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Abstract: Borcherds-Kac-Moody algebras generalise finite-dimensional, simple Lie
algebras. Scheithauer showed that there are exactly ten Borcherds-Kac-Moody algebras
whose denominator identities are completely reflective automorphic products of singular
weight on lattices of square-free level. These belong to a larger class of Borcherds-Kac-
Moody (super)algebras Borcherds obtained by twisting the denominator identity of the
Fake Monster Lie algebra. Borcherds asked whether these Lie (super)algebras admit
natural constructions. For the ten Lie algebras from the classification we give a positive
answer to this question, i.e. we prove that they can be realised uniformly as the BRST
cohomology of suitable vertex algebras.
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1. Introduction

There is an intriguing relation between vertex algebras, Borcherds-Kac-Moody alge-
bras and automorphic forms. Vertex (operator) algebras give a mathematically rigor-
ous description of two-dimensional conformal field theories [2,30]. Borcherds-Kac-
Moody algebras (or generalised Kac-Moody algebras) are natural generalisations of
finite-dimensional, simple Lie algebras defined by generators and relations [3]. Both
concepts were famously used by Borcherds in his proof of the Monstrous Moonshine
conjecture [6].
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Sometimes, the denominator identities of Borcherds-Kac-Moody algebras are auto-
morphic formsonorthogonal groups.Classification results for suchLie algebraswere ob-
tained in [31,32,54]. It is conjectured that those Borcherds-Kac-Moody algebras whose
denominator identities are automorphic products of singular weight [8] can all be re-
alised in natural constructions, i.e. other than by generators and relations, for example
as string quantisations of suitable conformal vertex algebras M of central charge 26 (see
Problem 8 in [10]).

On the other hand, in [6] a large class of Borcherds-Kac-Moody (super)algebras gφν

was obtained by twisting the denominator identity of the Fake Monster Lie algebra [5]
by elements ν ∈ O(�) ∼= Co0, the automorphism group of the Leech lattice �, or, more
precisely, by their standard lifts φν (see Sect. 2.2). Borcherds then asked if also these
Lie algebras can be obtained in natural constructions (see [6, Section 15]).

In Sect. 4, as ourmain result, we give bosonic string constructions (based on theBRST
or semi-infinite cohomology [27,28]) of ten particularly nice special cases, namely those
Borcherds-Kac-Moody algebras gφν associated with the elements ν of square-free order
m in the Mathieu group M23, viewed as a subgroup of O(�), hence giving a partial
positive answer to Borcherds’ question.

Theorem (Main Result, Theorem 4.31). Let ν be of square-free order in M23. Then
there is a conformal vertex algebra Mφν of central charge 26 whose BRST cohomology
H1
BRST(Mφν ) is isomorphic to the (complexification of the) Borcherds-Kac-Moody alge-

bra gφν obtained by twisting the denominator identity of the Fake Monster Lie algebra
by φν .

This also adds evidence to the aforementioned conjecture since it was proved in [54]
that these ten Borcherds-Kac-Moody algebras are exactly those whose denominator
identities are completely reflective automorphic products of singular weight on lattices
of square-free level (see Sect. 2.3).

In fact, we shall see that their denominator identities are Borcherds lifts of certain
vector-valued characters associated with the vertex algebras Mφν in the input of the
BRST construction (see Proposition 3.10 and Remark 3.11).

The construction of Mφν as a certain simple-current extension involving the fixed-

point vertex operator subalgebra V φν

� of the Leech lattice vertex operator algebra V�

(see Proposition 3.1) is made possible by recent advancements in orbifold theory, most
notably in [26,38,47] (see Sect. 3.2).

Some of these ten Borcherds-Kac-Moody algebras have already been constructed
as string quantisations. Clearly, for ν = id we obtain the Fake Monster Lie algebra
[5] itself. For the automorphism of order 2 in M23 one obtains the Fake Baby Monster
Lie algebra [34]. With a slightly less effective method in [15] the authors constructed
the four Borcherds-Kac-Moody algebras associated with the automorphisms in M23 of
order 2, 3, 5 and 7 depending on some conjectures.

The main notions and their connections are depicted in the following diagram and in
the diagram at the end of Sect. 4:

Vertex
algebras

Borcherds-Kac-
Moody algebras

Automorphic
products

quantise

lift of char.

den. id.

The paper is organised as follows:
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In Sect. 2we state a sufficient criterion for aLie algebra to be aBorcherds-Kac-Moody
algebra, describe Borcherds’ twisting procedure for the Fake Monster Lie algebra and
state Scheithauer’s classification result.

In Sect. 3 we describe orbifold results for vertex operator algebras associated with
coinvariant sublattices of unimodular lattices and then construct the ten conformal ver-
tex algebras of central charge 26 that will serve as input for the BRST quantisation
construction.

In Sect. 4 we describe the BRST quantisation, study the ten Borcherds-Kac-Moody
algebras obtained in this procedure and state themain result of the paper (Theorem 4.31).

Conventions. All Lie algebras and vertex algebras will be over the base field C unless
otherwise noted, in which case they will be over R. Note that τ will always be assumed
to be in the upper half-plane H = {z ∈ C | Im(z) > 0} and q = e(2π i)τ .

2. Borcherds-Kac-Moody Algebras

In this section we discuss Borcherds-Kac-Moody algebras and in particular the ten
Borcherds-Kac-Moody algebras for which we develop string constructions in this text.

Borcherds-Kac-Moody algebras (or generalised Kac-Moody algebras) are a class
of infinite-dimensional Lie algebras introduced in [3] (see also [6,36]) naturally gen-
eralising Kac-Moody algebras, which in turn generalise finite-dimensional, simple Lie
algebras. Like Kac-Moody algebras, Borcherds-Kac-Moody algebras are defined by
generators and relations, which are encoded in a generalised Cartan matrix. However,
the restrictions on the generalised Cartan matrix are weaker, and, in particular, simple
roots may be imaginary.

Borcherds-Kac-Moody algebras admit representation-theoretic data like a character
formula for highest-weight modules and a denominator identity

eρ
∏

α∈	+

(1 − eα)mult(α) =
∑

w∈W
det(w)w

(
eρ

∑

α∈	

ε(α)eα

)
,

an identity of formal exponentials, where the second sum is over all roots α in the root
system 	 and the product ranges over the set 	+ of positive roots, W denotes the Weyl
group, ρ the Weyl vector, mult(α) the multiplicity of the root α and ε(α) is (−1)n if α

is the sum of n pairwise orthogonal imaginary simple roots and 0 otherwise.

2.1. Borcherds-Kac-Moody property. In the followingwe state a sufficient criterion that
will allow us to identify complex Lie algebras as Borcherds-Kac-Moody algebras. It is a
slight modification of Theorem 1 in [7] where the case of real Lie algebras was treated:

Proposition 2.1 ([12], Lemma 3.4.2). Let g be a complex Lie algebra satisfying the
following conditions:

(1) g admits a non-degenerate, symmetric, invariant bilinear form (·, ·).
(2) g has a self-centralising subalgebraH, called a Cartan subalgebra, such that g is the

direct sumof eigenspaces under the adjoint action ofH and the non-zero eigenvalues,
called roots, have finite multiplicity.
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(3) There is a real subspace HR of H such that H = HR ⊗R C, the bilinear form is
real-valued on HR and the roots lie in the dual space (HR)∗.

(4) The norms of the roots under the inner product (·, ·) are bounded from above.
(5) There exists a vector hreg. ∈ HR, called a regular element, such that:

(a) H = Cg(hreg.), the centraliser of hreg. in g,
(b) for any M ∈ R, there exist only finitely many roots α such that |α(hreg.)| < M.

(If α(hreg.) < 0, we say that the root α is negative and if α(hreg.) > 0, we say that α is
positive.)

(6) Any two roots of non-positive norm that are both positive or both negative have inner
product at most zero, and if the inner product is zero, then their root spaces commute.

Then g is a Borcherds-Kac-Moody algebra.

We can simplify the above criterion if the Lie algebra is Lorentzian, i.e. if the bilinear
form restricted toHR has Lorentzian signature:

Proposition 2.2 (cf. [7], Theorem 2). Let g be a complex Lie algebra satisfying condi-
tions (1) to (4) in the above proposition. Assume that the bilinear form restricted toHR

is Lorentzian, i.e. has signature (dim(H) − 1, 1). Then (5) is fulfilled. Moreover, (6) is
true if additionally the following holds: if two roots are positive multiples of the same
norm-zero vector, then their root spaces commute.

Proof. This is essentially Theorem 2 in [7] adapted to the case of complex Lie algebras.
In the case of complex gwe have to replaceH byHR and can apply the same arguments.

��

2.2. Twisting the Fake Monster Lie algebra. In [6], in addition to his famous proof of
the Monstrous Moonshine conjecture, Borcherds also constructed a class of Borcherds-
Kac-Moody (super)algebras by twisting the denominator identity of the Fake Monster
Lie algebra, both as Lie (super)algebras over R. We shall describe this construction and
a nice special case in the following.

The Fake Monster Lie algebra g [5], originally called Monster Lie algebra1 by
Borcherds, is the II25,1-graded (real) Borcherds-Kac-Moody algebra obtained as quan-
tisation (see Sect. 4) of the conformal vertex algebra M = VII25,1 of central charge
26 associated with the unique even, unimodular lattice II25,1 of Lorentzian signature
(25, 1).

Let � denote the Leech lattice, i.e. the unique positive-definite, even, unimodular
lattice of dimension 24 that has no roots. The root lattice of the Fake Monster Lie
algebra g is II25,1 ∼= � ⊕ II1,1 with elements α = (λ,m, n) for λ ∈ �, m, n ∈ Z and
norm 〈α, α〉/2 = 〈λ, λ〉/2 − mn. A non-zero vector α ∈ II25,1 is a root if and only if
〈α, α〉/2 ≤ 1, in which case it has multiplicity

dim(g(α)) =
[

1

η24

] (
−〈α, α〉

2

)

whereη is theDedekind eta function, amodular formofweight 1/2. The real simple roots
ofg are the vectorsα ∈ II25,1 of norm 〈α, α〉/2 = 1 satisfying 〈α, ρ〉 = −〈α, α〉/2 = −1

1 The term Monster Lie algebra was later recoined to denote the Borcherds-Kac-Moody algebra obtained
as quantisation of V  ⊗ VII1,1 (with the Moonshine module V  [30]), which was used by Borcherds in his
proof of the Monstrous Moonshine conjecture [6].
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where ρ = (0, 0, 1) is (a choice of) theWeyl vector. They generate theWeyl groupW of
g, which is the full reflection group of II25,1. The imaginary simple roots are the positive
multiples nρ, n ∈ Z>0, of the Weyl vector, each with multiplicity 24. The denominator
identity of g is

eρ
∏

α∈	+

(1 − eα)[1/η24](−〈α,α〉/2) =
∑

w∈W
det(w)w(η24(eρ)).

Note that η24(eρ) = eρ
∏∞

n=1(1 − enρ)24 and recall that 	+ denotes the set of posi-
tive roots. Upon replacing the formal exponentials by complex ones, the above is the
expansion of a certain automorphic product � of weight 12 for O(II26,2)+.2

We describe certain automorphisms of the Fake Monster Lie algebra g. The auto-
morphism group of the Leech lattice vertex operator algebra V� acts on M = VII25,1

∼=
V� ⊗VII1,1 by trivially extending the automorphisms to the tensor product. This implies
that Aut(V�) acts as Lie algebra automorphisms on g (see comment after Proposi-
tion 4.5). Explicitly, by the vanishing theorem (see Propositions 4.9 and 4.10), viewing
M and g only as II1,1-graded for the moment, the graded component g(β) is isomorphic
as an Aut(V�)-module to the L0-weight space (V�)1−〈β,β〉/2 for non-zero β ∈ II1,1 and
to (V�)1 ⊕ R

1,1 for β = 0.
Given an automorphism of the Borcherds-Kac-Moody algebra g, Borcherds defined

a twisted denominator identity [6]. Sometimes, this will be the (untwisted) denominator
identity of some other Borcherds-Kac-Moody (super)algebra. We describe some special
cases. For an automorphism ν ∈ O(�) of order m, let φν ∈ O(�̂) ≤ Aut(V�) be
the (up to conjugacy unique) standard lift of ν (see Sect. 3.1). For simplicity, we also
assume that φk

ν is a standard lift of νk for all k ∈ Z≥0, which is for example the case if
ν has odd order. In particular, φν has the same order as ν. Borcherds then computes the
corresponding twisted denominator identity and shows that it is the denominator identity
of a real Borcherds-Kac-Moody superalgebra, which we shall call gφν in the following.
Depending on ν, this Lie superalgebra gφν will sometimes be a Lie algebra.

For a lattice automorphism ν of orderm with cycle shape
∏

t |m tbt , bt ∈ Z, we define

the associated eta product as ην(τ ) := ∏
t |m η(tτ)bt . The level of such an automorphism

is defined as the level of the subgroup of SL2(Z) fixing the eta product ην under modular
transformations, and this is the smallest positive multiple N of m = |ν| such that 24
divides N

∑
t |m bt/t .

Scheithauer showed that if ν has square-free level, then the φν-twisted denominator
identity of g, i.e. the denominator identity of gφν , is an automorphic form of singular
weight −w := rk(�ν)/2 =: k/2 − 1 in the image of the Borcherds lift, i.e. an auto-
morphic product (see [54], Theorem 10.1, [52,55]). Indeed, starting from the modular
form 1/ην he constructed a vector-valued modular form F of weight w = 1− k/2 (see
Sect. 3.5), which he then lifted, using the Borcherds lift [8], to an automorphic product
�φν whose expansion at a certain cusp gives the denominator identity of gφν .

Finally, we describe the nice special case relevant for this text, which is obtained for
ten particular conjugacy classes of automorphisms of the Leech lattice �. Let m ∈ Z>0
be square-free such that σ1(m) | 24 with the sum-of-divisors function σ1. Explicitly,
let m = 1, 2, 3, 5, 6, 7, 11, 14, 15, 23. For each such m let ν be the up to algebraic

2 Here, O(II26,2)
+ denotes the subgroup of O(II26,2) of elements preserving the (choice of continuously

varying) orientation on the 2-dimensional positive-definite subspaces of II26,2 ⊗Z R. See, for example,
Section 13 in [8].
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conjugacy (i.e. conjugacy of cyclic subgroups [14]) unique3 automorphism with cycle
shape

∏
t |m tbt = ∏

t |m t24/σ1(m). These automorphisms have order and level m. We
remark that the fixed-point lattices �ν are the unique even lattices in their respective
genera without roots. The rank of �ν is given by rk(�ν) = k − 2 = 24σ0(m)/σ1(m).
The ten automorphisms correspond exactly to the elements of square-free order in the
Mathieu group M23, which acts naturally on the Leech lattice �, and they are listed in
Table 1 below.

Theorem 2.3 ([52], Theorem 10.1). Let ν be of square-free order in M23. Then the
φν-twisted denominator identity of g is

eρ
∏

d|m

∏

α∈	+∩d�′
(1 − eα)[1/ην ](−〈α,α〉/2d) =

∑

w∈W
det(w)w(ην(e

ρ))

where � = �ν ⊕ II1,1, �′ is the dual lattice of �, ρ = (0, 0, 1) and W is the full
reflection group of �.

This is the denominator identity of the �-graded real Borcherds-Kac-Moody alge-
bra gφν whose real simple roots are the simple roots of the Weyl group W and whose
imaginary simple roots are the positive multiples nρ, n ∈ Z>0, of the Weyl vector ρ with
multiplicity 24σ0((m, n))/σ1(m).

This denominator identity is the expansion at any cusp of the automorphic product
�φν on the lattice P = L ⊕ II1,1 = �ν ⊕ II1,1(m) ⊕ II1,1 of singular weight −w =
12σ0(m)/σ1(m) ∈ Z (where L = �ν ⊕ II1,1(m)). The lattice P is even, of signature
(k, 2) and has level m.

We remark that the root multiplicities of gφν are

dim(gφν (α)) =
∑

d|m
δα∈�∩d�′

[
1

ην

] (
− 1

d

〈α, α〉
2

)

for all non-zero α ∈ � and that dim(gφν (0)) = k.
One observes that for these ten automorphisms ν the automorphic form �φν is com-

pletely reflective (see [54, Section 9]), i.e. it has nice symmetries. In fact, as we shall see
in the next section, one can show that these are essentially all the completely reflective
automorphic products of singular weight on lattices of square-free level.

2.3. Classification. We describe a classification result for automorphic products and for
Borcherds-Kac-Moody algebras from [54].

As we saw above, the denominator identity of a Borcherds-Kac-Moody algebra is
sometimes an automorphic product. These are automorphic forms on orthogonal groups
in the image of the Borcherds lift [8], which lifts from vector-valued modular forms
for the Weil representation of Mp2(Z). Since these automorphic forms have an infinite-
product expansion, they are called automorphic products.

In [54] the author classified all Borcherds-Kac-Moody algebras whose denomina-
tor identities are completely reflective automorphic products of singular weight. He
found that the ten Borcherds-Kac-Moody algebras from Sect. 2.2 are essentially all such
Borcherds-Kac-Moody algebras. More precisely:

3 Except for m = 23 this is also the unique conjugacy class. When m = 23, ν and ν−1 represent two
distinct conjugacy classes.
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Theorem 2.4 ([54], Theorem 12.7). Let P be an even lattice of signature (k, 2) with
k ≥ 4, square-free level m and p-ranks of the discriminant form P ′/P at most k + 1.
Then a real Borcherds-Kac-Moody algebra whose denominator identity is a completely
reflective automorphic product of singular weight −w = k/2 − 1 on P is isomorphic
to gφν for the automorphism ν of order m in M23.

As formulated here, this is a slight improvement of the theorem in [54] due to the
author of this text, removing the assumption that P splits two hyperbolic planes (see
Satz 6.4.2 in [46]).

The above result is achieved by classifying automorphic products:

Theorem 2.5 ([54], Theorem 12.6). Let P be an even lattice of signature (k, 2) with
k ≥ 4, square-free level m and p-ranks of the discriminant form P ′/P at most k + 1.
Then a completely reflective automorphic product of singular weight −w = k/2 − 1
exists on P if and only if P is isomorphic to one of the following lattices (the unique
isomorphism class in the following lattice genera):

−w P

1 II4,2(23−3)

2 II6,2(11−4), II6,2(2+4II 7
−4), II6,2(3+45−4)

3 II8,2(7−5)

4 II10,2(5+6), II10,2(2+6II 3
−6)

6 II14,2(3−8)

8 II18,2(2+10II )

12 II26,2

Moreover, all these lattices are of the form P ∼= �ν ⊕ II1,1(m) ⊕ II1,1 for an element
ν of square-free order m in M23.

The restrictionon the p-ranks is essential since it guarantees in particular thefiniteness
of the above list (see [54], remark after Theorem 12.3). As before, Satz 6.4.1 in [46]
removes the assumption that P splits two hyperbolic planes.

3. Vertex Algebras

In this section we define the ten conformal vertex algebras Mφν of central charge 26
that will serve as input of the BRST quantisation in Sect. 4. For an introduction to the
theory of vertex (operator) algebras and their representation theory we refer the reader
to [29,30,39], for example.

Recall that a vertex operator algebra V = ⊕
n∈Z Vn is a Z-graded vertex algebra

with dim(Vn) < ∞ and dim(Vn) = 0 for n � 0. Moreover, it carries a representation
of the Virasoro algebra of some central charge c ∈ C (see also Sect. 4.1) and Vn is the
eigenspace of L0 associated with eigenvalue (or weight) n for all n ∈ Z. If we drop the
assumptions of lower-boundedness of the grading and the finite-dimensionality of the
graded components, we arrive at the notion of a conformal vertex algebra. Examples of
conformal vertex algebras are vertex algebras associated with even lattices. If the lattice
is in addition positive-definite, then we obtain a vertex operator algebra.

In this paper we follow the convention in [23] and call a vertex operator algebra
strongly rational if it is rational (as defined in [19], for example), C2-cofinite (or lisse),
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self-contragredient (or self-dual) and of CFT-type (which imply simplicity). Rationality
entails that the category of modules is semisimple with finitely many simple objects, i.e.
irreduciblemodules. A vertex operator algebra of CFT-type isZ≥0-gradedwith V0 = C1
where 1 denotes the vacuum vector.

A vertex operator algebra is called holomorphic if its only irreducible module is V
itself.

3.1. Heisenberg and lattice vertex algebras. We review Heisenberg vertex operator
algebras and vertex algebras associated with even lattices, which are among the best-
studied examples of vertex (operator) algebras.

Let Mĥ(1, 0) denote the Heisenberg (or free-boson) vertex operator algebra (of level
1) associated with the C-vector space h equipped with a non-degenerate, symmetric
bilinear form 〈·, ·〉. It has central charge dim(h) and its irreducible modules are given up
to isomorphism by Mĥ(1, α) for α ∈ h with conformal weights (or lowest L0-weights)
〈α, α〉/2 (see, for example, [39, Section 6.3]). The form 〈·, ·〉 on h naturally induces a
non-degenerate, Virasoro-invariant (see Definition 4.1 below), symmetric bilinear form
on Mĥ(1, α) for all α ∈ h.

OverC, (h, 〈·, ·〉) is always isometric toCd , d := dim(h), equipped with the standard
bilinear form, and the Heisenberg vertex operator algebras corresponding to (h, 〈·, ·〉)
and C

d are isomorphic. In the following, we shall simply write πd
α := Mĥ(1, α) if

dim(h) = d. Also note that πd
0

∼= (π1
0 )⊗d .

However, for the BRST construction in Sect. 4 we shall also need to demand that h,
and Mĥ(1, α) for all α ∈ h, come equipped with a non-degenerate, Hermitian sesquilin-
ear form. To this end, we shall start with an R-vector space hR equipped with a non-
degenerate, symmetric bilinear form 〈·, ·〉R of signature (r, s) for some r, s ∈ Z≥0 with
r + s = d. Then, over R, (hR, 〈·, ·〉R) is isometric to R

(r,s), the (r + s)-dimensional R-
vector spacewith the standard bilinear formof signature (r, s). The form 〈·, ·〉R extends to
a non-degenerate, symmetric bilinear form 〈·, ·〉 and also to a non-degenerate, Hermitian
sesquilinear form of signature (r, s) on h = hR ⊗R C, and these forms extend naturally
to non-degenerate, Virasoro-invariant, symmetric bilinear and Hermitian sesquilinear
forms on Mĥ(1, α), α ∈ h. In the following, we shall write π

(r,s)
α := Mĥ(1, α) if

(hR, 〈·, ·〉R) has signature (r, s).
The character or graded dimension of πd

α is given by

chπd
α
(τ ) = trπd

α
qL0−d/24 = q〈α,α〉/2

η(τ)d

for α ∈ h with the Dedekind eta function η.
Let L be an even lattice, i.e. a free abelian group L of rank d equipped with a non-

degenerate, symmetric bilinear form 〈·, ·〉 : L × L → Z such that 〈α, α〉/2 ∈ Z for all
α ∈ L . Let (r, s) denote the signature of 〈·, ·〉 over R. We recall some well-known facts
about the lattice vertex algebra VL associated with L [2,16,30]. VL is a conformal vertex
algebra of central charge d = r +s. If L is positive-definite, then VL is a strongly rational
vertex operator algebra, and if L is unimodular, then VL is holomorphic.

The lattice vertex algebra VL contains the Heisenberg vertex operator algebra π
(r,s)
0

associated with the vector space h = L ⊗Z C (and hR = L ⊗Z R) as a vertex operator
subalgebra and decomposes into a direct sum VL = ⊕

α∈L π
(r,s)
α of irreducible π

(r,s)
0 -

modules.
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The irreducibleVL -modules up to isomorphismareVλ+L = ⊕
α∈λ+L π

(r,s)
α forλ+L ∈

L ′/L where L ′ is the dual lattice. They are all simple currents, meaning that their fusion
products are again irreducible, and have the fusion rules

Vλ+L � Vμ+L ∼= Vλ+μ+L

for all λ + L , μ + L ∈ L ′/L , i.e. the fusion algebra is the group algebra C[L ′/L].
In the following, let L be positive-definite. Then character of Vλ+L is well-defined

and given by

chVλ+L (τ ) = trVλ+L q
L0−d/24 = ϑλ+L(τ )

η(τ )d

for λ + L ∈ L ′/L . Here, ϑλ+L(τ ) = ∑
α∈λ+L q

〈α,α〉/2 denotes the usual theta series of
the lattice coset λ + L ∈ L ′/L .

We denote by O(L) the group of automorphisms (or isometries) of the lattice L .
The construction of the vertex operator algebra VL involves a choice of group 2-cocycle
ε : L × L → {±1} such that ε(α, β)/ε(β, α) = (−1)〈α,β〉 for all α, β ∈ L . An automor-
phism ν ∈ O(L) together with a function η : L → {±1} satisfying η(α)η(β)/η(α+β) =
ε(α, β)/ε(να, νβ) defines an automorphism ν̂ ∈ O(L̂) ≤ Aut(VL) (see, for example,
[6,30]).We call ν̂ a standard lift if the restriction of η to the fixed-point sublattice Lν ⊆ L
is trivial. All standard lifts of ν are conjugate in Aut(VL) (see [26], Proposition 7.1). Let
ν̂ be a standard lift of ν and suppose that ν has order m. If m is odd or if m is even and
〈α, νm/2α〉 ∈ 2Z for all α ∈ L , then the order of ν̂ is also m. Otherwise the order of ν̂

is 2m, in which case we say that ν exhibits order doubling.

3.2. Orbifold theory. Given a suitably nice, for example strongly rational, vertex op-
erator algebra V and a group G ≤ Aut(V ) of automorphisms of V , orbifold theory is
concerned with the properties of the fixed-point vertex operator subalgebra VG and in
particular its representation theory. Recently, it was proved that if V is strongly rational
andG is a finite, solvable group of automorphisms of V , then VG is also strongly rational
[13,21,44].

In this section we describe two special cases in which the representation theory of VG

has been fully determined, i.e. the irreducible VG-modules and the fusion rules amongst
them. The first one is the cyclic orbifold theory for holomorphic vertex operator algebras
developed in [26,47].Here,V is assumed to be holomorphic andG to be cyclic. Secondly,
we discuss the representation theory of the vertex operator algebra V ν̂

Lν
associated with

the coinvariant lattice Lν = (Lν)⊥ of a unimodular lattice L and an automorphism
ν ∈ O(L). These results were obtained in [38] (with partial results in [47], Chapter 7).

We begin with the holomorphic orbifold theory [26,47]. Let V be a strongly rational,
holomorphic vertex operator algebra, whose central charge is necessarily in 8Z≥0, and
G = 〈σ 〉 ≤ Aut(G) a finite, cyclic group of automorphisms of V of order m ∈ Z>0.

By [20] there is an up to isomorphism unique irreducible σ i -twisted V -module V (σ i )

for each i ∈ Zm .Moreover, for all i ∈ Zm the vector space V (σ i ) admits a representation
φi : G → AutC(V (σ i )) of G such that

φi (σ )YV (σ i )(v, x)φi (σ )−1 = YV (σ i )(σv, x)

for all v ∈ V . This representation is unique up to an m-th root of unity. We denote by
V σ (i, j) the eigenspace of φi (σ ) in V (σ i ) corresponding to the eigenvalue e(2π i) j/m .
On V (σ 0) = V a possible choice for φ0 is given by φ0(σ ) = σ .
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The fixed-point vertex operator subalgebra V σ = V σ (0, 0) is strongly rational by
[13,21,44] and has exactly m2 irreducible modules, namely

V σ (i, j) for i, j ∈ Zm,

which follows from results in [24,45].We showed that the conformal weight ρ(V (σ )) of
V (σ ) is in (1/m2)Z, and we define the type t ∈ Zm of σ by t = m2ρ(V (σ )) (mod m).

For ease of presentation, let us assume in the following that σ has type 0, i.e. that
ρ(V (σ )) ∈ (1/m)Z. (But note that the other cases were studied as well in [26,47].) Then
it is possible to choose the representations φi such that the conformal weights obey

Qρ((i, j)) := ρ(V σ (i, j)) + Z = i j/m + Z =: Qm((i, j))

and V σ has fusion rules

V σ (i, j) � V σ (k, l) ∼= V σ (i + k, j + l)

for all i, j, k, l ∈ Zm , i.e. the fusion algebra of V σ is the group algebra C[Zm × Zm]
(see [26, Section 5]). In particular, all V σ -modules are simple currents (see also [24]).

The fusion group Zm × Zm together with the quadratic form Qρ = Qm forms a
non-degenerate finite quadratic space R(V σ ) = (Zm ×Zm, Qm). It is isomorphic to the
discriminant form of the rescaled hyperbolic lattice II1,1(m), i.e.

R(V σ ) ∼= (II1,1(m))′/II1,1(m).

We now describe the orbifold theory for certain vertex operator algebras associated
with coinvariant lattices [38]. Let L be an even, positive-definite, unimodular lattice and
ν ∈ O(L) an isometry of L of order m. Then Lν = {α ∈ L | να = α} denotes the fixed-
point lattice (or invariant lattice), and its orthogonal complement Lν := (Lν)⊥ ⊆ L is
called coinvariant lattice. The restriction of ν to Lν , which we shall also call ν, acts
fixed-point free on Lν , i.e. (Lν)

ν = {0}. This implies that all lifts of ν ∈ O(Lν) to
Aut(VLν ) are conjugate. Let ν̂ be one such lift. It is a standard lift and has order m, i.e.
no order doubling occurs.

Note however that the (up to conjugacy unique) standard lift φν of ν ∈ O(L) to an
automorphism in Aut(VL) might exhibit order doubling and this will play a role in what
follows.

Given the lattice vertex operator algebra VLν and the automorphism ν̂, we consider the
fixed-point vertex operator subalgebra V ν̂

Lν
. It was shown in [38,47] that V ν̂

Lν
has exactly

m2|(Lν)
′/Lν | irreducible modules, which are all simple currents. The exact fusion rules

were determined in [38]. There are two cases depending on whether φν ∈ Aut(VL)

exhibits order doubling or not. For simplicity let us assume that this is not the case, i.e.
that 〈α, νm/2α〉 ∈ 2Z for all α ∈ L if m is even.

By [16] the irreducible VLν -modules are parametrised by the lattice cosets (Lν)
′/Lν .

For i ∈ Zm the irreducible ν̂i -twisted VLν -modules were determined in [1,18]. They

are similarly given by Vα+Lν (ν̂
i ) for α + Lν ∈ ((Lν)

′/Lν)
νi . Since Lν is the coinvariant

lattice corresponding to ν, it is easy to show that ((Lν)
′/Lν)

νi = (Lν)
′/Lν , i.e. that

ν acts trivially on (Lν)
′/Lν . This also implies the existence of linear representations

φα+Lν ,i : 〈ν̂〉 → AutC(Vα+Lν (ν̂
i )) satisfying the same property as the φi above.

With the same arguments as before, the irreducible V ν̂
Lν
-modules are exactly the

corresponding eigenspaces

V ν̂
Lν

(α + Lν, i, j) for α + Lν ∈ (Lν)
′/Lν and i, j ∈ Zm .
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Again, for simplicitywe only present the casewhenφν has type 0, i.e. whenρ(VL (φν)) ∈
(1/m)Z. Note that ρ(VL(φν)) = ρ(VLν (ν̂)). Then, after a suitable choice of the afore-
mentioned representations, the irreducible V ν̂

Lν
-modules have conformal weights

Qρ((α + Lν, i, j)) = ρ(V ν̂
Lν

(α + Lν, i, j)) + Z = 〈α, α〉
2

+
i j

m
+ Z

and fusion rules

V ν̂
Lν

(α + Lν, i, j) � V ν̂
Lν

(β + Lν, k, l) ∼= V ν̂
Lν

(α + β + Lν, i + k, j + l)

for all α + Lν, β + Lν ∈ (Lν)
′/Lν and i, j, k, l ∈ Zm , i.e. the fusion algebra of V ν̂

Lν
is

the group algebra C[(Lν)
′/Lν × Zm × Zm]. Together with the quadratic form Qρ the

fusion group forms a finite quadratic space

R(V ν̂
Lν

) = (Lν)
′/Lν × R(V φν

L ) = (Lν)
′/Lν × (Zm × Zm, Qm),

which depends on the finite quadratic space of V φν

L . Similar results hold if φν does not
have type 0 or exhibits order doubling.

3.3. Simple-current extensions. We describe simple-current extensions of vertex opera-
tor algebras. A lot of progress has beenmade recently concerning vertex operator algebra
extensions.We shall only need the following special case, which is developed in [26,47].

Let V be a strongly rational vertex operator algebra and assume that all irreducible
V -modules are simple currents. Then the fusion algebra of V is the group algebra C[D]
of some finite abelian group D, i.e. the isomorphism classes of irreducible V -modules
{W γ | γ ∈ D} can be parametrised by D and

W γ � W δ ∼= W γ+δ

for all γ, δ ∈ D. The identity element is given by W 0 ∼= V and the inverse of γ by
W−γ ∼= (W γ )′, the contragredient module.

Now additionally assume that V satisfies the positivity condition, i.e. that the confor-
mal weight ρ(W ) > 0 for any irreducible V -module W �∼= V and ρ(V ) = 0. Then

Qρ(γ ) = ρ(W γ ) + Z ∈ Q/Z

defines a non-degenerate quadratic form on D, i.e. (D, Qρ) is a non-degenerate finite-
quadratic space.

Let I be a subset of D. Then the direct sum

VI :=
⊕

γ∈I
W γ

carries an up to isomorphism unique vertex operator algebra structure, extending the
vertex operator algebra structure of V and the module structure of theWα , α ∈ I , if and
only if I is an isotropic subgroup of D.

In this case VI is strongly rational and the irreducible VI -modules are up to isomor-
phism given by

Xα+I :=
⊕

γ∈α+I

W γ

for α + I ∈ I⊥/I . They are again all simple currents and the fusion group of VI is given
by the quotient group I⊥/I . In particular, VI is holomorphic if and only if I = I⊥.



46 S. Möller

Table 1. The ten automorphisms ν ∈ O(�) and related properties

Co1 class Cycle shape ρ(V�(φν)) k w Genus �ν Genus K
1A 124 0 26 −12 II24,0 II1,1
2A 1828 1/2 18 −8 II16,0(2

+8
II ) II1,1(2

+2
II )

3B 1636 2/3 14 −6 II12,0(3+6) II1,1(3−2)

5B 1454 4/5 10 −4 II8,0(5+4) II1,1(5+2)
6E 12223262 5/6 10 −4 II8,0(2

+4
II 3

+4) II1,1(2
+2
II 3

−2)

7B 1373 6/7 8 −3 II6,0(7+3) II1,1(7−2)

11A 12112 10/11 6 −2 II4,0(11+2) II1,1(11−2)

14B 1.2.7.14 13/14 6 −2 II4,0(2
+2
II 7

+2) II1,1(2
+2
II 7

−2)

15D 1.3.5.15 14/15 6 −2 II4,0(3−25−2) II1,1(3−25+2)
23A, B 1.23 22/23 4 −1 II2,0(23+1) II1,1(23−2)

3.4. Conformal vertex algebras of central charge 26. Using the tools from Sects. 3.2
and 3.3 we shall define the conformal vertex algebras Mφν of central charge 26 that will
serve as input for the BRST construction.

To this end consider the strongly rational, holomorphic vertex operator algebra V�

of central charge 24 associated with the Leech lattice � and let ν ∈ O(�) be of square-
free order in M23, i.e. one of the ten automorphisms from Sect. 2.2 with orders m =
1, 2, 3, 5, 6, 7, 11, 14, 15, 23 and cycle shapes

∏
t |m tbt = ∏

t |m t24/σ1(m). Let φν ∈
Aut(V�) be the (up to conjugacy unique) standard lift of ν ∈ O(�). In the ten cases at
hand, φν has order order m, i.e. no order doubling occurs, and the property that φk

ν is a
standard lift of νk for all k ∈ Z≥0.

The conformal weight of the unique irreducible φν-twisted V�-module V�(φν) is

ρ(V�(φν)) = 1

24

∑

t |m
bt (t − 1/t) = m − 1

m
∈ 1

m
Z.

In particular, φν has type 0. Note that V φν

� satisfies the positivity condition.
Applying the cyclic orbifold theory for holomorphic vertex operator algebras de-

scribed in Sect. 3.2 we conclude that V φν

� has exactlym2 irreducible modules V φν

� (i, j),

i, j ∈ Zm , with fusion group Zm ×Zm and quadratic form Qρ((i, j)) = ρ(V φν

� (i, j))+
Z = i j/m + Z = Qm((i, j)).

Let II1,1 be the up to isomorphism unique even, unimodular lattice of Lorentzian
signature (1, 1) and let K := II1,1(m)be the same latticewith the quadratic form rescaled
by m. As mentioned above, the discriminant form K ′/K is as finite quadratic space
isomorphic to (Zm × Zm, Qm) and in fact it is also isomorphic to (Zm × Zm, Qm) =
(Zm ×Zm,−Qm). (Given any finite quadratic space A, let A be the same finite abelian
group but with the quadratic formmultiplied by−1.)Wemake a choice of isomorphism

ϕ : K ′/K → (Zm × Zm,−Qm)

but shall later see that this choice is irrelevant.
Consider the conformal vertex algebra VK of central charge 2 associated with K . It

has irreducible modules Vα+K for α + K ∈ K ′/K and fusion group K ′/K [16].
In Table 1 we collect some properties of the ten cases. Recall that O(�) ∼= Co0 and

that the sporadic group Co1 is the quotient Co0/{±1} of Co0 by its centre.
Finally, we define the conformal vertex algebra Mφν in the matter sector of the BRST

construction as a simple-current extension of V φν

� ⊗ VK :
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Proposition 3.1. Let ν be of square-free order in M23. Then the direct sum

Mφν :=
⊕

α+K∈K ′/K
V φν

� (ϕ(α + K )) ⊗ Vα+K

admits the structure of a conformal vertex algebra of central charge 26.

Proof. We note that
⊕

i, j∈Zm
V φν

� (i, j) is an abelian intertwining algebra [26,47], and
so is

⊕
α+K∈K ′/K Vα+K [17], corresponding to the fact that all the irreducible modules

are simple currents.
An abelian intertwining algebra [17] is a generalisation of a conformal vertex algebra

associated with some finite quadratic space. Conformal vertex algebras are recovered
if the L0-grading is integral and the quadratic form trivial. The axioms of an abelian
intertwining algebra also include a grading-compatibility condition that relates the bilin-
ear form associated with the quadratic form to the L0-grading. Under mild assumptions
(see, for example, Remark 3.1.5 in [47]) this guarantees that if an abelian intertwining
algebra has integral L0-grading, this bilinear form vanishes. This does not quite mean,
however, that the quadratic form vanishes.4 Some abelian intertwining algebras satisfy
an additional evenness condition. In that case, the quadratic form itself is related to
the L0-grading, and hence an integral L0-grading does imply that the quadratic form
vanishes.

Now, the tensor-product abelian intertwining algebra of central charge 26
( ⊕

i, j∈Zm

V φν

� (i, j)
)

⊗
( ⊕

α+K∈K ′/K
Vα+K

)
=

⊕

i, j∈Zm
α+K∈K ′/K

V φν

� (i, j) ⊗ Vα+K

is an abelian intertwining algebra with associated finite quadratic space

(Zm × Zm,−Qm) × K ′/K .

It was shown in [26,47] that the first abelian intertwining algebra satisfies the evenness
condition, and for the second this follows by definition of lattice abelian intertwining
algebras [17]. Hence, also the tensor product satisfies evenness.

Clearly, by definition of ϕ, the abelian intertwining subalgebra Mφν defined by the
subgroup of all elements of the form

(ϕ(γ ), γ ) for γ ∈ K ′/K

has integral L0-grading. Hence, the quadratic form for Mφν vanishes and Mφν is a
conformal vertex algebra. ��
We shall see in Proposition 3.4 that Mφν is up to isomorphism independent of the choice
of ϕ.

For the remainder of this section we study the properties of

Mφν =
⊕

α∈K ′
V φν

� (ϕ(α + K )) ⊗ π(1,1)
α ,

4 Indeed, every quadratic form Q (on some finite, abelian group D) has a unique associated bilinear form
BQ . On the other hand, given a finite bilinear form B, there are |D/2D|many quadratic forms Q with BQ = B.
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which is clearly graded by K ′. In the following we shall see that Mφν is actually graded
by L ′ where

L := �ν ⊕ K = �ν ⊕ II1,1(m)

is a lattice of rank k and signature (k − 1, 1). Indeed, recall that V ν̂
�ν

is the orbifold
vertex operator algebra associatedwith the coinvariant lattice�ν and the up to conjugacy
unique lift ν̂ ∈ Aut(V�ν ) of ν ∈ O(�ν). It is not difficult to see that V ν̂

�ν
and the lattice

vertex operator algebra V�ν form a dual pair in V φν

� , i.e. they are mutual commutants (or
centralisers), intersect trivially, i.e. V ν̂

�ν
∩V�ν = C1, and generate a full vertex operator

subalgebra of V φν

� isomorphic to V ν̂
�ν

⊗ V�ν .

This implies that we can decompose V φν

� and any of its modules into a direct sum of
irreducible V ν̂

�ν
⊗V�ν -modules. First we observe that because fixed-point sublattices are

always primitive sublattices and because� is unimodular, there is a natural isomorphism
of finite quadratic spaces

ψ : (�ν)′/�ν → (�ν)′/�ν

such that

� ∼=
⋃

α+�ν∈(�ν)′/�ν

ψ(α + �ν) ⊕ (α + �ν)

(see, for example, Proposition 1.2 in [25]). Hence,

V�
∼=

⊕

α+�ν∈(�ν)′/�ν

Vψ(α+�ν) ⊗ Vα+�ν .

This can be used to show that

V φν

� (i, j) ∼=
⊕

α+�ν∈(�ν)′/�ν

V ν̂
�ν

(ψ(α + �ν), i, j) ⊗ Vα+�ν

for all i, j ∈ Zm (see [38], proof of Theorem 5.3).
Inserting the above into the definition of Mφν and defining the isomorphism χ :=

(ψ, ϕ) of finite quadratic spaces

χ : L ′/L −→ (�ν)′/�ν × (Zm × Zm,−Qm)

where L = �ν ⊕ K = �ν ⊕ II1,1(m) we can decompose Mφν as simple-current
extension of V ν̂

�ν
⊗ VL :

Proposition 3.2. Let ν be of square-free order in M23. Then the conformal vertex algebra
Mφν decomposes as

Mφν
∼=

⊕

γ+L∈L ′/L
V ν̂

�ν
(χ(γ + L)) ⊗ Vγ+L .
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Proof. With the above observation we can decompose Mφν as V
ν̂
�ν

⊗ VL -module

Mφν =
⊕

β+K∈K ′/K
V φν

� (ϕ(β + K )) ⊗ Vβ+K

∼=
⊕

β+K∈K ′/K

⊕

α+�ν∈(�ν)′/�ν

V ν̂
�ν

(ψ(α + �ν), ϕ(β + K )) ⊗ Vα+�ν ⊗ Vβ+K

∼=
⊕

γ+L∈L ′/L
V ν̂

�ν
(χ(γ + L)) ⊗ Vγ+L ,

which proves the assertion. ��
The proposition implies in particular that Mφν is graded by L ′, i.e.

Mφν =
⊕

α∈L ′
Mφν (α) =

⊕

α∈L ′
V ν̂

�ν
(χ(α + L)) ⊗ π(k−1,1)

α

with Mφν (α) = V ν̂
�ν

(χ(α + L)) ⊗ π
(k−1,1)
α for all α ∈ L ′.

Note that (V ν̂
�ν

)1 = {0} since �ν ⊆ � has no vectors α of norm 〈α, α〉/2 = 1 and
ν acts fixed-point free on �ν ⊗ C. This plays a role in Sect. 4.4 when we determine a
Cartan subalgebra for the Lie algebra obtained as quantisation of Mφν .

In the following we shall prove that the conformal vertex algebra Mφν is up to
isomorphism independent of the isomorphism χ and hence in particular of the choice
of ϕ.

Lemma 3.3. Let ν be of square-free order m in M23 and L = �ν ⊕ II1,1(m). Then the
natural group homomorphism O(L) → O(L ′/L) is surjective.

Proof. Of the ten lattices L = �ν ⊕ II1,1(m) all but one fulfil the assumptions of
Theorem 1.14.2 in [48], which implies the assertion. The lattice for m = 23 of genus
II3,1(23−3) is covered by Corollary 7.8 in [43], Chapter VIII. ��
Proposition 3.4. Let ν be of square-free order m in M23. Then the isomorphism class of
Mφν does not depend on the isomorphism χ : L ′/L → (�ν)′/�ν × (Zm × Zm,−Qm)

and is in particular independent of the choice of the isomorphism ϕ : K ′/K → (Zm ×
Zm,−Qm).

Proof. As in the proof of Lemma 3.1 in [35], the decomposition in Proposition 3.2 and
Lemma 3.3 imply the assertion. ��

3.5. Characters. We describe the characters of the irreducible modules of the orbifold
vertex operator algebras V ν̂

Lν
from Sect. 3.2 and, more specifically, of V ν̂

�ν
where ν is

one of the ten automorphisms of square-free order in M23. We then show that the latter
form a vector-valued modular form obtained as lift of a certain eta product associated
with ν.

The vertex operator algebra V ν̂
Lν

is strongly rational of central charge rk(Lν) and

has group-like fusion with fusion group R(V ν̂
Lν

) = (Lν)
′/Lν × (Zm × Zm, Qm). The

corresponding characters

chV ν̂
Lν

(α+Lν ,i, j)(τ ) = trV ν̂
Lν

(α+Lν ,i, j) q
L0−c/24,
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q = e(2π i)τ , for α + Lν ∈ (Lν)
′/Lν and i, j ∈ Zm satisfy Zhu’s modular invariance

[60], i.e. they form a vector-valued modular form of weight 0 for Zhu’s representation

ρV ν̂
Lν

: SL2(Z) → GL(C[R(V ν̂
Lν

)])
that is holomorphic on the upper half-plane H but may have poles at the cusp ∞. Since
all irreducible V ν̂

Lν
-modules are simple currents, Zhu’s representation takes a very simple

form (see [26], Theorem 3.4, [47], Proposition 2.2.6):

ρ
V ρ̂
Lν

(S)(α+Lν ,i, j),(β+Lν ,k,l) = 1

m
√|(Lν)′/Lν |

e−(2π i)(〈α,β〉+(il+ jk)/m),

ρ
V ρ̂
Lν

(T )(α+Lν ,i, j),(β+Lν ,k,l) = δ(α+Lν ,i, j),(β+Lν ,k,l)e
(2π i)(〈α,α〉/2+i j/m−c/24)

for the standard generators S, T ∈ SL2(Z).
The characters of the irreducible V ν̂

Lν
-modules V ν̂

Lν
(α+Lν, 0, j), i.e. those stemming

from the irreducible untwisted VLν -modules, can be computed directly. In fact, we shall
be able to express them explicitly in terms of theta series and the eta function. Since their
modular properties are explicitly known, we can then determine the full vector-valued
character of V ν̂

Lν
by applying modular transformations.

More precisely, in order to compute the characters of the irreducible modules V ν̂
Lν

(α+
Lν, 0, j) we first consider the twisted trace functions [20]

Tα+Lν ,i, j (τ ) := trVα+Lν (ν̂i ) φα+Lν ,i (ν̂
j )qL0−c/24

for all α + Lν ∈ (Lν)
′/Lν and i, j ∈ Zm where φα+Lν ,i is the choice of representation

of 〈ν̂〉 on Vα+Lν (ν̂
i ) described in Sect. 3.2. It follows directly from the definition of the

irreducible V ν̂
Lν
-modules that

chV ν̂
Lν

(α+Lν ,i, j)(τ ) = 1

m

∑

k∈Zm

e−(2π i) jk/mTα+Lν ,i,k(τ )

for all α + Lν ∈ (Lν)
′/Lν and i, j ∈ Zm .

Since the action of 〈ν̂〉 on the untwisted VLν -modules Vα+Lν for all α + Lν ∈
(Lν)

′/Lν can be explicitly determined, it is possible to compute Tα+Lν ,0, j (τ ) and hence
chV ν̂

Lν
(α+Lν ,0, j)(τ ) for all α + Lν ∈ (Lν)

′/Lν and j ∈ Zm .

Now consider the vertex operator algebra V ν̂
�ν

where � is the Leech lattice and ν

is one of the ten automorphisms of square-free order in M23. Recall that for a lattice
automorphism of cycle shape

∏
t |m tbt , bt ∈ Z, the associated eta product is ην(τ ) =∏

t |m η(tτ)bt . Also, for any subset S of a positive-definite lattice the corresponding theta

series is defined as ϑS(τ ) := ∑
α∈S q〈α,α〉/2.

Proposition 3.5. Let ν be of square-free orderm in M23. Assume that the representations
φα+Lν ,0 of 〈ν̂〉 on the irreducible V�ν -modules are chosen as in Sect. 3.2. Then

Tα+�ν,0, j (τ ) =
ϑ

(α+�ν)ν
j (τ )

ην j (τ )

for all α + �ν ∈ (�ν)
′/�ν and j ∈ Zm where (α + �ν)

ν j
are the vectors in the lattice

coset α + �ν invariant under ν j .
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Proof. The somewhat technical proof can be found in [47], Proposition 7.5.9 and
Lemma 7.6.8. For the assertion to hold, the actions of 〈ν̂〉 on the irreducible V�ν -modules
have to be sufficiently nice. In general, the theta series in the above expression would
be modified by some function (�ν)

′ → {±1}. ��
The above proposition and the preceding discussion allow us to compute the vector-

valued character of V ν̂
�ν

. By multiplying by a suitable power of the eta function we make
the character transform under the more standard Weil representation rather than Zhu’s
representation:

Proposition 3.6. Let ν be of square-free order m in M23. Then

chV ν̂
�ν

(α+�ν,i, j)(τ )/η(τ)rk(�
ν)

for α + �ν ∈ (�ν)
′/�ν and i, j ∈ Zm are the components of a vector-valued mod-

ular form, holomorphic on H but with possible poles at the cusp ∞, of weight w =
− rk(�ν)/2 = 1 − k/2 ∈ Z<0 for the Weil representation of SL2(Z) on C[R(V ν̂

�ν
)].

Proof. By Corollary 2.2.13 in [47], the chV ν̂
�ν

(α+�ν,i, j)(τ )η(τ )rk(�ν) for α + �ν ∈
(�ν)

′/�ν and i, j ∈ Zm form a vector-valued modular form of weight rk(�ν)/2 for
the Weil representation of SL2(Z) on C[R(V ν̂

�ν
)]. Dividing by �(τ) = η(τ)24, which

is modular of weight 12, yields the assertion. ��
In the followingwe shall see that the vector-valuedmodular form fromProposition 3.6

is exactly the vector-valued modular form F obtained in [52,54,55] as lift of a certain
scalar-valued modular form associated with ν (see also Sect. 2.2).

We consider the eta product

f (τ ) := 1

ην(τ )
=

∏

t |m
η(tτ)−24/σ1(m)

associated with the cycle shape of ν ∈ O(�). Products of rescaled eta functions are
sometimes modular forms.

To describe this in more detail, we define the Dirichlet character χs for s ∈ Z>0
as the Kronecker symbol χs( j) := ( j/s), j ∈ Z. Note that if s is an odd prime, then
χs is a character modulo s. For s = 1 we get the trivial character. Given a quadratic
Dirichlet characterχ : Z → {±1} of somemodulus k ∈ Z>0 we can view it as a character
χ : �0(k) → {±1} on the congruence subgroup�0(k) by settingχ(M) := χ(a) = χ(d)

for M = (
a b
c d

) ∈ �0(k). Then clearly, χ is also a character on �0(l) for any multiple l
of k.

Theorem 6.2 in [9] implies:

Lemma 3.7. Let ν be of square-free order m in M23. Then f (τ ) is a modular form,
holomorphic on H but with possible poles at the cusps, of weight w = 1 − k/2 =
−12σ0(m)/σ1(m) ∈ Z<0 for the congruence subgroup �0(m) and character χs where
s = s(m) ∈ Z>0 is chosen such that s

∏
t |m t24/σ1(m) is a rational square, i.e.

s(m) =
{
m if m = 7, 23,
1 otherwise.
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Note that as described above, χs is indeed a character on �0(m) and it is the trivial
character except for m = 7, 23.

Consider now the lattice L = �ν ⊕ K and its discriminant form L ′/L . It has level m
and even signature. For any finite quadratic space D of even signature and level N we
define

χD( j) :=
(

j

|D|
)
e (( j − 1) oddity(D)/8) ,

j ∈ Z, which is a quadratic Dirichlet character modulo N (see, for example, Section 6 in
[54]). If 4 does not divide the level N , for instance if N is square-free, then the character
simplifies and becomes

χD( j) =
(

j

|D|
)

.

Using elementary properties of the Kronecker symbol we find:

Lemma 3.8. Let ν be of square-free order m in M23 and L = �ν ⊕ II1,1(m). Then
χL ′/L = χs for s = s(m) as defined in Lemma 3.7.

This lemma allows us to lift f (τ ) = 1/ην(τ ) to a vector-valued modular form for
the (dual) Weil representation on C[L ′/L].
Proposition 3.9. Let ν be of square-free order m in M23. Then

Fα+L(τ ) :=
∑

M∈�0(m)\SL2(Z)

(cτ + d)−w 1

ην(M.τ )
ρL ′/L(M−1)α+L ,0+L

for α + L ∈ L ′/L defines a vector-valued modular form F, holomorphic on H but with
possible poles at the cusp ∞, of weight w = 1 − k/2 = −12σ0(m)/σ1(m) for the dual
Weil representation ρL ′/L of SL2(Z) on C[L ′/L]. Moreover, F is invariant under the
automorphisms of the finite quadratic space L ′/L.
Proof. Given a finite quadratic space D of even signature and level dividing N and a
modular form f of weight w ∈ Z for �0(N ) and character χD it was shown in [54],
Theorem 6.2, that

Fγ (τ ) :=
∑

M∈�0(N )\SL2(Z)

(cτ + d)−w f (M.τ )ρD(M−1)γ,0,

γ ∈ D, are the components of a vector-valued modular form F of weight w for the dual
Weil representation ρD of SL2(Z) onC[D], which is invariant under the automorphisms
of the finite quadratic space D. F is called the lift of f with trivial support.

Applying this result to D = L ′/L of levelm and f (τ ) = 1/ην(τ ), which is amodular
form of weight w for �0(m) with character χL ′/L , yields the assertion. ��

The main result of this section is the following proposition, which shows that the two
vector-valued modular forms from Propositions 3.6 and 3.9 are equal. Recall that there
is an isomorphism χ : L ′/L → (�ν)′/�ν × (Zm × Zm,−Qm).

Proposition 3.10. Let ν be of square-free order in M23. Then

chV ν̂
�ν

(χ(α+L))
(τ )/η(τ)rk(�

ν) = Fα+L(τ )

for all α + L ∈ L ′/L.
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Proof. We consider the vector-valued modular form G with components Gα+L(τ ) :=
chV ν̂

�ν
(χ(α+L))

(τ )/η(τ)rk(�
ν) for α + L ∈ L ′/L . We have to prove that F = G.

By Proposition 3.9, F is a vector-valued modular form of weight w for ρL ′/L .
Proposition 3.6 states that the functions Gα+L(τ ) = chV ν̂

�ν
(χ(α+L))

/η(τ )rk(�
ν) form

a vector-valued modular form of weight w for the Weil representation on the fusion
group (�ν)

′/�ν × (Zm ×Zm, Qm) ∼= L ′/L (via χ ), which is the same as the dual Weil
representation ρL ′/L on L ′/L .

Hence, F and G are both vector-valued modular forms of the same negative weight
w for ρL ′/L , and they are both holomorphic on H with possible poles at the cusp ∞.

We compute the q-expansions of F and G explicitly and verify that the singular
coefficients are identical. The lift F takes a very simple form (see Proposition 3.12
below) and hence its q-expansion can be easily determined using the well-known q-
expansion of the eta function. The computation of the characters of the irreducible V ν̂

�ν
-

modules, which enter G, is described at the beginning of this section. These calculations
are performed in Sage and Magma [11,59].

Then F − G is a modular form of negative weight, which has no singular terms, i.e.
which is finite at the cusp ∞, and therefore has to vanish by the valence formula (see,
for example, [33], Theorem I.4.1). Hence, F = G. ��

We comment on some special properties of the modular form F :

Remark 3.11. (1) Since L = �ν ⊕ II1,1(m) and P = L ⊕ II1,1 have the same discrim-
inant form L ′/L ∼= P ′/P , we can view F also as a vector-valued modular form for
the dual Weil representation ρP ′/P on C[P ′/P]. As such F is completely reflective
(as defined in [54], Section 9). Note that the lattice P has signature (k, 2) and F
weight w = 1 − k/2 with k ≥ 4 even.
Exactly such vector-valued modular forms are classified in [54]. Theorems 2.5 and
2.4 state the corresponding results for automorphic products and Borcherds-Kac-
Moody algebras, respectively.
In the ten cases at hand complete reflectivity means that singular terms in the q-
expansion of F appear exactly in the components Fα+P (τ ), α + P ∈ P ′/P , with
〈α, α〉/2 = 1/d (mod 1) and d · (α + L) = 0+ L for d | m and in such a component
the only singular term is 1 · q−1/d .

(2) As completely reflective modular form, F is in particular symmetric, i.e. invariant
under the automorphisms of the finite quadratic space P ′/P ∼= L ′/L (see Section 9
in [54] and note that m, the level of P or L , is square-free). This also follows
immediately from Proposition 3.9.
Then, the characters of the irreducible V ν̂

�ν
-modules are invariant under the au-

tomorphisms of the fusion group R(V ν̂
�ν

) as finite quadratic space. In particular,
the characters chV ν̂

�ν
(χ(α+L))

(τ ) do not depend on the choice of the isomorphism

χ : L ′/L → (�ν)
′/�ν × (Zm × Zm,−Qm) (cf. Proposition 3.4).

(3) The automorphic product �φν on P , which is the denominator identity of gφν , is
constructed in [53] precisely as the Borcherds lift of the modular form F .

In the following we present a nice explicit formula for the components of the vector-
valued modular form F based on Theorem 6.5 in [54]. This was already stated in [52],
Proposition 9.5.We give a proof for completeness. For d ∈ Z>0, we decompose f (τ/d),
which has an expansion in q1/d , as f (τ/d) = gd,0(τ ) + · · · + gd,d−1(τ ) where gd, j (τ )

transforms under T like gd, j (τ + 1) = e(2π i) j/dgd, j (τ ).
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Proposition 3.12. Let ν be of square-free order m in M23. Then

Fα+L(τ ) =
∑

d|m
δα∈L ′∩ 1

d L
gd, jα+L ,d (τ )

for all α + L ∈ L ′/L with jα+L ,d ∈ Zd such that − jα+L ,d/d = 〈α, α〉/2 (mod 1).

Proof. Explicit formulae for the components of lifts of scalar-valued modular forms are
given in [54], Theorem 6.5: let F be the lift of a scalar-valued modular form f for the
dual Weil representation ρD on some discriminant form D of even signature and level
dividing N . Assume that N is square-free. Then for γ ∈ D,

Fγ (τ ) =
∑

c|N
δγ∈Dcξ N

c

1√|Dc|c hc, jγ,c(τ )

where for c | N the ξc are certain factors of unit modulus and the hc, j , j ∈ Zc,
are obtained from fN/c(τ ) in the same manner as the gc, j are obtained from f (τ/c).
The fc(τ ) for c | N are defined as fc(τ ) := (cτ + d)−w f (Mc.τ ) where the matrices
Mc = (

a b
c d

) ∈ SL2(Z) are chosen such that d = 1 (mod c) and d = 0 (mod N/c).
Finally, Dc = {γ ∈ D | cγ = 0}.

Returning to the specific cases at hand, with D = L ′/L of square-free level m and
f = 1/ην , using that the modular-transformation properties of the eta function and
rescaled eta functions are explicitly known (see, for example, [56], Proposition 6.2),
we compute the fc(τ ). Due to the highly symmetric nature of the eta product f (τ ) =
1/ην(τ ) = ∏

t |m η(tτ)−24/σ1(m) one obtains that

fm/c(τ ) = ψm/c f (τ/c)
∏

t |m
(t, c)12/σ1(m)

for some phase factor ψm/c of unit modulus and hence

hc, j (τ ) = gc, j (τ )ψm
c

∏

t |m
(t, c)12/σ1(m).

The cardinality of Dc = (L ′ ∩(1/c)L)/L is |Dc| = c2
∏

t |m(t, c)24/σ1(m). Consequently
all factors of non-unit modulus cancel and

Fα+L(τ ) =
∑

c|m
δα+L∈Dcξm

c
ψm

c
gc, jα+L ,c(τ ).

A case-by-case study reveals that ξcψc = 1 for all m = 1, 2, 3, 5, 6, 7, 11, 14, 15, 23
and all c | m, completing the proof. ��
The resultswe just proved about the vector-valuedmodular form F will play an important
role in Sect. 4.4 when we relate its Fourier coefficients to the dimensions of the graded
components of the Lie algebra obtained as BRST quantisation of Mφν .
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4. BRST Construction

In this section we describe the BRST quantisation of certain Virasoro representations M
of central charge 26 and study the resulting physical space if M is additionally a confor-
mal vertex algebra, admits an invariant bilinear form or carries a certain representation
of the Heisenberg vertex operator algebra [27,28,41,42,61] (based on the semi-infinite
cohomology of graded Lie algebras [27,28]). To some extent, we follow the presentation
in [12], Section 3.

Then we apply the BRST quantisation to the conformal vertex algebras Mφν from
Sect. 3.4 and show that the resulting Borcherds-Kac-Moody algebras are isomorphic to
the ten twisted Fake Monster Lie algebras gφν in Sect. 2.

4.1. BRSTquantisation. Wedescribe theBRSTquantisation ofVirasoro representations
of central charge 26.

A representation of the Virasoro algebra is a complex vector space V equipped with
operators Ln , n ∈ Z, and K in End(V ) satisfying the Virasoro relations

[Lm, Ln] = (m − n)Lm+n +
m3 − m

12
δm+n,0K and [Ln, K ] = 0

for all m, n ∈ Z.
We define some important notions:

Definition 4.1. Let V be a representation of the Virasoro algebra.

(1) V has central charge c ∈ C if K = c · idV .
(2) We call V positive-energy if L0 acts diagonalisably on V , i.e. V is a direct sum of L0-

eigenspaces V = ⊕
λ∈C Vλ, and if the subalgebra generated by {Ln | n ∈ Z>0} acts

locally nilpotently, i.e. for all v ∈ V there is an N ∈ Z>0 such that Ln1 . . . Lnkv = 0
for all sequences n1, . . . , nk ∈ Z>0 satisfying n1 + . . . + nk > N . (The second
property is trivially satisfied if the L0-grading on V is bounded from below.)

(3) We say that a bilinear or sesquilinear form (·, ·) on V is Virasoro-invariant if
(Lnv,w) = (v, L−nw) for all v,w ∈ V and all n ∈ Z.

For the BRST quantisation, which associates a physical space with a Virasoro represen-
tation, we first introduce the bosonic ghost vertex operator superalgebra Vgh. of central
charge −26 (in the “ghost sector”). It can be constructed as the vertex operator super-
algebra associated with the integral lattice Zσ with 〈σ, σ 〉 = 1 and the usual Virasoro
vector shifted by 3

2σ(−2)1 ⊗ e0.
Vgh. is Z≥−1-graded by L0-weights, Z2-graded by parity (super grading) and Z-

graded by ghost number, the eigenvalue of the ghost number operatorU = σ(0), and all
these gradings are compatible. (In fact, the parity is just given by the parity of the ghost
number.) Vgh. is generated by b = 1 ⊗ e−σ and c = 1 ⊗ eσ , which have L0-weights 2
and −1, odd parity and ghost numbers −1 and 1, respectively.

Given a Virasoro representation M (in the “matter sector”) of central charge c we
consider the tensor-product Virasoro moduleW = M ⊗ Vgh., which is of central charge
c − 26. It is equipped with a tensor-product weight grading. The ghost (and parity)
grading are extended trivially to the tensor product. Then one defines a BRST current
jBRST ∈ W and the BRST operator Q := jBRST0 as its zero mode. Explicitly,

Q =
∑

n∈Z
LM
n ⊗ c−n−2 − 1

2
idM ⊗

∑

m,n∈Z
(m − n) : c−m−2c−n−2bm+n+1 :
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where the normal ordering means that the annihilation operators bn , cn for n ≥ 0 are
moved to the right of the creation operators bn , cn for n ≤ −1, keeping track of minus
signs since these are fermionic operators.

Proposition 4.2. Let M be a positive-energy representation of the Virasoro algebra of
central charge c. The BRST operator Q on W = M ⊗ Vgh. fulfils:

(1) [U, Q] = Q, i.e. Q raises the ghost number by 1.
(2) [U, L0] = 0, i.e. the ghost-number and L0-grading are compatible.
(3) {Q, bn+1} = Ln for all n ∈ Z.
(4) Q2 = 0 if and only if c = 26.

Moreover, if c = 26, then:

(5) [Q, Ln] = 0 for all n ∈ Z.

Proof. These claims are readily checked. They are listed in [61], Section 4. ��
We use the modern definition of Q corresponding to the integral ghost grading described
above rather than the version of Q corresponding to the ghost grading shifted by −3/2,
which is used in older texts.

If c = 26, then the BRST operator Q with ghost number 1 satisfies Q2 = 0, i.e.
im(Q) ⊆ ker(Q), and therefore defines a cochain complex of vector spaces, the BRST
complex

· · · Q−→ W p−1 Q−→ W p Q−→ W p+1 Q−→ · · ·
where p denotes the ghost number. The complex is graded by L0-weights because
[Q, L0]=0. Since {Q, b1}=L0, the corresponding cohomological spaces H p

BRST(M) =
(W p ∩ ker(Q))/(W p ∩ im(Q)) are supported only in L0-weight 0, which means that
we can redefine the BRST complex to be

· · · Q−→ W p−1
0

Q−→ W p
0

Q−→ W p+1
0

Q−→ · · ·
without changing the cohomological spaces.

We can now define the BRST quantisation:

Definition 4.3. Let M be a positive-energy representation of the Virasoro algebra of
central charge 26. Then we define the physical space to be H1

BRST(M).

Note that, in contrast to some of the cited literature, we use the term physical space irre-
spective of whether H1

BRST(M) naturally admits a positive-definite Hermitian sesquilin-
ear form or not (see also Remark 4.8 below).

Remark 4.4. There is also a different quantisation procedure sometimes called old co-
variant quantisation, which was used in [6], for example. One can show, however, that
given a positive-energy representation of the Virasoro algebra of central charge 26 with
a Virasoro-invariant bilinear form, the corresponding physical spaces are naturally iso-
morphic (see, for example, Lemma 3.3.6 in [12] and the references cited therein).

The equation {Q, b1} = L0 also permits us to restrict Q to C :=W0 ∩ ker(b1), the
weight-zero vectors in the kernel of b1, which defines the relative BRST subcomplex

. . .
Q−→ C p−1 Q−→ C p Q−→ C p+1 Q−→ . . .
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with corresponding cohomological spaces H p
rel.(M) = (C ∩ ker(Q))/(C ∩ im(Q)).

We note that the inclusion map C p ↪→ W p
0 induces an injective map H p

rel.(M) →
H p
BRST(M).
There is a short exact sequence of cochain complexes

0 → C• ↪→ W •
0

ψ−→ C•−1 → 0

with ψ : W p
0 → C p−1, w �→ (−1)|w|b1w. Then the zig-zag lemma entails a long exact

sequence

. . . → H p
rel. → H p

BRST → H p−1
rel. → H p+1

rel. → H p+1
BRST → H p

rel. → H p+2
rel. → . . .

In Sect. 4.3 we shall study situations in which this sequence collapses.

4.2. Lie algebra and invariant bilinear form. We describe the case when the Virasoro
representation M in the matter sector is a conformal vertex algebra. Then H1

BRST(M)

and H1
rel.(M) inherit Lie algebra structures. More precisely:

Proposition 4.5. Let M be a conformal vertex algebra of central charge 26, which is
positive-energy as Virasoro representation. Then the bracket [u, v] = (b0u)0v for all
u, v ∈ W 1 is well-defined on H1

BRST(M) and endows it with the structure of a Lie
algebra.

Moreover, the bracket restricts to ker(b1) and also defines a Lie algebra structure on
H1
rel.(M).

Proof. The first claim is stated in [42], Theorem 2.2, and the second assertion follows
from Lemma 2.1 in [42]. ��
We note that if a group G acts on M by automorphisms of conformal vertex algebras,
then G induces an action on H1

BRST(M) by Lie algebra automorphisms.
Let us additionally assume that the conformal vertex algebra M carries a non-

degenerate, invariant bilinear form (·, ·),which is necessarily symmetric [40] andVirasoro-
invariant. We show that this induces a non-degenerate, invariant bilinear form on the Lie
algebra H1

rel.(M) as well.

Proposition 4.6. Let M be a positive-energy Virasoro representation of central charge
26. Assume that M is a conformal vertex algebra that carries a non-degenerate, invari-
ant bilinear form (·, ·)M. Then (·, ·)M induces a non-degenerate, symmetric, invariant
bilinear form on the Lie algebra H1

rel.(M).

Proof. Since M is positive-energy, in particular L1 acts locally nilpotently on M . In this
case there is still a nice theory of invariant bilinear forms on M [49,50], similar to the
theory for vertex operator algebras developed in [40]. We shall also need to consider
Z-graded conformal vertex superalgebras, for which the theory is described in [51,53].

The proof closely follows the arguments made in [53], Section 4, and [51], Section 5.
Note that (Vgh.)0/L

gh.
1 (Vgh.)1 is one-dimensional. Let (·, ·)gh. be the unique invariant

bilinear form on the ghost vertex superalgebra Vgh.. For definiteness we normalise it
such that (1, 1 ⊗ e3σ )gh. = 1. Then (·, ·)gh. is super-symmetric (with respect to the
Z2-grading), non-degenerate, vanishes on ker(b1) and pairs spaces (Vgh.)

p
n and (Vgh.)

q
m

non-trivially only ifm = n and p+q = 3. Also, note that the following adjoint relations
hold: b∗

n = b2−n and c∗
n = −c−4−n for all n ∈ Z.
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OnW = M⊗Vgh. we consider the tensor-product bilinear form (·, ·)W , which is non-
degenerate, super-symmetric, invariant and vanishes on ker(b1). Moreover, Q∗ = −Q.

We then define a bilinear formon B := W∩ker(b1) by setting (u, v)B := (c−2u, v)W
for u, v ∈ B. It is non-degenerate, super-antisymmetric and pairs B p

n and Bq
m non-

trivially only if m = n and p + q = 2.
Then (u, v)B can be restricted to C = B0 = W0 ∩ ker(b1) and the corresponding

bilinear form is again non-degenerate. Moreover, (Qu, v)C = −(−1)|u|(u, Qv)C for
u, v ∈ C with u being Z2-homogeneous.

The last relation, together with Q2 = 0, entails that (·, ·)C induces a well-defined bi-
linear form (·, ·)Hrel. on Hrel. = (ker(Q)∩C)/(im(Q)∩C). This form is non-degenerate,
super-antisymmetric and pairs H p

rel. and Hq
rel. non-trivially only if p + q = 2.

Finally, (·, ·)Hrel. can be restricted to the Lie algebra H1
rel. and the resulting bilinear

form is non-degenerate, symmetric and invariant. ��

4.3. Vanishing theorem. In the following we shall specialise to the case where the Vira-
soro representation M in the matter sector carries a representation of the Heisenberg (or
free-boson) vertex operator algebra π

(k−1,1)
0 of some rank 2 ≤ k ≤ 26 and Lorentzian

signature.
The following vanishing theorem, which uses the full power Feigin’s semi-infinite

cohomology theory [27], asserts the vanishing of almost all cohomological spaces as-
sociated with the relative BRST complex.

Proposition 4.7 (Vanishing Theorem, [61], Theorem 4.9, [27]). Let 2 ≤ k ≤ 26 and V
be a positive-energy Virasoro representation of central charge 26 − k carrying a non-
degenerate, Virasoro-invariant Hermitian sesquilinear form. Let α ∈ R

(k−1,1) ⊗R C

with α �= 0. Then

H p
rel.(V ⊗ π(k−1,1)

α ) = {0}
for all p �= 1.

Of course, for this result the vertex operator algebra module structure of π
(k−1,1)
α

is irrelevant. Only the structure of M = V ⊗ π
(k−1,1)
α as a Virasoro module with a

Virasoro-invariant Hermitian sesquilinear form matters.
We remark that a vanishing theorem for M = π

(r,s)
α for r, s ∈ Z>0 with r + s = 26

was stated in Theorem 2.7 of [28].
The vanishing of the relative cohomological spaces for α �= 0 lets collapse the above

long exact sequence so that for α �= 0

H1
BRST(V ⊗ π(k−1,1)

α ) ∼= H1
rel.(V ⊗ π(k−1,1)

α ) ∼= H2
BRST(V ⊗ π(k−1,1)

α )

and

H p
BRST(V ⊗ π(k−1,1)

α ) = {0}
for all p �= 1, 2.

Remark 4.8. Like in theproof ofProposition4.6, the non-degenerate,Hermitian sesquilin-
ear forms on V and π

(k−1,1)
α induce a non-degenerate, Hermitian sesquilinear form on

the physical space H1
BRST(V ⊗ π

(k−1,1)
α ) ∼= H1

rel.(V ⊗ π
(k−1,1)
α ) for α �= 0. If the form

on V is positive-definite, then so is the one on the physical space [61]. This is referred
to as no-ghost theorem.
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The vanishing theorem together with the fact that the Euler-Poincaré characteristic of
the relative BRST complex, if well-defined, is the same as the one of the corresponding
cohomological spaces implies:

Proposition 4.9 ([61], Theorem 4.9). Let 2 ≤ k ≤ 26 and V be a positive-energy
Virasoro representation of central charge 26 − k carrying a non-degenerate, Virasoro-
invariant,Hermitian sesquilinear form.Assume that the L0-gradingof V is bounded from
below and that the L0-eigenspaces of V are finite-dimensional. Let α ∈ R

(k−1,1) ⊗R C

with α �= 0. Then

H1
BRST(V ⊗ π(k−1,1)

α ) ∼= H1
rel.(V ⊗ π(k−1,1)

α ) ∼= (V ⊗ π
(k−2,0)
0 )1−〈α,α〉/2.

(Note that 1/�(q) should be replaced by 1/q in item (b) of Theorem 4.9 in [61].)
The case of α = 0 is not covered by the vanishing theorem but a direct calculation

yields:

Proposition 4.10 ([61], Theorem 4.9). Let 2 ≤ k ≤ 26 and V be a positive-energy
Virasoro representation of central charge 26 − k carrying a non-degenerate, Virasoro-
invariant, Hermitian sesquilinear form. Assume that (1) the L0-spectrum of V is non-
negative, (2) L−1V0 = {0}. Then

H1
BRST(V ⊗ π

(k−1,1)
0 ) ∼= H1

rel.(V ⊗ π
(k−1,1)
0 ) ∼= (V ⊗ π

(k−1,1)
0 )1.

Proof. Assuming that M is a positive-energy Virasoro representation with non-negative
L0-spectrum, one computes H1

BRST(M) = ((ker(L1)∩M1)/L−1M0)⊗Cc = H1
rel.(M).

Inserting M = V ⊗ π
(k−1,1)
0 yields

ker(L1) ∩ V1
L−1V0

⊗ C1 ⊗ Cc ⊕ V0 ⊗ (π
(k−1,1)
0 )1 ⊗ Cc.

Using (2), which also implies L1V1 = {0} because of the non-degenerate, Virasoro-
invariant, Hermitian sesquilinear form, this proves the assertion. ��

If the character of V is well-defined, the following is immediate with knowledge of
the character of the Heisenberg vertex operator algebra (see Sect. 3.1):

Corollary 4.11. Let 2 ≤ k ≤ 26 and V as in the above proposition. Additionally assume
that all the L0-eigenspaces are finite-dimensional. Then the dimension of the physical
space is

dim(H1
BRST(V ⊗ π(k−1,1)

α )) =
[
chV (q)/η(q)k−2

]
(−〈α, α〉/2) + 2δα,0 dim(V0)

for all α ∈ R
(k−1,1) ⊗R C.

4.4. Natural construction of ten Borcherds-Kac-Moody algebras. Finally, we apply the
BRST quantisation to the ten conformal vertex algebras Mφν from Sect. 3.4.

First, we must check that the assumptions are satisfied.

Lemma 4.12. Let ν be of square-free order in M23. Then Mφν is a positive-energy
Virasoro representation of central charge 26.
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Proof. By definition, Mφν decomposes as

Mφν =
⊕

α∈K ′
V φν

� (ϕ(α + K )) ⊗ π(1,1)
α .

Clearly, L0 acts diagonalisably onMφν with central charge 26.Moreover, the L0-grading

on the irreducible V φν

� -modules and on the Heisenberg modules π
(1,1)
α , α ∈ K ′, is

bounded from below. Hence, they are positive energy, which (in contrast to the bound-
edness from below) carries over to Mφν . ��
This allows us to apply the BRST quantisation in Definition 4.3 to Mφν . We define

gφν := H1
BRST(Mφν ),

which is a Lie algebra:

Proposition 4.13. Let ν be of square-free order m in M23. Then the physical space gφν

is an L ′-graded Lie algebra, i.e.

gφν =
⊕

α∈L ′
gφν (α) and [gφν (α), gφν (β)] ⊆ gφν (α + β)

for all α, β ∈ L ′ where gφν (α) = H1
BRST(Mφν (α)) and L = �ν ⊕ II1,1(m).

Proof. The Lie algebra claim follows from Lemma 4.12 and Proposition 4.5.
For the grading we recall that the conformal vertex algebra Mφν is graded by the dual

lattice L ′, i.e.

Mφν =
⊕

α∈L ′
Mφν (α) =

⊕

α∈L ′
V ν̂

�ν
(χ(α + L)) ⊗ π(k−1,1)

α .

We note that the L ′-grading is compatible with the L0-grading on Mφν . In fact, all the
Virasoro modes Ln , n ∈ Z, on Mφν preserve the L ′-grading, and hence so does Q. We
conclude that the BRST quantisation preserves the L ′-grading, which shows the direct-
sum decomposition of gφν . Since Mφν is L ′-graded as vertex algebra, gφν is L ′-graded
as Lie algebra. ��

The L ′-decomposition of the Lie algebra gφν allows us to apply the vanishing theorem
or its corollary, Proposition 4.9. Again, we first have to check that the assumptions are
satisfied:

Lemma 4.14. Let ν be of square-free order m in M23. Then V ν̂
�ν

(α +�ν, i, j) admits a
non-degenerate, Virasoro-invariant Hermitian sesquilinear form and satisfies items (1)
and (2) in Proposition 4.10 for all α + �ν ∈ (�ν)

′/�ν and i, j ∈ Zm.

Proof. That the L0-spectrum of all the irreducible V ν̂
�ν

-modules is non-negative follows

from the corresponding fact for the irreducible ν̂i -twisted V�ν -modules for i ∈ Zm . Their
conformal weights are described in [18] and always non-negative. This shows (1). In
fact, V ν̂

�ν
satisfies the positivity condition, i.e. the conformal weight of any irreducible

V ν̂
�ν

-module is positive except for that of V ν̂
�ν

itself. Since V ν̂
�ν

is of CFT-type and
L−11 = 0, this shows (2).

If m = 1, V ν̂
�ν

is the trivial vertex operator algebra. For the remaining cases the
central charge is 26− k = 8, 12, . . . , 22. Similar to Lemma 3.1.2 in [12] (see also [37])
one can show that for all α + �ν ∈ (�ν)

′/�ν and i, j ∈ Zm , V ν̂
�ν

(α + �ν, i, j) admits
a non-degenerate, Virasoro-invariant, Hermitian sesquilinear form. ��
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The lemma permits us to compute gφν (α) = H1
BRST(Mφν (α)) ∼= H1

rel.(Mφν (α)) using
Propositions 4.9 and 4.10:

Proposition 4.15. Let ν be of square-free order in M23. Then the L ′-graded Lie algebra
gφν satisfies

gφν (α) ∼=
{

(V ν̂
�ν

(χ(α + L)) ⊗ π
(k−2,0)
0 )1−〈α,α〉/2 if α �= 0,

(V ν̂
�ν

⊗ π
(k−1,1)
0 )1 if α = 0

for all α ∈ L ′. Moreover,

dim(gφν (α)) =
[
chV ν̂

�ν
(χ(α+L))

(q)/η(q)k−2
]
(−〈α, α〉/2)

for all α ∈ L ′\{0} and
dim(gφν (0)) = k = rk(L).

Proof. The first two claims are immediate from Lemma 4.14 and Proposition 4.9. The
last statement follows since V ν̂

�ν
is of CFT-type and satisfies (V ν̂

�ν
)1 = {0}. ��

By the above proposition, the dimensions of the graded components of gφν are Fourier
coefficients exactly of the vector-valued modular form F introduced in Sect. 3.5 (see
Proposition 3.10) and lifting to the automorphic product �φν (see Sect. 2.2). Hence:

Corollary 4.16. Let ν be of square-free order m in M23. Then

dim(gφν (α)) = [Fα+L ] (−〈α, α〉/2) =
∑

d|m
δα∈L ′∩ 1

d L
[1/ην](−d〈α, α〉/2)

for all α ∈ L ′\{0}.
Proof. Proposition 3.12 implies that

[Fα+L ] (−〈α, α〉/2) =
∑

d|m
δα∈L ′∩ 1

d L

[
gd, jα+L ,d

]
(−〈α, α〉/2)

=
∑

d|m
δα∈L ′∩ 1

d L
[1/ην](−d〈α, α〉/2)

by definition of the gd, j (τ ) in terms of 1/ην(τ/d). ��
Because gφν = H1

BRST(Mφν ) = H1
rel.(Mφν ), we can use Proposition 4.6 to define a

non-degenerate, symmetric, invariant bilinear form on gφν .

Lemma 4.17. Let ν be of square-free order in M23. Then the conformal vertex algebra
Mφν admits a non-degenerate, symmetric, invariant bilinear form (·, ·)Mφν

, which is
unique up to a non-zero scalar.

Proof. The space of symmetric, invariant bilinear forms onMφν is isomorphic to the dual
space of (Mφν )0/L1(Mφν )1 since L1 acts locally nilpotently on Mφν [49,50]. However,
instead of studying such forms onMφν directly, we shall first consider the vertex operator
algebra Mφν (0) and then extend the result to Mφν .
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The space Mφν (0)0/L1Mφν (0)1 is one-dimensional. Let (·, ·)Mφν (0) be the up to non-
zero scalar unique non-degenerate, symmetric, invariant bilinear form on the simple,
self-contragredient vertex operator algebra Mφν (0). It is related to the contragredient
pairing by (u, v)Mφν (0) = 〈φ0(u), v〉 for u, v ∈ Mφν (0) where φ0 : Mφν (0) → Mφν (0)

′
is an isomorphism of Mφν (0)-modules, again unique up to a non-zero scalar.

AnyMφν -invariant bilinear formonMφν can only pair the irreducibleMφν (0)-module

Mφν (α) = V ν̂
�ν

(χ(α + L)) ⊗ π
(k−1,1)
α non-trivially with its contragredient module

Mφν (α)′ ∼= Mφν (−α) = V ν̂
�ν

(χ(−α + L)) ⊗ π
(k−1,1)
−α , and such a form is in partic-

ular Mφν (0)-invariant.
On the other hand, (·, ·)Mφν (0) and the contragredient pairingswith choices ofMφν (0)-

module isomorphisms φα : Mφν (−α) → (Mφν (α))′ for α �= 0 define a non-degenerate,
symmetric, Mφν (0)-invariant bilinear form (·, ·)Mφν

on Mφν .
Proper normalisation with respect to the normalisation of (·, ·)Mφν (0) (cf. Proposi-

tion 3.1.8 in [12]) makes the form (·, ·)Mφν
Mφν -invariant. ��

For definiteness we normalise (·, ·)Mφν
such that (1, 1)Mφν

= 1. Proposition 4.6
implies:

Proposition 4.18. Let ν be of square-free order in M23. Then there is a non-degenerate,
symmetric, invariant bilinear form (·, ·)gφν on gφν .

In the following we describe the zero-componentH := gφν (0) of gφν , which we shall
later identify as a Cartan subalgebra of gφν . It simplifies to

H ∼= (V ν̂
�ν

)0 ⊗ (π
(k−1,1)
0 )1 = C1 ⊗ {h(−1)1 | h ∈ h} ∼= h

with h := L ⊗Z C since V ν̂
�ν

is of CFT-type and satisfies (V ν̂
�ν

)1 = {0}.
Now recall that (·, ·)gφν is induced from the tensor product of the up to non-zero

scalar unique invariant, bilinear forms (·, ·)Mφν
on Mφν and (·, ·)gh. on Vgh. and that we

chose normalisations for both. Moreover, recall that h comes equipped with a bilinear
form 〈·, ·〉 obtained as extension of the bilinear form 〈·, ·〉 on the lattice L . Then the
above isomorphism is even an isometry:

Proposition 4.19. Let ν be of square-free order in M23. Then there is an isometry

(h, 〈·, ·〉) ∼= (H, (·, ·)gφν

)

induced by h �→ 1 ⊗ h(−1)1 ⊗ c ∈ W for all h ∈ h = L ⊗Z C. This isometry maps
L ⊗Z R, on which the bilinear form 〈·, ·〉 is real-valued and of signature (k − 1, 1), to
a real subspace HR of H on which (·, ·)gφν is real-valued and of signature (k − 1, 1).

Proof. Cf. [53], Section 4.2. ��
We shall see that H = gφν (0) is a Cartan subalgebra of gφν . For this property it is
essential that (V ν̂

�ν
)1 = {0}.

In the following we prove that gφν is a Borcherds-Kac-Moody algebra using Propo-
sitions 2.1 and 2.2.

Lemma 4.20. Let ν be of square-free order in M23. Then gφν satisfies items (1) to (4) in
Proposition 2.1.
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Proof. Item (1) is the statement of Proposition 4.18.
Recall that gφν is graded by L ′. ThenH = gφν (0) is a Lie subalgebra of gφν and acts

on gφν in the adjoint representation as [x, y] = 〈h, α〉y for x = 1 ⊗ h(−1)1 ⊗ c ∈ H
and y ∈ gφν (α), α ∈ L ′. This implies that H is self-centralising.

We abuse notation and write h ∈ h for the element 1 ⊗ h(−1)1 ⊗ c ∈ H = gφν (0),
identifying H with h. Since the bilinear form on H is non-degenerate, we can further
identify H ∼= h with h∗ via α(·) := 〈α, ·〉 for α ∈ h. Then

[h, x] = α(h)x

for h ∈ H and x ∈ gφν (α), i.e. gφν (α) is the root space associated with α ∈ L ′\{0}. The
set of roots 	 ⊆ L ′\{0} are those α for which gφν (α) �= {0}. Then gφν decomposes into
the direct sum

gφν = H ⊕
⊕

α∈	

gφν (α)

with Cartan subalgebra H and root spaces gφν (α), α ∈ 	. Proposition 4.15 states in
particular that dim(gφν (α)) < ∞ for all α ∈ L ′\{0}, i.e. the root spaces are finite-
dimensional. This completes the proof of item (2).

Proposition 4.19 isometrically identifies H with h = L ⊗Z C, which has a natural
real subspace HR := L ⊗Z R, on which the bilinear form takes real values, and the
roots, identified with elements of the lattice L ′, lie inH∗

R
. This shows item (3).

Under the identifications presented above the normof a rootα ∈ 	 is exactly 〈α, α〉/2.
From the explicit expression for gφν (α) in Proposition 4.15 we conclude that gφν (α) =
{0} if 〈α, α〉/2 > 1 since V ν̂

�ν
satisfies the positivity condition. This proves (4). ��

The more difficult part of the proof that gφν is a Borcherds-Kac-Moody algebra is to
show that the conditions in Proposition 2.2 are satisfied. First, we need the following
lemma:

Lemma 4.21. Let ν be of square-free order m in M23 and L = �ν ⊕ II1,1(m). Then the
orbits of the finite quadratic space L ′/L under O(L ′/L) are uniquely determined by the
order and the value of the quadratic form of their elements.

Proof. Proposition 5.1 in [57] implies that for a non-degenerate finite quadratic space
D of square-free level, two elements of D are in the same orbit under O(D) if and
only if they have the same order and value of the quadratic form (see comment before
Proposition 5.3 in [57]). Since L ′/L has level m, the assertion follows. ��
Lemma 4.22. Let ν be of square-free order in M23. Then gφν satisfies the conditions in
Proposition 2.2, which implies that (5) and (6) in Proposition 2.1 are satisfied.

Proof. We want to show that the root spaces of gφν corresponding to positive multiples
of the same norm-zero root commute. To this endwe consider the vertex operator algebra
V ν̂

�ν
⊗ V�ν of central charge 24. Its fusion group is the finite quadratic space

F := (�ν)
′/�ν × (Zm × Zm, Qm) × (�ν)′/�ν

by the results in Sect. 3.2. Let I ≤ F be an isotropic subgroup of F with I⊥ = I . Then,
as explained in Sect. 3.3, the direct sum of irreducible V ν̂

�ν
⊗ V�ν -modules

VI =
⊕

(α+�ν,i, j,β+�ν)∈I
V ν̂

�ν
(α + �ν, i, j) ⊗ Vβ+�ν
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is a strongly rational, holomorphic vertex operator algebra of central charge 24. These
vertex operator algebras have been studied extensively (see, for example, [22,26,58]). In
particular, dim((VI )1) = 24 if and only if VI is isomorphic to the lattice vertex operator
algebra V� associated with the Leech lattice � [23].

It is well-known that the weight-one space V1 of a vertex operator algebra V of CFT-
type carries the structure of a Lie algebra via [u, v] = u0v for all u, v ∈ V1. Now, if
VI ∼= V�, then the Lie algebra (VI )1 is abelian of dimension 24.

After these preliminary considerations, let γ ∈ L ′\{0} with 〈γ, γ 〉/2 = 0. Without
loss of generality we may assume that γ + L has maximal order m in L ′/L , a group of
exponent m. Then χ(γ + L) is an isotropic element in (�ν)

′/�ν × (Zm × Zm, Qm) of
order m and (χ(γ + L), 0 + �ν) is an isotropic element in F of order m.

ByLemma4.21 there exists an automorphismκ of thefinite quadratic space (�ν)
′/�ν

× (Zm × Zm, Qm) such that χ(γ + L) = κ((0 + �ν, 0, 1)). Define

I := {(ψ(λ + �ν), 0, i, λ + �ν) | λ + �ν ∈ (�ν)′/�ν, i ∈ Zm} ≤ F,

which is isotropic, satisfies I⊥ = I and contains (κ−1(χ(γ + L)), 0 + �ν).
Now consider the holomorphic vertex operator algebra VI of central charge 24 asso-

ciated with this particular choice of I . We shall show that dim((VI )1) = 24 and hence
VI ∼= V� so that (VI )1 is abelian. In fact, because the characters of the irreducible
V ν̂

�ν
-modules have the special property that they are invariant under the automorphisms

of (�ν)
′/�ν × (Zm × Zm, Qm) (see item (2) of Remark 3.11), it follows that

Vκ̂(I ) =
⊕

(α+�ν,i, j,β+�ν)∈I
V ν̂

�ν
(κ(α + �ν, i, j)) ⊗ Vβ+�ν

has the same character as VI where κ̂ = (κ, id) ∈ O(F) and hence dim((Vκ̂(I ))1) =
dim((VI )1) = 24. In particular, (Vκ̂(I ))1 is abelian.

But κ̂(I ) contains the subgroup 〈(χ(γ + L), 0 + �ν)〉, and therefore the abelian Lie
algebra (Vκ̂(I ))1 contains

(
V ν̂

�ν
(kχ(γ + L)) ⊗ V�ν

)

1
∼= V ν̂

�ν
(kχ(γ + L))1 = V ν̂

�ν
(χ(kγ + L))1

∼= gφν (kγ )

for all k ∈ Z>0. One checks that the definitions of the Lie brackets on the left-hand and
right-hand side of the equation coincide, which implies that

[gφν (kγ ), gφν (lγ )] = 0

for all k, l ∈ Z>0. This proves the assertion.
It remains to show that the holomorphic vertex operator algebra VI has a weight-one

space of dimension 24. By the definition of VI and Proposition 3.10, the character of VI
is

chVI (τ ) =
∑

λ+�ν∈(�ν)′/�ν

i∈Zm

chV ν̂
�ν

(ψ(λ+�ν),0,i)(τ ) chVλ+�ν (τ )

=
∑

λ+�ν∈(�ν)′/�ν

i∈Zm

Fχ−1(ψ(λ+�ν),0,i)(τ )ϑλ+�ν (τ ).
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To determine the constant term in the q-expansion of the above character we note that
ϑλ+�ν (τ ) has no singular terms and a constant term only if λ+�ν = 0+�ν . As described
in item (1) of Remark 3.11, the complete reflectivity of the vector-valued modular form
F means that singular terms in the q-expansion of F appear exactly in the components
Fα+L(τ ), α + L ∈ L ′/L , with 〈α, α〉/2 = 1/d (mod 1) and d · (α + L) = 0 + L for
d | m and that in such a component the only singular term is 1 · q−1/d . Hence

dim((VI )1) = [chVI ](0) =
∑

i∈Zm

[Fχ−1(0+�ν,0,i)](0)[ϑ0+�ν ](0)

+
∑

d|m

∑

λ+�ν∈(�ν)′/�ν

i∈Zm ,d·i=0
〈λ,λ〉/2=1/d (mod 1)

d·(λ+�ν)=0+�ν

[Fχ−1(ψ(λ+�ν),0,i)](−1/d)[ϑλ+�ν ](1/d)

=
∑

i∈Zm

[Fχ−1(0+�ν,0,i)](0) +
∑

d|m
d

∑

λ+�ν∈(�ν)′/�ν

〈λ,λ〉/2=1/d (mod 1)
d·(λ+�ν)=0+�ν

[ϑλ+�ν ](1/d).

Studying the theta series of the cosets of �ν we find the second term to vanish. For
example, since�ν has no vectors α of norm 〈α, α〉/2 = 1, the coefficient of the q1-term
in ϑ�ν (τ ) vanishes. Then

dim((VI )1) =
∑

i∈Zm

[Fχ−1(0+�ν,0,i)](0) =
∑

i∈Zm

[chV ν̂
�ν

(0+�ν,0,i) /ηk−2](0)

= [chV�ν
/ηk−2](0) = [ϑ�ν /η

24](0) = 24

since also �ν has no vectors α of norm 〈α, α〉/2 = 1. This completes the proof. ��
The two lemmata imply:

Proposition 4.23. Let ν be of square-free order in M23. Then gφν is a Borcherds-Kac-
Moody algebra with Cartan subalgebra H = gφν (0) ∼= L ⊗Z C.

Finally, we shall prove that gφν = H1
BRST(Mφν ) is isomorphic to the complexification

of the real Borcherds-Kac-Moody algebra gφν constructed by Borcherds [6] by twisting
the denominator identity of the Fake Monster Lie algebra g (see Sect. 2.2).

To facilitate the discussionwe rescale the rational lattice L ′ = (�ν)′⊕(II1,1(m))′, by
whichgφν is graded, to an even and in particular integral lattice�. Note that (II1,1(m))′ ∼=
II1,1(1/m) and, due to the special form of the ten automorphisms, (�ν)′ ∼= �ν(1/m).
Hence, rescaling the quadratic form on L by m we obtain the even lattice

� := L ′(m) ∼= �ν ⊕ II1,1.

Then Corollary 4.16 implies:

Corollary 4.24. Let ν be of square-free orderm in M23. Then the Borcherds-Kac-Moody
algebra gφν is graded by the even lattice � = L ′(m) = �ν ⊕ II1,1 of rank k and level
m with the dimensions of the graded components given by

dim(gφν (α)) =
∑

d|m
δα∈�∩m

d �′

[
1

ην

] (
− d

m

〈α, α〉
2

)

=
∑

d|m
δα∈�∩d�′

[
1

ην

] (
− 1

d

〈α, α〉
2

)

for all α ∈ �\{0}.
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Comparing with the equation for dim(gφν (α)) in Sect. 2.2 this immediately shows that
the�-graded components, i.e. the root spaces, of gφν and gφν have identical dimensions.

We now study the roots of gφν . The real roots of gφν , i.e. the vectors α ∈ � with
〈α, α〉 > 0 and dim(gφν (α)) > 0, can be easily read off from the dimension formula in
Corollary 4.16 or the rescaled version in Corollary 4.24:

Proposition 4.25. Let ν be of square-free order m in M23. Then the real roots of gφν are
exactly the α ∈ �∩d�′ with 〈α, α〉/2 = d for d | m, and they all have root multiplicity
dim(gφν (α)) = 1. Moreover, the real roots of gφν are exactly the roots of the lattice �.

Proof. Let α ∈ � such that 〈α, α〉 > 0. Then using that

1

ην(τ )
=

∏

t |m
η(tτ)−24/σ1(m) = 1

q
+

24

σ1(m)
+ . . .

we obtain

dim(gφν (α)) =
∑

d|m
δα∈�∩d�′

[
1

ην

] (
− 1

d

〈α, α〉
2

)
=

∑

d|m
δα∈�∩d�′δd,〈α,α〉/2,

which proves the first claim. The second claim follows directly from Propositions 2.1
and 2.2 in [54]. ��

The Weyl group W ≤ Aut(�) of gφν is defined as the group generated by the
reflections through the hyperplanes orthogonal to the real roots of gφν and hence in
this case it is the full reflection group of the lattice �, i.e. the group generated by the
reflections through the hyperplanes orthogonal to the roots of �.

Therefore, a choice of simple roots of the reflection group of � gives a choice of real
simple roots of gφν .

A Weyl vector for W is a vector ρ ∈ � ⊗Z R such that a set of simple roots of W is
given by the roots α ∈ � satisfying 〈α, ρ〉 = −〈α, α〉/2 (see Corollary 2.4 in [3]).

Proposition 4.26. Let ν be of square-free order in M23. Then there exists a primitive
norm-zero vector ρ ∈ � that is a Weyl vector for the reflection group W of �.

Proof. As remarked earlier, the even lattice �ν has no roots. This allows us to apply
Theorem 3.3 in [4] to the Lorentzian lattice � = �ν ⊕ II1,1. It states that there is a
norm-zero vector ρ ∈ � such that the simple roots of the reflection group W of � are
exactly the roots α of � such that 〈α, ρ〉 is negative and divides 〈α, v〉 for all vectors
v ∈ �. It is not difficult to show that for one of the ten automorphisms the vector ρ is a
Weyl vector and primitive. ��
A possible choice of Weyl vector is given by ρ = (0, η) ∈ �ν ⊕ II1,1 for any primitive
norm-zero vector η ∈ II1,1 (cf. [15], directly before Theorem 6.2). We fix such a choice
of ρ, which also fixes a set of simple roots ofW and the fundamental Weyl chamber, i.e.
the set of vectors in � ⊗Z R with non-positive inner product with the simple roots. (For
example, we may take ρ = (0, 0, 1), like for gφν in Theorem 2.3.) The Weyl vector ρ

lies in the fundamental Weyl chamber. We obtain:

Proposition 4.27. Let ν be of square-free order m in M23. Then the real simple roots of
gφν are the α ∈ � ∩ d�′ with 〈α, α〉/2 = d for d | m and 〈ρ, α〉 = −〈α, α〉/2. These
are precisely the simple roots of the reflection group W of �.



Natural Construction of Ten Borcherds-Kac-Moody Algebras... 67

Proof. This follows immediately from Proposition 4.26 and the properties of a Weyl
vector. ��

We then determine the imaginary simple roots of gφν .

Proposition 4.28. Let ν be of square-free order m in M23. Then the positive multiples
nρ, n ∈ Z>0, of the Weyl vector ρ are imaginary simple roots of gφν with multiplicity
24σ0((m, n))/σ1(m).

Proof. The Weyl vector ρ lies in the fundamental Weyl chamber. In fact, it has negative
inner product with all real simple roots. By Proposition 2.1 in [3] we can choose imag-
inary simple roots lying in the fundamental Weyl chamber so that ρ has non-negative
inner product with all simple roots. In Lorentzian signature the inner product of two
vectors of non-positive norm in the same cone is non-positive and zero only if both
vectors are multiples of the same norm-zero vector. Therefore, if we write nρ, n ∈ Z>0,
as sum of simple roots with positive coefficients, the only simple roots appearing in this
sum are positive multiples of ρ. Since the support of an imaginary root is connected, all
the nρ, n ∈ Z>0, are simple roots. By Corollary 4.24, the multiplicities are

dim(gφν (nρ)) =
∑

d|m
δnρ∈�∩d�′ [1/ην](0) = 24

σ1(m)

∑

d|m
δnρ∈�∩d�′

for n ∈ Z>0. Since theWeyl vector ρ = (0, η) is primitive in� = �ν ⊕ II1,1, we obtain
that nρ ∈ � ∩ d�′ if and only if d | n and hence

dim(gφν (nρ)) = 24

σ1(m)

∑

d|m
δd|n = 24σ0((m, n))

σ1(m)

for n ∈ Z>0, which completes the proof. ��
The following result shows that these are in fact all the imaginary simple roots.

The argument uses that the denominator identity of gφν (see also Corollary 4.30) is the
automorphic product �φν from [53,54].

Proposition 4.29. Let ν be of square-free order m in M23. Then a set of simple roots
of gφν is as follows: the real simple roots of gφν are the α ∈ � ∩ d�′ with 〈α, α〉/2 =
d for d | m and 〈ρ, α〉 = −〈α, α〉/2 with multiplicity 1 and the imaginary simple
roots are the positive multiples nρ, n ∈ Z>0, of the Weyl vector ρ with multiplicity
24σ0((m, n))/σ1(m).

Proof. We consider the automorphic product �φν of singular weight obtained in [53] as
Borcherds lift of the vector-valuedmodular form F introduced in Sect. 3.5. Its expansion
at any cusp is given by

eρ
∏

d|m

∏

α∈	+∩d�′
(1 − eα)[1/ην ](−〈α,α〉/2d) =

∑

w∈W
det(w)w(ην(e

ρ)).

Now, let k be the Borcherds-Kac-Moody algebra with root lattice �, Cartan subalge-
bra�⊗ZC and simple roots as stated in the theorem. Then the above is the denominator
identity of k, implying that k and gφν have the same root multiplicities (cf. proof of Theo-
rem 7.2 in [6]). The simple roots of a Borcherds-Kac-Moody algebra (with given Cartan
subalgebra and choice of fundamental Weyl chamber) are determined by its root mul-
tiplicities because of the denominator identity. Hence, k and gφν have the same simple
roots (and are therefore isomorphic). ��
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The following two results are immediate corollaries of (the proof of) Proposition 4.29.

Corollary 4.30. Let ν be of square-free order m in M23. Then the denominator identity
of the Borcherds-Kac-Moody algebra gφν is

eρ
∏

d|m

∏

α∈	+∩d�′
(1 − eα)[1/ην ](−〈α,α〉/2d) =

∑

w∈W
det(w)w(ην(e

ρ))

with � = �ν ⊕ II1,1, Weyl vector ρ = (0, 0, 1) and Weyl group W, which is the full
reflection group of �.

Comparing with Theorem 2.3 we obtain the main result of this work:

Theorem 4.31 (Main Result). Let ν be of square-free order in M23. Then
gφν = H1

BRST(Mφν ) is isomorphic to the complexification of gφν .

With the above theorem we have found a uniform, natural construction of the
Borcherds-Kac-Moody algebras obtained in [6] by twisting the denominator identity
of the Fake Monster Lie algebra g by elements of square-free order in M23. These
are also the ten Borcherds-Kac-Moody algebras classified in [54] whose denominator
identities are completely reflective automorphic products of singular weight.

Moreover, we showed that these denominator identities are Borcherds lifts of the
vector-valued characters of the vertex operator algebras in the input of this natural
construction.

The main results are summarised in the following diagram (cf. the diagram in the
introduction):

Vertex alg. BKMA Aut. prod.

V� ⊗ VII1,1
∼= VII25,1 FMA g �

⊕
γ∈K ′/K V φν

� (γ + K ) ⊗ Vγ+K gφν ∼= gφν �φν

φν

quantise

lift of char.

den. id.

φν

quantise

lift of char.

den. id.

While we gave the first systematic string-theoretic construction of a subfamily of
Borcherds’ twisted versions of the Fake Monster Lie algebra, the majority of these
Borcherds-Kac-Moody (super)algebras have not yet been realised in natural construc-
tions (see Problem 3 in [6]). However, with recent advancements in orbifold theory, it
should be possible to make further strides in this direction.
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