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Abstract: We present a new construction of the Euclidean �4 quantum field theory
on R

3 based on PDE arguments. More precisely, we consider an approximation of the
stochastic quantization equation on R

3 defined on a periodic lattice of mesh size ε and
side length M . We introduce a new renormalized energy method in weighted spaces
and prove tightness of the corresponding Gibbs measures as ε → 0, M → ∞. Every
limit point is non-Gaussian and satisfies reflection positivity, translation invariance and
stretched exponential integrability. These properties allow to verify the Osterwalder–
Schrader axioms for a Euclidean QFT apart from rotation invariance and clustering.
Our argument applies to arbitrary positive coupling constant, to multicomponent mod-
els with O(N ) symmetry and to some long-range variants. Moreover, we establish an
integration by parts formula leading to the hierarchy of Dyson–Schwinger equations for
the Euclidean correlation functions. To this end, we identify the renormalized cubic term
as a distribution on the space of Euclidean fields.
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1. Introduction

Let �M,ε = ((εZ)/(MZ))3 be a periodic lattice with mesh size ε and side length M
where M/(2ε) ∈ N. Consider the family (νM,ε)M,ε of Gibbs measures for the scalar
field ϕ : �M,ε → R, given by

dνM,ε ∝

exp

⎧
⎨

⎩
−2εd

∑

x∈�M,ε

[
λ

4
|ϕx |4 + −3λaM,ε + 3λ2bM,ε + m2

2
|ϕx |2 + 1

2
|∇εϕx |2

]
⎫
⎬

⎭

∏

x∈�M,ε

dϕx ,

(1.1)
where∇ε denotes the discrete gradient and aM,ε, bM,ε are suitable renormalization con-
stants,m2 ∈ R is called themass and λ > 0 the coupling constant. The numerical factor
in the exponential is chosen in order to simplify the form of the stochastic quantization
equation (1.3) below. The main result of this paper is the following.

Theorem 1.1. There exists a choice of the sequence (aM,ε, bM,ε)M,ε such that for any
λ > 0 and m2 ∈ R, the family of measures (νM,ε)M,ε appropriately extended to S ′(R3)

is tight. Every accumulation point ν is translation invariant, reflection positive and
non-Gaussian. In addition, for every small κ > 0 there exists σ > 0, β > 0 and
υ = O(κ) > 0 such that

∫

S ′(R3)

exp{β‖(1 + | · |2)−σ ϕ‖1−υ
H−1/2−κ }ν(dϕ) <∞. (1.2)

Everyν satisfies an integrationbyparts formulawhich leads to thehierarchyof theDyson–
Schwinger equations for n-point correlation functions.

For the precise definition of translation invariance and reflection positivity (RP) we
refer the reader to Section 5.

The proof of convergence of the family (νM,ε)M,ε has been one of the major achieve-
ments of the constructive quantum field theory (CQFT) program [VW73,Sim74,GJ87,
Riv91,BSZ92,Jaf00,Jaf08,Sum12] which flourished in the 70s and 80s. In the two di-
mensional setting the existence of an analogous object has been one of the early suc-
cesses of CQFT, while in four and more dimensions (after a proper normalization) any
accumulation point is necessarily Gaussian [FFS92].

The existence of an Euclidean invariant and reflection positive limit ν (plus some
technical conditions) implies the existence of a relativistic quantum field theory in the
Minkowski space-time R

1+2 which satisfies the Wightman axioms [Wig76]. This is a
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minimal set of axioms capturing the essence of the combination of quantum mechan-
ics and special relativity. The translation from the commutative probabilistic setting
(Euclidean QFT) to the non-commutative Minkowski QFT setting is operated by a set
of axioms introduced by Osterwalder–Schrader (OS) [OS73,OS75] for the correlation
functions of the measure ν. These are called Schwinger functions or Euclidean corre-
lation functions and shall satisfy: a regularity axiom, a Euclidean invariance axiom, a
reflection positivity axiom, a symmetry axiom and a cluster property.

Euclidean invariance and reflection positivity conspire against each other. Mod-
els which easily satisfy one property hardly satisfy the other if they are not Gaus-
sian, or simple transformations thereof, see e.g. [AY02,AY09]. Reflection positivity
itself is a property whose crucial importance for probability theory and mathemati-
cal physics [Bis09,Jaf18] and representation theory [NO18,JT18] has been one of the
byproducts of the constructive effort.

The original proof of the OS axioms, along with additional properties of the limit-
ing measures which are called �4

3 measures, is scattered in a series of works covering
almost a decade. Glimm [Gli68] first proved the existence of the Hamiltonian (with an
infrared regularization) in the Minkowski setting. Then Glimm and Jaffe [GJ73] intro-
duced the phase cell expansion of the regularized Schwinger functions, which revealed
itself a powerful and robust tool (albeit complex to digest) in order to handle the local
singularities of Euclidean quantum fields and to prove the ultraviolet stability in finite
volume (i.e. the limit ε → 0 with M fixed). The proof of existence of the infinite vol-
ume limit (M → ∞) and the verification of Osterwalder–Schrader axioms was then
completed, for λ small and using cluster expansion methods, independently by Feld-
man and Osterwalder [FO76] and by Magnen and Sénéor [MS76]. Finally the work of
Seiler and Simon [SS76] allowed to extend the existence result to all λ > 0 (this is
claimed in [GJ87] even though we could not find a clear statement in Seiler and Simon’s
paper). Equations of motion for the quantum fields were established by Feldman and
Ra̧czka [FR77].

Since this first, complete, construction, there have been several other attempts to sim-
plify (both technically and conceptually) the arguments and the �4

3 measure has been
since considered a test bed for variousCQFT techniques. There exists at least sixmethods
of proof: the original phase cell method of Glimm and Jaffe extended by Feldman and
Osterwalder [FO76], Magnen and Sénéor [MS76] and Park [Par77] (among others), the
probabilistic approach of Benfatto, Cassandro, Gallavotti, Nicoló, Olivieri, Presutti and
Schiacciatelli [BCG+78], the block average method of Bałaban [Bał83] revisited by Di-
mock in [Dim13a,Dim13b,Dim14], the wavelet method of Battle–Federbush [Bat99],
the skeleton inequalities method of Brydges, Fröhlich, Sokal [BFS83], the work of
Watanabe on rotation invariance [Wat89] via the renormalization group method of
Gawędzki and Kupiainen [GK86], and more recently the renormalization group method
of Brydges, Dimock and Hurd [BDH95].

It should be said that, apart from the Glimm–Jaffe–Feldman–Osterwalder–Magnen–
Sénéor result, none of the additional constructions seems to be as complete and to verify
explicitly all the OS axioms. As Jaffe [Jaf08] remarks:

“Not only should one give a transparent proof of the dimensiond = 3 construction,
but as explained to me by Gelfand [private communication], one should make it
sufficiently attractive that probabilists will take cognizance of the existence of a
wonderful mathematical object.”

The proof of Theorem 1.1 uses tools from the PDE theory as well as recent advances
in the field of singular SPDEs, without using any input from traditional CQFT. It applies
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to all values of the coupling parameter λ > 0 as well as to natural extensions to N -
dimensional vectorial and long-range variants of the model.

Our methods are very different from all the known constructions we enumerated
above. In particular, we do not rely on any of the standard tools like cluster expansion
or correlation inequalities or skeleton inequalities, and therefore our approach brings a
new perspective to this extensively investigated classical problem, with respect to the
removal of both ultraviolet and infrared regularizations.

Showing invariance under translation, reflection positivity, the regularity axiom of
Osterwalder and Schrader and the non-Gaussianity of the measure, we go a long way
(albeit not fully reaching the goal) to a complete independent construction of the �4

3
quantum field theory. Furthermore, the integration by parts formula that we are able to
establish leads to the hierarchy of the Dyson–Schwinger equations for the Schwinger
functions of the measure.

The key idea is to use a dynamical description of the approximate measure which re-
lies on an additional random source termwhich is Gaussian, in the spirit of the stochastic
quantization approach introduced by Nelson [Nel66,Nel67] and Parisi and Wu [PW81]
(with a precursor in a technical report of Symanzik [Sym64]).

The concept of stochastic quantization refers to the introduction of a reversible
stochastic dynamics which has the target measure as the invariant measure, here in par-
ticular the�4

d measure in d dimensions. The rigorous study of the stochastic quantization
for the two dimensional version of the�4 theory has been first initiated by Jona-Lasinio
andMitter [JLM85] in finite volume and byBorkar, Chari andMitter [BCM88] in infinite
volume. A natural d = 2 local dynamics has been subsequently constructed by Albeve-
rio and Röckner [AR91] using Dirichlet forms in infinite dimensions. Later on, Da Prato
and Debussche [DPD03] have shown for the first time the existence of strong solutions
to the stochastic dynamics in finite volume. Da Prato and Debussche have introduced
an innovative use of a mixture of probabilistic and PDE techniques and constitute a
landmark in the development of PDE techniques to study stochastic analysis problems.
Similar methods have been used byMcKean [McK95b,McK95a] and Bourgain [Bou96]
in the context of random data deterministic PDEs. Mourrat and Weber [MW17b] have
subsequently shown the existence and uniqueness of the stochastic dynamics globally
in space and time. For the d = 1 dimensional variant, which is substantially simpler and
does not require renormalization, global existence and uniqueness have been established
by Iwata [Iwa87].

In the three dimensional setting the progress has been significantly slower due
to the more severe nature of the singularities of solutions to the stochastic quanti-
zation equation. Only very recently, there has been substantial progress due to the
invention of regularity structures theory by Hairer [Hai14] and paracontrolled dis-
tributions by Gubinelli, Imkeller, Perkowski [GIP15]. These theories greatly extend
the pathwise approach of Da Prato and Debussche via insights coming from Lyons’
rough path theory [Lyo98,LQ02,LCL07] and in particular the concept of controlled
paths [Gub04,FH14]. With these new ideas it became possible to solve certain ana-
lytically ill-posed stochastic PDEs, including the stochastic quantization equation for
the �4

3 measure and the Kardar–Parisi–Zhang equation. The first results were limited
to finite volume: local-in-time well-posedness has been established by Hairer [Hai14]
and Catellier, Chouk [CC18]. Kupiainen [Kup16] introduced a method based on the
renormalization group ideas of [GK86]. Long-time behavior has been studied by Mour-
rat, Weber [MW17a], Hairer, Mattingly [HM18b] and a lattice approximation in finite
volume has been given by Hairer and Matetski [HM18a] and by Zhu and Zhu [ZZ18].
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Global in space and time solutions have been first constructed by Gubinelli and Hof-
manová in [GH18]. Local bounds on solutions, independent on boundary conditions,
and stretched exponential integrability have been recently proven by Moinat and We-
ber [MW18].

However, all these advances still fell short of giving a complete proof of the existence
of the�4

3 measure on the full space andof its properties. Indeed they, including essentially
all of the two dimensional results, are principally aimed at studying the dynamics with
an a priori knowledge of the existence and the properties of the invariant measure. For
example Hairer andMatetski [HM18a] use a discretization of a finite periodic domain to
prove that the limiting dynamics leaves the finite volume�4

3 measure invariant using the
a priori knowledge of its convergence from the paper of Brydges et al. [BFS83]. Studying
the dynamics, especially globally in space and time is still a very complex problemwhich
has siblings in the ever growing literature on invariant measures for deterministic PDEs
starting with the work of Lebowitz, Rose and Speer [LRS88,LRS89], Bourgain [Bou94,
Bou96], Burq and Tzvetkov [BT08b,BT08a,Tzv16] and with many following works
(see e.g. [CO12,CK12,NPS13,Cha14,BOP15]) which we cannot exhaustively review
here.

The first work proposing a constructive use of the dynamics is, to our knowledge, the
work ofAlbeverio andKusuoka [AK17],who proved tightness of certain approximations
in a finite volume. Inspired by this result, our aim here is to show how these recent ideas
connecting probability with PDE theory can be streamlined and extended to recover a
complete and independent proof of existence of the �4

3 measure on the full space. In
the same spirit see also the work of Hairer and Iberti [HI18] on the tightness of the 2d
Ising–Kac model.

Soon after Hairer’s seminal paper [Hai14], Jaffe [Jaf15] analyzed the stochastic quan-
tization from the point of view of reflection positivity and constructive QFT and con-
cluded that one has to necessarily take the infinite time limit to satisfy RP. Even with
global solution at hand a proof of RP from dynamics seems nontrivial and actually the
only robust tool we are aware of to prove RP is to start from finite volume lattice Gibbs
measures for which RP can be established by elementary arguments.

Taking into account these considerations, our aim is to use an equilibrium dynamics
to derive bounds which are strong enough to prove the tightness of the family (νM,ε)M,ε.
To be more precise, we study a lattice approximation of the (renormalized) stochastic
quantization equation

(∂t + m2 −�)ϕ + λϕ3 −∞ϕ = ξ, (t, x) ∈ R+ × R
3, (1.3)

where ξ is a space-time white noise onR
3. The lattice dynamics is a system of stochastic

differential equation which is globally well-posed and has νM,ε as its unique invariant
measure. We can therefore consider its stationary solution ϕM,ε having at each time the
law νM,ε. We introduce a suitable decomposition together with an energy method in the
framework of weighted Besov spaces. This allows us, on the one hand, to track down
and renormalize the short scale singularities present in the model as ε→ 0, and on the
other hand, to control the growth of the solutions as M → ∞. As a result we obtain
uniform bounds which allow us to pass to the limit in the weak topology of probability
measures.

The details of the renormalized energy method rely on recent developments in the
analysis of singular PDEs. In order to make the paper accessible to a wide audience with
some PDE background we implement renormalization using the paracontrolled calculus
of [GIP15]which is based onBony’s paradifferential operators [Bon81,Mey81,BCD11].
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We also rely on some tools from the paracontrolled analysis in weigthed Besov spaces
which we developed in [GH18] and on the results of Martin and Perkowski [MP17] on
Besov spaces on the lattice.

Remark 1.2. Let us comment in detail on specific aspects of our proof.

1. The method we use here differs from the approach of [GH18] in that we are initially
less concerned with the continuum dynamics itself. We do not try to obtain estimates
for strong solutions and rely instead on certain cancellations in the energy estimate
that permit to significantly simplify the proof. The resulting bounds are sufficient to
provide a rather clear picture of any limit measure as well as some of its physical
properties. In contrast, in [GH18]we provided a detailed control of the dynamics (1.3)
(in stationary or non-stationary situations) at the price of a more involved analysis.
Section 4.2 of the present paper could in principle be replaced by the corresponding
analysis of [GH18]. However the adaptation of that analysis to the lattice setting
(without which we do not know how to prove RP) would anyway require the further
preparatory work which constitutes a large fraction of the present paper. Similarly,
the recent results of Moinat andWeber [MW18] (which appeared after we completed
a first version of this paper) can be conceivably used to replace a part of Section 4.

2. The stretched exponential integrability in (1.2) is also discussed in thework ofMoinat
and Weber [MW18] (using different norms) and it is sufficient to prove the original
regularity axiom of Osterwalder and Schrader but not its formulation given in the
book of Glimm and Jaffe [GJ87].

3. The Dyson–Schwinger equations were first derived by Feldman and Ra̧czka [FR77]
using the results of Glimm, Jaffe, Feldman and Osterwalder.

4. As already noted by Albeverio, Liang and Zegarlinski [ALZ06] on the formal level,
the integration by parts formula gives rise to a cubic termwhich cannot be interpreted
as a random variable under the �4

3 measure. Therefore, the crucial question that re-
mained unsolved until now is how tomake sense of this critical term as a well-defined
probabilistic object. In the present paper, we obtain fine estimates on the approximate
stochastic quantization equation and construct a coupling of the stationary solution to
the continuum �4

3 dynamics and the Gaussian free field. This leads to a detailed de-
scription of the renormalized cubic term as a genuine random space-time distribution.
Moreover, we approximate this term in the spirit of the operator product expansion.

5. To the best of our knowledge, our work provides the first rigorous proof of a general
integration by parts formula with an exact formula for the renormalized cubic term.
In addition, the method applies to arbitrary values of the coupling constant λ � 0 if
m2 > 0 and λ > 0 if m2 � 0 and we state the precise dependence of our estimates
on λ. In particular, we show that our energy bounds are uniform over λ in every
bounded subset of [0,∞) provided m2 > 0 (see Remark 4.6). Let us recall that for
some m2 = m2

c(λ) the physical mass of the continuum theory is zero and it is said
that the model is critical. Existence of such a critical point was shown in [BFS83,
Section 9, Part (4)].We note that this case is included in our construction, even though
we are not able to locate it since we do not have control over correlations. Its large
scale limit is conjectured to correspond to the Ising conformal field theory, recently
actively studied in [PRV19a] using the conformal bootstrap approach.

6. By essentially the same arguments,we are able to treat the vector version of themodel,
where the scalar field ϕ : R

3 → R is replaced by a vector valued one ϕ : R
3 → R

N

for some N ∈ N and the measures νM,ε are given by a similar expression as (1.1),
where the norm |ϕ| is understood as the Euclidean norm in R

N .
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7. Our proof also readily extends to the fractional variant of �4
3 where the base Gaus-

sian measure is obtained from the fractional Laplacian (−�)γ with γ ∈ (21/22, 1)
(see Section 7 for details). In general this model is sub-critical for γ ∈ (3/4, 1)
and in the mass-less case it has recently attracted some interest since it is bootstrap-
pable [PRV19b,Beh19].

To conclude this introductory part, let us compare our result with other constructions
of the �4

3 field theory. The most straightforward and simplest available proof has been
given by Brydges, Fröhlich and Sokal [BFS83] using skeleton and correlation inequal-
ities. All the other methods we cited above employ technically involved machineries
and various kinds of expansions (they are however able to obtain very strong informa-
tion about the model in the weakly-coupled regime, i.e. when λ is small). Compared to
the existing methods, ours bears similarity in conceptual simplicity to that of [BFS83],
with some advantages and some disadvantages. Both works construct the continuum�4

3
theory as a subsequence limit of lattice theories and the rotational invariance remains
unproven. The main difference is that [BFS83] relies on correlation inequalities. On
the one hand, this restricts the applicability to weak couplings and only models with
N = (0, )1, 2 components (note that the N = 0 models have a meaning only in their
formalism but not in ours). But, on the other hand, it allows to establish bounds on the
decay of correlation functions, which we do not have. However, our results hold for ev-
ery value of λ > 0 and m2 ∈ R while the results in [BFS83] work only in the so-called
“single phase region”, which corresponds to m2 > m2

c(λ).
Our work is intended as a first step in the direction of using PDE methods in the

study of Euclidean QFTs and large scale properties of statistical mechanical models.
Another related attempt is the variational approach developed in [BG18] for the finite
volume �4

3 measure. As far as the present paper is concerned the main open problem is
to establish rotational invariance and to give more information on the limiting measures,
in particular to establish uniqueness for small λ. It is not clear how to deduce anything
about correlations from the dynamics but it seems to be a very interesting and challenging
problem.

Plan. The paper is organized as follows. Section 2 gives a summary of notation used
throughout the paper, Section 3 presents the main ideas of our strategy and Section 4,
Section 5 and Section 6 are devoted to the main results. First, in Section 4 we construct
the Euclidean quantum field theory as a limit of the approximate Gibbs measures νM,ε.
To this end, we introduce the lattice dynamics together with its decomposition. Themain
energy estimate is established in Theorem 4.5 and consequently the desired tightness as
well as moment bounds are proven in Theorem 4.9. In Section 4.4 we establish finite
stretched exponential moments. Consequently, in Section 5 we verify the translation
invariance and reflection positivity, the regularity axiom and non-Gaussianity of any
limit measure. Section 6 is devoted to the integration by parts formula and the Dyson–
Schwinger equations. In Section 7 we discuss the extension of our results to a long-range
version of the�4

3 model. Finally, in Appendix Awe collect a number of technical results
needed in the main body of the paper.

2. Notation

Within this paper we are concerned with the�4
3 model in discrete as well as continuous

setting. In particular, we denote by �ε = (εZ)d for ε = 2−N , N ∈ N0, the rescaled

lattice Z
d and by �M,ε = εZd ∩ T

d
M = εZd ∩ [−M

2 ,
M
2

)d
its periodic counterpart of
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size M > 0 such that M/(2ε) ∈ N. For notational simplicity, we use the convention
that the case ε = 0 always refers to the continuous setting. For instance, we denote by
�0 the full space �0 = R

d and by �M,0 the continuous torus �M,0 = T
d
M . With the

slight abuse of notation, the parameter ε is always taken either of the form ε = 2−N

for some N ∈ N0, N � N0, for certain N0 ∈ N0 that will be chosen as a consequence
of Lemma A.9 below, or ε = 0. Various proofs below will be formulated generally for
ε ∈ A := {0, 2−N ; N ∈ N0, N � N0} and it is understood that the case ε = 0 or
alternatively N = ∞ refers to the continuous setting. All the proportionality constants,
unless explicitly signalled, will be independent of M, ε, λ,m2. We will track the explicit
dependence on λ as far as possible and signal when the constant depends on the value
of m2 > 0.

For f ∈ �1(�ε) and g ∈ L1(�̂ε), respectively, we define the Fourier and the inverse
Fourier transform as

F f (k) = εd
∑

x∈�ε

f (x)e−2π ik·x , F−1g(x) =
∫

(ε−1T)d
g(k)e2π ik·xdk,

where k ∈ (ε−1T)d =: �̂ε and x ∈ �ε. These definitions can be extended to discrete
Schwartz distributions in a natural way, we refer to [MP17] for more details. In general,
we do not specify on which lattice the Fourier transform is taken as it will be clear from
the context.

Consider a smooth dyadic partition of unity (ϕ j ) j�−1 such that ϕ−1 is supported in
a ball around 0 of radius 1

2 , ϕ0 is supported in an annulus, ϕ j (·) = ϕ0(2− j ·) for j � 0
and if |i − j | > 1 then suppϕi ∩ suppϕ j = ∅. For the definition of Besov spaces on
the lattice �ε for ε = 2−N , we introduce a suitable periodic partition of unity on �̂ε as
follows

ϕεj (k) :=
{
ϕ j (k), j < N − J,
1−∑

j<N−J ϕ j (k), j = N − J, (2.1)

where k ∈ �̂ε and the parameter J ∈ N0, whose precise value will be chosen be-
low independently on ε ∈ A, satisfies 0 � N − J � Jε := inf{ j : suppϕ j �⊆
[−ε−1/2, ε−1/2)d} → ∞ as ε → 0. We note that by construction there exists � ∈ Z

independent of ε = 2−N such that Jε = N − �.
Then (2.1) yields a periodic partition of unity on �̂ε. The reason for choosing the

upper index as N − J and not the maximal choice Jε will become clear in Lemma A.9
below,where it allows us to define suitable localization operators needed for our analysis.
The choices of parameters N0 and J are related in the following way: A given partition
of unity (ϕ j ) j�−1 determines the parameters Jε in the form Jε = N −� for some � ∈ Z.
By the condition N − J � Jε we obtain the first lower bound on J . Then Lemma A.9
yields a (possibly larger) value of J which is fixed throughout the paper. Finally, the
condition 0 � N − J implies the necessary lower bound N0 for N , or alternatively
the upper bound for ε = 2−N � 2−N0 and defines the set A. We stress that once the
parameters J, N0 are chosen, they remain fixed throughout the paper.

Remark that according to our convention, (ϕ0j ) j�−1 denotes the original partition of
unity (ϕ j ) j�−1 on R

d , which can be also read from (2.1) using the fact that for ε = 0
we have Jε = ∞.

Now we may define the Littlewood–Paley blocks for distributions on �ε by

�ε
j f := F−1(ϕεjF f ),
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which leads us to the definition of weighted Besov spaces. Throughout the paper, ρ
denotes a polynomial weight of the form

ρ(x) = 〈hx〉−ν = (1 + |hx |2)−ν/2 (2.2)

for some ν � 0 and h > 0. The constant h will be fixed below in Lemma 4.4 in order to
produce a small bound for certain terms. Suchweights satisfy the admissibility condition
ρ(x)/ρ(y) � ρ−1(x − y) for all x, y ∈ R

d . For α ∈ R, p, q ∈ [1,∞] and ε ∈ [0, 1]
we define the weighted Besov spaces on �ε by the norm

‖ f ‖Bα,εp,q (ρ)
=

( ∑

−1� j�N−J

2α jq‖�ε
j f ‖qL p,ε(ρ)

)1/q

=
( ∑

−1� j�N−J

2α jq‖ρ�ε
j f ‖qL p,ε

)1/q

,

where L p,ε for ε ∈ A \ {0} stands for the L p space on �ε given by the norm

‖ f ‖L p,ε =
(

εd
∑

x∈�ε

| f (x)|p
)1/p

(with the usual modification if p = ∞). Analogously, we may define the weighted
Besov spaces for explosive polynomial weights of the form ρ−1. Note that if ε = 0 then
Bα,εp,q(ρ) is the classical weighted Besov space Bαp,q(ρ). In the sequel, we also employ
the following notations

C α,ε(ρ) := Bα,ε∞,∞(ρ), Hα,ε(ρ) := Bα,ε2,2 (ρ).

In Lemma A.1 we show that one can pull the weight inside the Littlewood–Paley blocks
in the definition of the weighted Besov spaces. Namely, under suitable assumptions on
the weight that are satisfied by polynomial weights we have ‖ f ‖Bα,εp,q (ρ)

∼ ‖ρ f ‖Bα,εp,q
in

the sense of equivalence of norms, uniformly in ε. We define the duality product on �ε

by

〈 f, g〉ε := εd
∑

x∈�ε

f (x)g(x)

and Lemma A.2 shows that B−α,εp′,q ′ (ρ
−1) is included in the topological dual of Bα,εp,q(ρ)

for conjugate exponents p, p′ and q, q ′.
We employ the tools fromparacontrolled calculus as introduced in [GIP15], the reader

is also referred to [BCD11] for further details. We shall freely use the decomposition
f g = f ≺ g + f ◦ g + f � g, where f � g = g � f and f ◦ g, respectively, stands
for the paraproduct of f and g and the corresponding resonant term, defined in terms of
Littlewood–Paley decomposition. More precisely, for f, g ∈ S ′(�ε) we let

f ≺ g :=
∑

1�i, j�N−J,i< j−1
�ε

i f�
ε
j g, f ◦ g :=

∑

1�i, j�N−J,i∼ j

�ε
i f�

ε
j g.

We also employ the notations f � g := f ≺ g + f ◦ g and f �� g := f ≺ g + f � g.
For notational simplicity, we do not stress the dependence of the paraproduct and the
resonant termon ε in the sequel. These paraproducts satisfy the usual estimates uniformly
in ε, see e.g. [MP17], Lemma 4.2, which can be naturally extended to general Bα,εp,q(ρ)

Besov spaces as in [MW17b], Theorem 3.17.
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Throughout the paper we assume thatm2 > 0 andwe only discuss in Remark 4.6 how
to treat the case of m2 � 0. In addition, we are only concerned with the 3 dimensional
setting and let d = 3. We denote by �ε the discrete Laplacian on �ε given by

�ε f (x) = ε−2
d∑

i=1
( f (x + εei )− 2 f (x) + f (x − εei )), x ∈ �ε,

where (ei )i=1,...,d is the canonical basis ofR
d . It can be checked by a direct computation

that the integration by parts formula

〈�ε f, g〉M,ε = −〈∇ε f,∇εg〉M,ε

= −εd
∑

x∈�M,ε

d∑

i=1

f (x + εei )− f (x)

ε

g(x + εei )− g(x)

ε

holds for the discrete gradient

∇ε f (x) =
(

f (x + εei )− f (x)

ε

)

i=1,...,d
.

We let Qε := m2 −�ε, Lε := ∂t +Qε and we write L for the continuum analogue
ofLε. We letL −1

ε to be the inverse ofLε on �ε such thatL −1
ε f = v is a solution to

Lεv = f , v(0) = 0.

3. Overview of the Strategy

With the goals and notations being set, let us now outline the main steps of our strategy.

Lattice dynamics. For fixed parameters ε ∈ A,M > 0, we consider a stationary
solution ϕM,ε to the discrete stochastic quantization equation

LεϕM,ε + λϕ
3
M,ε + (−3λaM,ε + 3λ2bM,ε)ϕM,ε = ξM,ε, x ∈ �M,ε, (3.1)

whose law at every time t � 0 is given by the Gibbs measure (1.1). Here ξM,ε is a
discrete approximation of a space-time white noise ξ on R

d constructed as follows: Let
ξM denote its periodization on T

d
M given by

ξM (h) := ξ(hM ), where hM (t, x) := 1[
− M

2 ,
M
2

)d (x)
∑

y∈MZd

h(t, x + y),

where h ∈ L2(R×R
d) is a test function, and define the corresponding spatial discretiza-

tion by

ξM,ε(t, x) := ε−d〈ξM (t, ·), 1|·−x |�ε/2〉, (t, x) ∈ R×�M,ε.

Then (3.1) is a finite-dimensional SDE in a gradient form and it has a (unique) invariant
measureνM,ε givenby (1.1). Indeed, the global existenceof solutions canbeproved along
the lines of Khasminskii nonexplosion test [Kha11, Theorem 3.5] whereas invariance of
the measure (1.1) follows from [Zab89, Theorem 2].
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Recall that due to the irregularity of the space-time white noise in dimension 3, a
solution to the limit problem (1.3) can only exist as a distribution. Consequently, since
products of distributions are generally not well-defined it is necessary to make sense
of the cubic term. This forces us to introduce a mass renormalization via constants
aM,ε, bM,ε � 0 in (3.1) which shall be suitably chosen in order to compensate the
ultraviolet divergencies. In other words, the additional linear term shall introduce the
correct counterterms needed to renormalize the cubic power and to derive estimates
uniform in both parameters M, ε. To this end, aM,ε shall diverge linearly whereas bM,ε

logarithmically and these are of course the same divergencies as those appearing in the
other approaches, see e.g. Chapter 23 in [GJ87].

Energy method in a nutshell. Our aim is to apply the so-called energy method, which
is one of the very basic approaches in the PDE theory. It relies on testing the equation
by the solution itself and estimating all the terms. To explain the main idea, consider a
toy model

L u + λu3 = f, x ∈ R
3,

driven by a sufficiently regular forcing f such that the solution is smooth and there are
no difficulties in defining the cube. Testing the equation by u and integrating the Laplace
term by parts leads to

1

2
∂t‖u‖2L2 + m2‖u‖2L2 + ‖∇u‖2L2 + λ‖u‖4L4 = 〈 f, u〉.

Now, there are several possibilities to estimate the right hand side using duality and
Young’s inequality, namely,

〈 f, u〉 �

⎧
⎪⎨

⎪⎩

‖ f ‖L2‖u‖L2 � Cm2‖ f ‖2L2 +
1
2m

2‖u‖2
L2

‖ f ‖L4/3‖u‖L4 � Cλ−1/3‖ f ‖4/3
L4/3 +

1
2λ‖u‖4L4

‖ f ‖H−1‖u‖H1 � Cm2‖ f ‖2H−1 +
1
2 (m

2‖u‖2
L2 + ‖∇u‖2L2)

.

This way, the dependence on u on the right hand side can be absorbed into the good terms
on the left hand side. If in addition u was stationary hence in particular t �→ E‖u(t)‖2

L2

is constant, then we obtain

m2
E‖u(t)‖2L2 + E‖∇u(t)‖2L2 + λE‖u(t)‖4L4 �

⎧
⎪⎨

⎪⎩

Cm2‖ f ‖2L2

Cλ−1/3‖ f ‖4/3
L4/3

Cm2‖ f ‖2H−1

.

To summarize, using the dynamics we are able to obtain moment bounds for the
invariant measure that depend only on the forcing f . Moreover, we also see the behavior
of the estimates with respect to the coupling constant λ. Nevertheless, even though using
the L4-norm of u introduces a blow up for λ→ 0, the right hand side f in our energy
estimate below will always contain certain power of λ in order to cancel this blow up
and to obtain bounds that are uniform as λ→ 0.

Decomposition and estimates. Since the forcing ξ on the right hand side of (1.3)
does not possess sufficient regularity, the energy method cannot be applied directly.
Following the usual approach within the field of singular SPDEs, we shall find a suitable
decomposition of the solution ϕM,ε, isolating parts of different regularity. In particular,
since the equation is subcritical in the sense of Hairer [Hai14] (or superrenormalizable
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in the language of quantum field theory), we expect the nonlinear equation (1.3) to be
a perturbation of the linear problem L X = ξ. This singles out the most irregular part
of the limit field ϕ. Hence on the approximate level we set ϕM,ε = XM,ε + ηM,ε where
XM,ε is a stationary solution to

L εXM,ε = ξM,ε, (3.2)

and the remainder ηM,ε is expected to be more regular.
To see if it is indeed the case we plug our decomposition into (3.1) to obtain

LεηM,ε +3λ
2bM,εϕM,ε +λ�X

3
M,ε�+λ3ηM,ε�X

2
M,ε�+λ3η

2
M,εXM,ε +λη

3
M,ε = 0. (3.3)

Here �X2
M,ε� and �X3

M,ε� denote the second and third Wick power of the Gaussian
random variable XM,ε defined by

�X2
M,ε� := X2

M,ε − aM,ε, �X3
M,ε� := X3

M,ε − 3aM,εXM,ε, (3.4)

where aM,ε := E[X2
M,ε(t)] is independent of t due to stationarity. It can be shown

by direct computations that appeared already in a number of works (see [CC18,Hai14,
Hai15,MWX16]) that �X2

M,ε� is bounded uniformly in M, ε as a continuous stochastic

process with values in the weighted Besov space C−1−κ,ε(ρσ ) for every κ, σ > 0,
whereas �X3

M,ε� can only be constructed as a space-time distribution. In addition, they

converge to the Wick power �X2� and �X3� of X . In other words, the linearly growing
renormalization constant aM,ε gives counterterms needed for the Wick ordering.

Note that X is a continuous stochastic process with values in C−1/2−κ(ρσ ) for every
κ, σ > 0. This limits the regularity that can be obtained for the approximations XM,ε

uniformly in M, ε. Hence the most irregular term in (3.3) is the third Wick power and
by Schauder estimates we expect ηM,ε to be 2 degrees of regularity better. Namely, we
expect uniform bounds for ηM,ε in C 1/2−κ(ρσ ) which indeed verifies our presumption
that ηM,ε is more regular than ϕM,ε. However, the above decomposition introduced new
products in (3.3) that are not well-defined under the above discussed uniform bounds.
In particular, both ηM,ε�X2

M,ε� and η2M,εXM,ε do not meet the condition that the sum
of their regularities is strictly positive, which is a convenient sufficient condition for a
product of two distributions to be analytically well-defined.

The usual way is to continue the decomposition in the same spirit and to cancel the
most irregular term in (3.3), namely, �X3

M,ε�. This approach can be found basically in
all the available works on the stochastic quantization (see e.g. in [CC18,GH18,Hai14,
Hai15,MW17a]) The idea is therefore to define XM,ε as the stationary solution to

LεXM,ε = �X3
M,ε�, (3.5)

leading to the decomposition ϕM,ε = XM,ε−λXM,ε +ζM,ε. Writing down the dynamics

for ζM,ε we observe that the most irregular term is the paraproduct �X2
M,ε� � XM,ε

which can be bounded uniformly in C−1−κ,ε(ρσ ) and hence this is not yet sufficient for
the energy method outlined above. Indeed, the expected (uniform) regularity of ζM,ε is
C 1−κ,ε(ρσ ) and so the term 〈ζM,ε, �X2

M,ε� � XM,ε〉 cannot be controlled. However, we
point out that not much is missing.

In order to overcome this issue, we proceed differently than the above cited works
and let YM,ε be a solution to

LεYM,ε = −�X3
M,ε�− 3λ(U ε

>�X2
M,ε�) � YM,ε, YM,ε(0) = −λXM,ε(0), (3.6)
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where U ε
> is the localization operator defined in Section A.2. With a suitable choice of

the constant L = L(λ,M, ε) determining U ε
> (cf. Lemma A.12, Lemma 4.1) we are

able to construct the unique solution to this problem via Banach’s fixed point theorem.
Consequently, we find our decomposition ϕM,ε = XM,ε +YM,ε +φM,ε together with the
dynamics for the remainder

LεφM,ε + λφ
3
M,ε = −3λ�X2

M,ε� � φM,ε − 3λ�X2
M,ε� ◦ φM,ε − 3λ2bM,εφM,ε +�M,ε.

(3.7)
The first term on the right hand side is the most irregular contribution, the second term
is not controlled uniformly in M, ε, the third term is needed for the renormalization
and �M,ε contains various terms that are more regular and in principle not problem-
atic or that can be constructed as stochastic objects using the remaining counterterm
−3λ2bM,ε(XM,ε + YM,ε).

The advantage of this decomposition with φM,ε as opposed to the usual approach
leading to ζM,ε above is that together with �X3

M,ε� we cancelled also the second most

irregular contribution (U ε
>�X2

M,ε�) � YM,ε, which is too irregular to be controlled
as a forcing f using the energy method. The same difficulty of course comes with
�X2

M,ε� � φM,ε in (3.7), however, since it depends on the solution φM,ε we are able to
control it using a paracontrolled ansatz. To explain this, let us also turn our attention to
the resonant product �X2

M,ε� ◦ φM,ε which poses problems as well. When applying the
energy method to (3.7), these two terms appear in the form

〈ρ4φM,ε,−3λ�X2
M,ε� ◦ φM,ε〉ε + 〈ρ4φM,ε,−3λ�X2

M,ε� � φM,ε〉ε,
where we included a polynomial weight ρ as in (2.2). The key observation is that the
presence of the duality product permits to show that these two terms approximately
coincide, in the sense that their difference denoted by Dρ4,ε(φM,ε,−3λ�X2

M,ε�, φM,ε)

is controlled by the expected uniform bounds. This is proven generally in Lemma A.13.
As a consequence, we obtain

1

2
∂t‖φM,ε‖2L2,ε + λ‖φM,ε‖4L4,ε + 〈φM,ε,QεφM,ε〉ε
= 〈ρ4φM,ε,−3 · 2λ�X2

M,ε� � φM,ε〉ε + Dρ4,ε(φM,ε,−3λ�X2
M,ε�, φM,ε) +�M,ε.

Finally, since the last term on the left hand side as well as the first term on the right
hand side are diverging, the idea is to couple themby the following paracontrolled ansatz.
We define

QεψM,ε := QεφM,ε + 3�X2
M,ε� � φM,ε

and expect that the sum of the two terms on the right hand side is more regular than each
of them separately. In other words, ψM,ε is (uniformly) more regular than φM,ε. Indeed,
with this ansatz we may complete the square and obtain

1

2
∂t‖ρ2φM,ε‖2L2,ε + λ‖ρφM,ε‖4L4,ε + m2‖ρ2ψM,ε‖2L2,ε + ‖ρ2∇εψM,ε‖2L2,ε

= �ρ4,M,ε +�ρ4,M,ε,

where the right hand side, given in Lemma 4.2, can be controlled by the norms on the
left hand side, in the spirit of the energy method discussed above.

These considerations lead to our first main result proved as Theorem 4.5 below. In
what follows, Qρ(XM,ε) denotes a polynomial in the ρ-weighted norms of the involved
stochastic objects, the precise definition can be found in Section 4.1.
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Theorem 3.1. Let ρ be a weight such that ρι ∈ L4,0 for some ι ∈ (0, 1). There exists a
constant α = α(m2) > 0 such that

1

2
∂t‖ρ2φM,ε‖2L2,ε + α[λ‖ρφM,ε‖4L4,ε + m2‖ρ2ψM,ε‖2L2,ε

+‖ρ2∇εψM,ε‖2L2,ε ] + ‖ρ2φM,ε‖2H1−2κ,ε
� Cλ,t Qρ(XM,ε),

where Cλ,t = λ3 + λ(12−θ)/(2+θ)| log t |4/(2+θ) + λ7 for θ = 1/2−4κ
1−2κ .

Here we observe the precise dependence on λ which in particular implies that the
bound is uniform over λ in every bounded subset of [0,∞) and vanishes as λ→ 0.

Tightness. In order to proceed to the proof of the existence of the Euclidean �4
3 field

theory, we shall employ the extension operator Eε from Section A.4 which permits to
extend discrete distributions to the full space R

3. An additional twist originates in the
fact that by construction the process YM,ε given by (3.6) is not stationary and conse-
quently also φM,ε fails to be stationary. Therefore the energy argument as explained
above does not apply as it stands and we shall go back to the stationary decomposi-
tion ϕM,ε = XM,ε − λXM,ε + ζM,ε, while using the result of Theorem 3.1 in order
to estimate ζM,ε. Consequently, we deduce tightness of the family of the joint laws of
(EεϕM,ε, EεXM,ε, EεXM,ε) evaluated at any fixed time t � 0, proven in Theorem 4.9

below. To this end, we denote by (ϕ, X, X ) a canonical representative of the random
variables under consideration and let ζ := ϕ − X + λX .

Theorem 3.2. Let ρ be a weight such that ρι ∈ L4,0 for some ι ∈ (0, 1). Then the family
of joint laws of (EεϕM,ε, EεXM,ε, EεXM,ε), ε ∈ A, M > 0, evaluated at an arbitrary
time t � 0 is tight. Moreover, any limit measure μ satisfies for all p ∈ [1,∞)

Eμ‖ϕ‖2pH−1/2−2κ (ρ2) � 1 + λ3p, Eμ‖ζ‖2pL2(ρ2)
� λp + λ3p+4 + λ4p,

Eμ‖ζ‖2H1−2κ (ρ2) � λ2 + λ7, Eμ‖ζ‖4B0
4,∞(ρ)

� λ + λ6.

Osterwalder–Schrader axioms. The projection of a limit measure μ onto the first
component is the candidate �4

3 measure and we denote it by ν. Based on Theorem 3.2
we are able to show that ν is translation invariant and reflection positive, see Section 5.2
and Section 5.3. In addition, we prove that the measure is non-Gaussian. To this end, we
make use of the decomposition ϕ = X−λX +ζ together with the moment bounds from
Theorem 3.2. Since X is Gaussian whereas X is not, the idea is to use the regularity of
ζ to conclude that it cannot compensate X which is less regular. In particular, we show
that the connected 4-point function is nonzero, see Section 5.4.

It remains to discuss a stretched exponential integrability of ϕ, leading to the dis-
tribution property shown in Section 5.1. More precisely, we show the following result
which can be found in Proposition 4.11.

Proposition 3.3. Let ρ be a weight such that ρι ∈ L4,0 for some ι ∈ (0, 1). For every
κ ∈ (0, 1) small there exists υ = O(κ) > 0 small such that

∫

S ′(R3)

exp{β‖ϕ‖1−υ
H−1/2−2κ (ρ2)}ν(dϕ) <∞

provided β > 0 is chosen sufficiently small.
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In order to obtain this bound we revisit the bounds from Theorem 3.1 and track the
precise dependence of the polynomial Qρ(XM,ε) on the right hand side of the estimate
on the quantity ‖XM,ε‖ which will be defined through (4.4), (4.5), (4.6) below taking
into account the number of copies of X appearing in each stochastic object. However,
the estimates in Theorem 3.1 are not optimal and consequently the power of ‖XM,ε‖ in
Theorem 3.1 is too large. To optimize we introduce a large momentum cut-off �X3

M,ε��
given by a parameter K > 0 and let �X3

M,ε�> := �X3
M,ε�− �X3

M,ε��. Then we modify
the dynamics of YM,ε to

LεYM,ε = −�X3
M,ε�> − 3λ(U ε

>�X2
M,ε�) � YM,ε,

which allows for refined bounds on YM,ε, yielding optimal powers of ‖XM,ε‖.
Integration by parts formula. The uniform energy estimates from Theorem 3.2 and
Proposition 3.3 are enough to obtain tightness of the approximate measures and to show
that any accumulation point satisfies the distribution property, translation invariance,
reflection positivity and non-Gaussianity. However, they do not provide sufficient reg-
ularity in order to identify the continuum dynamics or to establish the hierarchy of
Dyson–Schwinger equations providing relations of various n-point correlation func-
tions. This can be seen easily since neither the resonant product �X2

M,ε� ◦ φM,ε nor

�X2
M,ε� ◦ψM,ε is well-defined in the limit. Another and even more severe difficulty lies

in the fact that the third Wick power �X3� only exists as a space-time distribution and is
not a well-defined random variable under the �4

3 measure, cf. [ALZ06].
To overcome the first issue, we introduce a new paracontrolled ansatzχM,ε := φM,ε+

3λXM,ε � φM,ε and show that χM,ε possesses enough regularity uniformly in M, ε in

order to pass to the limit in the resonant product �X2
M,ε� ◦ χM,ε. Namely, we establish

uniform bounds for χM,ε in L1
T B

1+3κ,ε
1,1 (ρ4). This not only allows to give meaning to the

critical resonant product in the continuum, but it also leads to a uniform time regularity
of the processes ϕM,ε. We obtain the following result proved below as Theorem 6.2.

Theorem 3.4. Let β ∈ (0, 1/4) and σ ∈ (0, 1). Then for all p ∈ [1,∞) and τ ∈ (0, T )
sup

ε∈A,M>0
E‖ϕM,ε‖2p

Wβ,1
T B−1−3κ,ε1,1 (ρ4+σ )

+ sup
ε∈A,M>0

E‖ϕM,ε‖2pL∞τ,T H−1/2−2κ,ε(ρ2) <∞,

where L∞τ,T H−1/2−2κ,ε(ρ2) = L∞(τ, T ; H−1/2−2κ,ε(ρ2)).

This additional time regularity is then used in order to treat the second issue raised
above and to construct a renormalized cubic term �ϕ3�. More precisely, we derive an
explicit formula for �ϕ3� including �X3� as a space-time distribution, where time indeed
means the fictitious stochastic time variable introduced by the stochastic quantization,
nonexistent under the�4

3 measure. In order to control �X3�we re-introduce the stochastic
time and use stationarity together with the above mentioned time regularity. Finally, we
derive an integration by parts formula leading to the hierarchy of Dyson–Schwinger
equations connecting the correlation functions. To this end, we recall that a cylinder
function F on S ′(R3) has the form F(ϕ) = �(ϕ( f1), . . . , ϕ( fn)) where � : R

n → R

and f1, . . . , fn ∈ S(R3). Loosely stated, the result proved in Theorem 6.7 says the
following.

Theorem 3.5. Let F : S ′(R3)→ R be a cylinder function such that

|F(ϕ)| + ‖DF(ϕ)‖B1+3κ∞,∞(ρ−4−σ ) � CF‖ϕ‖nH−1/2−2κ (ρ2)



16 M. Gubinelli, M. Hofmanová

for some n ∈ N, where DF(ϕ) the L2-gradient of F. Any accumulation point ν of the
sequence (νM,ε ◦ (Eε)−1)M,ε satisfies for all f ∈ S(R3)

∫

〈DF(ϕ), f 〉ν(dϕ) = 2
∫

〈(m2 −�)ϕ, f 〉F(ϕ)ν(dϕ) + 2λ〈Jν(F), f 〉,

where for a smooth h : R → R with supp h ⊂ [τ, T ] for some 0 < τ < T < ∞ and∫

R
h(t)dt = 1 we have for all f ∈ S(R3)

〈Jν(F), f 〉 = Eν

[∫

R

h(t)F(ϕ(t))〈�ϕ3�(t), f 〉dt
]

and �ϕ3� is given by an explicit formula, namely, (6.6).

In addition, we are able to characterize Jν(F) in the spirit of the operator product
expansion, see Lemma 6.5.

4. Construction of the Euclidean �4 Field Theory

This section is devoted to our main result. More precisely, we consider (3.1) which is a
discrete approximation of (1.3) posed on a periodic lattice �M,ε. For every ε ∈ (0, 1)
and M > 0 (3.1) possesses a unique invariant measure that is the Gibbs measure νM,ε

given by (1.1). We derive new estimates on stationary solutions sampled from these
measures which hold true uniformly in ε and M . As a consequence, we obtain tightness
of the invariant measures while sending both the mesh size as well as the volume to their
respective limits, i.e. ε→ 0, M →∞.

4.1. Stochastic terms. Recall that the stochastic objects XM,ε, �X2
M,ε�, �X

3
M,ε� and

XM,ε were already defined in (3.2), (3.4) and (3.5). As the next step we provide fur-
ther details and construct additional stochastic objects needed in the sequel. All the
distributions on�M,ε are extended periodically to the full lattice�ε. Then XM,ε which

is a stationary solution to (3.5) satisfies XM,ε(t) = Pε
t XM,ε(0) + L −1

ε �X3
M,ε� with

XM,ε(0) =
∫ 0
−∞ Pε−s�X3

M,ε�(s)ds, where Pε
t denotes the semigroup generated by−Qε

on �ε. Then for every κ, σ > 0 and some β > 0 small

‖XM,ε‖CTC 1/2−κ,ε(ρσ ) + ‖XM,ε‖Cβ/2
T L∞,ε(ρσ )

� 1,

uniformly in M, ε thanks to the presence of the weight. For details and further refer-
ences see e.g. Section 3 in [GH18]. Here and in the sequel, T ∈ (0,∞) denotes an
arbitrary finite time horizon and CT and Cβ/2

T are shortcut notations for C([0, T ]) and
Cβ/2([0, T ]), respectively. Throughout our analysis, we fix κ, β > 0 in the above es-
timate such that β � 3κ . This condition will be needed for the control of a parabolic
commutator in Lemma 4.4 below. On the other hand, the parameter σ > 0 varies from
line to line and can be arbitrarily small.

As already discussed in Section 3, in particular after equation (3.5), the usual decom-
position ϕM,ε = XM,ε − λXM,ε + ζM,ε is not suitable for the energy method. Indeed, it

would introduce the term �X2
M,ε� � XM,ε which cannot be cancelled or controlled by the

available quantities. We overcome this issue by working rather with the decomposition
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ϕM,ε = XM,ε +YM,ε +φM,ε defined in the sequel. Note that a similar modification of the
paracontrolled ansatz has been necessary to construct a renormalized control problem for
the KPZ equation in [GP17]. Here, the price to pay is that the auxiliary variables YM,ε,
φM,ε are not stationary. Thus, in Section 4.3 we go back to the stationary decomposition
ϕM,ε = XM,ε − λXM,ε + ζM,ε.

IfU ε
> is a localizer defined for some given constant L > 0 according to LemmaA.12,

we let YM,ε be the solution of (3.6) hence

YM,ε = −λXM,ε −L −1
ε [3λ(U ε

>�X2
M,ε�) � YM,ε]. (4.1)

Note that this is an equation for YM,ε, which also implies that YM,ε is not a polynomial of
the Gaussian noise. However, as shown in the following lemma, YM,ε can be constructed
as a fixed point provided L is large enough.

Lemma 4.1. There exists L0 = L0(λ) � 0 and L = L(λ,M, ε) � 0 with a (not
relabeled) subsequence satisfying L(λ,M, ε)→ L0 as ε→ 0, M →∞, such that (3.6)
withU ε

> determined by L has a unique solution YM,ε that belongs to CTC 1/2−κ(ρσ )∩
Cβ/2
T L∞(ρσ ). Furthermore,

‖YM,ε‖CTC 1/2−κ,ε(ρσ ) � λ‖XM,ε‖CTC 1/2−κ,ε(ρσ ),

‖YM,ε‖Cβ/2
T L∞,ε(ρσ )

� λ[‖XM,ε‖CTC 1/2−κ,ε(ρσ ) + ‖XM,ε‖Cβ/2
T L∞,ε(ρσ )

],
where the proportionality constant is independent of M, ε.

Proof. We define a fixed point map

K : Ỹ �→ Y := −λXM,ε −L −1
ε [3λ(U ε

>�X2
M,ε�) � Ỹ ]

for some L > 0 to be chosen below. Then in view of the Schauder estimates from
Lemma 3.4 in [MP17], the paraproduct estimates as well as Lemma A.12, we have

‖KỸ1 −KỸ2‖CTC 1/2−κ,ε(ρσ ) � λ‖(U ε
>�X2

M,ε�) � (Ỹ1 − Ỹ2)‖CTC −3/2−κ,ε(ρσ )

� Cλ2−L/2‖�X2
M,ε�‖CTC −1−κ,ε(ρσ )‖Ỹ1 − Ỹ2‖CT L∞,ε(ρσ ) � δ‖Ỹ1 − Ỹ2‖CTC 1/2−κ,ε(ρσ )

for some δ ∈ (0, 1) independent of λ,M, ε provided L = L(λ,M, ε) in the definition
of the localizer U ε

> is chosen to be the smallest L � 0 such that

λ

∥
∥
∥U ε

>�X2
M,ε�

∥
∥
∥
CTC−3/2−κ,ε(ρ0)

� Cλ2−L/2‖�X2
M,ε�‖CTC−1−κ,ε(ρσ ) � δ.

In particular, we have that

2L/2 = Cδ(1 + λ‖�X2
M,ε�‖CTC−1−κ,ε(ρσ )), (4.2)

which will be used later in order to estimate the complementary operator U ε
� by

Lemma A.12. Note that L(λ,M, ε) a priori depends on M, ε. However, due to the
uniform bound on

‖�X2
M,ε�‖CTC−1−κ/2,ε(ρσ ) + ‖�X2

M,ε�‖Cγ /2
T L∞,ε(ρσ )

valid for some γ ∈ (0, 1), we may use compactness to deduce that for every fixed λ > 0
there exists a subsequence (not relabeled) such that L(λ,M, ε)→ L0(λ). This will also
allow to identify the limit of the localized term below in Section 6.
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Next, we estimate

‖KỸ‖CTC 1/2−κ,ε(ρσ ) � λ‖XM,ε‖CTC 1/2−κ,ε(ρσ ) + Cλ‖(U ε
>�X2

M,ε�) � Ỹ‖CTC −3/2−κ,ε(ρσ )

� λ‖XM,ε‖CTC 1/2−κ,ε(ρσ ) + δ‖Ỹ‖CTC 1/2−κ,ε(ρσ ).

Thereforewe deduce thatK leaves balls inCTC 1/2−κ,ε(ρσ ) invariant and is a contraction
on CTC 1/2−κ,ε(ρσ ). Hence there exists a unique fixed point YM,ε and the first bound
follows. Next, we use the Schauder estimates (see Lemma 3.10 in [MP17]) to bound the
time regularity as follows

‖YM,ε‖Cβ/2
T L∞,ε(ρσ )

� λ‖XM,ε‖Cβ/2
T L∞,ε(ρσ )

+ Cλ‖(U ε
>�X2

M,ε�) � YM,ε‖CTC −3/2−κ,ε(ρσ )

� λ‖XM,ε‖Cβ/2
T L∞,ε(ρσ )

+ δ‖YM,ε‖CTC 1/2−κ,ε(ρσ )

� λ‖XM,ε‖Cβ/2
T L∞,ε(ρσ )

+ λ‖XM,ε‖CTC 1/2−κ,ε(ρσ ).

The proof is complete. ��
According to this result, we remark that YM,ε itself is not a polynomial in the noise

terms, but with our choice of localization it allows for a polynomial bound of its norm.
As the next step, we introduce further stochastic objects needed below. Namely,

XM,ε := L −1
ε �X2

M,ε�, XM,ε := XM,ε ◦ XM,ε,

XM,ε := 9�X2
M,ε� ◦Q−1

ε �X2
M,ε�− 3bM,ε,

X̃M,ε := 9�X2
M,ε� ◦ XM,ε − 3b̃M,ε(t), XM,ε := 3�X2

M,ε� ◦ XM,ε − 3bM,εXM,ε,

where bM,ε, b̃M,ε(t) are suitable renormalization constants. It follows from standard
estimates that |b̃M,ε(t)− bM,ε| � | log t | uniformly in M, ε. We denote collectively

XM,ε := (XM,ε, �X
2
M,ε�, XM,ε, XM,ε, XM,ε, X̃M,ε, XM,ε). (4.3)

These objects can be constructed similarly as the usual�4
3 terms, see e.g. [GH18,Hai15,

MWX16]. Note that we do not include XM,ε inXM,ε since it can be controlled by �X2
M,ε�

using Schauder estimates. In order to have a precise control of the number of copies of
X appearing in each stochastic term we define ‖XM,ε‖ as the smallest number bigger
than 1 and all the quantities

‖XM,ε‖CTC−1/2−κ,ε(ρσ ), ‖�X2
M,ε�‖1/2CTC−1−κ,ε(ρσ ), ‖XM,ε‖1/3CTC 1/2−κ,ε(ρσ ), (4.4)

‖XM,ε‖1/3Cβ/2
T L∞,ε(ρσ )

, ‖XM,ε‖1/4CTC−κ,ε(ρσ ), (4.5)

‖XM,ε‖1/4CTC−κ,ε(ρσ ), ‖X̃M,ε‖1/4CTC−κ,ε(ρσ ), ‖XM,ε‖1/5CTC−1/2−κ,ε(ρσ ). (4.6)

Note that it is bounded uniformly with respect to M, ε. Besides, if we do not need
to be precise about the exact powers, we denote by Qρ(XM,ε) a generic polynomial
in the above norms of the noise terms XM,ε, whose coefficients depend on ρ but are
independent of M, ε, λ, and change from line to line.
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4.2. Decomposition and uniform estimates. With the above stochastic objects at hand,
we let ϕM,ε be a stationary solution to (3.1) on �M,ε having at each time t � 0 the law
νM,ε. We consider its decomposition ϕM,ε = XM,ε + YM,ε + φM,ε and deduce that φM,ε

satisfies

LεφM,ε + λφ
3
M,ε = −3λ�X2

M,ε� � φM,ε − 3λ�X2
M,ε� � (YM,ε + φM,ε)

− 3λ2bM,ε(XM,ε + YM,ε + φM,ε)− 3λ(U ε
�L�X2

M,ε�) � YM,ε

− 3λXM,ε(YM,ε+φM,ε)
2 − λY 3

M,ε−3λY 2
M,εφM,ε − 3λYM,εφ

2
M,ε.

(4.7)

Our next goal is to derive energy estimates for (4.7) which hold true uniformly in both
parameters M, ε. To this end, we recall that all the distributions above were extended
periodically to the full lattice �ε. Consequently, apart from the stochastic objects, the
renormalization constants and the initial conditions, all the operations in (4.7) are inde-
pendent of M . Therefore, for notational simplicity, we fix the parameter M and omit the
dependence on M throughout the rest of this subsection. The following series of lemmas
serves as a preparation for our main energy estimate established in Theorem 4.5. Here,
we make use of the approximate duality operator Dρ4,ε as well as the commutators

Cε, C̃ε and C̄ε introduced Section A.3.

Lemma 4.2. It holds

1

2
∂t‖ρ2φε‖2L2,ε + λ‖ρφε‖4L4,ε +m2‖ρ2ψε‖2L2,ε + ‖ρ2∇εψε‖2L2,ε = �ρ4,ε +�ρ4,ε (4.8)

with

ψε := φε +Q−1
ε [3λ�X2

ε � � φε],
�ρ4,ε := −〈[∇ε, ρ4]ψε,∇εψε〉ε +

〈[
Qε, ρ

4]Q−1
ε [3λ�X2

ε � � φε], ψε
〉

ε
+ 〈ρ4φ2

ε , λ
2Xε 〉ε

+ Dρ4,ε(φε,−3λ�X2
ε �, φε) + 〈ρ4φε, C̃ε(φε, 3λ�X

2
ε �, 3λ�X

2
ε �)〉ε

+ Dρ4,ε

(
φε, 3λ�X

2
ε �,Q

−1
ε [3λ�X2

ε � � φε]
)
,

�ρ4,ε := 〈ρ4φε,−3λ�X2
ε � ≺ (Yε + φε)− 3λXε(Yε + φε)

2 − λY 3
ε − 3λY 2

ε φε − 3λYεφ
2
ε 〉ε

+ 〈ρ4φε,−3λ(U ε
��X2

ε �) � Yε + λ
2Zε〉ε, (4.9)

and

Zε := Xε + X̃ε Yε + 3(b̃ε − bε)Yε + C̄ε(Yε, 3�X
2
ε �, 3�X

2
ε �)− 3�X2

ε � ◦L −1
ε

(
3U ε

��X2
ε � � Yε

)
.

(4.10)

Proof. Noting that (4.7) is of the formLεφε + λφ3
ε = Uε, we may test this equation by

ρ4φε to deduce

1

2
∂t 〈ρ2φε, ρ2φε〉ε + λ〈ρ2φε, ρ2φ3

ε 〉ε = �ρ4,ε +�ρ4,ε,

with

�ρ4,ε := 〈ρ4φε,−Qεφε − 3λ�X2
ε� � φε − 3λ�X2

ε� ◦ φε − 3λ2bεφε〉ε,
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and

�ρ4,ε := 〈ρ4φε,−3λ�X2
ε � ≺ (Yε + φε)− 3λXε(Yε + φε)

2 − λY 3
ε − 3λY 2

ε φε − 3λYεφ
2
ε 〉ε

+〈ρ4φε,−3λ
(
U ε

�L�X2
ε �

)
� Yε − 3λ�X2

ε � ◦ Yε − 3λ2bε(Xε + Yε)〉ε.

We use the fact that ( f �) is an approximate adjoint to ( f ◦) according to Lemma A.13
to rewrite the resonant term as

〈ρ4φε,−3λ�X2
ε � ◦ φε〉ε = 〈ρ4φε,−3λ�X2

ε � � φε〉ε + Dρ4,ε(φε,−3λ�X2
ε�, φε),

and use the definition of ψ in (4.9) to rewrite �ρ,ε as

�ρ4,ε = 〈ρ4ψε,−Qεψε〉ε +
〈[
Qε, ρ

4
]
Q−1
ε [3λ�X2

ε� � φε], ψε
〉

ε

+〈ρ4[3λ�X2
ε� � φε],Q−1

ε [3λ�X2
ε� � φε]〉ε − 3λ2bε〈ρ4φε, φε〉ε

+Dρ4,ε(φε,−3λ�X2
ε �, φε).

For the first term we write

〈ρ4ψε,−Qεψε〉ε = −m2〈ρ4ψε,ψε〉ε − 〈ρ4∇εψε,∇εψε〉ε − 〈[∇ε, ρ4]ψε,∇εψε〉ε.
Next, we use again Lemma A.13 to simplify the quadratic term as

〈ρ4[3λ�X2
ε� � φε],Q−1

ε [3λ�X2
ε� � φε]〉ε =

〈
ρ4φε, 3λ�X

2
ε� ◦Q−1

ε [3λ�X2
ε� � φε]

〉

ε

+Dρ4,ε

(
φε, 3λ�X

2
ε�,Q

−1
ε [3λ�X2

ε� � φε]
)
,

hence Lemma A.14 leads to

=
〈
ρ4φ2

ε , 9λ
2�X2

ε� ◦Q−1
ε �X2

ε�
〉

ε
+ 〈ρ4φε, C̃ε(φ, 3λ�X

2
ε�, 3λ�X

2
ε �)〉ε

+Dρ4,ε

(
φε, 3λ�X

2
ε �,Q

−1
ε [3λ�X2

ε� � φε]
)
.

We conclude that

�ρ4,ε = −m2〈ρ4ψε,ψε〉ε − 〈ρ4∇εψε,∇εψε〉ε − 〈[∇ε, ρ4]ψε,∇εψε〉ε
+

〈[
Qε, ρ

4]Q−1
ε [3λ�X2

ε � � φε], ψε
〉

ε
+

〈
ρ4φ2

ε , 9λ
2�X2

ε � ◦Q−1
ε �X2

ε �− 3λ2bε
〉

ε

+Dρ4,ε(φε,−3λ�X2
ε �, φε) + 〈ρ4φε, C̃ε(φε, 3λ�X

2
ε �, 3λ�X

2
ε �)〉ε

+Dρ4,ε

(
φε, 3λ�X

2
ε �,Q

−1
ε [3λ�X2

ε � � φε]
)
.

As the next step, we justify the definition of the resonant product appearing in�ρ4,ε and
show that it is given by Zε from the statement of the lemma. To this end, let

Zε := −3λ−1�X2
ε� ◦ Yε − 3bε(Xε + Yε),

and recall the definition of YM,ε (4.1). Hence by Lemma A.14

Zε = 3�X2
ε� ◦ Xε − 3bεXε + 3�X2

ε� ◦L −1
ε (3�X2

ε� � Yε)− 3bεYε

−3�X2
ε� ◦L −1

ε (3U ε
��X2

ε� � Yε)
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= (3�X2
ε� ◦ Xε − 3bεXε) + (3�X

2
ε� ◦L −1

ε 3�X2
ε�− 3b̃ε)Yε + 3(b̃ε − bε)Yε

+C̄ε(Yε, 3�X
2
ε �, 3�X

2
ε�)− 3�X2

ε� ◦L −1
ε

(
3U��X2

ε� � Yε
)
,

which is the desired formula. In this formulation we clearly see the structure of the renor-
malization and the appropriate combinations of resonant products and the counterterms.

��
As the next step, we estimate the new stochastic terms appearing in Lemma 4.2. Here

and in the sequel, ϑ = O(κ) > 0 denotes a generic small constant which changes from
line to line.

Lemma 4.3. It holds true

‖Zε(t)‖C−1/2−κ,ε(ρσ ) � (1 + λ| log t | + λ2)‖Xε‖7+ϑ ,
‖XεYε‖CTC−1/2−κ,ε(ρσ ) � (λ + λ2)‖Xε‖6,
‖XεY 2

ε ‖CTC−1/2−κ,ε(ρσ ) � (λ2 + λ3)‖Xε‖9.
Proof. By definition of Zε and the discussion in Section 4.1, Lemma 4.1, Lemma A.14,
Lemma A.12 and (4.2) we have (since the choice of exponent σ > 0 of the weight
corresponding to the stochastic objects is arbitrary, σ changes from line to line in the
sequel)

‖Zε(t)‖C −1/2−κ,ε(ρ3σ ) � ‖Xε ‖CTC −1/2−κ,ε(ρ3σ ) + ‖X̃ε ‖CTC −κ,ε(ρσ )‖Yε‖CTC 1/2−κ,ε(ρσ )

+| log t |‖Yε‖CTC 1/2−κ,ε(ρσ ) +
(‖Yε‖CC 1/2−κ,ε(ρσ ) + ‖Yε‖Cβ/2

T L∞,ε(ρσ )

)‖�X2
ε �‖2CC −1−κ,ε(ρσ )

+(1 + λ‖�X2
ε �‖CTC −1−κ,ε(ρσ ))

6κ‖�X2
ε �‖2CTC −1−κ,ε(ρσ )‖Yε‖CTC 1/2−κ,ε(ρσ )

� (1 + λ + λ| log t | + λ2)‖Xε‖7+ϑ

and the first claim follows since σ > 0 was chosen arbitrarily.
Next, we recall (4.1) and the fact that Xε = Xε ◦ Xε can be constructed without any

renormalization in CTC−κ,ε(ρσ ). As a consequence, the resonant term reads

Xε ◦ Yε = −λXε − Xε ◦L −1
ε

[
3λ

(
U ε
>�X2

ε�
)
� Yε

]
, (4.11)

where the for the second term we have (since U ε
> is a contraction) that

λ

∥
∥
∥Xε ◦L −1

ε

[
3

(
U ε
>�X2

ε�
)
� Yε

]∥
∥
∥
CTC 1/2−2κ,ε(ρ3σ )

� λ‖Xε‖CTC−1/2−κ,ε(ρσ )

∥
∥
∥

(
U ε
>�X2

ε�
)
� Yε

∥
∥
∥
CTC−1−κ,ε(ρ2σ )

� λ‖Xε‖CTC−1/2−κ,ε(ρσ )‖�X2
ε�‖CTC−1−κ,ε(ρσ )‖Yε‖CT L∞,ε(ρσ ) � λ2‖Xε‖6.

(4.12)

For the two paraproducts we obtain directly

‖Xε ≺ Yε‖CTC−2κ,ε(ρ3σ ) � ‖Xε‖CTC−1/2−κ,ε(ρσ )‖Yε‖CTC 1/2−κ,ε(ρσ ) � λ‖Xε‖4, (4.13)

‖Xε � Yε‖CTC−1/2−κ,ε(ρ3σ ) � ‖Xε‖CTC−1/2−κ,ε(ρσ )‖Yε‖CT L∞,ε(ρσ ) � λ‖Xε‖4. (4.14)
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We proceed similarly for the remaining term, which is quadratic in Yε. We have

Xε ◦ Y 2
ε = Xε ◦ (2Yε ≺ Yε) + Xε ◦ (Yε ◦ Yε)
= −Xε ◦ (2Yε ≺ λX )− Xε ◦

(
2Yε ≺ L −1

ε

[
3λ

(
U>�X2

ε�
)
� Yε

])
+ Xε ◦ (Yε ◦ Yε)

= −2λXε Yε − λCε(Yε, 2Xε, Xε)− λXε ◦
(
2Yε ≺ L −1

ε

[
3

(
U ε
>�X2

ε�
)
� Yε

])
+ Xε ◦ (Yε ◦ Yε).

Accordingly,

‖Xε ◦ Y 2
ε ‖CTC−κ,ε(ρ4σ ) � λ‖Xε ‖CTC−κ,ε(ρσ )‖Yε‖CTC 2κ,ε(ρσ )

+ λ‖Yε‖CC 3κ,ε(ρσ )‖Xε‖CTC 1/2−κ,ε(ρσ )‖Xε‖CTC−1/2−κ,ε(ρσ )

+ λ‖Xε‖CTC−1/2−κ,ε(ρσ )‖Yε‖2CT L∞,ε(ρσ )‖�X2
ε�‖CTC−1−κ,ε(ρσ )

+ ‖Xε‖CTC−1/2−κ,ε(ρσ )‖Yε‖CTC 3κ,ε(ρσ )‖Yε‖CTC 1/2−κ,ε(ρσ ) � (λ2 + λ3)‖Xε‖9 (4.15)

and for the paraproducts

‖Xε ≺ Y 2
ε ‖CTC−2κ,ε(ρ4σ ) � ‖Xε‖CTC−1/2−κ,ε(ρσ )‖Yε‖2CTC 1/2−κ,ε(ρσ ) � λ2‖Xε‖7,

‖Xε � Y 2
ε ‖CTC−1/2−κ,ε(ρ4σ ) � ‖Xε‖CTC−1/2−κ,ε(ρσ )‖Yε‖2CT L∞,ε(ρσ ) � λ2‖Xε‖7.

This gives the second bound from the statement of the lemma. ��
Let us now proceed with our main energy estimate. In view of Lemma 4.2, our goal

is to control the terms in �ρ4,ε +�ρ4,ε by quantities of the from

c(λ)Qρ(Xε) + δ(λ‖ρφε‖4L4,ε + m2‖ρ2ψε‖2L2,ε + ‖ρ2∇εψε‖2L2,ε ),

where δ > 0 is a small constant which can change from line to line. Indeed, with such a
bound in hand it will be possible to absorb the norms of φε, ψε from the right hand side
of (4.8) into the left hand side and a bound for φε, ψε in terms of the noise terms will
follow.

Lemma 4.4. Let ρ be a weight such that ρι ∈ L4,0 for some ι ∈ (0, 1). Then
|�ρ4,ε| + |�ρ4,ε| � (λ3 + λ(12−θ)/(2+θ)| log t |4/(2+θ) + λ7)Qρ(Xε)

+δ(λ‖ρφε‖4L4,ε + ‖ρ2φε‖2H1−2κ,ε + m2‖ρ2ψε‖2L2,ε + ‖ρ2∇εψε‖2L2,ε ),

where θ = 1/2−4κ
1−2κ .

Proof. Since theweight ρ is polynomial and vanishes at infinity, wemay assumewithout
loss of generality that 0 < ρ � 1 and consequently ρα � ρβ whenever α � β � 0. We
also observe that due to the integrability of the weight (see Lemma A.6)

‖ρ1+ιφε‖L2,ε � ‖ρφε‖L4,ε

with a constant that depends only on ρ. In the sequel, we repeatedly use various results
for discrete Besov spaces established in Section A. Namely, the equivalent formulation
of the Besov norms (Lemma A.1), the duality estimate (Lemma A.2), interpolation



A PDE Construction of the Euclidean �4
3 Quantum Field Theory 23

(Lemma A.3), embedding (Lemma A.4), a bound for powers of functions (Lemma A.7)
as well as bounds for the commutators (Lemma A.14).

Even though it is not necessary for the present proof, we keep track of the precise
power of the quantity ‖Xε‖ in each of the estimates. This will be used in Section 4.4
below to establish the stretched exponential integrability of the fields. We recall that
ϑ = O(κ) > 0 denotes a generic small constant which changes from line to line.

In view of Lemma 4.2 we shall bound each term on the right hand side of (4.8). We
have

|〈[∇ε, ρ4]ψε,∇εψε〉ε| � Cρ‖ρ2ψε‖L2,ε‖ρ2∇εψε‖L2,ε � CδC
2
ρ‖ρ2ψε‖2L2,ε + δ‖ρ2∇εψε‖2L2,ε .

This term can be absorbed providedCρ = ‖ρ−4[∇ε, ρ4]‖L∞,ε is sufficiently small, such
that CδC2

ρ � m2, which can be obtained by choosing h > 0 small enough (depending
only on m2 and δ) in the definition (2.2) of the weight ρ. Next,

∣
∣
∣

〈[
Qε, ρ

4
]
Q−1
ε [3λ�X2

ε� � φε], ψε
〉

ε

∣
∣
∣ �

∣
∣
∣

〈
Q−1
ε [3λ�X2

ε� � φε],
[
Qε, ρ

4
]
ψε

〉

ε

∣
∣
∣

and we estimate explicitly
∣
∣
∣ρ
−2 [

Qε, ρ
4
]
ψε

∣
∣
∣
L2,ε

� Cρ(‖ρ2ψε‖L2,ε + ‖ρ2∇εψε‖L2,ε(ρ2))

for another constant Cρ depending only on the weight ρ, which can be taken smaller
than m2 by choosing h > 0 small, and consequently

∣
∣
∣

〈[
Qε, ρ

4
]
Q−1
ε [3λ�X2

ε� � φε], ψε
〉

ε

∣
∣
∣

� λ‖Xε‖2‖ρ2−σ φε‖L2,ε (m2‖ρ2ψε‖L2,ε + ‖ρ2∇εψε‖L2,ε )

� λ3Cδ‖Xε‖8 + δ(λ‖ρφε‖4L4,ε + m2‖ρ2ψε‖2L2,ε + ‖ρ2∇εψε‖2L2,ε ),

since σ is sufficiently small.
Using Lemma A.2, Lemma A.7, interpolation from Lemma A.3 with for θ = 1−4κ

1−2κ
and Young’s inequality we obtain

|λ2〈ρ4φ2
ε , Xε 〉ε| � λ2‖ρσ Xε ‖C−κ,ε‖ρ4−σ φ2

ε‖Bκ,ε1,1

� λ2‖ρσ Xε ‖C−κ,ε‖ρ1+ιφε‖L2,ε‖ρ3−ι−σ φε‖H2κ,ε

� λ2‖Xε‖4‖ρφε‖1+θL4,ε‖ρ2φε‖1−θH1−2κ,ε

� λ(7−θ)/(1+θ)Cρ‖Xε‖8+ϑ + δ(λ‖ρφε‖4L4,ε + ‖ρ2φε‖2H1−2κ,ε ).

Recall that sinceσ is chosen small,we have the interpolation inequality (seeLemmaA.3)

‖φε‖H1/2+κ,ε(ρ2−σ/2) � ‖φε‖θL2,ε(ρ1+ι)
‖φε‖1−θH1−2κ,ε(ρ2)

where θ = 1/2−3κ
1−2κ . Similar interpolation inequalities will also be employed below. Then,

in view of Lemma A.13 and Young’s inequality, we have

λ|Dρ4,ε(φε,−3�X2
ε �, φε)| � λ‖ρσ �X2

ε�‖C−1−κ,ε‖ρ2−σ/2φε‖2H1/2+κ,ε

� λ‖ρσ �X2
ε�‖C−1−κ,ε‖ρ1+ιφε‖2θL2,ε‖ρ2φε‖2(1−θ)H1−2κ,ε
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� λ‖Xε‖2‖ρφε‖2θL4,ε‖ρ2φε‖2(1−θ)H1−2κ,ε

� λ2/θ−1Cδ‖Xε‖8+ϑ + δ(λ‖ρφε‖4L4,ε + ‖ρ2φε‖2H1−2κ,ε ).

Similarly,

λ2
∣
∣
∣Dρ4,ε

(
φε, 3�X

2
ε �,Q

−1
ε [3�X2

ε� � φε]
)∣
∣
∣

� λ2‖ρσ �X2
ε�‖C−1−κ,ε‖ρ3−ι−2σ φε‖H4κ,ε

∣
∣
∣ρ

1+ι+σQ−1
ε [3�X2

ε� � φε]
∣
∣
∣
H1−2κ,ε ,

where we further estimate by Schauder and paraproduct estimates
∣
∣
∣ρ

1+ι+σQ−1
ε [3�X2

ε� � φε]
∣
∣
∣
H1−2κ,ε � ‖ρ1+ι+σ �X2

ε� � φε‖H−1−2κ,ε

� ‖ρσ �X2
ε�‖C−1−κ,ε‖ρ1+ιφε‖L2,ε

and hence we deduce by interpolation with θ = 1−6κ
1−2κ and embedding that

λ2
∣
∣
∣Dρ4,ε

(
φε, 3�X

2
ε �,Q

−1
ε [3�X2

ε� � φε]
)∣
∣
∣ � λ2‖Xε‖4‖ρ1+ιφε‖L2,ε‖ρ2φε‖H4κ,ε

� λ2‖Xε‖4‖ρφε‖1+θL2,ε‖ρ2φε‖1−θH1−2κ,ε

� λ(7−θ)/(1+θ)Cδ‖Xε‖8+ϑ + δ(λ‖ρφε‖4L4,ε + ‖ρ2φε‖2H1−2κ,ε ).

Due to Lemma A.14 and interpolation with θ = 1−5κ
1−2κ , we obtain

λ2|〈ρ4φε, C̃(φε, 3�X2
ε �, 3�X

2
ε �)〉ε| � λ2‖ρσ �X2

ε�‖2C−1−κ,ε‖ρ2−σ φε‖2H3κ,ε

� λ2Cδ‖Xε‖4‖ρ1+ιφε‖2θL2,ε‖ρ2φε‖2(1−θ)H1−2κ,ε

� λ4/θ−1Cδ‖Xε‖8+ϑ + δ(λ‖ρφε‖4L4,ε + ‖ρ2φε‖2H1−2κ,ε ).

Then we use the paraproduct estimates, the embedding C 1/2−κ,ε
(ρσ ) ⊂ H1/2−2κ,ε(ρ2−σ/2) (which holds due to the integrability of ρ4ι for some
ι ∈ (0, 1) and the fact that σ can be chosen small), together with Lemma 4.1 and
interpolation to deduce for θ = 1/2−5κ

1−2κ that

λ|〈ρ4φε,−3�X2
ε � ≺ (Yε + φε)〉ε|

� λ‖ρσ �X2
ε�‖C−1−κ,ε‖ρ2−σ/2(Yε + φε)‖H1/2−2κ,ε‖ρ2−σ/2φε‖H1/2+3κ,ε

� λ‖ρσ �X2
ε�‖C−1−κ,ε‖ρ2−σ/2Yε‖H1/2−2κ,ε‖ρ2−σ/2φε‖H1/2+3κ,ε

+λ‖ρσ �X2
ε�‖C−1−κ,ε‖ρ2−σ/2φε‖2H1/2+3κ,ε

� λ(λ‖Xε‖5‖ρ1+ιφε‖θL2,ε‖ρ2φε‖1−θH1−2κ,ε + ‖Xε‖2‖ρ1+ιφε‖2θL2,ε‖ρ2φε‖2(1−θ)H1−2κ,ε )

� (λ(8−θ)/(2+θ) + λ2/θ−1)Cδ‖Xε‖8+ϑ + δ(λ‖ρφε‖4L4,ε + ‖ρ2φε‖2H1−2κ,ε ).

Next, we have

λ|〈ρ4φε,−3Xε(Yε + φε)2〉ε| � λ‖ρσ Xε‖C−1/2−κ,ε‖ρ4−σ φ3
ε‖B1/2+κ,ε

1,1

+λ‖ρσ XεYε‖C−1/2−κ,ε‖ρ4−σ φ2
ε‖B1/2+κ,ε

1,1
+ λ‖ρσ XεY 2

ε ‖C−1/2−κ,ε‖ρ4−σ φε‖B1/2+κ,ε
1,1

.
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Here we employ Lemma A.7 and interpolation to obtain for θ = 1/2−4κ
1−2κ

λ‖ρσ Xε‖C −1/2−κ,ε‖ρ4−σ φ3
ε‖B1/2+κ,ε

1,1
� λ‖ρσ Xε‖C −1/2−κ,ε‖ρφε‖2L4,ε‖ρ2−σ φε‖H1/2+2κ,ε

� λ‖Xε‖‖ρφε‖2+θL4,ε‖ρ2φε‖1−θH1−2κ,ε � λ(2−θ)/θCδ‖Xε‖8+ϑ + δ(λ‖ρφε‖4L4,ε + ‖ρ2φε‖2H1−2κ,ε )

and similarly for the other two terms, where we also use Lemma 4.3 and the em-
bedding H1−2κ,ε(ρ2) ⊂ H1/2+2κ,ε(ρ3−ι−σ ) and H1/2+2κ,ε(ρ2) = B1/2+2κ,ε

2,2 (ρ2) ⊂
B1/2+κ,ε
1,1 (ρ4−σ ) together with interpolation with θ = 1/2−4κ

1−2κ

λ‖ρσ XεYε‖C −1/2−κ,ε‖ρ4−σ φ2
ε‖B1/2+κ,ε

1,1
+ λ‖ρσ XεY 2

ε ‖C −1/2−κ,ε‖ρ4−σ φε‖B1/2+κ,ε
1,1

� (λ2 + λ3)‖Xε‖6‖ρ1+ιφε‖L2,ε‖ρ3−ι−σ φε‖H1/2+2κ,ε + (λ3 + λ4)‖Xε‖9‖ρ2φε‖H1/2+2κ,ε

� (λ2 + λ3)‖Xε‖6‖ρφε‖1+θL4,ε‖ρ2φε‖1−θH1−2κ,ε + (λ
3 + λ4)‖Xε‖9‖ρφε‖θL4,ε‖ρ2φε‖1−θH1−2κ,ε

� (λ(11−θ)/(2+θ) + λ(12−θ)/(2+θ))Cδ‖Xε‖16+ϑ + δ(λ‖ρφε‖4L4,ε + ‖ρ2φε‖2H1−2κ,ε ). (4.16)

Next, we obtain

λ|〈ρ4φε,−Y 3
ε 〉ε| � λ‖ρσYε‖3L∞,ε‖ρ4−3σ φε‖L1,ε � λ4‖Xε‖9‖ρφε‖L4,ε

� λ5Cδ‖Xε‖12 + δλ‖ρφε‖4L4,ε , (4.17)

and similarly

λ|〈ρ4φε,−3Y 2
ε φε〉ε| � λ‖ρσYε‖2L∞,ε‖ρ4−σ φ2

ε‖L1,ε

� λ3‖Xε‖6‖ρφε‖2L4,ε � λ5Cδ‖Xε‖12 + δλ‖ρφε‖4L4,ε , (4.18)

λ|〈ρ4φε,−3Yεφ2
ε 〉ε| � λ‖ρσYε‖L∞,ε‖ρ4−σ φ3

ε‖L1,ε � λ‖ρσYε‖L∞,ε‖ρφε‖3L4,ε

� λ2‖Xε‖3‖ρφε‖3L4,ε � λ5Cδ‖Xε‖12 + δλ‖ρφε‖4L4,ε . (4.19)

Then, by (4.2)

λ

∣
∣
∣〈ρ4φε,−3(U ε

��X2�) � Yε〉ε
∣
∣
∣ � λ‖ρσU ε

��X2
ε �‖C −1+3κ,ε‖ρσYε‖L∞,ε‖ρ4−3σ φε‖B1−3κ,ε

1,1

� λ(1 + λ‖ρσ �X2
ε �‖C −1−κ,ε )8κ‖ρσ �X2

ε �‖C −1−κ,ε‖ρσYε‖L∞,ε‖ρ2φε‖H1−2κ,ε

� (λ2 + λ2+8κ )‖Xε‖5+16κ‖ρ2φε‖H1−2κ,ε � (λ4 + λ5)Cδ‖Xε‖10+ϑ + δ‖ρ2φε‖2H1−2κ,ε , (4.20)

and finally for θ = 1/2−4κ
1−2κ

λ2|〈ρ4φε, Zε〉ε| � λ2‖ρσ Zε‖C−1/2−κ,ε‖ρ4−σ φε‖B1/2+κ,ε
1,1

� (λ2 + λ3| log t | + λ4)‖Xε‖7+ϑ‖ρφε‖θL4,ε‖ρ2φ‖1−θH1−2κ

� (λ(8−θ)/(2+θ) + λ(12−θ)/(2+θ)| log t |4/(2+θ) + λ(16−θ)/(2+θ))Cδ‖Xε‖12
+δ(λ‖ρφε‖4L4,ε + ‖ρ2φε‖2H1−2κ,ε ). (4.21)

The proof is complete. ��
Now we have all in hand to establish our main energy estimate.
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Theorem 4.5. Let ρ be a weight such that ρι ∈ L4,0 for some ι ∈ (0, 1). There exists a
constant α = α(m2) ∈ (0, 1) such that for θ = 1/2−4κ

1−2κ

1

2
∂t‖ρ2φε‖2L2,ε + α[λ‖ρφε‖4L4,ε + m2‖ρ2ψε‖2L2,ε + ‖ρ2∇εψε‖2L2,ε ] + ‖ρ2φε‖2H1−2κ,ε

� (λ3 + λ(12−θ)/(2+θ)| log t |4/(2+θ) + λ7)Qρ(Xε). (4.22)

Proof. As a consequence of (4.9), we have according to Lemma A.5, Lemma A.4,
Lemma A.1

‖ρ2φε‖2H1−2κ,ε �
∥
∥
∥ρ

2Q−1
ε [3λ�X2

ε� � φε]
∥
∥
∥
2

H1−2κ,ε + ‖ρ2ψε‖2H1−2κ,ε

� λ2‖ρσ �X2
ε�‖2C−1−κ,ε‖ρ2−σ φε‖2L2,ε + ‖ρ2ψε‖2H1−κ,ε

� λ3Qρ(Xε) + λ‖ρφε‖4L4,ε + ‖ρ2ψε‖2L2,ε + ‖ρ2∇εψε‖2L2,ε . (4.23)

Therefore, according to Lemma 4.4 we obtain that

1

2
∂t‖ρ2φε‖2L2,ε + λ‖ρφε‖4L4,ε + m2‖ρ2ψε‖2L2,ε + ‖ρ2∇εψε‖2L2,ε

� (λ3 + λ(12−θ)/(2+θ)| log t |4/(2+θ) + λ7)Qρ(Xε)

+δC(λ‖ρφε‖4L4,ε + ‖ρ2ψε‖2L2,ε + ‖ρ2∇εψε‖2L2,ε ).

Choosing δ > 0 sufficiently small (depending on m2 and the implicit constant C from
Lemma A.5) allows to absorb the norms of φε, ψε from the right hand side into the left
hand side and the claim follows. ��
Remark 4.6. We point out that the requirement of a strictly positive mass m2 > 0 is to
some extent superfluous for our approach. To be more precise, if m2 � 0 then we may
rewrite the mollified stochastic quantization equation as

(∂t −�ε + 1)ϕε + λϕ
3
ε = ξε + (1− m2)ϕε

and the same decomposition as above introduces an additional term on the right hand
side of (4.8). This can be controlled by

|(1− m2)〈ρ4φε, Xε + Yε + φε〉| � Cδ,λ−1Qρ(Xε) + δ(λ‖ρφε‖4L4,ε + ‖ρ2φε‖2H1−2κ,ε ),

where we write Cδ,λ−1 to stress that the constant is not uniform over small λ. As a
consequence, we obtain an analogue of Theorem 4.5 but the uniformity for small λ is
not valid anymore.

Corollary 4.7. Let ρ be a weight such that ρι ∈ L4,0 for some ι ∈ (0, 1). Then for all
p ∈ [1,∞) and θ = 1/2−4κ

1−2κ

1

2p
∂t‖ρ2φε‖2pL2,ε +λ‖ρ2φε‖2p+2L2,ε � λ[(λ2 +λ(10−2θ)/(2+θ)| log t |4/(2+θ) +λ6)Qρ(Xε)](p+1)/2.

(4.24)
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Proof. Based on (4.22) we obtain

1

2p
∂t‖ρ2φε‖2pL2,ε + λ‖ρ2φε‖2(p−1)L2,ε ‖ρφε‖4L4,ε

� (λ3 + λ(12−θ)/(2+θ)| log t |4/(2+θ) + λ7)‖ρ2φε‖2(p−1)L2,ε Qρ(Xε).

The L4-norm on the left hand side can be estimated from below by the L2-norm, whereas
on the right hand side we use Young’s inequality to deduce

1

2p
∂t‖ρ2φε‖2pL2,ε + λ‖ρ2φε‖2p+2L2,ε

� λ[(λ2 + λ(10−2θ)/(2+θ)| log t |4/(2+θ) + λ6)Qρ(Xε)](p+1)/2 + δλ‖ρ2φε‖2p+2L2,ε .

Hence we may absorb the second term from the right hand side into the left hand side.
��

4.3. Tightness of the invariant measures. Recall that ϕM,ε is a stationary solution to
(3.1) having at time t � 0 law given by the Gibbs measure νM,ε. Moreover, we have the
decomposition ϕM,ε = XM,ε + YM,ε + φM,ε, where XM,ε is stationary as well. By our
construction, all equations are solved on a common probability space, say (!,F ,P),
and we denote by E the corresponding expected value. In addition, we assume that the
processes ϕM,ε and XM,ε are jointly stationary. This could be achieved for instance by
considering a solution to the coupled SDE for (ϕM,ε, XM,ε) starting from the product
of the corresponding marginal invariant measures, and applying Krylov–Bogoliubov’s
argument.

Theorem 4.8. Let ρ be a weight such that ρι ∈ L4,0 for some ι ∈ (0, 1). Then for every
p ∈ [1,∞)

sup
ε∈A,M>0

(E‖ϕM,ε(0)− XM,ε(0)‖2H1/2−2κ,ε(ρ2))
1/2 � λ + λ7/2,

sup
ε∈A,M>0

(E‖ϕM,ε(0)− XM,ε(0)‖2pL2,ε(ρ2)
)1/2p � λ1/2 + λ3/2.

Proof. Let us show the first claim. Due to stationarity of ϕM,ε − XM,ε = YM,ε + φM,ε

we obtain

E‖ρ2(ϕM,ε(0)− XM,ε(0))‖2H1/2−2κ,ε = 1

τ

∫ τ

0
E‖ρ2(ϕM,ε(s)− XM,ε(s))‖2H1/2−2κ,εds

= 1

τ

∫ τ

0
E‖ρ2(φM,ε(s) + YM,ε(s))‖2H1/2−2κ,εds

� 1

τ

∫ τ

0
E‖ρ2φM,ε(s)‖2H1/2−2κ,εds +

1

τ

∫ τ

0
E‖ρ2YM,ε(s)‖2H1/2−2κ,εds.

In order to estimate the right hand side,we employTheorem4.5 togetherwith Lemma4.1
to deduce

E‖ρ2(ϕM,ε(0)− XM,ε(0))‖2H1/2−2κ,ε
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� Cτ (λ
2 + λ7)EQρ(XM,ε) +

1

2τ
E‖ρ2φM,ε(0)‖2L2,ε + E‖ρσYM,ε‖2CTC 1/2−κ,ε

� Cτ (λ
2 + λ7)EQρ(XM,ε) +

C

τ
E‖ρ2(ϕM,ε(0)− XM,ε(0))‖2L2,ε +

C

τ
E‖ρ2YM,ε(0)‖2L2,ε

� Cτ (λ
2 + λ7)EQρ(XM,ε) +

C

τ
E‖ρ2(ϕM,ε(0)− XM,ε(0))‖2L2,ε .

Finally, taking τ > 0 large enough, we may absorb the second term from the right hand
side into the left hand side to deduce

E‖ρ2(ϕM,ε(0)− XM,ε(0))‖2H1/2−2κ,ε � Cτ (λ
2 + λ7)EQρ(XM,ε).

Observing that the right hand side is bounded uniformly in M, ε, completes the proof
of the first claim.

Now, we show the second claim for p ∈ [2,∞). The case p ∈ [1, 2) then follows
easily from the bound for p = 2. Using stationarity as above we have

E‖ρ2(ϕM,ε(0)− XM,ε(0))‖2pL2,ε = 1

τ

∫ τ

0
E‖ρ2(φM,ε(s) + YM,ε(s))‖2pL2,εds

� 1

τ

∫ τ

0
E‖ρ2φM,ε(s)‖2pL2,εds +

1

τ

∫ τ

0
E‖ρ2YM,ε(s)‖2pL2,εds. (4.25)

Due to Corollary 4.7 applied to p − 1 and the fact that for any σ > 0 and τ � 1
∫ τ

0
| log s|2p/(2+θ)ds � Cp,σ τ

1+σ ,

we deduce

α

∫ τ

0
E‖ρ2φM,ε(s)‖2pL2,εds � Cp,σ [τ(λ2 + λ6)p/2 + τ 1+σ λp(5−θ)/(2+θ)]E[Qρ(XM,ε)]

+
λ−1

2(p − 1)
E‖ρ2φM,ε(0)‖2(p−1)L2,ε

� Cp,σ [τ(λ2 + λ6)p/2 + τ 1+σ λp(5−θ)/(2+θ)]E[Qρ(XM,ε)]
+ Cpλ

−1
E‖ρ2(ϕM,ε(0)− XM,ε(0))‖2(p−1)L2,ε

+ Cpλ
−1

E‖ρ2YM,ε(0)‖2(p−1)L2,ε .

Plugging this back into (4.25) and using Young’s inequality we obtain

E‖ρ2(ϕM,ε(0)− XM,ε(0))‖2pL2,ε � Cp,σ

α
[(λ2 + λ6)p/2 + τσ λp(5−θ)/(2+θ)]E[Qρ(XM,ε)]

+δ
Cp

ατ
E‖ρ2(ϕM,ε(0)− XM,ε(0))‖2pL2,ε +

1

λpτ
Cδ,p+

Cpλ
2p

ατ
E[Qρ(XM,ε)].

Taking τ = max(1, λ−2p) leads to

E‖ρ2(ϕM,ε(0)− XM,ε(0))‖2pL2,ε

� Cp,σ

α
[(λ2 + λ6)p/2 + τσ λp(5−θ)/(2+θ)]E[Qρ(XM,ε)]
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+δCp,αE‖ρ2(ϕM,ε(0)− XM,ε(0))‖2pL2,ε + λ
pCδ,p+Cp,αλ

2p
E[Qρ(XM,ε)]

and choosing δ > 0 small enough, we may absorb the second term on the right hand
side into the left hand side and the claim follows ��

The above result directly implies the desired tightness of the approximate Gibbs
measures νM,ε. To formulate this precisely we make use of the extension operators Eε
for distributions on �ε constructed in Section A.4. We recall that on the approximate
level the stationary process ϕM,ε admits the decomposition ϕM,ε = XM,ε +YM,ε +φM,ε,

where XM,ε is stationary and YM,ε is given by (4.1) with XM,ε being also stationary.
Accordingly, letting

ζM,ε := −L −1
ε

[
3λ

(
U ε
>�X2

M,ε�
)
� YM,ε

]
+ φM,ε =: ηM,ε + φM,ε

we obtain ϕM,ε = XM,ε − λXM,ε + ζM,ε, where all the summands are stationary.

The next result shows that the family of joint laws of (EεϕM,ε, EεXM,ε, EεXM,ε) at
any chosen time t � 0 is tight. In addition, we obtain bounds for arbitrary moments of
the limiting measure. To this end, we denote by (ϕ, X, X ) a canonical representative
of the random variables under consideration and let ζ := ϕ − X + λX .

Theorem 4.9. Let ρ be a weight such that ρι ∈ L4 for some ι ∈ (0, 1). Then the
family of joint laws of (EεϕM,ε(t), EεXM,ε(t), EεXM,ε(t)), ε ∈ A,M > 0, evaluated

at an arbitrary time t � 0 is tight on H−1/2−3κ(ρ2+κ )×C−1/2−κ(ρσ )×C 1/2−κ(ρσ ).
Moreover, any limit probability measure μ satisfies for all p ∈ [1,∞)

Eμ‖ϕ‖2pH−1/2−2κ (ρ2) � 1 + λ3p, Eμ‖ζ‖2pL2(ρ2)
� λp + λ3p+4 + λ4p,

Eμ‖ζ‖2H1−2κ (ρ2) � λ2 + λ7, Eμ‖ζ‖4B0
4,∞(ρ)

� λ + λ6.

Proof. Since by Lemma A.15

E‖EεXM,ε(0)‖2pH−1/2−2κ (ρ2) � E‖XM,ε(0)‖2pC−1/2−κ,ε(ρσ ) � 1,

uniformly in M, ε, we deduce from Theorem 4.8 that

E‖EεϕM,ε(0)‖2pH−1/2−2κ (ρ2) � 1 + λ3p

uniformly in M, ε. Integrating (4.24) in time and using the decomposition of ϕM,ε leads
to

‖ρ2φM,ε(t)‖2pL2,ε � ‖ρ2φM,ε(0)‖2pL2,ε + Ctλ(λ
2 + λ6)(p+1)/2Qρ(XM,ε)

(p+1)/2

� Cp‖ρ2(ϕM,ε(0)− XM,ε(0))‖2pL2,ε + Cp‖ρ2YM,ε(0)‖2pL2,ε

+Ctλ(λ
2 + λ6)(p+1)/2Qρ(XM,ε)

(p+1)/2.

Hence due to Theorem 4.8 we obtain a uniform bound

E‖ρ2φM,ε(t)‖2pL2,ε �t λ
p + λ3p+4,

for all t � 0. In addition, the following expressions are bounded uniformly in M, ε

according to Lemma 4.1 and Theorem 4.5

E‖ηM,ε‖2pCTC 1−κ,ε(ρσ ) � λ4p,
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λ

∫ T

0
E‖φM,ε(t)‖4L4,ε(ρ)

dt +
∫ T

0
E‖φM,ε(t)‖2H1−2κ,ε(ρ2)dt �T λ2 + λ7,

whenever the weight ρ is such that ρι ∈ L4 for some ι ∈ (0, 1). In view of sta-
tionarity of ζM,ε and the embedding C 1−κ,ε(ρσ ) ⊂ H1−2κ,ε(ρ2), we therefore obtain
a uniform bound E‖ζM,ε(t)‖2H1−2κ,ε(ρ2) � λ2 + λ7 as well as E‖ζM,ε(t)‖2pL2,ε(ρ2)

�
λp + λ3p+4 + λ4p for every t � 0. Similarly, using stationarity together with the em-
bedding C 1−κ,ε(ρσ ) ⊂ B0,ε

4,∞(ρ) as well as L4,ε(ρ) ⊂ B0,ε
4,∞(ρ) we deduce a uniform

bound E‖ζM,ε(t)‖4
B0,ε
4,∞(ρ)

� λ + λ6 for every t � 0.

Consequently, by LemmaA.15 the same bounds hold for the corresponding extended
distributions and hence the family joint laws of (EεϕM,ε(t), EεXM,ε(t), EεXM,ε(t)) at

any time t � 0 is tight on H−1/2−3κ(ρ2+κ ) × C −1/2−κ(ρσ ) × C 1/2−κ(ρσ ). Indeed,
this is a consequence of the compact embedding

H−1/2−2κ(ρ2)× C−1/2−κ/2(ρ2σ )× C 1/2−κ/2(ρ2σ )
⊂ H−1/2−3κ(ρ2+κ)× C−1/2−κ(ρσ )× C 1/2−κ(ρσ ).

Therefore up to a subsequence we may pass to the limit as ε → 0, M → ∞ and the
uniform moment bounds are preserved for every limit point. ��

The marginal of μ corresponding to ϕ is the desired �4
3 measure, which we denote

by ν. According to the above result, ν is obtained as a limit (up to a subsequence) of the
continuum extensions of the Gibbs measures νM,ε given by (1.1) as ε→ 0, M →∞.

4.4. Stretched exponential integrability. The goal of this section is to establish better
probabilistic properties of the �4

3 measure. Namely, we show that ‖ρ2ϕM,ε‖1−υH−1/2−2κ,ε
is uniformly (in M, ε) exponentially integrable for every υ = O(κ) > 0, hence we
recover the same stretched exponential moment bound for any limit measure ν. To this
end, we revisit the energy estimate in Section 4.2 and take a particular care to optimize
the power of the quantity ‖XM,ε‖ appearing in the estimates. Recall that it can be shown
that

E[eβ‖XM,ε‖2 ] <∞ (4.26)

uniformly in M, ε for a small parameter β > 0 (see [MW18]). Accordingly, it turns out
that the polynomial Qρ(XM,ε) on the right hand side of the bound in Lemma 4.4 shall not
contain higher powers of ‖XM,ε‖ than 8 + O(κ). In the proof of Lemma 4.4 we already
see what the problematic terms are. In order to allow for a refined treatment of these
terms, we introduce an additional large momentum cut-off and modify the definition of
YM,ε from (3.6), leading to better uniform estimates and consequently to the desired
stretched exponential integrability.

More precisely, let K > 0 and take a compactly supported, smooth function v : R →
R+ such that ‖v‖L1 = 1. We define

�X3
M,ε�� := vK ∗t �ε

�K �X3
M,ε�,

where the convolution is in the time variable and vK (t) := 2K v(2K t). With standard
arguments one can prove that

sup
K∈N

(2−K (3/2+κ)‖�X3
M,ε��‖CT L∞,ε )2/3
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is exponentially integrable for a small parameter and therefore we can modify the defi-
nition of ‖XM,ε‖ to obtain

‖�X3
M,ε��‖CT L∞,ε � 2K (3/2+κ)‖XM,ε‖3 (4.27)

while still keeping the validity of (4.26). Moreover, we let �X3
M,ε�> := �X3

M,ε� −
�X3

M,ε�� and define XM,ε,> to be the stationary solution of

LεXM,ε,> = �X3
M,ε�− �X3

M,ε��.

By choosing K we can have that

‖XM,ε,>‖CT L∞,ε(ρσ ) � 2−K (1/2−2κ)‖XM,ε,>‖CTC 1/2−κ,ε(ρσ )

� 2−K (1/2−2κ)‖XM,ε‖3 � ‖XM,ε‖2

which holds true provided

2K/2 = ‖XM,ε‖1/(1−4κ).
Next, we redefine YM,ε to solve

YM,ε = −λXM,ε,> −L −1
ε [3λ(U ε

>�X2
M,ε�) � YM,ε].

The estimates of Lemma 4.1 are still valid with obvious modifications. In addition, we
obtain

‖ρσYM,ε‖CT L∞,ε(ρσ ) � λ‖XM,ε‖2, ‖ρσYM,ε‖CTC 1/2−κ,ε(ρσ ) � λ‖XM,ε‖3,
and by interpolation it follows for a ∈ [0, 1/2− κ] that

‖ρσYM,ε‖CTC a,ε(ρσ ) � λ‖XM,ε‖2+a/(1/2−κ). (4.28)

From now on we avoid, as usual, to specify explicitly the dependence on M since it does
not play any role in the estimates. The energy equality (4.8) in Lemma 4.2 now reads

1

2
∂t‖ρ2φε‖2L2,ε +ϒε = �ρ4,ε +�ρ4,ε + 〈ρ4φε,−λ�X3

ε��〉ε, (4.29)

where

ϒε := λ‖ρφε‖4L4,ε + m2‖ρ2ψε‖2L2,ε + ‖ρ2∇εψε‖2L2,ε

and �ρ4,ε, �ρ4,ε where defined in Lemma 4.2. Our goal is to bound the right hand side
of (4.29) with no more than a factor ‖XM,ε‖8+ϑ for some ϑ = O(κ). In view of the
estimates within the proof of Lemma 4.4 we observe that the bounds (4.16), (4.17),
(4.18), (4.19), (4.20) and (4.21) need to be improved.

Lemma 4.10. Let ρ be a weight such that ρι ∈ L4,0 for some ι ∈ (0, 1). Then there is
ϑ = O(κ) > 0 such that

|�ρ4,ε| + |�ρ4,ε| + |〈ρ4φε,−λ�X3
ε��〉ε| � Cδ(λ + λ

7/3| log t |4/3 + λ5)‖Xε‖8+ϑ + δϒε.
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Proof. Let us begin with a new bound for the term with XεY 2
ε appearing in (4.16). For

the resonant term we get from the interpolation estimate (4.28) that the bound (4.15)
can be updated as

‖ρσ Xε ◦ Y 2
ε ‖CTC−κ,ε � λ2‖Xε‖6+ϑ + λ3‖Xε‖5+ϑ � (λ2 + λ3)‖Xε‖6+ϑ

where we used that, due to the presence of the localizer (see (4.2)), we can bound

∥
∥ρσU>�X2

ε �
∥
∥
C −3/2+2κ,ε � ‖ρσ �X2

ε �‖C −1−κ,ε
(
1 + λ‖ρσ �X2

ε �‖C −1−κ,ε
)−(1−6κ) � ‖Xε‖ϑ

(4.30)
giving an improved bound for the paracontrolled term which reads as follows

∥
∥
∥ρ

4σ Xε ◦
(
2Yε ≺ L −1

ε

[
3λ

(
U>�X2

ε�
)
� Yε

])∥
∥
∥
C−κ,ε

� λ‖ρσ Xε‖C−1/2−κ,ε‖ρσYε‖2L∞,ε

∥
∥
∥ρ

σU>�X2
ε�

∥
∥
∥
C−3/2+2κ,ε � λ3‖Xε‖5+ϑ .

Consequently, for θ = 1−4κ
1−2κ

λ|〈ρ4φε, Xε ◦ Y 2
ε 〉ε| � λ‖ρσ Xε ◦ Y 2

ε ‖C−κ,ε‖ρ4−σ φε‖Bκ,ε1,1

� (λ3 + λ4)‖Xε‖6+ϑ‖ρφε‖θL4,ε‖ρ2φε‖1−θH1−2κ,ε

� (λ(12−θ)/(2+θ) + λ(16−θ)/(2+θ))Cδ‖Xε‖8+ϑ + δϒε.

For the paraproducts we have for θ = 1/2−4κ
1−2κ

λ|〈ρ4φε, Xε �� Y 2
ε 〉ε| � λ‖ρ4−2σ φε‖B1/2+κ,ε

1,1
‖ρσ Xε‖C−1/2−κ,ε‖ρσYε‖2L∞,ε

� λ3‖Xε‖5‖ρφε‖θL4,ε‖ρ2φε‖1−θH1−2κ,ε � λ(12−θ)/(2+θ)Cδ‖Xε‖8 + δϒε.

Let us now consider the termwith XεYε always in (4.16). In view of (4.12), (4.13), (4.14)
we shall modify the bound of the resonant product which using the decomposition (4.11)
together with (4.12) and the bound (4.30). We obtain

‖ρσ Xε ◦ Yε‖C−κ,ε � λ‖Xε‖4 + λ2‖Xε‖3+ϑ � (λ + λ2)‖Xε‖4,
and consequently, for θ = 1−4κ

1−2κ ,

λ|〈ρ4φ2
ε , Xε ◦ Yε〉ε| � λ‖ρσ Xε ◦ Yε‖C−κ,ε‖ρ4−σ φ2

ε‖Bκ,ε1,1

� (λ2 + λ3)‖Xε‖4‖ρφε‖1+θL4,ε‖ρ2φε‖1−θH1−2κ,ε

� (λ(7−θ)/(1+θ) + λ(11−θ)/(1+θ))Cδ‖Xε‖8 + δϒε.

For the paraproducts we have for θ = 1/2−4κ
1−2κ

λ|〈ρ4φ2
ε , Xε �� Yε〉ε| � λ‖ρ4−2σ φ2

ε‖B1/2+κ,ε
1,1

‖ρσ Xε‖C−1/2−κ,ε‖ρσYε‖L∞,ε

� λ2‖Xε‖3‖ρφε‖1+θL4,ε‖ρ2φε‖1−θH1−2κ,ε � λ(7−θ)/(1+θ)Cδ‖Xε‖8 + δϒε.

With the improved bound for Y , (4.17), (4.18), (4.19) can be updated as follows

|〈ρ4φε, λY 3
ε 〉ε| � λ‖ρφε‖L4,ε‖ρσYε‖3CT L∞,ε
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� λ4‖ρφε‖L4,ε‖Xε‖6 � δλ‖ρφε‖4L4,ε + Cδλ
5‖Xε‖8,

|〈ρ4φε, 3λY 2
ε φε〉ε| � λ‖ρφε‖2L4,ε‖ρσYε‖2CT L∞,ε

� λ3‖ρφε‖2L4,ε‖Xε‖4 � δλ‖ρφε‖4L4,ε + Cδλ
5‖Xε‖8,

|〈ρ4φε, 3λYεφ2
ε 〉ε| � λ‖ρφε‖3L4,ε‖ρσYε‖CT L∞,ε

� λ2‖ρφε‖3L4,ε‖Xε‖2 � δλ‖ρφε‖4L4,ε + Cδλ
5‖Xε‖8.

Now, let us update the bound (4.20) as

λ

∣
∣
∣〈ρ4φε,−3(U ε

��X2�) � Yε〉ε
∣
∣
∣ � (λ4 + λ5)Cδ‖Xε‖8+ϑ + δ‖ρ2φε‖2H1−2κ,ε .

Next, we shall improve the bound (4.21). Here we need to use a different modification
for each term appearing in 〈ρ4φε, λ2Zε〉ε as defined in (4.10). For θ = 1/2−4κ

1−2κ we bound

|〈ρ4φε, λ2Xε 〉ε| � λ2‖ρ4−σ φε‖B1/2+κ,ε
1,1

‖ρσ Xε ‖CTC−1/2−κ,ε

� λ2‖ρφε‖θL4,ε‖ρ2φε‖1−θH1−2κ,ε‖Xε‖5 � λ(8−θ)/(2+θ)Cδ‖Xε‖8 + δϒε

� (λ3 + λ4)Cδ‖Xε‖8 + δϒε.

Next, we have

λ2|〈ρ4φε, X̃ε Y 〉ε| � λ2|〈ρ4φε, X̃ε �� Y 〉ε| + λ2|〈ρ4φε, X̃ε ◦ Y 〉ε|
where, for θ = 1−4κ

1−2κ , we bound

λ2|〈ρ4φε, X̃ε �� Yε〉ε| � λ2‖ρ4−2σ φε‖Bκ,ε1,1
‖ρ2σ X̃ε �� Yε‖C −κ,ε

� λ2‖ρφε‖θL4,ε‖ρ2φε‖1−θH1−2κ,ε‖ρσ X̃ε ‖C −κ,ε‖ρσYε‖L∞,ε � λ(8−θ)/(2+θ)Cδ‖Xε‖8+ϑ + δϒε

� (λ2 + λ3)Cδ‖Xε‖8+ϑ + δϒε.

and the resonant term is bounded as

λ2|〈ρ4φε, X̃ε ◦ Yε〉ε| � λ2‖ρ4−2σ φε‖L1,ε‖ρσ X̃ε ‖C−κ,ε‖ρσYε‖C 2κ,ε

� λ3‖ρφε‖L4,ε‖Xε‖6+ϑ
� Cδλ

11/3‖Xε‖8+ϑ + δϒε � (λ3 + λ4)Cδ‖Xε‖8+ϑ + δϒε.

Now,

λ2|〈ρ4φε, (b̃ε − bε)Yε〉ε| � | log t |λ2‖ρ4−σ φε‖L1,ε‖ρσYε‖L∞,ε

� | log t |4/3λ7/3Cδ‖Xε‖8/3 + δϒε.

Next, for θ = 1−5κ
1−2κ ,

λ2|〈ρ4φε, C̄ε(Yε, 3�X
2
ε �, 3�X

2
ε �)〉ε| � λ2‖ρ4−3σ φε‖B2κ,ε

1,1
‖ρσYε‖C 2κ,ε‖ρσ �X2

ε �‖2C −1−κ,ε

� λ3‖ρφε‖θL4,ε‖ρ2φε‖1−θH1−2κ,ε‖Xε‖6+ϑ � λ(12−θ)/(2+θ)Cδ‖Xε‖8+ϑ + δϒε

� (λ3 + λ4)Cδ‖Xε‖8+ϑ + δϒε.
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At last, we have

λ2
∣
∣
∣

〈
ρ4φε,−3�X2

ε � ◦L −1
ε

(
3U ε

��X2
ε � � Yε

)〉

ε

∣
∣
∣

� λ2‖ρ4−3σ φε‖L1,ε‖ρσYε‖L∞,ε‖ρσ �X2
ε �‖C −1−κ,ε

∥
∥
∥ρ

σU ε
��X2

ε �
∥
∥
∥
C −1+2κ,ε

� λ3‖ρ4−3σ φε‖L1,ε‖Xε‖4+ϑ � λ11/3Cδ‖Xε‖16/3+ϑ + δϒε � (λ3 + λ4)Cδ‖Xε‖8+ϑ + δϒε

This concludes the estimation of 〈ρ4φε, λ2Zε〉ε giving us

|〈ρ4φε, λ2Zε〉ε| � (λ2 + λ4)Cδ‖Xε‖8+ϑ + δϒε.

Finally, we arrive to the additional term introduced by the localization. Using (4.27) we
obtain

|〈ρ4φε,−λ�X3
M,ε��〉ε| � λ‖ρφε‖L4,ε‖ρσ �X3

M,ε��‖CT L∞,ε � λ‖ρφε‖L4,ε2K (3/2+κ)‖Xε‖3
� λCδ‖Xε‖8+ϑ + δϒε,

where we also see that the power 8 + ϑ is optimal for this decomposition. ��
Let 〈φε〉 := (1 + ‖ρ2φε‖2L2,ε )

1/2 and 〈ϕε〉∗ := (1 + ‖ρ2ϕε‖2H−1/2−2κ,ε )
1/2. With

Lemma 4.10 in hand we can proceed to the proof of the stretched exponential inte-
grability.

Proposition 4.11. There exists an α > 0, 0 < C < 1 and υ = O(κ) > 0 such that for
every β > 0

∂t e
β〈tφε〉1−υ + αeβ〈tφε〉1−υ (1− υ)β〈tφε〉−υ−1t2ϒε � 1 + e(β/C)‖Xε‖2 .

Consequently, for any accumulation point ν we have
∫

S ′(R3)

eβ〈ϕ〉1−υ∗ ν(dϕ) <∞

provided β > 0 is sufficiently small.

Proof. We apply (4.29) and Lemma 4.10 to obtain

〈tφε〉1+υ ∂t e
β〈tφε〉1−υ

(1− υ)β
= eβ〈tφε〉1−υ 1

2
∂t (t

2‖ρ2φε‖2L2,ε )

= eβ〈tφε〉1−υ [t2(−ϒε +�ρ4,ε +�ρ4,ε + 〈ρ4φε,−λ�X3
ε��〉ε) + t‖ρ2φε‖2L2,ε ]

� eβ〈tφε〉1−υ [t2(−ϒε +�ρ4,ε +�ρ4,ε + 〈ρ4φε,−λ�X3
ε��〉ε) + δt2λ‖ρφε‖4L4,ε + Cδ,λ−1 ]

� eβ〈tφε〉1−υ [−t2(1− 2δ)ϒε + Cλt
2(| log t |4/3 + 1)‖Xε‖8+ϑ + Cδ,λ−1 ],

where by writing Cδ,λ−1 we point out that the constant is not uniform over small λ.
Therefore by absorbing the constant term Cδ,λ−1 in ‖Xε‖8+ϑ we have

∂t e
β〈tφε〉1−υ + eβ〈tφε〉1−υ (1− υ)β〈tφε〉−υ−1(1− 2δ)t2ϒε

� Cδ,λ−1e
β〈tφε〉1−υ (1− υ)β〈tφε〉−υ−1t2(| log t |4/3 + 1)‖Xε‖8+ϑ (4.31)
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Now we can have two situations at any given time, either ‖Xε‖2 � ς‖tρφε‖1−υL4,ε or

‖Xε‖2 > ς‖tρφε‖1−υL4,ε for some fixed and small ς > 0. In the first case the right hand
side of (4.31) is bounded by

Cδ,λ−1e
β〈tφε〉1−υ (1− υ)β〈tφε〉−υ−1ς4+ϑ/2t2(| log t |4/3 + 1)‖tρφε‖(4+ϑ/2)(1−υ)L4,ε ,

and we can choose υ = υ(κ) so that (4 + ϑ/2)(1 − υ) = 4 and by taking ς small
(depending on δ, λ through Cδ,λ−1 ) we can absorb this term into the left hand side since
for t ∈ (0, 1) it will be bounded by

Cδ,λ−1e
β〈tφε〉1−υ (1− υ)β〈tφε〉−υ−1ς4+ϑ/2t2‖ρφε‖4L4,ε .

In the case ‖Xε‖2 > ς‖tρφε‖1−υL4,ε we have

‖Xε‖2 > ς‖tρφε‖1−υL4,ε � ς‖tρ2φε‖1−υL2,ε � ς(〈tφε〉1−υ − 1),

provided ρ is chosen to be of sufficient decay, and therefore we simply bound the right
hand side of (4.31) by

� Cδ,λ−1e
(β/Cς)‖Xε‖2‖Xε‖8+ϑ � 1 + e(2β/Cς)‖Xε‖2 .

The first claim is proven.
It remains to prove the bound for ϕε. By Hölder’s inequality, we have

E[eβ〈ϕε(0)−Xε(0)〉1−υ ] = E[eβ〈ϕε(1)−Xε(1)〉1−υ ] � E[eβ〈Yε(1)〉1−υ+β〈φε(1)〉1−υ ]
� [E[e2β〈Yε(1)〉1−υ ]]1/2[E[e2β〈φε(1)〉1−υ ]]1/2

and we observe that 〈Yε(1)〉1−υ � 1 + ‖Xε‖2 so the first term on the right hand side is
integrable uniformly in ε by (4.26). On the other hand, using Lemma 4.11 we have

E[e2β〈tφε(t)〉1−υ ]
+

∫ t

0
E[αe2β〈sφε(s)〉1−υ (1− υ)2β〈sφε(s)〉−υ−1s2ϒε(s)]ds � E[1 + e(2β/C)‖Xε‖2 ]

and therefore

E[e2β〈φε(1)〉1−υ ] � E[1 + e(2β/C)‖Xε‖2 ].

We conclude that

sup
ε∈A

E[eβ〈ϕε(0)−Xε(0)〉1−υ ] � [E[e2β(1+‖Xε‖2)]]1/2[E[1 + e(2β/C)‖Xε‖2 ]]1/2 <∞

uniformly in ε by (4.26), from which the claim follows. ��
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5. The Osterwalder–Schrader Axioms and Non-Gaussianity

The goal of this section is to establish several important properties of any limit measure
ν obtained in the previous section. Let us first introduce Osterwalder and Schrader
axioms [OS73,OS75] in the stronger variant of Eckmann and Epstein [EE79] for the
family of distributions (Sn ∈ S ′(R3n))n∈N0 .

OS0 (Distribution property) It holds S0 = 1. There is a Schwartz norm ‖ · ‖s on
S ′(R3) and β > 0 such that for all n ∈ N and f1, . . . , fn ∈ S(R3)

|Sn( f1 ⊗ . . .⊗ fn)| � (n!)β
n∏

i=1
‖ fi‖s . (5.1)

OS1 (Euclidean invariance) For each n ∈ N, g = (a, R) ∈ R
3 ×O(3), f1, . . . , fn ∈

S(R3)

Sn((a, R). f1 ⊗ . . .⊗ (a, R). fn) = Sn( f1 ⊗ . . .⊗ fn),

where (a, R). fn(x) = fn(a + Rx) and where O(3) is the orthogonal group of
R
3.

OS2 (Reflection positivity) Let R
3n
+ = {(x (1), . . . , x (n)) ∈ (R3)n : x ( j)1 > 0, j =

1, . . . , n} and
SC(R

3n
+ ) := { f ∈ S(R3n;C) : supp( f ) ⊂ R

3n
+ }.

For all sequences ( fn ∈ SC(R
3n
+ ))n∈N0 with finitely many nonzero elements

∑

n,m∈N0

Sn+m(� fn ⊗ fm) � 0, (5.2)

where � fn(x (1), . . . , x (n)) = f (θx (1), . . . , θx (n)) and θ(x1, x2, x3) = (−x1,
x2, x3) is the reflection with respect to the plane x1 = 0.

OS3 (Symmetry) For all n ∈ N, f1, . . . , fn ∈ S(R3) and π a permutation of n
elements

Sn( f1 ⊗ · · · ⊗ fn) = Sn( fπ(1) ⊗ · · · ⊗ fπ(n)).

The reconstruction theorem of Eckmann and Epstein (Theorem 2 and Corollary 3
in [EE79]) asserts that distributions (Sn)n∈N0 which satisfy OS0–3 are the Schwinger
functions of a uniquely determined system of time-ordered products of relativistic quan-
tumfields.Note that if Euclidean invariance inOS1 is replacedwith translation invariance
with respect to the first coordinate (the Euclidean time), then the reconstruction theorem
gives anyway a quantum theory with a unitary time evolution, possibly lacking the full
Poincaré invariance.

For any measure μ on S ′(R3) we define Sμn ∈ (S ′(R3))⊗n as

Sμn ( f1 ⊗ · · · ⊗ fn) :=
∫

S ′(R3)

ϕ( f1) · · ·ϕ( fn)μ(dϕ), n ∈ N, f1, . . . , fn ∈ S(R3).

In this case OS3 is trivially satisfied. Along this section we will prove that, for any
accumulationpoint ν, the functions (Sνn )n satisfy additionallyOS0,OS2andOS1with the
exception of invariance with respect to SO(3) (but including reflections) and moreover
that ν is not a Gaussian measure.
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5.1. Distribution property. Here we are concerned with proving the bound (5.1) for
correlation functions of ν.

Proposition 5.1. There exists β > 1 and K > 0 such that any limit measure ν con-
structed via the procedure in Section 4 satisfies: for all n ∈ N and all f1, . . . , fn ∈
H1/2+2κ(ρ−2) we have

|Eν[ϕ( f1) · · ·ϕ( fn)]| � Kn(n!)β
n∏

i=1
‖ fi‖H1/2+2κ (ρ−2).

In particular, it satisfies OS0.

Proof. For any α ∈ (0, 1) and any n ∈ N we obtain with the notation 〈ϕ〉∗ :=
(1 + ‖ϕ‖2

H−1/2−2κ (ρ2))
1/2

Eν[‖ϕ‖nH−1/2−2κ (ρ2)] � Eν[〈ϕ〉α(n/α)] � Eν[〈ϕ〉α�n/α�] � β−�n/α�(�n/α�!)Eν[eβ〈ϕ〉α ]
� Kn(n!)1/αEν[eβ〈ϕ〉α ],

where we used the fact that Stirling’s asymptotic approximation of the factorial allows
to estimate

�n/α�! � C

(�n/α�
e

)�n/α�
(2π�n/α�)1/2 � C

(
2(n/α)

e

)n/α+1

(2π�n/α�)1/2

� Kn
[(n

e

)n
(2πn)1/2

]1/α
� Kn(n!)1/α

for some constants C, K , uniformly in n (we allow K to change from line to line). From
this we can conclude using Proposition 4.11. ��

5.2. Translation invariance. For h ∈ R
3 we denote by Th : S ′(R3) → S ′(R3) the

translation operator, namely, Th f (x) := f (x − h). Analogically, for a measure μ on
S ′(R3) we define its translation by Thμ(F) := μ(F ◦ Th) where F ∈ Cb(S ′(R3)). We
say that μ is translation invariant if for all h ∈ R

3 it holds Thμ = μ.

Proposition 5.2. Any limit measure ν constructed via the procedure in Section 4 is
translation invariant.

Proof. By their definition in (1.1), the approximate measures νM,ε are translation in-
variant under lattice shifts. That is, for hε ∈ �ε it holds Thε νM,ε = νM,ε. In other
words, the processes ϕM,ε and ThεϕM,ε coincide in law. In addition, since the translation
Thε commutes with the extension operator Eε, it follows that EεϕM,ε and ThεEεϕM,ε

coincide in law. Now we recall that the limiting measure ν was obtained as a weak limit
of the laws of EεϕM,ε on H−1/2−2κ(ρ2+γ ). If h ∈ R

d is given, there exists a sequence
hε ∈ �ε such that hε → h. Let κ ∈ (0, 1) be small and arbitrary. Then we have for
F ∈ C0,1

b (H−1/2−3κ(ρ2+γ )) that

Thν(F) = ν(F ◦ Th) = lim
ε→0,M→∞P ◦ (EεϕM,ε)

−1(F ◦ Th) = lim
ε→0,M→∞E[F(ThEεϕM,ε)]

= lim
ε→0,M→∞E[F(ThεEεϕM,ε)] = lim

ε→0,M→∞E[F(EεϕM,ε)] = ν(F),
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where in the third inequality we used the regularity of F and Theorem 4.8 as follows

E[F(ThEεϕM,ε)− F(ThεEεϕM,ε)] � ‖F‖C0,1
b

E‖ThEεϕM,ε − ThεEεϕM,ε‖H−1/2−3κ (ρ2+γ )

� (h − hε)
κ
E‖EεϕM,ε‖H−1/2−2κ (ρ2+γ ) � (h − hε)

κ → 0 as ε→ 0.

If F ∈ Cb(H−1/2−3κ(ρ2+γ )), then by approximation and dominated convergence theo-
rem we also get Thν(F) = ν(F), which completes the proof. ��

5.3. Reflection positivity. As the next step we establish reflection positivity of ν with
respect to the reflection given by any of the hyperplanes {xi = 0} ⊂ R

3 for i ∈ {1, 2, 3}.
Fix a small δ > 0 and i ∈ {1, 2, 3} and define the space of functionals depending on
fields restricted to R

3
+,δ := {x ∈ R

3; xi > δ}, δ � 0, by

H+,δ :=
{

K∑

k=1
cke

iϕ( fk ); ck ∈ C, fk ∈ C∞0 (R3
+,δ), K ∈ N

}

and let H+ = H+,0. For a function f : R
3 → R we define its reflection

(θ f )(x) := (θ i f )(x) := f (x1, . . . , xi−1,−xi , xi+1, . . . , x3)

and extend it to F ∈ H+ by θF(ϕ( f1), . . . , ϕ( fK )) := F(ϕ(θ f1), . . . , ϕ(θ fK )). Hence
for F ∈ H+,δ the reflection θF depends on ϕ evaluated at x ∈ R

3 with xi < −δ.
A measure μ on S ′(R3) is reflection positive if

Eμ[θFF] =
∫

S ′(R3)

θF(ϕ)F(ϕ)μ(dϕ) � 0,

for all F = ∑K
k=1 ckeiϕ( fk ) ∈ H+. A similar definition applies to measures on functions

on the periodic lattice �M,ε replacing the space H+ with the appropriate modification
HM,ε

+ given by

HM,ε
+ :=

{
K∑

k=1
cke

iϕ( fk ); ck ∈ C, fk : �M,ε ∩ R
3
+,0 → R

}

.

The reflection θ is then defined as on the full space. Here and also in the proof of
Proposition 5.3 below we implicitly assume that ε is small enough and M is large
enough.

An important fact is that for every ε,M the Gibbs measures νM,ε are reflection
positive see [GJ87, Theorem 7.10.3] or [FV17, Lemma 10.8]. The key point of the next
proposition is that this property is preserved along the passage to the limit M → ∞,
ε→ 0.

Proposition 5.3. Any limit measure ν constructed via the procedure in Section 4 is
reflection positive with respect to all reflections θ = θ i , i ∈ {1, 2, 3}. In particular, its
correlation functions satisfy OS2.
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Proof. We recall that the measure ν was obtained as a limit of suitable continuum
extensions of the measures νM,ε given by (1.1). Therefore, up to a subsequence, we
have

Eν[θFF] = lim
ε→0,M→∞E[F(θEεϕM,ε)F(EεϕM,ε)].

Recall that the function w in the definition of the extension operator Eε is radially
symmetric. Hence, we have (θEεϕM,ε)( f ) = ϕM,ε(Eε,∗θ f ) = ϕM,ε(θEε,∗ f ) for any
function f ∈ C∞0 (R3) supported in {x ∈ R

3; |xi | < M/2− δ}. Here Eε,∗ is the adjoint
of the extension operator. For a fixed F ∈ H+,δ we have therefore F(θEεϕM,ε) =
(F ◦ Eε)(θϕM,ε) provided ε is small enough and M large enough depending on F and
δ. Hence,

Eν[θFF] = lim
ε→0,M→∞E[F(EεθϕM,ε)F(EεϕM,ε)].

However, since the extension operator is defined as a convolution with a non-compactly
supported function wε, it is generally not true that F ◦ Eε ∈ HM,ε

+ . Thus, in order to
be able to use the reflection positivity of the measures νM,ε, we need to introduce an
additional cut-off: let Hδ : R

3 → [0, 1] be smooth and supported on R
3
+,0 such that

Hδ = 1 on R
3
+,δ/2. We denote by Hδ,ε its restriction to �ε and write

Rε := F(EεϕM,ε)− F(Eε(Hδ,εϕM,ε)).

Our goal is to show that Rε vanishes a.s. as ε→ 0. In view of the fact that F is cylindrical
and then regularity of ϕM,ε, it is enough to show that

lim
ε→0

‖(1− Hδ,ε)Eε,∗ f ‖H1/2+κ,ε(ρ−2) = 0 (5.3)

for any function f ∈ C∞0 (R3
+,δ). It holds

[(1− Hδ,ε)Eε,∗ f ](x) = (1− Hδ,ε)(x)
∫

y∈R3:yi>δ
wε(x − y) f (y)dy, (5.4)

where 1−Hδ,ε(x) �= 0onlywhen xi ≤ δ/2. Sincewε(·) = ε−dw(ε−1·)withw ∈ S(R3),

we have for an arbitrary K > 0 and m ∈ N

|∇mwε(x − y)| � ε−d−m |ε−1(x − y)|−K .

In addition, we know that the relevant |x − y| on the right hand side of (5.4) satisfy
|xi − yi | > δ/2. Hence, choosing K , L sufficiently large will give us a decay as ε→ 0
for every fixed δ > 0. Indeed, we also have |∇m

ε (1 − Hδ,ε)(x)| � δ−1 uniformly in ε.
Thus, we may estimate

‖(1− Hδ,ε)Eε,∗ f ‖H1/2+κ (ρ−2) ≤ c(ε, δ)‖ f ‖L∞ ,
where c(ε, δ)→ 0 as ε→∞ for every fixed δ > 0. This concludes the proof of (5.3).

On the other hand, F(Eε(Hδ,ε·)) ∈ HM,ε
+ and consequently

Eν[θFF] = lim
ε→0,M→∞E[F(Eε(Hδ,εθϕM,ε))F(Eε(Hδ,εϕM,ε))]
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= lim
ε→0,M→∞EνM,ε

[θ(F(Eε(Hδ,ε·)))F(Eε(Hδ,ε·))] � 0,

where we used the reflection positivity of the measure νM,ε. Using the support properties
of ν we can now approximate any F ∈ H+ by functions in H+,δ and therefore obtain
the first claim. Let us now show that (5.2) holds. Thanks to the exponential integrability
satisfied by ν, any polynomial of the form G = ∑

n∈N0
ϕ⊗n( fn) for sequences ( fn ∈

SC(R
3n
+ ))n∈N0 with finitelymany nonzero elements, belongs to L2(ν). In particular it can

be approximated in L2(ν) by a sequence (Fn)n of cylinder functions in H+. Therefore
Eν[θGG] = limn→∞ Eν[θFnFn] � 0 and we conclude that

∑

n,m∈N0

Sνn+m(θ fn ⊗ fm) =
∑

n,m∈N0

Eν[ϕ⊗n(θ fn)ϕ⊗m( fm)] = Eν[θGG] � 0.

��

5.4. Non-Gaussianity.

Theorem 5.4. If λ > 0 then any limit measure ν constructed via the procedure in
Section 4 is non-Gaussian.

Proof. In order to show that the limiting measure ν is non-Gaussian, it is sufficient to
prove that the connected four-point function is nonzero, see [BFS83]. In other words,
we shall prove that the distribution

U ν
4 (x1, . . . , x4) := Eν[ϕ(x1) · · ·ϕ(x4)]
−Eν[ϕ(x1)ϕ(x2)]Eν[ϕ(x3)ϕ(x4)] − Eν[ϕ(x1)ϕ(x3)]Eν[ϕ(x2)ϕ(x4)]
−Eν[ϕ(x1)ϕ(x4)]Eν[ϕ(x2)ϕ(x3)], x1, . . . , x4 ∈ R

d ,

is nonzero.
Recall that in Theorem 4.9 we obtained a limit measure μ which is the joint law of

(ϕ, X, X ) and that ν is the marginal corresponding to the first component. Let Ki =
F−1ϕi be a Littlewood–Paley projector and consider the connected four-point function
U ν
4 convolved with (Ki , Ki , Ki , Ki ) and evaluated at (x1, . . . , x4) = (0, . . . , 0), that

is,

U ν
4 ∗ (Ki , Ki , Ki , Ki )(0, 0, 0, 0) = Eν[(�iϕ)

4(0)] − 3Eν[(�iϕ)
2(0)]2

= Eμ[(�iϕ)
4(0)] − 3Eμ[(�iϕ)

2(0)]2 =: L(ϕ, ϕ, ϕ, ϕ),
where L is a quadrilinear form. Since under the limit μ we have the decomposition
ϕ = X − λX + ζ , we may write

L(ϕ, ϕ, ϕ, ϕ) = L(X, X, X, X)− 4λL(X, X, X, X ) + R (5.5)

where R contains termswhich are at least bilinear in X or linear in ζ . Due toGaussianity
of X , the first term on the right hand side of (5.5) vanishes. Our goal is to show that the
second term behaves like 2i whereas the terms in R aremore regular, namely, bounded by
2i(1/2+κ). In other words, R cannot compensate 4λL(X, X, X, X ) and as a consequence
L(ϕ, ϕ, ϕ, ϕ) �= 0 if λ > 0.
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Let us begin with L(X, X, X, X ). To this end, we denote k[123] = k1 + k2 + k3 and
recall that

(�i X)(0) =
∫

Rd
ϕi (k)

∫ 0

−∞
e−[m2+|k|2](−s)ξ̂ (ds, dk),

(�i X )(0) =
∫ 0

−∞
ds

∫

Rd

∫

Rd

∫

Rd
ϕi (k[123])e−[m

2+|k[123]|2](−s)

×
�

�
∏

l=1,2,3

∫ s

−∞
e−[m2+|kl |2](s−sl )ξ̂ (dsl , dkl)

�

� ,

where �·� denotesWick’s product. Hence denoting H := [4m2 + |k[123]|2 + |k1|2 + |k2|2 +
|k3|2] we obtain

L(X, X, X, X ) = E

[
(�i X)(0)(�i X)(0)(�i X)(0)(�i X )(0)

]

= 3!
∫ 0

−∞
ds

∫

Rd

∫

Rd

∫

Rd
ϕi (k[123])e−H(−s) ∏

l=1,2,3

[∫ s

−∞
e−2[m2+|kl |2](s−sl )ϕi (kl )dsldkl

]

= 3!
8

∫ 0

−∞
ds

∫

Rd

∫

Rd

∫

Rd
ϕi (k[123])e−H(−s) ∏

l=1,2,3

[

ϕi (kl)
dkl

m2 + |kl |2
]

= 3!
8

∫

Rd

∫

Rd

∫

Rd

ϕi (k[123])
H

∏

l=1,2,3

[

ϕi (kl)
dkl

m2 + |kl |2
]

≈ 2i(−8+9) ≈ 2i .

Let us now estimate various terms in R. The terms containing only combinations of
X, X can be estimated directly whereas for terms where ζ appears it is necessary to use
stationarity due to the limited integrability in space. For instance,

∣
∣
∣E

[
(�i X)(0)(�i X)(0)(�i X )(0)(�i X )(0)

]∣
∣
∣

� 2−2i(−1/2−κ)2−2i(1/2−κ)E
[
‖X‖2C−1/2−κ (ρσ )‖X ‖2C 1/2−κ (ρσ )

]
� 2i4κ

and similarly for the other terms without ζ which are collectively of order 2i4κ(λ2 +λ4).
For the remaining terms, we fix a weight ρ as above and use stationarity. In addition,
we shall be careful about having the necessary integrability. For instance, for the most
irregular term we have

E[(�i X)
3(0)(�iζ )(0)] =

∫

Rd
ρ4(x)E[(�i X)

3(x)(�iζ )(x)]dx = E〈ρ4, (�i X)
3(�iζ )〉

and we bound this quantity as

|E[(�i X)
3(0)(�iζ )(0)]|

� E[‖�i Xε‖3L∞(ρσ )‖�iζ‖L1(ρ4−3σ )] � E[‖�i Xε‖3L∞(ρσ )‖�iζ‖L2(ρ2)]
� 2−3i(−1/2−κ)2i(−1+2κ)E

[
‖X‖3C−1/2−κ (ρσ )‖ζ‖B1−2κ

2,2 (ρ2)

]

� 2−3i(−1/2−κ)2i(−1+2κ)(E[‖X‖6C−1/2−κ (ρσ )])1/2(E[‖ζ‖2B1−2κ
2,2 (ρ2)

])1/2
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� 2i(1/2+5κ)(λ + λ7/2).

where we used Theorem 4.9. Next,

|E[(�i X)
2(0)(�iζ )

2(0)]| � E[‖�i X‖2L∞(ρσ )‖�iζ‖L2(ρ1+ι)‖�iζ‖L2(ρ2)]
� 2−2i(−1/2−κ)2−i(1−2κ)E[‖X‖2

C −1/2−κ (ρσ )‖ζ‖B0
4,∞(ρ)‖ζ‖H1−2κ (ρ2)] � 2i4κ (λ5/4 + λ5),

and

|E[(�i X)(0)(�iζ )
3(0)]| � E[‖�i X‖L∞(ρσ )‖�iζ‖3L3(ρ(4−σ)/3)]

� E[‖�i X‖L∞(ρσ )‖�iζ‖3L4(ρ)
]

� 2−i(−1/2−κ)E
[

‖X‖C−1/2−κ (ρσ )‖ζ‖3B0
4,∞(ρ)

]

� 2i(1/2+κ)(λ3/4 + λ9/2),

|E[(�iζ )
4(0)]| = |E〈ρ4, (�iζ )

4〉| � E‖(�iζ )‖4L4(ρ)

� E[‖ζ‖4
B0
4,∞(ρ)

] � (λ + λ6).

Proceeding similarly for the other terms we finally obtain the bound

|R| � 2i(1/2+5κ)(λ3/4 + λ7).

Therefore for a fixed λ > 0 there exists a sufficiently large i such that

E[(�iϕ)
4(0)] − 3(E[(�iϕ)

2(0)2])2 � −2iλ < 0,

and the proof is complete. ��
Remark 5.5. To our knowledge, the proof of non-Gaussianity given above, is new. In
particular the pathwise estimates of the PDE methods allow to probe correlation func-
tions at high-momenta and check that they are, at leading order, given by perturbative
contributions irrespective of the size of the coupling λ. This seems to be a substantial
improvement with respect to the perturbative strategy of [BFS83] which requires small
λ.

6. Integration by Parts Formula and Dyson–Schwinger Equations

The goal of this section is twofold. First, we introduce a new paracontrolled ansatz,
which allows to prove higher regularity and in particular to give meaning to the critical
resonant product in the continuum. Second, the higher regularity is used in order to
improve the tightness and to construct a renormalized cubic term �ϕ3�. Finally, we
derive an integration by parts formula together with the Dyson–Schwinger equations
and we identify the continuum dynamics.
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6.1. Improved tightness. In this section we establish higher order regularity and a better
tightnesswhich is needed in order to define the resonant product �X2�◦φ in the continuum
limit. Recall that the equation (4.7) satisfied by φM,ε has the form

LεφM,ε = −3λ�X2
M,ε� � φM,ε +UM,ε, (6.1)

where

UM,ε := −3λ�X2
M,ε� � (YM,ε + φM,ε)− 3λ2bM,ε(XM,ε + YM,ε + φM,ε)

− 3λ(U ε
��X2

M,ε�) � YM,ε − 3λXM,ε(YM,ε + φM,ε)
2 − λY 3

M,ε

− 3λY 2
M,εφM,ε − 3λYM,εφ

2
M,ε − λφ3

M,ε.

If we let
χM,ε := φM,ε + 3λXM,ε � φM,ε, (6.2)

we obtain by the commutator lemma, Lemma A.14,

3λ�X2
M,ε� ◦ φM,ε + 3λ2bM,εφM,ε = −3λ�X2

M,ε� ◦ (3λXM,ε � φM,ε) + 3λ2bM,εφM,ε

+ 3λ�X2
M,ε� ◦ χM,ε

= −λ2 X̃ M,εφM,ε + 3λ2(bM,ε − b̃M,ε(t))φM,ε

+ λ2Cε(φM,ε,−3XM,ε, 3�X
2
M,ε�) + 3λ�X2

M,ε� ◦ χM,ε.

Recalling that ZM,ε = −3λ−1�X2
M,ε� ◦ YM,ε − 3bM,ε(XM,ε + YM,ε) can be rewritten

as (4.10) and controlled due to Lemma 4.3, where we also estimated XM,εYM,ε and
XM,εY 2

M,ε, we deduce

UM,ε = −λ2 X̃ M,εφM,ε + 3λ2(bM,ε − b̃M,ε(t))φM,ε + λ
2Cε(φM,ε,−3XM,ε, 3�X

2
M,ε�)

+ 3λ�X2
M,ε� ◦ χM,ε+λ

2ZM,ε−3λ�X2
M,ε� ≺ (YM,ε + φM,ε)−3λ(U ε

��X2
M,ε�) � YM,ε − 3λXM,εY

2
M,ε

− 6λXM,εYM,εφM,ε − 3λXM,εφ
2
M,ε − λY 3

M,ε − 3λY 2
M,εφM,ε − 3λYM,εφ

2
M,ε − λφ3

M,ε .

Consequently, the equation satisfied by χM,ε reads

LεχM,ε = LεφM,ε + 3λ�X2
M,ε� � φM,ε + 3λXM,ε � LεφM,ε − 6λ∇εXM,ε � ∇εφM,ε

= UM,ε + 3λXM,ε � Lεφ − 6λ∇εXM,ε � ∇εφM,ε

= UM,ε + 3λXM,ε � (−3λ�X2
M,ε� � φM,ε +UM,ε)− 6λ∇εXM,ε � ∇εφM,ε, (6.3)

where the bilinear form ∇ε f ≺ ∇εg is defined by

∇ε f ≺ ∇εg := 1

2
(�ε( f ≺ g)−�ε f ≺ g − f ≺ �εg)

and can be controlled as in the proof of Lemma A.14.
Next, we state a regularity result for χM,ε, proof of which is postponed to Appendix

A.6. While it is in principle possible to keep track of the exact dependence of the bounds
on λ we do not pursue it any further since there seems to be no interesting application
of such bounds. Nevertheless, it can be checked that the bounds in this section remain
uniform over λ belonging to any bounded subset of [0,∞).
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Proposition 6.1. Let ρ be a weight such that ρι ∈ L4,0 for some ι ∈ (0, 1). Let φM,ε be
a solution to (6.1) and let χM,ε be given by (6.2). Then

‖ρ4χM,ε‖L1
T B

1+3κ,ε
1,1

� CT,m2,λQρ(XM,ε)(1 + ‖ρ2φM,ε(0)‖L2,ε ).

We apply this result in order to deduce tightness of the sequence (ϕM,ε)M,ε as time-
dependent stochastic processes. In other words, in contrast to Theorem 4.8, where we
only proved tightness for a fixed time t � 0, it is necessary to establish uniform time
regularity of (ϕM,ε)M,ε. To this end, we recall the decompositions

ϕM,ε = XM,ε + YM,ε + φM,ε = XM,ε − λXM,ε + ζM,ε

with

ζM,ε = YM,ε + λXM,ε + φM,ε = −L −1
ε [3λ(U ε

>�X2
M,ε� � YM,ε] + φM,ε. (6.4)

Theorem 6.2. Let β ∈ (0, 1/4). Then for all p ∈ [1,∞) and τ ∈ (0, T )
sup

ε∈A,M>0
E‖ϕM,ε‖2p

Wβ,1
T B−1−3κ,ε1,1 (ρ4+σ )

+ sup
ε∈A,M>0

E‖ϕM,ε‖2pL∞τ,T H−1/2−2κ,ε(ρ2) � Cλ <∞,

where L∞τ,T H−1/2−2κ,ε(ρ2) = L∞(τ, T ; H−1/2−2κ,ε(ρ2)).

Proof. Let us begin with the first bound. According to Proposition 6.1 and Theorem 4.8
we obtain that

E‖χM,ε‖2p
L1
T B

1+3κ,ε
1,1 (ρ4)

� CT,λEQρ(XM,ε)(1 + E‖ρ2φM,ε(0)‖2pL2,ε )

� CT,λEQρ(Xε)(1 + E‖ρ2(ϕM,ε(0)− XM,ε(0))‖2pL2,ε + E‖ρ2YM,ε(0)‖2pL2,ε )

is bounded uniformly in M, ε. In addition, the computations in the proof of Proposi-
tion 6.1 imply that also E

∥
∥LεχM,ε

∥
∥2p
L1
T B

−1+3κ,ε
1,1 (ρ4)

is bounded uniformly in M, ε. As a

consequence, we deduce that

E‖∂tχM,ε‖2p
L1
T B

−1+3κ,ε
1,1 (ρ4)

� E‖(�ε − m2)χM,ε‖2p
L1
T B

−1+3κ,ε
1,1 (ρ4)

+ E
∥
∥LεχM,ε

∥
∥2p
L1
T B

−1+3κ,ε
1,1 (ρ4)

is also bounded uniformly in M, ε.
Next, we apply a similar approach to derive uniform time regularity of φM,ε. To

this end, we study the right hand side of (6.1). Observe that due to the energy estimate
from Theorem 4.5 and the bound from Proposition 6.1 together with Theorem 4.8 the
following are bounded uniformly in M, ε

E‖�X2
M,ε� � φM,ε‖2pL2

T H
−1−κ,ε(ρ2+σ ), E‖�X2

M,ε� ◦ χM,ε‖2p
L1
T B

2κ,ε
1,1 (ρ4+σ )

,

whereas all the other terms on the right hand side of (6.1) are uniformly bounded in
better function spaces. Hence we deduce that

E‖∂tφM,ε‖2p
L1
T B

−1−3κ,ε
1,1 (ρ4+σ )

� E‖(�ε − m2)φM,ε‖2p
L1
T B

−1−3κ,ε
1,1 (ρ4+σ )
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+E
∥
∥LεφM,ε

∥
∥2p
L1
T B

−1−3κ,ε
1,1 (ρ4+σ )

is bounded uniformly in M, ε.
Now we have all in hand to derive a uniform time regularity of ζM,ε. Using Schauder

estimates together with (6.4) it holds that

E‖ζM,ε‖2p
W (1−2κ)/2,1

T B−1−3κ,ε1,1 (ρ4+σ )
� E

∥
∥
∥L −1

ε [3λ(U ε
>�X2

M,ε� � YM,ε]
∥
∥
∥
2p

C(1−κ)/2
T L∞,ε(ρσ )

+E‖φM,ε‖2p
W 1,1

T B−1−3κ,ε1,1 (ρ4+σ )

is bounded uniformly in M, ε.
Finally, since for all β ∈ (0, 1) we have that both

E‖XM,ε‖2p
Cβ
TC

−1/2−κ−2β,ε(ρσ )
, E‖XM,ε‖2pCβ

TC
1/2−κ−2β,ε(ρσ )

are bounded uniformly in M, ε, we conclude that so is E‖ϕM,ε‖2p
Wβ,1

T B−1−3κ,ε1,1 (ρ4+σ )
for

β ∈ (0, 1/4), which completes the proof of the first bound.
In order to establish the second bound we recall the decomposition ϕM,ε = XM,ε +

YM,ε +φM,ε and make use of the energy estimate from Corollary 4.7. Taking supremum
over t ∈ [τ, T ] and expectation implies

sup
ε∈A,M>0

E‖φM,ε‖2pL∞τ,T L2,ε(ρ2)
<∞.

The claim now follows using the bound for XM,ε together with the bound for YM,ε in
Lemma 4.1. ��

Even though the uniform bound in the previous result is far from being optimal, it is
sufficient for our purposes below.

Corollary 6.3. Let ρ be a weight such that ρι ∈ L4 for some ι ∈ (0, 1). Let β ∈
(0, 1/4) and α ∈ (0, β). Then the family of joint laws of (EεϕM,ε, EεXM,ε) is tight on

Wα,1
loc B−1−4κ1,1 (ρ4+σ )× Cκ/2

loc X , where

X :=
∏

i=1,...,7
C α(i)−κ(ρσ )

with α(1) = α(7) = −1/2, α(2) = −1, α(3) = 1/2, α(4) = α(5) = α(6) = 0.

Proof. According to Theorem 6.31 in [Tri06] we have the compact embedding

B−1−3κ1,1 (ρ4+σ ) ⊂ B−1−4κ1,1 (ρ4+2σ )

and consequently since α < β the embedding

Wβ,1
loc B−1−3κ1,1 (ρ4+σ ) ⊂ Wα,1

loc B−1−4κ1,1 (ρ4+2σ )

is compact, see e.g. Theorem 5.1 [Amm00]. Hence the desired tightness of EεϕM,ε

follows from Theorem 6.2 and Lemma A.15. The tightness of EεXM,ε follows from the
usual arguments and does not pose any problems. ��
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As a consequence, we may extract a converging subsequence of the joint laws of the
processes (EεϕM,ε, EεXM,ε)M,ε inW

α,1
loc B−1−4κ1,1 (ρ4+σ )×Cκ/2

loc X . Let μ̂ denote any limit
point. We recall that XM,ε denotes the collection of all the necessary stochastic objects,
see (4.3). We denote by (ϕ,X) the canonical process on Wα,1

loc B−1−4κ1,1 (ρ4+σ )× Cκ/2
loc X

and let μ be the law of the pair (ϕ, X) under μ̂ (i.e. the projection of μ̂ to the first two
components). Observe that there exists a measurable map � : (ϕ, X) �→ (ϕ,X) such
that μ̂ = μ ◦ �−1. Therefore we can represent expectations under μ̂ as expectations
under μ with the understanding that the elements of X are constructed canonically from
X via�. Furthermore, Y, φ, ζ, χ are defined analogously as on the approximate level as
measurable functions of the pair (ϕ, X). In particular, the limit localizerU> is determined
by the constant L0 obtained inLemma4.1. Consequently, all the above uniform estimates
are preserved for the limiting measure and the convergence of the corresponding lattice
approximations to Y, φ, ζ, χ follows. In addition, the limiting process ϕ is stationary in
the following distributional sense: for all f ∈ C∞c (R+) and all τ > 0, the laws of

ϕ( f ) and ϕ( f (· − τ)) on S ′(R3)

coincide. Based on the time regularity of ϕ it can be shown that this implies that the laws
of ϕ(t) and ϕ(t + τ) coincide for all τ > 0 and a.e. t ∈ [0,∞). The projection of μ on
ϕ(t) taken from this set of full measure is the measure ν as obtained in Theorem 4.9.

6.2. Integration by parts formula. The goal of his section is to derive an integration
by parts formula for the �4

3 measure on the full space. To this end, we begin with the
corresponding integration by parts formula on the approximate level, that is, for the
measures νM,ε and pass to the limit.

Let F be a cylinder functional on S ′(R3), that is, F(ϕ) = �(ϕ( f1), . . . , ϕ( fn))
for some polynomial � : R

n → R and f1, . . . , fn ∈ S(R3). Let DF(ϕ) denote the
L2-gradient of F . Then for fields ϕε defined on �ε we have

∂F(Eεϕε)
∂ϕε(x)

= εd
n∑

i=1
∂i�((Eεϕε)( f1), . . . , (Eεϕε)( fn))(wε ∗ fi )(x)

= εd [wε ∗ DF(Eεϕε)](x),
where x ∈ �ε and wε is the kernel involved in the definition of the extension operator
Eε from Section A.4. By integration by parts it follows that

∫

[wε ∗ DF(Eεϕ)](x)νM,ε(dϕ)

= 1

εd

∫
∂F(Eεϕ)
∂ϕ(x)

νM,ε(dϕ)

= 2

εd

∫

F(Eεϕ)∂VM,ε(ϕ)

∂ϕ(x)
νM,ε(dϕ)

= 2
∫

F(Eεϕ)[λϕ(x)3 + (−3λaM,ε + 3λ2bM,ε)ϕ(x)]νM,ε(dϕ)

+ 2
∫

F(Eεϕ)[m2 −�ε]ϕ(x)νM,ε(dϕ). (6.5)
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According to Theorem 4.9, we can already pass to the limit on the left hand side as
well as in the second term on the right hand side of (6.5). Namely, we obtain for any
accumulation point ν and any (relabeled) subsequence (νM,ε ◦ (Eε)−1)M,ε converging
to ν that the following convergences hold in the sense of distributions in the variable
x ∈ R

3

∫

Eε[wε ∗ DF(Eεϕ)](x)νM,ε(dϕ)→
∫

DF(Eεϕ)(x)ν(dϕ),
∫

F(Eεϕ)Eε[m2 −�ε]ϕ(x)νM,ε(dϕ)→
∫

F(ϕ)[m2 −�]ϕ(x)ν(dϕ).

The remainder of this section is devoted to the passage to the limit in (6.5), leading
to the integration by parts formula for the limiting measure in Theorem 6.7 below. In
particular, it is necessary to find a way to control the convergence of the cubic term and
to interpret the limit under the �4

3 measure.
Let us denote

�ϕ3�M,ε(y) := ϕ(y)3 + (−3aM,ε + 3λbM,ε)ϕ(y).

We shall analyze carefully the distributions JM,ε(F) ∈ S ′(�ε) given by

JM,ε(F) := x �→
∫

F(Eεϕ)�ϕ3�M,ε(x)νM,ε(dϕ),

in order to determine the limit of EεJM,ε(F) (as a distribution in x ∈ R
3) as (M, ε)→

(∞, 0). Unfortunately, even for the Gaussian case when λ = 0 one cannot give a
well-defined meaning to the random variable ϕ3 under the measure ν. Additive renor-
malization is not enough to cure this problem since it is easy to see that the variance of
the putative Wick renormalized limiting field

�ϕ3� = lim
ε→0,M→∞ Eε�ϕ3�M,ε

is infinite. In the best of the cases one can hope that the renormalized cube �ϕ3� makes
sense once integrated against smooth cylinder functions F(ϕ). Otherwise stated, one
could try to prove that (JM,ε)M,ε converges as a linear functional on cylinder test func-
tions over S ′(R3).

To this end, we work with the stationary solution ϕM,ε and introduce the additional
notation

�ϕ3M,ε�(t, y) := ϕM,ε(t, y)
3 + (−3aM,ε + 3λbM,ε)ϕM,ε(t, y).

As the next step, we employ the decomposition

ϕM,ε = XM,ε − λXM,ε + ζM,ε

in order to find a decomposition that can be controlled by our estimates. We rewrite

�ϕ3M,ε� = �X3
M,ε� + 3�X2

M,ε�(−λXM,ε + ζM,ε) + 3λbM,εϕM,ε

+ 3XM,ε(−λXM,ε + ζM,ε)
2 + (−λXM,ε + ζM,ε)

3.
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Next, we use the paraproducts and paracontrolled ansatz to control the various reso-
nant products. For the renormalized resonant product 3�X2

M,ε� ◦ (−λXM,ε + ζM,ε) +
3λbM,εϕM,ε we first recall that

ϕM,ε = XM,ε + YM,ε + φM,ε, φM,ε = −3λXM,ε � φM,ε + χM,ε.

Therefore using the definition of ZM,ε in (4.10) we have

3�X2
M,ε� ◦ (−λXM,ε + ζM,ε) + 3λbM,εϕM,ε = 3�X2

M,ε� ◦ (YM,ε + φM,ε) + 3λbM,εϕM,ε

= 3�X2
M,ε� ◦ YM,ε + 3λbM,ε(XM,ε + YM,ε)

︸ ︷︷ ︸
−λZM,ε

+ 3�X2
M,ε� ◦ φM,ε + 3λbM,εφM,ε

and

3�X2
M,ε� ◦ φM,ε + 3λbM,εφM,ε

= 3�X2
M,ε� ◦ (−3λXM,ε � φM,ε) + 3λbM,εφM,ε

+3�X2
M,ε� ◦ χM,ε

= −λX̃M,εφM,ε + 3λ(bM,ε − b̃M,ε(t))φM,ε + λCε(φM,ε,−3XM,ε, 3�X
2
M,ε�)

+3�X2
M,ε� ◦ χM,ε.

The remaining resonant product that requires a decomposition can be treated as

3XM,ε ◦ (−λXM,ε + ζM,ε)
2

= 3λ2XM,ε ◦ (XM,ε)
2 − 6λXM,ε ◦ (XM,εζM,ε) + 3XM,ε ◦ ζ 2M,ε

= 6λ2XM,ε ◦ (XM,ε � XM,ε) + 3λ2XM,ε ◦ (XM,ε ◦ XM,ε)

− 6λXM,ε ◦ (XM,ε � ζM,ε)− 6λXM,ε ◦ (XM,ε � ζM,ε)

+ 3XM,ε ◦ ζ 2M,ε

= 6λ(λXM,ε − ζM,ε)XM,ε + 6λCε(λXM,ε − ζM,ε, XM,ε, XM,ε)

+ 3λ2XM,ε ◦ (XM,ε ◦ XM,ε)− 6λXM,ε ◦ (XM,ε � ζM,ε)

+ 3XM,ε ◦ ζ 2M,ε,

where we used the notation f � g = f ≺ g + f ◦ g.
These decompositions and our estimates show that the products are all are controlled

in the space L1(0, T, B−1−3κ,ε1,1 (ρ4+σ )). The term �X3
M,ε� requires some care since it can-

not be defined as a function of t . Indeed, standard computations show that Eε�X3
M,ε� →

�X3� in W−κ,∞
T C−3/2−κ,ε(ρσ ), namely, it requires just a mild regularization in time

to be well defined and it is the only one among the contributions to �ϕ3M,ε� which has

negative time regularity. In particular, wemaywrite �ϕ3M,ε� = �X3
M,ε�+Hε(ϕM,ε,XM,ε)

where for p ∈ [1,∞)

sup
ε∈A,M>0

E‖�X3
M,ε�‖2pW−κ,∞

T C −3/2−κ,ε(ρσ ) + sup
ε∈A,M>0

E‖Hε(ϕM,ε,XM,ε)‖2p
L1
T B

−1−3κ,ε
1,1 (ρ4+σ )

<∞
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is uniformly bounded in M, ε. The dependence of the function Hε on ε comes from the
corresponding dependence of the paraproducts as well as the resonant product on ε.

Now, let h : R → R be a smooth test function with supp h ⊂ [τ, T ] for some
0 < τ < T <∞ and such that

∫

R
h(t)dt = 1. Then by stationarity we can rewrite the

Littlewood–Paley blocks �ε
jJM,ε(F) as

�ε
jJM,ε(F) =

∫

R

h(t)E[F(EεϕM,ε(t))�
ε
j �ϕ

3
M,ε(t)�M,ε]dt

= E

[∫

R

h(t)F(EεϕM,ε(t))�
ε
j �X

3
M,ε�(t)dt

]

+E

[∫

R

h(t)F(EεϕM,ε(t))�
ε
j Hε(ϕM,ε,XM,ε)(t)dt

]

=: �ε
jJ X

M,ε(F) +�
ε
jJ H

M,ε(F).

As a consequence of Corollary 6.3 and the discussion afterwards we extract a subse-
quence converging in law and using the uniform bounds together with the (E) property
of our nonlinearities as defined on page 2073 in [MP17], we may pass to the limit and
conclude

lim
ε→0,M→∞ EεJM,ε(F) = Eμ

[∫

R

h(t)F(ϕ(t))�ϕ3�(t)dt

]

=: Jμ(F).

Here �ϕ3� is expressed (as �ϕ3M,ε� before) as a measurable function of (ϕ, X) given by

�ϕ3� := �X3� + 3�X2� �� (−λX + ζ )− λZ − λX̃ φ + 3λB(t)φ

+ λC(φ,−3X , 3�X2�) + 3�X2� ◦ χ + 3X �� (−λX + ζ )2 + 6λ(λX − ζ )X

+ 6λC(λX − ζ, X , X) + 3λ2X ◦ (X ◦ X )− 6λX ◦ (X � ζ ) + 3X ◦ ζ 2
+ (−λX + ζ )3, (6.6)

where we used the notation f �� g = f ≺ g + f � g and ζ, φ,Y are defined as starting
from (ϕ,X) = �(ϕ, X) as

ϕ = X − λX + ζ, ζ = −L −1[3λ(U>�X2�) � Y ] + φ,
the operator C is the continuum analog of the commutator Cε defined in (A.8), the
localizer U> is given by the constant L0 from Lemma 4.1 and B(·) (appearing also in
the limit Z , cf. (4.10)) is the uniform limit of bM,ε − b̃M,ε(·) on [τ, T ]. Let us denote
H(ϕ, X) := �ϕ3�− �X3�.

Remark that our uniform bounds remain valid for the limiting measure μ. As a
consequence we obtain the following result.

Lemma 6.4. Let F : S ′(R3)→ R be a cylinder function such that

|F(ϕ)| + ‖DF(ϕ)‖B1+3κ∞,∞(ρ−4−σ ) � CF‖ϕ‖nH−1/2−2κ (ρ2)

for some n ∈ N. Let μ be an accumulation point of the sequence of laws of (EεϕM,ε,

EεXM,ε). Then (along a subsequence) EεJM,ε(F)→ Jμ(F) in S ′(Rd), where Jμ(F)
is given by

Jμ(F) = Eμ

[∫

R

h(t)F(ϕ(t))�X3�(t)dt

]
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+Eμ

[∫

R

h(t)F(ϕ(t))H(ϕ, X)(t)dt

]

=: J X
μ (F) + J H

μ (F),

for any function h as above, which is understood as an equality of distributions and the
expectation is in the weak sense. Moreover, we have the estimate

‖J X
μ (F)‖C−3/2−κ (ρσ ) + ‖J H

μ (F)‖B−1−3κ1,1 (ρ4+σ )
�μ,h CF

where the implicit constant depends on μ, h but not on F.

Proof. For any cylinder function F satisfying the assumptions and since supp h ∈ [τ, T ]
we have the following estimate for arbitrary conjugate exponents p, p′ ∈ (1,∞)

‖J X
μ (F)‖C−3/2−κ (ρσ ) �h Eμ

[
‖t �→ F(ϕ(t))‖W κ,1

T
‖�X3�‖W−κ,∞

T C−3/2−κ (ρσ )

]

� (Eμ[‖t �→ F(ϕ(t))‖p
W κ,1

T

])1/p
(

Eμ

[

‖�X3�‖p′
W−κ,∞

T C−3/2−κ (ρσ )

])1/p′

� (Eμ[‖t �→ F(ϕ(t))‖p
W κ,1

T

])1/p �
(∫

[0,T ]2
Eμ|F(ϕ(t))− F(ϕ(s))|p

|t − s|(1+κ)p dtds

)1/p

.

Since for arbitrary conjugate exponents q, q ′ ∈ (1,∞)

Eμ|F(ϕ(t))− F(ϕ(s))|p �
∫ 1

0
Eμ|〈DF(ϕ(s) + τ(ϕ(t)− ϕ(s))), ϕ(t)− ϕ(s)〉|pdτ

�
∫ 1

0
dτ

(
Eμ‖DF(ϕ(s) + τ(ϕ(t)− ϕ(s)))‖pq ′

B1+3κ∞,∞(ρ−4−σ )

)1/q ′

(Eμ‖ϕ(t)− ϕ(s)‖pq
B−1−3κ1,1 (ρ4+σ )

)1/q

� C p
F (Eμ‖ϕ(0)‖npq

′
H−1/2−2κ (ρ2))

1/q ′(Eμ‖ϕ(t)− ϕ(s)‖pq
B−1−3κ1,1 (ρ4+σ )

)1/q ,

we obtain due to Theorem 4.8 that

‖J X
μ (F)‖C−3/2−κ (ρσ ) � CF

⎛

⎝

∫

[0,T ]2

Eμ‖ϕ(t)− ϕ(s)‖pq
B−1−3κ1,1 (ρ4+σ )

|t − s|(1+κ)pq dtds

⎞

⎠

1/(pq)

� CF (Eμ‖ϕ‖pqWα,pq
T B−1−3κ1,1 (ρ4+σ )

)1/(pq),

where α = 1 + κ − 1/(pq). Finally, choosing p, q ∈ (1,∞) sufficiently small and
κ ∈ (0, 1) appropriately, we may apply the Sobolev embeddingWβ,1

T ⊂ Wα,pq
T together

with the uniform bound from Theorem 6.2 (which remains valid in the limit) to deduce

‖J X
μ (F)‖C−3/2−κ (ρσ ) � CF (Eμ‖ϕ‖pq

Wβ,1
T B−1−3κ1,1 (ρ4+σ )

)1/(pq) � CF .

To show the second bound in the statement of the lemma,we use the fact that supp h ⊂
[τ, T ] for some 0 < τ < T <∞ to estimate

‖J H
μ (F)‖B−1−3κ1,1 (ρ4+σ )

� Eμ[‖t �→ F(ϕ(t))‖L∞τ,T ‖H(ϕ, X)‖L1
T B

−1−3κ
1,1 (ρ4+σ )

]
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� CF (Eμ‖ϕ‖2nL∞τ,T H−1/2−2κ (ρ2))
1/2(Eμ‖H(ϕ, X)‖2L1

T B
−1−3κ
1,1 (ρ4+σ )

)1/2 � CF ,

where the last inequality follows from Theorem 6.2 and the bounds in the proof of
Proposition 6.1. ��

Heuristically we can think of Jμ(F) as given by

Jμ(F) ≈
∫

F(ϕ)�ϕ3�(0)ν(dϕ).

However, as we have seen above, this expression is purely formal since �ϕ3� is only
a space-time distribution with respect to μ and therefore �ϕ3�(0) is not a well defined
random variable. One has to consider F �→ Jμ(F) as a linear functional on cylin-
der functions taking values in S ′(R3) and satisfying the above properties. Lemma 6.4
presents a concrete probabilistic representation based on the stationary stochastic quan-
tization dynamics of the �4

3 measure.
Alternatively, the distribution Jμ(F) can be characterized in terms of ϕ(0) without

using the dynamics, in particular, in the spirit of the operator product expansion as
follows.

Lemma 6.5. Let F be a cylinder function as in Lemma 6.4 and ν the first marginal of
μ. Then there exists a sequence of constants (cN )N∈N tending to∞ as N → ∞ such
that

Jμ(F) = lim
N→∞

∫

F(ϕ)[(��Nϕ)
3 − cN (��Nϕ)]ν(dϕ)

in the sense of distributions. Moreover, the renormalization constants are given by

cN = 3λE
[
�(��N X)2�(t, 0)

]− 18λ2E
[
�(��N X)2� ◦Q−1�(��N X)2�(t, 0)

]
,

for some t � 0, where

�(��N X)2� = (��N X)2 − E
[
�(��N X)2�(t, 0)

]
.

Proof. Let

Jν,N (F) :=
∫

F(ϕ)[(��Nϕ)
3 − cN (��Nϕ)]ν(dϕ).

Then by stationarity ofϕ underμwehave for a function h satisfying the above properties

Jν,N (F) = Eμ

[∫

R

h(t)F(ϕ(t))[(��Nϕ(t))
3 − cN (��Nϕ(t))]dt

]

.

At this point is not difficult to proceed as above and find suitable constants (cN )N∈N
which deliver the appropriate renormalizations so that

[(��Nϕ)
3 − cN (��Nϕ)] → �ϕ3�,

and therefore, using the control of the moments, prove that

Jν,N (F)→ Eμ

[∫

R

h(t)F(ϕ(t))�ϕ3�(t)dt

]

= Jμ(F).

��
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Remark 6.6. By the previous lemma it is now clear that Jμ does not depends on μ but
only on its first marginal ν. So in the following we will write Jν := Jμ to stress this
fact.

Using these informations we can pass to the limit in the approximate integration by
parts formula (6.5) and obtain an integration by parts formula for the�4

3 measure in the
full space. This is the main result of this section.

Theorem 6.7. Any accumulation point ν of the sequence (νM,ε ◦ (Eε)−1)M,ε satisfies
∫

DF(ϕ)ν(dϕ) = 2
∫

[(m2 −�)ϕ]F(ϕ)ν(dϕ) + 2λJν(F) (6.7)

in the sense of distributions.

When interpreted in terms of n-point correlation functions, the integration by parts
formula (6.7) gives rise to the hierarchy of Dyson–Schwinger equations for any limiting
measure ν.

Corollary 6.8. Let n ∈ N. Any accumulation point ν of the sequence (νM,ε ◦(Eε)−1)M,ε

satisfies

n∑

i=1
δ(x − xi )Eν[ϕ(x1) · · ·ϕ(xi−1)ϕ(xi+1) · · ·ϕ(xn)]

= Eν[[(m2 −�x )ϕ(x)]ϕ(x1) · · ·ϕ(xn)]
−λ lim

N→∞Eν[ϕ(x1) · · ·ϕ(xn)((��Nϕ(x))
3 − cN��Nϕ(x))]

as an equality for distributions in S ′(R3)⊗(n+1).

In particular, this allow to express the (space-homogeneous) two-point function
Sν2 (x − y) := Eν[ϕ(x)ϕ(y)] of ν as the solution to

δ(x − y) = (m2 −�x )S
ν
2 (x − y)

−λ lim
N→∞[((I⊗�⊗3�N )S

ν
4 )(y, x, x, x)− cN (��N S

ν
2 )(x − y)],

where the right hand side includes the four point function Sν4 (x1, . . . , x4) := Eν

[ϕ(x1) · · ·ϕ(x4)].
Finally, we observe that the above arguments also allow us to pass to the limit in the

stochastic quantization equation and to identify the continuum dynamics. To be more
precise, we use Skorokhod’s representation theorem to obtain a new probability space
together with (not relabeled) processes (ϕM,ε,XM,ε) defined on some probability space
and converging in the appropriate topology determined above to some (ϕ,X).We deduce
the following result.

Corollary 6.9. The couple (ϕ,X) solves the continuum stochastic quantization equation

L ϕ + λ�ϕ3� = ξ in S ′(R+ × R
d),

where ξ = L X and �ϕ3� is given by (6.6).
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7. Fractional �4
3

In this section we discuss the extension of the results of this paper to the fractional �4
3

model, namely to the limit of the following discrete Gibbs measures. Let γ ∈ (0, 1) and
set

dνγM,ε ∝ exp

⎧
⎨

⎩
−2εd

∑

x∈�M,ε

[
λ

4
|ϕx |4 + −3λaM,ε + 3λ2bM,ε + m2

2
|ϕx |2 + 1

2
|(−�ε)

γ/2ϕx |2
]
⎫
⎬

⎭

∏

x∈�M,ε

dϕx ,

(7.1)
where (−�ε)

γ is the (discrete) fractional Laplacian operator given through Fourier
transform by

F((−�ε)
γ f )(k) = lε(k)

γ f̂ (k),

with lε(k) := ∑3
j=1 4 sin2(επk j )/ε2. The kernel of the operator (−�ε)

γ on the lat-

tice (εZ)3 has power-law decay in space and therefore the above measure corresponds
to a non-Gaussian unbounded-spin system with long-range interactions. Varying γ at
fixed space dimension allows to explore a range of super-renormalizable models which
approach the critical dimension as γ is lowered. These and similar models have been
considered in [BDH98,BMS03,Abd07,Sla18,Abd18] as rigorous ways to implement
Wilson’s and Fisher’s ε-expansion idea, namely the study of critical models perturba-
tively in the distance to the critical dimension.

Let us first observe that themeasure νγM,ε is reflection positive.Albeit this result seems
to belong to the folklore of the mathematical physics community, we could not find a
clear reference to this fact and therefore we will give a sketch of the proof. We start from
the observation that the fractional Laplacian generates a reflection positive Gaussian
measure. The proof we report below is due to A. Abdesselam (private communication).
Recall that on�M,ε we define reflections θ i with i = 1, 2, 3 and the reflection positivity
as in Section 5.3. Below, the reflection positivity is always understood with respect to
θ = θ1. Of course, similar considerations hold for the other directions as well.

Theorem 7.1. Let a > 0, γ ∈ (0, 1) and let μγM,ε be the Gaussian measure on �M,ε

with covariance given by (a −�ε)
−γ . Then μγM,ε is reflection positive.

Proof. Let ρ > 0 and let Kγ (ρ) :=
∫∞
0

dt
tγ (t+ρ) , so that Kγ (ρ) = ρ−γ Kγ (1). As a

consequence we have the formula (as Fourier multipliers)

(a −�ε)
−γ = 1

Kγ (1)

∫ ∞

0
(t + a −�ε)

−1 dt
tγ
.

Now the Gaussian measure with covariance (t + a − �ε)
−1 corresponds to a spin-

spin nearest neighbors interaction and is well known to be reflection positive (see the
discussion in Section 5.3). In particular,

∑

x,y∈�M,ε

θ f (x) f (y)(t + a −�ε)
−1(x, y) � 0,

for all f : �M,ε → C supported on �+
M,ε = {x ∈ �M,ε : 0 < x1 < M/2}. Taking the

appropriate integral over t we get
∑

x,y∈�M,ε

θ f (x) f (y)(a −�ε)
−γ (x, y) � 0.
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From this we can deduce that, for all cylinder functions F supported on �+
M,ε we have

E[θF(φ)F(φ)] � 0,

where φ is the Gaussian field with covariance (a−�ε)
−γ . This follows from taking F as

a linear combination of exponentials and then using Schur-Hadamard product theorem
to deduce positivity and finally concluding by a density argument (see e.g. [GJ87, Thm
6.2.2]). ��
Corollary 7.2. The fractional �4

3 measure (7.1) on �M,ε is reflection positive.

Proof. Take a > 0 and consider the measure

ν
γ,a
M,ε(dφ) =

1

Zγ,aM,ε

ρ�M,ε
(φ)μ

γ

M,ε(dφ),

where μγM,ε is, as above, the Gaussian measure with covariance (a −�ε)
−γ and

ρ�M,ε
(ϕ) := exp

⎧
⎨

⎩
−2εd

∑

x∈�M,ε

[
λ

4
|ϕx |4 + −3λaM,ε + 3λ2bM,ε + m2

2
|ϕx |2

]
⎫
⎬

⎭
.

Note that ρ�M,ε
(ϕ) = ρ�+

M,ε
(ϕ)(θρ�+

M,ε
)(ϕ) and that we can write

∫

θF(φ)F(φ)νγ,aM,ε(dφ) =
1

Zγ,aM,ε

∫

θF(φ)F(φ)ρ�M,ε
(φ)μ

γ,a
M,ε(dφ)

= 1

Zγ,aM,ε

∫

θ(ρ�+
M,ε

F)(φ)(ρ�+
M,ε

F)(φ)μγ,aM,ε(dφ) � 0,

since we already proved thatμγ,aM,ε is reflection positive. Now, observe also that as a → 0

the measures (νγ,aM,ε)a converge weakly to νγM,ε and as a consequence we deduce that
ν
γ

M,ε is reflection positive. ��
The equilibrium stochastic dynamics associated to the measure νγM,ε reads

L γ
ε ϕM,ε + λϕ

3
M,ε + (−3λaM,ε + 3λ2bM,ε)ϕM,ε = ξM,ε, x ∈ �M,ε, (7.2)

where L
γ
ε = ∂t + Q

γ
ε and Q

γ
ε = m2 + (−�ε)

γ . We have to take into account the
different regularization properties of the fractional Laplacian, and the related modified
space-time scaling for the fractional heat equation. This implies that the stochastic terms
are of lower regularity. In particular, XM,ε, �X2

M,ε�, �X
3
M,ε� and XM,ε have respectively

the spatial regularities (2γ − 3)/2−, (2γ − 3)−, 3(2γ − 3)/2−, (10γ − 9)/2−. It is
clear that using only the first order paracontrolled expansion developed in this paper
it is not possible to cover the full range of γ for which the model is still subcritical
(i.e. super-renormalizable). From eq. (7.2) one can readily compute that criticality in
three-dimensions is reached when γ = 3/4 at which point the term �X2

M,ε� scales like
the fractional Laplacian.

For large enough values of γ ∈ (3/4, 1) the analysis proceeds exactly in the case
γ = 1. Consequently YM,ε will also be of regularity (10γ − 9)/2− (cf. Lemma 4.1).
Since based on (4.23), φε will have regularity (4γ − 3)−, the various commutators
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Dρ4,ε(φM,ε,−3λ�X2
M,ε�, φM,ε), 〈ρ4φM,ε, C̃ε(φM,ε, 3λ�X2

M,ε�, 3λ�X
2
M,ε�)〉ε, and

Dρ4,ε(φM,ε, 3λ�X2
M,ε�, (Q

γ
ε )
−1[3λ�X2

M,ε� � φM,ε]) will be under control as soon
as (8γ − 6) + (2γ − 3) = 10γ − 9 > 0 namely when γ > 9/10. However, the term
ZM,ε now has the regularity of the tree XM,ε namely (14γ − 15)/2− and therefore in
order to control 〈φM,ε, ZM,ε〉 we must require γ > 21/22. In this case the fractional
energy estimate of Theorem 3.1 carries through and provides a priori estimates forψM,ε

in weighted Hγ and as a consequence a similar estimate holds for ζM,ε in the same
space. The proof of the stretched exponential integrability works as well but the ex-
ponent becomes worse due to the limited regularity of the stochastic terms. Moreover,
the improved tightness in Section 6.1 remains unchanged and yields the corresponding
regularity. Therefore, mutatis mutandis we conclude the following results.

Theorem 7.3. Let γ ∈ (21/22, 1). There exists a choice of the sequence (aM,ε, bM,ε)M,ε

such that for any λ > 0 and m2 ∈ R, the family of measures (νγM,ε)M,ε appropriately

extended to S ′(R3) is tight. All the consequences stated in Theorem 1.1 carry on to every
accumulation point ν of this family of measures except from the fact that the exponential
integrability holds for some υ ∈ (0, 1) not necessarily of order κ .

If γ � 21/22 an additional renormalization is needed to treat the divergence of

(Qγ
ε )
−1�X2

M,ε� ◦ XM,ε.

In general, when γ ∈ (3/4, 21/22] more complex expansions and renormalizations are
needed, either by exploiting the iterated commutator methods of Bailleul and Berni-
cot [BB20] or full fledged regularity structures [Hai14,HM18a]. While it is not clear
that the local estimates of Moinat and Weber [MW18] apply to the fractional Laplacian
(which is a non-local operator), our energy method could be conceivably adapted to the
regularity structures framework. We prefer to leave these more substantial extensions to
further investigations.
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A.1. Besov spaces. First, we cover various properties of the discrete weighted Besov
spaces such as an equivalent formulation of the norms, duality, interpolation, embed-
dings, bounds for powers of functions and a weighted Young’s inequality.

Lemma A.1. Let α ∈ R, p, q ∈ [1,∞]. Fix n > |α| and assume that ρ is a weight such
that

‖ρ‖Bn+1,ε∞,∞ (ρ−1) + ‖ρ−1‖Bn+1,ε∞,∞ (ρ)
� 1

uniformly in ε. Then

‖ f ‖Bα,εp,q (ρ)
∼ ‖ρ f ‖Bα,εp,q

,

where the proportionality constant does not depend on ε.

Proof. We write ρ f = ρ ≺ f + ρ � f and estimate by paraproduct estimates

‖ρ ≺ f ‖Bα,εp,q
= ‖ρ ≺ f ‖Bα,εp,q (ρ

−1ρ) � ‖ρ‖L∞,ε(ρ−1)‖ f ‖Bα,εp,q (ρ)
� ‖ f ‖Bα,εp,q (ρ)

,

‖ρ � f ‖Bα,εp,q
= ‖ρ � f ‖Bα,εp,q (ρ

−1ρ) � ‖ f ‖Bα,εp,∞(ρ)‖ρ‖Bn,ε∞,q (ρ
−1) � ‖ f ‖Bα,εp,q (ρ)

‖ρ‖
Bn+1,ε∞,∞ (ρ−1)

� ‖ f ‖Bα,εp,q (ρ)
,

which implies one inequality. For the converse one, we write f = ρ−1 ≺ (ρ f )+ρ−1 �
(ρ f ), and estimate

‖ρ−1 ≺ (ρ f )‖Bα,εp,q (ρ)
� ‖ρ−1‖L∞,ε(ρ)‖ρ f ‖Bα,εp,q

,

‖ρ−1 � (ρ f )‖Bα,εp,q (ρ)
� ‖ρ f ‖Bα,εp,∞‖ρ−1‖Bn,ε∞,q (ρ)

� ‖ρ f ‖Bα,εp,q
‖ρ−1‖Bn+1,ε∞,∞ (ρ)

.

��
Lemma A.2. Let α ∈ R, p, p′, q, q ′ ∈ [1,∞] such that p, p′ and q, q ′ are conjugate
exponents. Let ρ be a weight as in Lemma A.1. Then

〈 f, g〉ε � ‖ f ‖Bα,εp,q (ρ)
‖g‖B−α,ε

p′,q′ (ρ
−1)

with a proportionality constant independent of ε. Consequently, B−α,εp′,q ′ (ρ
−1) ⊂ (Bα,εp,q

(ρ−1))∗.

Proof. In view of Lemma A.1 it is sufficient to consider the unweighted case. Let f ∈
Bα,εp,q and g ∈ B−α,εp′,q ′ . Then by Parseval’s theorem and Hölder’s inequality we have

εd
∑

x∈�ε

f (x)g(x) =
∑

−1�i, j�N−J

εd
∑

x∈�ε

�ε
i f (x)�

ε
j g(x)

=
∑

−1�i, j�N−J,i∼ j

∫

�̂ε

ϕi (k)F f (k)ϕ j (k)Fg(k)dk

=
∑

−1�i, j�N−J,i∼ j

2α j2−α jεd
∑

x∈�ε

�ε
i f (x)�

ε
j g(x) � ‖ f ‖Bα,εp,q

‖g‖B−α,ε
p′,q′

.

��
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Lemma A.3. Let ε ∈ A. Let α, α0, α1, β, β0, β1 ∈ R, p, p0, p1, q, q0, q1 ∈ [1,∞] and
θ ∈ [0, 1] such that

α = θα0 + (1− θ)α1, β = θβ0 + (1− θ)β1,
1

p
= θ

p0
+
1− θ

p1
,

1

q
= θ

q0
+
1− θ

q1
.

Then

‖ f ‖Bα,εp,q (ρ
β) � ‖ f ‖θ

B
α0,ε
p0,q0 (ρ

β0 )
‖ f ‖1−θ

B
α1,ε
p1,q1 (ρ

β1 )
.

Proof. Theproof is a consequence ofHölder’s inequality. Let us show the claim for p, p0,
p1, q, q0, q1 ∈ [1,∞) and ε ∈ A \ {0}. If some of the exponents p, p0, p1, q, q0, q1 are
infinite or we are in the continuous setting, the proof follows by obvious modifications.
We write

‖ρβ�ε
j f ‖pL p,ε = εd

∑

x∈�ε

|ρβ�ε
j f (x)|p

= εd
∑

k∈�ε

(ρθβ0 p|�ε
j f (x)|θp)(ρ(1−θ)β1 p|�ε

j f (x)|(1−θ)p)

and apply Hölder’s inequality to the conjugate exponents p0
θp and p1

(1−θ)p to obtain

‖ρβ�ε
j f ‖pL p,ε �

⎛

⎝εd
∑

x∈�ε

ρβ0 p0 |�ε
j f |p0

⎞

⎠

θp/p0 ⎛

⎝εd
∑

x∈�ε

ρβ1 p1 |�ε
j f |p1

⎞

⎠

(1−θ)p/p1

= ‖�ε
j f ‖θpL p0,ε(ρβ0 )

‖�ε
j f ‖(1−θ)pL p1,ε(ρβ1 )

.

Consequently,

‖ f ‖q
Bα,εp,q (ρ

β)
�

∑

−1� j�N−J

2αkq‖ρβ�ε
j f ‖qL p,ε

�
∑

−1� j�N−J

(
2θα0kq‖�ε

j f ‖θqL p0,ε(ρβ0 )

) (
2(1−θ)α1kq‖�ε

j f ‖(1−θ)qL p1,ε(ρβ1 )

)

and by Hölder’s inequality to the conjugate exponents q0
θq and q1

(1−θ)q

‖ f ‖q
Bα,εp,q (ρ

β)

�

⎛

⎝
∑

−1� j�N−J

2α0kq0‖�ε
j f ‖q0L p0,ε(ρβ0 )

⎞

⎠

θq/q0

⎛

⎝
∑

−1� j�N−J

2α1kq1‖�ε
j f ‖q1L p1,ε(ρβ1 )

⎞

⎠

(1−θ)q/q1

= ‖ f ‖θq
B
α0,ε
p0,q0 (ρ

β0 )
‖ f ‖(1−θ)q

B
α1,ε
p1,q1 (ρ

β1 )
.

��
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We note that by our construction of the Littlewood–Paley projectors on �ε, in each
of the cases j = −1, j ∈ {0, . . . , N − J − 1} and j = N − J , there exists an L1-kernel
K such that the Littlewood–Paley block�ε

j f is given by a convolution with 2
jdK(2 j ·).

For notational simplicity we omit the dependence of K on the three cases above.

Lemma A.4. Let ε ∈ A and let β > 0. Then

L2,ε(ρ) = B0,ε
2,2(ρ), L4,ε(ρ) ⊂ B0,ε

4,∞(ρ)

and the proportional constants do not depend on ε.

Proof. Due to Lemma A.1 together with Parseval’s equality we directly obtain the first
claim.Consequently, byYoung’s inequality togetherwith the fact that ρ(y)

ρ(x) � ρ−1(x−y)
(for a universal proportionality constant that depends only on ρ) we have that

‖ f ‖B0,ε
4,∞(ρ)

= sup
−1� j�N−J

‖�ε
j f ‖L4,ε(ρ) = sup

−1� j�N−J
‖2 jdK(2 j ·) ∗ f ‖L4,ε(ρ)

� sup
−1� j�N−J

‖2 jdK(2 j ·)‖L1,ε(ρ−1)‖ f ‖L4,ε(ρ) � ‖ f ‖L4,ε(ρ).
��

Lemma A.5. Let κ ∈ (0, 1), p ∈ [1,∞] and let ρ be a polynomial weight

‖ f ‖B1−κ,ε
p,p (ρ)

� ‖ f ‖B−κ,εp,p (ρ)
+ ‖∇ε f ‖B−κ,εp,p (ρ)

,

where the proportionality constant does not depend on ε.

Proof. Let j � 0. Let K j = K j,ε = F−1ϕεj and denote K̄ j = K̄ j,ε = ∑
i∼ j Ki,ε. Then

�ε
j f = K̄ j ∗�ε

j f and we write

K̄ j ∗�ε
j f = (Id−�ε)

−1(Id−�ε)(K̄ j ∗�ε
j f )

= (Id−�ε)
−1(K̄ j ∗�ε

j f )− (Id−�ε)
−1∇∗ε∇ε(K̄ j ∗�ε

j f ). (A.1)

For the second term we use translation invariance of ∇ε to obtain
(Id−�ε)

−1∇∗ε∇ε(K̄ j ∗�ε
j f ) = ((Id−�ε)

−1∇∗ε K̄ j ) ∗ (�ε
j∇ε f ),

hence by Young inequality

‖((Id−�ε)
−1∇∗ε K̄ j ) ∗ (�ε

j∇ε f )‖L p,ε(ρ) � ‖(Id−�ε)
−1∇∗ε K̄ j‖L1,ε(ρ−1)‖�ε

j∇ε f ‖L p,ε(ρ)

The kernel V j,� := (Id−�ε)
−1∇∗ε,� K̄ j is given by

V j,�(k) =
∫

�̂ε

e2π ik·x ε−1(1− e−2π iεx� )
1 + 2

∑d
p=1 ε−2 sin2(π iεxp)

ϕ̄εj (x)dx

where ϕ̄εj =
∑

i∼ j ϕ
ε
i . Now using (1−22 j�x )

Me2π ik·x = (1+22 j |2πk|2)Me2π ik·x and
integrating by parts (1−�x )

M we have

|(1 + 22 j |2πk|2)MV j,�(k)|
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�
∫

�̂ε

∣
∣
∣
∣
∣
(1− 22 j�x )

M

[
ε−1(1− e−2π iεx� )

1 + 2
∑d

p=1 ε−2 sin2(π iεxp)
ϕ̄εj (x)

]∣
∣
∣
∣
∣
dx

and it is possible to check that (using that ε2 j � 1)

∣
∣
∣
∣
∣
(1− 22 j�x )

M

[
ε−1(1− e−2π iεx� )

1 + 2
∑d

p=1 ε−2 sin2(π iεxp)
ϕ̄εj (x)

]∣
∣
∣
∣
∣
� 2− j

I2 j Ã

uniformly in j where Ã is an annulus centered at the origin. Therefore

|V j,�(k)| � 2− j2d j (1 + 22 j |2πk|2)−M

and from this is easy to deduce that ‖V j,�‖L1,ε(ρ−1) � 2− j uniformly in j and ε.
A similar computation applies to the first term in (A.1) to obtain

‖(Id−�ε)
−1(K̄ j ∗�ε

j f )‖L p,ε(ρ) � ‖(Id−�ε)
−1 K̄ j‖L1,ε(ρ−1)‖�ε

j f ‖L p,ε(ρ)

� 2−2 j‖�ε
j f ‖L p,ε(ρ)

and the proof is complete. ��
Lemma A.6. Let ε ∈ A and let ι > 0. Let ρ be a weight such that ρι ∈ L4,0. Then

‖ρ1+ι f ‖L2,ε � ‖ρ f ‖L4,ε ,

where the proportionality constant does not depend on ε.

Proof. By Hölder’s inequality

‖ρ1+ι f ‖L2,ε � ‖ρι‖L4,ε‖ρ f ‖L4,ε ,

and since for |x − y| � 1 the quotient ρ(x)
ρ(y) is uniformly bounded above and below, it

follows from Lemma A.2 [MP17] that

‖ρι‖4L4,ε = εd
∑

x∈�ε

ρ4ι(x) �
∫

Rd
ρ4ι(x)dx <∞,

where the proportional constant only depends on ρ. ��
Lemma A.7. Let α > 0. Let ρ1, ρ2 be weights. Then for every β > 0

‖ f 2‖Bα,ε1,1 (ρ1ρ2)
� ‖ f ‖L2,ε(ρ1)

‖ f ‖Hα+2β,ε(ρ2)
,

‖ f 3‖Bα,ε1,1 (ρ
2
1ρ2)

� ‖ f ‖2L4,ε(ρ1)
‖ f ‖Hα+2β,ε(ρ2)

,

where the proportionality constants do not depend on ε.
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Proof. Due to the paraproduct estimates and the embeddings of Besov spaces, we have
for every β > 0

‖ f 2‖Bα,ε1,1 (ρ1ρ2)
� ‖ f ‖

B−β,ε2,∞ (ρ1)
‖ f ‖

Bα+β,ε2,1 (ρ2)
� ‖ f ‖

B−β,ε2,2 (ρ1)
‖ f ‖

Bα+2β,ε2,2 (ρ2)

� ‖ f ‖L2,ε(ρ1)
‖ f ‖Hα+2β,ε(ρ2)

.

For the cubic term, we write

‖ f 3‖Bα,ε1,1 (ρ
2
1ρ2)

� ‖ f ≺ f 2‖Bα,ε1,1 (ρ
2
1ρ2)

+ ‖ f � f 2‖Bα,ε1,1 (ρ
2
1ρ2)

+ ‖ f ◦ f 2‖Bα,ε1,1 (ρ
2
1ρ2)

and estimate each term separately. The second and the third term can be estimated
directly by

‖ f � f 2‖Bα,ε1,1 (ρ
2
1ρ2)

+ ‖ f ◦ f 2‖Bα,ε1,1 (ρ
2
1ρ2)

� ‖ f 2‖
B−β,ε2,∞ (ρ21 )

‖ f ‖
Bα+β,ε2,1 (ρ2)

� ‖ f 2‖
B−β,ε2,2 (ρ21 )

‖ f ‖
Bα+2β,ε2,2 (ρ2)

� ‖ f ‖2L4,ε(ρ1)
‖ f ‖Hα+2β,ε(ρ2)

.

For the remaining term, we have

‖ f ≺ f 2‖Bα,ε1,1 (ρ
2
1ρ2)

� ‖ f ‖
B−β,ε4,∞ (ρ1)

‖ f 2‖
Bα+β,ε4/3,1 (ρ1ρ2)

where by the paraproduct estimates and Lemma A.4

‖ f 2‖
Bα+β,ε4/3,1 (ρ1ρ2)

� ‖ f ‖
B−β,ε4,∞ (ρ1)

‖ f ‖
Bα+2β,ε2,1 (ρ2)

� ‖ f ‖L4,ε(ρ1)
‖ f ‖Hα+2β,ε(ρ2)

which completes the proof. ��
Lemma A.8. Let ρ be a polynomial weight. Let p, q, r ∈ [1,∞] be such that 1

r + 1 =
1
p + 1

q . Then

‖ f ∗ε g‖Lr,ε(ρ) � ‖ f ‖L p,ε(ρ−1)‖g‖Lq,ε(ρ),

‖ f ∗ε g‖Lr,0(ρ) � sup
y∈Rd

‖(ρ−1 f )(y − ·)‖
r−p
r

L p,ε‖ f ‖
p
r
L p,0(ρ−1)‖g‖Lq,ε(ρ),

where ∗ε denotes the convolution on�ε and the proportionality constants are indepen-
dent of ε.

Proof. We observe that for a polynomial weight of the form ρ(x) = 〈x〉−ν for some
ν � 0, we have that ρ(y) � ρ(x)ρ−1(x − y). Accordingly,

| f ∗ g(y)ρ(y)|=
∣
∣
∣
∣
∣
∣
εd

∑

x∈�ε

f (y − x)g(x)ρ(y)

∣
∣
∣
∣
∣
∣
� εd

∑

x∈�ε

|ρ f (y−x)|ρ−1(x − y)|g(x)|ρ(x)

hence the claim follows by (unweighted) Young’s inequality. For the second bound, we
write

| f ∗g(y)ρ(y)|� εd
∑

x∈�ε

(|(ρ−1 f )(y−x)|p|(ρg)(x)|q) 1r|(ρ−1 f )(y− x)| r−p
r |(ρg)(x)| r−qr
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and apply Hölder’s inequality with exponents r, rp
r−p ,

rq
r−q

| f ∗ g(y)ρ(y)|

�

⎛

⎝εd
∑

x∈�ε

|(ρ−1 f )(y − x)|p|ρg(x)|q
⎞

⎠

1
r

‖(ρ−1 f )(y − ·)‖
r−p
r

L p,ε‖ρg‖
r−q
r

Lq,ε

�

⎛

⎝εd
∑

x∈�ε

|(ρ−1 f )(y − x)|p|ρg(x)|q
⎞

⎠

1
r

sup
y∈Rd

‖(ρ−1 f )(y − ·)‖
r−p
r

L p,ε‖ρg‖
r−q
r

Lq,ε .

Finally, taking the r th power and integrating completes the proof. ��

A.2. Localizers. As the next step, we introduce another equivalent formulation of the
weighted Besov spaces Bα,ε∞,∞(ρ) in terms of suitable point evaluation of the Littlewood–
Paley decomposition. First, for J ∈ N0 such that N − J � Jε, α ∈ R and ε ∈ A we
define the Besov space bα,ε∞,∞(ρ) of sequences λ = (λ j,m)−1� j�N−J,m∈Zd by the norm

‖λ‖bα,ε∞,∞(ρ) := sup
−1� j�N−J

2α j sup
m∈Zd

ρ(2− j−Jm)|λ j,m |.

Note that we do not stress the dependence of bα,ε∞,∞(ρ) on the parameter J as in the
sequel we only consider one fixed J for all ε ∈ A given by Lemma A.9 below. The next
result shows the desired equivalence.

Lemma A.9. Let α ∈ R, ε ∈ A and let ρ be a weight. There exists J ∈ N0 (independent
of ε) with the following property: f ∈ Bα,ε∞,∞(ρ) if and only if it is represented by
λ = (λ j,m)−1� j�N−J,m∈Zd ∈ bα,ε∞,∞(ρ) such that

‖ f ‖Bα,ε∞,∞(ρ) ∼ ‖λ‖bα,ε∞,∞(ρ), (A.2)

where the proportionality constants do not depend on ε. In particular, given f ∈
Bα,ε∞,∞(ρ) the coefficients λ are defined by

λ j,m( f ) := �ε
j f (2

− j−Jm), −1 � j � N − J, m ∈ Z
d , (A.3)

and given λ ∈ bα,ε∞,∞(ρ) the distribution f is recovered via the formula

f =
∑

−1� j�N−J

F−1(F2− j−JZd (λ j,·)), (A.4)

where F2− j−JZd denotes the Fourier transform on the lattice 2− j−J
Z
d .

Proof. Let us first discuss the decomposition (A.4). We recall that if f ∈ S ′(�ε) then
F f = ∑

−1� j�N−J ϕ
ε
jF f where for j < N − J the function ϕεjF f is supported

in a ball of radius proportional to 2 j . Let j < N − J and let Bj ⊂ R
d be a cube

centered at the origin with length 2 j+J . We choose J ∈ N0 such that suppϕεj ⊂ Bj .
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Next, we identify Bj with (2 j+J
T)d ⊂ (2NT)d and regard ϕεjF f as a periodic function

on (2 j+J
T)d . Then using a Fourier series expansion we may write

(ϕεjF f )(z) = 2(− j−J )d
∑

m∈Zd

λ j,m( f )e
−2π i2− j−J m·z = F2− j−JZd (λ j,·( f ))(z)

where

λ j,m( f ) :=
∫

Bj

(ϕεjF f )(y)e2π i2
− j−J m·ydy = F−1(ϕεjF f )(2− j−Jm) = �ε

j f (2
− j−Jm).

If j = N − J then by definition of ϕεj we see that ϕεjF f is a periodic function on

(2NT)d . Hence we obtain the same formula (since − j − J = −N )

λ j,m( f ) :=
∫

(2NT)d
(ϕεjF f )(y)e2π i2

− j−J m·ydy = �ε
j f (2

− j−Jm).

Therefore, we have derived the decomposition (A.4) with coefficients given by (A.3).
It remains to establish the equivalence of norms (A.2). One direction is immediate,

namely, for every N − J � Jε we have

sup
−1� j�N−J

2α j sup
m∈Zd

ρ(2− j−Jm)|λ j,m( f )|

= sup
−1� j�N−J

2α j sup
m∈Zd

ρ(2− j−Jm)|�ε
j f (2

− j−Jm)|

� sup
−1� j�N−J

2α j sup
x∈�ε

ρ(x)|�ε
j f (x)|.

Conversely, if x ∈ �ε belongs to the cube of size 2− j−J centered at 2− j−Jm, we write

|�ε
j f (x)| � |�ε

j f (x)−�ε
j f (2

− j−Jm)| + |�ε
j f (2

− j−Jm)|, (A.5)

Now we shall multiply the above inequality by ρ(x) and estimate. To this end, we recall
that due to the admissibility condition for polynomial weights there exists ν � 0 and
c1 > 0 (depending only on ρ) such that

ρ(x)

ρ(z)
�

(
1 +

∣
∣
√
d2− j−J−1∣∣2)ν/2 � c1 whenever |x − z| � √

d2− j−J−1.

In addition, to estimate the first term in (A.5), we recall that for −1 � j < N − J the
Fourier transform of �ε

j f is supported in a ball of radius proportional to 2 j hence by a

computation similar to Bernstein’s lemma (since by our construction |x − 2− j−Jm| �√
d2− j−J−1)

ρ(x)|�ε
j f (x)−�ε

j f (2
− j−Jm)| � c22

−J−1‖�ε
j f ‖L∞,ε(ρ),

for some universal constant c2 > 0 independent of f and ε. If j = N − J then
�ε coincides with the lattice 2− j−J

Z
d and therefore we do not need to do anything.

Consequently it follows from (A.5) that

‖�ε
j f ‖L∞,ε(ρ) � c22

−J−1‖�ε
j f ‖L∞,ε(ρ) + c1 sup

m∈Zd
ρ(2− j−Jm)|�ε

j f (2
− j−Jm)|.

Hence, making J ∈ N0 possibly larger such that c22−J−1 < 1, we may absorb the first
term on the right hand side into the left hand side and the claim follows. ��
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Remark A.10. Throughout the paper, the parameter J ∈ N0 is fixed as in Lemma A.9.
Consequently, from the condition 0 � N − J we obtain the necessary lower bound N0
for N , or alternatively the upper bound for ε = 2−N � 2−N0 and defines the set A.
These parameters remain fixed for the rest of the paper.

Remark A.11. Note that the formulas (A.3), (A.4) depend on the chosen partition of unity
(ϕ j ) j�−1 and our construction of the associated periodic partitions of unity on �̂ε via
(2.1).

It follows from the previous lemma that we may identify f ∈ Bα,ε∞,∞(ρ) with its
coefficients (λ j,m( f ))−1� j�N−J,m∈Zd ∈ bα,ε∞,∞(ρ). This consideration leads us to the
definition of localization operators needed for the analysis of the �4

3 model. Although
the principle idea is similar to Section 2.3 in [GH18], we present a different definition
of the localizers here. It is based on the equivalent description of the Besov spaces from
Lemma A.9 and is better suited for the discrete setting.

Given (Lk)k�−1 ⊂ (0,∞) and f ∈ S ′(�ε) we define

U ε
> f := (

λ j,m
(
U ε
> f

))

−1� j�N−J,m∈Zd , U ε
� f :=

(
λ j,m

(
U ε

� f
))

−1� j�N−J,m∈Zd

where

λ j,m
(
U ε
> f

) :=
{
λ j,m( f ), if |m| ∼ 2k and j > Lk for some k ∈ {−1, 0, 1, . . . },
0, otherwise,

λ j,m

(
U ε

� f
)
:=

{
λ j,m( f ), if |m| ∼ 2k and j � Lk for some k ∈ {−1, 0, 1, . . . },
0, otherwise .

We observe that by definition f = U ε
> f +U ε

� f and the localizers U ε
>,U

ε
� will only

depend on ε through the cut-off of the coefficients λ (and consequently on the construc-
tion of the partition of unity on �̂ε, cf. Remark A.11), whereas the sequence (Lk)k�−1
will be chosen uniformly for all ε ∈ A.

Lemma A.12. Let ρ be a weight. Let α, β, γ ∈ R and a, b, c ∈ R such that α < β < γ ,
a < b < c and r := (b − a)/(β − α) = (c − b)/(γ − β) > 0. Let L > 0 be given.
There exists a sequence (Lk)k�−1 defining the above localizers such that

∥
∥U ε

> f
∥
∥
Bα,ε∞,∞(ρa) � 2−(β−α)L‖ f ‖

Bβ,ε∞,∞(ρb)
,

∥
∥
∥U ε

� f
∥
∥
∥
Bγ,ε∞,∞(ρc)

� 2(γ−β)L‖ f ‖
Bβ,ε∞,∞(ρb)

,

where the proportionality constants do not depend on ε ∈ A. Moreover, the sequence
(Lk)k�−1 depends only on L , ρ and the ratio r .

Proof. Since α < β and a < b, Lemma A.9 yields
∥
∥U ε

> f
∥
∥
Bα,ε∞,∞(ρa) � sup

−1� j�N−J
2α j sup

m∈Zd
ρa(2− j−Jm)

∣
∣λ j,m

(
U ε
> f

)∣
∣

= sup
k�−1

sup
m∼2k ,Lk< j�N−J

2(α−β) jρa−b(2− j−Jm)2β jρb(2− j−Jm)|λ j,m( f )|

� ‖ f ‖
Bβ,ε∞,∞(ρb)

sup
k�−1

sup
m∼2k ,Lk< j�N−J

2(α−β) jρa−b(2− j−Jm)
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� ‖ f ‖
Bβ,ε∞,∞(ρb)

sup
k�−1

2(α−β)Lkρa−b(2k),

where we used the fact that a < b, 2− j < 2−Lk and that the weight is decreasing to get

ρa−b(2− j−Jm) � ρa−b(2−Lk−J2k) � ρa−b(2k).

Now we set ck = − log2 ρ(2
k) to obtain

∥
∥U ε

> f
∥
∥
Bα,ε∞,∞(ρa) � ‖ f ‖

Bβ,ε∞,∞(ρb)
sup
k�−1

2−(β−α)Lk+(b−a)ck . (A.6)

On the other hand, since γ > β and c > b we have by the same arguments
∥
∥
∥U ε

� f
∥
∥
∥
Bγ,ε∞,∞(ρc)

� sup
−1� j�N−J

2γ j sup
m∈Zd

ρc(2− j−Jm)
∣
∣
∣λ j,m

(
U ε

� f
)∣
∣
∣

= sup
k�−1

sup
m∼2k ,−1� j�Lk∧(N−J )

2(γ−β) jρc−b(2− j−Jm)2β jρb(2− j−Jm)|λ j,m( f )|

� ‖ f ‖
Bβ,ε∞,∞(ρb)

sup
k�−1

2(γ−β)Lk−(c−b)ck . (A.7)

We see that if the weight is decreasing at infinity, then ck → ∞. From (A.6) we
obtain the condition −(β − α)Lk + (b − a)ck = −(β − α)L hence we shall choose
Lk = L + (b − a)ck/(β − α). Similarly, (A.7) yields (γ − β)Lk − (c − b)ck =
(γ − β)L hence Lk = L + (c − b)ck/(γ − β). Balancing these two conditions gives
(b − a)/(β − α) = (c − b)/(γ − β) and completes the proof. ��

A.3. Duality and commutators. In this section we define various commutators and es-
tablish suitable bounds.We denote byCε the operator introduced in Lemma 4.4 [MP17],
which for smooth functions satisfies

Cε( f, g, h) = h ◦ ( f ≺ g)− f (h ◦ g). (A.8)

We recall that if p, p1, p2 ∈ [1,∞] and α, β, γ ∈ R are such that 1
p = 1

p1
+ 1

p2
,

α + β + γ > 0 and β + γ �= 0, then the following bound holds

‖Cε( f, g, h)‖Bβ+γ,εp,∞ (ρ1ρ2ρ3)
� ‖ f ‖Bα,εp1,∞(ρ1)

‖g‖
Bβ,ε∞,∞(ρ2)

‖h‖
Bβ,εp2,∞(ρ3)

. (A.9)

As the next step, we show that g � is an approximate adjoint of g◦ in a suitable sense,
as first noted in [GUZ19].

Lemma A.13. Let ε ∈ A. Let α, β, γ ∈ R be such that α, γ > 0, β + γ < 0 and
α +β + γ > 0 and let ρ1, ρ2, ρ3 be weights and let ρ = ρ1ρ2ρ3. There exists a bounded
trilinear operator

Dρ,ε( f, g, h) : Hα,ε(ρ1)× C β,ε(ρ2)× Hγ,ε(ρ3)→ R

such that

|Dρ,ε( f, g, h)| � ‖ f ‖Hα,ε(ρ1)‖g‖C β,ε(ρ2)
‖h‖Hγ,ε(ρ3)

where the proportionality constant is independent of ε, and for smooth functions we
have

Dρ,ε( f, g, h) = 〈ρ f, g ◦ h〉ε − 〈ρ( f ≺ g), h〉ε.



A PDE Construction of the Euclidean �4
3 Quantum Field Theory 65

Proof. We define

Dρ,ε( f, g, h) := 〈ρ,Cε( f, g, h)〉ε − 〈ρ, ( f ≺ g) � h〉ε − 〈ρ, ( f ≺ g) ≺ h〉ε,

where Cε was defined above. Hence the desired formula holds for smooth functions. By
(A.9) and the paraproduct estimates we have

‖Cε( f, g, h)‖Bβ+γ−δ,ε1,1 (ρ)
� ‖Cε( f, g, h)‖Bβ+γ,ε1,∞ (ρ)

� ‖ f ‖Bα,ε2,∞(ρ1)
‖g‖

Bβ,ε∞,∞(ρ2)
‖h‖Bγ,ε2,∞(ρ3)

,

‖( f ≺ g) � h‖
Bβ−δ,ε1,1 (ρ)

� ‖( f ≺ g) � h‖
Bβ,ε1,∞(ρ)

� ‖ f ‖Bα,ε2,∞(ρ1)
‖g‖

Bβ,ε∞,∞(ρ2)
‖h‖Bγ,ε2,∞(ρ3)

,

‖( f ≺ g) ≺ h‖
Bβ+γ−δ,ε1,1 (ρ)

� ‖( f ≺ g) ≺ h‖
Bβ+γ,ε1,∞ (ρ)

� ‖ f ‖Bα,ε2,∞(ρ1)
‖g‖

Bβ,ε∞,∞(ρ2)
‖h‖Bγ,ε2,∞(ρ3)

,

and the right hand side is estimated by

‖ f ‖Bα,ε2,∞(ρ1)‖g‖Bβ,ε∞,∞(ρ2)
‖h‖Bγ,ε2,∞(ρ3)

� ‖ f ‖Bα,ε2,2 (ρ1)
‖g‖

Bβ,ε∞,∞(ρ2)
‖h‖Bγ,ε2,2 (ρ3)

.

Consequently,

|Dρ,ε( f, g, h)| � ‖1‖
B−β+δ,ε∞,∞

‖ f ‖Bα,ε2,2 (ρ1)
‖g‖

Bβ,ε∞,∞(ρ2)
‖h‖Bγ,ε2,2 (ρ3)

which completes the proof. ��
Next, we show several commutator estimates. To this end, �ε denotes the discrete

Laplacian on �ε and we define the corresponding elliptic and parabolic operators by
Qε := m2 −�ε and Lε := ∂t +Qε, where m2 > 0.

Lemma A.14. Let ε ∈ A. Let α, β, γ ∈ R such that α ∈ (0, 1), β + γ + 2 < 0 and
α + β + γ + 2 > 0. Let ρ1, ρ2, ρ3 be space weights and let ρ4, ρ5, ρ6 be space-time
weights. Then there exist bounded trilinear operators

C̃ε : Hα,ε(ρ1)× C β,ε(ρ2)× C γ+δ,ε(ρ3)→ Hβ+γ+2,ε(ρ1ρ2ρ3),

C̄ε : CTC
α,ε(ρ4)× CTC

β,ε(ρ5)× CTC
γ+δ,ε(ρ6)→ CTC

β+γ+2,ε(ρ4ρ5ρ6)

such that for every δ > 0

‖C̃ε( f, g, h)‖Hβ+γ+2,ε(ρ1ρ2ρ3)
� ‖ f ‖Hα,ε(ρ1)‖g‖C β,ε(ρ2)

‖h‖C γ+δ,ε(ρ3)
,

‖C̄ε( f, g, h)‖CTC β+γ+2,ε(ρ4ρ5ρ6)

�
(‖ f ‖CTC α,ε(ρ4) + ‖ f ‖Cα/2

T L∞,ε(ρ4)

)‖g‖CTC β,ε(ρ5)
‖h‖CTC γ+δ,ε(ρ6)

,

where the proportionality constants are independent of ε, and for smooth functions we
have

C̃ε( f, g, h) = h ◦Q−1
ε ( f ≺ g)− f

(
h ◦Q−1

ε g
)
,

C̄ε( f, g, h) = h ◦L −1
ε ( f ≺ g)− f

(
h ◦L −1

ε g
)
. (A.10)
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Proof. First, we define

C̃ε( f, g, h) := h ◦
[
Q−1
ε ( f ≺ g)− f ≺ Q−1

ε g
]
+ Cε

(
f,Q−1

ε g, h
)
,

where Cε was introduced above. Hence for smooth functions we obtain the desired
formula (A.10). Moreover, by (A.9) the operator Cε can be estimated (uniformly in ε)
for δ > 0 as

∥
∥
∥Cε

(
f,Q−1

ε g, h
)∥
∥
∥
Hβ+γ+2,ε(ρ1ρ2ρ3)

�
∥
∥
∥Cε

(
f,Q−1

ε g, h
)∥
∥
∥
Bβ+γ+2+δ,ε2,∞ (ρ1ρ2ρ3)

� ‖ f ‖Bα,ε2,∞(ρ1)‖g‖C β,ε(ρ2)
‖h‖C γ+δ,ε(ρ3)

� ‖ f ‖Hα,ε(ρ1)‖g‖C β,ε(ρ2)
‖h‖C γ+δ,ε(ρ3)

.

For the first term in C̃ε we write

Q−1
ε ( f ≺ g)− f ≺ Q−1

ε g = Q−1
ε

[
f ≺ QεQ

−1
ε g −Qε

(
f ≺ Q−1

ε g
)]

and as a consequence
∥
∥
∥h ◦

[
Q−1
ε ( f ≺ g)− f ≺ Q−1

ε g
]∥
∥
∥
Hα+β+γ+2,ε(ρ1ρ2ρ3)

� ‖h‖C γ+δ,ε(ρ3)

∥
∥
∥ f ≺ QεQ

−1
ε g −Qε

(
f ≺ Q−1

ε g
)∥
∥
∥
Hα+β−δ,ε(ρ1ρ2)

.

Finally, we observe that due to an argument similar to Lemma 4.9 [MP17] we may
control

∇ε f ≺ ∇εg := 1

2

(
�ε( f ≺ g)−�ε f ≺ g − f ≺ �εg

)
,

hence
∥
∥
∥ f ≺ QεQ

−1
ε g −Qε

(
f ≺ Q−1

ε g
)∥
∥
∥
Hα+β−δ,ε(ρ1ρ2)

�
∥
∥
∥ f ≺ QεQ

−1
ε g −Qε

(
f ≺ Q−1

ε g
)∥
∥
∥
Bα+β,ε2,∞ (ρ1ρ2)

� ‖ f ‖Bα,ε2,∞(ρ1)‖g‖C β,ε(ρ2)

� ‖ f ‖Hα,ε(ρ1)‖g‖C β,ε(ρ2)
.

We proceed similarly for the parabolic commutator C̄ε, but include additionally a mod-
ified paraproduct given by

f ≺≺ g :=
∑

1�i, j�N−J,i< j−1
�ε

i Qi f�
ε
j g,

where

Qi f (t) =
∫

R

22i Q(22i (t − s)) f ((s ∨ 0) ∧ T )ds

for some smooth, nonnegative, compactly supported function Q : R → R that integrates
to 1. Namely, we define

C̄ε( f, g, h) := h ◦
[
L −1
ε ( f ≺≺ g)− f ≺≺ L −1

ε g
]
+ h ◦

[
L −1
ε ( f ≺ g − f ≺≺ g)

]
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+ h ◦
[
f ≺≺ L −1

ε g − f ≺ L −1
ε g

]
+ Cε

(
f,L −1

ε g, h
)
,

and observe that for smooth functions

C̄ε( f, g, h) = h ◦
[
L −1
ε ( f ≺ g)− f ≺ L −1

ε g
]

+
[
h ◦

(
f ≺ L −1

ε g
)
− f

(
h ◦L −1

ε g
)]

= h ◦L −1
ε ( f ≺ g)− f

(
h ◦L −1

ε g
)
,

and the desired bound follows from Lemma 4.9 in [MP17] and (A.9). ��

A.4. Extension operators. In order to construct the Euclidean quantum field theory as
a limit of lattice approximations, we need a suitable extension operator that allows to
extend distributions defined on the lattice �ε to the full space R

d . To this end, we
proceed as in Section 2.4, page 2072 in [MP17]. Namely, let ψ be a smooth and radially
symmetric smear function satisfying the properties 1., 2., 3. on page 2072 in [MP17]
and let ψε(·) = ψ(ε·). We define

Eε f := F−1
Rd

(
ψε(F�ε f )ext

)
, f ∈ S ′(�ε),

where (·)ext : S ′((ε−1T)d)→ S ′(Rd) is the periodic extension operator defined by

gext(ϕ) := g

⎛

⎝
∑

k∈(ε−1Z)d
ϕ(· − k)

⎞

⎠ , ϕ ∈ S(Rd).

With the definition of the Dirac comb distribution fdir ∈ S ′(Rd) as in (10) in [MP17]

fdir = εd
∑

k∈�ε

f (k)δ(· − k), f ∈ S ′(�ε),

it was observed in (14) in [MP17] that

(F�ε f )ext = FRd ( fdir).

Hence

Eε f = F−1
Rd (ψ

ε(F�ε f )ext) = (F−1
Rd ψ

ε) ∗ F−1
Rd FRd ( fdir) =: wε ∗ fdir = wε ∗ε f,

where wε(·) = F−1
Rd ψ

ε(·) = ε−dF−1
Rd ψ(ε

−1·) =: ε−dw(ε−1·) ∈ S(Rd). With a slight
abuse of notation we used the same notation ∗ε as for the convolution on the lattice �ε

to denote the operation

(wε ∗ε f )(x) := εd
∑

y∈�ε

wε(x − y) f (y), x ∈ R
d ,

which defines a function on the full space R
d . Note that since ψ is radially symmetric,

w is radially symmetric as well.
The following result is Lemma 2.24 in [MP17].

Lemma A.15. Let α ∈ R, p, q ∈ [1,∞] and let ρ be a weight. Then the operators

Eε : Bα,εp,q(ρ)→ Bαp,q(ρ)

are bounded uniformly in ε.
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A.5. A Schauder estimate. In this section we establish a suitable Schauder-type estimate
needed in Section A.6.

Lemma A.16. Letρ be aweight and let Pε
t = et (�ε−m2) denote the semigroup generated

by �ε − m2. Then there exists c > 0 uniform in ε such that for all −1 � j � N − J

‖Pε
t �

ε
j f ‖L1,ε(ρ) � e−t (m2+c22 j )‖�ε

j f ‖L1,ε(ρ),

where the proportionality constant does not depend on ε and t � 0.

Proof. Recall that the discrete Laplacian �ε acts in the Fourier space as

F(e−t (�ε−m2) f )(k) = e−tlε(k) f̂ (k),

where

lε(k) = m2 + 4
∑

j

sin2(επk j )/ε
2.

Consequently, for−1 � j � N − J we have using the fact that F−1(gh) = F−1
Rd (g) ∗ε

F−1(h) (where F−1 denotes the inverse Fourier transform on the lattice�ε) we obtain

�ε
j [et (m

2−�ε) f ] = [2 jdVj (2
j ·)] ∗ε �ε

j f,

where

Vj (x) :=
∫

Rd
ei2πx ·ξ e−tlε(2 j ξ)ϕ̄(ξ)dξ,

where ϕ̄ is obtained by a rescaling of ϕ̄ j = ∑
−1�i<∞;i∼ j ϕi . Next, for M ∈ N we want

to show that
|(1 + |2πx |2)MVj (x)| � e−t (m2+c22 j ), x ∈ R

d . (A.11)

Indeed, with this in hand we may apply Lemma A.8 to deduce the claim.
In order to show (A.11) we compute

(1 + |2πx |2)MVj (x) =
∫

Rd
[(1−�ξ)

Mei2πx ·ξ ]e−tlε(2 j ξ)ϕ̄(ξ)dξ

=
∫

Rd
ei2πx ·ξ (1−�ξ)

M [e−tlε(2 j ξ)ϕ̄(ξ)]dξ

where for a multiindex α ∈ N
d

∂αξ e
−tlε(2 j ξ) = e−tlε(2 j ξ)

∑

0�|β|�|α|
cα,β∂

β
ξ lε(2

jξ)

therefore using the bounds from Lemma 3.5 in [MP17] we obtain

|∂αξ e−tlε(2
j ξ)| � e−tm2

e−2tc(2 j ξ)2
∑

0�|β|�|α|
ε(|β|−2)∨0(1 + |2 jξ |2) � e−tm2

e−tc(2 j ξ)2 .

Therefore

|(1 + |2πx |2)MVj (x)| �
∫

Rd
e−tc(2 j ξ)2 ϕ̄(ξ)dξ � e−tm2

e−tc22 j

and (A.11) is proven. ��
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Lemma A.17. Let α ∈ R and let ρ be a weight. Let v solve

Lεv = f, v(0) = v0.

Then

‖v‖L1
T B

α,ε
1,1 (ρ)

� ‖v0‖Bα−2,ε1,1 (ρ)
+ ‖ f ‖L1

T B
α−2,ε
1,1 (ρ)

,

where the proportionality constant does not depend on T and ε.

Proof. Applying the Littlewood–Paley projectors we obtain

�ε
jv(t) = Pε

t �
ε
jv0 +

∫ t

0
Pε
t−s�ε

j f (s)ds.

Hence according to Lemma A.16 there exists c > 0 such that for−1 � j � N − J and
uniformly in T > 0 and ε

‖v‖L1
T B

α,ε
1,1 (ρ)

=
∫ T

0

∑

−1� j�N−J

2α j‖�ε
jv(t)‖L1,ε(ρ)dt

�
∫ T

0

∑

−1� j�N−J

2α j‖Pε
t �

ε
jv0‖L1,ε(ρ)dt

+
∫ T

0

∑

−1� j�N−J

2α j
∫ t

0
‖Pε

t−s�ε
j f (s)‖L1,ε(ρ)dsdt

�
∑

−1� j�N−J

2α j
∫ ∞

0
e−t (m2+c22 j )dt‖�ε

jv0‖L1,ε(ρ)

+
∑

−1� j�N−J

2α j
∫ T

0

[∫ ∞

0
e−(t−s)(m2+c22 j )dt

]

‖�ε
j f (s)‖L1,ε(ρ)ds

�
∑

−1� j�N−J

2(α−2) j‖� jv0‖L1,ε(ρ)

+
∑

−1� j�N−J

2(α−2) j
∫ T

0
‖�ε

j f (s)‖L1,ε(ρ)ds

= ‖v0‖Bα−2,ε1,1 (ρ)
+ ‖ f ‖L1

T B
α−2,ε
1,1 (ρ)

.

��

A.6. Regularity of χM,ε. Finally, we proceed with the proof of the proof of Proposi-
tion 6.1.

Proof of Proposition 6.1. For notational simplicity we fix the parameter M and omit
the dependence of the various distributions on M throughout the proof. In addition, the
λ-dependent constants are always bounded uniformly over λ ∈ [0, λ0] for every λ0 > 0.

In view of (6.2) we obtain

‖ρ2+σ χε‖L∞T L2,ε � ‖ρ2φε‖L∞T L2,ε + ‖ρ2+σ (3λXε � φε)‖L∞T L2,ε � Cλ‖ρ2φε‖L∞T L2,εQρ(Xε),
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where, by Theorem 4.5,

‖ρ2φε(t)‖2L2,ε � Ct,λQρ(Xε) + ‖ρ2φε(0)‖2L2,ε .

Thus
‖ρ2+σ χε‖L∞T L2,ε � CT,λQρ(Xε)(1 + ‖ρ2φε(0)‖L2,ε ). (A.12)

Next, we intend to apply Lemma A.17 to (6.3) in the form

‖ρ4χε‖L1
T B

1+3κ,ε
1,1

� ‖ρ4χε(0)‖B−1+3κ,ε1,1
+

∥
∥
∥ρ

4Lεχε

∥
∥
∥
L1
T B

−1+3κ,ε
1,1

.

In view of the second term on the right hand side of (6.3) we shall therefore estimateUε

in B−1+3κ,ε1,1 (ρ4−σ ) as the weight ρσ will be lost to control X . Let us first show how to
bound the terms that contain higher powers ofφ, all the other terms being straightforward.
By paraproduct estimates Lemma A.7 and Lemma A.6, we obtain

‖ρ4−σ λXεφ2
ε‖B−1+3κ,ε1,1

� λ‖ρσ Xε‖C −1/2−κ,ε‖ρ4−2σ φ2
ε‖B1/2+2κ,ε

1,1

� λ‖ρσ Xε‖C −1/2−κ,ε‖ρ1+ιφε‖L2,ε‖ρ2φε‖H1/2+3κ,ε � λQρ(Xε)‖ρφε‖L4,ε‖ρ2φε‖H1−2κ,ε

while

‖ρ4−σ3λYεφ2
ε‖B−1+3κ,ε1,1

� λ‖ρσYε‖C 1/2−κ,ε‖ρ4−2σ φ2
ε‖Bκ,ε1,1

� λ‖ρσYε‖C 1/2−κ,ε‖ρ1+ιφε‖L2,ε‖ρ2φε‖H2κ,ε � λ2Qρ(Xε)‖ρφε‖L4,ε‖ρ2φε‖H1−2κ,ε ,

and by interpolation for θ = 1−4κ
1−2κ

‖ρ4−σ λφ3
ε‖B−1+3κ,ε1,1

� λ‖ρ4−σ φ3
ε‖Bκ,ε1,1

� λ‖ρφε‖2L4,ε‖ρ2−σ φε‖H2κ,ε

� λ‖ρφε‖2L4,ε‖ρ1+ιφε‖θL2,ε‖ρ2φε‖1−θH1−2κ,ε � λ‖ρφε‖2+θL4,ε‖ρ2φε‖1−θH1−2κ,ε .

Consequently, we use the embeddings Bα+κ,ε2,2 (ρ2+β) ⊂ Bα,ε1,1 (ρ
4−σ ) and Bα+κ,ε∞,∞ (ρβ) ⊂

Bα,ε1,1 (ρ
4−σ ) for α ∈ R (provided the weight possesses enough integrability and β, σ > 0

are sufficiently small). We deduce

‖ρ4−σUε‖B−1+3κ,ε1,1

� λ2‖ρσ X̃ε ‖C−κ,ε‖ρ2φε‖H1−2κ,ε + λ2| log t |‖ρ2φε‖H1−2κ,ε

+ λ2‖ρσ �X2
ε�‖C−1−κ,ε‖ρσ Xε‖C 1−κ,ε‖ρ2φε‖H1−2κ,ε

+ λ‖ρσ �X2
ε�‖C−1−κ,ε‖ρ4−2σχε‖B1+2κ,ε

1,1
+ λ2‖ρσ Zε‖C−1/2−κ,ε

+ λ‖ρσ �X2
ε�‖C−1−κ,ε

(
‖ρσYε‖C 1/2−κ,ε + ‖ρ2φε‖H1−2κ,ε

)

+ λ(1 + λ‖ρσ �X2
ε�‖C−1−κ,ε )‖ρσ �X2

ε�‖C−1−κ,ε‖ρσYε‖C 1/2−κ,ε

+ λ‖ρσ XεY 2
ε ‖C−1/2−κ,ε + λ‖ρσ XεYε‖C−1/2−κ,ε‖ρ2φε‖H1−2κ,ε

+ λ‖ρσ Xε‖C−1/2−κ,ε‖ρφε‖L4,ε‖ρ2φε‖H1−2κ,ε + λ‖ρσYε‖3C 1/2−κ,ε

+ λ‖ρσYε‖2C 1/2−κ,ε‖ρφε‖L4,ε + λ‖ρσYε‖C 1/2−κ,ε‖ρφε‖L4,ε‖ρ2φε‖H1−2κ,ε
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+ λ‖ρφε‖2+θL4,ε‖ρ2φε‖1−θH1−2κ,ε

� | log t |(λ3Qρ(Xε) + λ
2‖ρ2φε‖H1−2κ,ε ) + Qρ(Xε)(λ

2 + λ4)

+ (λ + λ2)Qρ(Xε)(‖ρ2φε‖H1−2κ,ε + ‖ρ4−2σχε‖B1+2κ,ε
1,1

+ ‖ρφε‖L4,ε‖ρ2φε‖H1−2κ,ε )

+ Qρ(Xε)(λ
3‖ρφε‖L4,ε + λ‖ρφε‖2+θL4,ε‖ρ2φε‖1−θH1−2κ,ε ).

Thus
∥
∥
∥ρ

4Lεχε

∥
∥
∥
B−1+3κ,ε1,1

� ‖ρ4Uε‖B−1+3κ,ε1,1

+ λ‖ρσ Xε‖C 1−κ,ε (λ‖ρσ �X2
ε�‖C−1−κ,ε‖ρ4−2σ φε‖L2,ε + ‖ρ4−σUε‖B−1+3κ,ε1,1

)

+ λ‖ρσ Xε‖C 1−κ,ε‖ρ4−σ φε‖H1−2κ,ε

� Cλ| log t |(Qρ(Xε) + ‖ρ2φε‖H1−2κ,ε ) + CλQρ(Xε)

+ CλQρ(Xε)(‖ρ2φε‖H1−2κ,ε + ‖ρ4−2σχε‖B1+2κ,ε
1,1

+ ‖ρφε‖L4,ε‖ρ2φε‖H1−2κ,ε )

+ CλQρ(Xε)(‖ρφε‖L4,ε + ‖ρφε‖2+θL4,ε‖ρ2φε‖1−θH1−2κ,ε )

Using repeatedly the Young inequality and also (4.23) we obtain

∥
∥
∥ρ

4Lεχε

∥
∥
∥
B−1+3κ,ε1,1

� Cλ(1 + | log t | + | log t |2)Qρ(Xε) + λ‖ρφε‖4L4,ε + ‖ρ2φε‖2H1−2κ,ε

+ CλQρ(Xε)‖ρ4−2σχε‖B1+2κ,ε
1,1

.

This bound, together with the energy estimate from Theorem 4.5 imply

∥
∥
∥ρ

4Lεχε

∥
∥
∥
L1
T B

−1+3κ,ε
1,1

� CT,m2,λQρ(Xε)(1 + ‖ρ4−2σ χε‖L1
T B

1+2κ,ε
1,1

).

By interpolation, embedding and the bound (A.12) we obtain for θ = 1+3κ
1+4κ (and under

the condition that κ, σ, ι ∈ (0, 1) were chosen such that θ � 2−3σ−2ι
2−σ−2ι ) that

‖ρ4−2σ χε‖L1
T B

1+2κ,ε
1,1

�
∫ T

0
‖ρ2+σ+2ιχε(t)‖1−θB−κ,ε1,1

‖ρ4χε(t)‖θB1+3κ,ε
1,1

dt

�
∫ T

0
‖ρ2+σ χε(t)‖1−θL2,ε‖ρ4χε(t)‖θB1+3κ,ε

1,1
dt � ‖ρ2+σ χε(t)‖1−θL∞T L2,ε

∫ T

0
‖ρ4χε(t)‖θB1+3κ,ε

1,1
dt

� CT,λQρ(Xε)(1 + ‖ρ2φε(0)‖1−θL2,ε )

∫ T

0
‖ρ4χε(t)‖θB1+3κ,ε

1,1
dt.

Consequently,

∥
∥
∥ρ

4Lεχε

∥
∥
∥
L1
T B

−1+3κ,ε
1,1

� CT,m2,λQρ(Xε)

+CT,λQρ(Xε)(1 + ‖ρ2φε(0)‖1−θL2,ε )

∫ T

0
‖ρ4χε(t)‖θB1+3κ,ε

1,1
dt
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� CT,m2,λ,δQρ(Xε)(1 + ‖ρ2φε(0)‖L2,ε ) + δ‖ρ4χε‖L1
T B

1+3κ,ε
1,1

,

which finally leads to

‖ρ4χε‖L1
T B

1+3κ,ε
1,1

� ‖ρ4χε(0)‖B−1+3κ,ε1,1
+ CT,m2,λQρ(Xε)(1 + ‖ρ2φε(0)‖L2,ε )

by Lemma A.17 and since χε(0) = φε(0) and L2,ε(ρ2) ⊂ B−1+3κ,ε1,1 (ρ4), the claim
follows. ��
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