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Abstract: We study the light ray transform on Minkowski space-time and its small
metric perturbations acting on scalar functions which are solutions to wave equations.
We show that the light ray transform uniquely determines the function in a stable way.
The problem is of particular interest because of its connection to inverse problems of
the Sachs–Wolfe effect in cosmology.

1. Introduction

Let M = [t0, t1]×R
3 and (t, x), t ∈ [t0, t1], x ∈ R

3 be the local coordinates. Let gM =
−dt2 +dx2 be theMinkowski metric on M . Consider the Lorentzian manifold (M, gM ).
We denote the interior by M◦ = (t0, t1) × R

3 and the boundaries by S0 = {t0} × R
3

and S = {t1} × R
3. See Fig. 1.

Consider light-like geodesics on (M, gM ) which are straight lines. We parametrize
the set of light rays C as follows: let x0 ∈ S0 and v ∈ S

2 the unit sphere in R
3. Then

a light ray from x0 in direction (1, v) is γ (τ) = (t0, x0) + τ(1, v), τ ∈ [0, t1 − t0]. See
Fig. 1. In particular, we can identify C = R

3 × S
2. The light ray transform for scalar

functions on (M, gM ) is defined by

XM ( f )(γ ) =
∫ t1−t0

0
f (γ (τ ))dτ, f ∈ C∞

0 (M). (1.1)

Of course, one can regard XM as the restriction of the light ray transform XR4 of the
Minkowski spacetime (R4, gM ) acting on functions supported in M . However, it is
perhaps better to think of XM as the compact version of the transform, which is similar
to the geodesic ray transform on a compact Riemannian manifold with boundary, see
for instance [20].

In thiswork,we study XM actingon scalar functionswhich are solutions to theCauchy
problem of wave equations on M . Let c > 0 be a constant. Denote�c = ∂2t +c

2�where
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Fig. 1. The setup of the problem for the Minkowski space-time

� is the positive Laplacian on R
3, namely � = ∑3

i=1 D
2
xi , Dxi = −√−1 ∂

∂xi
. Here, c

is the wave speed. On (M, gM ), c = 1 is the speed of light, and �c is the d’Alembert
operator. Consider the Cauchy problem

�c f = 0 on M◦

f = f1, ∂t f = f2, on S0.
(1.2)

The problem we address in this paper is the determination of f or equivalently f1, f2
from XM ( f ) with the constraint (1.2). LetN s def= Hs+1

comp(S0) × Hs
comp(S0). Our main

result is

Theorem 1.1. Suppose 0 < c ≤ 1 is constant. Assume that ( f1, f2) ∈ N s, s ≥ 0, and
f1, f2 are supported in a compact setK ofS0. Then XM f uniquely determines f and
f1, f2 which satisfy (1.2). Moreover, there exists C > 0 such that

‖( f1, f2)‖N s ≤ C‖XM f ‖Hs+2(C ) and ‖ f ‖Hs+1(M) ≤ C‖XM f ‖Hs+2(C )

where C is the set of light rays on M.

We will prove stronger versions of the theorem including lower order terms in the
wave equation in Theorem 8.3 in Sect. 8. However, for ease of presentation, we use the
standard wave equation on Minkowski spacetime throughout the paper until the final
sections where the necessary changes are indicated.

Next, we consider the generalization of Theorem 1.1 corresponding to c = 1. We
remark that it is not difficult to formulate the result corresponding to c < 1 although
we do not discuss it. We consider metric perturbations gδ = gM + h where h satisfies
assumptions (A1), (A2) in Sect. 9, which says that h is a suitably smooth small pertur-
bation of the Minkowski spacetime. In this case, light rays may not be straight lines. Let
Xδ be the light ray transform on (M, gδ) see (9.6). Let �gδ be the d’Alembert operator
on (M, gδ). Consider the Cauchy problem

�gδ f = 0 on M◦

f = f1, ∂t f = f2, on S0.
(1.3)
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Our result is

Theorem 1.2. Consider (M, gδ) satisfying assumptions (A1), (A2) to be stated in Sect. 9.
Assume that ( f1, f2) ∈ N s, s ≥ 0, and f1, f2 are supported in a compact setK ofS0.
For δ ≥ 0 sufficiently small, Xδ f uniquely determines f and f1, f2 which satisfy (1.3).
Moreover, there exists C > 0 such that

‖( f1, f2)‖N s ≤ C‖Xδ f ‖Hs+2(Cδ)
and ‖ f ‖Hs+1(M) ≤ C‖Xδ f ‖Hs+2(Cδ)

where Cδ is the set of light rays on (M, gδ), see Sect. 9.

Our motivation for this setup of the light ray transform comes from some inverse
problems in cosmology. We are particularly interested in the determination of gravita-
tional perturbations such as primordial gravitational waves from the anisotropies of the
Cosmic Microwave Background (CMB), see for example [2,4,11]. Sachs and Wolfe in
their 1967 paper [19] discovered the connection of the CMB anisotropy and the light
ray transform of the gravitational perturbations, now called the Sachs–Wolfe effects. We
discuss the background in Sects. 2 and 3. Physically, c < 1 and c = 1 in Theorem 1.1
correspond to different Universe models driven by hydrodynamical perturbations and
scalar field perturbations, respectively. Moreover, Theorem 1.2 covers some cases of
variable wave speeds.

The reason that we are able to get a stable determination is the restriction of singulari-
ties of f . In general, it is known that time-like singularities in f , namely all (z, ζ ) ∈ T ∗M
in the wave front set WF( f ) of f with ζ time-like, are lost after taking the light ray
transform, although the light ray transform XM is injective onC∞

0 (M). In particular, we
do not expect Theorem 1.1 to hold for c > 1. There is a fundamental difference in our
treatment between the c < 1 and c = 1 cases. The former requires a good understanding
of the normal operator X∗

M XM which was considered in [12] and further generalized in
[13], while the latter relies on a thorough analysis of the operator XME where E is the
fundamental solution or parametrix for the Cauchy problem.

The paper is organized as follows. In Sects. 2 and 3, we discuss the (integrated)
Sachs–Wolfe effects and explain how the inverse problem is related to our theorems.
In Sect. 4, we review some properties of the light ray transform. Then we consider the
Cauchy problem in Sect. 5. In Sects. 6 and 7, we construct the microlocal parametrix for
the light ray transform with the wave constraint for c < 1 and c = 1 respectively. We
prove Theorem 1.1 and the version including lower order terms in the wave equation in
Sect. 8. Finally, we address the small metric perturbations of Minkowski space-time in
Sect. 9.

2. The Integrated Sachs–Wolfe Effect

Consider the flat Friedman–Lemaîte–Robertson–Walker (FLRW)model for the cosmos:

M = (0,∞) × R
3, g0 = dt2 − a2(t)δi j dx

i dx j

where (t, x), t ∈ (0,∞), x ∈ R
3 are coordinates and δi j = 1 if i = j and otherwise 0.

Here, the signature of g0 is (+,−,−,−) because we will refer to some results in [16]
later. The factor a(t) is assumed to be positive and smooth in t . It represents the rate of
expansion of the Universe.

We assume that the actual cosmos is a metric perturbation g = g0 + δg onM where
δg is a small perturbation compared to g0. Here, we follow the convention of [16] that
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δA denotes the perturbation of quantity A (not δ times A). We introduce the conformal
time s such that ds = a−1(t)dt . Then we get

g0 = a2(s)
(
ds2 − δi j dx

i dx j
)

= a2(s)gM

where gM is the Minkowski metric onM = (0,∞) and we used a(s) to denote a(t (s)).
We write g = a2(s)(gM + δg) where δg denotes the corresponding perturbation in
conformal time. In the literature, the metric perturbations are classified to scalar, vector
and tensor type. We consider the scalar type perturbations. In the longitudinal gauge,
also called the conformal Newtonian gauge, the metric g is of the form

g = a2(s)
[
(1 + 2�)ds2 − (1 − 2	)dx2

]
(2.1)

see [16, Section 2]. Here, �,	 are scalar functions on M. We remark that there is a
gauge invariant formulation of cosmological perturbations. However, in the longitudinal
gauge, the gauge invariant variables are equal to �,	, see [16]. In this work, we fix the
gauge and work with �,	 for simplicity.

Consider the Cosmic Microwave Background (CMB) measurement. Our main ref-
erences are [2,4,19]. Let S0 = {s0} × R

3 be the surface of last scattering. This is the
moment after which photons stopped interaction and started to travel freely in M . Let
S = {s1} × R

3 be the surface where we make observation of the photons. Let γ (τ) be
a light ray from S0 to S . It represents the trajectory of photons in M . Explicitly, we
have

γ (τ) = (s0, x0) + τ(1, v), (s0, x0) ∈ S0, v ∈ S
2, τ ∈ [0, s1 − s0] .

Then we consider the photon energies observed at S0,S denoted by E0 =
g0(γ̇ (s0), ∂s), E = g0(γ̇ (s1), ∂s). Here, the observer is represented by the flow of the
vector field ∂s . The redshift z is defined by

1 + z = E/E0.

In [19], Sachs andWolfe derived that to the first order linearization, 1+z is represented by
a light ray transform of the metric perturbations, see [19, equation (39)]. In cosmological
literatures, one often connects this to the CMB temperature anisotropies. Let T be the
temperature observed at S in the isotropic background g0. Let δT be the temperature
fluctuation from the isotropic background. One can compute δT/T in terms of the
energies E0, E . One component of δT/T is the integrated Sachs–Wolfe (ISW) effects

(
δT

T
)I SW (γ ) =

∫ s1−s0

0
(∂s�(γ (τ)) + ∂s	 (γ (τ)) dτ = XM (∂s� + ∂s	)(γ )

(2.2)
see [4, Section 2.5]. Note that this quantity depends on the light ray γ which indicates
the anisotropy.We remark that another component of δT/T is the ordinary Sachs–Wolfe
effect (OSW) which only involves �,	 at S0. The integrated Sachs–Wolfe effect can
be extracted from the CMB and other astrophysical data, see for example [14].

The inverse Sachs–Wolfe problem we study is to determine �,	 on M from
(δT/T )I SW , which in particular includes the initial value of �,	 on S0. Before we
proceed, we observe that there are natural obstructions to the unique determination from
(2.2). If � + 	 is a constant, then the integrated Sachs–Wolfe effect is always zero. So
the goal is to determine �,	 up to such natural obstructions.
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3. Dynamical Equations for Perturbations

For the Sachs–Wolfe problem, we should take into account that g satisfies the Einstein
equations with certain source fields and initial perturbations at S0 from g0. On the
linearization level, this puts the perturbation δg under some wave equation constraint
as we discuss in this section. The derivations of the equations for the perturbation take
some amount of work and they are mostly done in the literature, see for example [2,
Section 5.1] and [4]. We follow the presentation and the notations in [16, Section 4–6]
closely. Instead of the gauge invariant approach, we choose to work in the longitudinal
gauge for simplicity. It is not hard to transform back and forth and our analysis works
for the gauge invariant formulation as well.

Let Rμ
ν be the Ricci curvature tensor and R the scalar curvature on (M , g) (in

conformal time). Let Tμ
ν denote the stress-energy tensor of certain source fields. The

Einstein equations are

Gμ
ν = 8πGTμ

ν, Gμ
ν = Rμ

ν − 1

2
δμ

νR

where G is Newton’s gravitational constant. We assume that Tμ
ν = (0)Tμ

ν + δTμ
ν

where (0)T denotes the stress-energy tensor of the background field and δT denotes
the perturbation. We also have g = a2(gM + δg). Then we can write Gμ

ν = (0)Gμ
ν +

δGμ
ν + · · · . From the asymptotic expansion, one finds that the Einstein tensor for the

background metric gM are

(0)G 0
0 = 3a−2H2, (0)G0

i = 0, (0)Gi
j = a−2(2H ′ + H2)δi j , (3.1)

where i, j = 1, 2, 3, H(s) = ∂sa(s)/a(s), see [16, equation (4.2)]. Here, H ′ = ∂s H
denotes the derivative in the conformal time variable. We emphasize that we work with
a flat Universe and we get the equation (0)Gμ

ν = 8πG(0)Tμ
ν .

For the first order perturbation term, we get δGμ
ν = 8πGδTμ

ν . After lengthy calcu-
lations, one obtains (see [16, equation (4.15)]) the following equations for �,	

− 3H
(
H� + 	 ′) + �	 = 4πGa2δT 0

0

∂i (H� + 	 ′) = 4πGa2δT 0
i

[(2H ′ + H2)� + H�′ + 	 ′′ + 2H	 ′ + 1

2
�(� − 	)]δi j

− 1

2
δik(� − 	)|k j = −4πGa2δT i

j ,

(3.2)

where i, j = 1, 2, 3, ∂i denotes the i th component of the covariant derivativewith respect
to the background metric gM , � denotes the standard Laplacian on R

3, and as in (3.1),
prime denotes ∂s derivative.

Now we need to specify the source field. We consider two important examples: the
perfect fluid and the scalar field. We first consider Universe dominated by perfect fluid
sources. Let u be the four fluid velocity of a fluid source. The stress-energy tensor for a
perfect fluid is

T α
β = (ε + p)uαuβ − pδα

β

see [16, equation (5.2)], Here, ε is the energy density and p is the pressure of the
fluid. We assume that ε = ε0 + δε, p = p0 + δp where 0 denotes the quantity for the
background and δ denotes the perturbations. For fluid source, from (3.2) one deduces
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that the perturbations � = 	. In the case of adiabatic perturbations, � satisfies the
following equation, called Bardeen’s equation

�′′ + 3H(1 + c2s )�
′ − c2s�� + [2H ′ + (1 + 3c2s )H

2]� = 0, (3.3)

see [16, equation (5.22)]. In general, the right hand side of the equation is a non-zero term
related to the entropy perturbations. The fluid velocity u also satisfies a wave equation
with speed cs , see [16, equation (5.25)]. Here, cs < 1 is the speed of sound. Prescribing
Cauchy data of � atS0, one can solve the Cauchy problem of (3.3) to get � inM . We
formulate the inverse Sachs–Wolfe problem in this case as

Problem 3.1. Determining � from (2.2) where � satisfies the Cauchy problem of (3.3).

Commuting equation (3.3)with ∂s , we see that ∂s� also satisfies awave equation. Hence,
we arrived at the model problem we proposed in the introduction.

Next, let’s consider Universe governed by a scalar field φ. The stress energy tensor
is

Tμ
ν = ∇μφ∇νφ − [1

2
∇αφ∇αφ − V (φ)]δμ

ν

see [16, equation (6.2)]. Here, V is the potential function for the scalar field φ. The
field itself satisfies the Klein-Gordon equation �φ + ∂φV (φ) = 0. Now assume that
φ = φ0 + δφ where φ0 is the scalar field which drives the background model and δφ

denotes the perturbation. Then we can split Tμ
ν = (0)Tμ

ν + δTμ
ν . Again, one finds that

� = 	 and it satisfies the equation

�′′ + 2(H − φ′′
0/φ

′
0)�

′ − �� + 2(H ′ − Hφ′′
0/φ0)� = 0 (3.4)

see [16, equation (6.48)]. This is a damped wave equation with wave speed c = 1. We
can formulate the inverse Sachs–Wolfe problem in this case as

Problem 3.2. Determining � from (2.2) in which � satisfies the Cauchy problem of
(3.4).

Again, we arrived at the model problem in the introduction with c = 1. We do not need
it but record that the scalar field perturbation also satisfies a wave equation, see [16,
equation (6.47)].

Applying our main result of the paper, in particular Theorem 8.3 which allows lower
order terms in the wave equation, we obtain the following result.

Corollary 3.3. For the inverse Sachs–Wolfe effect Problems 3.1 and 3.2, one can
uniquely determine � inM (and the initial conditions atS0) in the longitudinal gauge
up to a constant in a stable way.

4. The Light Ray Transform on Functions

We recall some facts about the light ray transform on scalar functions. Consider
the Lorentzian manifold (M, gM ) and hereafter we change the signature of gM to
(−,+,+,+).For (t, x) ∈ M◦, t ∈ (t0, t1), x ∈ R

3,weuse� = (τ, ξ), τ ∈ R, ξ ∈ R
3 for

the coordinate in T(t,x)M◦ so that tangent vectors are represented by τ∂t +
∑3

j=1 ξ j∂x j .

We divide the tangent vectors in T(t,x)M◦ into time-like vectors �−
(t,x)M

◦ = {� ∈ R
4 :

gM (�,�) = −τ 2 + |ξ |2 < 0}, space-like vectors �+
(t,x)M

◦ = {� ∈ R
4 : gM (�,�) >
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0} and light-like vectors L(t,x)M◦ = {� ∈ R
4 : gM (�,�) = 0}. We denote the corre-

sponding fiber bundles by�−M◦,�+M◦, LM◦. The cotangent vectors can be classified
similarly using the dual metric g∗

M on T ∗M◦. The corresponding bundles are denoted
by �∗,−M◦,�∗,+M◦, L∗M◦.

From now on, without loss of generality, we take t0 = 0 in M , which amounts
to a translation in the t variable. Let C be the set of light rays on (M, gM ). As M
has a global coordinate system, we can parametrize C as follows. Let y ∈ R

3, v ∈
S
2 def= {z ∈ R

3 : |z| = 1} with | · | the Euclidean norm. We denote θ = (1, v)

so that θ is a (future pointing) light-like vector. Then all the light rays are given by
γy,v(τ ) = (τ, y+τv), τ ∈ (0, t1), (y, v) ∈ R

3×S
2. Thus, we can identifyC = R

3×S
2.

For f ∈ C∞
0 (M◦) and y ∈ R

3, v ∈ S
2, we have

XM f (y, v) =
∫ t1

0
f (τ, y + τv)dτ

= (2π)−3
∫
R3

∫
R3

∫ t1

0
ei((y−x)·η+tv·η) f (t, x)dtdxdη.

(4.1)

The Schwartz kernel of XM is δZ the delta distribution on C × M◦ supported on the
point-line relation Z defined by

Z = {(γ, q) ∈ C × M◦ : q ∈ γ } = {(y, v, (t, x)) ∈ R
3 × S

2 × M◦ : x = y + tv}.

We know (see e.g. [12]) that XM is an Fourier integral operator of order−3/4 associated
with the canonical relation (N∗Z)′, where N∗Z denotes the conormal bundle of Z minus
the zero section. Hence XM : E ′(M◦) → D′(C ) is continuous. Here, D′(M◦), E ′(M◦)
denotes the space of distributions and compactly supported distributions on M◦.

It is known that on R
4, the light ray transform is injective on C∞

0 (R4), see [10,17],
but not injective on S(R4) (Schwartz functions on R4). It is proved in [10, Corollary 7]
that the kernel of the transform consists of S(R4) functions whose Fourier transforms
are supported in the time-like cone. One can obtain analogous results for XM . The point
is that after taking the light ray transform, time-like singularities in the functions are
lost.

To see the difference in the treatment between space-like and light-like singularities,
consider the normal operator X∗

M XM . For the light ray transform on R
4, the Schwartz

kernel of the normal operator can be computed explicitly using Fourier transforms, see
[17]. Let’s look at the microlocal structure. The canonical relation C = N∗Z ′ is

C ={((y, v, η,w); (t, x, τ, ξ)) ∈ (T ∗C \0) × (T ∗M◦\0) : y = x − tv, η = ξ,

w =tξ |TvS
2 , τ = −ξ · v, y ∈ R

3, v ∈ S
2, η ∈ R

3, (t, x) ∈ M◦},
(4.2)

see [12, equation (39)]. In the expression of w, ξ is regarded as a co-tangent vector to
TvS

2. If � = (τ, ξ) is light-like, then ξ |TvS
2 = 0, see [12, Lemma 10.1]. We look at the

double fibration picture

C

T ∗M T ∗C
π ρ
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If ρ is an injective immersion, the double fibration satisfies the Bolker condition, and the
normal operator X∗

M ◦ XM belongs to the clean intersection calculus so that the normal
operator is a pseudo-differential operator, see [6]. As shown in [12, Lemma 10.1], ρ fails
to be injective on the set L ∩ C where

L = {(y, v, η,w; t, x, �) ∈ (T ∗C \0) × (T ∗M◦\0) : � is light-like}.
In particular, the normal operator is an elliptic pseudo-differential operator when
restricted to space-like directions, see [17] and [12]. In general, it is proved in [23]
that the Schwartz kernel of the normal operator X∗

M XM is a paired Lagrangian dis-
tribution and a parametrix can be constructed within the framework of [5]. However,
the picture near light-like directions is still not so clear. We remark that Guillemin [7]
considered the structure of XM X∗

M for 2 + 1 dimensional Minkowski spacetime.

5. Solution of the Cauchy Problem

We find a representation of the solution of the Cauchy problem in this section. Consider

�cu = 0, on M◦ = (t0, t1) × R
3

u = f1, ∂t u = f2, on S0 = {t0} × R
3.

(5.1)

The fundamental solution can be written down quite explicitly. However, it will be more
convenient to look at its microlocal structure. For (5.1), all we need is the Fourier trans-
form, see for example Trèves [21, Chapter VI, Section 1]. For general strictly hyperbolic
equations, Duistermaat-Hörmander (see [3, Chaper 5]) constructed a parametrix for the
Cauchy problem. So one can find a parametrix for (5.1) even when the equation contains
lower order terms which will be used in Sect. 8.

Let (τ, ξ), ξ ∈ R
3 be the dual variables in T ∗M◦ to (t, x), x ∈ R

3. Taking the Fourier
transform of (5.1) in the x variable, we get (for t0 = 0)

∂2t û(t, ξ) + c2|ξ |2û(t, ξ) = 0,

û(0, ξ) = f̂1(ξ), ∂t û(0, ξ) = f̂2(ξ).

Solving this ODE, we get

û(t, ξ) = 1

2
eitc|ξ |( f̂1 +

1

ic|ξ | f̂2) +
1

2
e−i tc|ξ |( f̂1 − 1

ic|ξ | f̂2).

Taking the inverse Fourier transform, we get

u(t, x) = (2π)−3 1

2

∫
R3

ei(x ·ξ+ct |ξ |)( f̂1 +
1

ic|ξ | f̂2)dξ + (2π)−3 1

2

∫
R3

ei(x ·ξ−tc|ξ |)( f̂1

− 1

ic|ξ | f̂2)dξ

= (2π)−3
∫
R3

ei(x ·ξ+ct |ξ |)ĥ1(ξ)dξ + (2π)−3
∫
R3

ei(x ·ξ−tc|ξ |)ĥ2(ξ)dξ

= E+h1 + E−h2,
(5.2)
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where

ĥ1 = 1

2
( f̂1 +

1

ic|ξ | f̂2), ĥ2 = 1

2
( f̂1 − 1

ic|ξ | f̂2).

We see that E± are represented by oscillatory integrals

E±( f ) = (2π)−3
∫
R3

∫
R3

ei((x−y)·ξ±ct |ξ |) f (y)dydξ. (5.3)

The phase functions are φ±(t, x, y, ξ) = (x − y) · ξ ± ct |ξ | and amplitude function

a(t, x, ξ) = 1. In Hörmander’s notation, we conclude that E± ∈ I− 1
4 (R3 ×M◦; (C±)′)

are Fourier integral operators where the canonical relations are

C± = {(t, x, ζ0, ζ ′; y, ξ) ∈ T ∗M◦\0 × T ∗
R
3\0 :

y = x − ct (±ξ/|ξ |) , ζ ′ = ξ, ζ0 = ±c|ξ |}. (5.4)

It suffices to regard h1, h2 as the reparametrized initial conditions for theCauchy problem
and represent u = E+h1 + E−h2 in (5.2). Once we find h1, h2, we can easily find f1, f2
from

f1 = h1 + h2, f2 = ic�
1
2 (h1 − h2) . (5.5)

6. The Microlocal Inversion: c < 1

For 0 < c < 1, it is important to observe that singularities (or the wave front set) of
the solution u to (5.1) are all in space-like directions for (M, gM ). From the canonical
relation C± in (5.4), we know that for u in (5.1)

WF(u) ⊂ {(t, x, ξ0, ξ ′) ∈ T ∗M◦\0 : ξ0 = ±c|ξ ′|},
and |(ξ0, ξ ′)|2g∗

M
= −ξ20 + |ξ ′|2 = (−c2 +1)|ξ ′|2 > 0 for c < 1. For such (ξ0, ξ

′), the cor-
responding vector in T M◦ is time-like. So these singularities correspond to trajectories
of particles moving slower than photons in (M, gM ).

Nowwe can use the fact that in space-like directions, the normal operator X∗
M ◦XM is

actually a pseudo-differential operator as shown in [12]. The symbol of�c is pc(ξ0, ξ ′) =
−ξ20 + c2|ξ ′|2. Let χ(t) be a smooth cut-off function with χ(t) = 1, |t | < 1 and
χ(t) = 0, |t | > 1/c2 for c < 1. Then we define

χ1
(
ξ0, ξ

′) = χ(
ξ20

c2|ξ ′|2 )

so χ1(ξ0, ξ
′) = 1 on {(ξ0, ξ ′) ∈ R

4 : pc(ξ0, ξ ′) > 0} and χ1(ξ0, ξ
′) = 0 on �∗,−M◦.

Let χ1(D) be the pseudo-differential operator with symbol χ1. We have

Lemma 6.1. χ1(D)X∗
M ◦ XMχ1(D) is a pseudo-differential operator of order −1 on

M◦. The principal symbol at (t, x, ξ0, ξ ′) ∈ T ∗M◦ is

4π2

|ξ ′| χ2
1

(
ξ0, ξ

′) .
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Proof. It follows from Theorem 2.1 of [13] that χ1(D)X∗
M ◦ XMχ1(D) is a pseudo-

differential operator on M◦ with an oscillatory integral representation. The symbol is

σ
(
t, x, ξ0, ξ

′) = 2π |S1|χ2
1

(
ξ0, ξ

′) |ξ ′|−1 (6.1)

We remark that the symbol is singular at ξ = 0 but this can be removed by introducing a
smooth cut-off function supported near ξ = 0 and noticing that |ξ |−1 is integrable near
ξ = 0. Since it only changes χ1(D)X∗

M ◦ XMχ1(D) by a smoothing operator, we will
not show it for simplicity. ��

Now we show that

Lemma 6.2. The normal operator E∗
+X

∗
M ◦XME+, E∗−X∗

M ◦XME− are elliptic pseudo-
differential operators of order −1 on R3, and E∗

+X
∗
M ◦ XME− and E∗−X∗

M ◦ XME+ are
smoothing operators on R

3.

Proof. First of all, we know that (X∗
M ◦XM )E+ = (χ1(D)X∗

M ◦XMχ1(D))E+ modulo a

smoothing operator, thus (X∗
M ◦ XM )E+ ∈ I− 5

4 (M◦ ×R
3; (C+)′) from the composition

of a pseudo-differential operator and an FIO. The principal symbol is non-vanishing.

We also know that E∗
+ ∈ I− 1

4 (M◦ × R
3; (C+,−1)′). To compose these two operators,

we would like to apply the clean composition theorem [8, Theorem 25.2.3], however,
the operators are not properly supported. But this can be justified using the oscillatory
integral representation.We have (modulo a pseudo-differential operator of a lower order)

E∗
+

(
X∗
M ◦ XME+

)
f (z)

= (2π)−6
∫
R3

∫ t1

0

∫
R3

∫
R3

∫
R3

ei((z−x)·η−ct |η|)ei((x−y)·ξ+ct |ξ |)a(ξ) f (y)dydξdxdtdη

= (2π)−6
∫
R3

∫ t1

0

∫
R3

∫
R3

∫
R3

ei(z·η−y·ξ+x(ξ−η)−ct |η|+ct |ξ |)a(ξ) f (y)dydξdxdtdη

= (2π)−3
∫
R3

∫
R3

ei(z·ξ−y·ξ)t1a(ξ) f (y)dydξ.

This is a pseudo-differential operator of order −1 on R3. The same proof works for the
minus sign.

To see that E∗
+X

∗
M ◦ XME− is smoothing, we just need to observe that the canonical

relations C+,C− in (5.4) are disjoint. So a wave front analysis using e.g. [3, Theorem
1.3.7] tells that the operator is smoothing. ��
We finished the proof but we mention the following alternative argument. Essentially,
we want to consider the operator E+ for fixed t , denoted by E+(t). We know that E+(t) :
E ′(R3) → D′(R3) is a Fourier integral operator

E+(t) f (x) = (2π)−3
∫
R3

∫
R3

ei((x−y)·ξ+ct |ξ |) f (y)dydξ

with canonical relation Ct = {(y, η; x, ξ) ∈ T ∗
R
3\0× T ∗

R
3\0 : y = x + ctξ/|ξ |, ξ =

η}. Then E+(t) ∈ I 0(R3 × R
3;C ′

t ) is properly supported. The canonical relation Ct is
a graph of a symplectic transformation, thus the composition E∗

+(t)E+(t) is a pseudo-
differential operator of order 0 on R

3. In our case, E∗
+(t)X

∗
M XME+(t) is a pseudo-

differential operator of order −1 and the symbols are smooth in t ∈ [t0, t1]. Finally,
integrating the symbols in t produces a symbol and we get the result.

Now we construct a parametrix for the transform.
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Proposition 6.3. For c < 1, there exist operators A1, A2 such that

A1XM f = f1 + R1 f1 + R′
1 f2, A2XM f = f2 + R2 f1 + R′

2 f2

where R1, R2, R′
1, R

′
2 are smoothing operators and Ai = Ãi ◦ X∗

M , i = 1, 2 in which
Ãi are Fourier integral operators.

Proof. First, we represent f = E+h1 + E−h2 and write

XM f = XME+h1 + XME−h2. (6.2)

We apply E∗
+X

∗
M to get

E∗
+X

∗
M XM f = E∗

+X
∗
M XME+h1 + E∗

+X
∗
M XME−h2 = E∗

+X
∗
M XME+h1 + R1h2.

Since E∗
+X

∗
M XME+ is an elliptic pseudo-differential operator of order −1, we can find

a parametrix B+ which is a pseudo-differential operator of order 1 on R
3 and

B+ ◦ E∗
+X

∗
M XM f = h1 + R1h1 + R′

1h2

where R1, R′
1 are smoothing. We repeat the argument for the minus sign. Apply E∗−X∗

M
to (6.2), we get

E∗−X∗
M XM f = E∗−X∗

M XME+h1 + E∗−X∗
M XME−h2 = E∗−X∗

M XME−h2 + R2h2.

Apply the parametrix B− for E∗−X∗
M XME− and we get

B− ◦ E∗−X∗
M XM f = h2 + R2h1 + R′

2h2.

Finally, we get

f1 + R1 f1 + R2 f2 = (
B+ ◦ E∗

+ + B− ◦ E∗−
)
X∗
M XM f

and f2 + R′
1 f1 + R′

2 f2 = ic�
1
2
(
B+ ◦ E∗

+ + B− ◦ E∗−
)
X∗
M XM f

as claimed. We set Ã1 = B+ ◦ E∗
+ + B− ◦ E∗− which is a sum of two FIOs in I 3/4(M◦ ×

R
3; (C+,−1)′) and I 3/4(M◦ × R

3; (C−,−1)′), and Ã2 = ic�
1
2 (B+ ◦ E∗

+ + B− ◦ E∗−)

which is a sum of two FIOs in I 7/4(M◦ ×R
3; (C+,−1)′) and I 7/4(M◦ ×R

3; (C−,−1)′).
This completes the proof. ��

For convenience, we formulate a microlocal inversion result for determining f .

Corollary 6.4. For c < 1, there exist operators A such that

AXM f = f + R1 f1 + R2 f2,

where R1, R2 are smoothing operators.

Proof. Again, we simply solve the wave equation (5.1) using the parametrix. In fact, it
is easier to use h1, h2.

f = E+h1 + E−h2 = E+B+ ◦ E∗
+X

∗
M XM f + E−B− ◦ E∗−X∗

M XM f + R̃1h1 + R̃2h2

= (
E+B+ ◦ E∗

+ + E−B− ◦ E∗−
)
X∗
M XM f + R1 f1 + R2 f2

as claimed, where R̃1, R̃2, R1, R2 are smoothing operators and A = (E+B+ ◦ E∗
+ +

E−B− ◦ E∗−)X∗
M . ��
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7. The Microlocal Inversion: c = 1

For c = 1, the singularities of the solutions of (5.1) are all in light-like directions. As
explained in the end of Sect. 4, the Schwartz kernel of X∗

M ◦ XM is more complicated
and the previous argument does not work directly. We will take a different approach by
considering the composition XM ◦ E±. Let ϕ be a smooth function on S2, and I ϕ be the
integration operator on C∞(R3 × S

2) defined by

I ϕ f (y) =
∫
S2

ϕ(v) f (y, v)dv.

Then we consider the composition I ϕ ◦ XM ◦ E± as an operator from C∞(S0) to
C∞(S0). For technical reasons,we introduce a smooth cut-off function. For ε > 0 small,
let χε(t) be a smooth cut-off function on R such that χε(t) = 1 for 2ε < t < t1 − 2ε
and χε(t) = 0 for t < ε and t > t1 − ε. We prove

Proposition 7.1. K±
.= I ϕXMχεE± ∈ 	−1(S0) are pseudo-differential operators of

order −1 with complete symbol k±(ξ), ξ ∈ R
3\0 and the principal symbols are given

by
k+,−1(ξ) = 2π icε |ξ |−1ϕ(−ξ/|ξ |), k−,−1(ξ) = −2π icε |ξ |−1ϕ(ξ/|ξ |),

where cε =
∫ t1

0
t−1χε(t)dt

Proof. We start with K+. We recall from (4.1) that

XM f (y, v) = (2π)−3
∫
R3

∫
R3

∫ t1

0
ei((y−x)·η+tv·η) f (t, x)dtdxdη

and from Sect. 5 that

E+( f )(t, x) = (2π)−3
∫
R3

∫
R3

ei((x−z)·ξ+t |ξ |) f (z)dzdξ.

Consider the oscillatory integral integral representation of the Schwartz kernel K+

K+(y, z)

= (2π)−6
∫
S2

∫
R3

∫
R3

∫ t1

0

∫
R3

ei((y−x)·η+tv·η+(x−z)·ξ+t |ξ |)ϕ(v)χε(t)dξdtdxdηdv

(7.1)

In this case, the oscillatory integral can be computed explicitly. But before we proceed
with the calculation, we examine the phase function

φ (y, z, ξ, t; η, x, v) = (y − x) · η + tv · η + (x − z) · ξ + t |ξ |
Consider φ in η, x, v variables. We have

φη = y − x + tv, φx = ξ − η, φv = tη|TvS
2 ,

so the critical points are given by

ξ = η, v = ±ξ/|ξ |, x = y − tξ/|ξ |
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Here, we remark that tξ |TvS
2 = 0 implies that ξ is parallel to v so v = ±ξ/|ξ |. Also,

we have

∂2(η,x,v)φ =
⎛
⎝ 0 − Id t
Id 0 0
∗ 0 ∗

⎞
⎠

To compute ∗, we introduce local coordinates on S
2 near the critical point. By

using an orthogonal transformation, we can assume that ξ/|ξ | = (0, 0, 1). We use

v = (v1, v2,±
√
1 − v21 − v22) near ±ξ/|ξ | where v21 + v22 < 1 . Then we have

∂vφ = ∂(v1,v2) (tv · η) = t

⎛
⎜⎝

η1 ± η3
−v1√

1−v21−v22

η2 ± η3
−v2√

1−v21−v22

⎞
⎟⎠ .

On the set of critical point, v = ±(0, 0, 1) and η = (0, 0, |ξ |). We observe that ∂vφ = 0.
Next,

∂η

(
∂φ

∂v

)
= t

⎛
⎜⎝
1 0 ± −v1√

1−v21−v22

0 1 ± −v2√
1−v21−v22

⎞
⎟⎠ and ∂v

(
∂φ

∂v

)
= ±tη3

⎛
⎜⎜⎝

−1+v22(
1−v21−v22

) 3
2

−v1v2(
1−v21−v22

) 3
2

−v1v2(
1−v21−v22

) 3
2

−1+v21(
1−v21−v22

) 3
2

⎞
⎟⎟⎠ .

On critical points,

∂v

(
∂φ

∂v

)
= ±t |ξ |

(−1 0
0 −1

)
.

This shows that the phase function is non-degenerate in η, x, v. We can apply stationary
phase argument so the phase becomes

φ(y, z, ξ, t) = (y − z) · ξ + 2t |ξ | when v = ξ/|ξ |
φ(y, z, ξ, t) = (y − z) · ξ when v = −ξ/|ξ |

Finally, after integrating in t , we will get a pseudo-differential operator. This will be
shown explicitly in the follows.

First, in (7.1), we integrate in x, η to get

K+(y, z) = (2π)−3
∫
S2

∫ t1

0

∫
R3

ei(y·ξ+tv·ξ−z·ξ+t |ξ |)ϕ(v)χε(t)dξdtdv

Consider the integral in v. For t non-zero, the v integral is non-degenerate with stationary
points at v = ±ξ/|ξ |. Applying stationary phase argument see e.g. [15, Lemma 1.2],
we get

K+(y, z) = (2π)−3
∫ t1

0

∫
R3

ei((y−z)·ξ+2t |ξ |) (ϕ(ξ/|ξ |)

+ϕ+(t, ξ)
)
χε(t) (t |ξ |)−1 e− 1

2 iπ (2π)dξdt

+ (2π)−3
∫ t1

0

∫
R3

ei(y−z)·ξ (ϕ(−ξ/|ξ |)

+ϕ−(t, ξ)
)
χε(t)(t |ξ |)−1e

1
2 iπ (2π)dξdt

= (2π)−3
∫
R3

ei(y−z)·ξ k+(ξ)dξ

(7.2)
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whereϕ± come from the stationary phase argument and they have asymptotic expansions

ϕ±(t, ξ) ∼
∞∑
k=1

a±
k (ξ/|ξ |)(t |ξ |)−k (7.3)

in which a±
k are smooth functions on S

2. Also,

k+(ξ) = +2π i |ξ |−1ϕ(−ξ/|ξ |)
∫ t1

0
t−1 (

1 + ϕ−(t, ξ)
)
χε(t)dt

− 2π i |ξ |−1ϕ(ξ/|ξ |)
∫ t1

0
e2i t |ξ |t−1(1 + ϕ+(t, ξ))χε(t)dt

(7.4)

The second integral in t is O(|ξ |−∞) for |ξ | large because t is away from 0 and χε is
smooth. For the first integral, the integral of each asymptotic term of ϕ− in (7.3) in t is
finite. Thus k+(ξ) is a symbol of order −1 and the leading order term is

k+,−1(ξ) = 2π i |ξ |−1ϕ(−ξ/|ξ |)
∫ t1

0
t−1χε(t)dt.

This shows that K+ in (7.2) is a pseudo-differential operator of order −1 on R
3.

For K−, the calculation is similar and we look for the symbol.

K−(y, z) = (2π)−3
∫ t1

t0

∫
R3

ei(y·ξ+tv·ξ−z·ξ−t |ξ |)χε(t)dξdtdv

= −i(2π)−2
∫ t1

t0

∫
R3

ei(y−z)·ξ (t |ξ |)−1 (
ϕ(ξ/|ξ |) + ϕ̃+(t, ξ)

)
χε(t)dξdt

+ i(2π)−2
∫ t1

t0

∫
R3

ei((y−z)·ξ−2t |ξ |)(t |ξ |)−1 (
ϕ(−ξ/|ξ |) + ϕ̃−(t, ξ)

)
χε(t)dξdt

= (2π)−3
∫
R3

ei(y−z)·ξ k−(ξ)dξ

where ϕ̃± have similar asymptotic expansion as (7.3), and k−(ξ) is given by

k−(ξ) = −2π i |ξ |−1
∫ t1

0

(
ϕ (ξ/|ξ |) + ϕ̃+(t, ξ)

)
t−1χε(t)dt

+ 2π i |ξ |−1
∫ t1

0
e−2i t |ξ | (ϕ(−ξ/|ξ |) + ϕ̃−(t, ξ)

)
t−1χε(t)dt

(7.5)

This is a symbol of order −1 and the leading order term is

k−,−1(ξ) = −2π i |ξ |−1ϕ(ξ/|ξ |)
∫ t1

0
t−1χε(t)dt

This completes the proof of the proposition. ��



On the Light Ray Transform of Wave Equation Solutions 517

Next we discuss what needs to be changed when the smooth cut-off function χε is
replaced by the characteristic function χ[ε,t1] of the interval [ε, t1] in R. All the calcula-
tions in Proposition 7.1 hold up to (7.4) which is now

k+(ξ) = +2π i |ξ |−1ϕ(−ξ/|ξ |)
∫ t1

ε

t−1 (
1 + ϕ−(t, ξ)

)
dt

− 2π i |ξ |−1ϕ(ξ/|ξ |)
∫ t1

ε

e2i t |ξ |t−1 (
1 + ϕ+(t, ξ)

)
dt

(7.6)

The first integral, denoted by I1 below, still gives a symbol of order −1. For the second
integral denoted by I2 below, integration by parts gives

I2(ξ) = −2π i |ξ |−1ϕ(ξ/|ξ |){ 1

2i |ξ | (e
2i t1|ξ |t−1

1 (1 + ϕ+(t1, ξ)))

− 1

2i |ξ |e
2iε|ξ |ε−1(1 + ϕ+(ε, ξ))

− 1

2i |ξ |
∫ t1

ε

e2i t |ξ | d
dt

[t−1(1 + ϕ+(t, ξ))]dt}

We can repeat the integration by parts and get

I2(ξ) = e2i t1|ξ |a(ξ) + e2iε|ξ |b(ξ)

where a(ξ), b(ξ) are symbols of order −2. Using these in (7.2), we get

K+(y, z) =(2π)−3
∫
R3

ei(y−z)·ξ I1(ξ)dξ + (2π)−3
∫
R3

ei(y−z)·ξ+2i t1|ξ |a(ξ)dξ

+ (2π)−3
∫
R3

ei(y−z)·ξ+2iε|ξ |b(ξ)dξ.

Thus, we can write K+ = K 0
+ + K ε

+ + K t1
+ where K 0

+ ∈ 	−1(R3), and K ε
+ ∈

I−2(R3,R3;Cε), K
t1
+ ∈ I−2(R3,R3;Ct1) are Fourier integral operators of order −2.

The canonical relation Cε,Ct1 can be described as follows. For α ∈ R, we define

Cα = {(y, η, z, ζ ) ∈ T ∗
R
3\0 × T ∗

R
3\0 : y = z + 2αξ/|ξ |, ξ = η}.

We see that Cα is a graph of a canonical transformation, see [8, Section 25.3].
The same argument shows that K− is also a sum of K 0− ∈ 	−1(R3) and K ε− ∈
I−2(R3,R3;C−ε), K

t1− ∈ I−2(R3,R3;C−t1).
Now we are ready to obtain a parallel result of Proposition 6.3 about the microlocal

inversion.

Proposition 7.2. For c = 1 and any N ∈ N, there exist operators A1, A2 such that

A1XMχ[ε,t1] f = h1 + R1h1 + R′
1h2, A2XMχ[ε,t1] f = h2 + R2h1 + R′

2h2

where h1, h2 are defined in Sect. 5 and R1, R′
1, R2, R′

2 ∈ I−N (R3,R3;CN
ε,t1) which is

the N-fold composition of elements in I−1(R3,R3;C±ε) and I−1(R3,R3;C±t1), more
explicitly

I−N (R3,R3;CN
ε,t1) = {A1 ◦ A2 · · · AN : Ai ∈ I−1(R3,R3;Cε) + I−1(R3,R3;Ct1)

+ I−1(R3,R3;C−ε) + I−1(R3,R3;C−t1)}.
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Proof. We divide the proof in two steps.
Step 1: Let’s replace χ[ε,t1] with the smooth cut-off χε as in Proposition 7.1 and see

how to get h1, h2 using Proposition 7.1. We write

XMχε f = XMχεE+h1 + XMχεE−h2.

Let ϕ be a smooth function on S
2. Applying I ϕ we get

I ϕXMχε f = I ϕXMχεE+h1 + I ϕXMχεE−h2 = K ϕ,+h1 + K ϕ,−h2 (7.7)

where we added ϕ to the notation of K± to emphasize the dependency because we will
choose different ϕ below.

First, let ϕ1 = 1. From Proposition 7.1, we see that K ϕ1± ∈ 	−1(R3) and the principal
symbols are given by

kϕ1
+,−1(ξ) = −kϕ1

−,−1(ξ) = 2π icε |ξ |−1.

We let Q1
+ be a parametrix of K ϕ1

+ and get

Q1
+ I

ϕ1XMχε f = h1 + Q1
+K

ϕ1− h2 + R1h1 (7.8)

where R1, R2 are smoothing operators. From the composition of pseudo-differential
operators, we know that Q1

+K
ϕ1− ∈ 	0(R3) with principal symbol equal to −1.

Next,we change the functionϕ. Ideally,wewill take an odd functionϕ(−v) = −ϕ(v)

but then ϕ vanishes somewhere on S
2 so we proceed as follows. Let x = (x1, x2, x3)

be the coordinate for R3. For δ > 0, let Uk = {v : v = (x1, x2, x3), ‖x‖ = 1, |xk | >

δ/2}, k = 1, 2, 3. For δ sufficiently small,Uk, k = 1, 2, 3 form an open covering of S2.
Let χk(v), k = 1, 2, 3 be a partition of unity subordinated to this covering and χk(v) = 1
on Vk = {v : v = (x1, x2, x3), ‖x‖ = 1, |xk | > δ}, k = 1, 2, 3.Here, by possibly taking
δ smaller, we can assume that Vk also form an open covering of S2. For v ∈ S

2, we let

ϕ2,k(v) = χk(x)xk + 2, k = 1, 2, 3

Then ϕ2(v) �= 0 and ϕ2,k(−v) − ϕ2(v, k) �= 0 for v ∈ Uk . From Proposition 7.1, we
know that K

ϕ2,k
± ∈ 	−1(R3) with principal symbols

k
ϕ2,k
+,−1(ξ) = 2π icε |ξ |−1ϕ2,k(−ξ/|ξ |), k

ϕ2,k
−,−1(ξ) = −2π icε |ξ |−1ϕ2,k(ξ/|ξ |).

We consider k = 1 in the follows as the other cases are similar. Let Q2,1
+ be a parametrix

for K
ϕ2,1
+ . We get

Q2,1
+ I ϕ2,1XMχε f = h1 + Q2,1

+ K
ϕ2,1
− h2 + R3h1

where R3 is a smoothing operator, and Q2,1
+ K

ϕ2,1
− ∈ 	0(R3) with principal symbol

σ0

(
Q2,1

+ K
ϕ2,1
−

)
(x, ξ) = − ϕ2,1(ξ/|ξ |)

ϕ2,1 (−ξ/|ξ |) �= −1 (7.9)

when ξ/|ξ | ∈ U1. Now we consider

Q1
+ I

ϕ1XMχε f − Q2,1
+ I ϕ2,1XMχε f = (Q1

+K
ϕ1− − Q2,1

+ K
ϕ2,1
− )h2 + R1h1 + R2h1 − R3h1



On the Light Ray Transform of Wave Equation Solutions 519

We observe that A = Q1
+K

ϕ1− − Q2,1
+ K

ϕ2,1
− is a pseudo-differential operator of order 0

and the principal symbol does not vanish onU1.Let χ̃k, k = 1, 2, 3 be a smooth partition
of unity subordinated to Vk . Then χ1χ̃1 = χ̃1. Let B1 be a pseudo-differential operator
of order 0 with principal symbol σ0(B1)(ξ) = χ̃1(ξ/|ξ |)/σ0(A)(ξ). We can improve B1
to a parametrix for A so that B1 ◦ A = χ̃1(D) + R4 with R4 smoothing. So we get

B1(Q
1
+ I

ϕ1XMχε − Q2,1
+ I ϕ2,1XMχε) f = χ̃1(D)h2 + R3h2 + R4h1

where by abusing notations, R3, R4 are smoothing operators. We can repeat the con-
struction for k = 2, 3 to get the corresponding B2, B3 ∈ 	0(R3). Then we arrive at

3∑
k=1

Bk(Q
1
+ I

ϕ1XMχε − Q2,k
+ I ϕ2,k XMχε) f = h2 + R5h2 + R6h1 (7.10)

with R5, R6 smoothing. This gives A2 = ∑3
k=1 Bk(Q1

+ I
ϕ1 − Q2,k

+ I ϕ2,k ) so that
A2XMχε f = h2 + R6h1 + R5h2. For A1, we can use (7.8) and (7.10) to get

Q1
+ I

ϕ1XMχε f = h1 + Q1
+K

ϕ1,−A2XMχε f + R′
5h1 + R′

6h2

where R′
5, R

′
6 are smoothing operators. So we obtain A1 = Q1

+ I
ϕ1 − Q1

+K
ϕ1− A2 so that

A1XMχε f = h1 + R′
5h1 + R′

6h2.
Step 2: Now we deal with the characteristic function χ[ε,t1]. We start with

XMχ[ε,t1] f = XMχ[ε,t1]E+h1 + XMχ[ε,t1]E−h2.

Applying I ϕ , we get
I ϕXMχ[ε,t1] f = K ϕ

+ h1 + K ϕ
−h2

where K ϕ
± = I ϕXMχ[ε,t1]E±. According to the arguments after Proposition 7.1, we can

write the above as

I ϕXMχ[ε,t1] f = (K ϕ,0
+ + K ϕ,ε

+ + K ϕ,t1
+ )h1 + (K ϕ,0

− + K ϕ,ε
− + K ϕ,t1− )h2 (7.11)

where K ϕ,0
± ∈ 	−1(R3), K ϕ,ε

± ∈ I−2(R3,R3;C±ε) and K ϕ,t1± ∈ I−2(R3,R3;C±t1).

As in Step 1, we can apply pseudo-differential operators Q1
+, Q

2,k
+ , k = 1, 2, 3 to (7.11).

The arguments for K ϕ,0
± are the same as before. As for K ϕ,ε

± , K ϕ,t1± , we notice that the

composition Q1
+K

ϕ, j
± , Q2,k

+ K ϕ, j
± , k = 1, 2, 3, j = ε, t1 are all Fourier integral operators

of order −1 with canonical relation C±ε or C±t1 . Therefore, using the same A1, A2 in
Step 1, we obtain

A1XMχ[ε,t1] f = h1 + R1h1 + R′
1h2, A2XMχ[ε,t1] f = h2 + R2h1 + R′

2h2 (7.12)

where R1, R′
1, R2, R′

2 ∈ I−1(R3,R3;Cε) + I−1(R3,R3;Ct1) + I−1(R3,R3;C−ε) +
I−1(R3,R3;C−t1).

Finally, we improve the remainder term using the Neumann series. We write (7.12)
in matrix form

(
A1XMχ[ε,t1] f
A2XMχ[ε,t1] f

)
= Id

(
h1
h2

)
+ R

(
h1
h2

)
, R =

(
R1 R′

1
R2 R′

2

)
.
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For N ∈ N, we let W = ∑N−1
n=0 (−R)n and get

W

(
A1XMχ[ε,t1] f
A2XMχ[ε,t1] f

)
= Id

(
h1
h2

)
+ RN

(
h1
h2

)

Because R1, R′
1, R2, R′

2 are FIOs of the canonical graph type, we can apply the com-
position result in [8, Section 25.3] to conclude that the terms in RN belongs to
I−N (R3,R3;CN

ε,t1). Finally, we set(
Ã1
Ã2

)
= W

(
A1
A2

)

Changing notations of Ã1, Ã2 to A1, A2 finishes the proof. ��

8. The Stable Determination

We prove Theorem 1.1, starting with the injectivity of the light ray transform. It is
known, see for instance [10,17], that the light ray transform on Rn+1 is injective on C∞

0
functions. This also holds for L1

comp functions and the proof is similar, see [17].

Theorem 8.1. Suppose f ∈ L1
comp(R

n+1), n ≥ 2 and XRn+1 f = 0. Then f = 0.

Proof. For f ∈ L1
comp(R

n+1), the Fourier transform f̂ is analytic. Let θ ∈ S
n−1 and

� = (1, θ) be a light-like vector. Let z = (s, y + sθ) ∈ R
n+1, s ∈ R, y ∈ R

n . We
parametrize the light ray transform as

XRn+1 f (z,�) =
∫
R

f (t, y + tθ) dt.

From the standard Fourier Slice Theorem for geodesic ray transforms on Rn+1, we get

f̂ (ζ ) =
∫

�⊥
e−iy·ζ XRn+1 f (z,�)dSz

where the integration is over the hyperplane �⊥ perpendicular to � with respect to the
Euclidean inner product inRn+1 and ζ = (τ, ξ) ∈ R

n+1, ξ ∈ R
n, ξ �= 0 is perpendicular

to �. We notice that if |τ | ≤ |ξ |, then there is a null vector (1, θ) which is Euclidean
orthogonal to ζ . Actually, τ + θ · ξ = 0 so θ · (ξ/|ξ |) = −τ/|ξ | ∈ [−1, 1] and we can
find θ ∈ S

n−1. We conclude that f̂ (ζ ) = 0 for |τ | ≤ |ξ |. By analyticity, f̂ = 0 and thus
f = 0. ��
Corollary 8.2. Suppose XM f = 0 where f satisfies the wave equation constraint (1.2)
in which f1 ∈ Hs+1

comp(R
3), f2 ∈ Hs

comp(R
3), s ≥ 0 are compactly supported. Then

f = f1 = f2 = 0.

Proof. Let K = supp f1 ∪ supp f2 ⊂ R
3. Let I +c (K ) be the chronological future of

K with respect to the Lorentzian metric induced by c. We know that there is a unique
solution f ∈ Hs+1(M) of (1.2). By finite speed of propagation (or strong Huygens
principle), the solution f is supported in I +c (K ) ∩ M . Now we extend f trivially to
f̃ ∈ L1

comp(R
4) and we regard XM as the light ray transform XR4 on R

4. We still have

XR4 f̃ = 0. By Theorem 8.1, we conclude that f = 0 on R
4 so that f = 0 on M and

f1 = f2 = 0 on S0. ��
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Proof of Theorem 1.1. The uniqueness part is done in Corollary 8.2. So we prove the
stability estimate below. We divide the proof into three steps.

Step 1: Consider c < 1. From Proposition 6.3, we know that there are operators
A1, A2 such that

A1XM f = f1 + R1 f1 + R′
1 f2, A2XM f = f2 + R2 f1 + R′

2 f2

and Ri , R′
i , i = 1, 2 are all smoothing operators. We denote

T

(
f1
f2

)
= Id

(
f1
f2

)
+ K

(
f1
f2

)
, K =

(
R1 R′

1
R2 R′

2

)
.

We consider T acting on N s, s ≥ 0. Then K is compact from N s to N s−ρ, ρ ∈ R. So
we have the estimate

‖ ( f1, f2) ‖N s ≤ ‖A1XM f ‖Hs+1(R3) + ‖A2XM f ‖Hs(R3) + Cρ‖( f1, f2)‖N s−ρ

for some constantCρ . Recall fromProposition 6.3 that A1 = B+◦(XM ◦E+)
∗+B−(XM ◦

E−)∗ and A2 = ic�
1
2 (B+ ◦ (XM ◦ E+)

∗ + B− ◦ (XM ◦ E−)∗). Since the normal operator
(XME±)∗XME± are pseudo-differential operators of order −1. By the L2 estimate of

pseudo-differential operators, we conclude that XM ◦ E± : Hs
comp(R

3) → H
s+ 1

2
loc (C )

is bounded. Also, (XM ◦ E±)∗ : Hs
comp(C ) → H

s+ 1
2

loc (R3) is bounded. Therefore, A1 :
H

s+ 1
2

comp(C ) → Hs
loc(R

3) and A2 : Hs+ 1
2

comp(C ) → H
s− 1

2
loc (R3) are bounded. For ( f1, f2) ∈

N s , we know from (5.2) that XM f = XME+h1 + XME−h2 and h1, h2 ∈ Hs+1(R3).
Thus, XM f ∈ Hs+3/2(C ) so we get

‖ ( f1, f2) ‖N s ≤ C‖XM f ‖Hs+3/2(C ) + Cρ‖ ( f1, f2) ‖N s−ρ (8.1)

where Cρ > 0 is a constant depending on ρ. Note that the order is better than what
claimed in the theorem for this case.

Step 2: Consider c = 1. It is convenient to work with t0 > 0 which can be always
arranged. For the Cauchy problem in Sect. 3 with initial condition on t = t0

� f = 0, on R × R
3

f = f1, ∂t f = f2, on {t0} × R
3,

(8.2)

it is known that
U (t) : ( f1, f2) → ( f (t), ∂t f (t)) , t ∈ R

is bijective on Hs+1(R3) × Hs(R3). In fact, for (8.2), U (t) is a unitary operator with
respect to the energy norm.We consider ( f̃1, f̃2) = U (−t0)( f1, f2)which is the Cauchy
data at t = 0 corresponding to ( f1, f2) at t = t0. Then we have

C1(‖ f̃1‖Hs+1(R3) + ‖ f̃2‖Hs (R3)) ≤‖ f1‖Hs+1(R3) + ‖ f2‖Hs (R3)

≤C2(‖ f̃1‖Hs+1(R3) + ‖ f̃2‖Hs (R3))
(8.3)

for some C1,C2 > 0, which follows from the energy estimate of the wave equation. We
observe that the solution of (8.2) on [t0, t1] × R

3 can be expressed as

f = χ[t0,t1]E
(
f̃1, f̃2

)
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where E( f̃1, f̃2) = E+h̃1 + E−h̃2 is the solution operator for the Cauchy problem from
t = 0 in (5.2) and h̃1, h̃2 correspond to f̃1, f̃2, see Sect. 5. Therefore, we can apply
Proposition 7.2 to the operator XMχ[t0,t1]E± with t0 > 0.

From Proposition 7.2, for any ρ ∈ N, there are operators A1, A2 such that

A1XMχ[t0,t1] f = h̃1 + R1h̃1 + R′
1h̃2, A2XMχ[t0,t1] f = h̃2 + R2h̃1 + R′

2h̃2

and Ri , R′
i , i = 1, 2 are FIOs of order −ρ. By the same argument in Step 1 and using

Sobolev estimate of FIOs of canonical graph type, we have

‖h̃1‖Hs (R3) + ‖h̃2‖Hs (R3) ≤‖A1XM f ‖Hs+1(R3) + ‖A2XM f ‖Hs (R3)

+ Cρ(‖h̃1‖Hs−ρ(R3) + ‖h̃2‖Hs−ρ(R3))

for some constant Cρ . Using (5.5), we can change the estimate of h̃1, h̃2 to that of f̃1, f̃2
and get

‖ (
f̃1, f̃2

) ‖N s ≤ ‖A1XMχ[t0,t1] f ‖Hs+1(R3)

+ ‖A2XMχ[t0,t1] f ‖Hs(R3) + Cρ‖ (
f̃1, f̃2

) ‖N s−ρ

Finally, using (8.3), we get

‖ ( f1, f2) ‖N s ≤ ‖A1XM f ‖Hs+1(R3) + ‖A2XM f ‖Hs(R3) + Cρ‖( f1, f2)‖N s−ρ

Now recall from the proof of Proposition 7.2 that
(
A1
A2

)
= W

(
Ã1
Ã2

)
where Ã1 = Q1

+ I
ϕ1 − Q1

+K
ϕ1,− Ã2,

Ã2 =
3∑

k=1

Bk(Q
1
+ I

ϕ1 − Q2,k
+ I ϕ2,k )

in which Q1
+, Q

2,k
+ ∈ 	1(R3), k = 1, 2, 3, Bk ∈ 	0(R3), K ϕ1,− ∈ 	−1(R3) and W =∑ρ−1

n=0(−R)n with elements of R belonging to I−1(R3,R3;Ct0) + I−1(R3,R3;Ct1) +
I−1(R3,R3;C−t0)+I

−1(R3,R3;C−t1). Using the estimate for pseudo-differential oper-
ators and FIOs of canonical graph type, we get

‖A1XM f ‖Hs+1(R3) + ‖A2XM f ‖Hs(R3)

≤ C‖I ϕ1XM f ‖Hs+2(R3) + C
3∑

k=1

‖I ϕ2,k XM f ‖Hs+1(R3) ≤ C‖XM f ‖Hs+2

So in this case, we get

‖ ( f1, f2) ‖N s ≤ C‖XM f ‖Hs+2(C ) + Cρ‖ ( f1, f2) ‖N s−ρ , ρ ∈ N. (8.4)

Step 3: We get rid of the last term in (8.1) and (8.4). Let K be a compact subset of
R
3 and denote by N s(K ) the function space consisting of ( f1, f2) ∈ N s supported in

K . Then the inclusion of N s(K ) into N s−ρ(K ), ρ > 0 is compact. We claim that

‖ ( f1, f2) ‖N s (K ) ≤ C‖XM f ‖Hs+2(C )
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for some C > 0. We argue by contradiction. Assume the estimate without the error term
is not true. We can get a sequence ( f ( j)

1 , f ( j)
2 ), j = 1, 2, . . . with unit norm inN s(K )

such that XM f ( j) goes to 0 in Hs+2(C ) as j → ∞. By (8.1) (for ( f1, f2) supported
in K ), we conclude that 1 = ‖( f ( j)

1 , f ( j)
2 )‖N s (K ) ≤ Cρ‖( f ( j)

1 , f ( j)
2 )‖N s−ρ(K ). This

gives a weak limit ( f1, f2) in N s(K ) along a subsequence, which thus converges
strongly inN s−ρ(K ). Therefore, ‖( f1, f2)‖N s−ρ(K ) is bounded below by 1/Cρ , thus
non-zero. However, XM f = 0 so f = 0 by the injectivity of XM . So ( f1, f2) = 0 a
contradiction. This finishes the proof. ��

Finally, we prove a stronger version of Theorem 1.1 which allows lower order terms
in the wave equation. We consider differential operators of the form

P (x, t, Dx , ∂t ) = ∂2t + c2
3∑

i=1

D2
xi + P1 (x, t, i Dx , ∂t ) + P0(x, t)

where P1 is a first order differential operator with real valued smooth coefficients and
P0 is smooth. Then we consider the Cauchy problem

P (x, t, Dx , ∂t ) f = 0 on M◦

f = f1, ∂t f = f2, on S0.
(8.5)

We remark that the equations for � in Sect. 3 are of this type. We prove

Theorem 8.3. Under the same assumptions as in Theorem 1.1, XM f uniquely deter-
mines f and f1, f2 which satisfy (8.5). Moreover, there exists a C > 0 such that

‖ ( f1, f2) ‖N s ≤ C‖XM f ‖Hs+2(C ) and ‖ f ‖Hs+1(M) ≤ C‖XM f ‖Hs+2(C )

where C is the set of light rays on M.

Proof. The proof follows the same arguments as for Theorem 1.1. So we just point out
what needs to be modified. When the wave equation contains lower order terms, one can
construct parametrices E± for the Cauchy problem, see [3, Chapter 5]. These are Fourier
integral operators and can be represented by oscillatory integrals. So the construction
in Sect. 5 works through, and the analysis for XME± is the same as the standard wave
equation case. However, we do need to justify the ellipticity of the involved operators
in Lemma 6.2 and Proposition 7.1. We remark that ellipticity of the solution itself is
standard, and follows simply from the principal symbol satisfying a transport equation.

We follow the parametrix construction in Trèves [21, Section 1, Chapter VI] to check
this in a transparent manner.

We look for operators E j , j = 0, 1 such that

P (x, t, Dx , ∂t ) E j = 0 on M◦

∂kt E j = δk j , k = 0, 1, on S0.

Here, for j = 0, 1 we have

E j f (x) =(2π)−3
∫
R3

eiφ0(x,t,ξ)a j0(x, t, ξ) f̂ (ξ)dξ

+ (2π)−3
∫
R3

eiφ1(x,t,ξ)a j1(x, t, ξ) f̂ (ξ)dξ + R j (t) f (x)
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where R j are smoothing operators, see [21, (1.37)]. The phase functions are

φ0(x, t, ξ) = x · ξ + ct |ξ |, φ1 (x, t, ξ) = x · ξ − ct |ξ |.
The amplitude can be written as a jk(x, t, ξ) = ∑∞

l=0 a jkl(x, t, ξ) and each a jkl is
homogeneous of degree − j − l for |ξ | large. Before we look into the structures that we
need of the amplitude, we find the initial values of the leading order term a jk0 at t = t0.
They satisfy (see [21, (1.53)])

a000(x, t, ξ) = 1

2
, a010(x, t, ξ) = 1

2
, a100(x, t, ξ) = 1

2ic|ξ | , a110(x, t, ξ) = − 1

2ic|ξ | .

The amplitudes satisfy first order equations which are deduced from (see [21, (1.39)])

P (x, t, Dx + ∂xφk, ∂t + i∂tφk) a jk(x, t, ξ) = 0.

For the leading order term, we get

∂τ P2 (x, t, ∂xφk, i∂tφk) ∂t a jk0

+
3∑

ν=1

∂ξν P2 (x, t, ∂xφk, i∂tφk) Dxνa jk0 + C (φk; x, t, ξ) a jk0 = 0 (8.6)

and the C term in this case is (the sub-principal symbol of P)

C (φk; x, t, ξ) = P1 (x, t, i∂xφk, i∂tφk) .

Note that P1 has real valued coefficients and is homogeneous of degree one in
i∂xφk, i∂tφk . Dividing by i = √−1, we see that equation (8.6) is a first order lin-
ear equation with real valued coefficients. Solving the equation amounts to solving a
ODE along the integral curve and the solution a jk0 will be positive scalar multiples
of the initial conditions hence not only non-vanishing, but is real or purely imaginary
depending on its initial value.

Finally, we can represent the solution to (8.5) as

f (x, t) = E0 f1 + E1 f2 = E+h1 + E−h2

where

E+h = (2π)−3
∫
R3

ei(x ·ξ+ct |ξ |) (a00(x, t, ξ) + 2ic|ξ |a10(x, t, ξ)) ĥ(ξ)dξ

= (2π)−3
∫
R3

ei(x ·ξ+ct |ξ |)a+(x, t, ξ)ĥ(ξ)dξ

E−h = (2π)−3
∫
R3

ei(x ·ξ−ct |ξ |) (a01(x, t, ξ) − 2ic|ξ |a11(x, t, ξ)) ĥ(ξ)dξ

= (2π)−3
∫
R3

ei(x ·ξ−ct |ξ |)a−(x, t, ξ)ĥ(ξ)dξ

(8.7)

and

h1 = f1 +
1

2ic
�− 1

2 f2, h2 = f1 − 1

2ic
�− 1

2 f2.
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We see that the leading order terms of a+, a− are all positive. From these oscillatory
integral representations, it is easy to see that Lemma 6.2 holds for c < 1. For Proposition
7.1, we see that the principal symbol of k+ is given by

k+,−1(x, ξ) = 2π i |ξ |−1ϕ (−ξ/|ξ |)
∫ t1

0
t−1χε(t)a+,0(t, x)dt

where a+,0 is the in the expansion a+ ∼ ∑∞
k=0 a+,k(t, ξ)|ξ |−1−k . So k+,−1(x, ξ) is non-

vanishing. Thus the operator I ϕXMχεE+ is elliptic. The rest of the proof is the same as
for Theorem 1.1. ��

9. Small Perturbations of the Minkowski Spacetime

We consider metric perturbations gδ = gM +h with h = ∑3
i, j=0 hi j dx

i dx j . We assume
that

(A1) h is a symmetric two tensor smooth on M ;
(A2) for δ > 0 small, the seminorm ‖hi j‖C3 = sup(t,x)∈M

∑
|α|≤3 |∂αhi j (t, x)| <

δ, i, j = 0, 1, 2, 3.

Without loss of generality, we can assume that h is extended to some larger manifold
M̃ = (̃t0, t̃1) ×R

3 such that M ⊂ M̃ and (A2) holds on M̃ . In this section, we study the
inverse problem on (M, gδ) for δ sufficiently small. Note that in this case, light rays may
not follow straight lines and the injectivity of the light ray transform on scalar functions
is not known.We will show that by using a perturbation argument on the Fourier integral
operator level, one can obtain the same determination result as for the Minkowski case.

We start with the light-like geodesics on (M, gδ) and their parametrizations. Let γ (s)
denote a light-like geodesic from S0. It satisfies

∂2s γ k(s) + �k
i j∂sγ

i (s)∂sγ
j (s) = 0

γ (0) = (0, y), ∂sγ (0) = (β, v)
(9.1)

where �k
i j is the Christoffel symbol for gδ , v ∈ S

2 and β is such that gδ(β, v) = 0 and
(β, v) future pointing. It is known, see for example [1], that (9.1) is equivalent to a first
order system on T ∗M. Here, M is regarded as a submanifold of M̃ . We use (t, x) and
(τ, ξ) for the local coordinates on T ∗M. Consider the Hamiltonian

p (t, x, τ, ξ) = 1

2
g∗
δ (τ, ξ) = 1

2
g∗
M (τ, ξ) + H(t, x, τ, ξ)

= 1

2

(
−|τ |2 +

3∑
i=1

|ξi |2
)
+ H(t, x, τ, ξ).

Here, 2H is the perturbation of the dual metric corresponding to the perturbation h.
Let � = (τ, ξ), then H(t, x, �) = ∑

i, j=0,1,2,3 Hi j (t, x)�i� j is homogeneous of
degree two in � and the seminorm ‖Hi j‖C3 < Cδ for some constants C . We denote
the Hamilton vector field by Hp. Let (t (s), x(s), τ (s), ξ(s)) be an integral curve of



526 A. Vasy, Y. Wang

Hp in the characteristic set �p = {(t, x, τ, ξ) ∈ T ∗M : p(t, x, τ, ξ) = 0}, called
null-bicharacteristics. With γ (s) = (t (s), x(s)), (9.1) can be converted to

dt

ds
= ∂p

∂τ
= −τ + ∂τ H (t, x, τ, ξ) ; dxi

ds
= ∂p

∂ξi
= ξi + ∂ξi H (t, x, τ, ξ)

dτ

ds
= −∂t H (t, x, τ, ξ) ; dξi

ds
= −∂xi H (t, x, τ, ξ) , i = 1, 2, 3

t (0) = t0 = 0, xi (0) = yi , τ (0) = τ0, ξi (0) = ξ0,i .

(9.2)

Here, (τ0, ξ0) is the cotangent vector obtained from (β, v) using gδ and we also denote
it by (τ0, ξ0) = (β, v)�. If we consider the system for the Minkowski metric namely
H = 0, then β = 1 and the covector (τ0, ξ0) = (−1, v). (9.2) becomes

dt

ds
= −τ,

dxi
ds

= ξi ,
dτ

ds
= 0,

dξi

ds
= 0, i = 1, 2, 3

t (0) = 0, xi (0) = yi , τ (0) = −1, ξi (0) = vi .

(9.3)

We see that x(s) = (s, y + sv), t (s) = s, which agrees with our parametrization used
previously. Now we have the following result.

Lemma 9.1. For δ > 0 sufficiently small, the set of light rays on (M, gδ) is given by
Cδ = {γ = (t, x(t, y, v)) : (y, v) ∈ S0 ×S

2, t ∈ [t0, t1]}, where x is a smooth function
of t, y, v. Moreover, we have

‖x(t, y, v) − (y + tv)‖C2 < Cδ

for some constant C.

Proof. For v ∈ S
2, the co-vectors (τ0, ξ0) = (β, v)� are in a bounded set of R4. We

assume that |(τ0, ξ0)| < M1.Wealso notice that τ0 is away fromzero, say |τ0| > M0 > 0.
Then we consider (τ, ξ) such that |(τ, ξ) − (τ0, ξ0)| < M0/2 so that |(τ, ξ)| < M

.=
M1 + M0/2 and |τ | > M0/2. Consider the system (9.2). Because H is homogeneous
of degree two in (τ, ξ), for |(τ, ξ)| < M and for δ > 0 sufficiently small, we see that
dt
ds �= 0. Therefore, we can take t as the parameter and convert (9.2) to

ds

dt
= 1

−τ + ∂τ H(t, x, τ, ξ)
; dxi

dt
= ξi + ∂ξi H (t, x, τ, ξ)

−τ + ∂τ H (t, x, τ, ξ)

dτ

dt
= −∂t H (t, x, τ, ξ)

−τ + ∂τ H(t, x, τ, ξ)
; dξi

dt
= −∂xi H (t, x, τ, ξ)

−τ + ∂τ H(t, x, τ, ξ)
, i = 1, 2, 3

s(0) = 0, xi (0) = yi , τ (0) = τ0, ξi (0) = ξ0,i .

(9.4)

The system corresponding to (9.3) is

ds

dt
= 1

−τ
; dxi

dt
= ξi

−τ
,

dτ

dt
= 0; dξi

dt
= 0, i = 1, 2, 3

s(0) = 0, xi (0) = yi , τ (0) = −1, ξi (0) = v.

(9.5)

Let (̃t, x̃, τ̃ , ξ̃ ) be the solution of (9.5) and (t, x, τ, ξ) satisfy (9.4). Then let u =
(t − t̃, x − x̃, τ − τ̃ , ξ − ξ̃ ). We see that u satisfies the system

du

ds
= F(u)

u(0) = u0,
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where F is smooth and |F(u)| < Cδ, |u0| < Cδ for generic constant C . Now it follows
from standard ODE theorems, see for instance [9, Theorem 1.2.3] that for δ sufficiently
small, there is a unique C∞ solution u on [t0, t1] and |u| ≤ Cδ. Higher order estimates
can be obtained similarly. This finishes the proof. ��

Now we consider the light ray transform Xδ on (M, gδ). The parametrization of the
light rays is not unique, although all choices give rise to equivalent analysis for our
purpose. Perhaps the most natural parameterization is to use the cosphere bundle onS0
of the inducedmetric. Let ḡδ be the inducedRiemannianmetric of gδ onS0. For y ∈ S0,

let S2δ,y = {v ∈ TS0 : ḡδ(v, v) = 1}. For v ∈ S
2
δ,y , there is a unique future pointing

light-like vector (v0, v) at y. In particular, v0 is close to 1 for δ small. Then the light ray
from (0, y) in direction (v0, v) is parametrized by γy,v(s) = exp(0,y) s(v0, v), s ∈ [0, s1]
where s is the affine parameter such that γy,v(0) = (0, y) ∈ S0 and γy,v(s1) ∈ S1. In
this parametrization, we can write

Xδ f (y, v) =
∫ s1

0
f
(
γy,v(s)

)
ds. (9.6)

Now we can identify S2δ,y with S
2
y via a diffeomorphism. By the above Lemma 9.1, s

is a smooth function of y, t and v ∈ S
2 so we can use t variable to parametrize the light

rays. We have

Xδ f (y, v) =
∫ t1

0
w(y, v, t) f (t, x(t, y, v))dt, y ∈ S0, v ∈ S

2,

where w is a weight coming from the change of variables. In fact, w is smooth and close
to 1 for δ sufficiently small. w only mildly affects the argument, changing the elliptic
principal symbol of the final operator Xδ ◦ E+ in (9.14), thus maintaining ellipticity. For
simplicity, we will ignore it in the follows and take

Xδ f (y, v) =
∫ t1

0
f (t, x(t, y, v))dt

= (2π)−3
∫
R3

∫
R3

∫ t1

0
ei((x(t,y,v)−z)·η) f (t, z)dtdzdη.

(9.7)

This is the parametrization of Xδ we work with in the rest of this section. The Schwartz
kernel of Xδ is the delta distribution on C × M◦ supported on the point-line relation Zδ

defined by

Zδ = {
(γ, q) ∈ C × M◦ : q ∈ γ

} = {
(y, v, (t, x)) ∈ R

3 × S
2 × M◦ : x = x(t, y, v)

}
.

Next, let �gδ be the d’Alembert operator on (M, gδ) and we consider the second
order operator

Pδ (x, t, Dx , ∂t ) = �gδ + P1 (x, t, i Dx , ∂t ) + P0(x, t) (9.8)

where P1 is a first order differential operator with real valued smooth coefficients and
P0 is smooth. Then we consider the Cauchy problem

Pδ (x, t, Dx , ∂t ) f = 0 on M◦

f = f1, ∂t f = f2, on S0.
(9.9)
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We remark that for sufficiently small metric perturbations, the operators �gδ and Pδ

are both strictly hyperbolic with respect to S0. Therefore, as in previous sections,
the parametrix construction of Duistermaat-Hörmander can be applied. In general, the
parametrix does not have a global oscillatory integral representation on M . However, we
show below that for sufficiently small perturbations of the Minkowski spacetime, this is
possible.

The parametrix construction is the same as in the previous section. We look for
operators E j , j = 0, 1 such that

Pδ (x, t, Dx , ∂t ) E j = 0 on M◦

∂kt E j = δk j , k = 0, 1, on S0.

For j = 0, 1 we have

E j f (x) = (2π)−3
∫
R3

eiφ+(x,t,ξ)a j,+(x, t, ξ) f̂ (ξ)dξ

+(2π)−3
∫
R3

eiφ−(x,t,ξ)a j,−(x, t, ξ) f̂ (ξ)dξ + R j (t) f (x)

where R j are smoothing operators, see [21, (1.37)]. We follow Trèves [21] to find the
phase functions φ(t, x, ξ) for (t, x) ∈ (t0, t1) ×R

3, ξ ∈ R
3. The phase function should

satisfy the eikonal equation

p(∇φ) = −|∂tφ|2 + |∂xφ|2 + H (∂tφ, ∂xφ) = 0.

By the strict hyperbolicity, there are two solutions for ∂tφ denoted by ∂tφ =
λ±(t, x, ∂xφ) and λ± are smooth functions and homogeneous of degree one in ∂xφ.
We take initial conditions ∂tφ = x · ξ, ξ ∈ R

3 at t = 0. Below, we consider λ+. The
treatment for λ− is identical. We consider the Hamilton-Jacobi equation

dx

dt
= −∂ηλ+(t, x, η),

dη

dt
= ∂xλ+(t, x, η)

x(0) = y, η(0) = ξ, y ∈ R
3, ξ ∈ R

3\0.
(9.10)

We denote the solution by x(t, y, ξ), ξ(t, y, ξ). Then the phase function is

φ+(t, x, ξ) = x · ξ +
∫ t

0
λ+(s, x, η(s, y, ξ))ds. (9.11)

Here, one can express y in terms of x , see [21, Section 2, Chapter VI] for more details.
For the Minkowski spacetime, we know λ+ = −|ξ | so that (9.10) becomes

dx

dt
=ξ/|ξ |, dη

dt
= 0

x(0) = y, η(0) = ξ.

(9.12)

The solution is simply x(t) = y+tξ/|ξ |, η(t) = ξ and the phase function isφ0(t, x, ξ) =
x · ξ + t |ξ |. Using the same argument as for Lemma 9.1, we get
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Lemma 9.2. For δ > 0 sufficiently small, there is a unique smooth solution
(x(t, y, ξ), η(t, y, ξ)) to (9.10) for t ∈ [t0, t1], y ∈ R

3, ξ ∈ R
3\0, and they satisfy

‖x (t, y, ξ) − (y − tξ/|ξ |) ‖C2 < Cδ, ‖η(t, y, ξ)/|ξ | − ξ/|ξ |‖C2 < Cδ

for some constant C > 0. It follows that the phase function φ+ in (9.11) is also smooth
and satisfies

‖φ+ (t, x, ξ) − (x · ξ + t |ξ |) ‖C2 < Cδ|ξ |.
We remark that similar argument was used in [18] for a backscattering problem.

Using this lemma, we can represent the solution to (9.9) as

f (x, t) = E0 f1 + E1 f2 = E+h1 + E−h2

where

E+h = (2π)−3
∫
R3

eiφ+(t,x,ξ)a+(x, t, ξ)ĥ(ξ)dξ

E−h = (2π)−3
∫
R3

eiφ−(t,x,ξ)a−(x, t, ξ)ĥ(ξ)dξ.

(9.13)

The a± and h1, h2 are the same as in (8.7).
With these preparations, we now state and prove our main result in this section.

Theorem 9.3. Consider (M, gδ) which satisfy the assumptions (A1), (A2) in the begin-
ning of this section. Assume that ( f1, f2) ∈ N s, s ≥ 0, and f1, f2 are supported in a
compact set K of S0. For δ ≥ 0 sufficiently small, Xδ f uniquely determines f and
f1, f2 which satisfy (9.9). Moreover, there exists C > 0 such that

‖ ( f1, f2) ‖N s ≤ C‖Xδ f ‖Hs+2(Cδ) and ‖ f ‖Hs+1(M) ≤ C‖Xδ f ‖Hs+2(Cδ)

where Cδ is the set of light rays on (M, gδ).

Proof. We examine the arguments in Sects. 7 and 8 and point out what needs to be
modified. We consider the composition of Xδ and E+ defined in (9.13). We have

Xδ f (y, v) = (2π)−3
∫
R3

∫
R3

∫ t1

0
ei((x(t,y,v)−x ′)·η) f (t, x ′)dtdx ′dη

and

E+( f )(t, x
′) = (2π)−3

∫
R3

∫
R3

ei(φ+(t,x
′,ξ)−z·ξ)a+(t, x ′, ξ) f (z)dzdξ.

Consider the integral operator I ϕ defined in Sect. 7. Using the oscillatory integral rep-
resentations, we have

I ϕXδχεE+ f (y, v)

= (2π)−6
∫
S2

∫
R3

∫
R3

∫ t1

0

∫
R3

∫
R3

ei(x(t,y,v)·η−x ′·η+φ+(t,x ′,ξ)−z·ξ)

ϕ(v)a(t, x ′, ξ)χε(t) f (z)dzdξdtdx ′dηdv

(9.14)

We write the phase function as � = φ + ψ in which

φ
(
y, z; ξ, η, x ′, t, v

) = (y − x ′) · η + tv · η + (x ′ − z) · ξ + t |ξ |
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and ψ is a smooth function and homogeneous of degree one in ξ, η. In particular, �

is a small perturbation of φ. As in Proposition 7.1, we first consider the integration in
x ′, η, v in (9.14). As shown in Proposition 7.1, the phase function φ in these variables
is non-degenerate. Since ψ is a small perturbation of φ, for δ sufficiently small, we see
that � in x ′, η, v variables is also non-degenerate. Note that

∂x ′� = −η + ∂x ′φ+(t, x
′, ξ), ∂η� = x(t, y, v) − x ′, ∂v� = ∂vx(t, y, v) · η (9.15)

For the stationary points, we see that x ′ = x(t, y, v) so (t, x) is on the light ray from
(0, y) in direction (1, v). Let τ satisfy pδ(t, x, τ, η) = 0. From η = ∂x ′φ+(t, x ′, ξ) we
see that (t, x ′, τ, η) is on the bicharactersitics from (y, ξ). Since there is no conjugate
points, we get v = ±ξ/|ξ |. Thus at the stationary points, the phase function becomes

�(y, z, t, ξ) = φ+(t, x(t, y,±ξ/|ξ |), ξ) − z · ξ

After integrating in x ′, η, v, the Schwartz kernel becomes

I ϕXδχεE+(y, z) = (2π)−3
∫ t1

0

∫
R3

ei(φ+(t,x(t,y,ξ/|ξ |),ξ)−z·ξ)kδ
+(t, ξ)dξdt

+ (2π)−3
∫ t1

0

∫
R3

ei(φ+(t,x(t,y,−ξ/|ξ |),ξ)−z·ξ)kδ−(t, ξ)dξdt

(9.16)

where kδ± are small perturbations of k± in (7.4) and (7.5) of Proposition 7.1. Finally, we
integrate in t . For the second integral in (9.16), the phase function is a small perturbation
of

(y − z) · ξ + 2t |ξ |
thus as in Proposition 7.1, the integral is O(|ξ |−∞). For the first integral of (9.16), we
need to examine the phase function at the stationary points. Using (9.11), we get

�(y, z, t, ξ) = x · ξ +
∫ t

0
λ+(s, x, ξ)ds − z · ξ

where x = x(t, y, ξ/|ξ |). Taking ξ derivative, we get

∂ξ�(y, z, t, ξ) = (x − z) + ∂ξ x · ξ +
∫ t

0

(
∂ηλ+(s, x(s, y, ξ/|ξ |), ξ)∂ξ x + ∂ηλ+

)
ds

= (x − z) + ∂ξ x · ξ +
∫ t

0
−dx

ds
(s, x, ξ)ds

where we used the stationary point condition (9.15) and ∂ηλ+ = −dx/dt . Note that
∂ξ x is the Jacobi field, and because x(t, y, ξ/|ξ |) is a light-like geodesic, ∂ξ x · ξ = 0,
see Lemma 3.1 and Lemma 3.4 of [13]. Therefore, ∂ξ�(y, z, t, ξ) = (x − z) and
�(y, z, t, ξ) = (y − z) · ξ + �̃(y, z, t) where �̃ is small. Finally, integrating in t of the
first integral of (9.16) gives a pseudo-differential operator of order −1 and the principal
symbol kδ

+,−1 is a small perturbation of k+,−1(ξ) in Proposition 7.1. This implies that
Proposition 7.1 hold for the small perturbations.
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To see that the analogous result of Proposition 7.2 holds for small perturbations, it
suffices to examine the kernel (9.16) in which χε is replaced by χ[ε,t1]

I ϕXδχ[ε,t1]E+(y, z) = (2π)−3
∫ t1

ε

∫
R3

ei(φ+(t,x(t,y,ξ/|ξ |),ξ)−z·ξ)kδ
+(t, ξ)dξdt

+ (2π)−3
∫ t1

ε

∫
R3

ei(φ+(t,x(t,y,−ξ/|ξ |),ξ)−z·ξ)kδ−(t, ξ)dξdt

(9.17)
The first integral still gives a pseudo-differential operator as shown above. For the second
integral, integration by parts in t gives an oscillatory integral of the form

∫
R3

ei(φ+(ε,x(ε,y,−ξ/|ξ |),ξ)−z·ξ)a(ξ)dξ +
∫
R3

ei(φ+(t1,x(t1,y,−ξ/|ξ |),ξ)−z·ξ)b(ξ)dξ (9.18)

where a, b are symbols of order −2. Here, we used that φ+ is homogeneous of degree
one in ξ. To see that these are FIOs of canonical graph type, we use the characterization
in [8, page 26] which says that an oscillatory integral with phase φ(x, η) − x · η is an

FIO whose canonical relation is a canonical graph if and only if det ∂2φ
∂x∂η

�= 0. Since

φ+(ε, x(ε, y,−ξ/|ξ |), ξ) is a small perturbation of y · ξ + 2ε|ξ | and det ∂2

∂y∂ξ
(y · ξ +

2ε|ξ |) = −1 �= 0, we conclude that for δ sufficiently small, the first integral in (9.18)
gives an FIO of canonical graph type. The same is true for the second integral. Thus
Proposition 7.2 holds for small perturbations.

Now, the proof of Theorem 1.1 in Sect. 8 go through line by line, except the injectivity
of Xδ . In particular, we have the estimate as (8.1)

‖ ( f1, f2) ‖N s ≤ C‖Xδ f ‖Hs+2(Cδ)
+ Cρ‖ ( f1, f2) ‖N s−ρ

where Cρ is a constant depending on ρ. To get rid of the last term, we use the following
argument, see [22, Section 2.7]. Notice that given s, ρ and for some fixed small δ0, if we
consider all metric g such that ‖g − gM‖C3 ≤ δ0 , then the above estimate is uniform (a
fixed constantCρ works for all such metrics) by the uniformity of the construction. Now
suppose there is no δ such that for all metrics within δ of the Minkowski metric gM (in
the Fréchet space sense) the transform is injective. Let F j = ( f j

1 , f j
2 ), j = 1, 2, . . . be

such that the corresponding f j is in the null-space of Xgj = X j and ‖F j‖N s = 1, with
g j within 1/j of the Minkowski metric. By the above inequality, 1 ≤ Cρ‖F j‖N s−ρ .

Now, F j has a N s-weakly convergent subsequence, not shown in notation, to some
F ∈ N s , which thus strongly converges in N s−ρ . By the above inequality, F �= 0. But
0 = X j f converges to XM f e.g. in the sense of distributions. So XM f = 0 which by
the injectivity of XM , implies that f = 0. So we get F = 0 a contradiction. This shows
the injectivity of Xδ and finishes the proof of Theorem 9.3. ��
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