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Abstract: We show how to derive asymptotic charges for field theories on manifolds
with “asymptotic” boundary, using the BV-BFV formalism. We also prove that the
conservation of said charges follows naturally from the vanishing of the BFV boundary
action, and show how this construction generalises Noether’s procedure. Using the BV-
BFV viewpoint, we resolve the controversy present in the literature, regarding the status
of large gauge transformation as symmetries of the asymptotic structure. We show that
even though the symplectic structure at the asymptotic boundary is not preserved under
these transformations, the failure is governed by the corner data, in agreement with the
BV-BFVphilosophy.We analyse in detail the case of electrodynamics and the interacting
scalar field, for which we present a new type of duality to a sourced two-form model.
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Introduction

Asymptotic symmetries for field theories in the presence of “boundaries at infinity” have
received great attention recently, after they have been shown to be related to Weinberg
soft theorems [Wei65]. The asymptotic structure of quantumelectrodynamics (QED) and
general relativity (GR) has also been studied in a number of earlier works (see for exam-
ple [Ash81a,Ash81c,AS81,Ash81b,Ash87] for GR and quantum gravity and [Her95,
Her96a,Her98,Sta98,Sta99,Sta02,Her05,Her12,Sta13,Her17] for QED). A great sci-
entific effort has been devoted to this topic in the last decade, showing how asymptotic
charges are expected to arise in a host of scenarios, including the crucial examples
of general relativity [CL14,HLMS15], electrodynamics [HMPS14,CL15,KPS17] and
even scalar field theories [CCM18,CC18,CFHS19]. More abstractly, the question of
whether a gauge symmetry can become global, and hence present observable charges, is
a relevant one for both theoretical modelling and experimental probing of fundamental
theories.

One could also ask whether the conservation laws for the asymptotic charges in ques-
tion really arise from symmetries of the theory, i.e. transformations of fields that preserve
the action functional as well as the canonical symplectic form. This concern has been
raised in [Her17], where the asymptotic charge of QED and its conservation is derived
as a consequence of field equations, rather than the Noether procedure applied to large
gauge transformations (LGT), in contrast to [KPS17]. Here, by large gauge transfor-
mations we mean: transformations of the fields whose parameters have nonvanishing
asymptotics. Such transformations are shown to relate QED theories in different gauges
and they do not preserve the canonical symplectic structure on (asymptotic) Cauchy data
[Her17]. In [DW19] it was shown that quantum theories in different gauges could be
unitarily inequivalent, which would mean that a transformation that changes the gauge
does not actually preserve the quantum theory. This leads to the conundrum: in what
sense are the large gauge transformations symmetries of the theory?

In this paper, we solve this conundrum by employing a framework called BV-BFV—
due to Cattaneo, Mnev and Reshetikhin [CMR14]. For a manifold with boundary, the
BV-BFV framework is a combination of the Batalin–Vilkovisky (BV) approach to the
quantisation of a Lagrangian field theory associated to the “bulk” of said manifold,
and the Batalin–Fradkin–Vilkovisky (BFV) approach to its corresponding Hamiltonian
formulation, naturally associated to the boundary1 [BV77,BV81,BF83].

1 BFV provides a resolution of the reduced phase space of the theory, i.e. of the locus defined by canonical
constraints modulo symmetries.
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We adapt the BV-BFV framework to the case of “boundary at infinity”, to which
we associate the asymptotic scaling limit of a theory assigned to the boundary of a
scaled finite region. From such extended data we extract information on asymptotic
symmetries and charges. At the classical level, while we agree with the observation of
[Her17] that large gauge transformations have to relate theories in different gauges and
do not preserve the canonical (boundary) symplectic structure, we are able to show how
they can be interpreted as extended symmetries. Indeed, failure of gauge invariance of
the relevant boundary structures is to be expected, and is interpreted as structural corner
data.

The first advantage of the BV-BFV setting, when discussing the interpretation of
LGTs, is the model-independence and flexibility of the framework, which allows for a
direct generalisation of Noether’s analysis of charges. As a consequence, we are able to
reproduce the formulas from the literature on both sides of the controversy and point
out where the interpretational discrepancies stem from. This is not surprising, since
the BV-BFV data carry information about both the Lagrangian symmetries and the
behaviour of solutions to the equations of motion. Thus, after identifying the asymptotic
charge with the BV-BFV boundary action at infinity (see below), we can interpret it both
from the point of view of Noether charges (the interpretation favoured e.g. by [KPS17,
CL15,CE17]) and from the view-point of field equations (relating to the interpretation
of [Her17]). We show that, assuming appropriate fall-off conditions for the fields, one
can easily read off the correct expressions for asymptotic charges from the BV-BFV
data naturally associated to a theory on a manifold with boundary, and prove their
conservation.

Our results agree with the literature in the case of electrodynamics and the massless
scalar field. In particular, we compare the results on electromagnetic asymptotic charges
presented in [Her95,Her96a,Her98] with the investigations of [KPS17,CL15,CE17].
Using the same procedure, we derive the soft charges for the scalar field, compare them
with those derived in [Her95,CCM18,CC18], and show their conservation.

To recover the hard charges for scalar fields we propose a new kind of duality between
a sourced scalar field and a sourced two-form model (Sect. 3.5). To our knowledge, this
duality was not considered before, and recovers the usual duality in the sourceless limit.
We are then able to completely recover asymptotic charges for the sourced scalar field
from the BFV boundary action associated to the sourced dual two-formmodel, evaluated
on asymptotic data.

While our result is similar in spirit to the analysis of [CFHS19], we disagree on
the definition and the need of what they call “large gauge transformations”: shifts by
closed-but-not-exact forms (this differs from the nomenclature we adopt, see above).
Instead, we derive scalar asymptotic charges and their conservation by implementing
the (reducible) symmetry of the dual two-form model in the BV-BFV formalism. Then,
in Sect. 3.6 we show that transformations of the type employed by [CFHS19] do not
yield a well-defined BV structure, making their interpretation and relevance harder to
pin down.

The second advantage of the BV-BFV approach, in this context, is the possibility to
encode gauge invariance anomalies of relevant data in terms of cohomological data one
codimension higher, effectively setting up a bulk-to-boundary or boundary-to-corner
correspondence. This allows for a straightforward generalisation of the notion of sym-
metry of a field theory, where boundary and corner terms are not to be discarded, but
serve rather as higher codimension structural data. Our point of view relates to descent
equations [Zum85,MSZ85] (see the recent perspective [MSW19]), but is extended to a
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full symplectic and cohomological description of higher codimension data, for which a
quantisation scheme exists [CMR18].

While the interplay of Lagrangian symmetries and equations of motion is central
to the BV philosophy, bulk-boundary correspondences are at the core of the BV-BFV
framework. By combining these two philosophies we propose a systematic approach
to the calculation of asymptotic charges, and a new interpretation thereof as extended
symmetries. We discuss our new interpretation of conserved asymptotic charges of QED
in Sects. 2.7 and 4, where we compare to the literature and argue how this resolves the
interpretational conundrum.

In a broader context, our long-term goal is building a bridge between a systematic
approach to the quantisation of gauge theories in the presence of boundary,2 such as the
BV-BFV formalism, and asymptotic quantisation. The latter is an idea dating back to
[Ash81a] to address infrared problems in QED and in quantum gravity (related to the
masslessness of the photon and graviton, and the long-range nature of the interaction)
by analysing the structure of asymptotic observables at null infinity.

The long-range character of the electromagnetic interaction manifests itself in the
classical theory via Gauss’ law. In quantum theory, implementability of Gauss’ law,
together with the assumption that observables should be local, leads to the conclusion
that the electric flux at space-like infinity is superselected (i.e., different configurations of
the flux label different unitarily-inequivalent representations of the net of local algebras
[Buc86]). Alternatively, one can implement Gauss’ law in the quantum algebra, where
the fluxes are not superselected, paying the price of giving up the locality [Her98]. Other
phenomena related to the long-range character of electrodynamics include breaking
of the Lorentz group and the infraparticle problem [MS86]. The latter means that the
electron’s spectrum is not point-like, since the electron has to be considered together
with the cloud of low energy (infrared) photons accompanying it. This fact, in different
guises, can be understood as a necessity for “dressing” charged particles, as discussed,
for example, in [DF16,Dyb17] and references therein.

This paper is the first step towards developing a unified framework for quantisation
of theories with boundaries and theories with long-range degrees of freedom, in the
spirit of perturbative algebraic quantum field theory [FR12b,FR12a]. The framework
we develop in this paper for the construction of classical asymptotic charges is general
enough to treat a broad spectrum of theories. One only needs to specify the dynamics,
the boundary/appropriate “infinity”, and the behaviour of fields at this boundary/infinity.
Then our extended BFV machinery returns the correct conserved charge. Although we
use mainly the language of [CMR14], the translation to the classical framework of
[FR12b] is straightforward.

A third main advantage of the BV-BFV approach is a direct access to a flexible
quantisation scheme. The axioms that a classical field theory with boundary needs to
satisfy are the starting point of the procedure presented in [CMR18], which has been
tested on a variety of field theories (e.g. BF theory [CMR18,CMR20], Yang–Mills
theory in dimension 2 [IM19], and split Chern–Simons theory [CMW17]).

The asymptotic adaptation of BV-BFV quantisation, and the precise relation to
[FR12a] is still work in progress. However, we expect to phrase Weinberg’s soft theo-
rems in this language, relating the quantum master equation, modified by the presence
of boundaries, to Ward identities.

The application of our procedure to other scenarios like nonabelian Yang–Mills,
Chern–Simons and BF theories is expected to be straightforward. The case of Gen-

2 In this case the “boundary” is at infinity.
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eral Relativity (GR) in the Einstein–Hilbert (EH) formalism, whose BV-BFV structure
for finite boundaries was investigated in [Sch16,CS16], will be studied in a further
publication. In space-time dimension 3 the BV-BFV construction of GR in vielbein
variables—often called Palatini–Cartan formalism—was presented in [CS19a], while
for its 4-dimensional analogue a crucial obstruction was found in [Sch16,CS19b]. On
the other hand, a BFV structure has been recently worked out from the reduced phase
space of Palatini–Cartan theory in dimension n ≥ 3 [CS19c,CCS20b], independently
from the BV theory in the bulk, and a BV-BFV-compatible formulation of tetradic grav-
ity has been given in [CCS20a].We do expect asymptotic symmetries in this formulation
to be easier to compute than their Einstein–Hilbert counterpart.

In Sect. 1 we review the basics of the BV-BFV approach to field theories onmanifolds
with boundary, showing how it reproduces and extends Noether’s analysis of conserved
charges (Sect. 1.3), and state the necessary geometric conventions for the remainder of
the paper. We discuss the extension of the BV-BFV formalism to corners in Sect. 1.4,
and introduce the notion of extended symmetries in Sect. 1.5. Finally, we introduce two
descriptions of classical asymptotic data: the one in Sect. 1.6.1 is based on the approach
of Herdegen (see e.g. [Her17]) and the other one, introduced in Sect. 1.6.2, is used by
[CFHS19,CCM18,CC18].

In Sect. 2 we discuss the asymptotic symmetries of electrodynamics (ED): firstly
without matter fields and next in the presence of scalar matter. We show how one obtains
the asymptotic charges from the BFV data associated to ED, seen as abelian Yang–Mills
theory, once appropriate fall-off conditions on fields are imposed. This agrees with
[Her17,CE17,CL15]. In Sect. 2.7 we complement the analysis of asymptotic charges
with a discussion of the symplectic structure of ED, and its behaviour under large gauge
transformations. We show how the role played by corner terms (and their BV-BFV
interpretation) is key for the resolution of the interpretational conundrum around LGT’s.

In Sect. 3 we apply the same procedure to the (free) two-form model, dual to a (free)
scalar field on-shell, and recover asymptotic charges for scalar field theory, through
the BV-BFV analysis of its associated dual model. In order to do this we extend the
construction for free fields to the sourced scenario, and propose a modified duality
between a scalar and a two-form model in Sect. 3.5. Finally, we argue how constant
shifts and—dually—symmetries generated by closed but not exact forms do not yield a
BV structure in Sect. 3.6.

1. Preliminaries

1.1. Fields and functionals. We start this section by defining some geometrical struc-
tures, whichwe need in order to formulate the BV-BFV formalism. Formore information
on infinite dimensional differential geometry see for example [KM97,Nee06].

Let M be a compact manifold with boundary (later on we will generalise this to
non-compact manifolds by imposing appropriate falloff conditions on fields). In the
simplest case of a field theory, classical field configurations are modelled as sections
of some (potentially graded) vector bundle. In general (e.g. in the case of gravity) the
space of field configurations is instead an infinite dimensional manifold. In this paper
we only consider the simplest situation, but all the structures introduced here generalise
straightforwardly.

Let E
π−→ M be a, possibly graded, vector bundle over M , and denote its space

of smooth sections by E .= �(M, E), equipped with the standard Fréchet topology.
We can define classical observables as functionals on E , i.e. smooth maps in C∞(E,R).
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Smoothness is understood in the sense ofBastiani calculus [Bas64] (see also [BDLGR18]
for a review). Most importantly, functional (variational) derivatives of functionals in this
framework are distributional sections. More precisely: for F ∈ C∞(E,R), we have
F (n)(ϕ) ∈ �′(Mn, E�n), where � is the exterior tensor product of vector bundles and
the prime denotes the strong dual (topological dual equipped with the strong topology).

Among all functionals, important role is played by local functionals. These are those
which can be written as

F(ϕ) =
∫

ω( j kx (ϕ)) ,

where ω is a top form on M that depends only on the finite jet j kx (ϕ) of the field
configuration ϕ at point x (intuitively, j kx (ϕ) is the value of ϕ and its derivatives up to
order k at point x , see [And] for more on jet spaces in field theory). Let C∞

loc(E,R) denote
the space of local functionals.

We can consider the tangent space TϕE of E at a given point ϕ ∈ E and we notice
that TϕE ∼= E . Let TE denote the tangent bundle of E . Vector fields are understood as
smooth sections of this bundle and we observe �(TE) ∼= C∞(E, E).

We define the cotangent bundle using the strong dual, meaning that T ∗
ϕ E .= E ′, which

is the space of distributional sections of E . Let E∗ be the dual bundle of E and E∗ its
space of smooth sections. We use the notation �1(E) ≡ �(T ∗E) for 1-forms on E , i.e.
smooth maps from E to E ′.

Denote E ! .= E∗⊗Dens, whereDens is the space of densities onM .We note that there
is a natural pairing between E and E !, which we denote by 〈., .〉. Using this pairing we
identify elements of E ! with distributional sections in E ′, so there is a natural inclusion
E ! ⊂ E ′.

Analogously to local functionals we can define also local forms �1
loc(E) and local

vector fields �loc(TE). All this also generalises to multivector fields
∧•

�(TE) and
n-forms �•(E).

For convenience of computation and in order to make contact with the physics liter-
ature, we introduce a formal notation for functionals, forms and vector fields on E . First
of all, we note that an important role is played by evaluation functionals on E . Let x ∈ M
and fix a basis eα on the fibre of E , so that ϕ(x) = ϕαeα . We define �α

x ∈ C∞(E,R) by

�α
x (ϕ)

.= ϕα(x) . (1)

We can write local functionals in terms of those evaluation functionals. By the common
abuse of notation, we will often use the notation ϕα(x) instead of �α

x , i.e. we use the
same symbol for points in E and coordinate functions on E . From now on we will also
suppress the index α in all the summations.

Vector fields, as derivations on C∞(E,R), can be formally written as:

X =
∫

Xϕ(x)
δ

δϕ(x)
,

where X ∈ �(TE), in the sense that X acting on F (i.e. the Lie derivative of F with
respect to X ) is

LX F(ϕ) =
∫

Xϕ(x)
δF

δϕ(x)
.
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Here Xϕ ∈ E , so X is a map from E to E , as required. The objects δ
δϕα(x) are vector-field-

valued distributions and we can think of them as forming a “basis” for the vector fields
(in the same sense as�α

x form a “basis” for local functionals). In physics literature these
are called antifields and we will denote them by �

‡
x or ϕ‡(x). Later on, we will consider

the odd cotangent bundle T ∗[−1]E and we want to treat �x and �
‡
x on equal footing,

as formal generators. We will then also consider derivatives with respect to these formal
generators and denote them by δ

δϕ(x) and
δ

δϕ‡(x)
respectively.

As for 1-forms,wedenote by δF the 1-formobtained froma functional F ∈ C∞(E,R)

by taking the derivative, i.e. δF(ϕ) ∈ E ′ and for ψ ∈ E ,

〈δF(ϕ), ψ〉 .= lim
t→0

1

t
(F(ϕ + tψ) − F(ϕ)) ,

where the pairing 〈., .〉 is the natural dual pairing between E and E ′.
The map δ from C∞(E,R) to �1(E) is identified as the de Rham differential. It is

extended to n-forms by the graded Leibniz rule. The Lie derivative L is also extended
to n-forms on E by the formula

LX = ιXδ − διX .

In particular, for the evaluation functional�α
x , we can define δ�α

x . The corresponding
1-form-valued distribution will be denoted by δ�α and by some abuse of notation also
δϕα .

The insertion of a vector field X into 1-form δ�α
x results in the following functional:

(ιXδ�α
x )(ϕ) = Xα

ϕ(x) ,

so we can think of 1-form-valued distributions δ�α as dual to vector-field-valued dis-
tributions �

‡
x ≡ δ

δϕ(x) , with the dual pairing given by:

〈
δϕα(x),

δ

δϕβ(y)

〉
= δα

β δ(x − y) .

We can then write arbitrary 1-forms as

�(ϕ) =
∫

�ϕ(x)δ�x ,

so the insertion of a vector field into a 1-form can be expressed in terms of the above
dual pairing as:

(ιX�)(ϕ) =
〈∫

�ϕ(x)δ�x ,

∫
Xϕ(y)�‡

y

〉

=
∫ ∫

�ϕ(x)Xϕ(y)δ(x − y) =
∫

�ϕ(x)Xϕ(x) .

These considerations naturally generalize to multivector fields and n-forms. A degree-k
multivector field X can be expressed in terms of antifields as

X =
∫

X (x1, . . . , xk)�
‡
x1 ∧ · · · ∧ �‡

xk ,
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where the product ∧ is (graded) antisymmetric. The antifield number is the polynomial
degree of these multivector fields. Similarly, a degree-n form can be written as:

� =
∫

Q(x1, . . . , xk)δ�x1 ∧ · · · ∧ δ�xk ,

Note that polyvector fields can be interpreted as functions on the graded manifold
T ∗[−1]E (the odd cotangent bundle). If E is just degree 0, then T ∗[−1]E = E[0] ⊕
E ′[−1], so the functions on T ∗[−1]E are identifiedwithC∞(E,R)⊗̂ ∧• E ∼= ∧•

�(TE),
as required. For the precise definition of the completed tensor product ⊗̂ and all the
topologies involved, see e.g. [Rej16]. As mentioned before, the antifields can be un-
derstood as odd generators, and elements of

∧•
�(TE) are functions of both fields ϕ

and the antifields ϕ‡. In this sense, one can also define left and right derivatives with
respect to ϕ‡ and repeat the discussion presented in this section to introduce vector fields
and n-forms on T ∗[−1]E . Among those, the special role is played by the odd Poisson
bivector

 =
∫

δ

δϕ(x)‡
∧ δ

δϕ(x)
,

which defines the antibracket

{F,G} = ι(δF ∧ δG) ,

for F,G ∈ ∧•
�(TE) such that this is well defined (e.g. for F,G local). By dualization,

one can write this bracket also in terms of the odd symplectic form

� =
∫

δ�‡
x ∧ δ�x (2)

by means of

{F,G} = ιXF ιXG�,

where XF is the vector field obtained by contraction of  with the 1-form δF , similarly
with XG . Note that δ in (2) is the de Rham differential on T ∗[−1]E , rather than on E .
Finally, we define the canonical one-form α to be

� = δ

∫
�‡

x ∧ δ�x = δα. (3)

1.2. BV-BFV formalism. Aclassical field theory on amanifoldwith boundary phrased in
the BV-BFV formalism [CMR14,CMR18] is described by two sets of data, one assigned
to the bulk manifold and one to the boundary, together with an appropriate map between
the two. To the bulk manifold M one associates BV data

(F ,�, S, Q)

composed of

(1) A (−1)-symplectic graded manifold (F ,�).
(2) A degree 0 action functional
(3) An odd vector field Q onF of degree 1with the cohomological property [Q, Q] = 0.
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In simplest cases (e.g. Yang-Mills theory), F is the odd cotangent bundle T ∗[−1]E of
some graded manifold E (containing the classical fields in degree zero and the ghosts
in degree one). Functionals on T ∗[−1]E are identified with polyvector fields on E , as
defined in Sect. 1.1. More generally, one can always identify (noncanonically) any
(−1)-shifted symplectic manifold with an odd cotangent bundle [Sch93], so we will use
it as a universal model.

To a boundary ∂M one assigns (exact) BFV data

(F∂ ,�∂, S∂ , Q∂ )

similarly composed of

(1) An exact (0)-symplectic graded manifold (F∂ ,�∂ = δα∂), where δ denotes the de
Rham differential on the space of local forms,

(2) A degree 1 local action functional S∂ on F∂ ,
(3) An odd vector field Q∂ on F∂ of degree 1 with the property: [Q∂ , Q∂ ] = 0.

The BV-BFV construction connects the BV data associated with the bulk to the BFV
data associated with the boundary by means of a map

π : F −→ F∂ , (4)

and the following relations hold

ιQ� = δS + π∗α∂ (5a)

1

2
ιQ ιQ� = π∗S∂ (5b)

ιQ∂ �
∂ = δS∂ (5c)

1

2
ιQ∂ ιQ∂ �∂ = 0 (5d)

Remark 1. Observe that if M has no boundary one defines BV data such that Equations
(5a) and (5b) hold without the corrections coming from the boundary. In particular, in
that case, Q is the Hamiltonian vector field of S and equation (5b) becomes the Classical
Master Equation.

If the BV theory is constructed from the data of a classical field theory with (gauge)
symmetries, the degree-zero part of F and S coincide with the classical data (Fcl, Scl),
the space of classical fields and the classical action functional. The BV-complex, given
by BV•:=(C∞(F), Q) is a combination of the Koszul–Tate resolution of the critical
locus of Scl and of the Chevalley–Eilenberg complex for Lie algebra actions. In this
language, the space of on-shell invariant functionals is given by the zeroth cohomology
group H0(BV).

The BFV data represents the reduced phase-space of the system, as defined by the
associated canonical constraints, i.e. functions {φi } in involution3 with respect to the
Poisson structure induced by �∂ . It can be seen as a cohomological resolution of the
quotient of the vanishing set C :={φi = 0} with respect to the action of symmetries, in
the sense that the space of invariant functions on the locus defined byC is the degree-zero
cohomology of the BFV complex [Sch09] BFV•:= (

C∞(F∂ ), Q∂
)
.

3 The vanishing ideal of the constraints forms a Poisson subalgebra (the constraints are first-class). In our
construction the contraints are functions on the space of degree-zero boundary fields.
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When a theory can be given a BV-BFV description, one can discuss its quantisation
in this language [CMR18]. The crucial piece of data in that case is the map π : F → F∂

and the relations (5), connecting the BV and BFV data together. In this paper we are
interested in purely classical considerations (concerning the nature of the asymptotic
symmetries arising when boundaries at infinity are taken into account), and could in
principle directly work with some given BFV data.

Remark 2. In discussing physical symmetries, a useful interpretation of degree-1 fields
(ghosts) in the BV formalism is as follows. They can be seen as functionals on the
space of symmetry generators, whose evaluation tautologically returns the (degree zero)
generator itself, as in formula (1). In particular, the evaluation of (the ghost-linear part
of) S∂ over gauge generators � ∈ C∞(M, g) is a degree-zero functional S∂ [�], which
we interpret as the classical charge (on shell). At least for gauge theories, this is exactly
the Maurer–Cartan form on a principal bundle [BCR83,BCRRS88].

1.3. Comparison with Noether procedure. In this section we show how one recovers
the standard Noether analysis of surface charges from the (BV-)BFV picture. This com-
parison can be carried out precisely when the field theory enjoys symmetries that are
closed off-shell. A theory of this kind will be called “of BRST type” and for example
QED, Yang-Mills and the scalar field theory treated in this work are of this type. For
such theories, the BV-BFV data does indeed include a straightforward genearlisation of
Noether analysis. The main goal of this section is to prove that, if we denote byQN [�]
the Noether charge associated to a (local) symmetry generated by a gauge parameter �,
then we have

S∂ [�] = QN [�] + higher antifield number. (6)

Remark 3. Although in the remainder of the paper we use local functionals and local
forms on the space of fields, which typically arise by integrating functional- or form-
valued densities4 over a spacetime manifold, we shall phrase this section in terms of
these densities themselves. This is done in order to make contact with the literature in
this field (see e.g. [IW94] and [OS19] for a more recent discussion). The correspondence
between the two becomes one-to-one by correctly considering boundary terms, which
we do bymeans of the map π between bulk and boundary fields (cf. Equation (4)). Then,
an expression involving density-valued local forms like f + dg is written as F + π∗G
where F = ∫

M f and G = ∫
∂M g. For a densitised version of the BV-BFV construction

on stratified manifolds see [MSW19].

In order to compare Noether’s analysis with the BV-BFV construction, we use a
density version of Equations (5), namely5:

ιQ� = δL + dθ∂ (7a)

1

2
ιQ ιQ� = dL∂ (7b)

and similarly for their boundary counterparts, denoted by the superscript ∂ . It is also
useful to define the BV-BFV difference (see [MSW19])

�∂ :=L∂ − ιQθ∂ , (8)

4 More precisely, distributions.
5 The comparison is made by setting S = ∫

L together with � = ∫
� and α = ∫

θ , see Equation (3).
Notice that we require [Q, d] = 0.



Asymptotic Symmetries in the BV-BFV Formalism 1093

so that, combining Equations (7a) and (7b), we can write the failure of the invariance of
the BV Lagrangian density L under a gauge transformation to be

LQL = d
(
2L∂ − ιQθ∂

)
= d

(
L∂ + �∂

)
.

Let us assume that the theorywe are interested in is “of BRST type”, i.e. it is described
by a Lagrangian density Lcl on a space of fields EBRST that enjoys (off-shell) symmetries
encoded in a BRST operator QBRST, an odd vector field of degree 1 on EBRST such that
[QBRST, QBRST] = 0. Let us denote fields on EBRST by � (classical fields and ghosts), in
non-negative degrees. If θN is the one-form on EBRST obtained by variation of the classical
action and integration by parts6

δLcl = EL + dθN , (9)

we have
LQBRSTLcl = ιQBRSTEL + d(ιQBRSTθN ) = dB (10)

for some density B, and EL is a density valued in one-forms on EBRST that defines the
critical locus of the theory (Euler–Lagrange equations of motion).

Remark 4. Notice that Equation (10) is sometimes expressed in the literature as

δ�Lcl = EL(δ�) + dθN (δ�)

where δ� denotes a gauge transformation with gauge parameter �, seen as a vector field
on the space of fields. Recall that the ghost fields that appear in the expressions of QBRST

can be straightforwardly thought of as evaluation functionals on gauge parameters �

(see Remark 2). The two expressions coincide after evaluation.

The Noether charge density is defined by

qN [�]:=B[�] − (ιQBRSTθN )[�] (11)

and it is closed on-shell (for every �), i.e. dqN ≈ 0. The Noether charge is then given
by integration:

QN [�] :=
∫

∂M

qN [�]. (12)

In this scenario, we can implement the following simplifying assumptions on the
BV data.7 The space of BV fields will be given by F = T ∗[−1]EBRST, and we denote
antifields by�‡. Let us denote the symplectic density by � = δθ , with θ(x) = �

‡
xδ�x

(cf. with (3)), where δ is the de Rham differential on F , and let Q̌BRST be the cotangent
lift of QBRST to T ∗[−1]EBRST

The BV action functional, in this case, is simply given by

L = Lcl + ιQ̌BRST
θ.

6 θN is often referred to as the presymplectic potential of the theory.
7 It is important to observe here that cases such as Chern–Simons theory, although they admit a symmetry

distribution which is closed off shell, are not always presented as a BRST-type theory in the sense used here,
for example when phrased in the AKSZ language. See [MSW19, Section 1.3 and Proposition 47] for more
details.
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The BV operator Q is obtained from the the standard Koszul–Tate–Chevalley–Eilenberg
construction for a gauge theory, and coincides with the Hamiltonian vector field of L
with respect to the (graded) symplectic form

∫
M � . In the case of a BRST-type theory,

Q splits as

Q = Q̌BRST + QK ,

with QK the Koszul differential8 (only acting on antifields). We recall that QK�‡ =
EL� (the� component ofEL) and zero otherwise, by definition of theKoszul differential
for the critical locus of the classical action Scl. Hence, 〈QK�‡, δ�〉 = EL.

In order to prove (6) we need to show that

[L∂ ]dR = [qN ]dR + higher antifield number,

where [·]dR denotes de Rham cohomology classes, and to do this we will first need to
show that

[θ∂ ]dR = −[θN ]dR + higher antifield number. (13)

To this end, we observe that

dθ∂ = ιQ�∂ − δL = 〈Q�‡, δ�〉 + 〈δ�‡, Q�〉 − δL

= EL + 〈Q̌BRST�
‡, δ�〉 + 〈δ�‡, Q�〉 − δLcl − δ(ιQ̌BRST

θ)

= −dθN + 〈Q̌BRST�
‡, δ�〉 + 〈δ�‡, Q�〉 − δ(ιQ̌BRST

θ),

where we have used the splitting of Q = Q̌BRST + QK , and the explicit formula for L in
the second line, and (9) to get the third line. Hence, we prove equation (13) if we can
show that dθ∂ + dθN is at least linear in antifields. But it clearly is, since

dθ∂ + dθN = 〈Q̌BRST�
‡, δ�〉 + 〈δ�‡, Q�〉 − δ(ιQ̌BRST

θ)

= 〈Q̌BRST�
‡, δ�〉 + 〈�‡, δ(Q�)〉,

and Q̌BRST�
‡ is necessarily at least linear in �‡. This implies that

d(ιQθ∂ + ιQθN ) = d(ιQθ∂ + ιQBRSTθN ) = ιQ

(
〈Q̌BRST�

‡, δ�〉 + 〈�‡, δ(Q�〉)
)

(14)

is also higher in antifield number.
Now, with a little work one can check that �∂ = B (we refer to [MSW19, Theorem

31]), so that, from Equation (8) we can argue that

dL∂ = d
(
�∂ + ιQθ∂

)

= d
(
B − ιQ̌BRST

θN + higher antifield number
)

= d (qN + higher antifield number) ,

where we have used Equation (14) and �∂ = B in the second line, so that the boundary
BFV action reads:

S∂ =
∫

∂M

qN + higher antifield number. (15)

8 The “Tate” part of the Koszul–Tate differential is encoded in the cotangent directions of Q̌BRST.
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Evaluating on a gauge parameter we obtain

S∂ [�] = QN [�] + higher antifield number, (16)

as claimed.
The information contained in S∂ is at least twofold. It generates gauge transforma-

tions via its Hamiltonian vector field (the BFV operator Q∂ ) and, as we have seen, it
computes the Noether charge. Simultaneously, one recovers the canonical constraints by
treating ghost fields in S∂ as Lagrange multipliers.9 As such, it provides a straightfor-
ward generalisation of Noether charges in the case where the symmetries of the theory
do not close off shell, and it also contains dynamical information.

Remark 5. In the above construction we have seen how the failure of gauge invariance of
the classical Lagrangian, the boundary term B, is controlled—in the BV-BFV setting—
by the “BV-BFV difference”�∂ :=L∂ −ιQθ∂ . This functional was defined and discussed
in detail in [MSW19, Definition 21], and it was shown to encode the failure of gauge
invariance of classical data. Often one finds that �∂ = 0, but this is not always the
case. This observation is linked to gauge anomalies, descent equations and holography.
While the example of Electrodynamics considered in this paper is such that �∂ = 0, the
sourced dual model of Sect. 3.5 does not, similarly to theories like Chern–Simons or BF
theory in dimension 3 or higher. This feature does not seem to impact the description of
asymptotic symmetries, and further investigation on the consequences of this observation
will be deferred to future work.

1.4. Extension to corners. We would like to discuss the extension of the BV-BFV re-
lations of Equations (5) to higher codimension strata like corners. This point of view
was presented systematically in [CMR14]. A density version of this construction, and
its relation to holography, is given in [MSW19].

When the boundary of a manifold M has a boundary of its own (a codimension 2
stratum for M), Equation (5c) and (5d) will typically no longer be satisfied. In good
cases, one can associate additional cohomological structure to corners so that equations
analogous to (5) are satisfied. With an abuse of notation, let us denote said data by
(F∂∂ ,�∂∂ , S∂∂ , Q∂∂ ), where (F∂∂ ,�∂∂) is a 1-symplectic manifold associated to the
corner,10 then:

ιQ∂ �
∂ = δS∂ + π∗

∂ α∂∂

1

2
ιQ∂ ιQ∂ �∂ = π∗

∂ S
∂∂ (17a)

where π∂ : F∂ → F∂∂ is a surjective submersion connecting the boundary and corner
data. Observe that � and �∂ are linked by11

LQ� = π∗�∂ (18)

as can be checked by applying δ to Equation (5a). Analogously, as a consequence of (3),
we have

LQ∂ ω
∂ = π∗

∂ �∂∂ . (19)

9 For the application of this point of view to the nontrivial cases of General Relativity in the Einstein–Hilbert
and Palatini–Cartan formalisms see [CS16,CCS20b].
10 Typically this turns out to be the restriction of fields to the corner, possibly with some additional reduction.
11 The density version of this equation is LQ� = d�∂ .



1096 K. Rejzner, M. Schiavina

The underlying philosophy, here, is that out of the tower of BV-BFV relations one can
extract an inhomogeneous local form valued densities O• ∈ �

•,•
loc (M,F) which satisfy

the descent equation [MSZ85,Zum85]

(LQ − d)O• = 0. (20)

For example, one can construct � • ∈ �
•,2
loc (M,F) such that (denote by K the corner of

M)

� =
∫

M

� •; �∂ =
∫

∂M

� •; �∂∂ =
∫

K

� •; . . . (21)

and so on. Then, Equation (20) encodes the appropriate BV-BFV relations between strata
of codimension k and k + 1.

Remark 6. Observe that, in principle, one can make the BV Lagrangian L into a solution
L• of the descent equations aswell. A universal solutionwas presented in [MSW19, The-
orem 23]. Notice that higher codimension data controls the failure of gauge invariance
at lower codimensions.

1.5. Extended symmetries. When discussing gauge field theory, one typically requires
the gauge parameters generating a gauge transformation to be compactly supported in
the bulk manifold. A symmetry, then, is supposed to be a transformation that not only
preserves the action functional of the theory, but also the canonical symplectic form.

When said compact support is not required of the gauge parameters, it is often the
case that the quantities abovewill fail to be invariant, due to emerging boundary or corner
terms. However, according to the philosophy presented in Sect. 1.4, the non-invariance
of a particular piece of data is not relevant per se, as long as it can be controlled (or
compensated). Observe, indeed, that the possible failure of gauge invariance of the
Lagrangian—encoded in the boundary term B of equation (10)—plays a fundamental
in computing Noether charges (Equations (11) and (12)).

In this spirit, one can extend the notion of symmetry of the theory, regardless of
whether field transformations also preserve the (degree-zero) symplectic structure canon-
ically associated to the theory. Indeed, as long as one keeps track of the failure of gauge
invariance of the relevant data at every codimension, it is possible to recover invariance
as a whole in terms of composite objects that satisfy the descent equations (20).

Remark 7. The perspective outlined in this section will become important when dis-
cussing the interpretational coundrum of whether asymptotic charges should be thought
of as generators of large gauge transformations, or not. They will be interpreted as such,
in this extended sense, in Sect. 2.7.

1.6. Geometric conventions. When not stated otherwise, in this paper we work with the
four-dimensional Minkowski spacetime with signature (1,−1,−1,−1). However, our
constructions can be adapted to the case of asymptotically-flat spacetimes. We defer to
other dimensions and other topologies of spacetime to future work.

For our construction of asymptotic charges, we begin with identifying a sufficiently
large, precompact region WR inside our space-time, bounded by a piecewise-null and
piecewise spacelike boundary ∂WR := I+

r ∪ I−
r ∪ H+

τ ∪ H−
τ , with R > 0, as shown in

Fig. 1. Later on we will take a limit, where this region is enlarged “to infinity”.
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Fig. 1. Region WR inside our space-time, bounded by a piecewise-null and piecewise spacelike boundary
∂WR := I+r ∪ I−

r ∪ H+
τ ∪ H−

τ

In this work wewill use twoways of parametrising the boundary: the R, s, l variables
ofHerdegen (see e.g. [Her95,Her17]) and the retarded light-cone coordinates.Wepresent
our results in both parametrisations, not only to make it easier to understand for different
communities, but also because techniques used in proofs of our main results are slightly
different and it is instructive to see both.

1.6.1. R, s, l variables. One way to describe null asymptotics of fields is to use a set
of variables introduced by Herdegen, which we refer to as R, s, l variables in this work.
Let l is a future-pointing null vector, t a future-pointing timelike vector12 and R, s ∈ R,
R ≥ 0. Note that this set of parameters seems over-complete. There are two scalars and
one null vector, so altogether 5 free parameters. This redundancy is not a problem, since
l runs over null directions, rather than null vectors.

In [Her17] (and previous works), one uses these parameters to define a space-time
point x according to:

x = Rl + s
t

t · l ,

More about variables R, s, l can be found in [Her17, Appendix B]. In particular, a
differentiable field B on Minkowski spacetime, defines β(R, s, l) = B(x) with the
scaling property: b(R/λ, λs, λl) = b(R, s, l), λ > 0. Denote

Lab = la
∂

∂ lb
− lb

∂

∂ la
.

One can show that:

∂

∂xb
B(x) = lbβ̇(R, s, l) +

ta

R t · l Labβ(R, s, l) , (22)

12 In [Her17] the author uses l and t rather than l and t , but we want to avoid confusion with the notation
for the time coordinate.
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where the dot denotes the derivative with respect to s and

Labβ(R, s, l) = R

(
la

∂

∂xb
B(x) − lb

∂

∂xa
B(x)

)

Very often we will use integration over the set of null directions. Let

C+
.= {l|l · l = 0, l0 > 0} .

and for a fixed t , define C t
+ as the intersection of C+ with the t · l = 0 plane. C t

+ is a
unit sphere in this plane and hence can be equipped with the usual metric whose line
elements is denoted by d�2. Following [Her17], let f (l) be a measurable function on
C+, homogeneous of degree −2. The integral defined by∫

f (l)d2l
.=

∫
C t
+

f (l)d�2

does not depend on the choice of the vector t . In the present paper, we will often make
use of this fact and identify the integral over the null directions on the left-hand side
with the integral over a concrete unit sphere determined by the choice of t . In a fixed
coordinate system, the natural choice is: t = (1, 0, 0, 0). We come back to this at the
end of the next section.

1.6.2. Retarded light-cone coordinates. Another convenient way to describe the null
asymptotic of smooth fields onMinkowski spacetimemakes use of retarded coordinates.
We startwith the standard set of coordinates (t, x, y, z) and introduce space-like spherical
coordinates (r, x A), with x A, A = 1, 2. Next, we define retarded (resp. advanced) light-
cone coordinates as u± = t ∓ r .

In coordinates (u±, r, x1, x2), a line element in Minkowski metric reads:

ds2± = +du2± ± 2drdu± − r2d�2 , (23)

where d�2 is the line element for the unit 2-sphere.13 The matrix representation of
Minkowski metric is

g± =
⎛
⎝ +1 ±1

±1 0 0

0 −r2gS2

⎞
⎠ , (24)

with determinant det(g±) = −r4 det(gS2), and the inverse

g−1± =
⎛
⎝ 0 ±1

±1 −1 0

0 −r−2g−1
S2

⎞
⎠ . (25)

Let {x A}A=1,2 be coordinates of a point on the unit two-sphere14 embedded in
three-dimensional Euclidean space. We denote the corresponding point of this three-
dimensional space by x̂ . In this parametrisation, a spacetime point can be written as:

x =
(
u+ + r
r x̂

)
.

13 In [KPS17] the unit line element on S2 is expressed in complex coordinates as d�2 = 2γzz̄dzdz̄, with
γzz̄ = (1 + zz̄)−2, while in [Cam15,CL15,CE17] d�2 = qABdx

Adx B .
14 We refer to points on the unit two-sphere as x A , using the abstract index notation.
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To relate this particular coordinatisation to the formulation using (R, s, l) variables,
choose t = (1, 0, 0, 0) and consider null vectors of the form l = (1, x̂), where x̂ is
the unit three-vector determined by a sphere point x A. Then identify R with the radial
coordinate r , so that:

x = r

(
1
x̂

)
+ s

(
1
0

)
= r

(
1
x̂

)
+ u+

(
1
0

)

where we used the fact that l · t = 1 and we identified Herdegen’s variable s with the
retarded time u+, since s + r = t for our choice of l and t . Observe that, in particular, in
the (r, u+) coordinates we have lr = 1 and lu+ = 0.

1.7. Parametrisation of the boundary. In this paper we are concerned with symmetries
and associated charges that appear on asymptotic boundary components and corners
(i.e. boundaries of boundary components). For example, we will consider surfaces at
constant coordinate radius R and then take the limit for R → ∞ (see Fig. 1).

We denote by I± the copy of S2×R obtained after taking the r → +∞ (or R → +∞
in the other description) limit while keeping u± constant. We treat the limits I± as
boundaries at infinity, and call them future/ past null infinity. From I+, one gets two
connected components of ∂I+, denoted I+± and topologically homeomorphic to two-
dimensional spheres, obtained by taking the limits u+ → ±∞, respectively. Similar
considerations apply to I−.

1.7.1. Hyperbolic coordinates. Hyperbolic coordinates are used to analyse the behavior
of smooth fields in Minkowski spacetime at timelike infinity. They are defined by

τ =
√
t2 − r2 , ρ = r√

t2 − r2
,

so that

t = τ
√
1 + ρ2 , r = ρτ .

In these coordinates, the line element reads:

ds2 = dτ 2 − τ 2
(
(1 + ρ2)−1dρ2 + ρ2d�2

)
, (26)

and future timelike infinity i+ is obtained by taking the limit τ → ∞. A spacetime point
can then be written as

x =
(

τ
√
1 + ρ2

τρ x̂

)
.

Finally, a point on the unit hyperboloid H+ (i.e. τ = 1) is written as

Yμ = (
√
1 + ρ2, ρ x̂) .
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1.8. Differential forms conventions. Adifferential k-form iswritten in a local coordinate
chart as

α = 1

k!αμ1...μk dx
μ1 ∧ · · · ∧ dxμk

with αμ1...μk totally antisymmetric in the indices. The operation of taking the Hodge dual
on a generating set of k-forms over an N -dimensional (pseudo)-Riemannian manifold
(M, η) is given by

(�dxν1 . . . dxνk ) =
√|g|

(n − k)!η
ν1ρ1 . . . ηνkρk ερ1...ρkμk+1...μN−k dx

μk+1 . . . dxμN ,

which, for α, β ∈ �k(M) yields

α ∧ �β = 1

k!αμ1...μkβ
μ1...μkdVolη .

The indices are raised with the inverse metric, e.g. βμ = gμνXν denotes the components
of the vector β = (g�)−1(X), for g� : T M

∼−→ T ∗M .
TheLaplace–Beltrami operator on aLorentzianmanifold of signature (1,−1,−1,−1)

is � = −(dd∗ + d∗d), with the codifferential defined by

d∗ ≡ �d� : �k(M) → �k−1(M).

Its restriction to co-closed forms, i.e. forms in the Lorenz gauge d∗A = 0, is�|coclosed =
−d∗d.

2. Electrodynamics

In this section we consider electrodynamics,15 phrased in the Batalin–Vilkovisky lan-
guage, to show how we can recover asymptotic symmetries from the appropriate ma-
nipulation of the BFV data.

2.1. BV-BFV approach to electrodynamics. Electrodynamics is formulated in terms of
a U (1) Yang–Mills field theory coupled to matter. For simplicity, we model matter as
a complex scalar field, but the same analysis can also be performed for Fermions. For
a principal U (1) bundle P −→ M on a Lorentzian spacetime (M, g), possibly with
boundary,16 and given an associated C2 bundle17 V → M , the extended space of field
configurations is

F = T ∗[−1]
(
AP × �0(M,V) × �0[1](M)

)
, (27)

whereAP is the space of electromagnetic potentials A, which we will identify with the
space of fluctuations around a reference connection, �0(M,V) is the space of complex
scalar fields (ϕ, ϕ), and c ∈ �0[1](M) denotes “ghost” fields.

15 Throughout, we use the standard formulation of electrodynamics as a second-order field theory, i.e. where
equations of motion are second order. Other literature prefer to employ the first order formulation instead,
whose BV-BFV description can be found in [CMR14].
16 We will later restrict to a situation where (M, g) is a region in Minkowski spacetime.
17 On Minkowski spacetime the C2-bundle is trivial.
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There is a canonical shifted symplectic structure � on F , formally given by

� =
∫
M

δAδA‡ + δcδc‡ + δϕδϕ‡ + δϕδϕ‡,

where we denoted fields in the cotangent fiber (also called anti-fields) by A‡ ∈ �3[−1]
(M), ϕ‡ ∈ �top[−1](M,V∗) and c‡ ∈ �top[−2](M). Covariant derivatives for the fields
ϕ, ϕ are defined by dAϕ = dϕ + iq Aϕ and dAϕ = dϕ − iq Aϕ, with q ∈ R a coupling
constant. The BV-extended action functional is then given by:

S =
∫

M

(
− 1

8π
FA ∧ �FA +

1

2

(
dAϕ ∧ �dAϕ + m2ϕϕ

)
+ A‡ ∧ dAc + ϕ‡cϕ − ϕ‡cϕ

)
,

(28)
where � is the Hodge operator induced by the Lorentzian structure on (M, g), and the
BV operator Q is given by

QA = dAcQA‡ = − 1

4π
dA ∗ FA − iq ϕ ∗ dAϕ + iq ∗ dAϕϕ

Qϕ = cϕQϕ‡ = (−dA ∗ dA + m2)ϕ + ϕ‡c

Qϕ = −cϕQϕ‡ = (−dA ∗ dA + m2)ϕ − ϕ‡c

Qc = 0Qc‡ = dA A
‡ − ϕ‡ϕ + ϕ‡ϕ

where we used that dAϕ ∧ �dAϕ = − � dAϕ ∧ dAϕ.
Denote the matter current by J := −iq ϕ �dAϕ + iq �dAϕϕ. The classical equations

of motion (the degree-zero sector of the condition Q = 0) are given by:

dA � FA = J (29a)

(−dA � dA + m2)ϕ = 0 (29b)

(−dA � dA + m2)ϕ = 0 (29c)

Note that dA J = 0 on shell, since [FA, �FA] = 0.
Since Yang–Mills theory satisfies the BV-BFV axioms stated in equation (5) (see e.g.

[CMR14,MSW19] for details), we obtain—on amanifoldwith boundary—the following
BFV data (F∂ , S∂ , Q∂ ,�∂):

• The space of boundary fields is

F∂ :=T ∗ (
Aι∗P × �0(∂M,V) × �0[1](∂M)

)
,

wherewe denoted byAι∗P the space of connections18 on the induced principal bundle
ι∗P on ∂M .

• The boundary action is given by

S∂ = 1

2
ιQ ιQ� =

∫
M
d

[
c

(
− 1

4π
dA � FA + J

)]
, (30)

which is a degree 1 functional on F∂ .

18 Since in the bulk we considered fluctuations around a reference connection, the fields in Aι∗P can also
be thought of as fluctuations.
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• F∂ is equipped with the symplectic form �∂ given by

�∂ =
∫

∂M

1

4π
δAδ[�FA]∂M + δcδA‡ + δϕδ[�dAϕ]∂M + δϕδ[�dAϕ]∂M ,

• The BFV operator Q∂ is the Hamiltonian vector field of S∂ , i.e.

ιQ∂ �
∂ = δS∂ .

The projection map π : F → F∂ is simply the restriction of fields and normal jets
to the boundary, composed with a redefinition of fields sending a normal jet of A (resp
ϕ) - restricted to the boundary - to [�FA]∂M (resp. [�dAϕ]∂M ), which is considered an
independent field. A careful analysis of the symplectic manifold of boundary fields for
the scalar case was given in [CM14].

Remark 8. To obtain (30) we could make the following alternative choice (recall dAc
has even parity , since c is odd):

∫
M
dAc ∧ dA � FA =

∫
M
d(cdA � FA) =

∫
M
d(dAc ∧ �FA)

Observe that this choice yields the same result without generating corner terms, but is
better suited to recover Herdegen’s formulas for soft charges [Her17], while (30), which
has the advantage of manifestly vanishing on shell, will be useful to reproduce formulas
in [KPS17].

More on the BV-BFV structure of Yang-Mills theory in the second order formalism
and its relation with extended phase spaces and edge modes can be found in [MSW19],
while the first order formulation has been discussed in [CMR14].

Remark 9. Note that the BV data presented above has been historically associated to
fields on compact manifolds, or equipped with vanishing boundary conditions, or given
for compactly supported fields. As such, it was never set up to interact with a choice
of fall-off conditions on fields. However, said conditions can be introduced once one
extends the BV-BFV construction to noncompact manifolds, by defining fields to be
sections of bundles supplemented with the appropriate falloff conditions. This is what
we will do in the next section.

2.2. Asymptotic fields. In this work, instead of considering S∂ at a finite boundary, we
consider S∂ at infinity. To make this precise, we need to impose some fall-off conditions
on the variables A and ϕ, to ensure that their asymptotes are well defined. Note that the
natural limit for the electromagnetic potential is the null infinity I = I+ ∪ I−, while
the matter current J propagates to time-like infinity H = H+ ∪ H−. This translates to
the requirement that

y lim
τ→∞ A|H±

τ
= lim

r→R
J |I± = 0. (31)



Asymptotic Symmetries in the BV-BFV Formalism 1103

2.2.1. Free electromagnetic field. In thenotationof [Her95,Her96a,Her98,Her05,Her17],
the asymptotic electromagnetic potentials are defined as follows:

lim
R→∞ RA(x + Rl) = V (x · l, l) ,

lim
R→∞ RA(x − Rl) = V ′(x · l, l) .

Using instead the (r, u+, z, z̄) coordinates, one expands A as:

A =
∑
k=1

1

rk
A(k) , (32)

so that

V (s, l) = A(1)(u+, x̂) ,

where s = u+, l = (1, x̂) and x̂ is a point on unit 2-sphere embedded in 3-dimensional
Euclidean space, as explained in Sect. 1.6.2.

Without external currents (J = 0) and assuming Lorenz gauge, A satisfies the wave
equation

�A = 0 (33)

and the asymptotic fields have the “vanishing property”:

V (+∞, l) = 0 = V ′(−∞, l) , (34)

i.e. these vanish at time-like infinity. In [Her95,Her96a,Her98,Her05,Her17] these also
satisfy the following fall-off conditions:

|Va(s, l)| <
const.

sε
, (35)

|V̇a(s, l)| <
const.

s1+ε
, (36)

similarly for V ′, but with the role of −∞ and +∞ exchanged.

2.2.2. Fields with sources. Now let us consider the equation with sources:

�A(x) = 4π J (x) . (37)

For this equation we know that the retarded and advanced Green functions �R/A exist.
We want the current J to describe incoming and outgoing matter fields in a scattering
experiment and the free radiation field

Arad = AR − AA

should satisfy the fall-off conditions (35) and (36). The Pauli-Jordan function is defined
by � = �R − �A. We have, in relative coordinates,

�(x) = 1

2π
sgn(x0)δ(x2) .
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In [Her95], � is represented as

�(x) = − 1

8π2

∫
δ′(x · l)d2l ,

so the radiation field

Arad(x) = 4π
∫

�(x − y)J (y)dy = − 1

2π

∫
dy

∫
d2l δ′((x − y) · l)J (y)

= − 1

2π

∫
d2l

∫
dy(δ′(x · l − y · l)J (y)) = − 1

2π

∫
V̇J (x · l, l)d2l , (38)

where

VJ (s, l) =
∫

dyδ(s − y · l)J (y)

and we have

lim
R→∞ RAR(x − Rl) = VJ (−∞, l) , (39)

lim
R→∞ RAA(x + Rl) = VJ (+∞, l) , (40)

from the definition of retarded and advanced solutions.
Assume that VJ is well-defined and that V̇J satisfies (36). For physical reasons (see

[Her17]), assume that for v on the unit future hyperboloid (i.e. v ∈ H+), the current J
behaves as

J ∼ τ−3vρ±(v) , τ → ±∞ . (41)

In this case

VJ (±∞, l) =
∫
H±

vρ±(v)

v · l dμ(v) , (42)

so VJ (+∞, l) need not vanish! (in contrast to the asymptote of the free field, see (34)).
The total field decomposes as

A = AR + Ain = AA + Aout . (43)

Clearly, Ain/out have to solve the homogeneous equation (33), so they are free fields
and (assuming that incoming and outgoing fields satisfy the fall-off conditions (35) and
(36)), we have the following identities for the asymptotes:

V (s, l) = VJ (s, l) + V in(s, l) = VJ (+∞, l) + V out(s, l)

V ′(s, l) = VJ (−∞, l) + V in ′
(s, l) = VJ (s, l) + V out ′(s, l)

Hence

V (+∞, l) = VJ (+∞, l) , V ′(−∞, l) = VJ (−∞, l) ,

which means that V (+∞, l) and V ′(−∞, l) come entirely from matter and contribute
to the hard part of the charge. We also have

V (−∞, l) = VJ (+∞, l) + V out(−∞, l) ,

V ′(+∞, l) = VJ (−∞, l) + V in ′
(+∞, l) ,

so both soft and hard components contribute to the matching property that reads:

V ′(+∞, l) = V (−∞, l) . (44)
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2.3. Changing the gauge. In [Her17, Chapter 7], one considers a change of gauge:

Â = A + d�,

where A is a Lorentz potential, but Â not necessarily. The asymptotic field corresponding
to Â is defined by:

V̂b(s, l) = lim
R→∞ R Âb(Rl + s t/t · l) .

For this limit (and also the limit of A) to exist, � has to be of the form (formula (36) of
[Her17], also confirmed by [CL15]):

�(Rl + st/t · l) = ε+(l) +
βt(s, l)

R
+ o(R−1) , (45)

which in u, r, x̂ variables amounts to:

�(x) = λ(x̂) + O(r−1) ,

where λ(x̂) = ε+(1, x̂). The expansion at time-like infinity takes the form (following
[CL15]):

�(x) = λH(ρ, x̂) + O(τ−ε) (46)

The resulting contribution to the potential can be computed in the R, s, l variables, using
the rule (22):

∂

∂ lb
�(s t/t · l + Rl) = 1

R

(
V ε+

b (l) + lb
(
β̇t(s, l) − t · V ε+/t · l

))
(47)

where V ε+ is a vector-valued function such that

Labε
+(l) = laV ε+

b (l) − lbV ε+

a (l) ,

and it has properties (see appendix C to [Her17]):

V ε+(λl) = λ−1V ε+(l) , l · V ε+(l) = 0 , L [abV ε+

c] (l) = 0 . (48)

Crucially:

ε+(l) = 1

4π

∫
l · V ε+(l ′)

l · l ′ d2l ′ . (49)

We also have: ∫
ε+(l)
(t · l)2 d

2l =
∫

t · V ε+(l)
t · l d2l . (50)
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2.4. Green’s function. Following [CL15,CE17], we consider � such that λH satisfies
Laplace equation on the hyperboloid. It is then given in terms of the corner data as

λH(y) =
∫

G(y; x̂ ′)λ(x̂ ′)d2 x̂ ′

where y is the variable at the hyperboloid, y = (ρ, x̂) and G is the Green function
discussed in [Cam15] with the property that

lim
ρ→∞G(y; x̂ ′) = δ(x̂ − x̂ ′) .

Remark 10. Observe that we do not require that � satisfies the wave equation on the
whole of M . Indeed, this would be incompatible with the observations in [Her17],
reported below in Sect. 2.5.

It is also shown in [CL15,CE17] that

G(y; x̂ ′) = (4π)−1(
√
1 + ρ2 − ρ x̂ · x̂ ′)−2,

while in Herdegen’s notation:

G̃(v; l ′) = (4π)−1(l ′ · v)−2 .

Here G̃ is obtained from G, after we set y = (ρ, x̂), l ′ = (1, x̂ ′) and v = (
√
1 + ρ2, ρ x̂)

(i.e. Herdegen’s v is Y from [CL15,CE17], compare with Sect. 1.6). Thus, both refer-
ences use the same Green’s function. Let �H(v) = λH(y). This allows us to write:

�H(v) =
∫

G̃(v, l)ε+(l)d2l = 1

4π

∫
ε+(l)

(v · l)2 d
2l . (51)

Using formula (50), we obtain

�H(v) = 1

4π

∫
v · V ε+(l ′)

v · l ′ d2l ′ .

As a consistency check, consider the limit

lim
ρ→∞

∫
v · V ε+(l)

v · l d2l =
∫

l · V ε+(l ′)
l · l ′ d2l ′ ,

where l = (1, x̂). Using (49), we obtain

lim
ρ→∞

1

4π

∫
v · V ε+(l)

v · l d2l = ε+(l) ,

as expected.
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2.5. Lorenz versus other gauges. If both A and Â are in the Lorenz gauge, then (fol-
lowing [Her17]):

V̂ (s, l) = V (s, l) + lα(s, l) .

Assuming V̂ (+∞, l) = V (+∞, l) = 0, it also follows that α(+∞, l) = 0. In [Her17,
Section 3.2], it is shown that this implies that

�(x) = − 1

2π

∫
α(x · l ′, l ′)d2l ′ + γ + ,

where γ + is a constant.19 The null asymptotics are:

ε± = lim
R→∞ �(st ± Rl) = γ ± ,

where

γ − = γ + − 1

2π

∫
α(−∞, l ′)d2l ′ ,

so the matching requirement ε+(l) = ε−(l) (see Remark 13) cannot be met! This
means that if we want the potential Â to be in the Lorenz gauge and to have non-trivial
asymptotics at null infinity, the null asymptotics ε± of the gauge parameter� violate the
matching requirement. This is a potential issue, since the derivation of the asymptotic
charges as presented e.g. in [KPS17,CE17], assumes all these three properties to hold:
Lorenz gauge, non-trivial null asymptotics and the matching requirement. Since the
Lorenz gauge is actually only needed asymptotically (so that λH would satisfy the
Laplace equation on the hyperboloid H), we will not impose it in the bulk, so that the
no-go result of Herdegen can be circumvented.

Let us now discuss what happens in non-Lorenz gauges. Note that in equation (47),
the contribution from the Lorenz gauge enters the term proportional to lb. More gen-
erally, the whole term proportional to lb can be absorbed into a residual Lorenz gauge
transformation of V and redefinition of ε+(l). The non-trivial change of the asymptotics
is therefore described fully by V ε+(l) and, following [Her17], we interpret the resulting
transformation (identified as the large gauge transformation of [KPS17]) as

V̂ (s, l) = V (s, l) + V ε+(l) .

The gauge parameter � used to construct V ε+(l) does not satisfy the wave equation
in the bulk (since Â = A + d� cannot be in the Lorenz gauge), but we require that it
satisfies it at time-like infinity. We assume � to be of the form:

�(x) = λH(ρ, x̂) + f (τ ) ,

with f vanishing for τ → ∞.

19 In [Her17], γ ± is denoted ε±. We adopt this notation to avoid confusion with ε±, the asymptote of the
gauge generator �.
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2.6. Calculation of the charge. We now want to show how a correct specification of
boundary fall-off conditions on the fields, and an explicit choice of coordinates around a
lightlike boundary ∂M (with corners!) allows us to reproduce known results on asymp-
totic symmetries in electrodynamics.

The leading idea behind our analysis is that the total asymptotic charge (in the lit-
erature [HMPS14,KPS17] it is derived from large gauge symmetries20) is identified as
the boundary action S∂ in the BFV formalism, and the “charge conservation” is the
consequence of the fact that S∂ vanishes on-shell. Although there might be deviations
from this paradigm, as discussed in Remark 5, for the cases at hand we show that the
BFV boundary action is the correct functional to consider.

Let us consider a region WR , whose boundary consists of 4 pieces: ∂WR
.= I+

r ∪
I−
r ∪ H+

τ ∪ H−
τ (cf. Sect. 1.6, Fig. 1). Formula (30) takes the form

S∂
WR

=
∫

∂WR

c

(
− 1

4π
dA � FA + J

)

and we immediately observe that, by virtue of Equation (29),

S∂
WR

≈ 0 (52)

for all R, where ≈ means on-shell, i.e. imposing the equations of motion.

Remark 11. Note that, in general, the boundary action does not vanish only by imposing
the classical equations of motion, especially if it depends on ghosts and antifields of
higher order (see (82) below). What we really mean with ≈ is taking the degree-zero
cohomology of the Koszul–Tate part (the lowest antifield number21) of the BV differ-
ential. In practice, this is achieved by setting to zero antifields and ghosts for ghosts and
quotienting out the EOMs. This demonstrates that the BFV data encodes a large variety
of structural information, which needs to be extracted in the appropriate way.

We are interested in the limit

S∂ = lim
R→∞ S∂

WR
.

Clearly, also S∂ ≈ 0 and S∂ naturally splits into two terms (corresponding to null and
time-like asymptotics):

S∂ = − 1

4π
lim
R→∞

∫
∂WR

cdA � FA + lim
R→∞

∫
∂WR

cJ , (53)

= lim
r→∞ S∂,soft

I+
r ∪I−

r
+ lim

τ→∞ S∂,hard
H+

τ ∪H−
τ

, (54)

where

S∂,soft
I+
r ∪I−

r
= − 1

4π

∫
I+
r ∪I−

r

cdA � FA ,

20 The notion of large gauge transformation is somewhat ambiguous, as different authors use the same
terminology to denote different concepts. Here, it is intended as gauge transformations that do not vanish at
infinity.
21 See Sect. 1.1 for the definition.
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and

S∂,hard
H+

τ ∪H−
τ

=
∫
H+

τ ∪H−
τ

cJ .

As noted before (Remark 8), the soft term can also be written as

S∂,soft
I+
r ∪I−

r
= − 1

4π

∫
I+
r ∪I−

r

dAc � FA . (55)

2.6.1. Soft charge in (R, s, l) variables. We start with the first term in formula (53).
Our assumptions on A imply that the limit is well-defined and we can re-write this term
as

S∂,soft
I+∪I− = lim

R→∞ S∂,soft
I+
R∪I−

R
= − 1

4π

∫
I+∪I−

lim
R→∞(R2dAc ∧ �FA(x))

= − 1

4π

∫
I+

lim
R→∞(R2dAc ∧ �FA(x)) − 1

4π

∫
I−

lim
R→∞(R2dAc ∧ �FA(x ′)) ,

where x = Rl + s t
t·l and x ′ = −Rl + s t

t·l . Let’s focus on the first terms and evaluate
the ghost at the gauge parameter �, as discussed in Remark 2. We use the fact that

lim
R→∞ RFab

(
s

t
t · l + Rl

)
≈ la V̇b(s, l) − lbV̇a(s, l) , (56)

to find the limit of FA and the expansion (47) to find the limit of dA�.
Treating V ε+ , l, V̇ as one forms with index lowered using the metric (in the sense

that e.g. l� = g(l, ·) is simply written as l), we obtain:

−4π S∂,soft
I+ [�] =

∫

I+

lim
R→∞(R2dA� ∧ �FA) ≈

∫

I+

V ε+ (l) ∧ �(l ∧ V̇ (s, l))

= 1

2

∫

I+

V ε+

d εabg f η
gmη f n lm V̇ndx

a ∧ dxb ∧ dxd = 1

2

∫

I+

dVolI+εrabdεabg f η
gmη f n l V̇n

=
+∞∫

−∞
ds

∫

S2

d2 l
(
δrgδ

d
f − δrf δ

d
g

)
ηgmη f n lm V̇n =

+∞∫

−∞
ds

∫

S2

d2 l
(
lr V ε+ · V̇ − l · V ε+ V̇ r

)
,

(57)

where we used that lr = 1 (see Sect. 1.6.2), dxa ∧ dxb ∧ dxd = εabd |det(h)|− 1
2 dVolI+

andh is the inducedmetric onI+, the determinant ofwhich is 1.Observe that εrabdεab f g =
2(δrgδ

d
f − δrf δ

d
g ). Since l · V ε+ = 0 (see Eq. (48)), and neither V ε+ nor lr depend on s,

we obtain finally:

S∂,soft
I+ [�] = − 1

4π

∫

I+

lim
R→∞(R2dA� � FA) ≈ +

1

4π

∫

S2

d2lV ε+(l)V out(−∞, l) ≡ Qsoft+
ε+ ,

and similarly, the contribution from I− gives:

S∂,soft
I− [�] ≈ − 1

4π

∫

S2

d2lV ε−
(l)V ′in(+∞, l) ≡ −Qsoft−

ε− .
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So, assuming the matching requirement

ε+(l) = ε−(l) ≡ ε(l) , (58)

the “soft” contribution to the boundary action takes the form:

S∂,soft
I+∪I−[�] ≈ Qsoft+

ε − Qsoft−
ε .

Remark 12. Here we have defined charges from the evaluation of the boundary action
on different boundary components following the convention that along the past infinity
boundary, the sign gets reversed: S∂,soft

I± =: ±Qsoft±
ε . The on-shell vanishing of the

boundary action is then directly linked to on-shell conservation of charges.

Remark 13. Note that the matching property (44) of the asymptotic potential [Her95]
(see (2.26) and the following discussion) is a consequence of equations ofmotion and the
fall-off condition. In contrast to that, the matching requirement (58) is an extra condition
imposed on gauge parameters. It is not a priori clear if this condition can be fulfilled. In
fact, it was shown in [Her17] that for A in the Lorentz gauge and � satisfying the wave
equation (both with appropriate fall-off condition), this requirement cannot be met.

2.6.2. Soft charge in retarded coordinates. To relate this to the results of [KPS17], we
use the retarded coordinates, as described in Sect. 1.6.2. FromEquation (54),we compute
the “soft” contribution to the boundary action:

S∂,soft
WR

= − 1

4π

∫
WR

dAc ∧ dA � FA = − 1

4π

∫

M

dVolWR div(X) (59)

where Xμ = c√
g ∂τ

(√
gFμτ

)
.

More directly, we get (recall that for an abelian group dA � FA = d � FA)

S∂,soft
∂WR

= − 1

4π

∫

WR

d(cd � FA) = − 1

4π

∫

∂WR

dVolσ

[
c√
g
∂λ(

√
ggσμgλνFμν)

]
. (60)

Observe that the integral over ∂WR splits into a null boundary part and a hyperboloid
part; however, because of the fall-off conditions and the continuity of the field A, in the
limit for τ → ∞ the Hyperboloid contribution vanishes (cf. with Equation (31)).

Assume � ∈ �0(M) is a gauge parameter as the one introduced in Sect. 2.3, i.e.
�(x) = �|I(x̂) + O(r−1). Note that, when restricted to I � R × S2, � is constant
along the R direction.22

Using retarded/advanced light-cone coordinates and complex coordinates on the 2
dimensional sphere we get

dVol = 2r2drdu±(1 + zz̄)−2dzdz̄,

from which, recalling the explicit expression of formulas (24) and (25) for Minkowski
metric, we obtain

22 Recall that x̂ is a coordinate parametrising S2.
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−4π S∂,soft
I+∪I− = −4π lim

R→∞ S∂,soft
I+
R∪I−

R
= lim

R→∞

∫

I+
R∪I−

R

2γzz̄dzdz̄du r2c(z, z̄)
[
∂u Fu±r

+
1√
g

[
∂z

(√
ggrr gzz̄ Fr z̄

)
+ ∂z

(√
ggru±gzz̄ Fu± z̄

)
+ c.c.

] ]

= lim
R→∞

∫

I+
R∪I−

R

2γzz̄du±dzdz̄ c(z, z̄)
[
r2∂u±Fu±r +

[
∂z(γ

zz̄ Frz ∓ γ zz̄ Fu± z̄) + c.c.
]]

=
∫

I+∪I−
2γzz̄du±dzdz̄ c(z, z̄)

[
∂u±F

(2)
u±r +

[
∂z(γ

zz̄ F (0)
r z ∓ γ zz̄ F (0)

u± z̄) + c.c.
]]

≈ −
∫

I+−

2γzz̄dzdz̄c(z, z̄)F
(2)
u+r +

∫

I−
+

2γzz̄dzdz̄c(z, z̄)F
(2)
u−r

∓
∫

I±
du±2γzz̄dzdz̄c(z, z̄)

[
∂z(γ

zz̄ F (0)
u± z̄) + c.c.

]
, (61)

where we used that F (0)
r z = 0 due to the assumed fall-off conditions (Eq. (32)), as

well as the vanishing property F (2)
u+r (+∞, z, z̄) = F (2)

u−r (−∞, z, z̄) = 0 (cf. Equation
(34)). Observe that the combinations gru±gu±r , grr gzz̄ and gru±gzz̄ have the same sign
regardless of the choice of signature for Minkowski metric.

The matching property (see Equation 44) F (2)
u+r (−∞, z, z̄) = F (2)

u−r (+∞, z, z̄) implies
that

0 ≈ −4π S∂,soft
I+∪I−[�]

≈ −
∫

I+

du+γzz̄dzdz̄�∂z(γ
zz̄ F (0)

u+ z̄
) +

∫

I−
du−γzz̄dzdz̄�∂z(γ

zz̄ F (0)
u− z̄) + c.c.

≡ −4π
[
Q+soft

ε − Q−soft
ε

]
,

which proves the conservation of the charge and is tantamount to the calculations pre-
sented in [KPS17].

2.6.3. Soft charge from the BV-BFV perspective. To summarise, in the previous two
subsections we have shown that, in the absence of matter, the vanishing of the boundary
action on shell (Equation (52)) implies the conservation of the soft charge:

Q+soft
ε ≈ Q−soft

ε . (62)

This suggest that the result is then independent of the coordinates chosen and the
parametrisation of the asymptotic fields.Wewill clarify this statement in Sect. 2.7, where
the asymptotic symplectic structures in the two parametrisations will be compared.
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2.6.4. Hard charge in (R, s, l) coordinates. For the computation of the “hard” charge
we assume that the current J has asymptotic behaviour determined by (41). The corre-
sponding contribution to the boundary action is given by:

S∂,hard
H+∪H− = lim

R→∞

∫
∂WR

cJ.

Evaluating the ghost at �, we obtain

S∂,hard
H+∪H−[�] =

∫
H+

( lim
τ→∞ �)(v)ρ+(v)dv −

∫
H−

( lim
τ→∞ �)(v)ρ−(v)dv,

where the relative sign comes from the parametrisation of H−. Using the asymptotic
expansion of � at time-like infinity (Equation (46)), this becomes:

S∂,hard
H+∪H−[�] =

∫
H+

�H+(v)ρ+(v)dv −
∫
H−

�H−(v)ρ−(v)dv ,

so applying (51), we obtain:

S∂,hard
H+∪H−[�] = 1

4π

∫
ε+(l)

(v · l)2 ρ+(v)d2ldv − 1

4π

∫
ε−(l)
(v · l)2 ρ−(v)d2ldv

= 1

4π

∫
v · V ε+(l)

v · l ρ+(v)d2ldv − 1

4π

∫
v · V ε−

(l)
v · l ρ−(v)d2ldv ,

where in the second step we used the identity (50). Assuming again the matching con-
dition (58), we obtain:

S∂,hard
H+∪H−[�] = Qhard+

ε − Qhard−
ε ,

where

Qhard+
ε = 1

4π

∫
v · V ε(l)

v · l ρ+(v)d2ldv = 1

4π

∫
V ε(l) · VJ (+∞, l)d2l ,

where we inserted the expression for VJ given by equation (42). Similarly:

Qhard−
ε = 1

4π

∫
V ε(l) · VJ (−∞, l)d2l ,

and the total contribution from the hard charge is:

Qhard
ε = Qhard+

ε − Qhard−
ε .
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2.6.5. Hard charge in retarded coordinates. We use a coordinate system adapted to the
τ -hyperboloid part of the boundary of WR (see Sect. 1.7.1), and then take a limit for
τ → ∞. Observe that the fall-off conditions for the current J imply that the terms on
I±
R vanish in the limit R → ∞, so we can discard them from the outset. We compute

S∂,hard
H+∪H−[�] = lim

τ→∞ S∂,hard
H+

τ ∪H−
τ
[�] = lim

τ→∞

∫

H+
τ ∪H−

τ

dVolH±
τ
�|H± J

= lim
τ→∞

∫

H+
τ ∪H−

τ

dVolH±τ 3 J
∫

d2 x̂ ′G(y; x̂ ′)ε(x̂ ′)

=
∫

H+∪H−
dVolH±

∫
d2 x̂ ′G(y; x̂ ′)J (3)ε(x̂ ′)

= 1

4π

∫
d2 x̂ ′

∫

H+∪H−
dVolH±

Y ε(x̂ ′)
(Y · x̂ ′)2

ρ±(Y )

= 1

4π

∫
d2 x̂ ′

∫

H+∪H−
dVolH±

Y · V ε

Y · x̂ ′ ρ±(Y )

= Qhard+
ε − Qhard−

ε ,

where we used Equation (41) to rewrite J (3) and Equation (50) between lines 4 and 5.

2.6.6. Total charge from the BV-BFV perspective. The total charges are given by:

Q+
ε = Qsoft+

ε + Qhard+
ε ≈ 1

4π

∫
d2lV ε(l)(VJ (+∞, l) + V out(−∞, l))

= 1

4π

∫
d2lV ε(l)V (−∞, l)

and

Q−
ε = Qsoft−

ε + Qhard−
ε ≈ 1

4π

∫
d2lV ε(l)(VJ (−∞, l) + V ′in(+∞, l))

= 1

4π

∫
d2lV ε(l)V ′(+∞, l) ,

so vanishing of the boundary action in the BV-BFV formalism implies the charge con-
servation

Q−
ε ≈ Q+

ε .

2.7. Symplectic BFV analysis. Recall that the BFV structure comes equipped with a
symplectic form �∂ on a graded manifold of boundary fields F∂ , which is related to the
canonical (−1)-symplectic BV form � by

LQ� = π∗�∂. (63)
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For Yang–Mills theory (and in particular Electrodynamics) with scalar sources this reads

�∂ =
∫

∂M

1

4π
δAδ[�FA] + δA‡δc + δϕδ[�dAϕ] + c.c. (64)

and Q∂ is the Hamiltonian vector field of S∂ with respect to �∂ . Notice that we treat
[�FA] restricted to the boundary as an independent field. The first term is equal on-shell
to the standard symplectic form used in asymptotic quantization of the electromagnetic
field [AS80]. In [Her96b], this symplectic form is refereed to as radiated symplectic
form, so we will use the notation �Rad for it and distinguish it from �Her, which is the
symplectic form used by Herdegen (ibid.).

Recall that, in the notation of [Her95,Her96b,Her17], the asymptotic variables on
I+ are V and V̇ ; the symplectic form in terms of these variables is given by

�Her = 1

4π

+∞∫

−∞
ds

∫

S2

d2l δV · δV̇ . (65)

To compare this with �Rad = ∫
∂M

1
4π δAδ[�FA], we consider the following limit:

lim
R→∞

∫

I+
R

1

4π
δAδ[�FA] =

∫

I+

lim
R→∞

R2

4π
δAδ[�FA], (66)

where we have extracted R2 from the volume form on I+
R , i.e. dVolI±

R
= R2dVolI± .

Using equation (56) and the reasoningpresented in the paragraph following that equation,
we conclude that

lim
R→∞

∫

I+
R

1

4π
δAδ[�FA] =

∫

I+

lim
R→∞

R2

4π
δAδ[�FA] ≈

∫

I+

δV (l) ∧ δ(�(l ∧ V̇ (s, l)))

=
+∞∫

−∞
ds

∫

S2

d2l
(
lrδV · δV̇ − l · δV δV̇ r )

=
+∞∫

−∞
ds

∫

S2

d2l δV · δV̇ −
+∞∫

−∞
ds

∫

S2

d2l(δV · l)δV̇ r ,

since lr = 1, and both A and �FA have 1/R leading terms at I±. Now we use the fact
that V · l is, on-shell, the total charge of the system, which vanishes in the chargeless case
(see e.g. formula (2.3) of [Her96b]). Then, variations on the vector space of chargeless
asymptotes must also be chargeless, i.e. l · δV = 0, making this expression the same as
(65):

lim
R→∞

∫

I+
R

R2

4π
δAδ[�FA] = �Her.
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A similar reasoning can be also repeated for I−. Then, the space of (chargeless) asymp-
totes V (s, l) and vector valued functions V̇ (s, l), with symplectic form given by�Her, is
identified (on shell) with the space of boundary fields {A|∂M , [�FA]∂M }with symplectic
form �Rad.

Remark 14. To treat the charged case, Herdegen is also using �Her rather than �Rad,
even though they differ in this case. The proper way to treat it from the geometrical
perspective is toworkwith affine spaces, to fix the reference connection and then consider
perturbation that are either charged or chargeless, depending on the choice of field space
topology.

Observe that one can compute the canonical brackets associated to�Her after applying
a large gauge transformation (LGT) on (on-shell) bulk field configurations23 V̂i = Vi +
V ε+

i . Following [Her17], one gets

{V̂1, V̂2} = {V1, V2} +
∫

S2

d2lV ε+

1 · V2(−∞, l) − {1 ↔ 2}. (67)

If Xε = V ε+ δ
δV denotes the LGT, this is recovered as:

LXε�Her =
+∞∫

−∞
ds

∫

S2

d2lδV ε+ · δV̇ ≈
∫

S2

d2lδV ε+ · δV (−∞, l), (68)

where we used that, on shell, V̇ (s, l) = ∂sV (s, l), and that ∂sV ε+ = 0 to identify a total
s-derivative, while V (+∞, l) vanishes in the sourceless case. Formula (67) is obtained
by (68) by simply evaluating on two on-shell configurations.

The failure of invariance of the canonical structure under Large Gauge Transforma-
tions is argued to mean that LGT’s are “not symmetries of the asymptotic structure”.
We will show now that from the viewpoint of BV-BFV the failure of invariance of �∂

is in fact expected and fully consistent with the structure, if one appropriately takes into
account the corner data. Indeed, it is a straightforward calculation to check that LQ∂ �∂ ,
as anticipated in Sect. 1.4, is a total derivative (off-shell):

LQ∂ �
∂ =

∫

∂M

d (δcδ[�FA]) . (69)

To compare (69) with Equation (68), we use (56) again. For simplicity, we consider the
free theory (i.e. J = 0). Let � be a gauge parameter implementing the given LGT, so
that A transforms to A + d�, as discussed in Sect. 2.5. Then the I+ contribution to the
invariance-breaking term takes the form:

lim
R→∞

∫

I+
R

R2d (δcδ[�FA]) [�] ≈ − lim
R→∞

∫

I+
R

R2 δ(d�) ∧ δ[�FA]

=
∫

I+

lim
R→∞(R2δ(d�) ∧ δ(�FA)) ≈

∫

I+

δ(V ε+)(l) ∧ δ(�(l ∧ V̇ (s, l)))

23 Seen as functions of the initial (asymptotic) values {V, V̇ }.
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= −
+∞∫

−∞
ds

∫

S2

d2l δV ε+ · δV̇ ≈
∫

S2

d2l δV ε+(l) · δV (−∞, l) , (70)

where we have commuted δ and d and we used the fact that in the sourceless case
d � FA ≈ 0 in the first line, while the explicit asymptotic expressions V ε+ and l ∧ V̇ for
d� and FA respectively were used to obtain the second line. The last line is equivalent to
(68). The breaking of the invariance is related to the fact that in general V (−∞, l) does
not vanish. For the sourced case, this invariance-breaking is characterized by �V (l) =
V (−∞, l) − V (+∞, l) (using the notation of [Her17]).

We can interpret the final expression in Equation (68) as a symplectic structure
on the space of “chargeless” variations V ε+ at the asymptotic corner, i.e. such that
l · V ε+ = 0, and on-shell variations of the asymptotic field V . The canonical Poisson
brackets associated to this symplectic form compute exactly the failure of Equation (67).

Alternatively, starting again from (69) we can compute (off-shell)

lim
R→∞

∫

I+
R

R2d (δcδ[�FA]) [�] = lim
R→∞

∫

∂I+
R

R2δ�δ[�FA] =
∫

I+−∪I+
+

d2l δε(l) δF (2)
ru (l).

(71)
This means that we can identify two symplectic manifolds on the corner. The first one is
the space of vector valued functions V ε±

orthogonal to l (i.e. chargeless) and asymptotes
V (∓∞, l), with symplectic form given by Equation (70). The second one is given by the
space of functions ε(l) on S2 together with the space of asymptotes F (2)

ru , with symplectic
form given by Equation (71). The fact that they are both obtained from Equation (69)
means that, on-shell, there is a symplectomorphism between these two spaces, given
by Equations (49)—relating ε±(l) to V ε±

(l)—and (56), which in turn relates F (2)
ru± to

V (±∞, l).

Remark 15. The expression on the right hand side of Equation (71) is the infinitesimal
version of the corner symplectic structure identified by Donnelly and Freidel in [DF16].
One obtains their exact expression by considering finite gauge transformations A →
g−1Ag+g−1dg for g a group-valued function. In their work, gauge invariance is restored
by means of an extension of the physical phase space (and gluing is achieved through
fusion of symplectic data). Despite the slight difference in the underlying philosophy,
the detected phenomenon is the same. The asymptotic BV-BFV analysis contains all
the relevant physical information, and packages it in a way suitable for quantisation
[CMR18].

Let’s now come back to the BV-BFV interpretation of Equation (69). If we denote the
cornermanifold by K , we can denote the space of corner fields byF∂∂

K = C∞[1](K , g)⊕
�2(K , g∗). There is a natural surjective submersionπ∂ from the space of boundary fields
to F∂∂

K given by restriction of fields,24 and the right hand side of formula (69) can be
interpreted as the canonical one form on F∂∂

K , denoted by �∂∂ . Then we have

LQ∂ �
∂ = π∗�∂∂ .

24 Technically, this is done in two steps: restrictions of fields yields a pre-symplectic manifold, which then
needs to be reduced to yield F∂∂

K . For theories such as Yang–Mills this step is almost trivial.
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Equation (71) computes the asymptotic limit of the corner symplectic form�∂∂ . Observe
that if we denote the projection to nonvanishing asymptotic corner fields by π∞, the
structural BV-BFV relations hold:

LQ∂ �∂ = π∗∞�∂∂∞ (72)

where �∂∂∞ is the r.h.s. of Equation (71). The BV-BFV axioms require the map π∞ to be
a surjective submersion. This can be shown easily if the space of fields is a vector space,
by multiplying the desired asymptotic with an appropriate homogeneous function and a
compactly supported function vanishing at 0. In general this would depend on the choice
of field space topology (and hence the “size” of tangent space) and has to be verified.

Notice that LQ∂ is a differential on the space of boundary fields—the BFV operator.
Therefore, Equation (69) implies that, although the symplectic form fails to be a cocycle
for the BFV differential, such failure is controlled by a symplectic form (of degree 1)
associated to a space of corner fields (cf. Sect. 1.5).

In the presence of higher codimension strata we can find a solution of the descent
equation, i.e. an inhomogeneous local form valued density � •:

� • = δA‡δA + δcδc‡ + δAδ[�FA] + δA†δc + δcδ[�FA], (73)

which satisfies
(LQ − d)� • = 0. (74)

Equation (21) tells us that we can recover the symplectic forms at every codimension
by restriction of � • and integration over the appropriate submanifold (stratum).

2.8. Alternative falloff conditions. It would be interesting to understand the role of so-
called overleading gauge transformations, which have been related to certain subleading
versions of the soft photon theorem [CL16]. Let us comment here briefly on this.

Overleading gauge transformations can be thought of as generated by gauge param-
eters who have a linear large-r behaviour: � ∼ r . One first observation is that, as such,
it is not immediately possible to include them in our discussion, for they do not preserve
the space of fields with given falloff condition (A + d� will not have the same large-r
behaviour).

On the other hand, it is at least conceivable that one might construct charges (and
more generally observables) as a function of fields and gauge parameters at finite regions,
and then proceed to take the scaling limit. This naïve procedure, which produces certain
finite answers despite the asymptotic divergence of fields and gauge parameters, seems
to be the one taken in the literature. Indeed, it is easy to gather that the calculation in
Equation (61) will produce a very similar output to [CL16, Eqts. (4.5) and (4.6) Section
4.1], by allowing c to grow like r . From our point of view, though, this is not entirely
justified due to the above mentioned problem (overleading parameters do not preserve
asymptotes), but also because it is not clear how one should get rid of divergent terms
(which appear nevertheless).

In [CL16, Section 4.1] mention is made of a prescription aimed at “projecting-out“
divergent contributions. At the present moment, we do not see how this can emerge
neither as a natural operation, nor even as a possible arbitrary choice, the independence
on which would then need to be checked.

Finally, it must be observed that overleading gauge parameters, in the treatment of
[CL16], are always intended to satisfy the wave equation. This is a result of the request
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that the gauge transformation preserve the (Lorenz) gauge fixing condition. In Sect. 2.5
we showed how, following Herdegen, we cannot have all three: preservation of gauge
condition, nontrivial asymptotes at null infinity and the matching requirement. It could
be interesting to explore whether overleading gauge transformations might change this
paradigm. However, since this is beyond the scope of the present paper, we defer a full
analysis of this to further research.

3. The Scalar Field Theory

In this section we discuss the case of asymptotic symmetries in the scalar field. Inspired
by the work in [CC18,CFHS19], we will show how conserved asymptotic charges for
the scalar field can be obtained from the BV-BFV approach to a “dual” two-formmodel.
In doing so, we extend the standard duality of free models to the sourced scenario. This
provides an alternative to the analysis presented in [CFHS19], which instead considered
symmetries of the dual model to be given by elements of the cohomology group H2(M).
In Sect. 3.6 we show that this type of symmetry (akin to constant shifts of a scalar field)
does not admit a BV description.

Throughout, we consider (M, g) to be a closed, 4-dimensional Lorentzian manifold
with boundary, and the space of classical fields25 is Fcl :=C∞(M,R) � φ. The classical
action functional is given by

Scl =
∫

M

�gdφ ∧ dφ, (75)

where �g is the Hodge-dual operator defined by the pseudo-Riemannian metric g.
Free scalar field theory is classically equivalent to a theory of 2-forms B ∈ �2(M)

Sdual =
∫

M

dB �g dB, (76)

meaning that, on-shell, we can set dB:= �g dφ and—up to symmetries—we obtain a
diffeomorphism of the spaces of solutions of the Euler Lagrange equations of the two
models. In what follows we will drop the subscript g and denote �g ≡ �.

Remark 16. To be precise, note that the equation of motion d � dφ = 0 is the statement
that the three-form Hφ := � dφ is closed. Assuming that H3(M) = 0, we can then find
B ∈ �2(M) such that Hφ = dB, as done above. This is clearly the case on Minkowski
space M = M4, but it is in general not true, and the condition H3(M) = 0 needs to be
checked.

Notice that the “duality” between a free scalar field theory and a free two-formmodel
is incoded in the pair of equations:

{
d � dB = 0 ⇐⇒ d2φ = 0
d � dφ = 0 ⇐⇒ d2B = 0

(77)

toggling between the Bianchi identity and field equations. We will see in Sect. 3.5 how
to extend this to field equations with nontrivial external sources.

25 One could as well consider complex-valued scalars.
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Remark 17. Clearly the definition of B is not unique, and the theory enjoys a symmetry
B → B + dγ . Notice that γ is also defined up to an exact form, and thus enjoys an
additional symmetry γ → γ + dτ . This is an example of a reducible symmetry, which
can be easily treated in the BV formalism.

In what follows we will analyse the dual field theory in the BV formalism, and then
recover the “soft” scalar charges of [CCM18]. We assume that H3(M) = 0.

3.1. BV-BFV analysis of the dual model. The dual model has a built-in symmetry given
by rescaling B by a closed form β. The standard way to proceed here would be consid-
ering the “gauge” symmetry of B in terms of exact forms B → B + dγ , and extend the
dual model to the BV setting.

A different point of view was proposed in [CFHS19], which relies on symmetries
B → B + β, generated by β ∈ H2(M), i.e. a closed but not exact form on M . We will
turn to this latter possibility—and the complications that arise—in Sect. 3.6, after we
have analysed the standard case.

Notice that in B → B + dγ , the form γ also enjoys a symmetry, as we can freely
map γ → γ + dτ . The BV formalism produces the extended action functional

SBV
dual =

∫

M

dB � dB + B‡dγ + γ ‡dτ, (78)

and the BV operator ιQ�dual = δSBV
dual

QB = dγ Qγ = dτ Qτ = 0 (79)

QB‡ = d � dB Qγ ‡ = dB‡ Qτ ‡ = dγ ‡ (80)

that satisfies [Q, Q] = 2Q2 = 0, on the space of fields:

Fdual := T ∗[−1]
(
�0(M)[2] × �1(M)[1] × �2(M)

)
� (τ ‡, γ ‡,B‡,B, γ, τ ).

If M has a non-empty boundary, it is easy to check that the boundary one-form

α∂
dual :=

∫

∂M

δBHB + B‡δγ + γ ‡δτ (81)

with HB:= � dB|∂M , and the boundary action

S∂
dual :=

∫

∂M

dγHB + dτB‡ (82)

satisfy the BV-BFV axioms, namely

ιQ�dual = δSBV
dual + π∗α∂

dual (83)

and
1

2
ιQ ιQ�dual = π∗S∂

dual, (84)

with π simply the restriction of fields (and normal jets) to the boundary. For simplicity
of notation, we will drop the subscript “dual” in what follows.
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3.2. Asymptotic symmetries of the dual model. We would like now to revert to the
scalar field description, and use the boundary action found so far as a generator for our
asymptotic charges. In what follows, we will reconstruct asymptotic symmetries from
the BV-BFV formulas obtained so far, after choosing appropriate fall-off condtions.
Observe that the on-shell condition �dB = dφ restricts to the boundary

HB ≡ �dB|∂M ≈ dφ|∂M
and if the boundary component has a boundary of its own, for example a sphere at the
corner of a lightlike boundary, we get

S∂ ≈
∫

∂M

dγ dφ|∂M =
∫

⋃
i ∂(∂M)i

dγφ, (85)

where the symbol≈means that we enforced the equations of motion and set antifields to
zero, and (∂M)i denotes the i-th connected component of the boundary (with appropriate
orientation).

Evaluating the boundary action on a specific gauge parameter � ∈ �1(M) (see
Remark 2), we can extract the volume form of S2 from the two-form d�, defining a
function λ ∈ C∞(S2) such that

d�(x) = λ(x)dS2 , (86)

so that the corner term becomes

S∂ [�] =
∫

⋃
i ∂(∂M)i

λ(x)φdS2. (87)

3.3. Asymptotic symmetries of the free scalar field. We would like to discuss now how
formula (87) produces asymptotic charges for scalar fields. From now on, we restrict
our discussion to asymptotically flat Lorentzian manifolds M and, for simplicity, one
can consider Minkowski spacetime.26

In retarded light-cone coordinates we define a boundary at infinity I by the condition
r = R → ∞. We consider scalar fields with the following radial dependence:27

φ =
∞∑
k=1

φ(k)r−k ,

with φ(k) independent of r , so that

dφ = 1

r
dφ(1) +

∑
k=2

1

rk
dφ(k) − dr

∑
k=1

1

rk+1
φ(k).

Observe that the dr part is obviously not present in the restriction dφ|∂M . From the
definition of Hφ = �dφ we get

Hφ =
∑
k=1

1

rk
� dφ(k) − �dr

∑
k=1

1

rk+1
φ(k) ,

26 Possible global effects will not be discussed here.
27 We consider this radial expansion in order to match with [CFHS19].



Asymptotic Symmetries in the BV-BFV Formalism 1121

so, requiring that Hφ = dB, we are lead to

B =
∞∑
k=1

1

rk
B(k),

and we set the fall-off condition for γ to be such that γ = ∑∞
k=1

1
rk

γ (k).
As in the case of Electrodynamics, we can express the above results in terms of

(R, s, l) variables. Following [Her95], we define

lim
R→∞ Rϕ(x + Rl) = χ(x · l, l) , (88)

and identify

χ(s, l) = φ
(1)
+ (u+, x̂) .

We assume the fall-off conditions

|χ(s, l)| <
const.

sε
, (89)

|χ̇ (s, l)| <
const.

s1+ε
, (90)

so that χ(+∞, l) = 0 (i.e. φ(1)
+ (∞, x̂) ≡ 0), and recall that in the absence of external

currents we have
�φ = 0 . (91)

Under these assumptions, it was shown in [Her95] that

φ(x) = − 1

2π

∫
χ̇(x · l, l)d2l . (92)

Now consider the past null asymptotics. Take a homogeneous function χ ′ satisfying (89)
and (90) with l replaced by past-pointing null directions −l . We then have

lim
R→∞ Rϕ(x − Rl) = χ ′(x · l, l) . (93)

and identify χ ′(s, l) = φ
(1)
− (u−, x̂). Fall-off conditions analogous to (89) and (90) imply

that χ ′(−∞, l) ≡ 0 (i.e. φ(1)
− (−∞) = 0).

The field can now be also expressed as:

φ(x) = 1

2π

∫
χ̇ ′(x · l, l)d2l . (94)

Comparing (92) and (94) we obtain:
∫

(χ̇(s, l) + χ̇ ′(s, l))d2l = 0 . (95)

It was shown in [Her95] that this in fact implies

χ̇ (s, l) + χ̇ ′(s, l) = 0 . (96)
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We obtain the existence of the limits χ(−∞, l) and χ ′(+∞, l) as well as

χ(s, l) + χ ′(s, l) = χ(−∞, l) = χ ′(∞, l) . (97)

This is again the matching property, analogous to (44).
We have seen that, as a consequence of the interplay between field equations and

fall-off conditions, in the absence of external currents, the asymptotes of the scalar field
at I+

+ and I−− and at i± vanish:

φ
(1)
+ (+∞) = φ

(1)
− (−∞) = 0 ,

lim
τ→∞ φ|H±

τ
= 0 .

Hence, with the area form on S2 being proportional to r2 in retarded coordinates, one
shows that the corner term (87) is given by

S∂,soft[�] ≈ −
∫

I+−

λ(1)φ
(1)
+ d2� +

∫

I−
+

λ(1)φ
(1)
− d2� ≈ 0, (98)

which coincides with the conservation of the (smeared) asymptotic charge, as analysed
in [CC18,CFHS19], with λ(1) an arbitrary function on the two dimensional celestial
sphere.

In the notation of [Her95], we can write this as:

−
∫

λ(1)(l)χ(−∞, l)d2l +
∫

λ(1)(l)χ ′(∞, l)d2l ≈ 0 ,

which is the smeared version of the matching property (97) and we identify:

Qsoft+
λ(1) ≡ −

∫

I+−

λ(1)χ(−∞, l)d2l , Qsoft−
λ(1) ≡ −

∫

I−
+

λ(1)χ ′(+∞, l)d2l .

Hence (98) is the on-shell charge conservation:

Qsoft+
λ(1) ≈ Qsoft−

λ(1) .

3.4. Soft charge from the Fourier transform. Another way to interpret formula (98) uses
the Fourier representation of the field, so can be applied only on Minkowski spacetime.
In [Her95] one writes the Fourier representation of the field ϕ(x) (denoted by A(x) in
the original) as

ϕ(x) = 1

π

∫
a′(p)δ(p2)ε(p0)e−i x ·pd4 p = 1

π

∫
d3 �p
2Ep

a′(Ep, �p)e−i(x0Ep−�x · �p)

Let

a( �p) ≡ a′(| �p|, �p) ,

and we define (analogously to [CCM18]) the unsmeared soft charge as:

Qsoft+
x̂ := lim

ω→0

ω

2
(a(ωx̂) + a‡(ωx̂)) . (99)
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Next, we note that

a′(ωl) = − ˜̇χ(ω, l)/ω ,

and use thw following formula proven in [Her95]:

˜̇χ(0, l) = 1

2π

∫ ∞

−∞
χ̇(s, l)ds = − 1

2π
χ(−∞, l) . (100)

It is now easy to see that fields with non-vanishing χ(−∞, l) are the infrared singular
ones (1/ω behavior around 0). Inserting this into (99), and identifying χ(−∞, l) in
retarded coordinates with φ

(1)
+ (−∞), we obtain:

Qsoft+
x̂ ∼ lim

ω→0
(ω ˜̇χ(ω, l)/ω + c.c.) ∼ φ

(1)
+ (−∞, x̂) ,

so smearing with an arbitrary function λ(1) on the two-dimensional celestial sphere, we
obtain

Qsoft+
λ(1) ∼

∫
S2

λ(1)φ
(1)
+ d2�,

as expected.

3.5. Hard charges for scalar fields. In this sectionwewould like to approach the problem
of computing hard contributions to the charge obtained in Sect. 3.2, when sources for
the scalar field are added to the model. We aim to utilise the dual model description to
be able to gain information on asymptotic charges for scalar fields, however the duality
outlined above strictly holds in the absence of sources. As a matter of fact, when a source
for the scalar field is present, namely when28

d � dφ = J (4)
φ = �Jφ, (101)

we have dHφ = J (4)
φ , and the naïve duality outlined in Sect. 3 breaks down (we defined

Hφ := � dφ as in Remark 16).

3.5.1. Duality in the presence of sources. To extend the duality outlined above to the
case of a scalar field coupled to external sources, we will consider a model encoding the
equations of motion

d � dB = �JB.

Let us specify this discussion for the case ofMinkowski spacetimeM, forwhich Hk(M) =
0, k > 0. We wish to establish a duality between these two models, and we do so by
parametrising the possible primitives of d � dφ = Jφ by means of the 2-form field B,
and the primitives of d � dB = JB by means of the scalar φ. Consider the following
relations:

28 The superscript reminds us that J (4)
φ is a top form, whereas Jφ is a function.
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d�dφ = Jφ d�dB = JB (102a)

�dφ = dB + Hφ �dB = dφ + HB (102b)

with Hφ,HB choices of primitives,29 i.e such that dHφ = �Jφ and dHB = �JB. By
applying d� to the Equations in (102b), we further derive the relations

0 = d � dB + d � Hφ 0 = d � dφ + d � HB. (103)

Then, if we want the models (102a) to be “dual”, we need to enforce
{

−d�Hφ = d�dB ≈ JB
−d�HB = d�dφ ≈ Jφ

(104)

Remark 18. Observe that the relations in (104) require that, if φ has no sources,Hφ must
vanish, and B is “dual” only if also JB = 0, since d∗dB = 0. This is an enhancement of
the duality expressed by Equation (77), as d2B = 0 implies that φ satisfies �φ = Jφ ,
and vice-versa. In particular, Equations (104) contain the standard sourceless duality
(77) as a special case.

Then, if we define the interacting two-formmodel to be given by the action functional:

SJ
dual =

∫

M

dB � dB − B � JB, (105)

with d � JB = 0, we have that an interacting two-form model is related to an interacting
scalar model whenever the relations (104) hold.

Remark 19. Observe that we do not need to know the explicit form of interaction that
generates JB, and we can just consider it as an effective external source. The approach
of [CFHS19] to hard scalar asymptotic charges, which proposes a link to a dual model
with non-local sources, does not directly fit in our language. Although we were not able
to simply adapt the argument used in their work, it would be interesting to understand
how the two approaches might be related. We plan to address this question in our future
work.

3.5.2. Calculation of hard charges. To compute the hard charge for this model, we
modify the BV-BFV calculation of Sect. 3.1 in the following way. The sourced classical
action (105) is extended to a BV action functional in exactly the same way as we did in
Sect. 3.1, with the difference that the BV operator Q on the antifield B‡ will read

QB‡ = d � dB − �JB (106)

Hence, from Equation (82) we get

S∂ =
∫

M

dγ (d � dB − �JB) + dτB‡ (107)

29 On manifolds with nontrivial cohomology, primitives are defined modulo closed forms, not necessarily
exact. We will not discuss this case.
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Evaluating this on a gauge parameter� ∈ �1(M), and in virtue of the (on-shell) relations
(104) and (102b), we have:

S∂ [�] ≈
∫

∂M

d�
(
�dB + �Hφ

) =
∫

∂M

d�dφ (108)

where now φ is a solution of �φ = Jφ .

Let us split S∂ [�] as in (54) and compute S∂,soft
I+∪I−[�] and S∂,hard

H+∪H−[�] separately. We
start with the soft charge:

S∂,soft
I+∪I− ≈

∫

I+∪I−
d�dφ = −

∫

I+−

λ(1)χout(−∞, l)d2l +
∫

I−
+

λ(1)χ in′
(+∞, l)d2l ,

since the free asymptotes at I+− and I−
+ are now χout(−∞, l) and χ in′

(+∞, l), respec-
tively. They appear from the following decomposition of φ, a solution to �φ = Jφ
(compare with [Her95]):

φ = φR + φin = φA + φout.

The free fieldsφin/out solve the homogeneous equation (91) and, assuming that incoming
and outgoing fields satisfy the fall-off conditions (89) and (90), we have the following
identities for the asymptotes:

χ(s, l) = χJ (s, l) + χ in(s, l) = χJ (+∞, l) + χout(s, l)

χ ′(s, l) = χJ (−∞, l) + χ in′
(s, l) = χJ (s, l) + χout ′(s, l)

Hence

χ(+∞, l) = χJ (+∞, l) , χ ′(−∞, l) = χJ (−∞, l) ,

and we have the matching property (compare with (97) in the free case):

χ ′(+∞, l) = χ(−∞, l) , (109)

We identify (in analogy to Sect. 3.3):

Qsoft+
λ(1) ≡ −

∫

I+−

λ(1)χout(−∞, l)d2l , Qsoft−
λ(1) ≡ −

∫

I−
+

λ(1)χ in′
(+∞, l)d2l .

The hard charge contribution is given by:

S∂,hard
H+∪H−[�] ≈

∫

H+

d�dφ −
∫

H−
d�dφ =

∫

H+∪H−
d�d(�A −�R)Jφ = −

∫

S2

d�χJ |+∞−∞ ,

where (following [Her95])

χJ (s, l) =
∫

dyδ(s − y · l)Jφ(y)
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and the boundary values are

χJ (±∞, l) =
∫

H±

Jφ(v)

v · l dμ(v) ,

which agrees with [CCM18], upon identification:

Qhard±
λ(1) ≡

∫
−λ(1)(l)χJ (±∞, l)

Hence

S∂,hard
H+∪H−[�] ≈ Qhard+

λ(1) − Qhard−
λ(1) .

Finally, we can write the formula for the boundary action in the form:

S∂ [�] ≈ −
∫

λ(1)(χout(−∞, l) + χJ (+∞, l))d2l

+
∫

λ(1)(χ in′
(+∞, l) + χJ (−∞, l))d2l

= −
∫

λ(1)(l)χ(−∞, l)d2l +
∫

λ(1)(l)χ ′(+∞, l)d2l = Q+
λ(1) − Q+

λ(1) ≈ 0 ,

(110)

where

Q±
λ(1) = Qhard±

λ(1) + Qsoft±
λ(1) .

Hence (110) is the total charge conservation and at the same time, a smeared version of
the matching property (109), proven in [Her95].

3.6. Shift symmetries by zero modes, global gauge transformations. In this section we
would like to analyse a particular class of transformations that arise from considering
either shifting a scalar field by a constant or, dually, the B field by an element of H2(M)

(assumednot empty). In [CFHS19] these are called large gauge transformations, because
in their work they are interpreted as ultimately being the same. We prefer to resort to the
more standard nomenclature and refer to them as global gauge transformations.

The action functional for a scalar field does not admit local gauge symmetries, but it
admits shifts by constant maps

φ �−→ φ + α (111)

where α is a constant function on M , i.e. dα(x) = 0 or α ∈ H0(M).
Similarly, we have a symmetry for B generated by closed-but-not-exact forms β ∈

H2(M), i.e. dβ = 0 but β �= dγ . We observe, en passant, that this is not possible on
Minkowski space, since H2(M4) = 0.

Note that both these transformations are to be considered symmetries of the zero
modes (more than a symmetry of the fields), i.e. elements of the kernel of the kinetic
operator (that is the quadratic part of the Lagrangian density). We will see shortly that
these transformations do not really admit a BV description in the usual sense.
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Let us try to construct the BV-data for this field redefinition. The space of fields is
now (α is promoted to ghost-number 1)

F = T ∗[−1]
(
Fcl × H0[1](M)

)
(112)

and the extended BV action reads

SBV
large =

∫

M

�dφ ∧ dφ + φ‡α, (113)

with φ‡ the cotangent field for φ.
The −1-shifted symplectic BV-form is

� =
∫

δφδφ‡ + δαδα‡ ,

and the action of the BV operator Q on fields is

Qφ = α; Qφ‡ = d � dφ; Qα = 0; Qα‡ = φ‡

so that ιQ� = δS + π∗α∂ . On the other hand, the BV extension for large symmetries in
the case of the dual model reads

SBV
dual,large =

∫

M

dB � dB + B‡β

and the associated BV operator

QB = β Qβ = 0

QB‡ = d � dB Qβ‡ = B‡

Theproblemwith the abovenaïve construction is that these operators are not cobound-
aries, i.e. Q2 �= 0. In fact, we compute

Q2α‡ = Q(Qα‡) = Qφ‡ = d � dφ �= 0,

and similarly for the dual model:

Q2β‡ = d � dB �= 0.

both of which only vanish on shell. Hence this construction (for symmetries given by
constants and, dually, elements of the second cohomology group) does not yield a BV
data.

Ignoring this and pushing through with formal calculations, for the shift B → B + β

with β ∈ H2(M), one gets a “formal boundary action”

S∂
WR

[β] ≈
∫

∂M

βdφ =
∫

∂M

d(βφ) (114)
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which is a corner term. In the limit R → ∞, assuming the same fall-offβ = ∑∞
k=1 r

−kβ(k)

we get that dβ = 0 implies that β(k) = dβ(k+1). In particular β(0) = 0 = dβ(1) and
β(1) = dβ(2). Then, equation (114) becomes

S∂
I [β] = lim

R→∞ S∂
WR

[β] =
∫

I
d(β(1)φ(1))

=
∫

I
d(dβ(2)φ(1)) =

∫
S2
dβ(2)φ(1)|+∞−∞ =

∫
S2
dVolS2 λ̃φ(1)|+∞−∞.

This is the same conclusion as the one reached in [CFHS19]. It is evident, though,
that on spaces with trivial second cohomology, the procedure used in [CFHS19] needs
to be better understood. One possibility, might be to phrase this in terms of relative
cohomology (see, e.g., [BT13]). We note, however, that the construction presented in
Sects. 3.1 and 3.2 avoids this problem, while still reproducing the correct asymptotic
behaviour. Thus, we believe it provides a neat description of how soft charges emerge
from the symmetries of the dual model.

One possible way to overcome the difficulty above might be to think of the global
transformations for the scalar/dual model as shifts in zero modes, rather than proper
symmetries. One can extend the BV construction in order to consider infinitesimal shifts
in the space of zero modes, a framework that is related to formal geometry. In a nutshell,
introducing a differential d on the space of solutions to d � dB = 0, which we can think
of being a field-version of de Rham differential, we obtain that, for β ∈ �2(M)coclosed

Sformal =
∫

M

d(B + β) � d(B + β) + B‡dβ (115)

satisfies the differential modified classical master equation:

{Sformal, Sformal} = dS∂
formal (116)

reconstructing a formal version of the BV-BFV construction. We refer to [BCM12,
Section 3] and [CMW19, Section 3.3.2] for an introduction of this technique in relation
to the Poisson sigma model and, more generally, AKSZ theories, and defer its analysis
for the case at hand to a subsequent work.30

4. Summary and Outlook

In this manuscript we have laid the foundations for a rigorous analysis of asymptotic
charges within the BV-BFV formalism [CMR14,CMR18], adapted to manifolds with
asymptotic boundaries. The study of electrodynamics and scalar field theory, while
mostly in agreement with literature content, shows how the BV paradigm correctly
encompasses the two main aspects proper of asymptotic charges: the relation to gauge
symmetries and Noether charges, as well as a strong link with the equations of motion.
In particular, reducibility of symmetries, such as the one featured in Sect. 3.1, is easily
implemented in the BV formalism, which then becomes the formalism of choice for
subsequent generalisations.

30 We would like to thank K. Wernli for pointing this out to us.
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In the case of electrodynamics, we have shown how the on-shell vanishing of the
boundary action, a piece of structural BV data, leads to the existence of a conserved
quantity Qε, akin to a Noether charge, which in the recent literature (see e.g. [KPS17])
is suggested to be the generator of a large gauge transformation. On the other hand, in
[Her17] it is argued that the transformation in question is not a symmetry, but rather a
map into a different sector of the theory.

We agreewith part of the latter claim of [Her17]: in order to derive the conservation of
Qε, one needs to consider transformations of the gauge potential that lead away from the
Lorentz gauge. However, we also show that by appropriately choosing falloff conditions
for such transformations, one can reproduce the formulas derived in [CL15,KPS17,
CE17]. Indeed, we have shown that Qε is computed by the boundary action S∂ , seen
as the BFV version of the Noether charge, for gauge transformations with nonvanishing
asymptotics. Hence our interpretation is also close to the one of [KPS17].

To give an answer to our initial question “in which sense are LGT’s symmetries
of the theory” we have performed an analysis of the canonical symplectic structure
of Electrodynamics, and showed how its failure under large gauge transformations fits
naturally in the BV-BFV language. This suggests an extension of the notion of symmetry
for a gauge field theory, which agrees with the philosophy that led to the study of descent
equations. In other words, large gauge transformations are extended symmetries of the
theory, completely encoded in higher codimension structural data of the field theory, and
possibly fundamental for a correct, covariant and functorial quantisation of the theory
[CMR18].

Important implications for the quantum theory follow from the fact that LGTs of
[CL15,KPS17,CE17] are transformations between theories in different gauges. Indeed
the results of [DW19] suggest that different gauges lead to unitarily in-equivalent theo-
ries, i.e. representing different sectors, as also stated in [Her17].

In the context of (sourced) scalar field theory, we have generalised a duality relation
with a (sourced) two-form model, endowed with a reducible symmetry. By treating
this “dual” gauge theory within the BV-BFV formalism, we have managed to deduce the
conservation of both soft and hard asymptotic charges for the scalar field [CCM18,CC18]
from the vanishing of the boundary action for the dual theory. This result, which is fully
analogous to the case of Electrodynamics, clarifies the statement presented in [CFHS19],
and challenges their interpretation of large gauge transformations.

A natural continuation of this program is, one the one hand, an analysis of asymptotic
charges for general relativity. The BFV structure for GR, presented in [CS16,CCS20b],
is very rich and nontrivial, and we believe it will provide the optimal starting point for
said analysis. On the other hand, theBVquantisation scheme, once adapted to asymptotic
boundaries, is the natural framework in which to phrase Ward identities for asymptotic
charges, and their relation to soft photons theorems. We plan to say more about the
quantised theory, the emergence of asymptotic Ward identities and the behaviour upon
the change of gauge in our future work.
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