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Abstract: We present a new construction of the Euclidean ®* quantum field theory
on R? based on PDE arguments. More precisely, we consider an approximation of the
stochastic quantization equation on R defined on a periodic lattice of mesh size ¢ and
side length M. We introduce a new renormalized energy method in weighted spaces
and prove tightness of the corresponding Gibbs measures as ¢ — 0, M — oo. Every
limit point is non-Gaussian and satisfies reflection positivity, translation invariance and
stretched exponential integrability. These properties allow to verify the Osterwalder—
Schrader axioms for a Euclidean QFT apart from rotation invariance and clustering.
Our argument applies to arbitrary positive coupling constant, to multicomponent mod-
els with O(N) symmetry and to some long-range variants. Moreover, we establish an
integration by parts formula leading to the hierarchy of Dyson—Schwinger equations for
the Euclidean correlation functions. To this end, we identify the renormalized cubic term
as a distribution on the space of Euclidean fields.
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1. Introduction

Let Ay = (eZ)/ (M 7))3 be a periodic lattice with mesh size ¢ and side length M
where M /(2¢) € N. Consider the family (vy ¢)m.e of Gibbs measures for the scalar
field ¢ : Ay — R, given by
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where V, denotes the discrete gradient and ayy ¢, by ¢ are suitable renormalization con-
stants, m> € R is called the mass and A > 0 the coupling constant. The numerical factor
in the exponential is chosen in order to simplify the form of the stochastic quantization
equation (1.3) below. The main result of this paper is the following.

Theorem 1. 1 There exists a choice of the sequence (ap ¢, by.e)m,e such that for any
A > 0.and m* € R, the family of measures (VM. e)M e approprlately extended to S'(R?)
is tight. Every accumulation point v is translation invariant, reflection positive and
non-Gaussian. In addition, for every small k > 0 there exists 0 > 0, B > 0 and
v = 0(k) > 0 such that

/ explBIl(L+1- 1)@l 2 Jv(dg) < oo (1.2)
(®3)

Every v satisfies an integration by parts formula which leads to the hierarchy of the Dyson—
Schwinger equations for n-point correlation functions.

For the precise definition of translation invariance and reflection positivity (RP) we
refer the reader to Section 5.

The proof of convergence of the family (v ¢) m,¢ has been one of the major achieve-
ments of the constructive quantum field theory (CQFT) program [VW73,Sim74,GJ87,
Riv91,BSZ92,Jaf00,Jaf08,Sum12] which flourished in the 70s and 80s. In the two di-
mensional setting the existence of an analogous object has been one of the early suc-
cesses of CQFT, while in four and more dimensions (after a proper normalization) any
accumulation point is necessarily Gaussian [FFS92].

The existence of an Euclidean invariant and reflection positive limit v (plus some
technical conditions) implies the existence of a relativistic quantum field theory in the
Minkowski space-time R'*? which satisfies the Wightman axioms [Wig76]. This is a
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minimal set of axioms capturing the essence of the combination of quantum mechan-
ics and special relativity. The translation from the commutative probabilistic setting
(Euclidean QFT) to the non-commutative Minkowski QFT setting is operated by a set
of axioms introduced by Osterwalder—Schrader (OS) [OS73,0S875] for the correlation
functions of the measure v. These are called Schwinger functions or Euclidean corre-
lation functions and shall satisfy: a regularity axiom, a Euclidean invariance axiom, a
reflection positivity axiom, a symmetry axiom and a cluster property.

Euclidean invariance and reflection positivity conspire against each other. Mod-
els which easily satisfy one property hardly satisfy the other if they are not Gaus-
sian, or simple transformations thereof, see e.g. [AY02,AY(09]. Reflection positivity
itself is a property whose crucial importance for probability theory and mathemati-
cal physics [Bis09,Jaf18] and representation theory [NO18,JT18] has been one of the
byproducts of the constructive effort.

The original proof of the OS axioms, along with additional properties of the limit-
ing measures which are called Cl)g‘ measures, is scattered in a series of works covering
almost a decade. Glimm [Gli68] first proved the existence of the Hamiltonian (with an
infrared regularization) in the Minkowski setting. Then Glimm and Jaffe [GJ73] intro-
duced the phase cell expansion of the regularized Schwinger functions, which revealed
itself a powerful and robust tool (albeit complex to digest) in order to handle the local
singularities of Euclidean quantum fields and to prove the ultraviolet stability in finite
volume (i.e. the limit ¢ — 0 with M fixed). The proof of existence of the infinite vol-
ume limit (M — o0) and the verification of Osterwalder—Schrader axioms was then
completed, for A small and using cluster expansion methods, independently by Feld-
man and Osterwalder [FO76] and by Magnen and Sénéor [MS76]. Finally the work of
Seiler and Simon [SS76] allowed to extend the existence result to all A > 0 (this is
claimed in [GJ87] even though we could not find a clear statement in Seiler and Simon’s
paper). Equations of motion for the quantum fields were established by Feldman and
Raczka [FR77].

Since this first, complete, construction, there have been several other attempts to sim-
plify (both technically and conceptually) the arguments and the @‘3‘ measure has been
since considered a test bed for various CQFT techniques. There exists at least six methods
of proof: the original phase cell method of Glimm and Jaffe extended by Feldman and
Osterwalder [FO76], Magnen and Sénéor [MS76] and Park [Par77] (among others), the
probabilistic approach of Benfatto, Cassandro, Gallavotti, Nicol6, Olivieri, Presutti and
Schiacciatelli [BCG+78], the block average method of Balaban [Bal83] revisited by Di-
mock in [Dim13a,Dim13b,Dim14], the wavelet method of Battle-Federbush [Bat99],
the skeleton inequalities method of Brydges, Frohlich, Sokal [BFS83], the work of
Watanabe on rotation invariance [Wat89] via the renormalization group method of
Gawedzki and Kupiainen [GK86], and more recently the renormalization group method
of Brydges, Dimock and Hurd [BDH95].

It should be said that, apart from the Glimm—Jaffe—Feldman—Osterwalder—-Magnen—
Sénéor result, none of the additional constructions seems to be as complete and to verify
explicitly all the OS axioms. As Jaffe [JafO8] remarks:

“Not only should one give a transparent proof of the dimensiond = 3 construction,
but as explained to me by Gelfand [private communication], one should make it
sufficiently attractive that probabilists will take cognizance of the existence of a
wonderful mathematical object.”

The proof of Theorem 1.1 uses tools from the PDE theory as well as recent advances
in the field of singular SPDEs, without using any input from traditional CQFT. It applies
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to all values of the coupling parameter A > 0 as well as to natural extensions to N-
dimensional vectorial and long-range variants of the model.

Our methods are very different from all the known constructions we enumerated
above. In particular, we do not rely on any of the standard tools like cluster expansion
or correlation inequalities or skeleton inequalities, and therefore our approach brings a
new perspective to this extensively investigated classical problem, with respect to the
removal of both ultraviolet and infrared regularizations.

Showing invariance under translation, reflection positivity, the regularity axiom of
Osterwalder and Schrader and the non-Gaussianity of the measure, we go a long way
(albeit not fully reaching the goal) to a complete independent construction of the <I>‘31
quantum field theory. Furthermore, the integration by parts formula that we are able to
establish leads to the hierarchy of the Dyson—Schwinger equations for the Schwinger
functions of the measure.

The key idea is to use a dynamical description of the approximate measure which re-
lies on an additional random source term which is Gaussian, in the spirit of the stochastic
quantization approach introduced by Nelson [Nel66,Nel67] and Parisi and Wu [PW81]
(with a precursor in a technical report of Symanzik [Sym64]).

The concept of stochastic quantization refers to the introduction of a reversible
stochastic dynamics which has the target measure as the invariant measure, here in par-
ticular the CI>2 measure in d dimensions. The rigorous study of the stochastic quantization
for the two dimensional version of the ®* theory has been first initiated by Jona-Lasinio
and Mitter [JLM85] in finite volume and by Borkar, Chari and Mitter [ BCM88] in infinite
volume. A natural d = 2 local dynamics has been subsequently constructed by Albeve-
rio and Rockner [AR91] using Dirichlet forms in infinite dimensions. Later on, Da Prato
and Debussche [DPD03] have shown for the first time the existence of strong solutions
to the stochastic dynamics in finite volume. Da Prato and Debussche have introduced
an innovative use of a mixture of probabilistic and PDE techniques and constitute a
landmark in the development of PDE techniques to study stochastic analysis problems.
Similar methods have been used by McKean [McK95b, McK95a] and Bourgain [Bou96]
in the context of random data deterministic PDEs. Mourrat and Weber [MW17b] have
subsequently shown the existence and uniqueness of the stochastic dynamics globally
in space and time. For the d = 1 dimensional variant, which is substantially simpler and
does not require renormalization, global existence and uniqueness have been established
by Iwata [Iwa87].

In the three dimensional setting the progress has been significantly slower due
to the more severe nature of the singularities of solutions to the stochastic quanti-
zation equation. Only very recently, there has been substantial progress due to the
invention of regularity structures theory by Hairer [Hail4] and paracontrolled dis-
tributions by Gubinelli, Imkeller, Perkowski [GIP15]. These theories greatly extend
the pathwise approach of Da Prato and Debussche via insights coming from Lyons’
rough path theory [Lyo098,1.Q02,LCL07] and in particular the concept of controlled
paths [Gub04,FH14]. With these new ideas it became possible to solve certain ana-
lytically ill-posed stochastic PDEs, including the stochastic quantization equation for
the <I>§' measure and the Kardar—Parisi-Zhang equation. The first results were limited
to finite volume: local-in-time well-posedness has been established by Hairer [Hail4]
and Catellier, Chouk [CC18]. Kupiainen [Kup16] introduced a method based on the
renormalization group ideas of [GK86]. Long-time behavior has been studied by Mour-
rat, Weber [MW 17a], Hairer, Mattingly [HM18b] and a lattice approximation in finite
volume has been given by Hairer and Matetski [HM18a] and by Zhu and Zhu [ZZ18].
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Global in space and time solutions have been first constructed by Gubinelli and Hof-
manovd in [GH18]. Local bounds on solutions, independent on boundary conditions,
and stretched exponential integrability have been recently proven by Moinat and We-
ber [MW18].

However, all these advances still fell short of giving a complete proof of the existence
ofthe CI>§1 measure on the full space and of its properties. Indeed they, including essentially
all of the two dimensional results, are principally aimed at studying the dynamics with
an a priori knowledge of the existence and the properties of the invariant measure. For
example Hairer and Matetski [HM 18a] use a discretization of a finite periodic domain to
prove that the limiting dynamics leaves the finite volume dbé measure invariant using the
apriori knowledge of its convergence from the paper of Brydges et al. [BFS83]. Studying
the dynamics, especially globally in space and time is still a very complex problem which
has siblings in the ever growing literature on invariant measures for deterministic PDEs
starting with the work of Lebowitz, Rose and Speer [LRS88,LLRS89], Bourgain [Bou94,
Bou96], Burq and Tzvetkov [BTO8b,BT08a,Tzv16] and with many following works
(see e.g. [CO12,CK12,NPS13,Chal4,BOP15]) which we cannot exhaustively review
here.

The first work proposing a constructive use of the dynamics is, to our knowledge, the
work of Albeverio and Kusuoka [AK17], who proved tightness of certain approximations
in a finite volume. Inspired by this result, our aim here is to show how these recent ideas
connecting probability with PDE theory can be streamlined and extended to recover a
complete and independent proof of existence of the <I>§ measure on the full space. In
the same spirit see also the work of Hairer and Iberti [HI18] on the tightness of the 2d
Ising—Kac model.

Soon after Hairer’s seminal paper [Hail4], Jaffe [Jaf15] analyzed the stochastic quan-
tization from the point of view of reflection positivity and constructive QFT and con-
cluded that one has to necessarily take the infinite time limit to satisfy RP. Even with
global solution at hand a proof of RP from dynamics seems nontrivial and actually the
only robust tool we are aware of to prove RP is to start from finite volume lattice Gibbs
measures for which RP can be established by elementary arguments.

Taking into account these considerations, our aim is to use an equilibrium dynamics
to derive bounds which are strong enough to prove the tightness of the family (vas.¢) e
To be more precise, we study a lattice approximation of the (renormalized) stochastic
quantization equation

@ +m?> — ANp+rp> —oop =&, (t,x) € Ry x R?, (1.3)

where & is a space-time white noise on R3. The lattice dynamics is a system of stochastic
differential equation which is globally well-posed and has vy . as its unique invariant
measure. We can therefore consider its stationary solution ¢y . having at each time the
law vy . We introduce a suitable decomposition together with an energy method in the
framework of weighted Besov spaces. This allows us, on the one hand, to track down
and renormalize the short scale singularities present in the model as ¢ — 0, and on the
other hand, to control the growth of the solutions as M — oo. As a result we obtain
uniform bounds which allow us to pass to the limit in the weak topology of probability
measures.

The details of the renormalized energy method rely on recent developments in the
analysis of singular PDEs. In order to make the paper accessible to a wide audience with
some PDE background we implement renormalization using the paracontrolled calculus
of [GIP15] which is based on Bony’s paradifferential operators [Bon81,Mey81,BCD11].
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We also rely on some tools from the paracontrolled analysis in weigthed Besov spaces
which we developed in [GH18] and on the results of Martin and Perkowski [MP17] on
Besov spaces on the lattice.

Remark 1.2. Let us comment in detail on specific aspects of our proof.

1. The method we use here differs from the approach of [GH18] in that we are initially
less concerned with the continuum dynamics itself. We do not try to obtain estimates
for strong solutions and rely instead on certain cancellations in the energy estimate
that permit to significantly simplify the proof. The resulting bounds are sufficient to
provide a rather clear picture of any limit measure as well as some of its physical
properties. In contrast, in [GH18] we provided a detailed control of the dynamics (1.3)
(in stationary or non-stationary situations) at the price of a more involved analysis.
Section 4.2 of the present paper could in principle be replaced by the corresponding
analysis of [GH18]. However the adaptation of that analysis to the lattice setting
(without which we do not know how to prove RP) would anyway require the further
preparatory work which constitutes a large fraction of the present paper. Similarly,
the recent results of Moinat and Weber [MW 18] (which appeared after we completed
a first version of this paper) can be conceivably used to replace a part of Section 4.

2. The stretched exponential integrability in (1.2) is also discussed in the work of Moinat
and Weber [MW 18] (using different norms) and it is sufficient to prove the original
regularity axiom of Osterwalder and Schrader but not its formulation given in the
book of Glimm and Jaffe [GJ87].

3. The Dyson—-Schwinger equations were first derived by Feldman and Raczka [FR77]
using the results of Glimm, Jaffe, Feldman and Osterwalder.

4. As already noted by Albeverio, Liang and Zegarlinski [ALZ06] on the formal level,
the integration by parts formula gives rise to a cubic term which cannot be interpreted
as a random variable under the <I>‘3L measure. Therefore, the crucial question that re-
mained unsolved until now is how to make sense of this critical term as a well-defined
probabilistic object. In the present paper, we obtain fine estimates on the approximate
stochastic quantization equation and construct a coupling of the stationary solution to
the continuum <I>§ dynamics and the Gaussian free field. This leads to a detailed de-
scription of the renormalized cubic term as a genuine random space-time distribution.
Moreover, we approximate this term in the spirit of the operator product expansion.

5. To the best of our knowledge, our work provides the first rigorous proof of a general
integration by parts formula with an exact formula for the renormalized cubic term.
In addition, the method applies to arbitrary values of the coupling constant A > 0 if
m? > 0and A > 0 if m?> < 0 and we state the precise dependence of our estimates
on A. In particular, we show that our energy bounds are uniform over A in every
bounded subset of [0, co) provided m? > 0 (see Remark 4.6). Let us recall that for
some m? = m%(k) the physical mass of the continuum theory is zero and it is said
that the model is critical. Existence of such a critical point was shown in [BFS83,
Section 9, Part (4)]. We note that this case is included in our construction, even though
we are not able to locate it since we do not have control over correlations. Its large
scale limit is conjectured to correspond to the Ising conformal field theory, recently
actively studied in [PRV19a] using the conformal bootstrap approach.

6. By essentially the same arguments, we are able to treat the vector version of the model,
where the scalar field ¢ : R> — R is replaced by a vector valued one ¢ : R? — RV
for some N € N and the measures vy . are given by a similar expression as (1.1),
where the norm |¢| is understood as the Euclidean norm in RY .
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7. Our proof also readily extends to the fractional variant of d>‘3‘ where the base Gaus-
sian measure is obtained from the fractional Laplacian (—A)Y with y € (21/22, 1)
(see Section 7 for details). In general this model is sub-critical for y € (3/4, 1)
and in the mass-less case it has recently attracted some interest since it is bootstrap-
pable [PRV19b,Beh19].

To conclude this introductory part, let us compare our result with other constructions
of the <D§ field theory. The most straightforward and simplest available proof has been
given by Brydges, Frohlich and Sokal [BFS83] using skeleton and correlation inequal-
ities. All the other methods we cited above employ technically involved machineries
and various kinds of expansions (they are however able to obtain very strong informa-
tion about the model in the weakly-coupled regime, i.e. when A is small). Compared to
the existing methods, ours bears similarity in conceptual simplicity to that of [BFS83],
with some advantages and some disadvantages. Both works construct the continuum <I>§1
theory as a subsequence limit of lattice theories and the rotational invariance remains
unproven. The main difference is that [BFS83] relies on correlation inequalities. On
the one hand, this restricts the applicability to weak couplings and only models with
N = (0,)1, 2 components (note that the N = 0 models have a meaning only in their
formalism but not in ours). But, on the other hand, it allows to establish bounds on the
decay of correlation functions, which we do not have. However, our results hold for ev-
ery value of A > 0 and m? € R while the results in [BFS83] work only in the so-called
“single phase region”, which corresponds to m?> > m%(k).

Our work is intended as a first step in the direction of using PDE methods in the
study of Euclidean QFTs and large scale properties of statistical mechanical models.
Another related attempt is the variational approach developed in [BG18] for the finite
volume CD§ measure. As far as the present paper is concerned the main open problem is
to establish rotational invariance and to give more information on the limiting measures,
in particular to establish uniqueness for small A. It is not clear how to deduce anything
about correlations from the dynamics but it seems to be a very interesting and challenging
problem.

Plan. The paper is organized as follows. Section 2 gives a summary of notation used
throughout the paper, Section 3 presents the main ideas of our strategy and Section 4,
Section 5 and Section 6 are devoted to the main results. First, in Section 4 we construct
the Euclidean quantum field theory as a limit of the approximate Gibbs measures vy ¢.
To this end, we introduce the lattice dynamics together with its decomposition. The main
energy estimate is established in Theorem 4.5 and consequently the desired tightness as
well as moment bounds are proven in Theorem 4.9. In Section 4.4 we establish finite
stretched exponential moments. Consequently, in Section 5 we verify the translation
invariance and reflection positivity, the regularity axiom and non-Gaussianity of any
limit measure. Section 6 is devoted to the integration by parts formula and the Dyson—
Schwinger equations. In Section 7 we discuss the extension of our results to a long-range
version of the <I>‘3‘ model. Finally, in Appendix A we collect a number of technical results
needed in the main body of the paper.

2. Notation

Within this paper we are concerned with the CI>§1 model in discrete as well as continuous

setting. In particular, we denote by A, = (eZ)? for e = 27N, N € Ny, the rescaled

. d . ..
lattice Z¢ and by Ay = eZ9 NTY, = ¢Z¢ N [—%, 4)" its periodic counterpart of
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size M > 0 such that M/(2¢) € N. For notational simplicity, we use the convention
that the case ¢ = 0 always refers to the continuous setting. For instance, we denote by
Ao the full space Ag = R4 and by A0 the continuous torus Ao = ']I‘fw. With the
slight abuse of notation, the parameter ¢ is always taken either of the form ¢ = 2~V
for some N € Ng, N > Ny, for certain Ny € Ny that will be chosen as a consequence
of Lemma A.9 below, or ¢ = 0. Various proofs below will be formulated generally for
g e A:={0, 27NN e No, N > Np} and it is understood that the case ¢ = 0 or
alternatively N = oo refers to the continuous setting. All the proportionality constants,
unless explicitly signalled, will be independent of M, &, A, m?. We will track the explicit
dependence on A as far as possible and signal when the constant depends on the value
of m? > 0. .

For f € 2'(A,) and g€ L'(Ay), respectively, we define the Fourier and the inverse
Fourier transform as

Ffk) = g? Z f(x)e—Zm'k-x’ f_lg(x) = /( . g(k)EZHik'xdk,

xeAg

where k € (¢7'T)? =: A, and x € A,. These definitions can be extended to discrete
Schwartz distributions in a natural way, we refer to [MP17] for more details. In general,
we do not specify on which lattice the Fourier transform is taken as it will be clear from
the context.

Consider a smooth dyadic partition of unity (¢;) j>_1 such that ¢_; is supported in
a ball around O of radius % o is supported in an annulus, ¢; () = ¢ (277 for j=0
and if |i — j| > 1 then supp ¢; N supp ¢; = ¥. For the definition of Besov spaces on

the lattice A, for e = 2=V, we introduce a suitable periodic partition of unity on A, as
follows

(k) j<N-1J

(k) = (,0]( s ‘ ,

# { 1=% i nyejk), j=N-—1J,

where k € ZA\g and the parameter J € Ny, whose precise value will be chosen be-
low independently on ¢ € A, satisfies 0 < N — J < J; := inf{j : suppyp; &
[—e~1/2,e71/2)4} — 00 as ¢ — 0. We note that by construction there exists £ € Z
independent of ¢ = 2~ such that J, = N — £.

Then (2.1) yields a periodic partition of unity on A,. The reason for choosing the
upper index as N — J and not the maximal choice J. will become clear in Lemma A.9
below, where it allows us to define suitable localization operators needed for our analysis.
The choices of parameters Ng and J are related in the following way: A given partition
of unity (¢;) j»—1 determines the parameters J in the form J, = N — £ for some £ € Z.
By the condition N — J < J; we obtain the first lower bound on J. Then Lemma A.9
yields a (possibly larger) value of J which is fixed throughout the paper. Finally, the
condition 0 < N — J implies the necessary lower bound Ny for N, or alternatively
the upper bound for ¢ = 27V < 27N and defines the set .A. We stress that once the
parameters J, Ny are chosen, they remain fixed throughout the paper.

Remark that according to our convention, ((p(i)) j>—1 denotes the original partition of

(2.1)

unity (¢;);j>—1 on R4, which can be also read from (2.1) using the fact that for e = 0
we have J, = oo.
Now we may define the Littlewood—Paley blocks for distributions on A, by

ASf = F @5 F ),
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which leads us to the definition of weighted Besov spaces. Throughout the paper, p
denotes a polynomial weight of the form

p(x) = (hx)™" = (1 + |hx|?) ™"/ (2.2)

for some v > 0 and & > 0. The constant 2 will be fixed below in Lemma 4.4 in order to
produce a small bound for certain terms. Such weights satisfy the admissibility condition
pxX)/p(y) < p'(x —y)forallx,y e RY. Fora € R, p,g € [1,00] and ¢ € [0, 1]
we define the weighted Besov spaces on A by the norm

1/q

1/q
||f||3;;;(,,)=( > 2””||A§»f||‘£p,s<,,)> =< > 2“/‘f||ij-.f||‘;,,.5) :

—1<j<N=-J —I<jSN-J

where L?¢ for ¢ € A\ {0} stands for the L? space on A, given by the norm

1/p
Ifllre = (ed > If(x)l”)

xel;

(with the usual modification if p = 00). Analogously, we may define the weighted
Besov spaces for explosive polynomial weights of the form p~!. Note that if ¢ = 0 then
ngz(p) is. the clasgical weighted Besov space By, ,(p). In the sequel, we also employ
the following notations

T (0) == By'no(p),  H™(p) == B35 (p).

In Lemma A.1 we show that one can pull the weight inside the Littlewood—Paley blocks
in the definition of the weighted Besov spaces. Namely, under suitable assumptions on
the weight that are satisfied by polynomial weights we have || f || B (p) ™ lefl B in
the sense of equivalence of norms, uniformly in ¢. We define the duality product on A,
by

(f.8de =6 > flx)g)

xelAg

and Lemma A.2 shows that B;,‘Z‘,e(p’l) is included in the topological dual of B}g (p)

for conjugate exponents p, p’ and q, ¢'.

‘We employ the tools from paracontrolled calculus as introduced in [GIP15], the reader
is also referred to [BCD11] for further details. We shall freely use the decomposition
fe=f<g+fog+f>g,where f > g =g > fand f o g, respectively, stands
for the paraproduct of f and g and the corresponding resonant term, defined in terms of
Littlewood—Paley decomposition. More precisely, for f, g € S'(A;) we let

f=<g:= Z AffA%g,  fog:= Z A fAg.

I<i jSN—J.i<j-1 I jSN—Ji~j

We also employ the notations f < g:= f <g+ fogand f xg:=f<g+f >g.
For notational simplicity, we do not stress the dependence of the paraproduct and the
resonant term on ¢ in the sequel. These paraproducts satisfy the usual estimates uniformly
in g, see e.g. [MP17], Lemma 4.2, which can be naturally extended to general Bg;; (p)
Besov spaces as in [MW17b], Theorem 3.17.
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Throughout the paper we assume that m> > 0 and we only discuss in Remark 4.6 how
to treat the case of m? < 0. In addition, we are only concerned with the 3 dimensional
setting and let d = 3. We denote by A, the discrete Laplacian on A, given by

d
Acf(@)=e2) (fx+ee) —2f()+ flx —ee)).  x €A,

i=1

where (e;);—1....q is the canonical basis of R?. It can be checked by a direct computation
that the integration by parts formula

(Ag f, 8iMe = — (Ve f, Veg)M,e

s if(x+ae,-)—f<x)g(x+sei>—g(x)

& &

-XEAM,S i=I

holds for the discrete gradient

V) — <f<x+se,~> —f(x)> |
i=1,....d

&

=1,...,

We let 2, := m? — Ay, %, = 3 + 2, and we write .Z for the continuum analogue
of .Z,. We let .Zs_l to be the inverse of %, on A, such that .Zg_l f = v is asolution to
Zov=f,v0) =0.

3. Overview of the Strategy

With the goals and notations being set, let us now outline the main steps of our strategy.

Lattice dynamics. For fixed parameters ¢ € A, M > 0, we consider a stationary
solution ¢,y . to the discrete stochastic quantization equation

Lopme + My o+ (=3hapme + 307Dy )ome = Eme, X € Ame. (3.1

whose law at every time ¢t > 0 is given by the Gibbs measure (1.1). Here &7 is a
discrete approximation of a space-time white noise & on R constructed as follows: Let
&y denote its periodization on ']T‘j,l given by

Ey(h) == E(hy),  where hpy(t, x) :=1[ M>d(x) > h(t.x+y),
7

yeMZ4

Nl

where h € L?(R x R?) is a test function, and define the corresponding spatial discretiza-
tion by
d<

Eme(t,x) =6 “En{, ), l—xige2)y (X)) ER X Ay

Then (3.1) is a finite-dimensional SDE in a gradient form and it has a (unique) invariant
measure vy . given by (1.1). Indeed, the global existence of solutions can be proved along
the lines of Khasminskii nonexplosion test [Khal 1, Theorem 3.5] whereas invariance of
the measure (1.1) follows from [Zab89, Theorem 2].
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Recall that due to the irregularity of the space-time white noise in dimension 3, a
solution to the limit problem (1.3) can only exist as a distribution. Consequently, since
products of distributions are generally not well-defined it is necessary to make sense
of the cubic term. This forces us to introduce a mass renormalization via constants
am.e.byu,e = 0 in (3.1) which shall be suitably chosen in order to compensate the
ultraviolet divergencies. In other words, the additional linear term shall introduce the
correct counterterms needed to renormalize the cubic power and to derive estimates
uniform in both parameters M, ¢. To this end, ays . shall diverge linearly whereas by .
logarithmically and these are of course the same divergencies as those appearing in the
other approaches, see e.g. Chapter 23 in [GJ87].

Energy method in a nutshell. Our aim is to apply the so-called energy method, which
is one of the very basic approaches in the PDE theory. It relies on testing the equation
by the solution itself and estimating all the terms. To explain the main idea, consider a
toy model

$u+ku3=f, xeR3,

driven by a sufficiently regular forcing f such that the solution is smooth and there are
no difficulties in defining the cube. Testing the equation by u and integrating the Laplace
term by parts leads to

1
2 2 2 2 4
S0l + Pl 3 + IVl + 2l = (fu).

Now, there are several possibilities to estimate the right hand side using duality and
Young’s inequality, namely,

2,1 20 12
If 2 llullze < Cp2ll fllT2 + 3m=llully,
_ i3 4
(fru) < QL 1flpasllullps < Cu 1/3||f||L4/3 +aMull},

1
1Nt lell g < Co L £ + S llull, + 1Vul?,)

This way, the dependence on u on the right hand side can be absorbed into the good terms
on the left hand side. If in addition u was stationary hence in particular ¢ — E|u(?) ||%2
is constant, then we obtain

Co2 |l 117

_ 4/3
m?Ellu ()12, + E[Vu() |12, + AElu@)l}s < { CA71B3) 155,

Co2 1 F 13,1

To summarize, using the dynamics we are able to obtain moment bounds for the
invariant measure that depend only on the forcing f. Moreover, we also see the behavior
of the estimates with respect to the coupling constant A. Nevertheless, even though using
the L*-norm of u introduces a blow up for A — 0, the right hand side f in our energy
estimate below will always contain certain power of A in order to cancel this blow up
and to obtain bounds that are uniform as A — O.

Decomposition and estimates. Since the forcing & on the right hand side of (1.3)
does not possess sufficient regularity, the energy method cannot be applied directly.
Following the usual approach within the field of singular SPDEs, we shall find a suitable
decomposition of the solution ¢,y ., isolating parts of different regularity. In particular,
since the equation is subcritical in the sense of Hairer [Hail4] (or superrenormalizable
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in the language of quantum field theory), we expect the nonlinear equation (1.3) to be
a perturbation of the linear problem . X = &. This singles out the most irregular part
of the limit field ¢. Hence on the approximate level we set @37 = X ¢ + nar,e Where
X m ¢ 1s a stationary solution to

Z sXM,s = SM,Ea (3~2)

and the remainder 71/ . is expected to be more regular.
To see if it is indeed the case we plug our decomposition into (3.1) to obtain

Lanm e +30 b coum.e +M[ Xy ]+ A30a.e [X3y ]+ 2305 o Xa e +Amyy . = 0. (3.3)

Here [X %,1 .] and [X 131/1 .] denote the second and third Wick power of the Gaussian
random variable X s . defined by

(X3l = X3 e —ame.  [Xipo] = Xiye — 3ameXue. (3.4)

where ay . = E[X %4 ()] is independent of ¢ due to stationarity. It can be shown
by direct computations that appeared already in a number of works (see [CC18,Hail4,
Hail5,MWX16]) that [X %,1 -] is bounded uniformly in M, ¢ as a continuous stochastic

process with values in the weighted Besov space €~ !7%¢(p?) for every k,0 > 0,
whereas [X 131,1 . can only be constructed as a space-time distribution. In addition, they

converge to the Wick power [X?] and [X?3] of X. In other words, the linearly growing
renormalization constant ays . gives counterterms needed for the Wick ordering.

Note that X is a continuous stochastic process with values in &~ V2% (p°) for every
k,o > 0. This limits the regularity that can be obtained for the approximations X s .
uniformly in M, . Hence the most irregular term in (3.3) is the third Wick power and
by Schauder estimates we expect 1,7 . to be 2 degrees of regularity better. Namely, we
expect uniform bounds for 7,/ ¢ in €1/>7%(p”) which indeed verifies our presumption
that 77y  is more regular than ¢,/ .. However, the above decomposition introduced new
products in (3.3) that are not well-defined under the above discussed uniform bounds.
In particular, both 1y . [X %/1 .] and 77%/1, < XM.e do not meet the condition that the sum
of their regularities is strictly positive, which is a convenient sufficient condition for a
product of two distributions to be analytically well-defined.

The usual way is to continue the decomposition in the same spirit and to cancel the
most irregular term in (3.3), namely, [X 13‘,[ .]- This approach can be found basically in
all the available works on the stochastic quantization (see e.g. in [CC18,GH18,Hail4,
Hail5,MW 17a]) The idea is therefore to define X\[VW ¢ a8 the stationary solution to

LXyy, = X3, (3.5)

leading to the decomposition ¢ . = Xpr.e — )\X\;,, o T .¢. Writing down the dynamics
for £pr.. we observe that the most irregular term is the paraproduct [X %,1 > X“I’M’ .
which can be bounded uniformly in € ~' ¢ (p?) and hence this is not yet sufficient for
the energy method outlined above. Indeed, the expected (uniform) regularity of {s ¢ is
(51.”"5 (p?) and so the term (¢, [X %/1 > X\IYVI, .) cannot be controlled. However, we
point out that not much is missing.

In order to overcome this issue, we proceed differently than the above cited works
and let Yy . be a solution to

Lo¥ue = —[X3 ] = 3MZE[X3 D) = Yare,  Yame(0) = —2XY, ,(0), (3.6)
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where 7¢ is the localization operator defined in Section A.2. With a suitable choice of
the constant L = L(A, M, €) determining %° (cf. Lemma A.12, Lemma 4.1) we are
able to construct the unique solution to this problem via Banach’s fixed point theorem.
Consequently, we find our decomposition ¢y o = X ¢ + Yy e + P o together with the
dynamics for the remainder

o%d’M,e + )Ld)i/[,g = _3)‘[[X12V[,5H > ¢M,a - 3)‘[[X]2W,g]] © ¢M,e - 3)L2bM,£¢M,£ + EM,8~
(3.7)
The first term on the right hand side is the most irregular contribution, the second term
is not controlled uniformly in M, ¢, the third term is needed for the renormalization
and Ep/ . contains various terms that are more regular and in principle not problem-
atic or that can be constructed as stochastic objects using the remaining counterterm
—=33%bare(Xare + Yo e)-
The advantage of this decomposition with ¢y . as opposed to the usual approach
leading to £ps. above is that together with [X [3\,, .] we cancelled also the second most

irregular contribution (% [[X%,I . > Yum.e, which is too irregular to be controlled
as a forcing f using the energy method. The same difficulty of course comes with
[x2 . > qu,g in (3.7), however, since it depends on the solution ¢ . we are able to
control it using a paracontrolled ansatz. To explain this, let us also turn our attention to
the resonant product [[X <] © ér.e which poses problems as well. When applying the
energy method to (3.7), these two terms appear in the form

(:0 OM.e, _3)\HX gﬂ OM.e)e (:0 OM,e, _SA’[[XM,S]] > OM.e)e,

where we included a polynomial weight p as in (2.2). The key observation is that the
presence of the duality product permits to show that these two terms approximately
coincide, in the sense that their difference denoted by D 4 (¢ e, =3A[X %,1’8]], OM.e)
is controlled by the expected uniform bounds. This is proven generally in Lemma A.13.
As a consequence, we obtain

1
“0lpmelae + AlBurell o + (Drer Ledure)e

2
= (p*um.e. =3 - 20[X31 ] = O + Dot o (Do, —3A[X3 ] due) + Enre

Finally, since the last term on the left hand side as well as the first term on the right
hand side are diverging, the idea is to couple them by the following paracontrolled ansatz.
We define

e@sl/fM,s = Qs¢M,£ + 3[[X%/I,a]] > ¢M78

and expect that the sum of the two terms on the right hand side is more regular than each
of them separately. In other words, ¥/ ¢ is (uniformly) more regular than ¢y .. Indeed,
with this ansatz we may complete the square and obtain

1
2 2 4 2, 2 2 2 2
§3z||,0 OMellfae +APOM el ae + MNP Ubmell} e + 1107 Veymell) o
= Opt me + Vot Mg

where the right hand side, given in Lemma 4.2, can be controlled by the norms on the
left hand side, in the spirit of the energy method discussed above.

These considerations lead to our first main result proved as Theorem 4.5 below. In
what follows, Q,(Xy ) denotes a polynomial in the p-weighted norms of the involved
stochastic objects, the precise definition can be found in Section 4.1.
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Theorem 3.1. Let p be a weight such that p* € L*° for some « € (0, 1). There exists a
constant o0 = ot(mz) > 0 such that

1
L P A P e Vo 2

0 VeWnell7 2.1+ 102 b 712
< C)»,l Q,o (XM,e)y

where Cy,; = A3 + 1 (12=0/@40)| [og 1|4/@+0) 437 for g = 1224

Here we observe the precise dependence on A which in particular implies that the
bound is uniform over A in every bounded subset of [0, c0) and vanishes as A — 0.

Tightness. In order to proceed to the proof of the existence of the Euclidean CI>‘3‘ field
theory, we shall employ the extension operator £ from Section A.4 which permits to
extend discrete distributions to the full space R3. An additional twist originates in the
fact that by construction the process Yjs . given by (3.6) is not stationary and conse-
quently also ¢y . fails to be stationary. Therefore the energy argument as explained
above does not apply as it stands and we shall go back to the stationary decomposi-
tion oy = Xpe — )»X;,LS + ¢m.e, while using the result of Theorem 3.1 in order
to estimate {as. .. Consequently, we deduce tightness of the family of the joint laws of
Eome, EF XM e, SEXR[’E) evaluated at any fixed time ¢ > 0, proven in Theorem 4.9

below. To this end, we denote by (¢, X, XY) a canonical representative of the random
variables under consideration and let ¢ := ¢ — X + A X".

Theorem 3.2. Let p be a weight such that p* € L*° for some 1 € (0, 1). Then the family
of joint laws of (E¥¢m e, E* XM e 58XY;W’8), e € A, M > 0, evaluated at an arbitrary
time t > 0 is tight. Moreover, any limit measure | satisfies for all p € [1, 00)

~

2 2
Eullgllyioae oy S THAP, EllElh o) S AP 42775 4227,

Eullelfioacey S +47T Eullglgy () Sh+2S

Osterwalder—Schrader axioms. The projection of a limit measure p onto the first
component is the candidate <I>§ measure and we denote it by v. Based on Theorem 3.2
we are able to show that v is translation invariant and reflection positive, see Section 5.2
and Section 5.3. In addition, we prove that the measure is non-Gaussian. To this end, we
make use of the decomposition ¢ = X —A X' +¢ together with the moment bounds from
Theorem 3.2. Since X is Gaussian whereas X' is not, the idea is to use the regularity of
¢ to conclude that it cannot compensate X which is less regular. In particular, we show
that the connected 4-point function is nonzero, see Section 5.4.

It remains to discuss a stretched exponential integrability of ¢, leading to the dis-
tribution property shown in Section 5.1. More precisely, we show the following result
which can be found in Proposition 4.11.

Proposition 3.3. Let p be a weight such that p* € L*° for some « € (0, 1). For every
k € (0, 1) small there exists v = O (k) > 0 small such that

I—v
L/(R3) eXp{'B”(p| H*I/Z*ZK(pZ)}V(d(p) < 0

provided B > 0 is chosen sufficiently small.
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In order to obtain this bound we revisit the bounds from Theorem 3.1 and track the
precise dependence of the polynomial Q,(Xys ¢) on the right hand side of the estimate
on the quantity ||X || which will be defined through (4.4), (4.5), (4.6) below taking
into account the number of copies of X appearing in each stochastic object. However,
the estimates in Theorem 3.1 are not optimal and consequently the power of || Xy .|| in
Theorem 3.1 is too large. To optimize we introduce a large momentum cut-off [ X 13‘,1 <

given by a parameter K > 0 and let [[X?W’S]]> = [X3, o= X3, <. Then we modify
the dynamics of Yy . to

L¥me = —[Xiy o ]s = 3MUE[X3y D) > Yie,
which allows for refined bounds on Yy ., yielding optimal powers of || Xz ||

Integration by parts formula. The uniform energy estimates from Theorem 3.2 and
Proposition 3.3 are enough to obtain tightness of the approximate measures and to show
that any accumulation point satisfies the distribution property, translation invariance,
reflection positivity and non-Gaussianity. However, they do not provide sufficient reg-
ularity in order to identify the continuum dynamics or to establish the hierarchy of
Dyson-Schwinger equations providing relations of various n-point correlation func-
tions. This can be seen easily since neither the resonant product [X %,, ¢l © éum e nor

[X2, .10 ¥um e is well-defined in the limit. Another and even more severe difficulty lies

in the fact that the third Wick power [X?] only exists as a space-time distribution and is
not a well-defined random variable under the d>4 measure, cf. [ALZ06].

To overcome the first issue, we introduce a new paracontrolled ansatz yas . := ¢+
3)‘X\;w o > ®m.e and show that x)s . possesses enough regularity uniformly in M, ¢ in

order to pass to the limit in the resonant product [[X M. c] © xum.e. Namely, we establish

uniform bounds for s ¢ in L Bl+3K *(p*). This not only allows to give meaning to the

critical resonant product in the contlnuum, but it also leads to a uniform time regularity
of the processes ¢jr,.. We obtain the following result proved below as Theorem 6.2.

Theorem 3.4. Let 8 € (0,1/4) and o € (0, 1). Then forall p € [1,00)andt € (0, T)

sup E”‘pM&” Blp 71 3 sup  Ellgu, 8” 00 122,62y < OO,
ceA,M>0 Wr ey c€ A, M>0 LerH™ @

where L?TH—I/Z—ZK,S(,OZ) — LOO(T, T; H_1/2_2K’8(,02)).

This additional time regularity is then used in order to treat the second issue raised
above and to construct a renormalized cubic term [¢>]. More precisely, we derive an
explicit formula for [¢] including [X?] as a space-time distribution, where time indeed
means the fictitious stochastic time variable introduced by the stochastic quantization,
nonexistent under the d>‘31 measure. In order to control [ X3] we re-introduce the stochastic
time and use stationarity together with the above mentioned time regularity. Finally, we
derive an integration by parts formula leading to the hierarchy of Dyson—Schwinger
equations connecting the correlation functions. To this end, we recall that a cylinder
function F on S'(R>) has the form F () = ®(¢(f1), ..., ¢(f)) where ® : R" — R
and fi,..., fu € S(R?). Loosely stated, the result proved in Theorem 6.7 says the
following.

Theorem 3.5. Let F : S'(R*) — R be a cylinder function such that

|F(@)] + IDF ()l g1a3e (p-a-0y < CFN@NG-1/2-20 2
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for some n € N, where DF (¢) the L*-gradient of F. Any accumulation point v of the
sequence (v ¢ o ()™ ¢ satisfies for all f € S(R?)

/(DF@), fivde) = 2/((1412 — Mg, [IF(@)v(de) + 21 (7 (F), ),

where for a smooth h : R — R with supph C [t, T] for some 0 <t < T < oo and
Jp h()dt = 1 we have for all f € S(R?)

(I(F), f) =Ey [/Rh(t)F(w(t))([[QOB]](I), f)dt]

and [¢3] is given by an explicit formula, namely, (6.6).

In addition, we are able to characterize J, (F) in the spirit of the operator product
expansion, see Lemma 6.5.

4. Construction of the Euclidean ®* Field Theory

This section is devoted to our main result. More precisely, we consider (3.1) which is a
discrete approximation of (1.3) posed on a periodic lattice Ay .. For every ¢ € (0, 1)
and M > 0 (3.1) possesses a unique invariant measure that is the Gibbs measure vy .
given by (1.1). We derive new estimates on stationary solutions sampled from these
measures which hold true uniformly in € and M. As a consequence, we obtain tightness
of the invariant measures while sending both the mesh size as well as the volume to their
respective limits, i.e. ¢ — 0, M — oo.

4.1. Stochastic terms. Recall that the stochastic objects Xy ., [[X%,I el [[X13\/1 .] and

XL’E were already defined in (3.2), (3.4) and (3.5). As the next step we provide fur-
ther details and construct additional stochastic objects needed in the sequel. All the
distributions on A 7 . are extended periodically to the full lattice A¢. Then X\;,I . Which

is a stationary solution to (3.5) satisfies XL!E(Z) = Pf XL’E(O) +. 271 [[X?W ] with

X\/VW’ L(0) = f? o PESIX /3” ] (s)ds, where P/ denotes the semigroup generated by —2,
on A;. Then for every x, 0 > 0 and some § > 0 small

al ol
”XM,g”CT((fl/z*’(’f(po) + ”XM,g”Cg/zLoo,s(pn) g 1’

uniformly in M, ¢ thanks to the presence of the weight. For details and further refer-
ences see e.g. Section 3 in [GH18]. Here and in the sequel, T € (0, oo) denotes an
arbitrary finite time horizon and C7 and C g/ 2 are shortcut notations for C([0, T]) and
CP/2(10, TY), respectively. Throughout our analysis, we fix x, 8 > 0 in the above es-
timate such that 8 > 3k. This condition will be needed for the control of a parabolic
commutator in Lemma 4.4 below. On the other hand, the parameter o > 0 varies from
line to line and can be arbitrarily small.

As already discussed in Section 3, in particular after equation (3.5), the usual decom-
position gy o = Xp,e — )LX“I’VL ¢ T {m.¢ 18 not suitable for the energy method. Indeed, it

would introduce the term [ X2, ] > X', . which cannot be cancelled or controlled by the
available quantities. We overcome this issue by working rather with the decomposition
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OMm.e = XMe+Ym e +du o defined in the sequel. Note that a similar modification of the
paracontrolled ansatz has been necessary to construct a renormalized control problem for
the KPZ equation in [GP17]. Here, the price to pay is that the auxiliary variables Y/ ¢,
¢um ¢ are not stationary. Thus, in Section 4.3 we go back to the stationary decomposition

OoMe = XM — )\X\}/\/]’s + M6
If 72 is alocalizer defined for some given constant L > 0 according to Lemma A.12,
we let Yy . be the solution of (3.6) hence

Yme = —AX)y, — L "BMZE[XY D = Yiel. 4.1)

Note that this is an equation for Y/ ¢, which also implies that Y/ . is not a polynomial of
the Gaussian noise. However, as shown in the following lemma, Y/ . can be constructed
as a fixed point provided L is large enough.

Lemma 4.1. There exists Lo = Lo(A) > O and L = L(A, M,e) > 0 with a (not
relabeled) subsequence satisfying L(A, M, 8) — Loase — 0, M — oo, such that (3.6)
with %E determined by L has a unique solution Yy ¢ that belongs to Ct€"/>~* (p) N

Cg/zLoo(,o"). Furthermore,
1Y, 8||CT%1/2*K~€(pU) ~ )»||XM g||cT</1/2 KE(pT)s
1at.ell s oy S MK ellcrigrse ooy + 1K el e )
where the proportionality constant is independent of M, ¢.
Proof. We define a fixed point map
K:Y Y :i=-2Xy, — L BMUE[X5 D) > Y]

for some L > 0 to be chosen below. Then in view of the Schauder estimates from
Lemma 3.4 in [MP17], the paraproduct estimates as well as Lemma A.12, we have

IKY1 = KYallcpgii2-ceory S MZE X3 D) = (V1 = YD)l epg-32-ce (o)
< O XY, ey g-1-ce ooy 1Y1 = VallcpLose ooy < 8111 — Vallopag 12— (pr)
for some § € (0, 1) independent of A, M, ¢ provided L = L(A, M, ¢) in the definition
of the localizer 7¢ is chosen to be the smallest L > 0 such that

AR < AKX Dl cyig-i-ce oy < 8-

CTCg—S/Z—K,S(pO)
In particular, we have that
2812 = (1 + M [X 3y Dl eypg1-ce (o)) 4.2)

which will be used later in order to estimate the complementary operator %S by

Lemma A.12. Note that L(A, M, ¢) a priori depends on M, ¢. However, due to the
uniform bound on

2 2
X0 Ml cr-1-e2e ooy + NIX eIl /2 s o)

valid for some y € (0, 1), we may use compactness to deduce that for every fixed A > 0
there exists a subsequence (not relabeled) such that L(A, M, &) — Lo(A). This will also
allow to identify the limit of the localized term below in Section 6.
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Next, we estimate

~ v ~
H’CY”CT%I/Z—LE(pJ) < A.“XM’EIICT(KI/Z*K.E(pD‘) +C)»||(J/Z>‘9 HX%/I,F]]) > Y”CT%—S/Z—K.E(pa)

v -
S MXpr ellepg12-ce ooy +8IY lopg /206 (poy -

Therefore we deduce that K leaves balls in C7%1/27%¢ (o) invariant and is a contraction
on C7€/>7¢(p°). Hence there exists a unique fixed point Yum ¢ and the first bound
follows. Next, we use the Schauder estimates (see Lemma 3.10 in [MP17]) to bound the
time regularity as follows

101682 o oy < MUKt et o oy + CHICEETX Gy D) = Yot ellcrig=3mse o)
SMX el epr2 ey + 8N Vmellcpig 120 oo
S Xtz e gy + MK ellcrig12ss oo
The proof is complete. 0O

According to this result, we remark that Yy, . itself is not a polynomial in the noise
terms, but with our choice of localization it allows for a polynomial bound of its norm.
As the next step, we introduce further stochastic objects needed below. Namely,

Moo —1y2 X ¥
X =4 [I:XM’E]L Xppe = Xmeo Xy,
Xire = 91Xis.cl 0 27 [X3 ] = 3burc.
Xi = 9Ix Jo Xy, = 3bwe), X5, =3[x% ] 0 Xy, — 3bu.cXue,

where by ¢, EM,E(I) are suitable renormalization constants. It follows from standard
estimates that |by . (t) — by | S |logt| uniformly in M, e. We denote collectively

Xate = Xates [X3020s Xt oo Xipos Xp o Xip o0 X1 ) 4.3)

These objects can be constructed similarly as the usual d>‘3‘ terms, see e.g. [GH18,Hail5,
MWX16]. Note that we do notinclude X\I(W . in X7 . since it can be controlled by [X %,1 ol
using Schauder estimates. In order to have a precise control of the number of copies of
X appearing in each stochastic term we define || X | as the smallest number bigger
than 1 and all the quantities

2 1/2 v 173
”XM,&”CT%*I/Z*",S(/)U)f ”IIXM"Q]]”CT%—I—K,S(K)U)’ ”XM’SHCT(gI/Z—/(.g(pn)s (44)

v 173 % 1/4
”XM"E”Cg/ZL‘X’f(p“)’ ”XM,S”CT%—K‘E(pU)’ (45)
% 1/4 v 1/4 g 1/5
”XM’QHCT(gfk,a(po)a ”XM,g“CT(gﬂ(,s(po)a ”XM,Q||CTcg—1/27k,s(po)‘ (46)

Note that it is bounded uniformly with respect to M, ¢. Besides, if we do not need
to be precise about the exact powers, we denote by Q,(Xy,¢) a generic polynomial
in the above norms of the noise terms X/ ., whose coefficients depend on p but are
independent of M, ¢, A, and change from line to line.
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4.2. Decomposition and uniform estimates. With the above stochastic objects at hand,
we let ¢ ¢ be a stationary solution to (3.1) on Ay . having at each time ¢ > 0 the law
V.. We consider its decomposition ¢ar e = Xar.e + Y e + $mr.e and deduce that ¢y o
satisfies

Lepm.e + iy = —3MXps ] = bare —30[X0y ] < Vae + e
— 30%bare (Xat.e + Yats + bte) — SMUE L [X3y D) = Yare

— 30X (Yae+odm.e)” — MYy, —30Y 5 bt — 3AYacPyy -
4.7

Our next goal is to derive energy estimates for (4.7) which hold true uniformly in both
parameters M, ¢. To this end, we recall that all the distributions above were extended
periodically to the full lattice A.. Consequently, apart from the stochastic objects, the
renormalization constants and the initial conditions, all the operations in (4.7) are inde-
pendent of M. Therefore, for notational simplicity, we fix the parameter M and omit the
dependence on M throughout the rest of this subsection. The following series of lemmas
serves as a preparation for our main energy estimate established in Theorem 4.5. Here,
we make use of the approximate duality operator D 4 . as well as the commutators

Ce, C‘s and C, introduced Section A.3.

Lemma 4.2. It holds

,€

1
5 10°@el172c + Al odell}ac +m>1p> Vel 7o + 107 Vethell3e = O 1, + W e, (4.8)

with

Ve 1= ¢ + 27 BA[XZ] > 6],
Ot ¢ 1= —([Ve. p*1Ve, Vee)e +([2e. p%]) 27 BAIXZ] = el vie), + (0% 92, 22 X]),
+ D (e, —3A[XZ]. be) + (p e, Ce (e, 3A[XZ], 3A[XZ]))e
+ Dyt o (¢e. 30[XZ], 2 BAIXZ] > &)
W= (0 e, —3A[XZ] < (Ye + o) — 3AXc(Ye + §o)* — MY, — 30Y20 — 30Yedh?)e
+(p e, —BMUEXE]) = Ye + 12 Ze)e (4.9)

and

Ze = X 4 X0V, +3(hs — bo)Ye + Co(Ye, 3[X2], 3[X2]) — 3[X3] 0 2! (3%; [x3] - Y€> .
(4.10)

Proof. Noting that (4.7) is of the form .Z; ¢, + x¢3 = U,, we may test this equation by
p* ¢ to deduce

1
53,<p2¢>8, P2 be)e + AP Pe, P7P3)e = Ppa o + W,
with

D o= (0 e, —Lepe — BA[XZ] > e — 3A[X]] 0 he — 327Detpe)e,
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and

W= (p e, —3A[XZ] < (Ye + e) — 3AXc(Ye + §e)* — MY — 3020 — 30Ye07)e
+(o* e, —31 (%gLﬂxfﬂ) = Yy — 3A[X2] 0 Ya — 332be (X, + Ye))e.

We use the fact that (f >) is an approximate adjoint to ( fo) according to Lemma A.13
to rewrite the resonant term as

(p%¢s, —3M[XZ] 0 Be)e = (p e, —3A[XZ] > Be)e + D o ($s, —31[X7], ¢0).
and use the definition of ¥ in (4.9) to rewrite ®, . as
e = (0" Ve, ~Levie)e+ ([ 2e. 0| 2 BAUIXE] - el ve).

+(P BAIXZ] > @el, 25 ' BA[XZ] = elde — 32%be (0 e, Be)e
+D 1 o (¢e. —3A[XZ]. ¢e).

For the first term we write

(P Ve, = Do) = —m* (0" e, Ye)e — (0*Vetle, Vere)s — (Ve p* 1, Vo)
Next, we use again Lemma A.13 to simplify the quadratic term as
(P BAIXZ] > ¢el, 27 ' BAIXZ] > ¢el)e = (p“qsg, 3a[X2] 0 2. 3A[XZ] > m)g
D0, (0, 301X2] 27 BAXE] - 1)
hence Lemma A.14 leads to
= (p"02. 922[x2] 0 27 [X2]) +(p*ge., o 3AIXZ]. BAIXZD):
4D, (e 30[X2] 27 BAIXZ] - 1)

‘We conclude that

D= —m*(p" e, Ye)e — (0 Vete, Vewe)e — ([Ve, ¥ 1V, Vetbie)e
+([2e. 0] 2" BAIXZ] = ¢, ), + (%97 9A2[X7] 0 2, [XZ] — 32%b),
+D s o (¢e, —3M[XZ]. de) + (' e, Ce (e, 3A[XZ]. 3A[X2]))e
+D 0 (e, 3A[XZ]. 27 ' BA[XZ] > ¢¢)).-

As the next step, we justify the definition of the resonant product appearing in W 4 , and
show that it is given by Z. from the statement of the lemma. To this end, let

Ze = =317 [X2] o Yo — 3be (X, + Vo),
and recall the definition of Yy . (4.1). Hence by Lemma A.14

Ze = 3[X2]) 0 X! — 3b: X +3[X2] 0 L' B[X2] > Ye) — 3b:Ye
—3[X:] 0 £ GUEIXC] - Yo
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= 3[X7] o X, — 3b.X.) + B[X2] 0 £ '3[X7] — 3be) Y, +3(bs — be) Y,
+Ce (Ye, 3[X2], 3[X3]) — 3[X2] 0.2 (3% [X2] > Ys) ,
which is the desired formula. In this formulation we clearly see the structure of the renor-

malization and the appropriate combinations of resonant products and the counterterms.
0

As the next step, we estimate the new stochastic terms appearing in Lemma 4.2. Here
and in the sequel, % = O (k) > 0 denotes a generic small constant which changes from
line to line.

Lemma 4.3. It holds true
IZe ()l g=1/2-c(pry S (1+ Al logt] + 23| Xe |7,
X Yellepg12-re poy S+ AD)IXel°,
X Y2l eyt oy S G2+ 2D 1K),

Proof. By definition of Z, and the discussion in Section 4.1, Lemma 4.1, Lemma A.14,
Lemma A.12 and (4.2) we have (since the choice of exponent o > 0 of the weight
corresponding to the stochastic objects is arbitrary, o changes from line to line in the
sequel)

al v
| Ze ()|l ~1/2-. (30 S X, lcpg-172-xe(p3oy + 1X¢ opg—re ooy Yellcpg1/2-ce ooy
27112
+‘ 108 tl HYEHCT‘KI/Z*KE(;)U) + (I|Y8 IlC%’l/Z*K»S(p") + ”YS Ilcg/zLoc.s(pa)) H IIXE]] ”C%)f]—x.e(prr)

A+ MIXE ey 1000 o) NXENE g 120 gy e ey 12w o)
S (L4 A+ Al logr] + 221X, 7+

and the first claim follows since o > 0 was chosen arbitrarily.
Next, we recall (4.1) and the fact that X\g’ = X0 X\g can be constructed without any

renormalization in C7% ¢ (p?). As a consequence, the resonant term reads
Xeo¥e = —AXS — Xeo0 27! [3x (%j [[Xg}]) - Yg] : @.11)

where the for the second term we have (since % is a contraction) that

A HXS 0.7 [3 (%j[[xg]]) > Ys]

CTcgl/Z—ZK,g(p3rr)
|(%c1x20) > .

S M Xellepg-12-ce (o) Xl cpig-1-se ooy 1 Yell o oot ooy S A2 X1
(4.12)

S; )"“XE”CT(@&*I/z*K'S(Pa) CrE—1-+¢(p20)

For the two paraproducts we obtain directly

||X€ < YSHCTcg—D(,e(p}(r) 5 ||X€||CT(g—]/2—K,8(p0)||Y€||CT(gl/2—K,8(p(T) S )\.“X5”4, (413)
1Xe = Yellcpgmiincepiny S 1Xellepgmiice oy I Yeleproeeory S MXell*. (4.14)
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We proceed similarly for the remaining term, which is quadratic in Y,. We have
Xeo¥?=X.0QYe <Ye)+Xe0(Yeo0V,)
=—X,0Q2Y: <AX) =X, 0
<2Y5 <.z [3x (% [[Xg]}) > Ya]) + X0 (YooY,
= 20X Ye — ACo(Ye,2X!, X,) — 2 X, 0
<2Y€ <! [3 (%j[[xg]]) > Yg]) +X,0 (Y, 0Y,).

Accordingly,

1Xe © Y2l cpigreqpiry S MXS lergre oo 1 Yelcpgaes on
+ A.”Yg||C(€3K.€(po')||X8||CT%1/2fK,S(pG) ||X£||CT(gf1/27K,s(po')
+ M Xellepig—12-re ooy 1 Yol oo oy WX DLyt (o)
+ 1 Xellpig-12-ce o) 1 Yellcpgiee (o I el cpigioce poy S 2 + ADIXeN® (4.15)

and for the paraproducts

2 2 7
1Xe < Y2l cpg-aee piny S IXellcpg-12-re o 1Ye 2 e oy S A2 1Kell,
2 7
1Xe = Y2l cpg12nepio) S IXellepig1r2ne ooy 1 YellZ, oo oy S 221K
This gives the second bound from the statement of the lemma. O

Let us now proceed with our main energy estimate. In view of Lemma 4.2, our goal
is to control the terms in © 4 , + W 4 . by quantities of the from

c(W)Qp(Xe) + 8(hpell}ae +m> 110> Vell72e + 107 Vetbell720),

where § > 0 is a small constant which can change from line to line. Indeed, with such a
bound in hand it will be possible to absorb the norms of ¢, 1, from the right hand side
of (4.8) into the left hand side and a bound for ¢, ¥ in terms of the noise terms will
follow.

Lemma 4.4. Let p be a weight such that p* € L*° for some « € (0, 1). Then

10, | + W, | < (A + 20270/ 1og 1|V 1 37) 0, (X,)
+8 (M 0¢e 13 ac + 10°Bell31—2ce + M2 10> el 2 + 107 Verbel72.0).
where 6 = 1/2 21'(.

Proof. Since the weight p is polynomial and vanishes at infinity, we may assume without
loss of generality that 0 < p < 1 and consequently p* < pf whenever @ > 8 > 0. We
also observe that due to the integrability of the weight (see Lemma A.6)

1
o bell2e S loPell e

with a constant that depends only on p. In the sequel, we repeatedly use various results
for discrete Besov spaces established in Section A. Namely, the equivalent formulation
of the Besov norms (Lemma A.1), the duality estimate (Lemma A.2), interpolation
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(Lemma A.3), embedding (Lemma A.4), a bound for powers of functions (Lemma A.7)
as well as bounds for the commutators (Lemma A.14).

Even though it is not necessary for the present proof, we keep track of the precise
power of the quantity || X, || in each of the estimates. This will be used in Section 4.4
below to establish the stretched exponential integrability of the fields. We recall that
¥ = O(k) > 0 denotes a generic small constant which changes from line to line.

In view of Lemma 4.2 we shall bound each term on the right hand side of (4.8). We
have

([Ve. 0" 1. Vetre)el < Coll0*Well 26 107 Verell 20 < CsCollp* e |17 2.0 + 81107 Ve el .-

This term can be absorbed provided C,, = || P Ve, p*|l Lo is sufficiently small, such
that Cs Clz, < m?, which can be obtained by choosing 4 > 0 small enough (depending

only on m? and 8) in the definition (2.2) of the weight p. Next,
([2e "] 25" BALXE = ge).ve) | < (2 AN = el [ e 0% ) |
and we estimate explicitly
‘p_z [e@e, p4] Ve

for another constant C,, depending only on the weight p, which can be taken smaller
than m? by choosing # > 0 small, and consequently

([22 %] 27 301X > g1, ve) |

S MK NP 1027 Bell 2 M2 0% el L2 + 102 VeWe |l 26)
KRG IXe B+ 8 ppel§ar +mP 0> Vell7 e + 1107 Vetbell o).

< Co(l10*Well g2 + 107 Veell 26 (2))

L2¢

since o is sufficiently small.
Using Lemma A.2, Lemma A.7, interpolation from Lemma A.3 with for 6 = }:gi
and Young’s inequality we obtain

2, 4,2 v 2 N 40 2
M (0 07, X el S AN X, Nlg—rellp™ @5 ||Bf;f

% i
SAN X Nligeellp ™ bell 2 10777 el e
1—
SAIXe el 107 el o
AT I 37 + 5 (M ol e + 1107 Pell71-200)-

Recall that since o is chosen small, we have the interpolation inequality (see Lemma A.3)

0 1-6
||¢8||H1/2+K<5(p2*“/2) g ||¢5||L2.€(pl+L)||¢€||H|—2K‘£(p2)

where 6 = % Similar interpolation inequalities will also be employed below. Then,

in view of Lemma A.13 and Young’s inequality, we have

AD e (b, =3[XZ], ¢e)| S AP [X2] =10 0% el 200

2 1 2 2 2(1-6
S MO X2 lg1ee o' e 25 102 12 20,
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2(1—6
1 121086 124, 102 112120,

S
PGS I I + 8 el e + 107 Be 1 71-000)-

Similarly,
22 ‘DW <¢6, 3[x2], 271 3[X2] > ¢€])‘

AP [X N1 10> ™2 Bl e | 01477 27 [B[XZ] > @]

k]

Hl-2e

where we further estimate by Schauder and paraproduct estimates

‘p“‘”a@;lmﬂxiﬂ = e)| e, SIOTTIXE] > el

-2k, ™

SN [X N1 10" pell 2.6

and hence we deduce by interpolation with 6 = } g"

32|, (. 31X2 25 BIXET = 8el)| S A20Ke 110" Gl 2 02 g
S A2IKe N llo@e 35 10° e 11
AR o ) o [ S(Anpassn‘;,s + 11020 131200

Due to Lemma A.14 and interpolation with 6 = }:gi , we obtain

W% e, C(oe. 3IXZ] 3IXZDVel S AP0 [XZINZ 1 1077 el
2(1-6

<RG0 e 12 102 e 12 2,

OMOTNCIKNP + Sl pe 1] ac + 1076 171-20.0)-
Then we use the paraproduct estimates, the embedding ¢1/2—re
(p°) C H'?>72:2(p2=9/2) (which holds due to the integrability of p* for some
t € (0,1) and the fact that o can be chosen small), together with Lemma 4.1 and
interpolation to deduce for 6 = 1/ 2 SK that

Mo e, =3[XZ] < (Ye +e))el
S MR X210 10772 (Ve + @) [l gi2-2ee |27 2 el /o3
S M X2 g-1-ce 107772 Yell g-2ee 0277 2 e || r1s2vsee
21107 [X2] -1 107211 230
S AN I e o102 Be I3 e + 1Kl 10 e 125, 1 0% e 251 o)
< QOO L2 Cs K I3 + S pellf e + 1076l 31-000)-
Next, we have
Mo ge, =3Xe (Yo + 8"}l S MIPT Xellgmiy—se 10*7 @1 g1/2ucs

d—g 42 2 4—
+A) 07 XeYellgp-1/2-ce |l o “¢5|I311/12+x,s+?»||p“XeY8 lg-1/2-xcllp ”¢5II311/12+K,8-
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1/2—4

Here we employ Lemma A.7 and interpolation to obtain for 6 = ~ ="

AP Xellg-12-ce 19177 @ | oo S MP7 Xelegvams |09l 1977 Bell pryzeace
S MK el 750 10°be 11 are < AC™DOCSIX ™Y + 8l pellFa + 1107l F1-20)

and similarly for the other two terms, where we also use Lemma 4.3 and the em-
bedding H172K,e(p2) - H1/2+2K,€(p37lf(7) and H]/2+2K,€(p2) _ 321/22+2K,8(p2) C
pl/2+ee 1/2 4 ’

1,1

4—g cq e . . _
(p™77) together with interpolation with 6 = 1=~

o 4—0 42 o 2 4—0o
M XeYellg-1/2-cellp ¢g||311/12+~.s + AP XY g -12-0e || 0 ¢s||311/12+x,e

S OE+AHIX N0 ™ Pell L2 10777 Pell gijzszee + (2 + AN 12102 e |l 1/2020.e
S O+ )X Clloe 501070 I aee + O + 2Kl pde 1 e 1107 e 11 e
< W=0/@¥0) 5 1220/ 51X, ||16+”+8<A||p¢gnw+||p Bell31-20)- (4.16)

Next, we obtain

M4 e, —Y2el S AP Yeloos 0P Pell e S AMXe N oBell La.s
S ACs[IXe 1" + 81l ppe |74 (4.17)

and similarly

Mo e, =3Y20e)el S AP Vel oo ll0* 7 G2 NI 1.e

SAKe N0 740 < ACsIKe ' + 8Al oe I . (4.18)
Mo e, =3Yed2)el S A% YellLoe 10* 70 NI p1e S A% YellLos | p@ell; 4
SAXe P ogell 0 < AOCsIKe ' + M1 e |1 4. (4.19)

Then, by (4.2)

WP e, =3UEX]) > Ye)e

e 2 4—
UL eg 19300 107 Yell o 10* 7 @l gi-see

S+ 7 [X2 ]l -1-6) N0 [X g -10 167 Yell oo | 02 | pr1-2ee
S 02+ IO IX 3 02 el r2ee < AF+20)Cs XK ' + 81107 17100 (4.20)

_ 124
and finally for § = 4=~

20, 4 2 a
AU be, Ze)el S AN0° Zellg-1/2—cc |l p a¢a|l e

S 2+ 27 log ]|+ AHIKe ™ | pell oo 107G 177
< ()\(8 0)/(246) , , (12— 9)/(2+9)|10gt|4/(2+9)+A(16 9)/(2+9))C5||X5||12

+3 0 0e e + 1107l 71-200)- 4.21)
The proof is complete. O

Now we have all in hand to establish our main energy estimate.
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Theorem 4.5. Let p be a weight such that p* € L*° for some « € (0, 1). There exists a

constant o = a(m?) € (0, 1) such that for 6 = 112__21’(

1
0 10°@el172c +alhllogell}ac + M1 0°WellToe + 102 VeVl o]+ 10706 131 20.c

< (AS + )»(12_9)/(2+9)| 10gl‘|4/(2+9) + )"7)Qp(X5)- 4.22)

Proof. As a consequence of (4.9), we have according to Lemma A.5, Lemma A4,
Lemma A.1

2
19202 S | P20 AL = 1|+ 1020l

SR IXENG e 10> el T2 + 102 Ve 71
SR (Xe) + Mllpdeljae + 10> Vel 70 + 107 Vetel 7o (4.23)

Therefore, according to Lemma 4.4 we obtain that

1
531”024’8”%2,9 +AlpgellFae +mPO* Vel o + 1102 Vetell? .
< (X3 + )L(12—9)/(2+9)| logt|4/(2+9) + )\-7)Qp(X6)
+8C (M pPell}ae + 10° Vel o + 1102 Vetell32.0)-

Choosing § > 0 sufficiently small (depending on m? and the implicit constant C from
Lemma A.5) allows to absorb the norms of ¢, ¥, from the right hand side into the left
hand side and the claim follows. O

Remark 4.6. We point out that the requirement of a strictly positive mass m? > 0 is to
some extent superfluous for our approach. To be more precise, if m? < 0 then we may
rewrite the mollified stochastic quantization equation as

3 — Ae + Do + 19} = & + (1 — m?)g,

and the same decomposition as above introduces an additional term on the right hand
side of (4.8). This can be controlled by

[(1—=m*) (p e, Xe + Ve + )| S Cs,-10(Xe) + 8O e | 1o + 1107 1312260

where we write Cs ;-1 to stress that the constant is not uniform over small A. As a
consequence, we obtain an analogue of Theorem 4.5 but the uniformity for small A is
not valid anymore.

Corollary 4.7. Let p be a weight such that p* € L*° for some « € (0, 1). Then for all

_1/2—4«k
p € [1,oo)and9_ T

1 2 2p42 _
Eatup%u;;g+A||p2¢g||;;: S ALGP + 200720/ 1og 1| ¥/ 430 0, (X1 P2,
4.24)
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Proof. Based on (4.22) we obtain

1 2 2(p—1
Eatnpz@ugz,s + 1020 125 ol

< W7+ 20200 10g (YD 1371 020, |17V 0 (X
The L*-norm on the left hand side can be estimated from below by the L?-norm, whereas
on the right hand side we use Young’s inequality to deduce

1 2 2p+2
5a,||p2¢g||;5£ + A7l

_ 2p+2
< AL? + 210720/ 10g 4|43+ 136y 0, (X )1 PHD/2 + 8] e 151

Hence we may absorb the second term from the right hand side into the left hand side.

0

4.3. Tightness of the invariant measures. Recall that ¢y . is a stationary solution to
(3.1) having at time ¢ > 0 law given by the Gibbs measure v .. Moreover, we have the
decomposition ¢y = Xpe + Y e + ¢um e, Where Xy ¢ is stationary as well. By our
construction, all equations are solved on a common probability space, say (€2, F, P),
and we denote by [E the corresponding expected value. In addition, we assume that the
processes ¢ur.c and Xy . are jointly stationary. This could be achieved for instance by
considering a solution to the coupled SDE for (¢ ¢, X ) starting from the product
of the corresponding marginal invariant measures, and applying Krylov—Bogoliubov’s
argument.

Theorem 4.8. Let p be a weight such that p* € L*° for some 1 € (0, 1). Then for every
p € [l,00)

sup  (Ellgu.e (0) = Xate 011520622 S 442772,
eeA,M>0
2
sup  (Ellgare (0) = Xare O 5. ,0) /27 S 11240572,
e€e A,M>0

Proof. Let us show the first claim. Due to stationarity of ¢arc — Xy e = Yme + Pume
we obtain

1 T
Ellp*(0m,6(0) — X1, ODI1/2- 20 = - /O Ellp* (0,6 (s) — Xat,6 (5131220, ds

1 T
= /0 Ell0* (a1, (5) + Yare (D)1 31/2-20.ds

A

1 ‘ 2 2 1 ‘ 2 2
z 0 Ellp ¢M,8(s)||H1/272K.8ds+; A Ellp YM,S(S)”HI/ZfZK,st'

In order to estimate the right hand side, we employ Theorem 4.5 together with Lemma 4.1
to deduce

Ell0*(@a1.6(0) = X1, (O [131/2-20.e
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1

S CeO2 +2NEQ, (Xure) + - BIo* Gut.c O g2 + ENOT Vbt elIEipiomvce
C C

< CeG2 +ANEQ, (Kure) + —Ello* @ur.e (0) = Xaa e O) 720 + —Ellp*Yar e O)72.
C

< CeG2 +ANEQ, (Kue) + —Ello* (@ur.e (0) = Xaa e O

Finally, taking t > 0 large enough, we may absorb the second term from the right hand
side into the left hand side to deduce

Ell0*(@a.6(0) = Xpr.e O 131/2-20c < Cz0F +ANEQ,(Xag ).

Observing that the right hand side is bounded uniformly in M, ¢, completes the proof
of the first claim.

Now, we show the second claim for p € [2, 00). The case p € [1, 2) then follows
easily from the bound for p = 2. Using stationarity as above we have

Ell0*(0a1.6(0) — Xpr.e(O) 175, = %/0 El0*($a1.(5) + Yar.e (51|75, ds
< %fo Elp ¢Me(s)||L€£ds+1fO E|0*Yu.(5)]175 . ds. (4.25)
Due to Corollary 4.7 applied to p — 1 and the fact that forany o > Oand 7 > 1
/r | log 5|27/ ds < Cp,aflw
0
we deduce

« /0 El02¢u.e(5) 175, ds < Cpo[t (12 +20)P/2 4t 43P CO/CE[Q (X )]
A > 2>p-1)
+ mEHP Om,e O
< Cpolt(A2 + 2022 4 1 PC-/GINE[Q ) (X))
+Cpr Bl o (oue (0) — Xar O[5 4 "

L2¢
_ 2(p—1
+ CoA T E N0 Y 0227

Plugging this back into (4.25) and using Young’s inequality we obtain

C _
Ell 0> (¢11.60) — Xar.e Q)25 < 2"’[(x2+x6>"/2+m"<5 DICNELQ, (X e)]

C
+8—ZEp (.« (0) = Xu ODI7E, + 57 Cort "E10, (.01

AP
Taking v = max(l, 272P) leads to
E| 0> (@1.60) — Xar,e O)II35,

C
N (R N L DT )
o
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+5Cp,ot]E||p2(‘PM,e(0) - XM,s(O))”il;,g + )LPCB,p"‘Cp,a)LzP]E[Qp(XM,E)]

and choosing § > 0 small enough, we may absorb the second term on the right hand
side into the left hand side and the claim follows O

The above result directly implies the desired tightness of the approximate Gibbs
measures vy .. To formulate this precisely we make use of the extension operators £¢
for distributions on A constructed in Section A.4. We recall that on the approximate
level the stationary process ¢y, admits the decomposition ¢y o = Xpr e+ Ym e +Pme
where Xy ¢ is stationary and Yy . is given by (4.1) with X\;,[ . being also stationary.
Accordingly, letting

IMe == _gg_l [3)L (%j [ij\lgﬂ) > YM,&] +¢M,e = MM, +¢M,e

we obtain gy . = Xpe — AXL o + &M.e, where all the summands are stationary.

The next result shows that the family of joint laws of (E%¢ar.e, E5 X p ¢, E° X\;l,s) at
any chosen time ¢ > 0 is tight. In addition, we obtain bounds for arbitrary moments of
the limiting measure. To this end, we denote by (¢, X, X\V) a canonical representative
of the random variables under consideration and let ¢ := ¢ — X + A X".

Theorem 4.9. Let p be a weight such that p* € L* for some ¢ € (0,1). Then the
Sfamily of joint laws of (E€@p (1), EX X £ (1), ESXTW’E(t)), e e A, M > 0, evaluated

at an arbitrary time t > 0 is tight on H=1/273% (p2+) x ¢=127% (p%) x € /2% (p?).
Moreover, any limit probability measure u satisfies for all p € [1, 00)

2
Eulloly oy S 1A, Bllglh o) S AP + 277 4207,

Bl Ig1ae gy S A2 44T, Bulltlyy () S 2+2°

Proof. Since by Lemma A.15

EIE X 017 <E||XM8(O)”65 S

H-1/2- 2K(p2) ]/2—)(,8(/)(7)

uniformly in M, e, we deduce from Theorem 4.8 that
2
E||5S¢M,e(0)||:_1/2_2K(p2) ,S 1+ )\'317

uniformly in M, . Integrating (4.24) in time and using the decomposition of ¢,/ . leads
to

o2 Par.c O < 1P2bare )5, + CAG2 + 20 P20, (X )P0/
< Cpllp? a6 0) = Xar e O) I35, + Cpllp*Yar,e (0175,
+CAG2 + 2P0, (X o) P2,
Hence due to Theorem 4.8 we obtain a uniform bound
Ellp%pae (D175, Si a7+ 237,

for all + > 0. In addition, the following expressions are bounded uniformly in M, ¢
according to Lemma 4.1 and Theorem 4.5

2 4
E”nM,&Ilcl;_%'l—K.e(pn) SJ A P

’
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whenever the weight p is such that p' € L* for some ¢ € (0,1). In view of sta-
tionarity of ¢ . and the embedding E1 e (%) C H'7298(p2), we therefore obtain
H!-2 €(p2) ~ )"2 + )"7 as Well as IE||§/Vl S(t)”LZe(pZ) S
AP 4+ 03P £ A4 for every + > 0. Similarly, using stationarity together with the em-
bedding €' ¢(p°) C Bg:go (p) as well as L*¢(p) C BE";(,O) we deduce a uniform

bound ]E||§Mg(t)||40€ ) D < A +A%foreveryt > 0.

Consequently, by Lemma A.15 the same bounds hold for the correspondlng extended
distributions and hence the family joint laws of (E%¢p(2), £ Xy (1), E5 X)), (1)) at

any time 7 > 0 is tight on H~1/273¢ (p2*) x @ ~1/27(p%) x ¢ 127 (p° ) Indeed
this is a consequence of the compact embedding
H—1/2—2K(p2) X %—I/Z—K/Z(IOZO') X %1/2—K/2(p20)
C H—1/2—3K (,02+K) X %—I/Z—K (IOU) X %I/Z—K (IO(T)

a uniform bound E|¢y, S(t)ll

Therefore up to a subsequence we may pass to the limit as ¢ — 0, M — oo and the
uniform moment bounds are preserved for every limit point. O

The marginal of © corresponding to ¢ is the desired CI>§ measure, which we denote
by v. According to the above result, v is obtained as a limit (up to a subsequence) of the
continuum extensions of the Gibbs measures vy . given by (1.1) as e — 0, M — oo.

4.4. Stretched exponential integrability. The goal of this section is to establish better
probabilistic properties of the <I>4 measure. Namely, we show that || p> OM ¢ || - PR
is uniformly (in M, ¢) exponentlally integrable for every v = O(k) > 0, hence we
recover the same stretched exponential moment bound for any limit measure v. To this
end, we revisit the energy estimate in Section 4.2 and take a particular care to optimize
the power of the quantity || X,/ .|| appearing in the estimates. Recall that it can be shown
that

E[efI¥mel’] < oo (4.26)

uniformly in M, ¢ for a small parameter 8 > 0 (see [MW 18]). Accordingly, it turns out
that the polynomial Q , (X ¢) on the right hand side of the bound in Lemma 4.4 shall not
contain higher powers of || X/ || than 8 + O (k). In the proof of Lemma 4.4 we already
see what the problematic terms are. In order to allow for a refined treatment of these
terms, we introduce an additional large momentum cut-off and modify the definition of
Y .e from (3.6), leading to better uniform estimates and consequently to the desired
stretched exponential integrability.

More precisely, let K > 0 and take a compactly supported, smooth functionv : R —
R, such that ||v]| 1 = 1. We define

3 . 3
[[XM,S]]g = VK A%K[[XM,S]]’

where the convolution is in the time variable and vg (t) := 2Xv(2X¢). With standard
arguments one can prove that

sup 27 KG2[x3; J<lcpree)®?
KeN
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is exponentially integrable for a small parameter and therefore we can modify the defi-
nition of || Xy .|| to obtain

IIX 3z l<lloprose < 25KC/2O Ky (| 4.27)

while still keeping the validity of (4.26). Moreover, we let [[X?VM}]> = [[X?VLS]] -
[X3, .]< and define X\;,, . - to be the stationary solution of
¥ 3 3
$€XM,8,> = [[XM,S]] - [[XM,SHQ'
By choosing K we can have that
Xt 6.5 lerzeesory S 27KV22OUXY ( lleyannsepr
S 2RO eI S 1K e
which holds true provided

2572 = X e |17
Next, we redefine Yy ¢ to solve
Yie = —2 Xy oo — L BMUZEXoy D) = Yarel.

The estimates of Lemma 4.1 are still valid with obvious modifications. In addition, we
obtain

2 3
107 Yarellcrroes ooy S MXnmell®s 10 Yuellcpgrnrepey S MXm el

and by interpolation it follows for a € [0, 1/2 — «] that
107 Yaellcrgaspmy S MXag eI/ 1270 (4.28)

From now on we avoid, as usual, to specify explicitly the dependence on M since it does
not play any role in the estimates. The energy equality (4.8) in Lemma 4.2 now reads

1 2. 12 _ 4, ary3
S0 Bel o + Mo = Ot o+ Wa o + (000, —2[X]]<)e (4.29)

where

Ye 1= Moellfae +m*10° Vel fae + 1107 Verrell]
and © 4 , W4 , where defined in Lemma 4.2. Our goal is to bound the right hand side
of (4.29) with no more than a factor ||XM,8||8+0 for some ¥+ = O(k). In view of the
estimates within the proof of Lemma 4.4 we observe that the bounds (4.16), (4.17),
(4.18), (4.19), (4.20) and (4.21) need to be improved.

Lemma 4.10. Let p be a weight such that p* € L*° for some 1 € (0, 1). Then there is
¥ = O(x) > 0 such that

10 1 ol + Wt o + (0%, —A[X2]<)el < Csh+ 173 logt*3 + W)X [1*+7 + 67
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Proof. Let us begin with a new bound for the term with X, YE2 appearing in (4.16). For
the resonant term we get from the interpolation estimate (4.28) that the bound (4.15)
can be updated as

107 Xe 0 Y2l e S AKX + 23 IX 1P S (A% + 2% X, (|07

where we used that, due to the presence of the localizer (see (4.2)), we can bound

—(1-6x)
|07 % X2 [ g2 S 107 1Kl 1w (141107 [XE g 10) " S 1Kl
(4.30)
giving an improved bound for the paracontrolled term which reads as follows
oo < 2 s () - )
S M7 Xellgvse 10 Yelfoe | 07 X2, S PIKeT.
Consequently, for § = %:AZ‘Z

M(o* e, Xe 0 Y2)e| S 207 Xe 0 Villg-re 0¥ el gye

S O2 +NIXAN N oge 1 0 110l 11 s
g ()L(IZ 9)/(2+9)+}\.(16 6)/(2+9))C8”X8”8+ﬁ Tg.

_ 1 /2 —4x
For the paraproducts we have for 6 = 1=~

M(p* e, Xe w0 Y2)e| S M2 ||Bulzm,s||p"Xs||%1/H,s||p"Yg||im,s
SNKePpdell oo 107 Gell e < A2/ FHOC X |® + 57

Let us now consider the term with XY, always in (4.16). In view of (4.12), (4.13), (4.14)
we shall modify the bound of the resonant product which using the decomposition (4.11)
together with (4.12) and the bound (4.30). We obtain

107 Xz 0 Yellg—re S AIXKe* + 22X 13 < 0+ 2D Xl

and consequently, for 6 = gz ,

M(P 2, Xe 0 Yedel S MIp%Xe 0 Yellgrellp®™" 7 I e
S OF X oe 1107 @e Il o

For the paraproducts we have for 8 = 1{ 2:21'(

(P92, Xe @ Ye)el S A||p4‘2"¢§||311/lm,5||p°xg||%m,e||p"Y£||Lm
SRR P o@e 30 10°e 11 < AT/ C5 X B + 87T

With the improved bound for Y, (4.17), (4.18), (4.19) can be updated as follows

(0¥ e, AY)el S Mlodell e 107 Yellee, foc.c
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S A 0oell 4 1Ke1® < SAlp@ell} 4 + Csn” 11X |,

(e, 30Y20e)el S Mlo@ell7ac 07 YellEy oo
SR Npell7ac IXKe It < SAllpge e + Cs2 X |®,

(0 e, 30Yed2)el S Mlodell}acllp” YelloyLose
S A0 I3 4 1Ke 12 < SMpe G4 + Cor’1Xe 1B,

Now, let us update the bound (4.20) as
M0 e, =3UEIXP]) = Yebe| < W+ D) Cs XK lI® + 81102 ¢e 17120 -

Next, we shall improve the bound (4.21). Here we need to use a different modification
for each term appearing in (p*e, A2Z,), as defined in (4.10). For 6 = % we bound
(o, 22X 0)e) S 220* 0 ¢ [ X N eyig1pse
S0 10@e 0 4 llp? el s 1K |P < A=/ EOCy X, |18 + 577,
< 2+ IX | + 8.
Next, we have
210 e, XEY)el < W20 e, X w0 Y )l +22(0 e, X 0 ),

where, for 0 = _‘2‘ we bound

K20 e, X Yo)el S 3200% 72 el e 1027 X 3 Vellgg e
<2006l 0 110206 1571 2 107 XE Nig—r 1107 Yellowe < RSV EOC X3 4 57,
< A2+ C 1K |13 + 87
and the resonant term is bounded as
321004 e, XY 0 Ye)el S 22042 el pre 07 X Ngp—re 107 Ve ligee

S A Npdell e 1K 1
CsA VB IX I3 487 < O3 + 21X |13 + 87

Now,

P Pe, ~s_ e)le)e|l S 1108 P T @ellprellp” YellLooe
A2pr e, (be — be)Ye)el < [logt122110% 77 Gell p1e 107 Vel
< Hogt|*2A7BCs 1K 132 + 87

1—5k
Next, for 6 = =35>

R21p* e, Ce(Ye, 3IXZL 3IXZDNel S A210% 77 el gace 107 Vel 07 [XZTIG -1
S A1 41107l o 11K |07 < 2O ED Gy X, 1B+ 4 57,
< AP+ AN G I + 87
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At last, we have

2ot e 30 0.2 (321X > 1)) |

&

2y ,4-3 2
SA20Y 2 Pellpre llp” Yell e llp” [X2 Nl —1-ce

SRNPY T Bell e IX I < AMPCSIX P + 87T < 02 +2HCIIX 1P + 67,

P UE[X]]

€ —1+2k.¢

This concludes the estimation of (p*¢,, A2 Z,), giving us
(0% Be, 12 Zedel < 7 +AHCS KB + 8.

Finally, we arrive to the additional term introduced by the localization. Using (4.27) we
obtain

(% e, —A[X3 ] <6l S Mlodell o 107 [X3y cD<licries S Alogell 252X, 12
S ACS I 1Y + 87,

where we also see that the power 8 + ¥ is optimal for this decomposition. O

Let (¢e) := (1 + [|p2¢ell3,)"% and (ge)s = (1 + [|0%0c 12,1 jp0.0) /%, With
Lemma 4.10 in hand we can proceed to the proof of the stretched exponential inte-
grability.

Proposition 4.11. There existsano > 0,0 < C < 1 and v = O(x) > 0 such that for
every 8 > 0

9, P19 L qeBU9) T (1 ) Blrgpe) TV, < 14 eBIOIREN?,

Consequently, for any accumulation point v we have
/ eﬁ(‘/’)ifvv(dw) <00
S'(R3)

provided B > 0 is sufficiently small.
Proof. We apply (4.29) and Lemma 4.10 to obtain

3B o)™
(1-v)p
1-v
= PO (Y + O+ W+ (00, —A[X2]<)e) + 107 Pe 120 ]

1-v
<P (Y 4 O+ W+ (p e, —A[X]]<)e) + 82 Ml pe ] 40 + Cs 1]

1-v 1
(tpe)'™ = P00, 0% g )

< P9I 2 (1 = 28) Y, + Cor®(llog 1% + DX I3 + Cy 511,

where by writing Cs ;-1 we point out that the constant is not uniform over small A.

Therefore by absorbing the constant term Cj ;-1 in || X, [13+” we have

8P 19) ™ 1 U9 (1 _ 1) Blrehe) VTN (1 — 28)E2 Y,
1—v ay—
< Cy 1 P19 (1 —0)Blrgpe) VT2 (1 og 73 + D)X, |3 (4.31)
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Now we can have two situations at any given time, either ||X,|> < g||tp¢g||lL}f or

X1 > clitpge ||L4 for some fixed and small ¢ > 0. In the first case the right hand
side of (4.31) is bounded by

4+v/2)(1— v)

Cs 1?19 (1= 0)Blge) T 22 (1 log 112 + Dlltpge |4

and we can choose v = v(k) so that (4 + ¥/2)(1 — v) = 4 and by taking ¢ small

(depending on §, A through C; ;1) we can absorb this term into the left hand side since
fort € (0, 1) it will be bounded by

Cy 1P (1= 0)B(16) ™V 212 pge I

In the case | Xz |12 > ¢|ltpgell' 7Y we have

L4F

IXel? > slltpgell 38 2 slip’dell 28 Z s((tge) ™ = 1),

provided p is chosen to be of sufficient decay, and therefore we simply bound the right
hand side of (4.31) by

< Cy kle(ﬂ/cﬂ”xf“ﬂmg 87 < 1 4 CBICOIXI?

The first claim is proven.
It remains to prove the bound for ¢,. By Holder’s inequality, we have

E[eP(#:@=X: )™ — geBloe(D=Xe(D)'™V) « R A0V 4B(g: (1))
< [E[2BXeD) T )1/2[R[o2B(9: (D) 711/

and we observe that (Y, (1))~ S+ IX |2 so the first term on the right hand side is
integrable uniformly in & by (4.26). On the other hand, using Lemma 4.11 we have

R[e2B(19:0)' ™

/ Elae® 5% )™ (1 = 0)28 (s (5)) ™ 52 o (s)1ds < Bl + 3B/ O 1%l
0

and therefore

E[e2P0: )™ < R[] + @B/ Ol

We conclude that

sup E[ef @ O=Xe )™} < [ 2B0+IXeID))1/2[E[] 4 (CB/ONRP)1/2 < o
eeA

uniformly in € by (4.26), from which the claim follows. O
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5. The Osterwalder—Schrader Axioms and Non-Gaussianity

The goal of this section is to establish several important properties of any limit measure
v obtained in the previous section. Let us first introduce Osterwalder and Schrader
axioms [OS73,0875] in the stronger variant of Eckmann and Epstein [EE79] for the
family of distributions (S, € S'(R¥)),en,-

0OS0 (Distribution property) It holds Sy = 1. There is a Schwartz norm || - ||; on
S’'(R%) and B > O such that foralln € Nand fi, ..., f, € S(R?)

14 ® ... ® fi)l < @D T I 5.1)

i=1

OS1 (Euclidean invariance) For eachn € N, g = (a, R) € R3 x 0Q@3), fi,---, fn €
S(R3)

Sn((@, R).[1®...8 @, R).fr) =S (/1®...8 fa),
where (a, R).f,(x) = fu(a + Rx) and where O(3) is the orthogonal group of
RS

0S2 (Reflection positivity) Let R¥ = {(x1, ..., x®™) e ®3)" : x> 0, j =
1,...,n}and

Sc(®3") = {f € SR> C) : supp(f) C RY").

For all sequences (f, € Sc (Ri”))neNo with finitely many nonzero elements

Y Sum(©f ® fu) 20, (5.2)

n,meNy

where Of, (xV, ..., x®) = £OxDV, ..., 0x™) and O(x1, x2, x3) = (—x1,
X7, x3) is the reflection with respect to the plane x; = 0.

0S3 (Symmetry) Foralln € N, f1,...,f, € S (R3) and 7 a permutation of n
elements

Sn(fl Q- ® fn) = Sn(fn(l) Q@ fJT(n))-

The reconstruction theorem of Eckmann and Epstein (Theorem 2 and Corollary 3
in [EE79]) asserts that distributions (S,),en, Which satisfy OS0-3 are the Schwinger
functions of a uniquely determined system of time-ordered products of relativistic quan-
tum fields. Note that if Euclidean invariance in OS1 is replaced with translation invariance
with respect to the first coordinate (the Euclidean time), then the reconstruction theorem
gives anyway a quantum theory with a unitary time evolution, possibly lacking the full
Poincaré invariance.

For any measure 1 on S’(R3) we define S} € (S (R?))®" as

S0 = [ o0 e, neN fi fi e SED.

In this case OS3 is trivially satisfied. Along this section we will prove that, for any
accumulation point v, the functions (S}, ), satisfy additionally OS0, OS2 and OS1 with the
exception of invariance with respect to SO(3) (but including reflections) and moreover
that v is not a Gaussian measure.
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5.1. Distribution property. Here we are concerned with proving the bound (5.1) for
correlation functions of v.

Proposition 5.1. There exists 8 > 1 and K > 0 such that any limit measure v con-
structed via the procedure in Section 4 satisfies: for alln € N and all fi, ..., f, €
HY72¢(p=2) we have

Eulo(f) - (Il < K@D [T fill grizae 2.

i=1
In particular, it satisfies OSO0.
Proof. For any « € (0,1) and any n € N we obtain with the notation (¢), :=
L+ 1100131220 2
Ev L0l -1/2-20 2] < Bul(@)* /1 < By L) ™eT) < 71T ([n /2] HE, [F9)7]
< K" (n) /OB, [P,

where we used the fact that Stirling’s asymptotic approximation of the factorial allows
to estimate

[n/e] n/o+l1
Mm/a]! < C <r”£‘ﬂ) Qrm/a)? < C (@) Q2 [nja])/?

1
< K" [(f)" (27'm)1/2] < ke
e

for some constants C, K, uniformly in n (we allow K to change from line to line). From
this we can conclude using Proposition 4.11. O

5.2. Translation invariance. For h € R> we denote by 7;, : S'(R?®) — S'(R?) the
translation operator, namely, 75, f (x) := f(x — h). Analogically, for a measure u on
S'(R?) we define its translation by 7, u(F) := u(F o T;) where F € Cp(S'(R?)). We
say that 4 is translation invariant if for all # € R? it holds T = p.

Proposition 5.2. Any limit measure v constructed via the procedure in Section 4 is
translation invariant.

Proof. By their definition in (1.1), the approximate measures vy . are translation in-
variant under lattice shifts. That is, for A, € A, it holds 7j, vy e = vume. In other
words, the processes ¢, and 7, @ ¢ coincide in law. In addition, since the translation
Tn, commutes with the extension operator £, it follows that E¢pr . and 75, E%@u ¢
coincide in law. Now we recall that the limiting measure v was obtained as a weak limit
of the laws of E%¢pr.. on H™1/272¢(p>*7) If h € R? is given, there exists a sequence
he € Ag such that h, — h. Let k € (0, 1) be small and arbitrary. Then we have for

F e Cy N (H/273 (p27)) that

Tiw(F)=v(FoT)) = 1lim PoEpye) ' (FoTp)= lim E[F(TyE¢um.e)]
e—>0,M—o0 e—>0,M—o00

= lim E[F(7p,E%me)] = lim  E[F(E%ume)] = v(F),
e—>0,M—o0

e—>0,M—o00
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where in the third inequality we used the regularity of ' and Theorem 4.8 as follows

ELF(Th& oum.e) = F(Tn € pm.)] S NFN 01 ENThE e — Tn £ @m el -12-3¢ (o207
< (h— h&\)KEnge(pM’g||H71/272K(p2+]/) S(h—hy)—>0 as ¢—0.

If F e Cp(H™1/273¢(p?*7)), then by approximation and dominated convergence theo-
rem we also get 7,v(F) = v(F), which completes the proof. O

5.3. Reflection positivity. As the next step we establish reflection positivity of v with
respect to the reflection given by any of the hyperplanes {x; = 0} C R3fori {1, 2, 3}.
Fix asmall § > O and i € {1, 2, 3} and define the space of functionals depending on
fields restricted to R ; := {x € R%; x; > 8}, > 0, by

K
Hyis = {chei“’(fk>; c €C, fr € Cgo(Ria), K e N}
k=1

and let H, = H, o. For a function f : R3 — R we define its reflection

O)(x) = 0" [)(X) == FOr1, s Xim 1, =Xi, Xigls -5 X3)

and extend itto F € Hy by 0 F (o(f1), ..., 9(fk)) := F(eOf1),...,9(0fk)). Hence
for F € H. ;s the reflection 6 F depends on ¢ evaluated at x € R3 with x; < —3§.
A measure p on S’ (R3) is reflection positive if

B0FFI = [ TFQF @) >0,
S/ (R3)

forall F = Y {_, cxe’?U0) ¢ H,. A similar definition applies to measures on functions
on the periodic lattice Ay . replacing the space H, with the appropriate modification

HY¢ given by

K
Hf”g = {chei‘/’(fk); ck €C, fr : Ame ﬂRio —-R}.
k=1

The reflection 6 is then defined as on the full space. Here and also in the proof of
Proposition 5.3 below we implicitly assume that ¢ is small enough and M is large
enough.

An important fact is that for every ¢, M the Gibbs measures vy . are reflection
positive see [GJ87, Theorem 7.10.3] or [FV17, Lemma 10.8]. The key point of the next
proposition is that this property is preserved along the passage to the limit M — oo,
e — 0.

Proposition 5.3. Any limit measure v constructed via the procedure in Section 4 is
reflection positive with respect to all reflections 6 = 0', i € {1,2,3}. In particular, its
correlation functions satisfy OS2.
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Proof. We recall that the measure v was obtained as a limit of suitable continuum
extensions of the measures vy . given by (1.1). Therefore, up to a subsequence, we
have

E,[fFF]= lim . E[F(0E¢@pm,e)F(E o e)].

e—>0,M—

Recall that the function w in the definition of the extension operator £¢ is radially
symmetric. Hence, we have (0E°¢u ) (f) = oM (EC0f) = ou (0ES* f) for any
function f € CJ°(R?) supported in {x € R; |x;| < M/2 — §}. Here £°* is the adjoint
of the extension operator. For a fixed F € H, s we have therefore F(0E%¢puy ) =
(F 0 E%)(Oum ) provided ¢ is small enough and M large enough depending on F' and
§. Hence,

EJOFF]= lim  E[F(E0gm ) F(E pu.e)l.
oo

e—>0,M—

However, since the extension operator is defined as a convolution with a non-compactly

supported function w?, it is generally not true that F o £¢ € Hﬁ/[ **. Thus, in order to
be able to use the reflection positivity of the measures vy ., we need to introduce an
additional cut-off: let Hy : R3 — [0, 1] be smooth and supported on Ri o such that

Hs =1on Ri 52" We denote by H;s . its restriction to A, and write
R, = F((‘:SQDM,S) - F(EE(HS,é‘(pM,E))'

Our goal is to show that R, vanishes a.s. as ¢ — 0. In view of the fact that F is cylindrical
and then regularity of ¢,/ ¢, it is enough to show that

lim [|(1 — Hs e)E5* f |l 17200 (p-2) = O (5.3)
e—0

for any function f € C§° (Ri, s)- It holds
[(1 = Hs )" f1(x) = (1 — Ha,s)(x)f w(x — ) f(»)dy, (5.4
yeR3:y; >8

where 1 — Hs . (x) 7# Oonly whenx; < §/2.Sincew?®(-) = e dwEe ) withw € S(R?),
we have for an arbitrary K > Oand m € N

V™" wf (x — y)| S e e (x — y)I 7K.

In addition, we know that the relevant |x — y| on the right hand side of (5.4) satisfy
|x; — yi| > 6/2. Hence, choosing K, L sufficiently large will give us a decay as ¢ — 0
for every fixed § > 0. Indeed, we also have |V (1 — Hs ) (x)| S 8! uniformly in e.
Thus, we may estimate

(1 = Hs 2)E* fll s p-2) < c(&, )l fllLoe,

where c(g, §) — 0 as ¢ — oo for every fixed § > 0. This concludes the proof of (5.3).
On the other hand, F (% (Hs ¢-)) € ’Hiw *¢ and consequently

EJOFFI= _lim E[F@E (H00m.) F(E (Hs.com.e))
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= lim E,, [0(F(E(Hse))F(E°(Hse))] 20,

e—>0,M—o0

where we used the reflection positivity of the measure vy .. Using the support properties
of v we can now approximate any F' € H, by functions in H, s and therefore obtain
the first claim. Let us now show that (5.2) holds. Thanks to the exponential integrability
satisfied by v, any polynomial of the form G = ZneNO ©®"(f,) for sequences (f, €

Sc (Ri" ))neN, With finitely many nonzero elements, belongs to L*(v).In particular it can

be approximated in L2(v) by a sequence (F},), of cylinder functions in H.. Therefore
E,[0GG] = lim,, o E, [0 F, F,,] > 0 and we conclude that

Y @ f) =Y. Eule® @f)e®" (fu)] = E,[0GG] > 0.

n,meNy n,meNy

5.4. Non-Gaussianity.

Theorem 5.4. If A > 0 then any limit measure v constructed via the procedure in
Section 4 is non-Gaussian.

Proof. In order to show that the limiting measure v is non-Gaussian, it is sufficient to
prove that the connected four-point function is nonzero, see [BFS83]. In other words,
we shall prove that the distribution

Uj(xt,....x4) :=Eyfo(x)) - @(xa)]
~Ey [0 (x2) By [0 (x3)9(x2)] — Ey[o(x1) 9 (x3) 1E,y [0 (x2) @ (x4)]
~Ey [0 () Ey[p(x2)9(x3)], X1, ..., x4 € RY,

is nonzero.

Recall that in Theorem 4.9 we obtained a limit measure  which is the joint law of
(¢, X, X¥) and that v is the marginal corresponding to the first component. Let K; =
F~Lg; be a Littlewood—Paley projector and consider the connected four-point function
U‘f convolved with (K;, K;, K;, K;) and evaluated at (xq,...,x4) = (0,...,0), that
is,

Uy * (Ki, Ki, Ki, Ki)(0,0,0,0) = E,[(A;9)*(0)] — 3E,[(A;9)*(0)]?
=Eu[(Ai9)*(0)] — 3E.[(Ai9)* (0)]* =: L(g. ¢, ¢, ¢),

where L is a quadrilinear form. Since under the limit © we have the decomposition
¢ = X —AX" + ¢, we may write

L(p, ¢, 0,9) = L(X, X, X, X) —41L(X, X, X, X )+ R (5.5)

where R contains terms which are at least bilinear in X' or linear in ¢. Due to Gaussianity
of X, the first term on the right hand side of (5.5) vanishes. Our goal is to show that the
second term behaves like 2/ whereas the terms in R are more regular, namely, bounded by
2i(1/2+) Tn other words, R cannot compensate 4AL(X, X, X, X") and as a consequence

L(p, 0, 0,¢0) #0if A > 0.
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Let us begin with L(X, X, X, XY). To this end, we denote k[123] = k1 + k2 + k3 and
recall that

0
(A X)(0) = / @i (k) / e ImHRPICDE (ds di),
R4 —00

0
—0 R4 JRA JRA

A TT / —Im* 4l PIs=sDE (dg;, diy) ||

1=1,2,3
where [-] denotes Wick’s product. Hence denoting H := [4m? + |k[123)|% + k1 |> + k2> +

|k3|2] we obtain

LX X, X, XT) = E[ (A X) (A X0 0) (A ) 0)(A X 0)]

s
=31 / as [ ] ertmne = T U *2[”"“"‘1'2]“*”)@,-<k1)ds1dkl}
R4 JRA

1=1,2,3

3!
=3 lk (=) i
8/, /Rd_/Rd/sz([m])e 1_[ vitk) ———— 2+|k|2
=123
///%(hl%])
Rd Jrd JRA

Let us now estimate various terms in R. The terms containing only combinations of
X, X" can be estimated directly whereas for terms where ¢ appears it is necessary to use
stationarity due to the limited integrability in space. For instance,

k ~ 2i(—8+9) ~ 21"
|:(pl( l) 2+|k |2:|
1= 123

B[4 00004 X)) (8 X) 0|

< 2=2i(=1/2-K)9=2i(1/2-) [I i

.
DRV b AP

and similarly for the other terms without ¢ which are collectively of order 204 (124 2%).
For the remaining terms, we fix a weight p as above and use stationarity. In addition,
we shall be careful about having the necessary integrability. For instance, for the most
irregular term we have

E[(A; X)?(0)(A;£)(0)] = /R , P OELA; X)? (0)(A:0) (x)]dx = E(p*, (A: X)*(A:0))

and we bound this quantity as

IEL(A: X)*(0)(Ai ) (0)]]
SEAXe oo oy I8¢ 1 (pi=30)] S BIIA X100 oy 1A L] 1202

Z3i(—1/2—k) i (—14+2k) 3
S 272 IR X3 s o 18] e 2|

< 27RO IO @LX NG 1o i o) DA ELICI D2

Bl 2K( 2)
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< i(1/2450) (3 4 37/2y,

where we used Theorem 4.9. Next,

IEL(Ai X)*(0)(A:0)* O] < ELI A X100 oy A2 [l 121 | AiC N 122y
<2 AR ROR X2 o o 1€ g0 _ 1€ llar1-26p2)] S 275 40,

and

LA X)O)(Ai) O] < EA X [0 om) 1 Ai 15 pa-a, ]

<E[AX 2200 1AL 3]

5 2—i(—1/2—K)E I:"X“(KI/ZK(’OU)”{”%A? (p)}
< 2i(1/2+,c)()¥3/4 + k9/2),
LA O] = [E{p*, (A S ENADIs,)
4 < 6
SElEIGy ()] S (420

Proceeding similarly for the other terms we finally obtain the bound
IR| < 210/2450 (3304 4 57y,
Therefore for a fixed A > 0 there exists a sufficiently large i such that
E[(Ai9)*(0)] — 3E[(Ai9)*(0)°D* S —2'A <0,

and the proof is complete. O

Remark 5.5. To our knowledge, the proof of non-Gaussianity given above, is new. In
particular the pathwise estimates of the PDE methods allow to probe correlation func-
tions at high-momenta and check that they are, at leading order, given by perturbative
contributions irrespective of the size of the coupling A. This seems to be a substantial
improvement with respect to the perturbative strategy of [BFS83] which requires small
A.

6. Integration by Parts Formula and Dyson-Schwinger Equations

The goal of this section is twofold. First, we introduce a new paracontrolled ansatz,
which allows to prove higher regularity and in particular to give meaning to the critical
resonant product in the continuum. Second, the higher regularity is used in order to
improve the tightness and to construct a renormalized cubic term H¢3ﬂ. Finally, we
derive an integration by parts formula together with the Dyson—Schwinger equations
and we identify the continuum dynamics.
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6.1. Improved tightness. In this section we establish higher order regularity and a better
tightness which is needed in order to define the resonant product [ X2]o¢ in the continuum
limit. Recall that the equation (4.7) satisfied by ¢ . has the form

Zibme = =31[Xiy ] > dme + Unte, ©6.1)
where
Unme = —30[X3 ] < (Vae + dre) — 30%base(Xage + Yore + o)
= 3MUE[ Xy D) = Yoo — 32X pae(Yog e + buae)® — MYy,
—3AYj o bue — 3AYaePhy . — Moy e
If we let

XM, = ¢M,8 + 3)\X\1(\/1’5 > ¢M,87 (6.2)

we obtain by the commutator lemma, Lemma A.14,

3A[X3 ] 0 bue + 332 baredue = —30[X3 ] 0 GAX )y . = dure) + 30 bas cir.e
+30[X3 ] o Xume
25 2 =
=-A XM’5¢M,E +3X (bM,s - bM,S(Z))¢M,8
+ A2C€(¢Mv5’ _3X\1(VI,8’ 3[[X%/[,e]]) + 3A’[[X/2\/I,8]] O XM,e-
Recalling that Zy, = —3271[X3, ] 0 Yi,e — 3bum o (Xm,e + Yu,¢) can be rewritten

as (4.10) and controlled due to Lemma 4.3, where we also estimated X M.eYm,e and
XM,*?Yz%/I,e* we deduce

~% ~
Upe = —32X 3y out.c + 332 (ba.e — bag,e (0)bit.e + A2Ce(Pater —3X )y 0. 3[X31 1)
+30[X3, T o xme+A2 Zy e —30[X% ] < (Vare +ue) =MW E [X3.D) > Yare =30 Xue Y,

— 6AXp.e Yt obme — 30 Xpt.e03 o — MYy o — AV Y bre — 3MVar el o — My o

Consequently, the equation satisfied by s . reads

Lixme = Lobme +3M[X31 ] = bure + 34Xy, = Lodme — 6AVe X}y o > Vedre
=Upme+30 X}y, = Lo — AV X}y, > Vedure
= Upe +34X )y = (=3A[X3 ] = dme + Une) — AV X}y o = Vedre,  (6.3)

where the bilinear form V, f < V,g is defined by

1
Vef < Vegi= E(Aa(f <8 —Asf <g—[f <A

and can be controlled as in the proof of Lemma A.14.

Next, we state a regularity result for x s ¢, proof of which is postponed to Appendix
A.6. While it is in principle possible to keep track of the exact dependence of the bounds
on A we do not pursue it any further since there seems to be no interesting application
of such bounds. Nevertheless, it can be checked that the bounds in this section remain
uniform over A belonging to any bounded subset of [0, 00).
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Proposition 6.1. Let p be a weight such that p* € L*° for some 1 € (0, 1). Let ¢y be
a solution to (6.1) and let xp1 ¢ be given by (6.2). Then

10* el grssee < Crm2 3 QpKna ) (1 + 1107 0a1.6 (O] 2).

We apply this result in order to deduce tightness of the sequence (¢ar.¢)m.¢ as time-
dependent stochastic processes. In other words, in contrast to Theorem 4.8, where we
only proved tightness for a fixed time ¢t > 0, it is necessary to establish uniform time
regularity of (¢ar.¢)m.¢. To this end, we recall the decompositions

OMe=XMe+tYMe+Pme=Xme — )\X\;/Lg +iM.e
with
I =Yme+2 Xy +bue =—L BMUX ] = Yuel+dme.  (6.4)
Theorem 6.2. Let 8 € (0, 1/4). Then for all p € [1,00) and T € (0,T)

sup  Ellgnel>”

+ sup  Elou, 8” o pr—1/2-20e 02y < Co < 00,
e€A,M>0 LerH™ Colh

B.1 —1 3k,&, 4
Wr' By, (™) g€ A,M>0

where L?TH—I/Z—ZK,S(IOZ) — LOO(‘L', T; H_1/2_2K’8(,02)).
Proof. Let us begin with the first bound. According to Proposition 6.1 and Theorem 4.8
we obtain that

E
”XM 8||L BIHi?K F(p4)

< CraEQ,(Xue) (1 +El o’ 8(O)||L25)
< CraEQ,(X) (1 +Ep* (pum.(0) — X 5(0))||Lz£ +Ellp* Y, S(O)HLZe)
is bounded uniformly in M, . In addition, the computations in the proof of Proposi-
tion 6.1 imply that also £ ||‘$€XM,€ ”i’l’ B (1) is bounded uniformly in M, €. As a
P11

consequence, we deduce that

BN 01,017 orine oy < BN =m0l i o) + B[ oo (RO
is also bounded uniformly in M, €.

Next, we apply a similar approach to derive uniform time regularity of ¢ .. To
this end, we study the right hand side of (6.1). Observe that due to the energy estimate
from Theorem 4.5 and the bound from Proposition 6.1 together with Theorem 4.8 the
following are bounded uniformly in M, ¢

2 2p 2 2p
]E” HXM,S]] > ¢M15 ||L%H—1—K,£(p2+0') ’ ]E” HXM,S]] O XM.e ||L}~B|2ﬁ'6(p4+")’

whereas all the other terms on the right hand side of (6.1) are uniformly bounded in
better function spaces. Hence we deduce that

Ellatdwall C13ee oy S < El(As —m )¢Ms|| C1ee (ia)
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+E ”’%quS ”iI;BI—:—SK,e(pAHg)

is bounded uniformly in M, ¢.
Now we have all in hand to derive a uniform time regularity of ¢as . Using Schauder
estimates together with (6.4) it holds that

2p

2 _

Ell¢pm el p(l—ZI()/Z.l e, g, SE H% 1[3)‘(%5[[)(%/1,3]} > Yl
WT Bl,l (p )

Cp L o7)

2p
+E|lpum, e ||W;,1B[1173K,s(p4+0)
is bounded uniformly in M, €.
Finally, since for all 8 € (0, 1) we have that both

2p Y o2p
EllXwm.e Hcg(g—l/pk—zﬁ,g(pa)’ ]E”XM,S ||c£<ﬁl/2—x—2ﬁ,s(po)

are bounded uniformly in M, ¢, we conclude that so is E||@as ¢ ||2p for

WT,?,IBillfh.s(sz_o)
B € (0, 1/4), which completes the proof of the first bound.

In order to establish the second bound we recall the decomposition ¢ar. = X ¢ +
Yum ¢ + dm.c and make use of the energy estimate from Corollary 4.7. Taking supremum
over t € [t, T] and expectation implies

2p
sup  Elldumell}oc ;2600 < OO.
s A,M>0 Lo L8 (09)

The claim now follows using the bound for X . together with the bound for Yy . in
Lemmad4.1. O

Even though the uniform bound in the previous result is far from being optimal, it is
sufficient for our purposes below.

Corollary 6.3. Let p be a weight such that p* € L* for some 1 € (0,1). Let B €
(0,1/4) and o € (0, B). Then the family of joint laws of (E¢@m ¢, EEXpm ¢) is tight on

WfZ’CIB[i*“K (p*7) x Cl';/CZX, where

X = g (o)
i=1,..,7
witha(l) =a(7) = —-1/2,0(2) = -1, a2(3) =1/2, a(4) = a(5) = a(6) =0.
Proof. According to Theorem 6.31 in [Tri06] we have the compact embedding
Bi}f&( (p4+(7) c Bliifétf( (p4+2:7)
and consequently since @ < § the embedding

A y—1— 11—
ngc Bl’ll 3k (p4+0) C W](ZClBl’i 4k (p4+20’)
is compact, see e.g. Theorem 5.1 [AmmO00]. Hence the desired tightness of %@ ¢
follows from Theorem 6.2 and Lemma A.15. The tightness of £9Xy . follows from the
usual arguments and does not pose any problems. O
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As a consequence, we may extract a converging subsequence of the joint laws of the
processes (E¢@um e, EEXp e) M e I Wloé’cl Bl_%_4" (™) x CK/ZX Let & denote any limit
point. We recall that X7 . denotes the collection of all the necessary stochastic objects,

see (4.3). We denote by (¢, X) the canonical process on Wloécl B 1 e (p4+") X C{;{:z
and let u be the law of the pair (¢, X) under /i (i.e. the pI‘O_]eCthIl of [i to the first two
components). Observe that there exists a measurable map ¥ : (¢, X) — (¢, X) such
that i = 1 o W~!. Therefore we can represent expectations under /i as expectations
under p with the understanding that the elements of X are constructed canonically from
X via W. Furthermore, Y, ¢, ¢, x are defined analogously as on the approximate level as
measurable functions of the pair (¢, X). In particular, the limit localizer 7. is determined
by the constant L obtained in Lemma 4.1. Consequently, all the above uniform estimates
are preserved for the limiting measure and the convergence of the corresponding lattice
approximations to Y, ¢, ¢, x follows. In addition, the limiting process ¢ is stationary in
the following distributional sense: for all f € CZ°(R;) and all ¢ > 0, the laws of

o(f) and @(f(-—1)) on S'(R?)

coincide. Based on the time regularity of ¢ it can be shown that this implies that the laws
of ¢(¢) and (¢ + 1) coincide for all T > 0 and a.e. ¢ € [0, 00). The projection of u on
@(t) taken from this set of full measure is the measure v as obtained in Theorem 4.9.

6.2. Integration by parts formula. The goal of his section is to derive an integration
by parts formula for the d>‘3L measure on the full space. To this end, we begin with the
corresponding integration by parts formula on the approximate level, that is, for the
measures vy . and pass to the limit.

Let F be a cylinder functional on S'(R3), that is, F(¢) = ®(@(f1), ..., 0(fn)
for some polynomial ® : R* — R and fi,..., f, € S (R3). Let DF(¢) denote the
L?-gradient of F. Then for fields ¢, defined on A, we have

IF(E¢e) _

od . . |
30 (0) Z"’ DUE D) (1) -+ (E5g) (fi)) we % f1) ()

—=¢ [u)g * DF(E%¢:)](x),

where x € A, and w, is the kernel involved in the definition of the extension operator
&? from Section A.4. By integration by parts it follows that

/ [we * DF(E°0)](x)var.c (dg)

_ 1 oF (&)
= g_d a—()UM,a(dQO)
8 Me((ﬂ)
= — E M. (d
/ Topn) M M.e(do)

= 2/ FE o)’ + (=3hap.e +30by.e)p(X)1va e (d)

2/ F(E°@)Im* — Aclp(x) v (dg). (6.5)
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According to Theorem 4.9, we can already pass to the limit on the left hand side as
well as in the second term on the right hand side of (6.5). Namely, we obtain for any
accumulation point v and any (relabeled) subsequence (v o o (£° ) M.e converging
to v tléat the following convergences hold in the sense of distributions in the variable
xelR

/ £°[w % DF(E°0)1(x) v« (dg) — / DF(£°¢)(x)v(d),
f F(EEQ)E M’ — Adlo(x)var.e (dg) — / F(@)im? — Alp(x)v(dg).

The remainder of this section is devoted to the passage to the limit in (6.5), leading
to the integration by parts formula for the limiting measure in Theorem 6.7 below. In
particular, it is necessary to find a way to control the convergence of the cubic term and
to interpret the limit under the Cbg measure.

Let us denote

[0° 1. () := 0() + (=3am.c +3rbur ) ().

We shall analyze carefully the distributions Jys ¢ (F) € S’(A,) given by
TueF) = x> [ FE QI i o)

in order to determine the limit of £ 7y . (F) (as a distribution in x € R3)as (M, ¢) —
(00, 0). Unfortunately, even for the Gaussian case when A = 0 one cannot give a
well-defined meaning to the random variable ¢ under the measure v. Additive renor-
malization is not enough to cure this problem since it is easy to see that the variance of
the putative Wick renormalized limiting field

[’ = lim &9 ]me

e—>0,M—o0

is infinite. In the best of the cases one can hope that the renormalized cube [¢?] makes
sense once integrated against smooth cylinder functions F'(¢). Otherwise stated, one
could try to prove that (Ju ) m,e converges as a linear functional on cylinder test func-
tions over S’ (R3).

To this end, we work with the stationary solution ¢, . and introduce the additional
notation

[oar 0t 3) == @ar et ) + (=3am.e +30bu.e)om s (2, y).
As the next step, we employ the decomposition
oM = XMme — )"X\}V[/I’g +iMe

in order to find a decomposition that can be controlled by our estimates. We rewrite

[[(pl?il,sﬂ = [[X?W,s]] + 3[[X%4,5]](_)‘X\1YM,5 + CM,&) + 3)‘«bM,s(pM,e
+3X a6 (—AX )y o + Cre) >+ (=2 X}y o+ Care)
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Next, we use the paraproducts and paracontrolled ansatz to control the various reso-
nant products. For the renormalized resonant product 3[X %/, o (—)»X\;,,’ e T iMe) +
3Aby epu . we first recall that

§0M,8:XM,8+YM,5+¢M,£s ¢M£:_3)\XM5 >¢M8+XM£
Therefore using the definition of Zjs . in (4.10) we have

3[[X%4,g]] ° (—AXL,E +CM.e) + 30y cpm.e = 3[[X%4,g]] o (Ypr,e +Ppr.e) + 30Dy, 0m e
=3[X3.] 0 Yare +3rbare(Xre + Yare)

—AZme
+ 3[[X%/[,s]] o ¢M,8 + 3)"bM,s¢M,g

and

3[X% ] 0 $are +30bur.edir.e
=3[X3.] 0 (=3AXy, > due) + 30bas. e
+3[X3,.] 0 xume
= —3.K}) cbure +30(bare — bar.e()ar.c + 2Ce(@are. —3X )y . 3[X3, D)
+3[[X%/1,g]] ° XM.e-

The remaining resonant product that requires a decomposition can be treated as

3Xpe 0 (—AXpy o+ Cme)”

=30 Xue 0 (X)y ) — OAXue 0 (X)y Cme) +3X e 0 iy

= 60" Xpre 0 (X o = Xy o) + 327 Xpre 0 (Xiy o 0 Xy o)
—6AXp.e 0 (Xiy o > Eume) —6AXpe 0 Xy < Cnte)
+3Xpme o0 gf,l,s

= AW X}y, — Cme) Xy + OACo(AX Dy, — Cares Xiyg oo Xare)
+30 2 X a6 0 (Xhy o0 Xy o) — 64X a1 0 (Xpy o < Ctie)
+3X 0,6 0 iy o

where we used the notation f < g=f <g+ fog.
These decompositions and our estimates show that the products are all are controlled

in the space L' (0, T, Bl_i —3e, £ (p**?)). The term [[X?Wg]] requires some care since it can-
not be defined as a function of . Indeed, standard computations show that £ X 131/1 =
[X3] in W;K’OO%_3/2_’“’€(,0“), namely, it requires just a mild regularization in time
to be well defined and it is the only one among the contributions to [[‘/’13\/1 -] which has

negative time regularity. In particular, we may write [y, .| = [X3, 1+ He (@um.c. Xar.e)
where for p € [1, 00)

sup  EJ[X3, g]]nz” sup EnH(wngMg)nz”

<0
—K,00 —3/2—,
e A, M>0 ¢ ”(pa) e A,M>0

1 3»(,s(p4+{,)
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is uniformly bounded in M, ¢. The dependence of the function H; on ¢ comes from the
corresponding dependence of the paraproducts as well as the resonant product on €.

Now, let 2 : R — R be a smooth test function with supph C [t, T] for some
0 <t < T < o0 and such that fR h(t)dt = 1. Then by stationarity we can rewrite the
Littlewood—Paley blocks A;jM, +(F) as

A% Tm,e(F) /Rh(t)E[F(ES(pM,s(t))A; [@3r.c (O] m.c1dr

E [ /R h(t)F (E°pu e (1) A5 [[Xi,,’g]](t)dti|

+E [ /R B F(E out,c () A He (0 e, XM,gxr)dr}

= ATy (F) + A5 T4 (F).

As a consequence of Corollary 6.3 and the discussion afterwards we extract a subse-
quence converging in law and using the uniform bounds together with the (£) property
of our nonlinearities as defined on page 2073 in [MP17], we may pass to the limit and
conclude

lim  &°JTme(F)=E, [/Rh(t)F(w(l))[[</)3ﬂ(t)dt} = Ju(F).

e—>0,M— o0

Here [¢?] is expressed (as [[‘/’1314,5H before) as a measurable function of (¢, X) given by

[0°] := [X3] +3[X?] w (=2X" +¢) —2Z —2X ¥ + 30B(1)¢
+AC(p, —3X",3[X]) +3[X ] o x +3X x (=2 X" + )2 +600:X" — )XY
+60COX -0, X X)+30%X o (X 0o X" ) —6aX o (X' <) +3X 02
+ (=2 X" +0)3, (6.6)

where we used the notation f X g = f < g+ f > gand ¢, ¢, Y are defined as starting
from (¢, X) = W (g, X) as

o=X-2X"+¢,  =—ZT"BAU[X]) - Y]+,

the operator C is the continuum analog of the commutator C, defined in (A.8), the
localizer %- is given by the constant L from Lemma 4.1 and B(-) (appearing also in
the limit Z, cf. (4.10)) is the uniform limit of by  — l;M,s(-) on [z, T]. Let us denote
H(p, X) = [¢’] - [X°].

Remark that our uniform bounds remain valid for the limiting measure p. As a
consequence we obtain the following result.

Lemma 6.4. Let F : S'(R?) — R be a cylinder function such that
[F@)] + IDF @)l prsse (pi-ry < Crll@lly-1-e2,

for some n € N. Let u be an accumulation point of the sequence of laws of (£ ¢,
E*X m¢). Then (along a subsequence) E° Ty o (F) — J,.(F) in S (RY), where Tu(F)
is given by

Ju(F)=E, [ /R h(z)F(w(t))[[XW(t)dr]
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+Ey, [/Rh(t)FGp(t))H((p, X)(t)dt} = TN (F)+ T (F),

for any function h as above, which is understood as an equality of distributions and the
expectation is in the weak sense. Moreover, we have the estimate

1T ) g3y + 1T, (F) | gt oy S Cr

where the implicit constant depends on ., h but not on F.

Proof. For any cylinder function F satisfying the assumptions and since supp & € [t, T]
we have the following estimate for arbitrary conjugate exponents p, p’ € (1, 00)

1T Pl oy S B [l 1> F@@)ll e [P [Fme————
p 1/ 3P r
S Eulllt = F@)If, DY <Eu [n[{x ﬂnwrk,wwzk(po)})

_ I/p
S @l P, s ([ PO SO gg,)
T [0

TP |t _S|(1+K)p

Since for arbitrary conjugate exponents g, g’ € (1, 00)

1
EulF(p@) — F(p()]” < fo E [(DF(p(s) + T(p(t) — ¢(s))), (1) — ¢(5))|"dT

1/q'

1
< [ ar (BaDF@O) + 700 = vy o)

1
Epllg®) = 0Ol )
< CL(E, ||¢(0)||’g’?1,2,2K(p2))1/q Epllg® = 0@ ).

we obtain due to Theorem 4.8 that

1/(pq)
Eullo® = o®I5 s ey
X
F ©—. —K o C dtds
”‘7M( )”K 3/2—k (p )N F w/[‘O,T]z |l _S|(1+K)pq
< CF(E ”(p”paqu—l 3K(p4+g))l/(pq)’

where « = 1+ k — 1/(pg). Finally, choosing p,q € (1, co) sufficiently small and

x € (0, 1) appropriately, we may apply the Sobolev embedding WE' WP together
with the uniform bound from Theorem 6.2 (which remains valid in the limit) to deduce

1T, (F)lig=sr2x o) S CrErlleliy YD < Cr.

1B 1 3/(( 4+0)

To show the second bound in the statement of the lemma, we use the fact that supp 7 C
[t, T]forsome 0 < 7 < T < o0 to estimate

1T, (g1 pteoy < Balllt = Fl@(O) 15, 1H (@2 Xy 15 )]
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2 1/2 2 1/2
g CF(EM||¢||LI%TH—1/2—2K(p2)) / (EM”H((P, X)||L;~Bl_11_3’((l74+0)) / 5 CFa

where the last inequality follows from Theorem 6.2 and the bounds in the proof of
Proposition 6.1. O

Heuristically we can think of 7, (F) as given by
7.6~ [ F@I IO,

However, as we have seen above, this expression is purely formal since [¢3] is only
a space-time distribution with respect to u and therefore [[¢3ﬂ(0) is not a well defined
random variable. One has to consider F' +— [J,(F) as a linear functional on cylin-
der functions taking values in S’'(R?) and satisfying the above properties. Lemma 6.4
presents a concrete probabilistic representation based on the stationary stochastic quan-

.. . 4
tization dynamics of the ®; measure.

Alternatively, the distribution 7, (F) can be characterized in terms of ¢(0) without
using the dynamics, in particular, in the spirit of the operator product expansion as
follows.

Lemma 6.5. Let F be a cylinder function as in Lemma 6.4 and v the first marginal of
. Then there exists a sequence of constants (cN)neN tending to 0o as N — 00 such
that

7u6) = Jim_ [ F@IU@ane =~ ev(Benplvd)

in the sense of distributions. Moreover, the renormalization constants are given by
en = 3AE[[(Acn X)*](t, 0)] = 1827E[[(A<n X)*] 0 27 [(A<cn X)?] (1, 0)].
for some t > 0, where
[(A<nX)’] = (A< X)? — E[[(A<n X)) (2, 0)].
Proof. Let

Jun(F) = / F@l(A<ng)’ — en(Acng)lv(de).
Then by stationarity of ¢ under u we have for a function 4 satisfying the above properties
JoN(F) =E, [/}Rh(t)F((/J(t))[(Agzwp(t))3 - CN(AgN(P(t))]dZ} -

At this point is not difficult to proceed as above and find suitable constants (cy)nyeN
which deliver the appropriate renormalizations so that

[(Acne)® — en(Acng)] — [¢°],

and therefore, using the control of the moments, prove that

Jon(F) = E, [/Rh(t)F(fﬂ(t))[[fp3ﬂ(t)dt] = Ju(F).
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Remark 6.6. By the previous lemma it is now clear that 7, does not depends on . but
only on its first marginal v. So in the following we will write J, := J, to stress this
fact.

Using these informations we can pass to the limit in the approximate integration by
parts formula (6.5) and obtain an integration by parts formula for the <I>‘31 measure in the
full space. This is the main result of this section.

Theorem 6.7. Any accumulation point v of the sequence (V. o (E° )~ H M.e satisfies

/ DF(¢)v(dg) = 2 / [ — A)g]F(@)v(dg) + 217, (F) 6.7)

in the sense of distributions.

When interpreted in terms of n-point correlation functions, the integration by parts
formula (6.7) gives rise to the hierarchy of Dyson—Schwinger equations for any limiting
measure v.

Corollary 6.8. Let n € N. Any accumulation point v of the sequence (vy ¢ o (58)_1)1‘4,8
satisfies

Y8 = x)DE[p(x1) - (i) @(xint) - - 9(x)]

i=1
= E,[[(m* — A)e(x)]p(x1) - - 9(x)]
= lim Eyfp(x): - @) (Acne(x))? — enAcne())]

as an equality for distributions in S'(R3)®+D,

In particular, this allow to express the (space-homogeneous) two-point function
Sy (x —y) :=E,[e(x)@(y)] of v as the solution to

B(x —y) = (m* — A)Sy (x —y)
— lim [(I® AZY)SN(. 2. x.2) = en (A S = )],

where the right hand side includes the four point function S ){ (x1,...,x4) = E,
[p(x1) - - @(xa)].

Finally, we observe that the above arguments also allow us to pass to the limit in the
stochastic quantization equation and to identify the continuum dynamics. To be more
precise, we use Skorokhod’s representation theorem to obtain a new probability space
together with (not relabeled) processes (¢u.¢, X ,¢) defined on some probability space
and converging in the appropriate topology determined above to some (¢, X). We deduce
the following result.

Corollary 6.9. The couple (¢, X) solves the continuum stochastic quantization equation
ZLo+A[p =6 in SR, xRY,

where & = % X and [¢?] is given by (6.6).
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7. Fractional <I>g

In this section we discuss the extension of the results of this paper to the fractional CI>§
model, namely to the limit of the following discrete Gibbs measures. Let y € (0, 1) and
set

A —3haye +3A2bye +m? 1
dv&gocexp'—%d > [Zwﬂ = el + 120 PP T den,

2 XEA M.

7.1
where (—A;)Y is the (discrete) fractional Laplacian operator given through Fourier
transform by

XEAM e

F(=80) P = () Fh),

with I, (k) = Zj‘:l 4sin2(8nkj)/82. The kernel of the operator (—A,)Y on the lat-
tice (¢Z)> has power-law decay in space and therefore the above measure corresponds
to a non-Gaussian unbounded-spin system with long-range interactions. Varying y at
fixed space dimension allows to explore a range of super-renormalizable models which
approach the critical dimension as y is lowered. These and similar models have been
considered in [BDH98,BMS03,Abd07,S1al8,Abd18] as rigorous ways to implement
Wilson’s and Fisher’s e-expansion idea, namely the study of critical models perturba-
tively in the distance to the critical dimension.

Let us first observe that the measure ”1)\//1 . isreflection positive. Albeit this result seems
to belong to the folklore of the mathematical physics community, we could not find a
clear reference to this fact and therefore we will give a sketch of the proof. We start from
the observation that the fractional Laplacian generates a reflection positive Gaussian
measure. The proof we report below is due to A. Abdesselam (private communication).
Recall that on A ys . we define reflections 87 with i = 1, 2, 3 and the reflection positivity
as in Section 5.3. Below, the reflection positivity is always understood with respect to
0 = 01, Of course, similar considerations hold for the other directions as well.

Theorem 7.1. Leta > 0, y € (0, 1) and let MVM,S be the Gaussian measure on Ay ¢

with covariance given by (a — Ag)™V. Then ,uVM . Is reflection positive.

Proof. Let p > 0 and let K, (p) := fo ty(t+p), so that K, (p) = p 7K, (1). As a
consequence we have the formula (as Fourier multipliers)

dt
Y — _ -1
(a— A" % (1)/ (t+a—Ap)

Now the Gaussian measure with covariance (f + a — A,)~! corresponds to a spin-
spin nearest neighbors interaction and is well known to be reflection positive (see the
discussion in Section 5.3). In particular,

Y @O +a—A) T (x,y) >0

X, YEAM ¢

for all f : Ay — C supported on AX,, e = (X € Ame 1 0 < x1 < M/2}. Taking the
appropriate integral over ¢ we get

Y @@= A) TV (x, ) =0

X’YEAM,E
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From this we can deduce that, for all cylinder functions F supported on A}, , we have

E[0F(¢)F(¢)] =0

where ¢ is the Gaussian field with covariance (a — A,) ~7. This follows from taking F as
a linear combination of exponentials and then using Schur-Hadamard product theorem
to deduce positivity and finally concluding by a density argument (see e.g. [GJ87, Thm
6.2.2]). O

Corollary 7.2. The fractional <I>‘31 measure (7.1) on A ¢ is reflection positive.

Proof. Take a > 0 and consider the measure
1
Vi 09) = P, DIy o (A9),

where M”M . 18, as above, the Gaussian measure with covariance (a — A¢)™" and

A =3 ay .+ 3)\.2bM e+ m2
‘= ex _28d - 4+ 5 s 2
PAy . (P) P erA [4|¢x| > x|
M.e

Note that pp,, , () = PAY, . ((p)(@pAXl s)(¢) and that we can write

/HF(¢)F(¢)VK4’$((1¢)= a /9F(¢>)F(¢)pAM,€(¢)MV£(d¢)

M.,e

1 O(orr F)D) a
N zhe / 0(pns, P @) (pas, )@ty (dp) >0

since we already proved that uﬁ; is reflection positive. Now, observe also thatasa — 0
v.a Y
the measures (v, . )a converge weakly to vy, . and as a consequence we deduce that
y . . ..
vy ¢ 1s reflection positive. O

The equilibrium stochastic dynamics associated to the measure v}f,l . reads

LY ome +0yy o+ (—3hape + 307Dy )ome = Eme. X € Ay, (12)

where Z Y = 9, + 2 and 27 = m? + (—A,)?. We have to take into account the
different regularization properties of the fractional Laplacian, and the related modified
space-time scaling for the fractional heat equatlon This nnphes that the stochastic terms
are of lower regularity. In particular, X/ ¢, [ X3 el [x3, ] and X', . have respectively
the spatial regularities 2y — 3)/2—, 2y — 3)—, 32y = 3)/2—, (IOy —9)/2—. Ttis
clear that using only the first order paracontrolled expansion developed in this paper
it is not possible to cover the full range of y for which the model is still subcritical
(i.e. super-renormalizable). From eq. (7.2) one can readily compute that criticality in
three-dimensions is reached when y = 3/4 at which point the term [X %,1 -] scales like
the fractional Laplacian.

For large enough values of y € (3/4, 1) the analysis proceeds exactly in the case
y = 1. Consequently Y3, . will also be of regularity (10y — 9)/2— (cf. Lemma 4.1).
Since based on (4.23), ¢, will have regularity (4y — 3)—, the various commutators
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Dy (bue, =31[X3 o dme)s  (p*bume, Ce(@m e, 3M[X3, ], 3A[XG,  D)e,  and
Dy (Pume, 3)‘[[)(%4,5]]1 (2 ‘2;/)71[3)\.[[)(]2‘/[,5}] > ¢u.¢]) will be under control as soon
as 8y —6)+ (2y —3) = 10y — 9 > 0 namely when y > 9/10. However, the term
Zy ¢ now has the regularity of the tree X\}’,LE namely (14y — 15)/2— and therefore in
order to control (¢ar.¢, Zp ) We must require y > 21/22. In this case the fractional
energy estimate of Theorem 3.1 carries through and provides a priori estimates for ¥y ¢
in weighted H” and as a consequence a similar estimate holds for s . in the same
space. The proof of the stretched exponential integrability works as well but the ex-
ponent becomes worse due to the limited regularity of the stochastic terms. Moreover,
the improved tightness in Section 6.1 remains unchanged and yields the corresponding
regularity. Therefore, mutatis mutandis we conclude the following results.

Theorem 7.3. Lety € (21/22, 1). There exists a choice of the sequence (any.¢, by e) M e
such that for any . > 0 and m*> € R, the family of measures (v}(,,ﬁ ¢ )M.e appropriately

extended to S’ (R3) is tight. All the consequences stated in Theorem 1.1 carry on to every
accumulation point v of this family of measures except from the fact that the exponential
integrability holds for some v € (0, 1) not necessarily of order k.

If y < 21/22 an additional renormalization is needed to treat the divergence of
(27 Xy Do Xy

In general, when y € (3/4, 21/22] more complex expansions and renormalizations are
needed, either by exploiting the iterated commutator methods of Bailleul and Berni-
cot [BB20] or full fledged regularity structures [Hail4,HM18a]. While it is not clear
that the local estimates of Moinat and Weber [MW 18] apply to the fractional Laplacian
(which is a non-local operator), our energy method could be conceivably adapted to the
regularity structures framework. We prefer to leave these more substantial extensions to
further investigations.
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A.l. Besov spaces. First, we cover various properties of the discrete weighted Besov
spaces such as an equivalent formulation of the norms, duality, interpolation, embed-
dings, bounds for powers of functions and a weighted Young’s inequality.

Lemma A.l. Leta € R, p, g € [1, 00]. Fix n > || and assume that p is a weight such
that

”IOHB'H:I‘S(p—l) ”10 ”anl'g(p) ~ 1
uniformly in €. Then

/1l pe:

P,

s~ oS liges s
where the proportionality constant does not depend on ¢.

Proof. We write pf = p < f + p = f and estimate by paraproduct estimates

lo < fligae =110 < fllgae o) S N0l s o) Fllgoe oy S 1F I gee (),
o= Fllgss =107 Fllgss ot S 1 Usse o1l ans, oty < 170 B2e oyl l et , 1,
< e
~ ||f||3p:2(p),
which implies one inequality. For the converse one, we write f = p~ ! < (pf)+p ™! =
(pf), and estimate

-1 —1
o™ < (N ligzepy S o~ e pllof s

P

—1 —1 —1
1™ = 0P lgse o S 1o e 10~ aze, ) S NoF gz 0™ e,

p,

O

Lemma A.2. Leta € R, p, p/,q,q" € [1, 0] such that p, p’ and q, q' are conjugate
exponents. Let p be a weight as in Lemma A.1. Then

(f.8)e SN fllgee olighg=oee -
€ BF ('0) Bp’.q’(p 1)

4

with a proportionality constant independent of €. Consequently, B;,OZ‘,E e (ngf;
(= )*.

Proof. In view of Lemma A.1 it is sufficient to consider the unweighted case. Let f €
Bygand g € B;,aj. Then by Parseval’s theorem and Holder’s inequality we have

e fgm = Y e Y AT f0ASg)

xeA, —1<i,j<N—J  x€A;
= Z [wi(k)ff(k)wj(k)fg(k)dk
—1<i, j<N—T i~j 7 e

= Yoo 29279 Y AT AR S I fllge gl g
P q

—1<i, j<N—J,i~j x€A,
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Lemma A.3. Lete € A. Leta, ag, 1, B, Bo, B1 € R, p, po, p1,9, 90, q1 € [1, 00] and
6 € [0, 1] such that

1 0 1-6 1 0 1-6
a=06ag+(1—0a, B=0B8+(1—-0)f, —=—+—") —=—+—
P Po P1 q q0 q1

Then
I Be oty < I£11° B (o ﬁo)”f” als oy

Proof. The proofis a consequence of Holder’s inequality. Let us show the claim for p, po,
P1,4,40,q1 € [1,00) and ¢ € A\ {0}. If some of the exponents p, po, p1, 4, qo, g1 are
infinite or we are in the continuous setting, the proof follows by obvious modifications.
We write

1pP A% FIT e =& Y 1pP A% F ()P

xeAg

= Y "PIATF PP (PP A £ (0|07
ke,

and apply Holder’s inequality to the conjugate exponents g—g and (lf—é)p to obtain

op/po (1-6)p/p1
IIPﬁAj'f”{N < | Z pﬂ°p°|A§f|1’° g4 Z pﬂ1p1|A§f|1’1
xEA, XEAg
. e ;1 (1=6)p
= ||A f”LpOg( ﬁO)HAjf”LP]-S(pﬁI)'
Consequently,
”f”éliggfi(pﬁ) < Z 2akq||pﬁA§f”qu’g
’ —1<j<N=J
Dok (1-0)ak e p(1=0)q
< Z (2 M AG f”LPOS(pﬂo)) (2 - q”Ajf”Ll’l'E(pﬁl))
—1<j<N-J

and by Holder’s inequality to the conjugate exponents g—g and (1219) 7

q
||f||37):2(pﬂ)

0q/q0

apkqo e
Do 2NN o
—I<j<N=J

N

(1=0)q/q1

Yo A o,y

—1<j<N-J

( 9)!1
= 15 ) 1 g2
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We note that by our construction of the Littlewood—Paley projectors on A, in each
of the cases j = —1,j € {0,..., N —J —1}and j = N — J, there exists an L'-kernel
IC such that the Littlewood—Paley block Aj. f is given by a convolution with 2/4/C(2/").
For notational simplicity we omit the dependence of /C on the three cases above.

Lemma A4. Let ¢ € Aandlet 8 > 0. Then

0 0
L**(p) = By5(p), L™ (p) C By5.(p)

and the proportional constants do not depend on ¢.

Proof. Due to Lemma A.1 together with Parseval’s equality we directly obtain the first

claim. Consequently, by Young’s inequality together with the fact that /’% <p tx—y)

(for a universal proportionality constant that depends only on p) we have that

_ € — jd Jj.
||f||32:;(p) = IAS fllpaey = sup  [1279KQ27) * fllpae(p
—1<jSN-J —1<j<N-J
S osup 1279K@ ) pre ooy 1 Fll ey S U s .
—-1<jSN-J

Lemma A.5. Let k € (0, 1), p € [1, oo] and let p be a polynomial weight
1 gise gy S 1F N o+ Ve F llge .

where the proportionality constant does not depend on ¢.

Proof. L<j,tj 20.LetK; =K, = .7:_1g0j- anddenote K; = K, = > i~; Kie. Then
A*j.f: K *A*j.fandwewrite

KjxASf=(d —A) T Id A (K * A% )
= (Id—A) (K A5 f) — (1d—A)"'VIVL(Kj % A% f). (AD)
For the second term we use translation invariance of V; to obtain
(d —A) T 'VIVe(Kj * AT f) = ((d=A0) T VEK ) % (ASVEf),
hence by Young inequality
1(Ad AT VEK ) 5 (A5Ve llre oy S 1A =A) T VEK Il e (o 1) 1A Ve Fll Lo (o)
The kernel V;  := (Id —Ag)*lvj’e[?j is given by

eZm’k-x 8_1(1 _ e—27r1£x1)

Viek) = /
/ A 14259 e~2sin?(wiex))

¢j (x)dx

where 3§ = 3", _; ¢f . Now using (1 — 22 A )M 2Tk — (1422 27k |2)M 27k X apnd

integrating by parts (1 — A,)™ we have

|(1+2% 127k HMV; (k)]



A PDE Construction of the Euclidean <I>§ Quantum Field Theory 59

—1 —2miex
. 1— ¢
<[ Ja-2ingt|—~ Uoe ™D g
Ae 1+22p:18_2 sin®(miex))
and it is possible to check that (using that 2/ < 1)

(1 22jA )M 8_1(1 _ e—2ni8x4) —a(x)
X d D2 ?j
1+23 7%, e 2sin"(mwiexp)

dx

uniformly in j where A is an annulus centered at the origin. Therefore
Vi) < 27729 (1 + 2% |27k )™M

and from this is easy to deduce that ||V; ¢l p1.e¢,-1y < 27/ uniformly in j and €.
A similar computation applies to the first term in (A.1) to obtain

1Ad —Ae) ™ (K # A5 )llLreioy S 10D =A0) T Kl e o1y 1A5 £l pe )
S27HNAS fllLrep)
and the proof is complete. O

Lemma A.6. Let ¢ € Aand let t > 0. Let p be a weight such that p* € L*°. Then

1
o™ fllze S oSl

where the proportionality constant does not depend on ¢.

Proof. By Holder’s inequality

1
o™ fllzze < Mo Npaeliofllpae,

()

and since for [x — y| < 1 the quotient )

follows from Lemma A.2 [MP17] that

is uniformly bounded above and below, it

1Pt 17ae =& Y p*@0) S /ﬂ;d p*(x)dx < oo,

xeA,

where the proportional constant only depends on p. O

Lemma A.7. Let o > 0. Let p1, p2 be weights. Then for every 8 > 0

2
£ g

Lf(plpz) S ||f||L2*s(p])”f”H"“"zﬁvs(pz)’

3 2
1120 ey S 1 Wy 1 sty

where the proportionality constants do not depend on ¢.
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Proof. Due to the paraproduct estimates and the embeddings of Besov spaces, we have
forevery g > 0

172t s 0 Wy I g ) N g P s
SN2 o 1 ey

For the cubic term, we write
12 e (02 S I =< L2 e 020 + L = 2l e (20 + 1F 0 £ g2
31;1 (pl ) ~ Bl,vl (pl 02) B]J] (»01:02) Bl,vl (Pl 0r2)

and estimate each term separately. The second and the third term can be estimated
directly by

2 2 < £2
T P R VR o Pran SRS Vi P T P P
< 2
SNy 1 g gy NS W o 1 ez -
For the remaining term, we have

2 < 2
< a.e _
”f f ”Bl.l(plz'OZ) ~ ”f”B4,fo’8(P1)”f ||B4‘;Bls(,01,02)

where by the paraproduct estimates and Lemma A.4

172 gty = 1 W gt o 1 Wy S Pt e

(p1p2) ~
which completes the proof. O
Lemma A.8. Let p be a polynomial weight. Let p, q,r € [1, 00] be such that % +1=

1 1
=4+ 2.7
» g hen

ILf e glire) S I|f||ms<p—1)IIgIILw(p),

1 #e &lirogy S sup 160~ FI = Migpe 171 pog, 1) 18550
yeRd

where . denotes the convolution on A, and the proportionality constants are indepen-
dent of e.

Proof. We observe that for a polynomial weight of the form p(x) = (x)~" for some
v > 0, we have that p(y) < p(x)p~'(x — y). Accordingly,

1fxgMpMI=[e? D fy—x)g@pM| S el D Iof =0~ & = »lg)px)

xelAe xelAe

hence the claim follows by (unweighted) Young’s inequality. For the second bound, we
write

£ 8MPOIS e S (0~ )07 109) ) 7o~ (=0

XN

7 1(pg) ()] 7
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rp
r=p

and apply Holder’s inequality with exponents r, -2~ %

lf*g(pl

1

r
r=p

e Y107 N =01 1os@I | 167" HG = e 08 e

xele
1
' r—p r—q
<[ D2 167 N =01 | sup 07" HO = helogl e
xeh, yeRd

Finally, taking the rth power and integrating completes the proof. O

A.2. Localizers. As the next step, we introduce another equivalent formulation of the
weighted Besov spaces Bgéfoo (p) in terms of suitable point evaluation of the Littlewood—
Paley decomposition. First, for J € Ng suchthat N — J < J.,« € Rand ¢ € A we
define the Besov space by oo (p) Of sequences A = (A j,m)—1<j<N—J,mezd by the norm

1Mty = sup 2% sup pQ7 " m)ldjm.
’ —I<jSN-J meZzd

Note that we do not stress the dependence of bggfoo (p) on the parameter J as in the
sequel we only consider one fixed J for all ¢ € A given by Lemma A.9 below. The next
result shows the desired equivalence.

Lemma A.9. Letx € R, ¢ € Aand let p be aweight. There exists J € Ny (independent
of &) with the following property: f € Be’oo(p) if and only if it is represented by
A= jm) 1< <N—Jmezd € b3 oo (p) such that

1f 1 Bee oy ~ NAIp2e o) (A2)

where the proportionality constants do not depend on e. In particular, given f €
B o0 (p) the coefficients ) are defined by

him(f) = A5F Q7 m), 1< jSN=J meZ!, (A3
and given ). € by oo (p) the distribution f is recovered via the formula

f= Y FlFEiim), (A4)

—1<j<N—J

where Fy—j-s74 denotes the Fourier transform on the lattice 277 7.

Proof. Let us first discuss the decomposition (A.4). We recall that if f € S’(A;) then

Ff = Z—lgjgzv—/ (pjs.]-'f where for j < N — J the function go}?}"f is supported

in a ball of radius proportional to 2/. Let j < N — J and let B i C R be a cube
centered at the origin with length 2/*/. We choose J € Ny such that supp (pj C B;.
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Next, we identify B; with (2/*/T)¢ ¢ (2¥T)“ and regard % F f as a periodic function

on (2/*/T)4. Then using a Fourier series expansion we may write
i oxin i~ m.
@SF @ =277 (e = Fy iz (0 ()(2)
meZd

where
Him(1) = /B @SF N2y = FN @S F )@ m) = A% F@ m).
J

If j = N — J then by definition of goj we see that goj.]-" f is a periodic function on
(2N T)?. Hence we obtain the same formula (since —j — J = —N)

R D)= / WEF Ny = A% F@ T m).
(NT)4

Therefore, we have derived the decomposition (A.4) with coefficients given by (A.3).
It remains to establish the equivalence of norms (A.2). One direction is immediate,
namely, for every N — J < J. we have

sup 2% sup p27/ T m) A (£)
—1<j<N-J meZd '
= sup 2% sup pQ7/ I m)|ASF2 T m)|
—1<jSN-J meZd
< sup 2% sup p(x0)|ASf ()]
—1<j<N—-J x€A,
Conversely, if x € A, belongs to the cube of size 27/~ centered at 27/~ m, we write
|AS FOOI S TASf(x) = ASFQT7 m) |+ 1A% F 27T m)], (A5)

Now we shall multiply the above inequality by p(x) and estimate. To this end, we recall
that due to the admissibility condition for polynomial weights there exists v > 0 and
c1 > 0 (depending only on p) such that

o)
pi) "~

In addition, to estimate the first term in (A.5), we recall that for —1 < j < N —J the
Fourier transform of Ai f is supported in a ball of radius proportional to 2/ hence by a

(1 + |\/32_j_]_1 |2)v/2 <c¢; whenever |x —z| < NZ iy

computation similar to Bernstein’s lemma (since by our construction |x — 27/ ~/m| <

Ja2 i
PIAS F(x) = A5 FQTT m)| < 227 A f e ),
for some universal constant ¢, > 0 independent of f and €. If j = N — J then

A¢ coincides with the lattice 27/~/Z¢ and therefore we do not need to do anything.
Consequently it follows from (A.5) that

1A% fllzee oy < €227 THIAS Fllzses () + 1 sup o7/~ m)|AS £ m)).
meZd

Hence, making J € Ny possibly larger such that c227/~! < 1, we may absorb the first
term on the right hand side into the left hand side and the claim follows. O
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Remark A.10. Throughout the paper, the parameter J € Ny is fixed as in Lemma A.9.
Consequently, from the condition 0 < N — J we obtain the necessary lower bound Ny
for N, or alternatively the upper bound for ¢ = 27~ < 27 and defines the set .A.
These parameters remain fixed for the rest of the paper.

Remark A.11. Note that the formulas (A.3), (A.4) depend on the chosen partition of unity

(¢j) j>—1 and our construction of the associated periodic partitions of unity on A, via
2.1).

It follows from the previous lemma that we may identify f € Ba‘s(p) with its
coefficients (Aj.m(f))_1<j<n—smezd € bado0o(p). This consideration leads us to the
definition of localization operators needed for the analysis of the d>4 model. Although
the principle idea is similar to Section 2.3 in [GH18], we present a dlfferent definition
of the localizers here. It is based on the equivalent description of the Besov spaces from
Lemma A.9 and is better suited for the discrete setting.

Given (Li)k>—1 C (0, 00) and f € S'(A;) we define

ULf = (g (ZE0)) s <jan—ment s S = (Af"” <%£f)>—1<j<N—JmeZd

where

_ e . ) Aim(f), if Im| ~ 2Fand j > L; forsome k € {—1,0,1,...},
A jm (02/> )= {O otherwise,
(%gf>. Ajm(f), 1f|m|~2kandj Lj forsome k € {—1,0,1, ...},
< 0, otherwise .

We observe that by definition f = % f + % f and the localizers %, %< will only
depend on ¢ through the cut-off of the coefficients A (and consequently on the construc-
tion of the partition of unity on Ag, cf. Remark A.11), whereas the sequence (Ly)r>—1
will be chosen uniformly for all ¢ € A.

Lemma A.12. Let p be aweight. Leta, B,y € Randa, b, c € Rsuchthata < 8 < y,
a<b<candr :=0b—-a)/(f—a)=(c—b)/(y —B) > 0. Let L > 0 be given.
There exists a sequence (Ly)x>—1 defining the above localizers such that

€ < n—(B—a)L X
| 2 f”wa(p e ”f”Bfafoo(p*’)’
e < (y—B)L

where the proportionality constants do not depend on ¢ € A. Moreover, the sequence
(Li)k>—1 depends only on L, p and the ratio r.

Proof. Since o <  and a < b, Lemma A.9 yields

|22 f |l pee oy S sup 2% sup p @7 m) [hjm (2L )
—ISjSN=J  mezd
= sup sup 2@ pa=b =TT ) 2PT o 27T ) | a ()

kZ—1m~2k Li<j<N—-J

—B)j a—bn—j—J
Sl ge_pp) SUP sup 207D ptmb @I )
kZ=1m~2k Li<j<N—J



64 M. Gubinelli, M. Hofmanova
—B)L —b Ak
SIS g (py sup 2@ =020,
00,00 k>—1

where we used the fact that a < b, 27/ < 27 and that the weight is decreasing to get
PP m) < p TP @I < pt 2.
Now we set ¢y = —log, ,0(2]‘) to obtain

—(B—a)Ly+(b—
2 £ gy 1S gt oy S0 277000700 A6)

On the other hand, since y > B and ¢ > b we have by the same arguments

H%ﬁf‘ Je < sup 2% sup pc277 " m) ‘)\j,m (%ﬁf)‘
S IBGeo(09) T 1 iKN=T meZd h
= sup sup Z(V_ﬂ)j,oc_b(z_j_Jm)Zﬁj/Ob(z_j_]m)|)\j,m(f)|
k>—1m~2k, 1< j<LiAN—J)
SN Flgpe_(, sup 207t (A7)

We see that if the weight is decreasing at infinity, then ¢,y — o0. From (A.6) we
obtain the condition —(8 — o)Ly + (b — a)cky = —(B — «)L hence we shall choose
Ly = L+ (b — a)x/(B — ). Similarly, (A.7) yields (y — B)Lyx — (¢ — b)cxy =
(y — B)L hence Ly = L + (¢ — b)cx/(y — B). Balancing these two conditions gives
b—-a)/(B—a)=(c—Db)/(y — B) and completes the proof. O

A.3. Duality and commutators. In this section we define various commutators and es-
tablish suitable bounds. We denote by C, the operator introduced in Lemma 4.4 [MP17],
which for smooth functions satisfies

Ce(f, 8, ) =ho(f <g) — f(hog). (A.8)
We recall that if p, p1, p2» € [1,00] and «, B,y € R are such that % = % + %,
a+B+y >0and B +y # 0, then the following bound holds
e < a6 & e . .
”Cé‘ (fv g’ h)”Bgo{) (/01/02,03) ~ ”f”Bpl,oo(pl) ”g”Bfooc(pZ) ”h”Bgz,oo(pS) (A 9)

As the next step, we show that g > is an approximate adjoint of go in a suitable sense,
as first noted in [GUZ19].

Lemma A.13. Let ¢ € A. Let a, 8,y € R be such that o,y > 0, B+y < 0 and
a+B+y > 0andlet p1, p2, p3 be weights and let p = p1p2p3. There exists a bounded
trilinear operator

Dy o(f, g, 1) : H**(p1) x €P<(p2) x H ¥ (p3) — R
such that

[Dp,e(f, & WIS e (o) 181152 (o) 11 Y- (03)

where the proportionality constant is independent of €, and for smooth functions we
have

Dy e(f, 8, 1) =(pf,goh)e — (p(f <8 h)e.
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Proof. We define

Dpe(f 8. h) = (p,Ce(f. 8, M))e — (0. (f <8 > h)e —(p,(f <8) <h)e,

where C, was defined above. Hence the desired formula holds for smooth functions. By
(A.9) and the paraproduct estimates we have

||Cs(fsgah)||3tf+y b

IS < 8) = hlgpseqyy S < 8) > hllgne o S pge gl e 11572 o

o SNCeCF 8l gpore () S NN o 181 ey I B2 g5

I < g < hllBﬁy—se( y S I <) < h”BﬁWf(p) S B o 181 gee (o 101822 (o)
and the right hand side is estimated by
0 o 18 g 152 oy S 1 F g o 181 e W18 -
Consequently,
IDp,e(fo 8 M S Mg | Fllgss oy 181 g Wl 525 )

which completes the proof. O

Next, we show several commutator estimates. To this end, A, denotes the discrete
Laplacian on A, and we define the corresponding elliptic and parabolic operators by
9, :=m? — A, and % := 8, + 2., where m? > 0.

Lemma A.14. Let ¢ € A. Leta, B,y € R such thata € (0,1), B+y +2 < 0 and

a+B+y+2 > 0. Let p1, p2, p3 be space weights and let pa, ps, pe be space-time
weights. Then there exist bounded trilinear operators

Co - H* (p1) x €7 (p2) x €7+ (p3) = HP*V2 (p1 pap3),
Ce : Cr6™*(ps) x Cr6P* (ps) x CrC"**(ps) — Cr 6 **>*(papspo)

such that for every § > 0

1Co(f, & W)l sporee oy papy S I e o 1@ e (o llgrese (-
||C£(fv 8> h)'lCT((,)”/S+V+2vE(p4p5p6)
S (1f llerzee o + 1 llcar2 poc.e 4 glcys.e o) Il cpgrse o)

where the proportionality constants are independent of €, and for smooth functions we
have

Colfgm=ho 27 (f <) = f (ho27'g).
Colfighy=ho 27\ (f <) = f (ho 2 'g). (A.10)
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Proof. First, we define

Colfigmyi=ho| 27\ (f <) = f <27 'g|+C (£.27 g.n).

where C, was introduced above. Hence for smooth functions we obtain the desired
formula (A.10). Moreover, by (A.9) the operator C, can be estimated (uniformly in €)
for§ > 0 as

—1 < -1
e (£ 27 em)| ey, |G (527 )] e

S U Nsee o 8 llge oy 1P lligrsoc o) S NF Wre oy 18 llgp.e o) 1R llgr+.e ()

(P1p203)

For the first term in C‘g we write
G <9 - <2 =2 [ < 2.2 g - 2. (£ < 27's)]
and as a consequence
ho[Q‘1 <2 — f <97 ]H
H e (f=o—f e 8 He+B+7+2: (py p p3)

r< 2.2 15— 2.(F < 2.'8)]

S ”h“%wé-S(m)

He =5 (p12)

Finally, we observe that due to an argument similar to Lemma 4.9 [MP17] we may
control

1
Vef < Veg = E(As(f <8 —Asf<g—f< Aag),
hence
-1, _ -1
|r< 2.2 - 2. (1< 2:%)] et s

Slr<eeis-2(r<2)

gorse S I Naz o I8lns o

2,00

S I e o 18 llg.e ()

We proceed similarly for the parabolic commutator C;, but include additionally a mod-
ified paraproduct given by

f<g:= > A5 Qi fA%g,

1<i, j<N—Jji<j—1

where
Qift)= | 22 0Q%(t —5))f((s vO) AT)ds
R

for some smooth, nonnegative, compactly supported function Q : R — R that integrates
to 1. Namely, we define

Colfighyi=ho L7 (f <) f < Z7'g|+ho |27 (f < g~ f <o)
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tholf <27 g—f <2 \g|+C (£ 47 Ne ).
and observe that for smooth functions
Colfogmy=ho [ L7 (f <= f < 78]
w[no(fr<27'8) = 1 (ho2s)]
=hoZ7(f <8 —f(ho'i”g_lg),
and the desired bound follows from Lemma 4.9 in [MP17] and (A.9). O

A.4. Extension operators. In order to construct the Euclidean quantum field theory as
a limit of lattice approximations, we need a suitable extension operator that allows to
extend distributions defined on the lattice A, to the full space RY. To this end, we
proceed as in Section 2.4, page 2072 in [MP17]. Namely, let {» be a smooth and radially
symmetric smear function satisfying the properties 1., 2., 3. on page 2072 in [MP17]
and let ¥¥(-) = ¥ (e-). We define

Ef =Tl (W (Fa, Plext): €S (Ao,

where (Dext : S’ ((e71T)9) — S'(R?) is the periodic extension operator defined by

gxt@ =g | Y. e(—h|, ¢SSR
ke(e—17z)d

With the definition of the Dirac comb distribution fgi; € S’(R?) as in (10) in [MP17]
far =1 )" fROSC—k),  feS (A,
ke,
it was observed in (14) in [MP17] that
(Fae Hext = Fra(fair)-
Hence
EFf = Fod (W (Fa, Plext) = (Fd W) # Fo Fa(fair) = w® * fair = w % f,

where w® () = Fo¥e() = e Fyr(e7") = e~ lw(e™") € S(R). With a slight
abuse of notation we used the same notation %, as for the convolution on the lattice A,
to denote the operation

W ) = Y w'x—yf(y), xeR

YEAs

which defines a function on the full space R?. Note that since  is radially symmetric,
w is radially symmetric as well.
The following result is Lemma 2.24 in [MP17].

Lemma A.15. Leta € R, p, q € [1, 0o] and let p be a weight. Then the operators
E° By, (p) = B, ,(p)

are bounded uniformly in €.
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A.5. A Schauder estimate. In this section we establish a suitable Schauder-type estimate
needed in Section A.6.

Lemma A.16. Let p be aweight and let P} = ' Be=m?) denote the semigroup generated
by Ay — m>. Then there exists ¢ > O uniform in € such that forall =1 < j < N — J

1PEAS Fllpegy S e NN Fll e ),

where the proportionality constant does not depend on € and t > 0.
Proof. Recall that the discrete Laplacian A, acts in the Fourier space as

Fe A k) = e f k),
where

lo(k) = m>+4 sin*(emk;) /.

J
Consequently, for —1 < j < N — J we have using the fact that 7~ !(gh) = ]—'Hgdl (g) *¢
F~1(h) (where F~! denotes the inverse Fourier transform on the lattice A,) we obtain
AL B £] = [200V;(20)] % A,

where
Vj(x) = /H; T YOG,

where ¢ is obtained by a rescaling of ¢; =} ; _oo.;~; @i- Next, for M € N we want
to show that ,
1+ 2rxPHOM V()] S e ') x e R (A.11)

Indeed, with this in hand we may apply Lemma A.8 to deduce the claim.
In order to show (A.11) we compute

(1 exP) V0 = [ 10— A1 0
R4
= / e PE (L — ApM e D55 1dg
R4

where for a multiindex o € N4

age PO — o~ @O NN 1ofl,(27E)
0<IBI< et

therefore using the bounds from Lemma 3.5 in [MP17] we obtain

e e S R 2 et
0<IBI< el

Therefore
I(1+ 22xHMV;(0)] < / e1CQTE 55 dg < ot 12
R4

and (A.11) is proven. O
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Lemma A.17. Let o € R and let p be a weight. Let v solve
Zov=f, v =vp.
Then
o, & < a—2,¢ a—2,¢e
10023 g4 oy S 100 g2y + 1713 2o
where the proportionality constant does not depend on T and ¢.

Proof. Applying the Littlewood—Paley projectors we obtain

t

Ajv(t) = PfAj-vo +/O P,E_SAj-f(s)ds.

Hence according to Lemma A.16 there exists ¢ > 0 such that for —1 < j < N —J and
uniformly in 7 > O and ¢

T
i1 gee ) = /0 D 2 A0 eyt

—I<j<N=J
T .
g/ D 2P Ao ey dt
O _1gj<N-J
T oot
+ / > / I1PEg A% £ ()]l 1.e ) dsdlt
O _igjen-s V0
oj * —t (m2+c22j) 5
< > 2 e dt | ASvoll e )
—i1<jEn=-s 70
v o [ [T e jas p 6y
e j S Ll's(p) S
—1<jEN=-g 00 0
S >0 2wl
—I<jSN=J
@i [
a—2)j &
D DR / A5 £ ()l 1y ds
—I<jEN=J 0

HUOHB‘,fTZ’g(p) + ”f”LlTB?,TZVE(p)‘

A.6. Regularity of xu ... Finally, we proceed with the proof of the proof of Proposi-
tion 6.1.

Proof of Proposition 6.1. For notational simplicity we fix the parameter M and omit

the dependence of the various distributions on M throughout the proof. In addition, the

A-dependent constants are always bounded uniformly over A € [0, Ao] for every A9 > 0.
In view of (6.2) we obtain

2 2 2 Y 2
llo +GX8||L?CL2,£ < lp e ”L%OL“ +llp +U(3)"Xe > ¢8)||L%CL2,£ < Crllpde ||L%OL2,S Qp(Xs)7
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where, by Theorem 4.5,

102 e (D720 < CraQp(Xe) + 197 (07 2.

Thus
1p** xell o 2.0 < C1.0.Qp(Ke) (1 + (107 () 2.0).

Next, we intend to apply Lemma A.17 to (6.3) in the form

10X g grosce S 19X Ol orosee + | % Zaxe

1 p—1+3k,e *
LTBI,I

(A.12)

In view of the second term on the right hand side of (6.3) we shall therefore estimate U,

—1+3k,¢e
in Bl 1

(p*~7) as the weight p° will be lost to control X" . Let us first show how to

bound the terms that contain higher powers of ¢, all the other terms being straightforward.

By paraproduct estimates Lemma A.7 and Lemma A.6, we obtain

4— 2 4-20 ;2
10* = A Xe @2l 1w S 207 Xellg 12w 1% 2021 e
s 1,1

1 2 2
S M7 Xelig-12-cello ™ Gell 2.c 10" be ll gr2sace < AQp(Xe)llodell Lo 107 Pell pr1-2e.e

while

4— 2 4—-20 42
o™ 732X e Il p-1e3ee S AP Yellgrree 077 & Nl e

1 2 2 2
S M Yeligrorsello ™ bell 2.cllo e ll gaee < A7Qp(Xe)llpde ll L 107 @e | g1-2ece,

4,
and by interpolation for 6 = 2£

16% 7267 e S MIPT7 07 gy S Hpgelac 0™ Bell e

S MpGellT e 10 Gell 2 107 Ge s S Moe T N07 e 11 e

Consequently, we use the embeddings Ba+K “(p*P) ¢ By [ (p*79) and B (pP) €
1’1 £(p*) fora € R (provided the welght possesses enough integrability and 8, o > 0

are sufficiently small). We deduce
4—0
1% Uell o

S A0 KE Ngre 102 @e | 1-2ee + A2 [10g 11107 | 12
v
+ 22007 [X2llg-1-xe 110 XL llgr-cce [| 0> e | 12

+ M0 X lleg1me 167727 el grozce + 32107 Zelig-1/2-e

4207 [X2Dgm1ce (107 Yellguace + 0%l e )

+ 21+ 207 [ X2 -1 107 [X2]llgp—1-0e 107 Yellg1/e.e
+ AP X Y2 llg-1/2ce + MNP Xe Yellg-12-ce |07 Pell p1-2ee

2 3
+ 0% Xellg-172-ce | p@e ll L4 |07 Pe | ri-20e + A1 07 Yellgor e

2 2
+ M7 Yellprove lpPell e + M0 Yellgro—ce l pdell Lo ll o7 e | pri-2ee
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+ o 7501107 @l o

< [logt|(A? 0, (Xe) + ﬂnp el pri-2ce) + Qp (Xe) (A2 + 1)
+ (A + 22 Q) (Xe) (|07 e | 126 + ||p4*2“x5||31+zk.s + | 0¢e | Lo |07 e | 1-26.6)
+ Qo (X)W Nl ogell pae + Mol 750 1107 Gell 1 e e)-

Thus

H 104$8XE

BE}+3K,£
< Ip*U.
S 10*Uell gt
Y 2 4-2 4
+ 107 XL ligr-ve M0 [X 2 g1 9% 72 Gell 2+ 16%77 Vel o)

+ M7 X{llgpr—e 1077 bell gri-2eee
< Cal1ogt1(Qp(Xe) + (107 e [l pr1-2e6) + C1. Q0 (Xe)
+C.0p(Xe) (102 bell gr1-2cc + 0777 Xell g + p@el 102 e l gr1-2c.e)

+Cr.Qp (X (I pge | e + 1pBell T3 0% Gell o)

Using repeatedly the Young inequality and also (4.23) we obtain

H 10438)(5

< Co(1+[logt] +[10g %) Qp(Xe) + Ml pell ] ac + 10°Ge131-20.c
+CrQp Xl > Xell groaee.

This bound, together with the energy estimate from Theorem 4.5 imply

[0 Zxe| e < Crmea Qo+ 1942 el proace).
LyB 7™ T71,1
By interpolation, embedding and the bound (A.12) we obtain for 6 = %jjz (and under

the condition that «, o, ¢ € (0, 1) were chosen such that 6 < 2 3" 2‘) that

T
1672 xell 1 grozee S [ 167 2 4@} ”np xe (0’ e dr
P11 0 By
T 2 2 T 4 0
< f 1% xe (D1} 2211p* xe ()11 preonedt S o ”xa(r)npw f 1" e D1 st
0 1,1 0 1,1

S CraQpXe)(1+1lp ¢8(0)”L22)/ 1p* xe O1° m”dt

Consequently,

|0 Zxe) |, risee < Crine s Qo (Xe)

T71,1

+Cr13 Qp(Xe) (1 +lp ¢s(0)lle£)/ o Xs(t)||01+3;<sdt
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< Crm2 5,5 QoK)+ 102 )l 20) +8110% kel 3 g
which finally leads to

10* xelly prease S 110 Xe Q)| p-tsaee + Cr 2, @ (Xe) (1 + 1107 (0] 2)

by Lemma A.17 and since x:(0) = ¢.(0) and L*¢(p?) C Bi{+3K’8(p4), the claim
follows. 0O
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