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Abstract: We study the directed polymer model for general graphs (beyond Z
d ) and

random walks. We provide sufficient conditions for the existence or non-existence of a
weak disorder phase, of an L2 region, and of very strong disorder, in terms of properties
of the graph and of the random walk. We study in some detail (biased) random walk on
various trees including the Galton–Watson trees, and provide a range of other examples
that illustrate counter-examples to intuitive extensions of the Zd /SRW result.

1. Introduction

The model of polymers in random environment, that is of random walk that is weighted
by a random time-space field, has a long history in statistical physics, both on its own
right and as a tool in understanding interfaces, see [35] for an early occurence. It soon
appeared also in the mathematical literature, see [11,36]. We refer to [16] for a recent
overview of the subject from a mathematical perspective, and a concise history. Most
of the mathematical work has focused on the model where the walk associated to the
polymer is a symmetric random walk on the lattice Zd or on approximations of the walk
on the lattice, such as downward paths on trees [13,27], diffusions on the d-dimensional
discrete torus [29] or on the cylinder [12], or simple random walk on the complete
graph [18]. In either case, the study of the polymer is closely related, via the Feynman-
Kac representation, to the study of a stochastic heat equation (SHE) on the underlying
lattice/tree.

Recently, as part of a study of stochastic dynamics equivalent to the SHE on large (but
finite) networks, Sochen and the second author [51] discussed the effect of the underly-
ing network topology on the dynamics. Using dynamic field theory, the multiplicative
noise can be translated to an interaction term between the eigen-functions of the graph
Laplacian. The second moment of the solution is then calculated using expansion in
these eigen-functions. Similar to the lattice topology, for transitive graphs the different
phases of the model (defined below) depend on the spectral dimension of the graph.
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Motivated by that work, we study in this paper how key notions that have been
developed in the study of directed polymers on Z

d translate to the situation where the
associated walk is defined on various infinite graphs. Of particular interest is the case
where the underlying graph is itself random (such as various percolation models), or at
least irregular, and the relation between the transience or recurrence of the random walk
on the graph and the phase transitions among different regimes. As we will see, new
phenomena emerge, and the structure of the underlying graph has an important effect
on the behavior of the polymer. Naturally, we emphasize these aspects of the theory.
Our goal in this paper is to initiate the study of these interesting models and raise new
questions, rather than providing complete answers to all models. In Sect. 7, we state
several open questions that we find of interest.

We mention two other papers that adopt a similar point of view. Polymers for which
the underlying walk is a general Markov chain have been studied in [14], in the specific
casewhere the chain is positive recurrent. For the relatedmodel of the parabolicAnderson
model (PAM) (which studies the SHEequationwhen the noise only depends on time), the
recent [26] focuses on the PAM on Galton–Watson trees and locally tree-like structures
such as the configuration model.

In the rest of this introduction, we explicitly introduce the polymer model, define the
different phases, and state some general theorems concerning the existence and proper-
ties of various phases. These are easy extensions of the standard results for the case of
simple random walk on the lattice. We also introduce certain graphs that will be a good
source of counter-examples. Our main results are stated in Sect. 2. Section 3 introduces
three classes of graphs with associated Markov chains, that are used to illustrate vari-
ous features and are interesting on their own rights. Those are the lattice super-critical
percolation cluster, the biased walk on Galton–Watson trees, and the canopy graph. The
proofs of all statements appear in Sects. 4–6. Section 7 contains concluding remarks and
the statement of several open problems.

1.1. The polymer model. To set the stage for a description of our results, we begin
by introducing our model of random polymer. Let G = (V, E) denote a connected
(undirected) graph with (infinite) vertex set V and set of edges E ⊂ V × V . We let
d(x, y) denote the graph distance between x, y ∈ V , i.e. the length of the shortest path
connecting x, y.

Associated with the graph is a nearest-neighbor discrete time Markov chain S =
(Sk)k≥0 with (time-homogeneous) transitionmatrix P(x, y), x, y ∈ V ,where P(x, y) =
0 if (x, y) �∈ E . We denote by Px the law of (Sk)k≥0 where S0 = x . The expectation
under Px is denoted by Ex and we set pn(x, y) = Px (Sn = y). We remark that often,
we consider the simple random walk (SRW) case determined by P(x, y) = 1/dx when
(x, y) ∈ E , with dx the degree of x ∈ V . This of course is only defined when the degree
is locally finite, i.e. so that dx < ∞ for all x ∈ V . Throughout, we write S, S′ for two
independent copies of S and E⊗2

x,y for the expectations of two independent copies S, S′
starting from x and y, with P⊗2

x,y the corresponding law. We also write E⊗2
x = E⊗2

x,x and
P⊗2
x = P⊗2

x,x .
The third component in the definition of the polymer is the environment, which is a

collection of i.i.d. random variables ω(i, x) with i ∈ N and x ∈ V . For concreteness,
we chose the nomalization that makes ω(i, x) of mean zero and variance one. The law
of the environment is denoted P, with expectation denoted by E. We also let Gn denote
the sigma-algebra generated by {ω(i, x), i ≤ n, x ∈ V }.
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Throughout the paper, we make the following blanket assumption on the random
walk and on the environment.

Assumption 1.1. 1. The Markov chain ((Sk)k, V ) is irreducible and (G, S) is locally
finite, i.e. d̄x := ∑

y:(x,y)∈E 1p(x,y)>0 < ∞ for all x ∈ V ;

2. There exists a > 0 so that �(β) := logE[eβω(i,x)] is finite for β ∈ [−a,∞).

Continuing with definitions, the polymer measure Pn,β
x of horizon n and inverse

temperature β ≥ 0 is the probability measure on the paths S = (Sk)k≥0 given by

dPn,β
x (S) = eβ

∑n
i=1 ω(i,Si )

Zn(x)
dPx (S), (1)

where the partition function Zn(x) satisfies

Zn(x) = Zn(x, β, ω) = Ex

[
eβ

∑n
i=1 ω(i,Si )

]
. (2)

Under the polymer measure Pn,β
x , the polymer path (Sk) favors parts of the environment

that take high values, and the parameter β tunes the intensity of this preference. One
thus expects a transition between the delocalized (small β) regime, where the polymer
does not exhibit a qualitative change of behavior compared to the original walk, and
the localized (large β) regime, where the polymer localizes in attractive parts of the
environment.

1.2. Weak and strong disorder and their consequences. An important quantity in the
study of the localized/delocalized transition is the normalized partition function:

Wn(x) = Wn(x, β, ω) = Zn(x)/E[Zn(x)] = Zn(x)e
−n�(β). (3)

It is straightforward to check that for fixed x , Wn(x) defines a mean-one, positive mar-
tingale with respect to (Gn)n , which therefore converges P-a.s. to a limitW∞(x, β). The
following easy 0-1 law holds in our general context.

Proposition 1.2. For all β ≥ 0,

either ∀x ∈ V, W∞(x, β) > 0 a.s, (weak disorder)

or ∀x ∈ V, W∞(x, β) = 0 a.s. (strong disorder)

Moreover, there is a critical parameter βc ∈ [0,∞] such that weak disorder holds if
β < βc and strong disorder holds if β > βc.

For the lattice/SRW model, it is known that βc = 0 in dimensions d = 1, 2 and that
βc ∈ (0,∞) when d ≥ 3, see [16,42].

One expects that the transition between weak and strong disorder corresponds to
the transition between the localized and delocalized phases. Indeed, for the lattice/SRW
model, [21] show that in the whole weak disorder region, the polymer path satisfies a
functional central limit theorem. Their argument adapts to our general context with some
restrictions, as follows. Let |Sn| = d(Sn, S0) and let |S(N )| = (|SNt |/

√
N )t∈[0,1] denote

the continuous time process obtained by interpolation.
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Theorem 1.3 [21]. Let S0 = x ∈ V . Assume that: (i) (|Sk |) satisfies an almost-sure
central limit theorem in the sense that for all sequence Nk such that infk Nk+1/Nk > 0,
for any bounded and Lipschitz function F of the path, as N → ∞,

1

N

N∑

k=1

F
(∣
∣
∣S(Nk )

∣
∣
∣
)

→ E [F (|B|)] , Px -a.s,

where (Bt ) is a centered, real-valued Brownian motion with E[|B1|2] > 0.
(ii) (Wn(x, β))n is uniformly integrable.

Then, as n → ∞,

En,β
x

[
F
(|Sn|)] P−→ E [F(|B|)] . (4)

Remark 1.4. Condition (ii) of Theorem 1.3 implies that weak disorder holds. The con-
verse may not hold, see the discussion in Sect. 2.2.

Remark 1.5. Under weak disorder, one can consider the limit polymer measure, defined
as μpolymer = limn→∞ Pn,β

x . Proposition 4.1 in [21] states that μpolymer is well defined
and is absolutely continuous with respect to the original measure Px ; the proof carries
over to our general framework.

Let In(x) = (Pn−1,β
x )⊗2(Sn = S′

n) denote the probability for two independent poly-
mer paths (in the same environment) to end at the same point. As noted in [19, Remark
2.5], the next theorem holds under the mere assumption that (Sk) is a Markov chain (in
particular, irreducibility of (S, P) is not necessary).

Theorem 1.6 [15,19]. For all β > 0, x ∈ V ,

{W∞(x) = 0} =
⎧
⎨

⎩

∑

n≥0

In(x) = ∞
⎫
⎬

⎭
, P-a.s. (5)

In the other extreme, strong localization properties in the entire strong disorder region
have been shown for the lattice/SRW model [15,19].

We close this subsection by noting that while Wn(x) may be very different from its
expectation, this is not the case for logWn(x). The next theoremwas proved in the lattice
case in [43]. An inspection of the proof reveals that it transfers directly to our setup.

Theorem 1.7 [43]. For all β > 0, there exists a finite constant C = C(β) (that is
independent of the graph structure) such that for all x ∈ G,

P

(∣
∣
∣
∣
logWn(x)

n
− E[logWn(x)]

n

∣
∣
∣
∣ ≥ ε

)

≤
{
2e−nCε2 if 0 ≤ ε ≤ 1,
2e−nCε if ε ≥ 1.

(6)
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1.3. Very strong disorder. Under strong disorder, we have by Proposition 1.2 that
Wn(x, β) →n→∞ 0, a.s. We say that very strong disorder holds if that decay is ex-
ponential, that is, if

∀x ∈ V, p̄(x) := lim sup
n→∞

1

n
E logWn(x, β) < 0. (7)

Proposition 1.8. The limit p̄ := p̄(x) does not depend on x ∈ V . Moreover, there exists
a critical parameter β̄c ∈ [0,∞], such that very strong disorder holds for β > β̄c and
p̄ = 0 when β < β̄c. Finally,

P-a.s., lim sup
n→∞

1

n
logWn(x, β) = lim sup

n→∞
1

n
E logWn(x, β). (8)

From the definitions, we clearly have that βc ≤ β̄c. For the lattice/SRW model, it is
known that β̄c = 0 when d = 1, 2 (see [20,42]), while β̄c ∈ (0,∞] when d ≥ 3 (see
[16], in particular Example 3.2 for an example with βc = ∞). In this latter case, the
question whether or not β̄c = βc is, to our knowledge, still open. Still on the lattice,
there exists a random walk with heavy-tailed jumps such that βc < β̄c, see [54].

In our general framework, we have the following:

Proposition 1.9 (Very strong disorder always holds for large β). Assume that there
exists d < ∞ so that dx ≤ d for all d. Assume further that the support of the law
of ω(i, x) is unbounded from above. Then, there exists β0 ≥ 0 such that very strong
disorder holds for all β > β0.

(The assumption of unbounded support in Proposition 1.9 is essential, see [16, Ex-
ample 3.2] for a counter example for Bernoulli environment.)

Very strong disorder implies the following strong localization property. The proof,
given originally for the lattice/SRWmodel, carries over without change to our setup (see
[19, Remark 2.5]).

Theorem 1.10 [19]. Very strong disorder holds if and only if there is some c > 0 such
that

∀x ∈ V, lim inf
n→∞

1

n

n∑

k=1

Ik(x) ≥ c, P-a.s. (9)

or, equivalently, if there is some c > 0 such that

∀x ∈ V, lim inf
n→∞

1

n

n∑

k=1

sup
y∈V

Pk,βx (Sk = y) ≥ c, P-a.s. (10)

In particular, under strong disorder, there exists c > 0 such that

∀x ∈ V, lim sup
n→∞

sup
y∈V

Pn,β
x (Sn = y) ≥ c, P-a.s.
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For the lattice/SRWmodel, the authors in [5] have gone deeper into the description of
the (endpoint) localization phenomena. They showed that in the full very strong disorder
region, the mass of the endpoint concentrates asymptotically on some small islands – a
phenomena also called asymptotic pure atomicity. More precisely, they proved that if

Aε
k = {x ∈ Z

d : Pk,β0 (Sk = x) > ε},
then, for every sequence (εk)k≥0 vanishing as k → ∞,

lim
n→∞

1

n

n−1∑

k=0

Pk,β0

(
Sk ∈ Aεk

k

) = 1, P-a.s.

In a related continuous setting, localization properties of the Brownian polymer full path
(i.e. not restricted to the endpoint properties) have been shown to hold deep inside the
very strong disorder region in [22].

1.4. The L2-region. A range of parameters that plays an important role in the literature
because it is tailored to moment computations, is the L2-region, which corresponds to
the set of β’s such that the martingale (Wn(x, β))n is bounded in L2, i.e.

∀x ∈ V, supn EWn(x, β)2 < ∞. (11)

The following easy proposition allows for the definition of a threshold for the L2-region,
similar to βc,

Proposition 1.11. There is a parameter β2 ∈ [0,∞] such that (11) holds for β ∈ [0, β2)

and supn EWn(x, β)2 = ∞ for all x ∈ V when β > β2.

Remark 1.12. It is immediate that β2 ≤ βc. For the lattice/SRW model, it is further
known that 0 < β2 < βc for d ≥ 3 [6,8–10] (in particular, see [9, Section 1.4] for d
= 3,4). In our general setting, we will construct graphs for which SRW satisfies the a
priori surprising property that βc > 0, but β2 = 0, see Theorem 5.7.

Compared to the full weak disorder region, the L2-region has the advantage of al-
lowing second-moment computations which, for example, lead to the first proofs of
diffusivity of the path for the lattice in the L2-region (and d ≥ 3), see Remark 3.3 in
[16] for a summary on the matter. In our general context, similar considerations bring
us to the following result, whose proof is given in Sect. 5. Recall that |Sn| = d(Sn, S0).

Theorem 1.13. Assume (11), and that there exist a random variable Z and a determin-
istic sequence an →n→∞ ∞ satisfying an/an−� → 1 for all � > 0, such that for all
x ∈ V ,

a−1
n |Sn| (d)−→ Z , as n → ∞, under Px .

Then, for all bounded and continuous function F, as n → ∞,

En,ω
x

[
F
(
a−1
n |Sn|

)]
P−→ E[F(Z)]. (12)

Remark 1.14. Recently, the rate of convergence in Wn → W∞ and the nature of the
fluctuations for the lattice/SRW model have been obtained in the full region [0, β2) in
[17,23]. It is believed that the speed and nature should be different in the region [β2, βc).
See also [24,28,32,44,48] where similar questions appear in the study of the regularized
SHE and KPZ equation in dimension d ≥ 3. We do not touch upon these questions in
this paper.
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2. General Results

We state in this section our general results for the polymer model. In Sect. 2.1 we give
conditions for β2 = 0 or β2 > 0 in terms of quantitative transience/recurrence of
(G, S), and in particular in terms of heat kernel estimates and volume growth. We also
show in Theorem 2.14 that recurrent walks admitting appropriate heat kernel bounds
satisfy βc = 0. Section 2.2 is devoted to the weak disordered regime. We give sufficient
conditions for the uniform integrability ofWn(x, β) in terms of graph notions such as the
Liouville property and existence of good graph isomorphisms. (We emphasize that weak
disorder does not imply uniform integrability, see Proposition 4.1.) Along the way, we
refer to counter examples to natural conjectures; these counter examples are constructed
later in the paper.

Throughout, we assume without stating it explicitly that Assumption 1.1 holds. Re-
call that a random walk on G with transition probability P(x, y) is called reversible
(with reversing measure π ) if π is a positive measure on V so that for any x, y ∈ V ,
π(x)P(x, y) = π(y)P(y, x).

2.1. Critical parameters. We begin with a sufficient condition for β2 = 0, in the re-
versible setup, for recurrent walks. This condition covers the (known) case of SRW on
Z
d for d = 1, 2, and applies to reversible walks.

Theorem 2.1. Suppose that (Sk) is recurrent and reversible with a reversing measure π

satisfying infx∈V π(x) > 0. Then β2 = 0.

Remark 2.2. If (Sk) is a SRW then the condition on π in Theorem 2.1 is always satisfied,
since in that case π(x) = dx ≥ 1 is a reversing measure.

Remark 2.3. The condition that (Sk) is recurrent onG is not sufficient for the conclusion
of Theorem 2.1 to hold, see Sect. 6.4 for a counter-example.

A sufficient condition for β2 = 0 involves the intersection of pair of paths.

Theorem 2.4. Let (S), (S′) denote independent copies of (S) and assume that

sup
x∈V

E⊗2
x

∑

k≥0

1Sk=S′
k=x = ∞. (13)

Then, β2 = 0.

Note that condition (13) can be written as

sup
x∈V

∑

k≥0

Px (Sk = x)2 = ∞ (14)

A refinement of Theorem 2.4 appears in Theorem 5.4.

Remark 2.5. In Proposition 5.3, we describe a family of graphs (including transient ones)
with β2 = 0. This covers the case of the supercritical percolation cluster on Z

d with
d ≥ 2.

In the reverse direction, we require a quantitative criterion. Introduce the Green
function for (Sk):

G(x, y) =
∞∑

k=0

Px (Sk = y), x, y ∈ V . (15)
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Theorem 2.6. Suppose that (Sk) is transient and reversible with reversing measure π

satisfying supx∈V π(x) < ∞. If

sup
x∈V

G(x, x)

π(x)
< ∞, (16)

then β2 > 0.

Remark 2.7. When (Sk) is a SRW then π(x) = dx is a reversing measure and the
boundedness condition in Theorem 2.6 means that the degree is uniformly bounded in
V . Under this condition, (16) is satisfied if and only if the Green function is bounded
from above.

Remark 2.8. The boundedness condition on π in Theorem 2.6 is not necessary: indeed,
the biased random walk on a canopy tree is an example of a reversible transient graph
that does not satisfy this property, while β2 > 0 holds for the associated polymer, see
Theorem 6.6.

Remark 2.9. Condition (16) is satisfied as soon as (Sk) admits a uniform Gaussian heat
kernel upper bound as in (18), for some d > 2.

Remark 2.10. There are polymers associated with transient and reversible SRW that
do not possess an L2-region. Indeed, in Theorem 5.5 we show that the SRW on the
supercritical percolation cluster on Z

d , d ≥ 3 (which is transient and reversible with
reversing measure bounded from above), has β2 = 0 (in contrast with the full lattice
SRW). Further, there are reversible and transient walks such that βc = 0. For an example
of the latter, take G = Z+, with P(i, i + 1) = ee

i+1
/(ee

i+1
+ ee

i
). (This corresponds to

a conductance model with conductances Ci,i+1 = ee
i
.) It is not hard to verify that the

resulting random walk is irreducible, transient and reversible, while a repetition of the
proof of Proposition 4.1 shows that β̄c = βc = 0.

There are also polymers associated with a transient SRW satisfying 0 = β2 < βc.
We exhibit two examples of this phenomenon for SRW on appropriate graphs, namely
a class of transient Galton–Watson trees, see Sect. 6.2, and a copy of Zd for d ≥ 4 with
arbitrary long pipes attached on a line, see Theorem 5.7.

Returning to the general (not necessary reversible) setup, we begin with the positive
recurrent case.

Theorem 2.11. If (Sk) is positive recurrent, then βc = 0.

Remark 2.12. If the positive recurrent (Sk) admits return times that have exponential
moments, then βc = β̄c = 0, see [14]. However, an extra condition beyond positive
recurrence cannot be omitted in general. Indeed, the positive recurrentλ-biasedwalk on a
Galton–Watson treewithm < λprovides an examplewhere β̄c can be positive depending
on the characteristics of the offspring distribution, see Theorem 6.1. In particular, this
gives an example of a polymer where βc < β̄c. We note that the question whether
βc = β̄c or not when d ≥ 3 is still open in the case of the lattice/SRW Z

d .

Wenow introduce a class ofwalks, forwhich the existence of aweak disorder region is
determined by the value of the spectral dimension of thewalk.We say that a randomwalk
S satisfies a sub-Gaussian heat kernel upper bound with parameters d f > 0, dw > 1 if
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there exist a positive measure μ on V , a vertex x ∈ V and constants Cx , c > 0, such
that for all n > 0,

∀y ∈ V, pn(x, y) ≤ Cxn
−d/2e−(

d(x,y)dw
cn )

1
dw−1

μ(y), (17)

where d = 2d f /dw. We say that the sub-Gaussian heat kernel upper bound is uniform
if in addition, inf x∈V μ(x) > 0 and for some C > 0,

∀x, y ∈ V, pn(x, y) ≤ Cn−d/2e−(
d(x,y)dw

cn )
1

dw−1
μ(y). (18)

The estimates are called Gaussian if dw = 2. The notation dw, d f (for the walk and
fractal dimensions) is borrowed from the theory of random walks on fractals, see e.g.
[41] for an extensive introduction. The exponent d, often written ds in the literature, is
referred to as the spectral dimension.

Remark 2.13. The bound (18) holds with dw = 2 whenever μ is a reversing measure for
S, such that inf x∈V μ(x) > 0 and such that S satisfies the d-dimensional isoperimetric
inequality, see [55, pg. 40 & Section 14].

Theorem 2.14. Assume the existence of a measure μ satisfying infx∈V μ(x) > 0 and,
with S(x, r) = {y ∈ V, d(x, y) = r},

μ(S(x, r)) ≤ CV r
d f −1, for all x ∈ V, r ≥ 1. (19)

(i) If (17) holds with d < 2 then βc = 0.
(ii) If (18) holds for d > 2 and supx∈V μ(x) < ∞, then β2 > 0.

Remark 2.15. If μ is reversing for S, then the condition (19) with d f < 2 implies that S
is recurrent, see [55, Lemma (3.12)].

Remark 2.16. The assumptions of Theorem2.14 (in fact, with the stronger (18) replacing
(17)) hold for SRWon the Sierpiński gasket [37] and on the Sierpiński carpet [2,4]. Note
that one can find a family of Sierpinski gaskets with arbitrary large d f while d < 2 [33].
The bound (18) holds for general classes of fractal graphs, see Remark 4.5.3 in [41].

Remark 2.17. The conclusion of Theorem 2.14(i) holds for SRWon a graphG satisfying
the uniform volume growth |B(x, r)| ≤ Cr2 where B(x, r) = {y ∈ V, d(y, x) ≤ r},
with a uniform bound on the degree of vertices. Indeed, for such graphs, the Carne-
Varopoulos bound (see [55] or [47]) yields that pn(x, y) ≤ Cxe−d(x,y)2/2n . Together
with the argument in [16, Section 6.2.1], this immediately yields that βc = 0. This
remark applies to more general walks (not necessarily reversible) satisfying the Carne-
Varopoulos bound (such as in [49]) and graphs satisfying quadratic volume growth.

To obtain very strong disorder, we need uniform covering conditions, of the following
type.

Assumption 2.18. Suppose that there exist x0 ∈ V and CG > 0, such that for n large
enough, for allm ∈ N, one can find a sequence of sets Ai ⊂ V that satisfies B(x0, nm) ⊂
∪i∈I Ai , diam(Ai ) ≤ n1/dw and

sup
j∈I

#
{
i ∈ I : kn1/dw ≤ d(Ai , A j ) < (k + 1)n1/dw

}
≤ CG e

(
kdw
c2

) 1
dw−1

, (20)

where c2 > c and c, dw are as in the uniform sub-Gaussian heat kernel upper bound
(18).
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Assumption 2.18 holds for many fractal graphs, such as the Sierpiński gasket and carpet,
and their random variants.

Theorem 2.19. Assume the hypotheses of Theorem 2.14 (i) with the uniform (18) re-
placing (17), and in addition let Assumption 2.18 hold. Then, β̄c = 0. Moreover, there
exists C > 0 such that for all x0 ∈ V , β ∈ (0, 1),

lim sup
n→∞

1

n
E logWn(x0, β) ≤ −Cβ

4
2−d . (21)

Remark 2.20. The critical case d = 2 is not covered by Theorems 2.14 and 2.19. For
Z
d /SRW, the conclusion holds by [42]. Unlike the proof of Theorems 2.14 and 2.19 for

d < 2, the proof for d = 2 in [42] uses a change of measure that introduces correlations
into the environment. We believe that the argument carries over to our setup, but we have
not verified all details.

Remark 2.21. After this work was completed, we learnt of a result of Kajino et al. [38],
obtained independently, where a version of Theorem 2.19 is proved, under similar but
slightly different assumptions. (In particular, they work with reversible walks and with
uniform lower and upper bounds on the reversing measure, and the covering condition
in Assumption 2.18 is replaced by a uniform volume growth condition.) Under the extra
assumption of existence of heat kernel lower bounds, they show that the estimate in
Theorem 2.19 is sharp for small β.

We close this section by mentioning a result of Birkner [7] whose proof carries over
without changes to our general framework. Let

�2(β) := �(2β) − 2�(β). (22)

Theorem 2.22 [7]. Let x ∈ V . Let S, S′
be two independent copies of S started at x, and letFS denote theσ -algebra generated

by (Sk). If

E⊗2
x

[

e
�2(β)

∑∞
k=1 1Sk=S′

k

∣
∣
∣
∣FS

]

< ∞, a.s., (23)

then (Wn(x, β))n is uniformly integrable. In particular, (23) implies that W∞(x, β) > 0
a.s.

Theorem 2.22 was used in the proof that β2 < βc for the Zd /SRW polymer, when
d ≥ 3 (see Remark 1.12 above). In our context, it will be used in Sect. 6.2 when showing
that βc > 0 for a transient Galton–Watson model which satisfies β2 = 0.

2.2. Uniform integrability of the partition function. Since E[Wn(x, β)] = 1, it is im-
mediate that whenever (Wn(x, β))n is uniformly integrable for some x ∈ V , then weak
disorder holds. In what follows, we study the converse implication and provide some
conditions on (Sk)k≥0 under which (Wn(x, β))n is uniformly integrable in the entire
weak disorder region.

Remark 2.23. The converse is not always true: Proposition 4.1 provides an example for
which βc > 0 but (Wn(x, β))n is not uniformly integrable in the whole weak disorder
region.
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We begin with an observation. We say that h : V → R is an harmonic function on
G whenever


h(x) =
∑

y∼x

P(x, y)(h(y) − h(x)). (24)

Proposition 2.24. 1. h(x) = E[W∞(x, β)] defines a bounded harmonic function on G.
2. The following properties are equivalent:

(i) (Wn(x, β))n is uniformly integrable for some x ∈ V ,
(ii) E[W∞(x, β)] = 1 for some x ∈ V ,
(iii) infx∈V E[W∞(x, β)] > 0.

3. If one of the above properties is satisfied then for all x ∈ V , (Wn(x, β))n is uniformly
integrable and E[W∞(x)] = 1 .

Corollary 2.25. Assume that (G, P) satisfies the Liouville property, i.e. that all bounded
harmonic functions are constant. Then, (Wn(x, β))n is uniformly integrable for all x ∈ V
in the whole weak disorder region.

In what follows, given a graph G and a vertex v ∈ V , we call the pair (v,G) a rooted
graph. We say that two rooted graphs (v,G) and (v′,G ′) are isomorphic if there exists
a graph isomorphism π so that v′ = π(v) and G ′ = π(G).

Corollary 2.26. Suppose there is a finite set of vertices V0 ⊂ V such that for all x ∈ V ,
the rooted graph (x,G) is isomorphic to one of the rooted graphs {(v,G)}v∈V0 . Then,
if weak disorder holds, (Wn(x))n is uniformly integrable for all x ∈ V .

3. Specific Graphs

We introduce in this short section three models, which will be used to illustrate various
phenomena. These are respectively SRW on the lattice infinite bond percolation cluster,
the λ-biased random walk on a Galton–Watson tree, and the canopy tree.

3.1. Super-critical percolation cluster on Z
d . To each edge (x, y) of the lattice Zd we

associate a Bernoulli random variable axy such that the edge is open (i.e. axy = 1)
with probability p. It is well known, see e.g. [30], that for d ≥ 2 there exists a critical
parameter pc = pc(Zd) ∈ (0, 1), such that for the super-critical regime p > pc, there
exists almost-surely a unique infinite connected cluster denoted by C∞.

The SRWon the super-critical infinite cluster shares properties similar to the SRWon
Z
d ; indeed, the walk on C∞ is transient when d ≥ 3 and recurrent when d = 2, almost

surely [31]. The SRW further satisfies almost surely a central limit theorem and a local
limit theorem [3]. We will however see that the polymer measure on the percolation
model is quite different, and in particular, see Theorem 5.5, does not possess an L2

regime.

3.2. λ-biased random walk on Galton–Watson trees. Let T be a rooted (at a vertex o)
Galton–Watson tree (conditioned on survival) with offspring distribution {pk}, having
meanm = ∑

kpk > 1. (Note that the model of Bernoulli percolation on the regular tree
is a particular case ofGalton–Watson tree.) Theparent of x ∈ V is the neighbor of x on the
geodesic connecting x to the root. All other neighbors of x are called descendents. Given
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a real λ ≥ 0, we let (P, (Sk)) denote the λ-biased random walk on T , with transition
probability P(x, y) = λ/(λ + dx ) if y is the parent of x and P(x, y) = 1/(dx + λ)

otherwise. Lyons [45] proved that the walk is transient ifm > λ, null recurrent ifm = λ

and positive recurrent if m < λ. Let |Sk | denote the distance of Sk from the root. Law of
large numbers for |Sn|/n, based on appropriate regeneration structures, were derived in
[46] (for the transient case). These were completed by large deviation principles in [25],
and by central limit theorems (for the transientm > λ > 0 and null-recurrentm = λ > 0
cases) in [50]. Note that the case λ = 0 corresponds to the model of branching random
walk, and Wn(o) is then the Biggins martingale. Much is known about Wn(o) and its
limits, see [52].

Our results for polymers with the biased random walk on Galton–Watson trees are
presented in Sects. 6.1 and 6.2.

3.3. The canopy tree. The canopy tree T is the infinite volume limit of a finite d + 1-
regular tree seen from its bottom boundary [1]. It is constructed as follows. At the ground
level � = 0, put a countable number of vertices and attach to every successive pack of
d vertices one parent at level � = 1. Do the same recursively at the higher � levels (see
Fig. 1 for a pictorial representation).

The λ-biased random walk (with bias toward the parents) is constructed similarly to
Sect. 3.2. Namely, when at vertex v at level l > 0, the jump probability toward the parent
is λ/(λ + d) while the probability to jump to any other neighbor is 1/(λ + d). When at
vertex v at level 0, the jump probability toward the parent of v is 1. It follows from the
description that the λ-biased walk can be represented in terms of a conductance model
(see [47]) with the conductance on edges between levels � and � + 1 equal to λ�. From
this representation it follows at once that the λ-biased walk is recurrent if λ < 1, null
recurrent if λ = 1 and transient when λ > 1.

We show in Sect. 6.3 that β2 > 0 for the polymer on (T, (Sk)) whenever d > λ > 1.

ℓ = 0

ℓ = 1

ℓ = 2

ℓ = 3

ℓ = 4

Τ(1)

Τ(2)

Τ(3)

Τ(4)

Τ(ℓ)

Fig. 1. The canopy tree of parameter d = 2. The subtrees T(�) are used in the proof of Theorem 6.6
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4. Weak, Strong and Very Strong Disorder

We provide in this section proofs for our main results.

4.1. Proof of Proposition 1.2.

Proof of Proposition 1.2. The proof mostly follows classical techniques of directed
polymers, see e.g. [16]. Introduce the notation en := eβ

∑n
i=1 ω(i,Si )−n�(β) such that

Wn(x) = Ex [en]. Let n,m ∈ N and denote by ηn the shift in time of n steps in the
environment ω(i, y), and observe that by Markov’s property,

Wn+m(x) = Ex

[
en e

β
∑n+m

i=n+1 ω(i,Si )−m�(β)
]

= Ex [en Wm(Sn) ◦ ηn] =
∑

y∈Rn(x)

Ex
[
en1Sn=y

]
Wm(y) ◦ ηn, (25)

where Rn(x) = {y ∈ V, pn(x, y) > 0}. As Rn(x) is finite by assumption, we obtain
after taking the limit m → ∞ that

W∞(x) =
∑

y∈Rn(x)

Ex
[
en1Sn=y

]
W∞(y) ◦ ηn . (26)

Since all the Ex
[
en1Sn=y

]
, y ∈ Rn(x) are almost surely positive,

{W∞(x) = 0} = {∀y ∈ Rn(x), W∞(y) ◦ ηn = 0}, (27)

hence {W∞(x) = 0} is measurable with respect to G+
n := σ(ω(i, x), i ≥ n, x ∈ V )

for all n hence it is a tail event, so by Kolmogorov 0–1 law either W∞(x) = 0 a.s. or
W∞(x) > 0 a.s. Now the first statement of Proposition 1.2 follows from (27) and the
irreducibility assumption.

We turn to the second part of the proposition, namely the existence of the critical
parameter βc. Let θ ∈ (0, 1) and x ∈ V . We begin by observing that E[W∞(x, β)θ ] is
non-increasing in β, for which it is enough to prove that β → E[Wn(x, β)θ ] is non-
increasing for all n (note that (Wn(x, β)θ )n is uniformly integrable since E[Wn(x, β)]
= 1).

Let Hn(S) = ∑n
i=1 ω(i, Si ) and en(S) = eβHn(S)−n�(β). For all n ≥ 0, we have by

Fubini:

d

dβ
E
[
Wn(x, β)θ

] = θExE[en(S)Wn(x, β)θ−1(Hn(S) − n�(β)′)]

= θExE
S,n

[
Wn(x, β)θ−1(Hn(S) − n�(β)′)

]
,

where dPS,n = en(S)dP. The field ω(i, x) is still independent under PS,n , so by the
FKG inequality for independent random variables [34], we see that since Hn(S) is
non-decreasing with respect to the environment while Wn(x, β)θ−1 is non-increasing,
we have

d

dβ
E
[
Wn(x, β)θ

] ≤ θEx

[
E
S,n

[
Wn(x, β)θ−1

]
E
S,n[Hn(S) − n�(β)′]

]

= θEx

[

E
S,n

[
Wn(x, β)θ−1

] d

dβ
E[en(S)]

]

= 0,
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where the last equality holds since E[en(S)] = 1.
Now, observe that

βc(x) := inf
{
β ≥ 0 : E [W∞(x, β)θ

] = 0
}
,

does not depend on x . Indeed, if βc(x) = ∞ for some x , then by (27) we have that
W∞(y, β) > 0 a.s. for all y and all β ≥ 0, hence βc(y) = ∞ for all y. Similarly, if
βc(x) < ∞ for some x , then all βc(y) are finite. In this case, let x, y ∈ V and β > βc(x),
so that W∞(y, β) = 0 for all y ∈ V and thus βc(y) ≤ βc(x); by exchanging the role of
x and y, βc(y) = βc(x).

We conclude the proof by checking, similarly to what we just did, that βc := βc(x)
separates strong disorder from weak disorder. ��

4.2. Uniform integrability: proofs for Sect. 2.2.

Proof of Proposition 2.24. 1.Let h(x) = E[W∞(x)]. ByFatou’s lemma, the expectation
E[W∞(x)] is uniformly bounded by 1. To see that h is harmonic, take expectation with
respect to the environment in (26) and let n = 1.
2. We begin with the implication (i) ⇒ (ii). If (Wn(x))n is uniformly integrable, then
Wn(x) converges in L1 and so E[W∞(x)] = 1 since E[Wn(x)] = 1.
To see that (ii) implies (iii), suppose that h(x) = E[W∞(x)] = 1. Since h is bounded
by 1, this implies that h is a local maximum. By harmonicity, h must be constant equal
to 1 which is (iii).

We now turn to (iii) ⇒ (i). Suppose that inf y∈V E[W∞(y)] > 0 and let any x ∈ V .
By identity (26): (recall the definition of Gk in the introduction)

E [W∞(x)|Gk] =
∑

y∈V
Ex

[
ek1Sk=y

]
E[W∞(y)] ≥ inf

y∈V E[W∞(y)]Wk(x),

and since E [W∞(x)|Gk] is UI, (Wn(x))n is also UI.
Point 3 of the proposition follows from the last arguments. ��

Proof of Corollary 2.25. By point 1 of Proposition 2.24, h is constant when (G, P)

satisfies the Liouville property. Hence inf x h(x) is non-zero since weak disorder holds
and so uniform integrability holds by point 3 of Proposition 2.24. ��
Proof of Corollary 2.26. Under the assumption of the corollary the function h(x) =
E[W∞(x)] only takes a finite number of values. Since weak disorder holds, all of them
are positive and the statement follows from Proposition 2.24. ��

We next construct an example of a pair (G, S) where βc > 0 but Wn(x, β) is not
uniformly integrable for any β > 0 and some x ∈ V . Let Td denote the infinite d-ary
tree rooted at a vertex o. Augment T2 by attaching to o a copy of Z+, to created a rooted
tree G4.1, see Fig. 2.

To define the random walk on G4.1, assign to each edge e of T2 the conductace
Ce = 1, while to the i th edge of Z+ (measured from the root), assign the conductance
Ci = ee

i
. For (x, y) ∈ E , write Cx,y for the conductance of the edge (x, y), and set

P(x, y) = Cx,y/
∑

z∼x Cx,z .

Proposition 4.1. The polymer on G4.1 with i.i.d. bounded ω(i, x) has βc > 0 while for
any β > 0, Wn(o, β) is not uniformly integrable.



Directed Polymers on Infinite Graphs 409

2 13

Fig. 2. The graph G4.1, for which Wn(x, β) is not uniformly integrable for any β > 0, but βc > 0. The
increasing width of the leftmost ray represents increasing conductance

Proof. Let v1, v2 be the descendents of o that belong to T2 and let v3 denote the descen-
dent of o that belongs to Z+. Let

C = {the walk never visits v1 ∪ v2}.
Clearly, by the transience of the walk on Z+ with our conductances, P(C) ∈ (0, 1). Writ-
ing Wn = Wn(o, β), decompose Wn = Wt

n + Wl
n, with Wl

n = E[en1C] = P(C)E[en|C].
Set

An = {|Xk+1| = |Xk | + 1,∀k >
√
n}. (28)

We have that P(Ac
n|C) < e−cn for all n large (since the conditional walk has a conduc-

tance representation with increasingly strong drift away from the root). We now claim
that for all β > 0,

Wl
n →n→∞ 0, P-a.s. (29)

Indeed, let vi denote the i th vertex on the Z+ part of G4.1. By a union bound, using that
the ω(i, x) are bounded,

sup
j≤√

n
sup

�≤√
n

n−�∑

i=1

ω(i + �, vi+ j ) = o(n),

and thus we have that

Wl
n ≤ CP(Ac

n|C)eβc∗n Xn + e−�(β)(n−√
n)+o(n), (30)

where EXn ≤ 1. Hence, Wl
n →n→∞ 0, in probability, and hence P-a.s. since Wl

n is a
martingale. On the other hand, Wt

n = E[en1Cc ] ≥ Wt,∗
n where Wt,∗

n = E[en1D] with
D = {S1 ∈ {v2, v3}, Sk �= o for all k ≥ 1}.

Note that Wt,∗
n is a martingale and that

E(Wt,∗
n )2 ≤ E(WT2

n (o, β))2,
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whereWT2
n (o, β) is the normalized partition function for the SRW on T2. We now claim

that for β > 0 small enough,

lim sup
n→∞

E(WT2
n (o, β))2 < ∞, (31)

see e.g. [27, (3.3b)] for a similar computation. Indeed, letting S, S′ denote two indepen-
dent copies of S, the SRW on T2 started at the root, and setting N∞ = ∑∞

i=1 1Si=S′
i
, it is

easy to check that there exists a constant c so that E(ecN∞) < ∞. As a consequence, with
�2(β) as in (22), we have that �2(β) →β→0 0, and E(WT2

n (o, β))2 ≤ E(e�2(β)N∞) <

∞ for β > 0 small enough, yielding (31). Thus, we conclude that for small β, Wt,∗
n

converges a.s. and in L2 to a strictly positive limit Wt,∗∞ with EWt,∗∞ = P[D] > 0. Thus
on the one hand,W∞ = limn Wn is, for small β, positive with positive probability, which
implies that it is in fact positive a.s., and thus βc > 0. On the other hand, we have by
(29) that for all β ∈ (0, β0),W∞ = Wt∞, where by Fatou’s lemma E[Wt∞] ≤ P(C) < 1.
Therefore, (Wn)n≥0 cannot be uniformly integrable in (0, β0), and hence for any β > 0,
since E[Wn] = 1. ��

4.3. Recurrence and heat kernel bounds: Proof of Theorems 2.11 and 2.14.

Proof of Theorem 2.11. The proof is based on the change of measure technique intro-
duced in [42]. By Assumption 1.1 and our convention that for any (i, x), ω(i, x) has
zero mean and variance 1, we obtain that for δ > 0,

e�(−δ) = E(e−δω(i,x)) = ecδδ
2/2, cδ = 1 + oδ(1). (32)

We fix x ∈ V and let Wn = Wn(x). Thanks to positive recurrence and the ergodic
theorem, we can find an ε ∈ (0, 1) such that under Px , the process (Sk) spends at most
a fraction 1 − ε of time away from x , i.e.

Px

(
n∑

k=1

1Sk �=x ≥ (1 − ε)n

)

→n→∞ 0. (33)

Now, fix δn = n−1/2 and define the measure P̃ by

dP̃

dP
=

∏

(i,y)∈C
e−δnω(i,y)−�(−δn), (34)

where C = [1, n] × {x}. Under P̃, the variables (ω(i, y)) are independent, of mean
−δn1(i,y)∈C(1 + on(1)) and variance 1 + on(1). Further, for (i, y) ∈ C,

e−�(β)
Ẽeβω(i,y) = e�(β−δn)−�(β)−�(−δn) = e−�′(β)δn+O(δ2n)

= e−�′(β)δn(1+on(1)). (35)

Then, for any α ∈ (0, 1), Hölder’s inequality yields that

E
[
Wα

n

] = Ẽ

[
dP

dP̃
× Wα

n

]

≤ Ẽ

[(
dP

dP̃

) 1
1−α

]1−α

× Ẽ [Wn]
α . (36)
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The first term on the right hand side of the last display reads

E

[(
dP

dP̃

) α
1−α

]1−α

= e
#C
2

αδ2n
1−α

(1+on(1)) = e
α

1−α
(1+on(1)) < ∞.

On the other hand, by (35),

Ẽ [Wn] = Ex

[
e−�′(β)δn(1+on(1))

∑n
k=1 1Sk=x

]

≤ e−ε�′(β)δn(1+on(1))n + Px

⎛

⎝
∑

k≤n

1Sk �=x ≥ (1 − ε)n

⎞

⎠ . (37)

By our choice of δn and (33), we conclude that Ẽ [Wn] →n→∞ 0. Putting things together,
we find that E[Wα

n ] →n→∞ 0 for all β > 0, and since Wα
n is uniformly integrable,

necessarily W∞ = 0 and thus βc = 0. ��
Proof of Theorem 2.14. The proof of point (i) parallels that of Theorem 2.11, and we

use similar notation, with the change that now δn = C
−d f /2
1 n− dw+d f

2dw where C1 > 0 is a
parameter to be determined later, and

C =
{
(i, y) : i ≤ n, d(x, y) ≤ C1n

1/dw

}
.

Note that nδn = C
−d f /2
1 n1/2−d/4 →n→∞ ∞ since d < 2. Introduce the measure P̃ as

in (34). Proceed as in (36) and, using that |B(x, n)| ≤ Cnd f for some C > 0 and all
n ≥ 1 by the hypotheses, bound the first term in the right hand side of (36), for all n
large, by

E

[(
dP

dP̃

) α
1−α

]1−α

= e
#C
2

αδ2n
1−α

(1+on(1)) ≤ e
αC

(1−α) .

On the other hand, as in (37), we have that

Ẽ [Wn] = Ex

[
e
−�′(β)δn(1+on(1))

∑n
k=1 1d(Sk ,x)≤C1n

1/dw
]

≤ e− �′(β)
2 δnn(1+on(1)) + Px

⎛

⎝
∑

k≤n

1d(Sk ,x)>C1n1/dw ≥ n/2

⎞

⎠ , (38)

where the first term of the RHS in the last display goes to 0 as n → ∞, while by
Markov’s inequality and estimate (17), we find that the second term is bounded from
above by

2

n

n∑

k=1

∑

d(y,x)>C1n1/dw

pk(x, y) ≤ C

n

n∑

k=1

∑

p>C1n1/dw

μ (S(x, p))
e−(

pdw
ck )

1
dw−1

kd/2

≤ CF(C1),
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for some positive F such that F(x) → 0 as x → ∞, where the estimate in the second
line holds for n large enough and is obtained by Riemann approximation using that
μ (S(x, p)) ≤ CV pd f −1 and d = 2d f /dw < 2. We can now fix C1 large enough to
make RHS of the last display as small as we wish.

Putting things together, we find that for all β > 0, E[Wα
n ] →n→∞ 0 and therefore

W∞ = 0 a.s.
We turn to the proof of Theorem 2.14 (ii). By Khas’minskii’s lemma [53, P.8, Lemma

2], there is an L2-region whenever

sup
x∈V

E⊗2
x

[
N∞(S, S′)

]
< ∞, (39)

Note that E⊗2
x [N∞(S, S′)] = ∑∞

n=0
∑

y∈V pn(x, y)2. By (18) and (19), and using the
uniform upper bound on μ,

sup
x∈V

∑

y∈V
pn(x, y)

2 ≤ n−d
∞∑

k=0

CV k
d f −1Ce

−2
(
kdw
cn

) 1
dw−1

= O(n−dnd f /dw).

The fact that d f /dw = d/2 with d > 2 yields (39). ��

4.4. Very strong disorder: proof of Propositions 1.8 and 1.9, and Theorem 2.19.

Proof of Proposition 1.8. Weclaim that if p̄(x) in (7) satisfies p̄(x) < 0 for some x ∈ V ,
then the same holds for all x ∈ V , i.e. (7) holds. Indeed, let x, y ∈ V and m ≥ 0 such
that y ∈ Rm(x) where Rm(x) = {z ∈ V, pm(x, z) > 0}. From (25), we see that for all
n ≥ 0,

Wn+m(x) ≥ Ex [em1Sm=y]Wn(y) ◦ ηm,

hence

lim sup
n→∞

1

n
E logWn(x) ≥ lim sup

n→∞
1

n
E logWn(y),

which justifies our claim. We now complete the proof of Proposition 1.8. Let Hn(S) =∑n
i=1 ω(i, Si ). We have by Fubini:

d

dβ
E
[
logWn(x, β)

] = Ex
E[en(S)Wn(x, β)−1(Hn(S) − n�(β)′)]

and following the same arguments as in the proof of Proposition 1.2, we find that for
all n ≥ 1, β → E logWn(x, β) is non-increasing. Therefore p̄(x) of (7) is also non-
increasing with β and this concludes the proof. Finally, property (8) follows from the
concentration inequality in Theorem 1.7 and the Borel–Cantelli lemma. ��

We now turn to the:
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Proof of Proposition 1.9. Let d > 0 such that the degree of all vertices is bounded by d.
Let I (a) = supθ>0 {θa − �(θ)} be the rate function of the ω(i, y)’s. For any nearest-
neighboor path of vertices x = (x0, . . . , xn), we note Hn(x) = ∑n

k=1 ω(k, xk). Let
a > 0 and consider

∑

n≥0

P

(

sup
x=x0,x1,...,xn

Hn(x) > na

)

≤
∑

n≥0

∑

x=x0,x1,...,xn

P (Hn(x) > na)

≤ C
∑

n≥0

dne−nI (a). (40)

Since I (a) → ∞ as a → ∞, we can choose a such that the last sum converges. Then
by Borel–Cantelli’s lemma, P-almost surely for n large enough we have Hn(x) ≤ na
for every path x, so that

lim sup
n→∞

1

n
log Ex0

[
e
∑n

k=1 βω(k,Sk )
]

≤ βa.

Since the support of ω is unbounded, we have �(β) � β as β → ∞, therefore
lim sup n−1 logWn(x0) < 0 a.s. for β large enough. The proof is concluded via (8). ��

Proposition 1.8 provides uniform bounds on the decay exponent.

Proof of Theorem 2.19. The proof parallels that of Theorem 2.14. By Proposition 1.8,
the limsup in (21) does not depend on the starting point x0.

Fix x0 as in Assumption 2.18 and let n be large enough so that (Ai )i∈I is a covering
of B(x0, nm). We have

Wnm(x0) ≤
∑

i1,...,im∈I
Ŵn,m(i1, . . . , im), (41)

where

Ŵn,m(i1, . . . , im) = Ex0

⎡

⎣enm

m∏

p=1

1Snp∈Aip

⎤

⎦ .

By the formula (a + b)θ ≤ aθ + bθ for a, b ≥ 0 and θ ∈ (0, 1), we obtain that

E
[
W θ

nm

] ≤
∑

i1,...,im∈I
E

[
Ŵn,m(i1, . . . , im)θ

]
. (42)

For i1, . . . , im ∈ I , let J = J0 ∪ · · · ∪ Jm with

Jp = {(k, x) ∈ (pn, (p + 1)n] × V : d(x, Aip ) ≤ C1n
1/dw }.

Set δn = C
−d f /2
1 n− dw+d f

2dw . We have

E

[
Ŵn,m(i1, . . . , im)θ

]

≤ e
#J
2

θδ2n
1−θ

(1+on(1))Ex0

⎡

⎣e−�′(β)δn(1+on(1))
∑mn

k=1 1(k,Sk )∈J

m∏

p=1

1Snp∈Aip

⎤

⎦

θ

.
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Since inf μ > 0, by (19), for n large enough the first factor on the right-hand side is
bounded by

emnCV (C1n1/dw )
d f θδ2n/(1−θ) ≤ emα,

with α = θCV /(1 − θ). We will now show that for all m ≥ 1,

∑

i1,...,im∈I
Ex0

⎡

⎣e−�′(β)δn(1+on(1))
∑mn

k=1 1(k,Sk )∈J

m∏

p=1

1Snp∈Aip

⎤

⎦

θ

≤ e−2mα, (43)

which by (42) will entail that

E
[
W θ

nm

] ≤ e−mα. (44)

Using Markov’s property, the summand in (43) is bounded by

Ex0

[

e
− 1

2�′(β)δn
∑m

k=1 1Sk∈ J̃0 1Sn∈Ai1

]θ

×
m−1∏

p=1

sup
x∈Aip

Ex

[

e
− 1

2�′(β)δn
∑n

k=1 1Sk∈ J̃i p 1Sn∈Aip+1

]θ

,

with J̃i = {x ∈ V : d(x, Ai ) ≤ C1n1/dw }. Hence (43) will follow once we show that

sup
j∈I

∑

i

sup
x∈A j

Ex

[

e
− 1

2�′(β)δn
∑n

k=1 1Sk∈ J̃ j 1Sn∈Ai

]θ

≤ ε, ε := e−2α.

We decompose the left hand side of the last display as

∑

i∈I
d(Ai ,A j )≥Rn1/dw

sup
x∈A j

Ex

[

e
− 1

2�′(β)δn
∑n

k=1 1Sk∈ J̃ j 1Sn∈Ai

]θ

+
∑

i∈I
d(Ai ,A j )<Rn1/dw

sup
x∈A j

Ex

[

e
− 1

2�′(β)δn
∑n

k=1 1Sk∈ J̃ j 1Sn∈Ai

]θ

.

(45)

The first sum is bounded by
∑

k≥R

∑

i∈I
d(Ai ,A j )∈[kn1/dw ,(k+1)n1/dw )

sup
x∈A j

Px (Sn ∈ Ai )
θ

≤ Cθn−θd/2
∑

k≥R

e
−θ

(
kdw
c

)1/(dw−1) ∑

i∈I
d(Ai ,A j )∈[kn1/dw ,(k+1)n1/dw )

μ(Ai )
θ

≤ (CCV )θ2θd
∑

k≥R

e
−θ

(
kdw
c

)1/(dw−1)

CGe

(
kdw
c2

)1/(dw−1)

,



Directed Polymers on Infinite Graphs 415

where we have used (18), (19) and (20) with the fact that diam(Ai ) ≤ nd/2. For θ close
enough to 1, the last sum can be made smaller than ε/2 by letting R large enough (which
we fix from now on).

The second sum in (45) is bounded from above by

#{i ∈ I : d(Ai , A j ) < Rn1/dw } sup
x∈A j

Ex

[

e
− 1

2�′(β)δn
∑n

k=1 1Sk∈ J̃ j

]θ

,

where by (20), the first factor is bounded by some constant C ′ = C ′(R), and from (38)
and the computation below it, we find that for C1 and n large enough (in this order), the
second factor is bounded (uniformly in j ∈ I ) by

exp

(

−C
−d f /2
1

�′(β)

4
n

2−d
4

)

+
ε

4C ′ . (46)

Note that there exists C > 0 such that for all β ≤ 1, we have �′(β) ≥ Cβ. We now

choose n to be any integer between C2β
− 4

2−d and 2C2β
− 4

2−d , with C2 fixed big enough
to make n large enough and to ensure that the quantity in (46) is less than ε/(2C ′). This
shows (43).

Now, letWr (x, y) = E[er1Sr=y] be the normalized point-to-point partition function.
By Markov’s property, we have

Ws+r (x0) =
∑

x∈V
Ws(x0, x)Wr (x) ◦ ηs

where ηs is the shift of environment in time. We therefore get that

E
[
Ws+r (x0)

θ
] ≤

∑

x∈V
E
[
Ws(x0, x)

θ
]
E
[
Wr (x)

θ
] ≤ CV s

d f E
[
Ws(x0)

θ
]
,

since #{x : P(Ss = x) > 0} ≤ CV sd f by (19) and E[Wr (x)] = 1.
Hence, decomposing any t > n into t = nm0 + r with r ∈ [0, n), we obtain along

with (44) that

E
[
W θ

t

] ≤ CV t
d f e−αm0 .

Moreover, since

t−1θE logWt ≤ t−1 logE[W θ
t ],

we find that

E logWt

t
≤ logCV + d f log t

t
− αm0

(m0 + 1)n
,

so letting t → ∞, we obtain that

lim sup
t→∞

E logWt

t
≤ −α

n
≤ − α

2C2
β

4
2−d ,

with our choice of n [see below (46)]. This gives (21). ��
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5. Proofs for Sect. 1.4 and Theorems 2.1 and 2.6: The L2-region

Proof of Proposition 1.11. From the definitions it follows that the condition of L2-
boundedness in (11) reduces to a condition on two independent copies of the random
walk:

sup
n

E[Wn(β, x)2] = E⊗2
x

[

e
�2(β)

∑∞
i=1 1Si=S′

i

]

, (47)

where �2(β) defined in (22) is non-decreasing in β.
We claim that the finiteness of supn E[Wn(x)2] does not depend on x . Indeed, by

Markov’s property, we have for all x, y ∈ V ,

E⊗2
x

[

e
�2(β)

∑∞
i=1 1Si=S′

i

]

≥ P⊗2
x,x (τ(y,y) < ∞)E⊗2

y

[

e
�2(β)

∑∞
i=1 1Si=S′

i

]

,

where τ(y,y) = infn
{
n ≥ 0 : Sn = y, S′

n = y
}
with P⊗2

x,x (τ(y,y) < ∞) > 0 by irre-
ducibily of the walk; this proves our claim.

Existence of the critical parameter β2 in Proposition 1.11 then comes from (47). ��
Proof of Theorem 1.13. We follow the lines of Section 3.3 in [16]. Let F be a test
function. Since Wn(x, β) → W∞(x, β) with W∞(x, β) > 0 a.s, it is enough to show
that

An := E (Ex [en F(|Sn|/an)] − Wn(x, β)E[F(X)])2 → 0.

With S, S′ independent copies of S, let F(x) = F(x)−E[F(X)] and Nn = ∑n
k=1 1Sk=S′

k
with N = limn→∞ Nn . We have, with �2 = �2(β) as in (22),

An = E⊗2
x

[
e�2Nn F(|Sn|/an)F(|S′

n|/an)
]
,

so since the above integrand is bounded by 4‖F‖2∞e�2N ∈ L1, it is enough to show that
as n → ∞,

(Nn, |Sn|/an, |S′
n|/an) (d)−→ (N , X1, X2). (48)

where N , X1, X2 are independent and Xi
(d)= X for i = 1, 2. Let F1, F2,G be bounded

Lipschitz functions. Consider:

Bn := E⊗2
x

[
G(Nn)F1(|Sn|/an)F2(|S′

n|/an)
]

= E⊗2
x

[
G(N�)F1(|Sn|/an)F2(|S′

n|/an)1Nn=N�

]
+ ε1n,�

= E⊗2
x

[
G(N�)E

⊗2
S�,S′

�

[
F1(|Sn−�|/an)F2(|S′

n−�|/an)
]
1Nn=N�

]
+ ε2n,�

= E⊗2
x

[
G(N�)ES�

[
F1(|Sn−�|/an)

]
ES′

�

[
F2(|S′

n−�|/an)
]]

+ ε3n,�,

where the εin,� are defined implicitly. We have:

max

⎧
⎨

⎩
ε1n,�, ε

3
n,� −

∑

i=1,2

εin,�

⎫
⎬

⎭
≤ ‖G‖∞‖F1‖∞‖F2‖∞P⊗2

x (Nn �= N�) → 0,
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uniformly in n ≥ � as � → ∞ since Nn ↗ N . Furthermore, for fixed �, we obtain that
ε2n,� − ε1n,� → 0 as n → ∞ by Markov property using that

|Ex [F1(|Sn|/an)] − E⊗2
x [F1(d(Sn, S�)/an)]| ≤ ‖F1‖LipEx [d(S�, x)/an]

≤ ‖F1‖Lip � a−1
n ,

with a−1
n → 0 as n → ∞, where ‖F1‖Lip the Lipschitz constant of F1. Now for fixed �,

we have by hypothesis that |Sn−�|/an (d)−→ X as n → ∞, therefore letting first n → ∞
and then � → ∞, we obtain that Bn → E⊗2

x [G(N )]E[F1(X)]E[F2(X)], which entails
(48). ��
Proof of Theorem 2.1. Let (Sk) be recurrent and reversible with respect to a measure
(π(x))x∈V which is bounded away from zero. We will show that β2 = 0. We first
observe that (S2k) is recurrent as well. Indeed, starting from any vertex x , either (S2k)
or (S2k+1) visits x infinitely many times. If x has even period, then it has to be (S2k); if
it has odd period, then both visit x infinitely often by irreducibility of the walk.

Now, with S, S′ denoting independent copies of S, let

N∞(S, S′) =
∞∑

i=1

1Si=S′
i
.

Since the reversible measure satisfies π(x)Px (Sn = y) = Py(Sn = x)π(y), we have:

E⊗2
x N∞(S, S′) =

∑

n≥0

∑

y∈V
Px (Sn = y)2

=
∑

n≥0

∑

y∈V
Px (Sn = y)

π(y)

π(x)
Py(Sn = x)

≥ inf y π(y)

π(x)

∑

n≥0

Px (S2n = x) = ∞, (49)

where the last equality holds since (S2k)k≥0 is recurrent. Hence the RHS of (47) is
infinite when β > 0 by the lower bound ex ≥ x . ��
Proof of Theorem 2.6. Recall the definition of the Green function of S in (15). Let (Sk)
be transient and reversible with respect to a measure (π(x))x∈V which is bounded from
above and such that supx∈V G(x, x)/π(x) < ∞. We show that β2 > 0. Again, it is
enough to show that (39) holds, and by (49),

E⊗2
x N∞(S, S′) ≤ C

π(x)

∑

k≥0

Px (S2k = x) ≤ C
G(x, x)

π(x)
,

from which the statement of the theorem follows. ��
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5.1. Criteria forβ2 = 0 and proof of Theorem2.4. The following expression forE(W 2∞)

will be useful in this section. Recall �2 = �2(β), see (22).

Proposition 5.1. The following identity holds:

lim
n→∞E

[
W 2

n (x, β)
]

= 1 +
∞∑

k=1

(
e�2 − 1

)k ∑

1≤n1<···<nk

E⊗2
x

[
1Sn1=S′

n1
,...,Snk=S′

nk

]
.

Proof. We have

E

[
W 2

n (x)
]

= E⊗2
x

[

e
�2

∑n
i=1 1Si=S′

i

]

= E⊗2
x

[
n∏

i=1

(
1 + (e�2 − 1)1Si=S′

i

)
]

.

Now expand the product and take n → ∞, using monotone convergence. ��
Proof of Theorem 2.4. By Proposition 5.1, it is enough to show that for some x0 ∈ V
and for all δ > 0, there exists a constant C > 0 such that for all k ≥ 1,

∑

1≤n1<···<nk

E⊗2
x0

[
1Sn1=S′

n1
,...,Snk=S′

nk

]
≥ Cδ−k . (50)

We fix an arbitrary x0 ∈ V and δ > 0. By the assumption of the theorem, there exists
x� ∈ V such that

∑

m≥0

Px� (Sm = x�)2 ≥ δ−1.

Therefore,

∑

1≤n1<···<nk

E⊗2
x0

[
1Sn1=S′

n1
,...,Snk=S′

nk

]

=
∑

m1,...,mk

∑

x1,...,xk∈V

k−1∏

i=0

Pxi
(
Smi = xi+1

)2

≥
(
∑

m1

Px0(Sm1 = x�)2

)(
∑

m

Px� (Sm = x�)2

)k−1

≥ Cδ−k,

where C > 0 by the irreducibility of (S). This proves (50). ��
We describe an application of Theorem 2.4 to the construction of a family of transient

graphs satisfying β2 = 0.

Definition 5.2. A pipe in G is a chain of vertices v1, . . . , vL satisfying

1. (vi , vi+1) ∈ E .
2. For i = 2, . . . , L − 1, the degree of vi is 2.

Proposition 5.3. Let G contain arbitrarily long pipes. Then β2 = 0 for the G/SRW
polymer.
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Proof. Consider a pipe of length L and let x be its center. Then, pk(x, x) = pZk (x, x)
for k < L/2, where pZk (x, y) is the transition probability for simple random walk on Z.

Hence
∑

k pk(x, x)
2 ≥ ∑L/2

k=1 p
Z

k (x, x)2 ∼ log L → ∞ as L → ∞, which is condition
(14). An application of Theorem 2.4 completes the proof. ��
The condition in Theorem 2.4 can be relaxed to the following, writing τS(x, L) for the
hitting time of a ball of radius L around x . The proof is identical to that of Theorem 2.4
and is therefore omitted.

Theorem 5.4. Assume that

sup
L>0

sup
x∈V

inf
y∈B(x,L/2)

E⊗2
y

∑

k≥0

1Sk=S′
k ,Sk∈B(x,L/2),τS(x,L)>k,τS′ (x,L)>k = ∞. (51)

Then, β2 = 0.

5.2. β2 = 0 for the lattice supercritical percolation cluster. In this section, we consider
G to be a supercritical percolation cluster on Z

d , see Sect. 3.1 for definitions.

Theorem 5.5. β2 = 0 a.s. for SRW on the supercritical percolation cluster ofZd , d ≥ 2.

Recall the notion of pipe, see Definition 5.2. Theorem 5.5 follows at once from Propo-
sition 5.3 and the next lemma.

Lemma 5.6. For all L ≥ 1 and d ≥ 2, there exist a.s. infinitely many pipes of length L
in the supercritical percolation cluster.

Proof. PartitionZd to boxes of side L +1. Fix such a box B and let C denote the (unique)
infinite cluster. Let E denote all edges that connect two vertices in the boundary of B.
Define the events

A1 = {B ∩ C �= ∅}, A2 = { All edges in E are open}.
Note that A1 and A2 are increasing functions. Hence, by FKG and p > pc,

P(A1 ∩ A2) ≥ P(A1) · P(A2) > 0.

On the other hand, let PL denote the event that there exists in B a pipe (v1, . . . , vL) of
length L with v1 belonging to the boundary of B. Then since on A2, A1 only depends
on the configuration outside B, we have that

P(PL |A1 ∩ A2) = P(PL |A2) > 0.

Combining the above, we get

P(PL ∩ A1) ≥ P(PL ∩ A1 ∩ A2) > 0.

Thus, with positive probability, there exists a pipe of length L in the supercritical per-
colation cluster. By ergodicity, this implies the lemma. ��
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ℤ + pipes glued on {( , 0, … , 0)}

Fig. 3. The graph G5.7, for which 0 = β2 < βc

5.3. A transient graph with 0 = β2 < βc. Recall Definition 5.2. Consider the graph
G5.7 that is obtained by glueing to Z

d , on the kth vertex of the line

D := {(k, 0, . . . , 0) ∈ Z
d , k ≥ 1},

pipes of length k. See Fig. 3 for an illustration

Theorem 5.7. The polymer on G5.7/SRW with d ≥ 4 satisfies β2 = 0 and βc > 0.

Proof. In view of Proposition 5.3, for the first assertion it suffices to prove that βc > 0.
Denote by A = A(S) the event A = {S never enters D}. Then, when d ≥ 4,

P0(A) = PZ
d

0 (A) > 0,

where (PZ
d
, S) is the SRW on Zd .

We now introduce the martingale Wn(0, A) = E0[en1A]. We will prove that, for
some β > 0, Wn(0, A) is uniformly bounded in L2. This will imply that for such β,
E[W∞(0, A)] = P0(A) > 0, and since W∞(0) ≥ W∞(0, A) a.s., we further obtain that
E[W∞(0)] > E[W∞(0, A)] > 0 and hence, by Proposition 1.2, that βc > 0.

Turning to the L2 estimate, as in the proof of Proposition 5.1 we have, letting μ2 =
μ2(β) = e�2(β) − 1,

E

[
W∞(0, A)2

]

= 1 +
∞∑

k=1

μk
2

∑

1≤n1<···<nk

E⊗2
0

[
1Sn1=S′

n1
,...,Snk=S′

nk
1A(S)1A(S′)

]
,

with
∑

1≤n1<···<nk

E⊗2
0

[
1Sn1=S′

n1
,...,Snk=S′

nk
1A(S)1A(S′)

]

=
∑

1≤n1<···<nk

(
EZ

d

0

)⊗2 [
1Sn1=S′

n1
,...,Snk=S′

nk
1A(S)1A(S′)

]

≤
∑

1≤n1<···<nk

(
EZ

d

0

)⊗2 [
1Sn1=S′

n1
,...,Snk=S′

nk

]
.
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Therefore, we obtain by summing that, for β small, since d ≥ 4,

E

[
W∞(0, A)2

]
≤ E

[(
WZ

d

∞ (0)
)2
]

< ∞,

where WZ
d

∞ (0) denotes W∞(0) for the polymer on Z
d /SRW.

We turn to the last assertion of the theorem. By Corollary 2.25, it is enough to show
thatG satisfies Liouville’s property. Let h be a harmonic function onG. By harmonicity,
h = hk on the kth pipe. Thus, h restricted to Z

d is again harmonic. Since Zd satisfies
the Liouville property, it follows that so does G. ��

6. Polymers on Tree Structures

Throughout this section we take S to be the λ-biased random walk on either the Galton–
Watson trees with offspring distribution (pk)k≥0 such thatm = ∑

kpk > 1 (conditioned
on non-extinction if p0 > 0), or on the canopy tree, see Sects. 3.2 and 3.3 for definitions.
We write Dn = {v ∈ V : d(v, o) = n} for vertices at level n of the tree. In the case of the
Galton–Watson tree, expectations and probabilities with respect to the randomness of the
treewill be denoted by Eμ andμ respectively.When p0 > 0, wewrite q = μ(extinction)
and μ0(·) = μ(·| non-extinction).

6.1. The positive recurrent Galton–Watson tree (λ > m). Let (T , (Sk)) be the walk on
the Galton–Watson tree T with parameters λ > m > 1, as defined in Sect. 3.2.

Theorem 6.1. Assume λ > m. Then, almost surely on the realization of T , strong
disorder always holds (βc = 0). Moreover,

(i) If the tree is m−1 regular (i.e. pm = 1 for some integer m), then very strong disorder
always holds, i.e. β̄c(T ) = 0, a.s.

(ii) More generally, if sup{d : pd > 0} < λ, then μ0-a.s, β̄c(T ) = 0.
(iii) If Eμ[|D1| log+ |D1|] < ∞, p0 > 0 and there exists some d > λ such that pd > 0,

then β̄c(T ) > 0, μ0-a.s.

Remark 6.2. Point (iii) shows in particular that there are positive recurrent walks such
that very strong disorder does not always hold.

Proof. The fact that βc = 0 comes from Theorem 2.11. In order to see (i), let Xn = |Sn|.
Then (Xn) is a randomwalk on Z+ with a bias towards 0 which is constant on each point
of Z+. Therefore, the return time to 0 of (Sn) admit exponential moments and by [14],
very strong disorder always holds. Point (ii) holds since the problem can be reduced to
a random walk (Yn) on half a line with inhomogeneous bounded bias towards the root.
By a standard coupling argument, the walk (Xn) will stochasticaly dominate the walk
(Yn), which then implies, following from (i), exponential moments for the return time.

We next prove (iii). Letting Z = limn m−n|Dn|, it follows from the Kesten-Stigum
theorem [39] that the condition Eμ[|D1| log+ |D1|] < ∞ implies that μ0(Z > 0) = 1.
Thus, for ε > 0 small and any c > 0,

if An = {|D�(log n)c�| ≥ (m − ε)�(log n)c�}, then μ0(∪m≥1 ∩n≥m An) = 1. (52)
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In what follows, we write l = ln = �(log n)c�. Now fix any d > λ such that pd > 0 and
denote by Rn the (d + 1)-regular tree of depth L = �log log n�. With a slight abuse of
notation we also let

Bn = {There is at least one Rn rooted at one of the vertices of Dl}.
On the event An , there are at least (m− ε)l vertices in Dl that may independently spawn
Rn with probability pQd pd

L

0 , where Q = 1 + d + · · · + dL−1. Therefore,

∑

n≥0

μ0(An, B
c
n) ≤ (1 − q)−1

∑

n≥0

(
1 − pQd pd

L

0

)(m−ε)l

< ∞,

where the finiteness of the last sum comes from taking c = c(d) large enough. By the
Borel–Cantelli lemma and (52), we thus obtain that

μ0(∪m≥1 ∩n≥m Bn) = 1. (53)

We now fix a realization of the infinite tree T and n large so that Bn holds, and pick an
Rn corresponding to that event. [Such an n exists μ0-almost surely by (53)]. Introduce
the event

Fn(S) := {Sl ∈ Rn,

|Sk+1| = |Sk | + 1 for k = 1, . . . l + L , |Sk | > l for k = l + L + 1, . . . , n}.
In words, the event Fn(S) means that the random walk goes directly to the bottom of
one of theRn , and does not reach the root of thatRn before time n. What we show next
is that the event Fn(S) has sub-exponential probability, namely that there exists positive
constants c1, c2 that depend only on λ and d, such that for all n large enough,

Po(Fn) ≥ exp

{

−c1
n

(log n)c2

}

. (54)

To prove (54), we first observe that on Bn , the event {Sl ∈ Rn, |Sk+1| = |Sk |+1 for k =
1, . . . l + L} has probability bounded from below by Ce−(l+L). Once at the bottom, the
probability of reaching the top of Rn before returning to the bottom of Rn equals the
probability of reaching L before reaching 1 for a SRW on [1, L] ∩ N started at 2, with
probability λ/(λ+d) to go right and d/(λ+d) to go left. Since d > λ, this probability is
equivalent as L → ∞ to c3( λ

d )L , with c3 = c3(λ, d). Therefore, the probability starting
from the bottom ofRn not to reach the root ofRn at all before time n is bounded from
below by (recall that L = �log log n�)

(

1 − c3

(
λ

d

)L
)n

∼ e−c4 n

(log n)log(d/λ)
,

for some constant c4 = c4(d, λ), where we recall that L = �log log n�. Combining these
estimates with the Markov property leads to (54).

We can now turn to the conclusion of the proof. Define Yn := Eo[en Fn]. We will
show below that for β > 0 small enough,

∃β > 0, EY 2
n ≤ e�2(β)(l+L). (55)



Directed Polymers on Infinite Graphs 423

Assuming (55), we have by the Paley–Zygmund inequality that

P

(

Yn ≥ 1

2
E[Yn]

)

≥ 1

4

E[Yn]2
EY 2

n
≥ 1

4
exp

(

−3c1
n

(log n)c2

)

, (56)

for n large enough, where we used (54) and that E[Yn] = Po(Fn). Since Wn ≥ Yn , we
further obtain from (56) that there exists a positive sequence αn satisfying αn = o(n) as
n → ∞, such that

P(logWn ≥ −αn) ≥ Ce−c′αn , (57)

for some positive constants C and c′. On the other hand, if very strong disorder holds
for β > 0, that is if E[logWn] ≤ −εn for n large enough and some ε ∈ (0, 1), then by
the concentration inequality (6), we obtain that

P

(
logWn ≥ −ε

2
n
)

≤ e−C ′(β)nε2 ,

which cannot hold in the same time as (57). and hence very strong disorder does not
hold for such β.

We now come back to the proof of (55). We have,

EY 2
n = E⊗2

o

[

e
�2(β)

∑n
k=1 1Sk=S′

k Fn(S)Fn(S
′)
]

.

Since on Fn , both walks go directly to the bottom of some Rn as above (this takes
(log n)c steps), we have that for x0 which is a leaf of Rn that

EY 2
n ≤ eλ2(β)(l+L)E⊗2

x0

[

e
λ2
∑n

k=1 1Sk=S′
k 1S and S′ do not exitRn before time n

]

.

Then, observe that the number of intersections of the walks before they leave Rn is
stochastically dominated by the total number of intersections that would occur in any
infinite tree having Rn attached to some vertex. In particular, (55) holds if we can find
such an infinite tree T for which β2 > 0. We will choose T to be the canopy tree with
parameters m = d and λ, see Sect. 3.3 for definitions. The claimed finiteness of β2 for
the canopy tree now follows from Theorem 6.6. ��

6.2. The transient Galton–Watson tree (λ < m). Let (T , (Sk)) be the walk on the
Galton–Watson tree T with parameters λ < m, as defined in Sect. 3.2.

Theorem 6.3. Assume that m > 1, λ < m, and p0 = 0. Then, almost surely on the
realization of T , βc > 0. If further p1 > 0, then β2 = 0.

We remark that the particular case λ = 1, which corresponds to the SRW, is covered by
Theorem 6.3.

Proof. That β2 = 0 when p1 > 0 follows from Proposition 5.3 upon observing that
there exist (due to p1 > 0) arbitrarily long pipes.We thus only need to prove that βc > 0.
Throughout the proof,wewriteGW for the lawofT , and abbreviate P = Po, P⊗2 = P⊗2

o ,
with similar notation for expectation. Recall that for v ∈ V , τv = inf{k > 0 : Sk = v}.
A preliminary step is the following lemma.
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Lemma 6.4. There exists c ∈ (0,∞) such that GW-a.s., there exists N = N (T ) > 0
such that for all n ≥ N,

sup
v∈Dn

P(τv < ∞) ≤ e−cn . (58)

Proof. Let δ > 0. For w ∈ V and j a descendant of w, define

A(w, j) = 1Pw(τ j=∞)>δ.

For v ∈ Dn , let [x0 = o, . . . , xn = v] be the unique simple path connecting the root to
v. It follows from [25, Lemma 2.2] that for δ > 0 small enough, there exist α > 0 and
N0(T ) such that for n ≥ N0(T ),

GW − a.s, inf
v∈Dn

n−1
n∑

i=1

A(xi−1, xi ) ≥ α.

Fix v ∈ Dn . By the Markov property, we have that for n ≥ N0(T ),

P(τv < ∞) =
n∏

i=1

Pxi−1(τxi < ∞) ≤ (1 − δ)αn,

where the last bound holds uniformly over v ∈ Dn . ��
Wealso need the following lemma. In the statement, S, S′ denote two independent copies
of (Sk) on T . Let FS denote the σ -algebra generated by S. Also, let

N = {k ≥ 0 : Sk = S′
k}, V = {v ∈ V : Sk = v for some k ∈ N }

denote the intersection times and locations of S and S′.

Lemma 6.5. There exists c2 ∈ (0,∞) such that GW-a.s., there exists �0 = �0(T , S) so
that

for all � > �0, P⊗2 (V ∩ (∪m≥�Dm) �= ∅∣∣FS
) ≤ e−c2�, GW−a.s. (59)

Proof. We say that � is a regeneration level for S if there is a time σ ≥ 0 such that
|Sk | ≥ � for all k ≥ σ . It follows from [25, Lemma 4.2] that S possesses infinitely many
regeneration levels, whose successive differences are independent and admit exponential
moments under the annealed lawGW×P. In particular, this implies that, for some c > 0,

EGWP(there is no regeneration level for S in [�/2, �]) ≤ e−c�. (60)

Therefore, by the Borel–Cantelli lemma, GW × P a.s., there is at least one regeneration
level �0 for S in [�/2, �] for � ≥ �1(T , S) large enough. We continue the proof on that
event.

Let h ∈ D� be the last vertex visited by S at level �/2 before it regenerates at level
�0. We have, using Lemma 6.4 at the second inequality, that

P⊗2 (V ∩ (∪m≥�Dm) �= ∅∣∣FS
) ≤ P(τh(S

′) < ∞) ≤ e−c�/2.

��
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We return to the proof of Theorem 6.3. By Theorem 2.22, it is enough to show that
for some β > 0,

E⊗2
[
e�2(β)|N |

∣
∣
∣FS

]
< ∞, GW × P − a.s. (61)

It follows from [46] that

|Sk |
k

→ v > 0, GW × P − a.s. (62)

In particular, there is a random variable c1 = c1(S) such that for all k ≥ 1, S does not
spend more than c1v−1k time above level k. Setting

L = inf
{
� ≥ 0 : V ∩ (∪m≥�Dm) = ∅} ,

we obtain from the Borel–Cantelli lemma and (59) that L < ∞, GW × P⊗2-a.s., and
therefore

E⊗2
[
e�2|N |

∣
∣
∣FS

]
=
∑

k≥0

E⊗2
[
e�2|N |1L=k

∣
∣
∣FS

]
≤
∑

k≥0

ec1�2v
−1k E⊗2 [1L=k |FS]

≤ e�2T�0(T ,S) +
∑

k≥0

e�2c1v−1ke−c2k, (63)

where in the last inequality, �0 is as in Lemma 6.5, T�0(T ,S)(S) denotes the last time k
with |Sk | ≤ �0(T , S), and we used (59). Taking β small enough so that �2c1 < c2v
ensures that the right hand side of (63) is finite, GW × P-a.s. This concludes the proof.

��

6.3. The canopy tree. We consider the walk (T, (Sk)) on the canopy tree T defined in
Sect. 3.3, with parameters m = d > λ > 1. In this section, we prove the following:

Theorem 6.6. β2 > 0 for the polymer on (T, (Sk)) with m > λ > 1.

Even though the walk is in this case reversible and transient, the existence of an L2-
region is not simply implied by Theorem 2.6 because, with cxy denoting the conductance
of the edge (x, y), the reversing measure π(x) := ∑

x∼y cxy = λ�−1(λ+m) if x belongs
to level �, is diverging when � → ∞.

We briefly describe the situation. When m > λ, there is inside each finite (m + 1)-
regular sub-tree of the canopy tree a downwards drift which create traps for the walk, in
the sense that the walk will spend a long time in finite subtrees at the bottom of the tree
before exiting them forever by transience. Even though the walk will spend significant
time in these finite sub-trees, the branching structure (m > 1) makes it hard for two
independent copies to meet frequently, and this combined with transiences allow for an
L2-region to exist.

The rest of the section is devoted to the proof of Theorem 6.6. Section 6.3.1 develops
some preliminary standard (one dimensional) random walk estimates. Section 6.3.2
contains the actual proof.



426 C. Cosco, I. Seroussi, O. Zeitouni

6.3.1. Randomwalk estimates Fixκ > 1.Consider the randomwalk (Xk)on {0, 1, . . . , �}
with conductances γ i on the edge (i, i + 1), i = 0, . . . , � − 1. Let τi = min{t > 0 :
Xt = i}. We write Pi for the law of the random walk with X0 = i .

Lemma 6.7. There exists a constant c > 0 such that for all � > 0 and t > 0,

P�(τ0 = t) ≤ cγ −�. (64)

Proof. By a conductance computation, q� := P�(τ0 < τ�) ≤ cγ −� for some constant
c. We use the pathwise decomposition τ0 = ∑G

j=1 τ̂ j + τ̂0, where τ̂ j are i.i.d. and have
the law of τ� under P� conditioned on τ� < τ0, G is a geometric random variable of
success parameter q�, and τ̂0 has the law of τ0 under P� and conditioned on τ0 < τ�,
with independence of the τ̂ j s, G and τ̂0. Then,

P�

⎛

⎝
G∑

j=1

τ̂ j = t

⎞

⎠ =
∞∑

k=0

P(G = k)P�

⎛

⎝
k∑

j=1

τ̂ j = t

⎞

⎠

≤ q� E�

⎡

⎢
⎣

∞∑

k=0

1 k∑

j=1
τ̂ j=t

⎤

⎥
⎦ ≤ cγ −�,

where in the last inequality, we have used that the quantity inside the expectation on the
second line is almost-surely bounded by 1 since k → ∑k

j=1 τ̂ j visits at most once t (the

τ̂ j ’s are positive). We finally obtain that

P�(τ0 = t) =
t∑

s=0

P�

⎛

⎝
G∑

j=1

τ̂ j = s

⎞

⎠P�(τ̂0 = t − s) ≤ cγ −�.

��

6.3.2. Proof of Theorem 6.6 Equipped with the estimates in Sect. 6.3.1, we can now
proceed with the:

Proof of Theorem 6.6. We will prove that condition (39) is verified, that is

sup
x∈T

∑

t≥0

∑

y∈T
pt (x, y)

2 < ∞. (65)

For x, y ∈ T, recall the definition of the Green function:

G(x, y) =
∑

t≥0

pt (x, y) = Ex

⎡

⎣
∑

t≥0

1St=y

⎤

⎦ .

For all � ≥ 0, we label by � ∈ T the �th vertex on the left-most ray of T, see Fig. 1. We
first observe that:

sup
�≥0

G(�, �) < ∞. (66)
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Indeed, the number of visits of (S) to � is, by transience, stochastically dominated by
the number of visits to site � of biased random walk on Z, with jump probability to the
right equal to λ/(λ + 1) and geometric holding times, started at �. The law of the latter
is independent of �, and by transience, its Green function is bounded. This proves (66).

We next show that

sup
�0≥0

∑

t≥0

∑

y∈T
pt (�0, y)

2 < ∞. (67)

Note that by the symmetry properties of the canopy tree, this will directly entail (65).
For all � ≥ 0, let T(�) denote the (m + 1)-regular tree of height � rooted at � ∈ T of
degree m, see Fig. 1. We decompose:

∑

t

∑

y∈T
pt (�0, y)

2

=
∑

t

∑

y∈T(�0)

pt (�0, y)
2 +

∑

t

∑

�>�0

∑

y∈T(�)\T(�−1)

pt (�0, y)
2 =: A�0 + B�0 .

We first deal with A�0 . For � ≥ 0, define p̄(�)
t to be the transition probability of S after

all vertices at the same level in T(�) have been glued together and the corresponding
conductances have been summed. Label by w ∈ [0, �] the node of depth w in the glued
version of T(�), so that p̄(�)

t (w,w′) stands for the probability for (Sk) to go from depth
w to depth w′ in T(�) after t steps.

By symmetry, we observe that pt (�, y) = m−w p̄(�)
t (0, w) for all y ∈ T(�) of depth

w. Moreover, by reversibility,

p̄(�)
t−s(0, w) =

(m

λ

)w

p̄(�)
t−s(w, 0). (68)

Therefore,

∑

t≥0

∑

y∈T(�0)

pt (�0, y)
2 =

∑

t≥0

�0∑

w=0

mwm−2w p̄(�0)
t (0, w)2

≤
∞∑

w=0

λ−w
∑

t≥0

p̄(�0)
t (w, 0). (69)

By the Markov property, the identity p̄(�)
t (0, 0) = p̄t (�, �) and (66), we have that

∑

t≥0

p̄(�)
t (w, 0) ≤

∑

t≥0

p̄(�)
t (0, 0) ≤ sup

�≥0
G(�, �) < ∞, (70)

and it follows from (69) that sup�0
A�0 < ∞ since λ > 1.

We turn to B�0 . By the Markov property, we have that

B�0 =
∑

t

∑

�>�0

∑

y∈T(�)\T(�−1)

(
t∑

s=0

P�0(τ� = s)pt−s(�, y)

)2
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where τ� denotes the first hitting time of � ∈ T. By symmetry, as in (69),

B�0 ≤
∑

t≥0

∑

�>�0

�∑

w=1

m−w

(
t∑

s=0

P�0(τ� = s) p̄(�)
t−s(0, w)

)2

=: B(1)
�0

+ B(2)
�0

,

where in B(1)
�0

the sum inw is restricted tow ≤ �−�0. By (68) and since
∑t

s=0 P�0(τ� =
s) p̄(�)

t−s(0, w) ≤ 1, we have that

B(2)
�0

≤
∑

t≥0

∑

�>�0

�∑

w=�−�0+1

λ−w

(
t∑

s=0

P�0(τ� = s) p̄(�)
t−s(w, 0)

)

,

so by summing first over t ≥ 0 and using (70), we find that

sup
�0≥0

B(2)
�0

≤ sup
�≥0

G(�, �)
∑

�>�0

λ−(�−�0+1) < ∞.

Identity (68) further gives that

B(1)
�0

=
∑

t≥0

∑

�>�0

�−�0∑

w=1

m−w
(m

λ

)2w
(

t∑

s=0

P�0(τ� = s) p̄(�)
t−s(w, 0)

)2

,

and we have by estimates (64) with conductance m/λ, and (70), letting k� = c (m/λ)�,

(
t∑

s=0

P�0(τ� = s) p̄(�)
t−s(w, 0)

)

≤ k−1
�−�0

∑

t≥0

p(�)
t (w, 0) ≤ C k−1

�−�0
,

for some finite C , so that

B(1)
�0

≤ C
∑

�>�0

k−1
�−�0

�−�0∑

w=1

( m

λ2

)w

⎛

⎝
∑

t≥0

t∑

s=0

P�0(τ� = s) p̄(�)
t−s(w, 0)

⎞

⎠ .

The sum inside the above parenthesis is again uniformly bounded from above.Moreover,
there is some C < ∞ such that:

�∑

w=1

( m

λ2

)w ≤

⎧
⎪⎨

⎪⎩

C if m < λ2,

� if m = λ2,

C
(
m/λ2

)�
if m > λ2.

In any case,
∑

�>0 k
−1
�

∑�
w=1

(
m/λ2

)w
< ∞, so putting things together we obtain that

sup�0
B�0 < ∞, which concludes the proof. ��
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6.4. Presence of an L2-region for a recurrent walk. Let T2 be the infinite binary tree
and denote its root by o. We will define a walk on T2 which, at each step, goes down
with probability 1/2 from a vertex to one of its children, until a clock rings and brings
the walk back to the root. If the distribution of the clock has a sufficiently heavy tail,
the number of intersections of two independent walk will be small enough to allow for
β2 > 0.

Turning to the actual construction, consider the graph product G0 = T2 × Z
2 where

Z
2 stands for the two-dimensional lattice. Let G = (V, E) be the subgraph of G0 where

V = {(v, x) ∈ G0 : d(o, v) ≥ ‖x‖1} and E contains the edges of G0 for which both
ends are in V . Let q(x, y) = 1/4 if x, y ∈ Z

2 satisfy |x − y| = 1. Define the walk
Sn = (Tn, Xn) on G by the transition probabilities

p((v, x), (w, y)) =

⎧
⎪⎨

⎪⎩

1
2q(x, y) if w is a child of v and y �= 0,
q(x, y) if y = 0 and w = o,
0 otherwise,

for all edges ((v, x), (w, y)) ∈ E . Defined as such, (Xn) is the SRW on Z
2 and Tn is a

walk on the binary tree such that Tn jumps to one of his children with probability 1/2
when Xn+1 �= 0 and jumps back to the root when Xn+1 = 0.

Theorem 6.8. Thewalk (Sn) is recurrent and satisfiesβ2 > 0 for the associated polymer.

Proof. Note that (Xn) is the SRW on Z2. Since (Xn) visits infinitely many often 0, and
since Tn = o whenever this happens, (Sn) is recurrent.

We now check that the condition in (39) is verified. For two independent copies
S = (X, T ), S′ = (X ′, T ′) of S, let τ0 = 0 and define recursively τn+1 = inf{k > τn :
Xk = X ′

k = 0}, with the convention that the infimum over an empty set is equal to
infinity. Further let K = K (X, X ′) = ∑

k≥0 1Xk=X ′
k=0.

For any (v, x) ∈ V , we have

E⊗2
(v,x)

[ ∞∑

n=1

1Sn=S′
n

]

≤ E⊗2
(v,x)

[ ∞∑

n=1

1Tn=T ′
n

]

= E⊗2
(v,x)

[
K∑

k=0

E⊗2
(v,x)

[
τk+1−1∑

n=τk

1Tn=T ′
n

∣
∣
∣
∣
∣
X, X ′

]]

.

Let T̃ , T̃ ′ be independent copies of the random walk on T2 which at each step, goes
down to one of its children with probability 1/2. By Markov’s property, we have

E⊗2
(v,x)

[
τk+1−1∑

n=τk

1Tn=T ′
n

∣
∣
∣
∣
∣
X, X ′

]

≤ E⊗2
o

[ ∞∑

n=0

1T̃n=T̃ ′
n

]

= 1 + E[G],

where G is a geometric random variable of parameter 1/2. Therefore,

E⊗2
(v,x)

[ ∞∑

n=1

1Sn=S′
n

]

≤ (1 + E[G])E⊗2
(v,x) [K ] ,

where E⊗2
(v,x) [K ] = ∑

n≥0 Px (Xn = 0)2 ≤ ∑
n≥0 cn

−2 < ∞ by the local limit theorem
for the simple random walk, uniformly in (v, x) ∈ V . Hence, by Khasminskii’s lemma,
β2 > 0 for the polymer associated with (Sn). ��
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7. Conclusions and Open Problems

We have presented some elements of a theory of polymers on general graphs. Our study
leaves several important open questions. The comments below address some of these.

1. It is natural towonderwhether, in a conductancemodel,βc ismonotonewith respect to
adding edges. Maybe counter-intuitively, the answer is no. The following is a counter
example. Consider the SRW on Z

3
+, which satisfies βc > 0. This corresponds to a

conductancemodel onZ3
+ with all edges having conductance equal to 1. Now increase

the conductance between (i, j, k) ∈ Z
3
+ and (i + 1, j, k) to ee

i
. (This corresponds to

adding edges between i and i+1,more andmore as i → ∞.) Then, byBorel–Cantelli,
the random walk eventually goes ballistically on a path (i, a, b) → (i + 1, a, b) →
(i + 2, a, b) . . ., with some random a, b, and in fact the probability that this did not
happen before time n decays super exponentially in n. Now a repeat of the proof of
Proposition 4.1 leads to the conclusion that βc = 0.

2. We showed in Sect. 6.4 that there is a pair (G, S) where S is recurrent but the
polymer has β2 > 0. Is there a reversible recurrent pair (G, S) with βc > 0 or
β2 > 0? Theorem 2.1 shows that such pair with β2 > 0 must necessarily satisfy that
infx π(x) = 0. We note that recurrent graphs with a.s. finitely many collisions of two
copies of SRW were constructed in [40], however in those examples β2 = 0.

3. Is βc > 0 for SRW on the supercritical percolation cluster on Z
d , d ≥ 3? Theo-

rem 5.5 shows that β2 = 0 in that setup. For d = 2, βc = 0 as follows from either
Remarks 2.17 or 2.20.

4. In Sect. 6, we showed that for the λ-biased random walk on the Galton–Watson tree,
βc > 0 in the transient case (with p0 = 0) and βc = 0 in the positive recurrent
case. We left open the null recurrent case (m = λ). An application of [50] shows that
β2 = 0, even in the case p1 = 0. Unfortunately, it seems that the CLT in [50] rules
out the applicability of Theorem 2.22.
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