =

ϕ(s, ω, z) and φ̃(z, ω, 0) = φ̃(x, ω, 0). We obtain from Eq. (4.24) that

φ̃(y, θsω, s) = φ̃(ϕ(s, ω, z), θsω, s)

= φ̃(z, ω, 0) + s

= φ̃(x, ω, 0) + s

= φ̃(ϕ(s, ω, x), θsω, s).

Hence, we have y ∈ Ĩ (θsω, ϕ(s, ω, x), s) and therefore

ϕ(s, ω) Ĩ (ω, x, 0) ⊂ Ĩ (θsω, ϕ(s, ω, x), s).

This finishes the proof. ��

4.3. Stochastic isochrons via mean return time and random isochrons. One main ap-
proach to define stochastic isochrons in the physics literature is due to Schwabedal and
Pikovsky [41] who introduce isochrons (or isophase surfaces) for noisy systems as sec-
tionsWE(x) with the mean first return time to the same sectionWE(x) being a constant
T̄ , equaling the average oscillation period. Note that such an object is not well-defined
a priori as it seems unclear, what we imply here by “return”, i.e., return to what? The
paper does not rigorously establish these objects but only gives a numerical algorithm
which is successfully tested at the hand of several examples. According to the algorithm,
a deterministic starting section N is adjusted according to the mean return time, i.e.,
points are moved correspondent to the mismatch of their return time and the mean period
for N , and this procedure is repeated until all points have the same mean return time.
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4.3.1. The modified Andronov–Vitt–Pontryagin formula in [13] Cao, Lindner and
Thomas [13] have made this approach rigorous by using a modified version of the
Andronov–Vitt–Pontryagin formula for the mean first passage time (MFPT) τD on a
bounded domain D through its boundary ∂D. In more detail (cf. [40, Chapter 4.4]), the
associated boundary value problem for L denoting the generator of the process, also
called backward Kolmogorov operator, is given by

Lu(x) = −1 for all x ∈ D, u(x) = 0 for all x ∈ ∂D, (4.34)

which is solved by

u(x) = E[τD|x(0) = x].

The problem in our case is that if we consider a domain whose absorbing boundary in
θ -direction is a line l̃ := {(ϑ̃(r̃), r̃) : R1 ≤ r̃ ≤ R2}, where ϑ̃ is a smooth function,
the stochastic motion might not perform a full rotation to reach this boundary line. In
particular, the mean return time for trajectories starting on l̃ will be zero. To circumvent
this problem, Cao et al. unwrap the phase by considering infinite copies of l̃ on the
extended domain R × [R1, R2]. For some (ϑ, r) with ϑ < 2π < ϑ̃(r), the mean
first passage time T (ϑ, r) is then calculated via the Andronov–Vitt–Pontryagin formula
with periodic-plus-jump boundary condition in the ϑ-direction and reflecting boundary
condition in the r -direction.

In more detail, the process solving Eq. (4.20), or its Itô version respectively, with
strongly elliptic generator L and its adjoint L∗, the forward Kolmogorov operator, is
assumed to have a unique stationary density ρ on � = [0, 2π) × [R1, R2] solving the
stationary Fokker-Planck equation

L∗ρ = 0 ,

with reflecting (Neumann) boundary conditions at r ∈ {R1, R2} and periodic boundaries
ρ(0, r) = ρ(2π, r) for all r ∈ [R1, R2]. For model (4.20), the stationary probability
current Jρ reads, for j = 1, 2,

Jρ, j (ϑ, r) =
(
f j (ϑ, r) +

1

2
g j (ϑ, r)∂ j g j (ϑ, r)

)
ρ(ϑ, r)− 1

2
∂ j

(
g2j (ϑ, r)ρ(ϑ, r)

)
.

Furthermore, for a C1-function γ : [R1, R2] → [0, 2π ] the graph Cγ (cf. l̃ above)
separates the domain �ext = R × [R1, R2] into a left and right connected component,
with unit normal vector n(r) oriented to the right. It is then assumed that the mean
rightward probability flux through Cγ is positive, which means that

J̄ρ :=
∫ R2

R1

n (r)Jρ(γ (r), r) dr > 0. (4.35)

The mean period of the oscillator is then given as

T̄ = 1

J̄ρ
. (4.36)
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The modified Andronov–Vitt–Pontryagin formula is then given by the following PDE,
with reflecting and jump-periodic boundary conditions

LT = −1, on �,

g22(ϑ, r)∂2T (ϑ, r) = 0, ∀ϑ ∈ R, r ∈ {R1, R2}
T (ϑ, r)− T (ϑ + 2π, r) = T̄ , ∀(ϑ, r) ∈ �ext. (4.37)

In fact, the last condition can be weakened to

T (0, r)− T (2π, r) = T̄ , ∀r ∈ [R1, R2]. (4.38)

Under the discussed assumptions, it is then shown in [13, Theorem 3.1] that the
equation has a solution T (ϑ, r) on �ext and, hence by restriction, on �, which is unique
up to an additive constant. The level sets of T (ϑ, r) are then supposed to be the stochastic
isochrons WE((ϑ, r)) with mean return time T̄ and associated isophase (up to some
constant �̄0)

�̄(ϑ, r) = −T (ϑ, r)
2π

T̄
,

which therefore satisfies

L�̄ = 2π

T̄
. (4.39)

4.3.2. Relation to random isochrons Recall from Definition 9 that, for a CRPS (ψ, T ),
the random period T (ω) corresponds to the random forward isochron W f(ω,ψ(0, ω))

for all ω ∈ �. Hence, we can define the expected period as

T̄RDS := E[T (·)] , (4.40)

where the index RDS indicates the random dynamical systems perspective. In the fol-
lowing, we discuss how T̄RDS is related to T̄ and the isochron function �̄ (4.39).

4.3.3. Expectation of random period Similarly to Sect. 4.3.1, consider Eq. (4.20) in
an annulus R given by 0 ≤ R1 ≤ r ≤ R2 ≤ ∞, i.e. including the full space case
R = [0,∞)×[0, 2π). Consider the slightly modified version of the PDE system (4.37)

Lu = −1, on (−2π, 2π)× (R1, R2),

u(±2π, r)− u(0, r) = T̄ , ∀r ∈ (R1, R2) , (4.41)

where for the case R1 > 0, R2 <∞ one can take again Neumann boundary conditions

g22(ϑ, r)∂2u(ϑ, r) = 0, ∀ϑ ∈ R, r ∈ {R1, R2}.
Then we can formulate the following observation.

Proposition 6. Assume that system (4.20) has a CRPS (ψ, T ), fixing ψ(0, ω) ∈ {0} ×
(R1, R2) for 0 ≤ R1 < R2 ≤ ∞, where the RDS and its attracting random cycle are
supported within (R1, R2) × [0, 2π) (see Theorem 2 and Remark 7). Then we obtain
that
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(a) The expectation of the random period is given by

E[T (·)] = E[u(ψ(−T (·), θ−T (·)(·)))] − E[u(ψ(0, ·))], (4.42)

where u solves Eq. (4.41),
(b) And, in particular, if the radial components of ψ(0, ·) and ψ(−T (·), θ−T (·)(·)) are

equally distributed on (R1, R2), we have

T̄ = TRDS = E[T (·)] .
Proof. As we have seen in the proof of Proposition 2, the period T (ω) has to satisfy for
system (4.20)

T (ω) = inf

{
t > 0 :

∣∣∣∣
∫ 0

−t
f1(ψ(s, θsω))ds + σ1

∫ 0

−t
g1(ψ(s, θsω)) ◦ dW 2

s (ω)

∣∣∣∣ = 2π

}
.

Hence, using Dynkin’s equation for the solution u of the boundary value problem (4.41),
we obtain

E[u(ψ(0, ·))] = E[u(ψ(−T (·), θ−T (·)(·)))] + E

[∫ 0

−T (ω)

Lu(ψ(s, θs ·)) ds
]

= E[u(ψ(−T (·), θ−T (·)(·)))] − E[T (·)],
which shows claim (a).

Claim (b) follows straightforwardly, inserting (4.41) into (4.42). ��
Note that this result is consistent with the basic Example 2, where we have T (ω) = T̄
for all ω ∈ � since in this case ψ(0, ·) and ψ(−T (·), θ−T (·)(·)) are both distributed
according to the stationary radial solution r∗(ω). Addtionally note that u is the isochron
function via mean return time, as discussed in Sect. 4.3.1.

4.3.4. Expectation of isochron function Furthermore, we want to give an alternative
derivation to Sect. 4.3.1 of an isochron function φ̄((ϑ, r)) : R → R, yielding the
sections WE((ϑ, r)) with fixed mean return time given as level sets

WE((ϑ, r)) = {(ϑ̃, r̃) ∈ R : φ̄((ϑ̃, r̃)) = φ̄((ϑ, r))}. (4.43)

In more detail, we try to find the function φ̄ via an expected version of Eqs. (4.29)
and (4.30). We fix (ϑ0, r0) ∈ R and require that the function φ̄ satisfies along solutions
(ϑ(t), r(t)) of the SDE (4.20) the equality (cf. Eq. (2.7) in the deterministic case)

E
[
d φ̄(ϑ(t), r(t))|(ϑ(0), r(0)) = (ϑ0, r0)

] = 1 dt . (4.44)

By this, we can show the following result:

Proposition 7. There is φ̄((ϑ, r)) : R→ R and a period T̄ > 0 with

E
[
φ̄(ϑ(t), r(t))|(ϑ(0), r(0)) = (ϑ0, r0)

] = φ̄(ϑ(0), r(0)) + t mod T̄ . (4.45)

This T̄ is the expected return time to the isochron WE((ϑ0, r0)) which is the level set of
φ̄(ϑ0, r0).

In particular, the function φ̄ can be identified with the solution �̄ of Eq. (4.39).
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Proof. Using the chain rule of Stratonovich calculus and inserting (4.20), Eq. (4.44) can
be rewritten as

1 dt = E

[
d

dϑ
φ̄(ϑ(t), r(t)) dϑ +

d

dr
φ̄(ϑ(t), r(t)) dr

∣∣∣∣(ϑ(0), r(0)) = (ϑ0, r0)

]

= E

[
d

dϑ
φ̄(ϑ(t), r(t))

(
f1(ϑ(t), r(t)) dt + σ1g1(ϑ(t), r(t)) ◦ dW 1

t

)

+
d

dr
φ̄(ϑ(t), r(t))

(
f2(ϑ(t), r(t)) dt + σ2g2(ϑ(t), r(t)) ◦ dW 2

t

) ∣∣∣∣(ϑ(0), r(0)) = (ϑ0, r0)

]
,

where the boundary condition in angular direction is

φ̄(2π, r) = φ̄(0, r) mod T̄ , (4.46)

for all R1 ≤ r ≤ R2, fixing

φ̄(0, r∗) = 0 ,

and

T̄ = φ̄(2π, r∗) .

In radial direction, if 0 < R1 < R2 <∞, one can choose reflecting boundary conditions
as in Sect. 4.3.1.

Writing time t as an index, transforming the Stratonovich noise terms into Itô noise
terms and using the fact that the Itô noise terms have zero expectation, leads to the
equation

1 = E

[(
f1(ϑt , rt ) +

1

2
g1(ϑt , rt )

∂

∂ϑ
g1(ϑt , rt ), f2(ϑt , rt ) +

1

2
g2(ϑt , rt )

∂

∂r
g2(ϑt , rt )

)
· ∇φ̄(ϑt , rt )

+
1

2
σ 2
1 g

2
1(ϑt , rt )

∂2

∂ϑ2 φ(ϑt , rt ) +
1

2
σ 2
2 g

2
2(ϑt , rt )

∂2

∂r2
φ̄(ϑt , rt )

∣∣∣∣(ϑ(0), r(0)) = (ϑ0, r0))

]

= E

[
Lφ̄(ϑt , rt )

∣∣∣∣(ϑ(0), r(0)) = (ϑ0, r0)

]
, (4.47)

where L denotes the backward Kolmogorov operator associated with the SDE (4.20).
In particular, a solution is given by the stationary version

Lφ̄(ϑ, r) = 1, (4.48)

with boundary condition (4.46). Note that, up to the change of sign φ →−φ, Eq. (4.48)
is Dynkin’s equation and that Eq. (4.39) is equivalent to Eq. (4.48) with boundary
condition (4.46) such that φ̄ is taken as a function from the domain � to R mod T̄ .
Hence, the two approaches, one startingwith (4.44) and the other, considering theMFPT,
lead to the same outcome regarding the stochastic isochrons WE((ϑ, r)). ��

Weexmplify this derivation of an isochron function φ̄ by reference to the fundamental
Example 3:
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Example 6. Recall Example 3 with Eq. (3.12), i.e. in its most general form,

dϑ = h(r) dt + h̃(r) ◦ dW 2
t ,

dr = (r − r3) dt + σr ◦ dW 1
t ,

choosing h(r) = κ+(r2−1), κ ≥ 1, similarly to [41, Example (1)], and h̃ some arbitrary
smooth and bounded function. Note that r∗ = 1 for this case and that there is a stationary
density p for the radial process which has the form

p(r) = 1

Z
r

2
σ2
−1e−

r2

σ2 ,

where Z > 0 is a normalization constant. One can then additionally observe that
Ep[r2] = 1 for all σ ≥ 0, and, hence, Ep[h(r)] = κ.

It is easy to see that

φ̂(ϑ, r) = 1

κ
(ϑ + ln r)

solves (4.48) such that (4.45) is actually satisfied with T̄ = 2π
κ
. In fact, we have (up to

some constant φ̄0)

φ̄(ϑ, r) = 1

κ
(ϑ + ln r) mod T̄ ,

which, in this case, is also the deterministic isochron.

Similarly to TRDS := E[T (·)], we can introduce for the associated random isochron
map φ̃ the expected quantity

φ̄RDS(x) = E[φ̃(x, ·, 0)], (4.49)

for fixed x ∈ R
m , where φ̃ is the random isochron map from Sect. 4.2. It remains to

clarify how the isochron function φ̄, or equivalently �̄ (4.39), may be related to φ̄RDS,
assuming the existence of a CRPS (ψ, T ) as for Example 3 (see Proposition 2). We give
a brief discussion of a possible approach to this question in “Appendix .1”, leaving a
more thourough investigation as future work.

5. Conclusion

We have introduced a new perspective on the problem of stochastic isochronicity, by
considering random isochrons as random stable manifolds anchored at attracting ran-
dom cycles with random periodic solutions. We have further characterized these random
isochrons as level sets of a time-dependent random isochron map. Precisely this time-
dependence of the random dynamical system, i.e., its non-autonomous nature, makes it
difficult to specify the concrete relation to the definitions of stochastic isochrons given
by fixed expected mean return times for whom we have given an alternative derivation
of the isochron function φ̄ with return time T̄ . We suggest an extended investigation of
their relationship to the expected quantity φ̄RDS as an intriguing problem for future work.
Additionally, it would be interesting to study the relation between stochastic isochronic-
ity via eigenfunctions of the backward Kolmogorov operator [44] and random Koopman
operators (see [18]), extending the eigenfunction approach from the deterministic setting
to the random dynamical systems case.
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A Random Dynamical Systems

In this appendix we have collected several constructions for reference from the theory of
random dynamical systems, which we have used throughout the main part of this work.

A.1 Random dynamical systems induced by stochastic differential equations. Following
[23], we make the following definition:

Definition A.1 (White noise RDS). Let (θ, ϕ) be a random dynamical system over a
probability space (�,F , P) on a topological space X where ϕ is defined in forward
time. Let (F t

s )−∞≤s≤t≤∞ be a family of sub-σ -algebras of F such that

(i) Fu
t ⊂ Fv

s for all s ≤ t ≤ u ≤ v,
(ii) F t

s is independent from Fv
u for all s ≤ t ≤ u ≤ v,

(iii) θ−1r (F t
s ) = F t+r

s+r for all s ≤ t , r ∈ R,
(iv) ϕ(t, ·, x) is F t

0-measurable for all t ≥ 0 and x ∈ X .

Furthermore we denote by F t−∞ the smallest sigma-algebra containing all F t
s , s ≤ t ,

and by F∞t the smallest sigma-algebra containing all Fu
t , t ≤ u. Then (θ, ϕ) is called

a white noise (filtered) random dynamical system.

Consider a stochastic differential equation (SDE)

dXt = f (Xt )dt + g(Xt )dWt , X0 ∈ R
d , (A.1)

where (Wt ) denotes some r-dimensional standard Brownian motion, the drift f : Rd →
R
d is a locally Lipschitz continuous vector field and the diffusion coefficient g : Rd →

R
d×r a Lipschitz continuous matrix-valued map. If in addition f satisfies a bounded

growth condition, as for example a one-sided Lipschitz condition, then by [19] there
is a white noise random dynamical system (θ, ϕ) associated to the diffusion process
solving (A.1). The probabilistic setting is as follows: We set � = C0(R, R

r ), i.e. the
space of all continuous functions ω : R → R

r satisfying that ω(0) = 0 ∈ R
r . If we

endow � with the compact open topology given by the complete metric

κ(ω, ω̂) :=
∞∑
n=1

1

2n
‖ω − ω̂‖n

1 + ‖ω − ω̂‖n , ‖ω − ω̂‖n := sup
|t |≤n

‖ω(t)− ω̂(t)‖ ,

http://creativecommons.org/licenses/by/4.0/
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we can set F = B(�), the Borel-sigma algebra on (�, κ). There exists a probability
measure P on (�,F) calledWiener measure such that the r processes (W 1

t ), . . . , (Wr
t )

defined by (W 1
t (ω), . . . ,Wr

t (ω))T := ω(t) for ω ∈ � are independent one-dimensional
Brownian motions. Furthermore, we define the sub-σ -algebra F t

s as the σ -algebra gen-
erated by ω(u)−ω(v) for s ≤ v ≤ u ≤ t . The ergodic metric dynamical system (θt )t∈R
on (�,F , P) is given by the shift maps

θt : �→ �, (θtω)(s) = ω(s + t)− ω(t) .

Indeed, these maps form an ergodic flow preserving the probability P, see e.g. [1].
Note that, by the Itô-Stratonovich conversion formula, euqation (A.1) with Stratonovich
noise instead of Itô noise also induces a random dynamical system under analogous
assumptions.

.1. Invariant measures. Let (θ, ϕ) be a random dynamical system with the cocycle ϕ

being defined on one-or two-sided time T ∈ {R+
0, R}. Then the system generates a skew

product flow, i.e. a family of maps (�t )t∈T from �× X to itself such that for all t ∈ T

and ω ∈ �, x ∈ X
�t (ω, x) = (θtω, ϕ(t, ω, x)) .

The notion of an invariant measure for the random dynamical system is given via the
invariance with respect to the skew product flow, see e.g. [1, Definition 1.4.1].We denote
by Tμ the push forward of a measure μ by a map T , i.e. Tμ(·) = μ(T−1(·)).
Definition A.2 (Invariant measure). A probability measure μ on �×X is invariant for
the random dynamical system (θ, ϕ) if

(i) �tμ = μ for all t ∈ T ,
(ii) the marginal of μ on � is P, i.e. μ can be factorised uniquely into μ(dω, dx) =

μω(dx)P(dω) where ω �→ μω is a random measure (or disintegration or sample
measure) on X , i.e. μω is a probability measure on X for P-a.a. ω ∈ � and ω �→
μω(B) is measurable for all B ∈ B(X ).

The marginal of μ on the probability space is demanded to be P since we assume the
model of the noise to be fixed. Note that the invariance ofμ is equivalent to the invariance
of the random measure ω �→ μω on the state space X in the sense that

ϕ(t, ω, ·)μω = μθtω P-a.s. for all t ∈ T . (A.2)

For white noise random dynamical systems (θ, ϕ), in particular random dynamical sys-
tems induced by a stochastic differential equation, there is a one-to-one correspondence
between certain invariant random measures and stationary measures of the associated
stochastic process, first observed in [15]. In more detail, we can define a Markov semi-
group (Pt )t≥0 by setting

Pt f (x) = E( f (ϕ(t, ·, x))
for all measurable and bounded functions f : X → R. Ifω �→ μω is aF0−∞-measurable
invariant random measure in the sense of (A.2), also called Markov measure, then

ρ(·) = E[μω(·)] =
∫

�

μω(·)P(dω)
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turns out to be an invariant measure for the Markov semigroup (Pt )t≥0, often also called
stationarymeasure for the associated process. If ρ is an invariant measure for theMarkov
semigroup, then

μω = lim
t→∞ϕ(t, θ−tω, ·)ρ

exists P-a.s. and is an F0−∞-measurable invariant random measure.
We observe similarly to [5] that, in the situation of μ and ρ corresponding in the way
described above,

E[μω(·)|F∞0 ] = E[μω(·)] = ρ(·) ,

and, hence,

E[μ(·)|F∞0 ] = (P× ρ)(·) .

Therefore the probabilitymeasureP×ρ is invariant for (�t )t≥0 on (�×X ,F∞0 ×B(X )).
In words, the product measure with marginals P and ρ is invariant for the random
dynamical system restricted to one-sided path space.

A.3Lyapunov spectrum. Consider aCk randomdynamical system (θ, ϕ), i.e.ϕ(t, ω, ·) ∈
Ck for all t ∈ T and ω ∈ �, where again T ∈ {R, R

+
0}. Let’s assume that X is a smooth

m-dimensional manifold and that (θ, ϕ) isC1. Recall that the linearization or derivative
Dϕ(t, ω, x) of ϕ(t, ω, ·) at x ∈ X is a linearmap from the tangent space Tx to the tangent
space Tϕ(t,ω,x). If X = R

m , the linearization is simply the Jacobian m × m matrix

Dϕ(t, ω, x) = ∂ϕ(t, ω, x)

∂x
.

Further assume that the random dynamical system possesses an invariant measure μ.
In case X = R

m , this implies that (�,Dϕ) is a random dynamical system with linear
cocycle Dϕ over the metric dynamical system (� × X ,F × B(X ), (�t )t∈T), see e.g.
[1, Proposition 4.2.1]. Generally, we have that Dϕ is a linear bundle random dynamical
system on the tangent bundle TX (see [1, Definition 1.9.3, Proposition 4.25]).
In case the derivative can bewritten as amatrix, as for example forX = R

m , the Jacobian
Dϕ(t, ω, x) satisfies Liouville’s equation

det Dϕ(t, ω, x) = exp

(∫ t

0
trace D f0(ϕ(s, ω)x)ds

+
m∑
j=1

∫ t

0
trace D f j (ϕ(s, ω)x) ◦ dW j

s

)
. (A.3)

We summarise the different versions of the Multiplicative Ergodic Theorem for differ-
entiable random dynamical systems in one-sided and two-sided time in the following
theorem [1, Theorem 3.4.1, Theorem 3.4.11, Theorem 4.2.6], establishing a Lyapunov
spectrum with an associated filtration of random sets and, in two-sided time, with a
splitting into invariant random subspaces.
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Theorem A.3. (a) Suppose the C1-random dynamical system (θ, ϕ), where ϕ is defined
in forward time, has an ergodic invariant measure ν and satisfies the integrability
condition

sup
0≤t≤1

ln+ ‖Dϕ(t, ω, x)‖ ∈ L1(ν).

Then there exist a�-invariant set� ⊂ �×X with ν(�) = 1, a number 1 ≤ p ≤ m
and real numbers λ1 > · · · > λp, the Lyapunov exponents with respect to ν, such
that for all 0 �= v ∈ TxX ∼= R

m and (ω, x) ∈ �

λ(ω, x, v) := lim
t→∞

1

t
ln ‖Dϕ(t, ω, x)v‖ ∈ {λp, . . . , λ1} .

Furthermore, the tangent space TxX ∼= R
m admits a filtration

R
m = V1(ω, x) � V2(ω, x) � · · · � Vp(ω, x) � Vp+1(ω, x) = {0} ,

for all (ω, x) ∈ � such that

λ(ω, x, v) = λi ⇐⇒ v ∈ Vi (ω, x)\Vi+1(ω, x) for all i ∈ {1, . . . , p} .

In case the derivative can be written as a matrix, we have for all (ω, x) ∈ �

lim
t→∞

1

t
ln det Dϕ(t, ω, x) =

p∑
i=1

diλi , (A.4)

where di is the multiplicity of the Lyapunov exponent λi and
∑p

i=1 di = m.
(b) If the cocycle ϕ is defined in two-sided time and satisfies the above integrability

condition also in backwards time, there exists the Oseledets splitting

R
m = E1(ω, x)⊕ · · · ⊕ Ep(ω, x)

of the tangent space into random subspaces Ei (ω, x), the Oseledets spaces, for all
(ω, x) ∈ �. These have the following properties for all (ω, x) ∈ �:
(i) The Oseledets spaces are invariant under the derivative flow, i.e. for all t ∈ R

Dϕ(t, ω, x)Ei (ω, x) = Ei (�t (ω, x)) ,

(ii) The Oseledets space Ei corresponds with λ1 in the sense that

lim
t→∞

1

t
ln ‖Dϕ(t, ω, x)v‖=λi ⇐⇒ v ∈ Ei (ω, x)\{0} for all i ∈{1, . . . , p} ,

(iii) The dimension equals the multiplicity of the associated Lyapunov exponent, i.e.

dim Ei (ω, x) = di .
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A.4 Existence of random attractors. The existence of random attractors is proved via
so-called absorbing sets. A set B ∈ D is called an absorbing set if for almost all ω ∈ �

and any D ∈ D, there exists a T > 0 such that

ϕ(t, θ−tω)D(θ−tω) ⊂ B(ω) for all t ≥ T .

A proof of the following theorem can be found in [24, Theorem 3.5].

Theorem A.4 (Existence of random attractors). Suppose that (θ, ϕ) is a continuous
random dynamical system with an absorbing set B. Then there exists a unique random
attractor A, given by

A(ω) :=
⋂
τ≥0

⋃
t≥τ

ϕ(t, θ−tω)B(θ−tω) for almost all ω ∈ �.

Furthermore, ω �→ A(ω) is measurable with respect toF0−∞, i.e. the past of the system.

Remark A.5. Naturally, random attractors are related to invariant probability measures
of a random dynamical system (θ, ϕ). It follows directly from [16, Proposition 4.5] that,
if the fibers of a random attractor A, i.e. ω �→ A(ω), are measurable with respect to
F0−∞, there is an invariant measure μ for (θ, ϕ) such that ω �→ μω is measurable with
respect to F0−∞, i.e. is a Markov measure, and satisfies μω(A(ω)) = 1 for almost all
ω ∈ �. In particular, if there exists a unique invariant probability measure ρ for the
Markov semi-group (Pt )t≥0, then the invariant Markov measure, supported on A, is
unique by the one-to-one correspondence explained above. Additionally, if the Markov
semi-group is strongly mixing, i.e.

Pt f (x)
t→∞−−−→

∫

X
f (y)ρ(dy) for all continuous and bounded f : X→R and x ∈X ,

then the set Ã ∈ F × B(X ), given by Ã(ω) = suppμω ⊂ A(ω) for almost all ω ∈ �,
is a minimal weak random point attractor according to [23, Proposition 2.20].

A.5 Expectation of random isochron map. We observe from Eq. (4.29) that the random
isochron map φ̃ satisfies

E[φ̃(ϕ(t, ·, (ϑ, r)), θt ·, t)] = E[φ̃((ϑ, r), ·, 0)] + t . (A.5)

Assume now that there is a function φ : R → R such that for all t in some interval
J = [0, T ], T > 0, we have

E[φ(ϕ(t, ω, (ϑ, r)))] = E[φ̃(ϕ(t, ω, (ϑ, r)), θtω, t)] . (A.6)

Then we obtain from Eq. (A.5) that

E[φ(ϕ(t, ω, (ϑ, r)))] = E[φ((ϑ, r))] + t = φ((ϑ, r)) + t . (A.7)

Hence, assuming the appropriate boundary conditions, we can deduce that φ = φ̄, where
φ̄ is the isochron function as derived above, satisfying Eq. (4.48). Furthermore, we can
observe directly that

φ̄RDS((ϑ, r)) = E[φ̃((ϑ, r), ω, 0)] (A.8)
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is the only cadidate for relation (A.6) to hold. When we insert equality (A.8) back into
Eq. (A.6), we obtain

E[E[φ̃(ϕ(t, ω, (ϑ, r)), ω′, 0)]] = E[φ̃(ϕ(t, ω, (ϑ, r)), θtω, t)].
If we choose (ϑ, r) to be a point on the random attractor, belonging to the CRPS ψ ,
say (ϑ, r) = ψ(0, ω), then due to the fact that φ̃(ψ(t, θtω), θtω, t) = t for (almost) all
ω ∈ �, this means that

E[E[φ̃(ψ(t, θtω), ω′, 0)]] = t. (A.9)

Verifying equality (A.9) would therefore lead to establishing φ̄RDS = φ̄. We have not
found a clear reasoning when and why (or why not) relation (A.9) holds and leave it as
an open problem to get a better understanding of this gap.
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