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Abstract: We study the light ray transform on Minkowski space-time and its small
metric perturbations acting on scalar functions which are solutions to wave equations.
We show that the light ray transform uniquely determines the function in a stable way.
The problem is of particular interest because of its connection to inverse problems of
the Sachs—Wolfe effect in cosmology.

1. Introduction

Let M = [1g, 1] X R3 and (t,x),t €ty, 1], x € IR3 be the local coordinates. Let &M =
—dt? +dx? be the Minkowski metric on M. Consider the Lorentzian manifold M, gm).
We denote the interior by M° = (to, t1) X R3 and the boundaries by S = {to} x R3
and . = {r} x R3. See Fig. 1.

Consider light-like geodesics on (M, gys) which are straight lines. We parametrize
the set of light rays % as follows: let xo € .% and v € S the unit sphere in R3. Then
a light ray from xg in direction (1, v) is y (t) = (fo, x0) + (1, v), T € [0, #; — #9]. See
Fig. 1. In particular, we can identify ¥ = R3 x S?. The light ray transform for scalar
functions on (M, gp) is defined by

11—ty
Xm () :/0 fly(@ydr, feC5(M). (1.1)

Of course, one can regard Xy as the restriction of the light ray transform X4 of the
Minkowski spacetime (R*, gps) acting on functions supported in M. However, it is
perhaps better to think of Xj; as the compact version of the transform, which is similar
to the geodesic ray transform on a compact Riemannian manifold with boundary, see
for instance [20].

In this work, we study X js acting on scalar functions which are solutions to the Cauchy
problem of wave equations on M. Let ¢ > 0 be a constant. Denote [J, = 812 +c2 A where
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M = (to,t1) x R?

2

Fig. 1. The setup of the problem for the Minkowski space-time

A is the positive Laplacian on R3, namely A = Zl 1 D5 Dy = — —1 . Here, ¢
is the wave speed. On (M, gpr), ¢ = 1 is the speed of llght and L. is the d Alembert

operator. Consider the Cauchy problem
O.f =0 onM°
f=nh, of=fr, onH.
The problem we address in this paper is the determination of f or equivalently fi, f>

from X s (f) with the constraint (1.2). Let N/ def Hcs;nllp (H) x Hgomp (#). Our main

result is

(1.2)

Theorem 1.1. Suppose 0 < ¢ < 1 is constant. Assume that (f1, f2) € N*,s > 0, and
f1, fa are supported in a compact set & of . Then Xy f uniquely determines f and
f1, f2 which satisfy (1.2). Moreover; there exists C > 0 such that

I s = ClliXm fllgsagy and | fllgsaiony < CIXm fll s
where € is the set of light rays on M.

We will prove stronger versions of the theorem including lower order terms in the
wave equation in Theorem 8.3 in Sect. 8. However, for ease of presentation, we use the
standard wave equation on Minkowski spacetime throughout the paper until the final
sections where the necessary changes are indicated.

Next, we consider the generalization of Theorem 1.1 corresponding to ¢ = 1. We
remark that it is not difficult to formulate the result corresponding to ¢ < 1 although
we do not discuss it. We consider metric perturbations gs = gy + h where h satisfies
assumptions (A1), (A2) in Sect. 9, which says that 4 is a suitably smooth small pertur-
bation of the Minkowski spacetime. In this case, light rays may not be straight lines. Let
X be the light ray transform on (M, gs) see (9.6). Let U, be the d’ Alembert operator
on (M, gs). Consider the Cauchy problem

Ogs f =0 on M°

1.3
F=f. 0f=fn on (13
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Our result is

Theorem 1.2. Consider (M, gs) satisfying assumptions (Al), (A2) to be stated in Sect. 9.
Assume that (f1, f») € N*,s > 0, and f1, f» are supported in a compact set X of H.
For § > 0 sufficiently small, X5 f uniquely determines f and f1, f> which satisfy (1.3).
Moreover, there exists C > 0 such that

ICf1 NN < CllXs fll gse gy and || fll gsevany < CIXs fllgse2 ()
where G5 is the set of light rays on (M, gs), see Sect. 9.

Our motivation for this setup of the light ray transform comes from some inverse
problems in cosmology. We are particularly interested in the determination of gravita-
tional perturbations such as primordial gravitational waves from the anisotropies of the
Cosmic Microwave Background (CMB), see for example [2,4,11]. Sachs and Wolfe in
their 1967 paper [19] discovered the connection of the CMB anisotropy and the light
ray transform of the gravitational perturbations, now called the Sachs—Wolfe effects. We
discuss the background in Sects. 2 and 3. Physically, ¢ < 1 and ¢ = 1 in Theorem 1.1
correspond to different Universe models driven by hydrodynamical perturbations and
scalar field perturbations, respectively. Moreover, Theorem 1.2 covers some cases of
variable wave speeds.

The reason that we are able to get a stable determination is the restriction of singulari-
ties of f.In general, itis known that time-like singularities in f,namely all (z, ¢) € T*M
in the wave front set WF(f) of f with ¢ time-like, are lost after taking the light ray
transform, although the light ray transform Xy is injective on C§°(M). In particular, we
do not expect Theorem 1.1 to hold for ¢ > 1. There is a fundamental difference in our
treatment between the ¢ < 1 and ¢ = 1 cases. The former requires a good understanding
of the normal operator X3, X, which was considered in [12] and further generalized in
[13], while the latter relies on a thorough analysis of the operator X js E where E is the
fundamental solution or parametrix for the Cauchy problem.

The paper is organized as follows. In Sects. 2 and 3, we discuss the (integrated)
Sachs—Wolfe effects and explain how the inverse problem is related to our theorems.
In Sect. 4, we review some properties of the light ray transform. Then we consider the
Cauchy problem in Sect. 5. In Sects. 6 and 7, we construct the microlocal parametrix for
the light ray transform with the wave constraint for ¢ < 1 and ¢ = 1 respectively. We
prove Theorem 1.1 and the version including lower order terms in the wave equation in
Sect. 8. Finally, we address the small metric perturbations of Minkowski space-time in
Sect. 9.

2. The Integrated Sachs—Wolfe Effect
Consider the flat Friedman—Lemaite—Robertson—Walker (FLRW) model for the cosmos:
M = (0,00) x R}, gy =dt* — a®(t)8;;dx'dx’

where (¢, x),t € (0,00),x € R3 are coordinates and 8;j = 1ifi = j and otherwise 0.
Here, the signature of gg is (+, —, —, —) because we will refer to some results in [16]
later. The factor a(t) is assumed to be positive and smooth in ¢. It represents the rate of
expansion of the Universe.

We assume that the actual cosmos is a metric perturbation g = go + g on .# where
8g is a small perturbation compared to go. Here, we follow the convention of [16] that
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8 A denotes the perturbation of quantity A (not § times A). We introduce the conformal
time s such that ds = a~1(¢#)dt. Then we get

g0 = az(s) (ds2 — Sijdxidxj> = az(s)gM

where g3 is the Minkowski metric on .# = (0, co) and we used a(s) to denote a(z(s)).
We write ¢ = a’(s)(gy + 8g) where 8g denotes the corresponding perturbation in
conformal time. In the literature, the metric perturbations are classified to scalar, vector
and tensor type. We consider the scalar type perturbations. In the longitudinal gauge,
also called the conformal Newtonian gauge, the metric g is of the form

¢ =d(s) [(1 +20)ds? — (1 — Z\D)dxz] @2.1)

see [16, Section 2]. Here, ®, W are scalar functions on M. We remark that there is a
gauge invariant formulation of cosmological perturbations. However, in the longitudinal
gauge, the gauge invariant variables are equal to ®, W, see [16]. In this work, we fix the
gauge and work with @, W for simplicity.

Consider the Cosmic Microwave Background (CMB) measurement. Our main ref-
erences are [2,4,19]. Let %y = {so} x R3 be the surface of last scattering. This is the
moment after which photons stopped interaction and started to travel freely in .#. Let
.7 = {51} x R3 be the surface where we make observation of the photons. Let y (7) be
a light ray from . to .. It represents the trajectory of photons in .. Explicitly, we
have

Y (¥) = (50, X0) + T(1,v), (50, X0) € Fp, v € S*, T €[0,51 —50].

Then we consider the photon energies observed at .%p,.” denoted by Ey =
go(y(s0), 9s), E = go(y(s1), 05). Here, the observer is represented by the flow of the
vector field d;. The redshift z is defined by

1+z=E/E)p.

In [19], Sachs and Wolfe derived that to the first order linearization, 1+z is represented by
a light ray transform of the metric perturbations, see [19, equation (39)]. In cosmological
literatures, one often connects this to the CMB temperature anisotropies. Let T be the
temperature observed at .# in the isotropic background go. Let 87 be the temperature
fluctuation from the isotropic background. One can compute §7/7 in terms of the
energies Eq, E. One component of 67/ T is the integrated Sachs—Wolfe (ISW) effects

8T 5150
(7)’”@) = fo (B ® (¥ () + ¥ (y (1) dt = Xp1 (3P + 3, ¥) ()

2.2)
see [4, Section 2.5]. Note that this quantity depends on the light ray y which indicates
the anisotropy. We remark that another component of §7/ T is the ordinary Sachs—Wolfe
effect (OSW) which only involves ®, W at .#,. The integrated Sachs—Wolfe effect can
be extracted from the CMB and other astrophysical data, see for example [14].

The inverse Sachs—Wolfe problem we study is to determine &, W on M from
(8T/T)!'SW | which in particular includes the initial value of ®, ¥ on .%,. Before we
proceed, we observe that there are natural obstructions to the unique determination from
(2.2). If ® + W is a constant, then the integrated Sachs—Wolfe effect is always zero. So
the goal is to determine &, W up to such natural obstructions.
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3. Dynamical Equations for Perturbations

For the Sachs—Wolfe problem, we should take into account that g satisfies the Einstein
equations with certain source fields and initial perturbations at .y from gp. On the
linearization level, this puts the perturbation §g under some wave equation constraint
as we discuss in this section. The derivations of the equations for the perturbation take
some amount of work and they are mostly done in the literature, see for example [2,
Section 5.1] and [4]. We follow the presentation and the notations in [16, Section 4—6]
closely. Instead of the gauge invariant approach, we choose to work in the longitudinal
gauge for simplicity. It is not hard to transform back and forth and our analysis works
for the gauge invariant formulation as well.

Let R”, be the Ricci curvature tensor and R the scalar curvature on (.#, g) (in
conformal time). Let T", denote the stress-energy tensor of certain source fields. The
Einstein equations are

1
G", =8xGT", G", =R\, — 8" R

where G is Newton’s gravitational constant. We assume that T4, = O7" 4+ 7%
where DT denotes the stress-energy tensor of the background field and 87 denotes
the perturbation. We also have g = a®(gy + 8g). Then we can write G, = ©G*, +
8G", + .- . From the asymptotic expansion, one finds that the Einstein tensor for the
background metric gy are

06y =3a2H* ©G% =0, V¢, =a?QH'+HY)S |, (3.1)

where i, j = 1,2,3, H(s) = dsa(s)/a(s), see [16, equation (4.2)]. Here, H' = 0, H
denotes the derivative in the conformal time variable. We emphasize that we work with
a flat Universe and we get the equation O G*, = 87 GOT" .

For the first order perturbation term, we get §G", = 87 G8T",. After lengthy calcu-
lations, one obtains (see [16, equation (4.15)]) the following equations for ®, ¥

—3H (H®+ V') + AV = 41 Ga?sT",
JH(HD + V') = 4nGa’sT",

1 .
[(QH' + H)® + HO + V" +2HV' + EA(CD — W) (3.2)

1 ik 2 [
— 38(@ — W)y = —4nGa®sT' ;.

wherei, j = 1, 2, 3, 9; denotes the ith component of the covariant derivative with respect
to the background metric gps, A denotes the standard Laplacian on R3, and as in 3.1),
prime denotes 9, derivative.

Now we need to specify the source field. We consider two important examples: the
perfect fluid and the scalar field. We first consider Universe dominated by perfect fluid
sources. Let u be the four fluid velocity of a fluid source. The stress-energy tensor for a
perfect fluid is

T = (e + p)u®ug — ps®g
see [16, equation (5.2)], Here, € is the energy density and p is the pressure of the
fluid. We assume that € = €y + 8¢, p = po + p where 0 denotes the quantity for the
background and § denotes the perturbations. For fluid source, from (3.2) one deduces
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that the perturbations ® = W. In the case of adiabatic perturbations, ® satisfies the
following equation, called Bardeen’s equation

2 2 2 2
" +3H(1 +c2)® — ZAD +[2H + (1 +3c¢HH* D =0, (3.3)

see [16, equation (5.22)]. In general, the right hand side of the equation is a non-zero term
related to the entropy perturbations. The fluid velocity u also satisfies a wave equation
with speed c;, see [16, equation (5.25)]. Here, ¢; < 1 is the speed of sound. Prescribing
Cauchy data of ® at .9, one can solve the Cauchy problem of (3.3) to get ® in .#. We
formulate the inverse Sachs—Wolfe problem in this case as

Problem 3.1. Determining ® from (2.2) where ® satisfies the Cauchy problem of (3.3).

Commuting equation (3.3) with d;, we see that d; ® also satisfies a wave equation. Hence,
we arrived at the model problem we proposed in the introduction.
Next, let’s consider Universe governed by a scalar field ¢. The stress energy tensor
is
1
TH, =V'¢V,¢ — [EV“¢Va¢ - V(@)ls-,

see [16, equation (6.2)]. Here, V is the potential function for the scalar field ¢. The
field itself satisfies the Klein-Gordon equation [l¢ + 94V (¢) = 0. Now assume that
¢ = ¢o + §¢ where ¢ is the scalar field which drives the background model and 5¢
denotes the perturbation. Then we can split T+ = OT7H L 5T, Again, one finds that
® = W and it satisfies the equation

" +2(H — ¢ /p) D — AD +2(H — He /o) =0 (3.4)

see [16, equation (6.48)]. This is a damped wave equation with wave speed ¢ = 1. We
can formulate the inverse Sachs—Wolfe problem in this case as

Problem 3.2. Determining ® from (2.2) in which ® satisfies the Cauchy problem of
(3.4).

Again, we arrived at the model problem in the introduction with ¢ = 1. We do not need
it but record that the scalar field perturbation also satisfies a wave equation, see [16,
equation (6.47)].

Applying our main result of the paper, in particular Theorem 8.3 which allows lower
order terms in the wave equation, we obtain the following result.

Corollary 3.3. For the inverse Sachs—Wolfe effect Problems 3.1 and 3.2, one can
uniquely determine ® in ./ (and the initial conditions at .7}) in the longitudinal gauge
up to a constant in a stable way.

4. The Light Ray Transform on Functions

We recall some facts about the light ray transform on scalar functions. Consider
the Lorentzian manifold (M, gy) and hereafter we change the signature of gps to
(—, +,+,+).For(t,x) € M°,t € (19, 11), x € R}, weuse E = (1,£), 7 € R, £ € R3for
the coordinate in 7(; yyM° so that tangent vectors are represented by 79; + 23:1 £19,;.
We divide the tangent vectors in 7(; ) M° into time-like vectors Q(_l X)M °—(EeR*:

gm(E, BE) = 24 |é§|2 < 0}, space-like vectors erz,x)MO ={E e R*: gmu(E, E) >
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0} and light-like vectors L(; ,)M° = {E € R* : gy (2, E) = 0}. We denote the corre-
sponding fiber bundles by Q~M°, Q*M°, L M°. The cotangent vectors can be classified
similarly using the dual metric gy, on T*M°. The corresponding bundles are denoted
by Q%" M°, Q**M°, L*M°.

From now on, without loss of generality, we take ty = 0 in M, which amounts
to a translation in the ¢ variable. Let € be the set of light rays on (M, gy). As M
has a global coordinate system, we can parametrize € as follows. Let y € R3, v €
S? def {z € R3 : |z| = 1} with | - | the Euclidean norm. We denote 8 = (1, v)
so that 6 is a (future pointing) light-like vector. Then all the light rays are given by
Yyu(®) = (7, y+70), 7 € (0,11), (y,v) € R3 x S%. Thus, we can identify ¢ = R3 x S”.
For f € Cg°(M°) and y € R3, v € S%, we have

3
Xmf(y,v)= /0 f@, y+rvydr

no
= Q)3 / / / =XV £t drdxdn.
R3 JR3 Jo

The Schwartz kernel of X s is §z the delta distribution on ¥’ x M° supported on the
point-line relation Z defined by

A.1)

Z={(y.q) €€ xM°:qgeyl={(y,v, (t,x) e R¥xS> x M°: x =y +1v}.

We know (see e.g. [12]) that X s is an Fourier integral operator of order —3/4 associated
with the canonical relation (N*Z)’, where N* Z denotes the conormal bundle of Z minus
the zero section. Hence Xy : £'(M°) — D’ (%) is continuous. Here, D' (M°), £'(M°)
denotes the space of distributions and compactly supported distributions on M°.

It is known that on R*, the light ray transform is injective on Cgo (R4), see [10,17],
but not injective on S (R*) (Schwartz functions on R*). It is proved in [10, Corollary 7]
that the kernel of the transform consists of S(R*) functions whose Fourier transforms
are supported in the time-like cone. One can obtain analogous results for X ;. The point
is that after taking the light ray transform, time-like singularities in the functions are
lost.

To see the difference in the treatment between space-like and light-like singularities,
consider the normal operator X}, X . For the light ray transform on R*, the Schwartz
kernel of the normal operator can be computed explicitly using Fourier transforms, see
[17]. Let’s look at the microlocal structure. The canonical relation C = N*Z' is

C={((y,v,n,w); (t,x,7,8) € (T*E\0) x (T*M°\0) : y =x —tv, n=E§,

w=té|y s, T=-6-v, y€E R3 v e S?, ne R3, (t,x) € M°},

4.2)
see [12, equation (39)]. In the expression of w, & is regarded as a co-tangent vector to
T,S%. If & = (1, &) is light-like, then &|7, g» = 0, see [12, Lemma 10.1]. We look at the
double fibration picture

C
LY

"M T*¢
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If p is an injective immersion, the double fibration satisfies the Bolker condition, and the
normal operator X}, o X belongs to the clean intersection calculus so that the normal
operator is a pseudo-differential operator, see [6]. As shown in [12, Lemma 10.1], p fails
to be injective on the set £ N C where

L={,v,n,w;t,x, ) € (T*E\0) x (T*M°\0) : Eis light-like}.

In particular, the normal operator is an elliptic pseudo-differential operator when
restricted to space-like directions, see [17] and [12]. In general, it is proved in [23]
that the Schwartz kernel of the normal operator X}, X is a paired Lagrangian dis-
tribution and a parametrix can be constructed within the framework of [5]. However,
the picture near light-like directions is still not so clear. We remark that Guillemin [7]
considered the structure of X/ X}, for 2 + 1 dimensional Minkowski spacetime.

5. Solution of the Cauchy Problem

We find a representation of the solution of the Cauchy problem in this section. Consider

Ocu=0, onM°= (1) x R3

. (5.1)
Mz.fla 81‘”:.]“2, Ony():{t()}XR.

The fundamental solution can be written down quite explicitly. However, it will be more
convenient to look at its microlocal structure. For (5.1), all we need is the Fourier trans-
form, see for example Treéves [21, Chapter VI, Section 1]. For general strictly hyperbolic
equations, Duistermaat-Hormander (see [3, Chaper 5]) constructed a parametrix for the
Cauchy problem. So one can find a parametrix for (5.1) even when the equation contains
lower order terms which will be used in Sect. 8.

Let (1, £), & € R3 be the dual variables in T*M° to (¢, x), x € R3. Taking the Fourier
transform of (5.1) in the x variable, we get (for o = 0)

02i(t, €) + HEPa, &) = 0,
0(0,8) = f1(&), 80,8 = fr(&).
Solving this ODE, we get

ztc|§| - —itcl|§| -
ut, &) = (fi + |§|f2)+ —e (fi |§|f2)

Taking the inverse Fourier transform, we get

1 ; A | BN 1 ; A
u(t, x) = (277)73_/ et(x~<§+ct|§|)(f1 +—— fr)dE + (27[)73_/ ez()c~?,—'7tc|§|)(f1
R3 icl¢] 2 Jr3

= |E|f2) 3

=) [ IS e + om0 ey

=FE.hi+E_h>,
(5.2)
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where
b= 5+ fo, = 5= fo
=51 iClE] 2), = 5h ] 2)-
We see that E are represented by oscillatory integrals
E+(f) = @m)7 f / ! (T ERAED £ (y)dyd. (53)
R3 JR3

The phase functions are ¢ (¢, x,y,&) = (x — y) - & & ct|&| and amplitude function

. _1
a(t, x, &) = 1. In Hormander’s notation, we conclude that E € [~ % (R3 x M°; (CFY)
are Fourier integral operators where the canonical relations are

C* ={(t,x, 20,0 y,&) € T*M°\0 x T*R*\0 :
y=x—ct(x£/|€]). ¢ =& o = xcl§]}. (5.4

Itsuffices toregard i1, h» as the reparametrized initial conditions for the Cauchy problem
and represent u = E hy + E_h; in (5.2). Once we find A1, ho, we can easily find f1, f>
from

fi=hi+hy, fr=icA (hi —hy). (5.5)

6. The Microlocal Inversion: ¢ < 1

For 0 < ¢ < 1, it is important to observe that singularities (or the wave front set) of
the solution u to (5.1) are all in space-like directions for (M, gps). From the canonical
relation C* in (5.4), we know that for u in (5.1)

WE(u) C {(t, x,80,&") € T*M°\0 : & = £cl&'[},

and | (&, 5’)@;4 = —&+|&'1> = (—c*+1)|¢')* > Oforc < 1.Forsuch (£, &), the cor-
responding vector in 7 M° is time-like. So these singularities correspond to trajectories
of particles moving slower than photons in (M, gy).

Now we can use the fact that in space-like directions, the normal operator X}, 0 X is
actually a pseudo-differential operator as shown in [12]. The symbol of (. is p. (50, §) =
—Eg + c2|€]2. Let x(r) be a smooth cut-off function with x(t) = 1, || < 1 and
x() =0, |t] > 1/c? for ¢ < 1. Then we define

2
&
C2|$/|2

x1 (50, &) = x(

)

so x1(£0, &) = 1 on {(5, &) € R* : pc(&,&") > 0} and x1 (0, §') = 0 on Q% M°.
Let x1(D) be the pseudo-differential operator with symbol x;. We have

Lemma 6.1. x1 (D)X}, o Xy x1(D) is a pseudo-differential operator of order —1 on
MP°. The principal symbol at (t, x, &y, &) € T*M° is

472 2 ,
mxl (%0.&').
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Proof. Tt follows from Theorem 2.1 of [13] that x; (D)Xj{,[ o Xy x1(D) is a pseudo-
differential operator on M° with an oscillatory integral representation. The symbol is

o (t.x.50.8") = 27IS"|x7 (0. &) 161" (6.1)

We remark that the symbol is singular at § = 0 but this can be removed by introducing a

smooth cut-off function supported near £ = 0 and noticing that |£|~! is integrable near

& = 0. Since it only changes x1 (D)X}, o Xy x1(D) by a smoothing operator, we will

not show it for simplicity. O
Now we show that

Lemma 6.2. The normal operator E{ Xy, 0 Xy Ey, E* X3, 0 Xy E_ are elliptic pseudo-
differential operators of order —1 on R3, and EiX3, 0o XyE_and E* X3, 0 Xy E, are
smoothing operators on R3.

Proof. Firstof all, we know that (X}, 0 X y) Ex = (x1(D) Xy, 0 Xy x1(D))E; moduloa

smoothing operator, thus (X ;,[ oXy)Es el -3 (M° x R3; (C*)Y) from the composition
of a pseudo-differential operator and an FIO. The principal symbol is non-vanishing.
We also know that Ef € I -1 (M° x R3; (c*~1H)). To compose these two operators,
we would like to apply the clean composition theorem [8, Theorem 25.2.3], however,
the operators are not properly supported. But this can be justified using the oscillatory
integral representation. We have (modulo a pseudo-differential operator of a lower order)

E} (X} 0 XuEy) f(2)

=(271)_6/ /t‘/ / f (i (G=xyn=etlnh i (G=)6+etlED 4 (£) £ (y)dydEdxdidy
r3Jo JRr3 JR3 JR3

t

:(27[)—6/ /l/ / / ei(Z'”_y'gﬂ(s_n)_”WﬂtlgI)a(é)f(y)dydédxdtdn
r3Jo Jr3 JR3 SRS

=(2n)*3/ / e CEYOna(E) f(y)dydt.
R3 JR3

This is a pseudo-differential operator of order —1 on R>. The same proof works for the
minus sign.

To see that E¥ X}, o X E_ is smoothing, we just need to observe that the canonical
relations C*, C~ in (5.4) are disjoint. So a wave front analysis using e.g. [3, Theorem
1.3.7] tells that the operator is smoothing. O

We finished the proof but we mention the following alternative argument. Essentially,
we want to consider the operator E for fixed ¢, denoted by E.(¢). We know that E.(¢) :
E'(R3) — D'(R?) is a Fourier integral operator

Ev() f(x) = (2) f / HCERTED £ (1) dy e
]R3 ]R3

with canonical relation C; = {(y, n; x, £) € T*R3\0 x T*R3\0 : y = x +ct£/|€|, & =
n}. Then E, (1) € I°(R3 x R3; C 1) is properly supported. The canonical relation C; is
a graph of a symplectic transformation, thus the composition E (t) E, () is a pseudo-
differential operator of order 0 on R3. In our case, Ej:(t)Xj{,IX mE+(t) is a pseudo-
differential operator of order —1 and the symbols are smooth in ¢ € [fg, #{]. Finally,
integrating the symbols in 7 produces a symbol and we get the result.

Now we construct a parametrix for the transform.
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Proposition 6.3. For ¢ < 1, there exist operators Ay, Ay such that
AMXuf=f+Rifi+R [, MoXuf=fr+Rfi+Rofo

where R, Ry, R}, R}, are smoothing operators and A; = A; o X%, i = 1,2 in which

A; are Fourier integral operators.
Proof. First, we represent f = E.h| + E_h, and write

Xuf=XuEih1+XmE_hs. (6.2)
We apply E} X}, to get

E;XyXuf=E;XyXuEih1+E; Xy XuE_hy = E;Xy XyEihi + Rihy.
Since E X7}, Xy Ey is an elliptic pseudo-differential operator of order —1, we can find
a parametrix B, which is a pseudo-differential operator of order 1 on R3 and
Bio EXX3 Xmf =hi+Rihi +Rjhy

where Ry, R] are smoothing. We repeat the argument for the minus sign. Apply E* X7,
to (6.2), we get

E*XXuf =E* Xy XyuEsh) + E* X3 Xy E_hy = E* X3, Xy E_hy + Rahy.
Apply the parametrix B_ for E* X}, X E_ and we get
B_o E* X3 Xuf = ha+ Rahy + Ryho.

Finally, we get

fi+Rifi+Ryfa=(BioEf+B_oE*) X3y Xuf

and fo + R} fi + Ry fo = icA? (By o EX + B_ o E*) Xy Xu f

as claimed. We set A| = By o E* + B_ o E* which is a sum of two FIOs in I3/4(M° x
R3; (CH~1Y) and I3/4(M° x R3; (C—~')), and Ay = icA> (B, o E*+ B_o E*)

which is a sum of two FIOs in I7/4(M° x R3; (C*~1)y and I7/*(M° x R3; (C—~ 1.
This completes the proof. O

For convenience, we formulate a microlocal inversion result for determining f.

Corollary 6.4. For ¢ < 1, there exist operators A such that

AXuf=f+Rifi+tRaf2,

where Ry, Ry are smoothing operators.

Proof. Again, we simply solve the wave equation (5.1) using the parametrix. In fact, it
is easier to use hy, h>.

f=Eshi+E_hy=E,Byo EXX Xy f+E_B_oE*X5Xyf+Rih +Raha
= (E4B+oEf+E_B_oE*) Xy Xuf+Rifi+R:f>

as claimed, where R 1 1?2, Ry, Ry are smoothing operators and A = (E;B; o E +
E_B_o E*)X},. |
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7. The Microlocal Inversion: ¢ =1

For ¢ = 1, the singularities of the solutions of (5.1) are all in light-like directions. As
explained in the end of Sect. 4, the Schwartz kernel of X7, o Xy, is more complicated
and the previous argument does not work directly. We will take a different approach by
considering the composition X 37 o E-t. Let ¢ be a smooth function on S, and I¢ be the
integration operator on C*°(R3 x S?) defined by

I7f(y) = /S2 o) f(y, v)dv.

Then we consider the composition /¥ o X o E4 as an operator from C*(.%)) to
C®>(S). For technical reasons, we introduce a smooth cut-off function. For e > 0 small,
let x¢(¢) be a smooth cut-off function on R such that x.(t) = 1 for2¢ <t < t; — 2¢
and xc(t) =0fort <€ andt > #t; — €. We prove

Proposition 7.1. K+ = 19Xy x.E+ € W~ (%) are pseudo-differential operators of
order —1 with complete symbol k4 (£), € € R3\0 and the principal symbols are given
by

ki, —1(6) = 2mice|€| " (—€/IED). k- —1(6) = —2mic|§|" p(&/I5D,

3]
where c¢ =/ fl)(e(t)dt
0

Proof. We start with K. We recall from (4.1) that

no
Xuf(y,v) = (27{)*3/ / / & OOV £ drdxdn
R3 JR3 Jo
and from Sect. 5 that
E.(f)(t.x)=@mn)"? / / e/ (CmIEHED £ (2)dzdé.
R3 JR3

Consider the oscillatory integral integral representation of the Schwartz kernel K

K+(y,Z)
t
:(271)*6// / /1/ ¢/ (=0 mHv & =2E411ED () ¥ (1)dEdtdxdndv
sz JR3 JR3 Jo R3
7.1)

In this case, the oscillatory integral can be computed explicitly. But before we proceed
with the calculation, we examine the phase function

¢ (.26 6m,x,0) = —x)-n+tv-n+(x —2z)-§+1[§]
Consider ¢ in n, x, v variables. We have
¢rz =y—x+tv, ¢x=&—1n, ¢ :tansz’
so the critical points are given by

E=mn, v==§/|5, x=y—1§/|§]
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Here, we remark that 1§|1 5o = 0 implies that & is parallel to v so v = £§/|§|. Also,
we have

0 —Id ¢

2
8(,7)x)v)¢ =|1d 0 0
* 0 *

To compute *, we introduce local coordinates on S” near the critical point. By

using an orthogonal transformation, we can assume that £/|£| = (0,0, 1). We use
v= (v, v, £,/1— v% — v%) near £ /|&| where v% + v% < 1. Then we have
nxmn 1::%171)%
8v¢ = 8(1)1,1)2) (tv ' 77) =1 m £ 3 —v22 -
I—vy—v3

On the set of critical point, v = £(0, 0, 1) and n = (0, 0, |£|). We observe that d,¢p = 0.
Next,

" 10 +——4— "y —1+v} o _um
1—vi—v; (1-v2=03)2 (1-v3-03)2

) = )=+ 1~ i
% (81}) fo1 i% and 9y <8v> i ] LB —1+vf2 .
i (1F3)7 (1i-ud)?

On critical points,

¢ -1 0
()=o)

This shows that the phase function is non-degenerate in 1, x, v. We can apply stationary
phase argument so the phase becomes

d(v,z,E, 1) =(y—2)-&+2t|&] whenv = £/|&|
d(y,z,E,1) =(y—2) & whenv = —£/|§]

Finally, after integrating in ¢, we will get a pseudo-differential operator. This will be
shown explicitly in the follows.
First, in (7.1), we integrate in x, 1 to get

5] .
Koo =@ [ [0 [ doemesento) magdido
s2 Jo R3
Consider the integral in v. For f non-zero, the v integral is non-degenerate with stationary

points at v = ££/|&|. Applying stationary phase argument see e.g. [15, Lemma 1.2],
we get

1 .
Ki(y.2) = @m)~ / / e O (p(g /18 ))
0 R3
10 (1, 8)) xe () (HIED " e 27 (2m)dEdt
t
+2m)~3 f f ¢TI (p(—£/|5) (7.2)
0 R3
19 (1, £)) xe ((tE)) " 2™ (2m)dEdt
= Q)3 f Ok, (€)dE
R3
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where ¢ come from the stationary phase argument and they have asymptotic expansions

0 (1, 6) ~ Y arE/IEDEIED T (7.3)

k=1

in which aki are smooth functions on S2. Also,

ke(€) = +2ilE ] p(— S/IEI)/ (1+9(1.6)) xe (Ot
(7.4)
~omile &/l fo AL (L 4 ot (1, £)) e (Dd

The second integral in ¢ is O (]&|~%°) for |&| large because ¢ is away from 0 and x. is
smooth. For the first integral, the integral of each asymptotic term of ¢~ in (7.3) in ¢ is
finite. Thus k4 (&) is a symbol of order —1 and the leading order term is

1
ko1 (€) = 27i 8] p(—E/IE]) /0 e,

This shows that K, in (7.2) is a pseudo-differential operator of order —1 on R3.
For K_, the calculation is similar and we look for the symbol.

K_(y,2)=(@2m)~° / ! / ¢! VEHVE—ZEIED  (1\dEdtdy
=—i@mn)? / / e OTIEENT! (p(E/IE]) + § (1, §)) xe(1)dEdL
rim® [ [ O (g6 +50.6) xe e
L I
= [ 0%k erae

where $* have similar asymptotic expansion as (7.3), and k_ (£) is given by

1
k_(€) = —2nile]”! f (0 E/IED + 5. ©) 1™ e (Ot
0 (7.5)
+omifg)! /0 2 (p(—EIED + 7 (0 ) 1 e (dt

This is a symbol of order —1 and the leading order term is

1
ko_1(8) = —2ilE| " o (&/IE]) /0 e (D

This completes the proof of the proposition. O
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Next we discuss what needs to be changed when the smooth cut-off function y. is
replaced by the characteristic function (¢ ;) of the interval [e, #1] in R. All the calcula-
tions in Proposition 7.1 hold up to (7.4) which is now

ki (§) = +2ilE] " p(— E/IEI)/ (1+9~@,8)dr
(7.6)

—2m|5|—1¢(§/|§|>/ AT (14 9% (1, 8)) dr

The first integral, denoted by I below, still gives a symbol of order —1. For the second
integral denoted by I, below, integration by parts gives

L) = —27ilE| o/ 1ED (M El TN (1 + ¢t (11, £)))

2|s|
b i 1
e (1+9" (. £)
151 . d
_ 2irg] 4 -1 +
2”%']6 A S (1 gt £l

We can repeat the integration by parts and get
L&) = Elag) + 2 <FlbE)
where a (&), b(§) are symbols of order —2. Using these in (7.2), we get

Koo =@m ™ [ 0@+ @7 [ 00 E Elaag
R3 R3
+(27T)_3/ ei(y_z)'§+2i6|é|b($)dé.
R3

Thus, we can write Ky = K) + K + Ki' where K9 € W™!I(R%), and K¢ €
1 _2(R3, R3; Co), Kj_l el _2(R3, R3; C;,) are Fourier integral operators of order —2.
The canonical relation C, Cy, can be described as follows. For « € R, we define

Co =1{(v,10,2,8) € T*RN\O x T*R)\0 : y = z +2a£ /||, & = n).

We see that C, is a graph of a canonical transformation, see [8, Section 25.3].
The same argument shows that K_ is also a sum of K € W~!(R%) and K¢ €
I72R3, R C_o), K" e IT2(R3,R3; C_y)).

Now we are ready to obtain a parallel result of Proposition 6.3 about the microlocal
inversion.

Proposition 7.2. For c = 1 and any N € N, there exist operators A1, A such that
A Xy xie1f =hi+ Rihi + Riha, Ay XwmXie.n1f = ha+ Rohy + Ryhy
where hy, hy are defined in Sect. 5 and Ry, R}, R2, R}, € IN(R3,R3; C p tl) which is

the N-fold composition of elements in ! (R3, R3; C4i¢) and ! (]R3, R3; C44,), more
explicitly

ITNRI R CN ) ={A10 Ay Ayt A e TR R Co) + TR, R Cyy)
TR R Coo) + TR R €y
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Proof. We divide the proof in two steps.
Step 1: Let’s replace x[¢ ;] With the smooth cut-off . as in Proposition 7.1 and see
how to get h1, hy using Proposition 7.1. We write

Xuxef = XmxeEshi + Xy xe E—hy.
Let ¢ be a smooth function on S?. Applying ¢ we get
IXpxef =1°XpuxeEsh1 + 1°Xyxc E—hy = K hy + K¥ " hy (7.7)

where we added ¢ to the notation of K to emphasize the dependency because we will
choose different ¢ below.

First, let ¢; = 1. From Proposition 7.1, we see that K i‘ € W~ 1(R3) and the principal
symbols are given by

K (&) = =k _ (&) = 2micc|E|7.
We let Ql be a parametrix of K¢' and get
0N Xyxe f =hi+ QLK® hy + Ry (7.8)

where Ry, Ry are smoothing operators. From the composition of pseudo-differential
operators, we know that Q JHK “I' e WO(R?) with principal symbol equal to —1.

Next, we change the function ¢. Ideally, we will take an odd function ¢ (—v) = —¢(v)
but then ¢ vanishes somewhere on S? so we proceed as follows. Let x = (x1, x2, x3)
be the coordinate for R3. For § > 0, let % = {v : v = (x1, x2, x3), ||x]| = 1, [xx| >
8/2}, k =1, 2, 3. For § sufficiently small, %, k = 1, 2, 3 form an open covering of S2.
Let xx (v), k = 1, 2, 3 be a partition of unity subordinated to this covering and y; (v) = 1
on?, ={v:v=(x1,x2,x3),|Ix|| =1, |xx| > 8}, k =1, 2, 3. Here, by possibly taking
8 smaller, we can assume that 7 also form an open covering of S?. For v € S?, we let

v (V) = x@)xp+2, k=1,2,3

Then ¢2(v) # 0 and @) x(—v) — @2(v, k) # O for v € %. From Proposition 7.1, we

P2,k

know that K% € w~!(R3) with principal symbols
K2 ) = 2mice|E| T o (—E/18D.  kPE (§) = —2micc &1 par (6/15)D.

We consider k = 1 in the follows as the other cases are similar. Let Qi’l be a parametrix
for KZ*'. We get

Q3 I Xy f = hy + Q2 K hy + R3hy

where R3 is a smoothing operator, and QE’IK 21 ¢ WO(R3) with principal symbol

$2.1(/18D)

v | 7.9
902,1(—55/|$I);‘é 79

o0 (O K (. 6) = -

when &/|&| € 2. Now we consider

2.1 2.1 o2,
O Xyxef — Q7 T Xy xe f = (QLK?" — 07 'K hy + Rihy + Rohy — Rahy
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We observe that A = QLK?' — 02! K**! is a pseudo-differential operator of order 0
and the principal symbol does not vanish on %/ . Let Xk, k = 1, 2, 3 be a smooth partition
of unity subordinated to ¥;. Then x; X1 = X1. Let By be a pseudo-differential operator
of order 0 with principal symbol 6o (B1)(§) = X1(§/1€])/00(A)(&). We can improve By
to a parametrix for A so that Bj o A = (D) + R4 with R4 smoothing. So we get

Bi(QLI? Xy xe — OF ' 191 Xpixe) f = X1(D)hy + R3hy + Ryhy

where by abusing notations, R3, R4 are smoothing operators. We can repeat the con-
struction for k = 2,3 to get the corresponding Bs, B3 € WO(R?). Then we arrive at

3
D BQUI? X xe — Q3 194 X xe) f = ha + Rshy + Reh) (7.10)
k=1

with Rs, Rg smoothing. This gives A, = Zi:l Br(QL191 — Qi’kl‘pz-k) so that
A2 Xy xef = ha+ Reh1 + Rshy. For Ay, we can use (7.8) and (7.10) to get

QLI Xyxef =h1+ QLK?" " AaXpyxe f + Rhi + Rgha

where R, R are smoothing operators. So we obtain Aj = QL1 — QLK A, so that
A Xpyxef =h + Rghl + Réhz.
Step 2: Now we deal with the characteristic function xj¢ 1. We start with

Xmxtenlf = Xmxte,n1E+h1 + Xm Xie, 1 E-h2.

Applying 19, we get
1°XmXjenf = KL+ K2hy

where K% = 19 Xy Xje.r,) E+- According to the arguments after Proposition 7.1, we can
write the above as

IXyxten f = (KE0+ K&+ KRy + (K20 + K2€ + Kby (7.11)

where K20 € WI(R3), K€ € I72(R3, R3; Cxe) and K" € I72(R3, R3; Cyyy).
As in Step 1, we can apply pseudo-differential operators Ql, Qi’k, k=1,2,3to(7.11).
The arguments for K i’o are the same as before. As for K€, K£"', we notice that the

composition QiKi’j , i’kKi’j ,k=1,2,3, j = €, t; are all Fourier integral operators
of order —1 with canonical relation C4¢ or C4;,. Therefore, using the same A1, A3 in
Step 1, we obtain

A\ XMxen1f =hi+ Rihi + Rihy, AoXmXie1f = ha + Rohy + Ry (7.12)

where R, R}, Ry, Ry € I7'(R3,R% Co) + IV (R, R% Cp) + IR, R Co) +
7R3, R Cy)).

Finally, we improve the remainder term using the Neumann series. We write (7.12)
in matrix form

A1 Xy X1 f hy hi Ry R]
: =1d R , R= 1.
<A2XMX[e,t1]f n) 5 e Ry R
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For N € N, welet W = Y- ! (—R)" and get

A1 X mXen)Sf hy N [(hi

w . =1Id +R

<A2XMX[e,t1]f ha hy

Because R1, R}, Rz, R} are FIOs of the canonical graph type, we can apply the com-

position result in [8, Section 25.3] to conclude that the terms in RN belongs to
1IN (R3, R3: Cgtl). Finally, we set

(%) =w (%)

Changing notations of A 1, Zz to A1, A3 finishes the proof. |

8. The Stable Determination

We prove Theorem 1.1, starting with the injectivity of the light ray transform. It is
known, see for instance [10, 17], that the light ray transform on R g injective on Cgo

functions. This also holds for Liomp functions and the proof is similar, see [17].

Theorem 8.1. Suppose f € L!__ (R™), n > 2 and Xgnet f = 0. Then f = 0.

comp

Proof. For f e L. _(R"), the Fourier transform f is analytic. Let & € S"~! and

comp
® = (1, 0) be a light-like vector. Let z = (s, y + s6) € R s € R, y € R". We
parametrize the light ray transform as

Xgnt f(z,0) = / f (@, y+t0)dr.
R
From the standard Fourier Slice Theorem for geodesic ray transforms on R"*!, we get
f@) = / ., e Xpunt f(z, ©)dSS;
e

where the integration is over the hyperplane ® perpendicular to ® with respect to the
Euclidean inner product in R"*! and ¢ = (7, &) € R™*!, & € R", & # 01is perpendicular
to ®. We notice that if || < |&], then there is a null vector (1, 8) which is Euclidean
orthogonal to ¢. Actually, 7 +6 - & =0so00 - (§/1§]) = —1/|§| € [—1, 1] and we can

find 0 € S"~!. We conclude that f(g‘) = 0 for |t] < |&|. By analyticity, f = 0 and thus
f=0. O

Corollary 8.2. Suppose Xy f = 0 where f satisfies the wave equation constraint (1.2)
in which f| € H(fgnllp(R3), € Hcsomp(R3),s > 0 are compactly supported. Then
f=hHn=rn=0

Proof. Let K = supp f; Usupp f» C R3. Let I (K) be the chronological future of
K with respect to the Lorentzian metric induced by c. We know that there is a unique
solution f € H'*'(M) of (1.2). By finite speed of propagation (or strong Huygens
principle), the solution f is supported in I} (K) N M. Now we extend f trivially to
fe Léomp(R“) and we regard X  as the light ray transform Xps on R*. We still have
XR4f = 0. By Theorem 8.1, we conclude that f = 0 on R* so that f = 0 on M and
fi=f2=0o0n%. u]



On the Light Ray Transform of Wave Equation Solutions 521

Proof of Theorem 1.1. The uniqueness part is done in Corollary 8.2. So we prove the
stability estimate below. We divide the proof into three steps.

Step 1: Consider ¢ < 1. From Proposition 6.3, we know that there are operators
A1, Ay such that

AMXyf=A+Rfi+ Rifz, A Xuf=hH+Raf1+ Réfz

and R;, le ,i =1, 2 are all smoothing operators. We denote

S\ _ fi fi (R R]
r(f)=u(R) e~ (3) #= (& &)

We consider T acting on N*, s > 0. Then K is compact from N to N*~%, p € R. So
we have the estimate

I Cfre ) s < AT X f Il g gy + 1A2 X £l s oy + Coll (i )l

for some constant C,,. Recall from Proposition 6.3 that A} = Byo(XpyoE ) *+B_(Xpyo

E )*and Ay = icA? (Byo(Xp 0 EL)*+B_o(Xy0E_)*). Since the normal operator
(XpmE+)* Xy E+ are pseudo-differential operators of order —1. By the L? estimate of

1

pseudo-differential operators, we conclude that Xy o E4 : Hgomp (R — HIZZZ (%)
1

is bounded. Also, (X7 0o E£)* : Hgomp(%) — Hl‘:;z (R?) is bounded. Therefore, A :

1 1 _1
Hoomp(€) — HS (R3) and Ay : Heomp(6) — H,.. 2 (R?) are bounded. For (fi, f2) €
N, we know from (5.2) that Xy, f = Xy Eyhy + Xy E_ho and by, hy € H'(R?).
Thus, Xy f € H*/2(€) so we get

I (f1s f2) s = CliXm fll sy + Coll (f1s f2) s (8.1)

where C, > 0 is a constant depending on p. Note that the order is better than what
claimed in the theorem for this case.
Step 2: Consider ¢ = 1. It is convenient to work with 79 > 0 which can be always
arranged. For the Cauchy problem in Sect. 3 with initial condition on ¢t = 1y
Of =0, onRx R3
3 (8.2)
fzflv atf:st OH{IO}XRU

it is known that

U@:(fi. )= (f(0,8f@), teR

is bijective on H*Y(R3) x HY(R3). In fact, for (8.2), U (z) is a unitary operator with
respect to the energy norm. We consider ( f1, f2) = U (—t9)(f1, f2) which is the Cauchy
data at t = 0 corresponding to ( f1, f2) at ¢ = ty. Then we have
Cl(”ﬁ”y”‘(ﬂ&% + ||]?2||HS(R3)) < fill s sy + 121 s 3y 8.3)
=Gl f1ll g+ w3y + 121 s w3))

for some Cy, C> > 0, which follows from the energy estimate of the wave equation. We
observe that the solution of (8.2) on [fo, #;] x R3 can be expressed as

[ = Xiwo.mE (]717 ]?2)
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where E( fl, fz) = E+ﬁ~1 + E_hy is the solution operator for the Cauchy problem from
t = 01in (5.2) and k1, hy correspond to f1, f2, see Sect. 5. Therefore, we can apply
Proposition 7.2 to the operator Xy X[1.1,1E+ With f5 > 0.

From Proposition 7.2, for any p € N, there are operators A, A, such that

AL Xy X1 f = Ry + Rihy + Rizz, A Xy X, 1S = ha+ Rohy + R/zzz

and R;, R/, i = 1,2 are FIOs of order —p. By the same argument in Step 1 and using
Sobolev estimate of FIOs of canonical graph type, we have

”hl ”Hx(]RS) + ||h2||Hx(]R3) §||A1XMf||Hs+1(R3) + ”AZXMf”HA'(]]@)
+ Cp(”hl ”HS*,D(RS) + ||h2||Hsfp(R3))

for some constant C,. Using (5.5), we can change the estimate of 711 , Ez to that of fl, fz
and get

1 (f1s £2) s < NAY X v i 1 f 1l e ()
+ 12X Xuto.n1f s w3y + Coll (Fis f2) lare—s

Finally, using (8.3), we get

ICfs 2 s < 1AL X m fll s sy + I1A2X 0 fll s 3y + Cpll (1 f2) s

Now recall from the proof of Proposition 7.2 that
Al Al ~ 1 1 —
<A2> =W (Zz> where A} = Q19" — O, K™ A,
3
A=) Bu(QLI — QY 1%
k=1

in which 01, 0% € WI(R3), k =1,2,3, By € VOR3), K9~ € U~ (R3) and W =
Zﬁ;é(—R)” with elements of R belonging to I ~!(R3, R3; Cy) + 1IR3, R3; Cy) +
I7YR3,R3; C —1g)+ 1IR3, R3; C —1,). Using the estimate for pseudo-differential oper-
ators and FIOs of canonical graph type, we get

FALX M [l st w3y + 1A2X 0 f | s (w3
3

< CH Xu fll gy + C DM  Xoa fll oo (m3y < CIXw f oo
k=1

So in this case, we get
I (1 ) s < CliXm fllgse) + Coll (f1, f2) s, p €N (8.4)

Step 3: We get rid of the last term in (8.1) and (8.4). Let .#” be a compact subset of
R3 and denote by A/ (#") the function space consisting of (f1, f») € N* supported in
. Then the inclusion of NS (J¢") into N~ (¢'), p > 0 is compact. We claim that

I (f1s ) sy < ClliXm fllgse )
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for some C > 0. We argue by contradiction. Assume the estimate without the error term
is not true. We can get a sequence (fl(/), 2(")), j =1,2,... with unit norm in A/* (%)
such that X7 f) goes to 0 in HS*2(€) as j — oo. By (8.1) (for (f1, f») supported
in ), we conclude that 1 = [|(£\, ) Iass )y < Coll () £V are—o - This
gives a weak limit (f1, f») in N¥(#") along a subsequence, which thus converges
strongly in N~ (). Therefore, ||(f1, f2)llars—» () is bounded below by 1/C,, thus
non-zero. However, X3/ f = 0 so f = 0 by the injectivity of Xs. So (f1, f2) =0a
contradiction. This finishes the proof. O

Finally, we prove a stronger version of Theorem 1.1 which allows lower order terms
in the wave equation. We consider differential operators of the form

3
P(x,t, Dy, 0) =07 +c* Y Di +Pi(x,1,iDy, 0) + Po(x, 1)
i=1

where P is a first order differential operator with real valued smooth coefficients and
Py is smooth. Then we consider the Cauchy problem

P(x,t,D:,9;) f =0 on M°
.f=f19 aff=f27 Ony()‘

We remark that the equations for ® in Sect. 3 are of this type. We prove

(8.5)

Theorem 8.3. Under the same assumptions as in Theorem 1.1, Xy f uniquely deter-
mines f and fi, fo which satisfy (8.5). Moreover, there exists a C > 0 such that

I Cf1s f2) Ivs < ClXm fllgse ey and | f | gsa oy < Cl XM fll s )
where € is the set of light rays on M.

Proof. The proof follows the same arguments as for Theorem 1.1. So we just point out
what needs to be modified. When the wave equation contains lower order terms, one can
construct parametrices E for the Cauchy problem, see [3, Chapter 5]. These are Fourier
integral operators and can be represented by oscillatory integrals. So the construction
in Sect. 5 works through, and the analysis for X s E+ is the same as the standard wave
equation case. However, we do need to justify the ellipticity of the involved operators
in Lemma 6.2 and Proposition 7.1. We remark that ellipticity of the solution itself is
standard, and follows simply from the principal symbol satisfying a transport equation.

We follow the parametrix construction in Tréves [21, Section 1, Chapter VI] to check
this in a transparent manner.

We look for operators E;, j = 0, 1 such that

P(x,t,Dy,3)E; =0 onM°
FE; =8,,k=0,1, on.%.

Here, for j = 0, 1 we have
E; f(x) =@21) /R O g0 (x, 1,8 fE)de

+@m)~ /R N ag (1, 8) f©)dE + Rj (0 f (1)
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where R; are smoothing operators, see [21, (1.37)]. The phase functions are

po(x,1,8) =x-&+ctlEl, ¢1(x,1,8) =x-§ —ct]§].

The amplitude can be written as aji(x,?,§) = Z?io ajr(x,t,8) and each ajy is
homogeneous of degree —j — [ for |&| large. Before we look into the structures that we
need of the amplitude, we find the initial values of the leading order term a jo at 1 = f.
They satisfy (see [21, (1.53)])

1
aio(x,t, &) =—

1 1 1
apoo(x,t, &) = X apr0(x,t,8) = =, ajpo(x,t,§) = Zicle]’ ikl

>

The amplitudes satisfy first order equations which are deduced from (see [21, (1.39)])
P(x,t, Dy +0yy, 0 +i0ipy) aji(x,t,8) =0.

For the leading order term, we get

0c P (x, 1, Oxk, 10: k) 0ra jko
3
+ Y0, Py (x, 1, 0u, i0:) Dovajio + C (i X, 1, 6)ajuo =0 (8.6)
v=l1

and the C term in this case is (the sub-principal symbol of P)

C (s x,1,8) = Py (x, 1,i0x¢k, 19;¢x) .

Note that P; has real valued coefficients and is homogeneous of degree one in
10y ¢x, id;¢r. Dividing by i = +/—1, we see that equation (8.6) is a first order lin-
ear equation with real valued coefficients. Solving the equation amounts to solving a
ODE along the integral curve and the solution a o will be positive scalar multiples
of the initial conditions hence not only non-vanishing, but is real or purely imaginary
depending on its initial value.

Finally, we can represent the solution to (8.5) as

fx,y=Eofi+E1fo=Eih1+E_h>
where
Esh = (2n)~3 / e D (a0 (x, 1, &) + 2ic|Earo(x, 1, £)) h(§)dE
R3
— n)3 f e CEHED g (x 1, )R (E)dE
R3 (8.7)
E_h=Q2m)™ / e ECED (g (x, 1, &) — 2iclglan (x, 1, &) h(§)dE
R3
— 27)73 / S Da (x 1, )h(E)ds
R;

and

1 1 1 1
hh=fi+t+—A"2f, hh=fi——A"2f.
2ic 2ic



On the Light Ray Transform of Wave Equation Solutions 525

We see that the leading order terms of a,, a_ are all positive. From these oscillatory
integral representations, it is easy to see that Lemma 6.2 holds for ¢ < 1. For Proposition
7.1, we see that the principal symbol of k is given by

n
koo1(x,8) = zm|s|—1¢<—é:/|s|>/0 1 e (Daso(t, x)dt

where a, ¢ is the in the expansion a; ~ ZZO:O ark(t,§) |$|’1’k. So ki, —1(x, &) is non-
vanishing. Thus the operator 1% X s x E+ is elliptic. The rest of the proof is the same as
for Theorem 1.1. |

9. Small Perturbations of the Minkowski Spacetime

We consider metric perturbations g5 = gy +h with h = Y7 ;o hj;dx'dx/. We assume
that

(A1) h is a symmetric two tensor smooth on M;
(A2) for § > 0 small, the seminorm |[|hjjllc3 = Sup( yyem Z|a\<3 [0%h;j(t, x)| <
8,i,j=0,1,2,3. -

Wlthout loss of generality, we can assume that / is extended to some larger manifold

= (79, 71) x R3 such that M C M and (A2) holds on M. In this section, we study the
inverse problem on (M, gs) for é sufficiently small. Note that in this case, light rays may
not follow straight lines and the injectivity of the light ray transform on scalar functions
is not known. We will show that by using a perturbation argument on the Fourier integral
operator level, one can obtain the same determination result as for the Minkowski case.

We start with the light-like geodesics on (M, gs) and their parametrizations. Let y (s)
denote a light-like geodesic from .#p. It satisfies

03yk(s) + Ty ()07 (5) = 0

9.1
y(0) = (0, y), 3s7(0) = (B, v)

where Ffj is the Christoffel symbol for g5, v € S? and B is such that gs(8, v) = 0 and

(B, v) future pointing. It is known, see for example [1], that (9.1) is equivalent to a first

order system on T*M. Here, M is regarded as a submanifold of M. We use (¢, x) and

(1, &) for the local coordinates on 7*M. Consider the Hamiltonian

p(t,x,1,8) = —ga(f &) = gM(r E)+H(t,x,71,8)
= % <—|r|2 +§ |si|2) +H(1,x, 1, ).

Here, 2H is the perturbation of the dual metric corresponding to the perturbation A.
Let 8 = (t,§), then H(t,x, ) = ), i=0,1,2,3 H;j(t,x)E; E; is homogeneous of

degree two in E and the seminorm || H;jl|c3 < C§ for some constants C. We denote
the Hamilton vector field by H,. Let (¢(s), x(s), 7(s), £(s)) be an integral curve of
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H), in the characteristic set ¥, = {(¢,x,1,§) € T*M : p(t,x,t,&) = 0}, called
null-bicharacteristics. With y (s) = (¢(s), x(s)), (9.1) can be converted to

dt dp dx; ap

—_— = — = — aHt,,, , T =T =60 8.Ht,,,

s~ - TTHEHExTE =gy SH T E)

d dé; 2
L= OH(tx.T.8); i=—3x,-H(t,x,r,$), i=123 ©-

ds ds
t0)=1%=0, x0)=y;, 0) =1, &0 =%&,.

Here, (790, &p) is the cotangent vector obtained from (8, v) using gs and we also denote
it by (70, £&0) = (B, v)". If we consider the system for the Minkowski metric namely
H =0, then 8 = 1 and the covector (19, &) = (—1, v). (9.2) becomes
dt dx; ¢ dt 0 d§&; 0 . 123
_——= — =&, _—= . _—= . 1 = . .
ds ds ~ " ds ds (9.3)
t(0)=0, x0) =y, 0)=-1, &0 =uv.

We see that x(s) = (s, y + sv), t(s) = s, which agrees with our parametrization used
previously. Now we have the following result.

Lemma 9.1. For § > O sufficiently small, the set of light rays on (M, gs) is given by
€ =1{y =t,x(t,y,0): (y,v) € % xSt €19, 111}, where x is a smooth function
oft, v, v. Moreover, we have

x(, y,v) = (y+1v)lc2 < C8
for some constant C.

Proof. For v € S2, the co-vectors (7o, &) = (B, v)" are in a bounded set of R*. We
assume that | (tp, £0)| < M. We also notice that 1y is away from zero, say |79| > My > 0.
Then we consider (t, &) such that |(z, &) — (70, &)| < My/2 so that |(t,&)] < M =
Mi + My/2 and |t| > Mp/2. Consider the system (9.2). Because H is homogeneous
of degree two in (7, ), for |[(7, &)| < M and for § > O sufficiently small, we see that
% # 0. Therefore, we can take ¢ as the parameter and convert (9.2) to

ds 1 Codxi & +05H(1,x,7,8)
dt — —t+0:H(t,x,t,6) dt  —1+0.H(t, x,1,8)
dv _ —oH(@x,7,8) : d§i _ —oH (1, x,7.8) =123 4
dt —T+ 0 H(t,x,1,8) dt —T+ 0 H(t,x,1,8)
$(0) =0, xi(0) =y, 10) =1, &) =~&.,.
The system corresponding to (9.3) is
ds _ Loda & dr_ oo 603

dr — —t dt -t dr  dt 9.5)
s(0)=0, x0) =y, 0)=-1, &(0O) =

Let 7, %, 7, ) be the solution of (9.5) and (z, x, 7, §) satisfy (9.4). Then let u =
(t—t,x —X,7T—T,& —&). We see that u satisfies the system
du Fn)
_ = u
ds
u(0) = uo,
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where F is smooth and | F (#)| < C$, |ug| < C$§ for generic constant C. Now it follows
from standard ODE theorems, see for instance [9, Theorem 1.2.3] that for § sufficiently
small, there is a unique C*° solution u on [fg, 1] and |u| < C§. Higher order estimates
can be obtained similarly. This finishes the proof. O

Now we consider the light ray transform X5 on (M, gs). The parametrization of the
light rays is not unique, although all choices give rise to equivalent analysis for our
purpose. Perhaps the most natural parameterization is to use the cosphere bundle on .%
of the induced metric. Let g5 be the induced Riemannian metric of gs on .%y. For y € .%,
let 82 5y = ={veTH : gs(,v) =1}. Forv € 82 ,» there is a unique future pointing
light-like vector (vg, v) at y. In particular, v is close to 1 for 6 small. Then the light ray
from (0, y) in direction (vo, v) is parametrized by yy , (s) = eXP(o, y) s(vg, v), s € [0, s1]
where s is the affine parameter such that y, ,(0) = (0, y) € S and yy ,(s1) € . In
this parametrization, we can write

S1
X5 f(y,v) = /O £ (vyn()) ds. 9.6)

Now we can identify Sgy , with S§ via a diffeomorphism. By the above Lemma 9.1, s

is a smooth function of y, r and v € S? so we can use 7 variable to parametrize the light
rays. We have

1
Xsf(y,v) = / w(y, v, 1) f(t, x(t, y, v)dt, yeF,veS,
0

where w is a weight coming from the change of variables. In fact, w is smooth and close
to 1 for § sufficiently small. w only mildly affects the argument, changing the elliptic
principal symbol of the final operator Xs o E in (9.14), thus maintaining ellipticity. For
simplicity, we will ignore it in the follows and take

n
X5 f(y,v) = /O £t x(t, y, v)di

no
=Qn)73 / . / % f Y= (4 2)dtdzdy.
R° JR® JO

This is the parametrization of X5 we work with in the rest of this section. The Schwartz
kernel of X is the delta distribution on € x M° supported on the point-line relation Z;
defined by

9.7)

Z(g={(y,q)ecfo":qey}:{(y,v,(z,x))eR3szxM":x:x(t,y,v)}.

Next, let [y be the d’Alembert operator on (M, gs) and we consider the second
order operator

P(S (xstv D)C9 al) = Dgg + Pl (xvtsiDX1 a[)+ PO(x’t) (9'8)

where P is a first order differential operator with real valued smooth coefficients and
Py is smooth. Then we consider the Cauchy problem
Ps(x,t,Dy,0) f =0 onM°

9.9
F=fi. 0f=fn on ©9)
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We remark that for sufficiently small metric perturbations, the operators g, and Ps
are both strictly hyperbolic with respect to .#y. Therefore, as in previous sections,
the parametrix construction of Duistermaat-Hormander can be applied. In general, the
parametrix does not have a global oscillatory integral representation on M. However, we
show below that for sufficiently small perturbations of the Minkowski spacetime, this is
possible.

The parametrix construction is the same as in the previous section. We look for
operators £, j = 0, 1 such that

Ps(x,t,Dy,0)E; =0 on M°
atkEj =8kj,k=0,1, on ..

For j = 0, 1 we have

Epf = @n ™ [ 0000006 fe)de
R3
+@m)”? / a1, 8) f@©)dE + R (1) f ()
R

where R; are smoothing operators, see [21, (1.37)]. We follow Tréves [21] to find the
phase functions ¢ (¢, x, &) for (¢, x) € (fo, t1) X R3, & € R3. The phase function should
satisfy the eikonal equation

P(Ve) = —|8,¢1* +18:01* + H (3,6, dx¢) = 0.

By the strict hyperbolicity, there are two solutions for d,¢ denoted by ;¢ =
A+(t, x, 0y¢) and A4 are smooth functions and homogeneous of degree one in dy¢.
We take initial conditions 8;,¢p = x - £, & € R3 at t+ = 0. Below, we consider .. The
treatment for A_ is identical. We consider the Hamilton-Jacobi equation

dx dn A )
d ar bl (9.10)

x(0) =y, n0)=¢& yeR&eR\0.

= _87]}\'+(t’ X, 77),

We denote the solution by x (¢, y, £), £(t, y, £). Then the phase function is

t
et x,8) =x -§+/ Ai(s, x,n(s, y, €))ds. 9.11)
0
Here, one can express y in terms of x, see [21, Section 2, Chapter VI] for more details.
For the Minkowski spacetime, we know A, = —|&| so that (9.10) becomes
g, oo
de "7 dr (9.12)

x(0) =y, n0)=§.

The solution is simply x(¢) = y+t&/|&|, n(¢) = &€ and the phase functionis ¢y (t, x, §) =
x - & +t|&€|. Using the same argument as for Lemma 9.1, we get
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Lemma 9.2. For § > 0 sufficiently small, there is a unique smooth solution
(x(t,v,€),n(t, v, &) to (9.10) fort € 19, 11], y € R3, & € R3\0, and they satisfy

lx (t,y, &) — (v —1&/1ED llc2 < €8, In(r, y,8)/181 = &/I&lllc2 < C8

for some constant C > 0. It follows that the phase function ¢, in (9.11) is also smooth
and satisfies

o+ (1, x,8) — (x - & +1]5]) [Ic2 < C[E].

We remark that similar argument was used in [18] for a backscattering problem.
Using this lemma, we can represent the solution to (9.9) as

fx,t)=Eofi+E1fo=Eh1+E_hy

where

Euh = Qn)~? / 00O, (x. 1, £)h(E)dE
R (9.13)

E_ h= (27[)_3/3ei‘z’*(”x’g)a,(x,t,%‘)fz(é)dé}.
R\

The a4+ and A, hy are the same as in (8.7).
With these preparations, we now state and prove our main result in this section.

Theorem 9.3. Consider (M, gs) which satisfy the assumptions (Al), (A2) in the begin-
ning of this section. Assume that (f1, f») € N*,s > 0, and fi, f> are supported in a
compact set X of Sy. For § > 0 sufficiently small, Xs f uniquely determines f and
f1. f> which satisfy (9.9). Moreover, there exists C > 0 such that

I Cfre £2) s < CUIXs £ll s igyy and | f s oy < CIXs fll gy

where Gy is the set of light rays on (M, gs).

Proof. We examine the arguments in Sects. 7 and 8 and point out what needs to be
modified. We consider the composition of X5 and E; defined in (9.13). We have

t
Xsf(y,v) = (2;1)_3/ / f 1ei((x(”)””)_x,)'")f(t,x’)dtdx/dn
r3 Jr3 Jo
and
EL(f)(t,x) = (2n)‘3/ / o OO =28y (¢ ¥ E) f(2)dzdE.
R3 ]R3

Consider the integral operator /¥ defined in Sect. 7. Using the oscillatory integral rep-
resentations, we have

I9XsxeEv f(y,v)

t
=(2n)—6f / / /1/ f ei(x(t,y,u).n—x’.n+¢+(t,x’,s)—z.§) (9.14)
sz JrR3JR3 Jo JRIJR3

p)a(t, x', &) xe(t) f (2)dzd€dtdx'dndv
We write the phase function as ® = ¢ + ¥ in which

p(v.zEnx tv)=0—x) n+rv-n+ @' —2) & +1lE]
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and ¥ is a smooth function and homogeneous of degree one in &, . In particular, ®
is a small perturbation of ¢. As in Proposition 7.1, we first consider the integration in
x',n, v in (9.14). As shown in Proposition 7.1, the phase function ¢ in these variables
is non-degenerate. Since ¥ is a small perturbation of ¢, for § sufficiently small, we see
that ® in x’, 5, v variables is also non-degenerate. Note that

ax,q):_n+8x,¢+(tv-x/ss)v ar]cD:-x(tv yvv)_-x/v avq)=8vx(l9y1 U)ﬂ (915)

For the stationary points, we see that x’ = x(z, y, v) so (¢, x) is on the light ray from
(0, y) in direction (1, v). Let t satisfy ps(¢, x, 7,17) = 0. From n = 3¢, (¢, x', &) we
see that (¢, x’, T, 1) is on the bicharactersitics from (y, &). Since there is no conjugate
points, we get v = ££/|&|. Thus at the stationary points, the phase function becomes

(D(y’ thaé) = ¢+(t’ x(l, ) i$/|$|),€:) —Z é

After integrating in x’, 1, v, the Schwartz kernel becomes

11 .
I?XsxcE+(y,2) = (27‘[)_3/ '/Az el(¢+(I,X(l,y,$/|§I)»é)—z-é)ki(t, £)dedt
0 R-

" (9.16)
+ (271’)_3 / / ei(¢+(tax(tv%_$/|§|)v§)—2'5)k5_ (t, £)dédt
0 R3

where ki are small perturbations of k+ in (7.4) and (7.5) of Proposition 7.1. Finally, we
integrate in ¢. For the second integral in (9.16), the phase function is a small perturbation
of

(y—2)-§+2|5|

thus as in Proposition 7.1, the integral is O (|&|~°°). For the first integral of (9.16), we
need to examine the phase function at the stationary points. Using (9.11), we get

t
@(y,z,r,$>=x~s+/ Ao, 3, E)ds — 2 -
0

where x = x (¢, y, §/1§1). Taking & derivative, we get

t
8§CD(y,Z, t,é) = (x - Z) +8§.x . ;;: +‘/0 (8,7)\,+(S,.x(s, y7§/|§|)1 g)aéx +aﬂ)"+) dS
t
=(x —z)+3sx~§+/0 —Z—j(s,x,é)ds

where we used the stationary point condition (9.15) and d,A, = —dx/dt. Note that
g x is the Jacobi field, and because x (¢, y, £/|§1) is a light-like geodesic, dgx - & = 0,
see Lemma 3.1 and Lemma 3.4 of [13]. Therefore, d:®(y, z,7,§) = (x — z) and
O(y,z,1,6) = (y —2) - £+ D(y, 2, t) where  is small. Finally, integrating in ¢ of the
first integral of (9.16) gives a pseudo-differential operator of order —1 and the principal
symbol ki’_l is a small perturbation of k; _1(§) in Proposition 7.1. This implies that
Proposition 7.1 hold for the small perturbations.
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To see that the analogous result of Proposition 7.2 holds for small perturbations, it
suffices to examine the kernel (9.16) in which x. is replaced by x[e 1]

11 .
1¢X5X[e,z1]E+(y, 7) = (27.[)—3/ /3 et(¢>+(t,x(t,y,§/|§I),S)—zf)ki(t, £)dedt
€ R

t
+(2n)73/‘/ @3 €O (1 £)dedr
e JR3

9.17)
The first integral still gives a pseudo-differential operator as shown above. For the second
integral, integration by parts in ¢ gives an oscillatory integral of the form

/ei(¢+(€sx(6»y,—§/|§I),é)—zf)a(é)dé+/ ei(¢+(f1»X(Il»y,—E/IEI),S)—Zf)b(S)dé 9.18)
R3 R3

where a, b are symbols of order —2. Here, we used that ¢, is homogeneous of degree
one in &. To see that these are FIOs of canonical graph type, we use the characterization
in [8, page 26] which says that an oscillatory integral with phase ¢ (x, 77) —Xx - nisan

dxdn % 0. Since

oi(e,x(€,y, —&/|E]), ) is a small perturbation of y - £ + 2¢|£| and det By_aé(y -E+
2¢l&]) = —1 # 0, we conclude that for § sufficiently small, the first integral in (9.18)
gives an FIO of canonical graph type. The same is true for the second integral. Thus
Proposition 7.2 holds for small perturbations.

Now, the proof of Theorem 1.1 in Sect. 8 go through line by line, except the injectivity
of Xs. In particular, we have the estimate as (8.1)

FIO whose canonical relation is a canonical graph if and only if det ——

I (f1s ) s < CliXs fllasegyy + Coll (f1a f2) s

where C,, is a constant depending on p. To get rid of the last term, we use the following
argument, see [22, Section 2.7]. Notice that given s, p and for some fixed small §, if we
consider all metric g such that ||g — gm|lc3 < 8o , then the above estimate is uniform (a
fixed constant C,, works for all such metrics) by the uniformity of the construction. Now
suppose there is no § such that for all metrics within § of the Minkowski metric gy (in
the Fréchet space sense) the transform is injective. Let F/ = ( f1 , f2 ,j=1,2,...be

such that the corresponding f/ is in the null-space of X g; = Xjand || F- s = 1, with
gj within 1/j of the Minkowski metric. By the above inequality, 1 < CollF I Ns—0

Now, F/ has a \* ¥-weakly convergent subsequence, not shown in notation, to some
F € N*, which thus strongly converges in N*~°. By the above inequality, ' # 0. But
0 = X f converges to Xy f e.g. in the sense of distributions. So X f = 0 which by
the injectivity of X s, implies that f = 0. So we get F' = 0 a contradiction. This shows
the injectivity of Xs and finishes the proof of Theorem 9.3. O
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