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Abstract: Regularized coherent-state functional integrals are derived for ensembles of
identical bosons on a lattice, the regularization being a discretization of Euclidian time.
Convergence of the time-continuum limit is proven for various discretized actions. The
focus is on the integral representation for the partition function and expectation values in
the canonical ensemble. The connection to the grand-canonical integral is exhibited and
some important differences are discussed. Uniform bounds for covariances are proven,
which simplify the analysis of the time-continuum limit and can also be used to analyze
the thermodynamic limit. The relation to a stochastic representation by an ensemble
of interacting random walks is made explicit, and its modifications in presence of a
condensate are discussed.

1. Introduction

The operator-algebraic (‘second-quantized’) formulation of quantum statistical mechan-
ics [13] provides a precise mathematical framework for the study of quantum many-
body models. For the analysis of equilibrium states and dynamics at (small) positive
temperatures, functional integral representations (FIR) and stochastic representations,
in particular interacting Brownian motions (IBM), have proven very useful alternative
approaches. In theoretical physics, formal (i.e. nonrigorous) FIR have almost become
the method of choice; stochastic representations also have a long history, going back to
Feynman [22,23]. Inmathematical physics, FIR have also been studied already for a long
time. Clearly, there are subtleties involved when dealing mathematically with infinite-
dimensional integrals. A traditional way of obtaining natural regularizations that also
provide a strict relation to the algebraic formulation proceeds via Suzuki-Trotter prod-
uct formulas and coherent-state integrals, to get a discrete-time functional integral, the
time-continuum limit of which can then be analyzed. For fermionic systems, this has (in
combination with multiscale techniques) led to mathematical results that have not yet
been proven by any other method, see for instance [11,14,15,17,20,30,31,38]. Bosonic
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systems pose the additional technical problem of dealing with the unboundedness of op-
erators, which in the FIR translates to the unboundedness of fields. This has been dealt
with using decompositions into large and small fields. Using these has led to proofs of
existence of massless scalar field theories with a fixed short-distance regulator [19,27].
More recently, the existence of the time-continuum limit of the Bose system (again with
a fixed short-distance regularization) has been proven [8].

IBM representations start from the Feynman–Kac formula. Given this formula for a
single particle, it is straightforward to generalize it to N particles. Unlike the coherent-
state formalism, where (anti)symmetrization is built in, Bose (resp. Fermi) statistics then
needs to be imposed by an explicit (anti)symmetrization operation, given by a (signed)
sum over permutations of the labels of the N particles. Pioneered by Ginibre [29], the
IBM was later used to bring large-deviation techniques to bear on the problem [1–3]. It
is naturally suited, and was first developed, for the canonical ensemble, but it can also
be used in the grand canonical one (see [4], which also relates ‘Markovian loop soups’
to complex Gaussian integrals, and further develops the IBM representation of the Bose
system).

For Bose systems, it is a major outstanding problem in mathematical physics to
prove the occurrence of Bose–Einstein condensation (BEC) in the thermodynamic limit
at fixed nonvanishing density. The case of the Gross–Pitaevskii limit for N bosons in a
trapping potential of fixed extension has been treated in [33–35], where BECwas proven
in the sense that the reduced density matrix has an eigenvalue of order N , associated
to a condensate state. In the FIR, BEC shows up in the behaviour of the ‘zero mode’
of the field (the constant part of the field in a spatially homogeneous system). At small
enough temperatures and high enough density, the most likely value for the zero mode
is nonvanishing, and condensation takes place when it acquires a nonzero expectation
value, which breaks the global U (1) symmetry of the action spontaneously. In the IBM
representation and its subsequent large-deviation analysis, BEC is characterised as the
occurrence of infinite cycles (as N → ∞) in the permutations dominating the above-
mentioned symmetrization sum.

Since both FIR and IBM represent the samemathematical objects (the standard traces
for partition functions and expectation values over Fock space), it is clear that they are
related. Indeed, this relation is essentially Symanzik’s random-walk representation of
quantum field theory, the rigorous version of which has led to breakthrough results
in mathematical quantum field theory [5,24]. (A detailed exposition is in [21].) It is
interesting to make this relation explicit for specific models, to see how far techniques
can be combined, and for the systems considered in this paper, a rigorous derivation
of the IRW representation from the FIR is given in Sect. 5. Another motivation for
studying the relation of the two representations is as follows. The IBM (and in the lattice
setting, its discrete version, the interacting random walk (IRW)) corresponds to a one-
particle kinetic energy given by the Laplacian, i.e. p2/2m, where p is the momentum
of the particle. In presence of a condensate, Bogoliubov [12] predicted a spectrum
of low-lying states above the ground state which is linear in |p| at small |p|, namely
EB(p) ≈ w|p|, where w is the velocity of sound in the condensate: the excitations
are sound waves. It is certainly an interesting question how this spectrum arises in a
collection of Brownian motions when an infinite cycle forms. In the FIR, there is a short
answer: once a condensate has formed, the fluctuation fields describing deviations from
the condensate have a matrix-valued covariance, the eigenvalues of which exhibit the
Bogoliubov spectrum (see, e.g. [10]). It is thus natural, given that a relation between FIR
and IRW representation can be derived without reference to a condensate, to look if one
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can obtain a stochastic representation also in presence of a condensate. First steps in this
direction are described in Sect. 9. It is shown there that, at least in the time-continuum
limit and for a local interaction, the kinetic term does generate a stochastic process,
albeit one with long-range jumps (corresponding to w|p|). Another important difference
arises in the interaction term, which differs from the case without condensate by terms
causing branching and coalescence of random walks.

The question about the relation of FIR and IRW also motivates taking a closer look
at the FIR for the canonical ensemble of bosons, and this is the main focus of this
paper. The methods developed here, and some results, also apply to the grand canoni-
cal ensemble. The latter has been analysed mathematically in a series of papers [6–9],
in which essential foundations for an analysis of Bose condensation using methods
of constructive quantum field theory, in particular mathematically rigorous Wilsonian
renormalization group methods, have been laid, and the flow has been studied into the
symmetry-breaking regime. Further papers in that series can be obtained from [16]. Re-
cently, the formal time-continuum functional integral for the grand canonical ensemble
of Bosons on continuous space has been put on a rigorous basis by a combination of
Brownian motion, Gaussian integration and determinant techniques, and the mean-field
limit was proven to exist and correspond to a classical field theory [25]. The relation of
the formal FIR to the IBM representation was further discussed in [26].

In this paper, I give a detailed discussion of a mathematically well-defined FIR for
the canonical ensemble of identical bosons on a lattice, with a rigorous derivation from
the operator formulation and a careful discussion of the time continuum limit, including
a proof that one can use several different discrete-time actions that may be suitable
for studying different aspects of Bose systems. The main results are based on using
auxiliary (‘Hubbard–Stratonovitch’) fields, in terms of which one gets an integral over
a positive Gaussian measure, with an interaction given by the inverse of a determinant
(grand-canonical case) or a large permanent (canonical case) of a boson covariance in
the background field given by the auxiliary field. The permanent implies the explicit
symmetrization mentioned above. In this representation, there is no oscillatory part of
the Gaussian integral. For an on-site interaction of the bosons, the auxiliary fields are
ultralocal, i.e. a lattice-regularized version of white noise.

Some details of the grand-canonical and the canonical integrals differ substantially,
both concerning the covariance in a background field and the factorization properties of
inverse determinant vs. permanent (see Sect. 8). A main technical result shown here is
that the fully regularized model has properties that allow for bounds that are uniform
in the auxiliary fields, very much in the spirit of the loop vertex expansion [36]. This
allows for completely elementary and technically very simple proofs of the existence
ot the time-continuum limit for a variety of different actions. They do not require any
multiscale analysis and in that sense, they are as simple as the corresponding ones in
the fermionic case [18,37,41]. The uniformity of the bounds also allows to analyze
the infinite-volume limit and the properties of correlation functions in that limit, in
cases where renormalization is not required. This will be done in another paper [42].
Although the analysis is comparatively simple, the hypotheses and proofs contain a few
subtle points (to be discussed below, see in particular Sects. 8 and 10), and it remains to
be seen whether a similar uniformity also holds in genuinely multiscale situations (for
a multiscale version of the loop vertex expansion, see [32]).

Since one aim of this paper is to provide a rigorous, but technically simple approach,
I have added appendices to make it essentially self-contained, given a knowledge of the



1166 M. Salmhofer

operator algebraic formulation of quantum statistical mechanics (as exposed, e.g., in
Section 5.2 of [13]).

2. Identical Bosons on a Lattice

This section contains the detailed setup of the class of models considered here, namely
lattice models of identical bosons with a short-range density-density interaction, in the
second-quantized formulation.

2.1. Kinematics.

2.1.1. Space To avoid technical issues in the setup, I start from a lattice system. Let
η > 0, L be a very large integer multiple of η, and

X = ηZd/LZd . (1)

X is a lattice with spacing η > 0 and periodic boundary conditions, i.e. a discrete
torus. The limit η → 0 at fixed L (i.e. L/η → ∞) is usually called the continuum or
ultraviolet limit, and the limit L → ∞ is called the thermodynamic or infrared limit.
In principle, one would like to take both limits, but this paper is mainly concerned with
the thermodynamic limit at fixed η > 0. It is expected that in this limit (and with an
appropriate choice of kinetic term and interaction) Bose–Einstein condensation happens
at low enough temperatures, even in presence of an ultraviolet regulator. For maps
x �→ fx and x �→ gx from X to some C-algebra A, let

( f |g)X = ηd
∑

x∈X
fx gx (2)

For f and g arising as restrictions of continuous functions onRd/LZd , this is a Riemann
sum approximation to an integral that arises in the limit η → 0, which motivates the
alternative notation ( f |g)X = ∫

x∈X fx gx = ∫
X f g, as well as the notation ( f |g)x =∫

x∈X fx gx = ∫
x f g. This notation will also be used at fixed η > 0, e.g. at η = 1.

2.1.2. Hilbert spaces for bosons and the CCR algebra The quantummechanical Hilbert
space for a spinless particle on X isH = L2(X,C). In our setting it is simply the finite-
dimensional space CX of all maps f from X to C, with inner product 〈 f |g〉 = ( f̄ |g)X.
The n-boson space is F (n)

B = Sn
⊗n H, where Sn is the symmetrization operator,

(Sn f )(x1, . . . , xn) = 1
n!
∑

π∈Sn
f (xπ(1), . . . , xπ(n)). Here Sn denotes the set of all

permutations on {1, . . . , n}. The bosonic Fock space is defined as

FB =
∞⊕

n=0

F (n)
B (3)

(whereF (0)
B = C).

For N ∈ N0 let PN denote the projector onto the N -particle subspace F (N )
B of FB ,

P≤N = ∑N
n=0 PN , and F (≤N )

B = P≤NFB .
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Recall the standardC∗ algebra formulation of quantummany-particle systems given,
e.g., in [13]. The algebra for boson systems is generated bybosonic annihilation operators
a and creation operators a† satisfying the canonical commutation relations (CCR)

axay − ayax = 0 and axa
†
y − a†yax = η−dδx,y for all x, y ∈ X . (4)

Let
� = (1, 0, 0, . . .) ∈ FB (5)

denote the vacuum vector. Then an orthonormal basis forF (N )
B is given by the vectors

eν =
∏

x∈X
(νx!)− 1

2 a†x
νx

�, (6)

where the sequences ν = (νx)x∈X ∈ N
X
0 satisfy the condition

∑
x∈X νx = N . Thus the

N -boson space F (N )
B is finite-dimensional, with dimension

dim F (N )
B = (−1)N

(−|X|
N

)
=
(|X| + N − 1

|X| − 1

)
. (7)

FB is infinite-dimensional even if X is finite.
Define the local density operators and the number operator N by

nx = a†xax N =
∫

x
nx. (8)

Every nx maps the N -particle space F (N )
B to itself, and on this space, it has operator

norm ‖nx‖ = N . The restriction of N to F (N )
B is N times the identity operator. The nx

all commute:
nxny = nynx for all x, y ∈ X. (9)

2.2. Hamiltonians. For a single particle, the Hamiltonian is given by a self-adjoint
matrix E , acting as (E f )x = ∫

y Ex,y fy, i.e. a hopping matrix. Typical choices will be

the discrete Laplacian −�, or −� + m2, with m2 > 0, or, for particles in an external
potentialW ,−�+W (x). This operator will be assumed to be nonnegative. The particles
interact by a two-body potential, i.e. vx,y ∈ R is the interaction energy contributed by
a pair of particles at sites x and y. The interaction is symmetric: vx,y = vy,x. Thus
v can be regarded as a self-adjoint operator on C

X. v is called translation-invariant if
vx+z,y+z = vx,y for all z, and in this case I use the notation vx,y = v(x − y).

The Hamiltonian on the bosonic N -particle Hilbert space F (N )
B is

HN =
N∑

n=1

En +
1

2

N∑

m,n=1

vxm ,xn (10)

where

(En f )(x1, . . . , xN ) =
N∑

n=1

∫

y
Exn ,y f (x1, . . . , xn−1, y, xn+1, . . . , xN ) (11)
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and where vxm ,xn acts as a multiplication operator. In second-quantized form, it can be
written as

H =
∫

x,y
Ex,y a†xay +

1

2

∫

x,y
vx,y nxny. (12)

Inserting the notation (2) gives H = H0 + V with

H0 = (a†|E a)X and V = 1
2 (n|vn)X. (13)

The case v = 0 describes free (i.e. noninteracting bosons).

2.3. Ensembles. In the following, the Hamiltonian H is assumed to be nonnegative; in
the above setup this is the case if both operators E ≥ 0 and v ≥ 0.

2.3.1. Canonical ensemble For β > 0 define

[A](N ,β,X) = TrFB

[
e−βH A PN

]
, (14)

Z (N ,β,X)
c = [1](N ,β,X), and

〈A〉(N ,β,X) = 1

Z (N ,β,X)
c

[A](N ,β,X) . (15)

Then Z (N ,β,X)
c is the canonical partition function and 〈A〉(N ,β,X) is the normalized canon-

ical expectation value of A, for a system of N bosons at inverse temperature β on config-
uration space X. The range of the projection operator PN is finite-dimensional, so PN is
trace class on FB , and the trace in (14) exists whenever e−βH A is a bounded operator.
Because P2N = PN and the trace is cyclic,

[A](N ,β,X) = TrFB

[
PN e

−βH A PN
]
. (16)

Because H conserves particle number,

[A](N ,β,X) = TrFB

[
PN e

−βH AN
] = TrFB

[
e−βH AN

]
(17)

with
AN = PN A PN . (18)

Thus it suffices to consider expectations of operators F that map F (N )
B to itself. It is

convenient to introduce a generating function with insertion F as

Z (N ,β,X)
c (H,F) = Tr

F (N )
B

[
e−βH (1 + F)

] = TrFB

[
e−βH (1 + F) PN

]
. (19)

Normalized expectation values can then be obtained by differentiation as

〈F〉(N ,β,X)
H = ∂

∂λ
lnZc

(N ,β,X)(H, λF)|λ=0. (20)

The dependence onH has beenmade explicit in the notation. In general, for Hamiltonians
preserving particle number, normalized canonical expectation values are unchanged
under shifts in the energy, as follows. For any α ∈ C and ψ ∈ FB ,

eαNPNψ = eαNPNψ. (21)
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As a consequence

Z (N ,β,X)
c (H + αN, F) = e−αβN Z (N ,β,X)

c (H, F). (22)

The prefactor drops out in the quotient defining the normalized canonical expectation
value, so

〈F〉(N ,β,X)
H+αN = 〈F〉(N ,β,X)

H . (23)

2.3.2. Grand-canonical ensemble The grand canonical partition function at chemical
potential μ is

Z (β,μX)
g =

∞∑

N=0

eβμN Z (N ,β,X)
c = TrFB

[
e−β(H−μN)

]
(24)

and the grand canonical expectation value is defined similarly. Convergence of the sum
over N in general requires conditions on μ and H (e.g. μ < inf spec H0 when V = 0)
which will be specified when appropriate.

Returning to the shift invariance (23), it is very important to note that this invariance
does not hold for the partition functions. Instead, the prefactor in (22) implies that in the
sum for the grand canoncial partition function, the parameter μ gets shifted to μ − α.
Depending onα, this shiftmay cause the sumover N to diverge. Thus, when one attempts
to obtain the usual relation between canonical and grand canonical ensembles, arbitrary
shifts are no longer allowed. The convergence condition will show up prominently in
the coherent-state integral derived in the next section.

3. Main Results

Here I state the main integral formulas and convergence theorems.
By definition, E generates a stochastic process iff for all τ ≥ 0 and all x and y ∈ X,

the x, y matrix element of e−τE is a nonnegative real number:

∀τ ≥ 0 : (e−τE )x,y ≥ 0. (25)

Theorem 1. Let H have kinetic term E and interaction v, as in (13). Let E and v be
translation invariant, E > 0 and v ≥ 0 as operators, and E generate a stochastic
process. Then the canonical partition function has the integral representation

Z (N ,β,X)
c = e

β
2 v(0)N e

β
2 |X|(v(0)−v̂(0)) lim

�→∞Z
(N ,β,X)
� (26)

where

Z
(N ,β,X)
� =

∫
Da e−SX(a) 1

N ! (ā(β)|a(0))X
N . (27)

Here X includes a discrete time lattice of spacing ε = β
�
, i.e. X = T × X, where

T = ε{0, . . . , �}1 The integral runs over complex fields a : X → C, Da denotes the
volume form

Da =
∏

τ∈T

∏

x∈X
dā(τ,x)∧a(τ,x)

2π i (28)

1 In the later sections, an index j ∈ {0, . . . , �}, so that τ = εj , will be used instead of τ to label fields and
matrix elements of operators.
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on CX, and the action SX is

SX(a) =
∫

τ

[
(ā(τ )|[(−∂τ + v̂(0) + E (ε))a](τ ))X +

(|a(τ )|2∣∣ v |a(τ )|2)X
]

=
∫

τ

[∫

x
ā(τ, x) [(−∂τ + v̂(0) + E (ε))a](τ, x) +

∫

x,y
|a(τ, x)|2 v(x − y) |a(τ, y)|2

]

(29)

The integral notation
∫
τ
is shorthand for ε

∑
τ∈T, ∂τ denotes the discrete forward time

derivative

(∂τa)(τ, x) = 1

ε
(a(τ + ε, x) − a(τ, x)) (30)

with the boundary condition a(β + ε, x) = 0, and

(E (ε)a)(τ, x) = 1

ε

∫

y
(1 − e−εE )(x − y) a(τ + ε, y). (31)

The limit remains unchanged if (E (ε)a)(τ, x) is replaced by (Ea)(τ+ε, x)or by (Ea)(τ, x)
in the action.

Two important features of this representation are characteristic for the canonical en-
semble: (1) the N -dependent polynomial factor (a(β)|a(0))XN appears in the integrand,
and (2) the time derivative operator in the quadratic part of the action does not have a
periodic boundary condition at τ = β. (See also Theorem 6, in particular (82)). The
‘mass term’ v̂(0) may be surprising at first sight. It arises in the proof in an integration
by parts step which is necessary to show convergence. Its occurrence is also related to

that of the prefactor e
β
2 v(0)N , which is necessary to fulfil certain positivity conditions in

intermediate steps of the proof. Another variant of the interaction, where the |a|4 term
is replaced by a term of at most quadratic growth for |a| → ∞, is discussed in Sect. 4.

Theorem 1 is proven in Sect. 7, using the preparations made in Sect. 6. Translation
invariance is assumed here only to simplify the statement. In Sect. 7.2, a more general
statement, Theorem 17, where translation invariance is not assumed, is proven.

Theorem 1 applies in particular to a E of the form E = E0 − μ1, with E0 > 0
and μ ≤ 0, and it implies that the limit of the integral (27) equals (up to the explicit
prefactor) the canonical partition function Z (N ,β,X)

c . By (22), Z (N ,β,X)
c is analytic in μ

for all μ ∈ C. If v > 0, the quartic term in (29) is bounded below by δ
∫
τ,x |a(τ, x)|4

for some δ > 0, so the integral (27) converges absolutely for all μ ∈ C as well, and it
defines an analytic function of μ. Moreover, for μ0 < 0, the convergence as � → ∞
is uniform on compact subsets of {μ ∈ C : Re μ < μ0}, hence the limiting function is
analytic in μ there. Thus it coincides with Z (N ,β,X)

c for all μ by the identity theorem,
and hence the integral representation extends to all μ.

The action (29) is such that it admits a rewriting by an integral over auxiliary fields.
Indeed, the theorem is proven by using such a representation, which is the basis of all
the analysis done here, hence more fundamental. It is given as follows.

Theorem 2. Assume that E > 0 and v ≥ 0, and let F be any operator on F (N )
B . Then

Z (N ,β,X)
c (H,F) = lim

�→∞ Z (N ,β,X,�)
c (H,F) where

Z (N ,β,X,�)
c (H,F) =

∫
dμV(h)

∫

CX

Da e−(ā|Q(h) a)X 〈va(β)|(1 + F) PN va(0)〉 (32)
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The integration over h runs over R
X, and μV is the normalized, centered Gaussian

measurewith time-local covariancev, i.e.dμV(h) = ∏
τ∈T

dμv(h(τ )). The operatorQ(h),

given in (81) below, has a positive hermitian part, and the integral over a converges
absolutely. The vectors va ∈ FB are unnormalized coherent states, given in (38). For
F = 0, the matrix element is

〈va(β)|PN va(0)〉 = 1
N ! (ā(β)|a(0))X

N (33)

The covariance C(h) = Q(h)−1 is entire analytic in h onCX. If E generates a stochastic
process, then C(h) satisfies the uniform bound

∀h ∈ R
X : ∣∣C(h)(τ, x; τ ′x′)

∣∣ ≤ C(0)(τ, x; τ ′x′). (34)

Theorem 2 follows from Theorem 6, Lemma 8, and (89). It will be used in further
work to study properties of correlation functions.

Theorem 3. Let μ ∈ R and assume that E −μ > 0. Then the grand canonical partition
function (24) has the representation Z (β,μ,X)

g = lim�→∞ Z (β,μ,X,�)
g with

Z (β,μ,X,�)
g =

∫
dμV(h)

∫

CX

Da e−(ā|K(h) a)X (35)

where K(h) is given by Q(h), but with E replaced by E − μ and a periodic boundary
condition in time (see (184) below). The grand-canonical covariance G(h) = K(h)−1

is analytic in h on a neighbourhood of R|X|. It E generates a stochastic process, then
G(h) satisfies the uniform bound

∀h ∈ R
X : ∣∣G(h)(τ, x; τ ′, x′)

∣∣ ≤ G(0)(τ, x; τ ′, x′). (36)

G(0) is the time-ordered Green function for free bosons with kinetic term E − μ.

Theorem 3 follows directly from Theorem 18.

4. Integral Formulas

4.1. Coherent states. Here I summarize some well-known properties of coherent states,
in the form that I shall use them in the following. For convenience of the reader, their
(elementary) proofs are given in Appendix A.

Coherent states are eigenvectors of the annihilation operators: for any function a :
X → C there is a nonzero vector va ∈ FB such that for all x ∈ X

axva = axva . (37)

The vector va is explicitly given by

va = e(a|a†)X � (38)

where� is the vacuum vector in the bosonic Fock space (see (5)). The right hand side of
(38) is defined by the series expansion of the exponential. Theseries is norm-convergent
for all a, so the coherent state va is entire analytic in a.
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Coherent states are grand canonical objects, since a maps F (n+1)
B to F (n)

B . Their
inner product on Fock space is

〈va |va′ 〉 = e(ā|a′)X . (39)

Thus va ∈ F has norm
‖va‖ = e

1
2 (ā|a)X . (40)

Denote the unit vector

κa = 1

‖va‖va = e− 1
2 (ā|a)X va, (41)

the orthogonal projector on the subspace spanned by κa by |κa〉〈κa |,
dXa =

∏

x∈X
dāx∧dax

2π i , (42)

and CR = {z ∈ C : |z| ≤ R}. Then, in the sense of strong convergence,

1FB = lim
R→∞

∫

CR
X

dXa |κa〉〈κa | (43)

and for trace class operators A,

TrFBA = lim
R→∞

∫

CR
X

dXa 〈κa |A κa〉 (44)

(see Theorem 2.26 of [6]).
Moreover (see Lemma 20), if H0 = (a†|Ea)X with hermitian E , then for all t ∈ R,

eitH0va = veitEa (45)

and if E is nonnegative and τ ≥ 0, then

e−τH0va = ve−τEa (46)

and hence 〈
va |e−τH0 va′

〉 = e(ā|e−τE a′)X . (47)

4.2. The integral for the canonical ensemble. Let F be a densely defined operator and
assume that e−βH(1+F) is bounded, hence extends to a bounded operator onFB . Then
e−βH(1 + F)PN is trace class, and by (44)

Z (N ,β,X)
c (H,F) = lim

R→∞

∫

C
X
R

dXa 〈κa |e−βH (1 + F)PNκa〉. (48)

By (43), boundedness of e−βH(1+F), and continuity of the scalar product, the integrand
〈κa |e−βH (1 + F)PNκa〉 is the limit R′ → ∞ of

∫

C
X
R′

dXa′ 〈κa |e−βH (1 + F) κa′ 〉 〈κa′ |PNκa〉 (49)
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By (41), the integrand in (49) equals

e−(ā|a)X−(ā′|a′)X〈va |e−βH (1 + F) va′ 〉 〈va′ |PNva〉. (50)

The matrix element of the N -particle projection PN between coherent states can be
calculated explicitly:

Lemma 4. Let N ∈ N0, PN be the orthogonal projection from FB onto F (N )
B . Then,

for all a, a′ ∈ C
X,

〈va′ |PNva〉 = 1
N !
(
ā′|a)NX . (51)

Proof. Let N ∈ N0. Because the expansion (38) for the coherent state va is norm
convergent for any a and the projection PN is continuous,

PNva = 1
N ! (a|a†)XN

�. (52)

Because a† is the adjoint of a and because va′ is an eigenvector of a,

〈va′ |PNva〉 = 1
N ! 〈va′ |(a|a†)XN

�〉 = 1
N ! 〈(ā|a)X

Nva′ |�〉
= 1

N ! 〈(ā|a′)XNva′ |�〉 = 1
N ! (ā′|a)X

N 〈va′ |�〉.
(53)

The inner product 〈va′ |�〉 equals 1. ��
Note that this matrix element is polynomial in the fields a and a′, in contrast to the

exponential (39) which would have resulted if PN had been replaced by 1. This reflects
an essential difference between the canonical and the grand canonical ensemble.

To streamline notation further, I will write

R1,...,Rn∫

a1,...,an

· · · =
∫

CR1
X

dXa1 · · ·
∫

CR2
X

dXan · · · , (54)

abbreviated to
∫ R
a1,...,an

if R1 = . . . = Rn = R, and

∫

a1,...,an
· · · =

∫

CX

dXa1 · · ·
∫

CX

dXan · · · (55)

Lemma 5. If e−βH(1 + F) is a bounded operator on FB, the canonical generating
function Z (N ,β,X)

c (H,F), defined in (19), is the limit R → ∞ of the integral

R Z
(N ,β,X)
c (H,F) =

∫ R

a,a′
e−(ā|a)X−(ā′|a′)X 〈va |e−βH(1 + F) va′ 〉

(
ā′, a

)N
X

N ! (56)

and the limit R → ∞ is given by an absolutely convergent integral.
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Proof. Successively inserting (50) into (49), and (49) into (48), and using (51), gives
Z (N ,β,X)
c (H,F) as a limit R′ → ∞ and R → ∞ of

∫

a,a′
e−(ā|a)X−(ā′|a′)X 〈va |e−βH(1 + F) va′ 〉

(
ā′|a)NX
N ! 1a∈CX

R
1a′∈CX

R′ (57)

Let ‖e−βH(1 + F)‖ = M , then
∣∣〈va |e−βH(1 + F) va′ 〉∣∣ ≤ M ‖va‖ ‖va′ ‖, and by (40),

the absolute value of the integrand is bounded by

M e− 1
2 (ā|a)X− 1

2 (ā′|a′)X |(ā′|a)X|N
N ! (58)

which is integrable in a and a′. Thus, by dominated convergence, the limits R′ → ∞
and R → ∞ exist in arbitrary order, and the limit R → ∞ with R′ = R gives the same
result. ��

Note that if H commutes with N, then

tr
[
e−βHPN

] = tr
[
PN e

−βHPN
] = tr

[
e−βPNHPNPN

]
(59)

so for H that is unbounded below, a formula similar to (56), with H replaced by HN =
PNHPN , still holds.

A simple but important case for F is F = (a†|Fa)X = ∫
x,y Fx,y a

†
xay. Then

〈a†xay〉(N ) = ∂

∂Fx,y
ln Z (N ,β,X)

c (H,F)|F=0 (60)

is the reduced one-particle density matrix of the canonical ensemble. A little calculation
gives

F(a|a†)XN
� = N (a|FTa†)X (a|a†)XN−1

�, (61)
hence

〈va′ |(1 + F)PNva〉 = 1

(N − 1)! (ā′|a)X
N−1

(ā′|( 1
N + F) a)X (62)

This is easy to interpret: when ay is applied to the N -particle state PNva , the result is
an N − 1-particle state, so the power decreases to N − 1 in that term.

It is straightforward to generalize this to operators of the form2

F =
∫

x1,...,xm

∫

y1,...,yn
Fx1,...,xm ;y1,...,yn

m∏

i=1

a†xi

n∏

j=1

ay j (63)

which can be used to obtain the reduced n-particle density matrices and their connected
parts.

By the residue formula

αN

N ! = 1

2π i

∫

|z|=r

dz

zN+1 e
αz (64)

(r > 0), the canonical partition function then becomes

R Z
(N ,β,X)
c = 1

2π i

∫

|z|=r

dz

zN+1

∫ R

a,a′
e−(ā|a)X−(ā′|a′)X+z(ā′|a)X 〈va |e−βH va′ 〉 (65)

It is this form which allows to connect conveniently to the other ensembles in the limit
of large N by a stationary-phase argument.

2 If H conserves particle number, this only contributes to the canonical expectation value when m = n.
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4.3. Noninteracting bosons. It is instructive to see how this leads to the standard for-
mulas for the canonical partition function for free bosons. In the absence of interaction,
H = H0, so (47) can be used to rewrite the canonical partition function as

R Z
(N ,β,X)
c = 1

2π i

∫

|z|=r

dz

zN+1

∫ R

a,a′
e−(ā|a)X−(ā′|a′)X+z(ā′|a)X+(ā|e−βE a′)X

= 1

2π i

∫

|z|=r

dz

zN+1

∫ R

a,a′
exp

(
−
(

[ā, ā′]
∣∣∣
[

1 −e−βE
−z1 1

] [
a
a′
])

X

)

(66)

Let r < 1, then the matrix in the quadratic form in the exponent has a positive definite
hermitian part, and therefore the Gaussian integral is absolutely convergent, hence the
limit R → ∞ can be taken. The Gaussian integral over a and a′ then gives the inverse
of its determinant, so that

R Z
(N ,β,X)
c = 1

2π i

∫

|z|=r

dz

zN+1 det

[
1 −e−βE

−z1 1

]−1

= 1

2π i

∫

|z|=r

dz

zN+1 det
[
1 − ze−βE]−1

.

(67)

Evaluated in an eigenbasis of E , this determinant factorizes, and the (convergent) ex-
pansion in z then gives the sum

Z (N ,β,X)
c =

∑

n∈NA
0

e−β
∑

α nαEα δ∑
α∈A nα , N (68)

which also follows straightforwardly from the definition of the canonical ensemble as a
trace. Here the eigenbasis is indexed by the set A, i.e. (Eα)α∈A are the eigenvalues of E .

Without the contour integral, the canonical partition function can be written as a
permanent:

R Z
(N ,β,X)
c =

∫ R

a,a′
e−(ā|a)X−(ā′|a′)X+(ā|e−βE a′)X (ā|a)NX

N !

=
∫ R

a,a′
e
−
(

[ā,ā′]
∣∣∣
[
1 −e−βE
0 1

][
a
a′
])

X
(ā|a)NX

N ! .

(69)

Again, the limit R → ∞ can be taken since the real part of the quadratic form is strictly
positive. Writing out each factor

(
ā′, a

)
X = ∫

x ā
′
x ax and doing the Gaussian integral

(noting that this time, the determinant is 1 and the inverse obviously

[
1 e−βE
0 1

]
), this

gives

Z (N ,β,X)
c = 1

N !
∑

π∈SN

∫

x1,...,xN

N∏

n=1

(
e−βE)

xn ,xπ(n)

=
∫

x1,...,xN

1
N ! Perm C(x1, . . . , xN )

(70)

where the N × N matrix C(x1, . . . , xN ) has matrix elements C(x1, . . . , xN )i j =(
e−βE)

xi ,x j
, and Perm denotes its permanent. See Appendix E.
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4.4. Interacting bosons. From now on, let H be given as H = H0 + V, with H0 and V
given in (13), with E > 0 and v ≥ 0. H preserves particle number since [H0,N] = 0 and
[V,N] = 0.

4.4.1. Time slicing Because [H,N] = 0, the traces defining the canonical partition func-
tion and expectation values are traces over the finite-dimensional N -boson spaceF (N )

B ,
on which H0 and V are bounded, so the Lie product formula applies, and

Z (N ,β,X)
c (H,F) = lim

�→∞ Z (N ,β,X,�)
c (F) , (71)

where

Z (N ,β,X,�)
c (F) = tr

[(
e−εH0 e−εV)� (1 + F) PN

]
(72)

with

ε = β

�
. (73)

Again by (44) and (43), and with the new notation a0 = a and a� = a′, this becomes

Z (N ,β,X,�)
c (F) = lim

R→∞

∫ R

a0,a�

〈κa0 |
(
e−εH0 e−εV)� κa�

〉 〈κa�
|(1 + F) PN κa0〉 (74)

By repeated application of (43),

〈κa0 |
(
e−εH0 e−εV)� κa�

〉 = lim
R1,...,R�−1→∞

R1,...,R�−1∫

a1,...,a�−1

�∏

j=1

〈κaj−1 |e−εH0 e−εV κaj 〉 (75)

(We shall see below that the limit may again be taken as the special limit where Ri = R
for all i .) By (41) this can be rewritten in terms of the unnormalized coherent states as

Z (N ,β,X,�)
c (F) = lim

R0,...,R�→∞

R0,...,R�∫

a0,...,a�

e−∑�
j=0(āj |aj )X 〈va�

|(1 + F) PN va0〉

�∏

j=1

〈vaj−1 |e−εH0 e−εV vaj 〉
(76)

4.4.2. Auxiliary fields As noted before, the interaction v is assumed to be a nonnegative
operator. The identity 1 and the nx generate an abelian algebra, so the exponential of
the interaction can be written as a Gaussian integral

e−εV = e−ε(n|vn)X =
∫

dμv(h) ei
√

ε(h|n)X (77)

where dμv denotes the normalized Gaussian measure on R
X with mean zero and co-

variance v. This identity is used for every j in the product (75). The Gaussian integral is
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absolutely convergent, hence can be taken out of the inner product and the integral over
the a fields. Eqs. (45), (46), and (39), then give

〈vaj−1 |e−εH0 e−εV vaj 〉 =
∫

dμv(hj ) 〈vaj−1 |e−εH0 ei
√

ε(hj |n)X vaj 〉

=
∫

dμv(hj ) e
(aj−1| e−εE ei

√
ε hj aj )X .

(78)

The collection of additional integration variables hj,x indexed by (j, x) ∈ {1, . . . , �}×X,
is called the auxiliary field in the following. In (78) and similar expressions, ei

√
εhj

denotes the multiplication operator, (ei
√

εhj a)x = ei
√

εhj,xax.
With the notations

Da =
�∏

j=0

dXaj =
�∏

j=0

∏

x∈X

dāj,x∧aj,x
2π i (79)

and

dμV(h) =
�∏

j=1

dμv(hj ) (80)

the following statement holds.

Theorem 6. Assume that v ≥ 0. Set h0 = 0. For j, j ′ ∈ {0, . . . , �} let

Q(h)j,j ′ = δj,j ′ 1 − δj+1,j ′ e−εE ei
√

ε hj ′ (81)

so that

(ā|Q(h) a)X =
�∑

j,j ′=0

(āj |Q(h)j,j ′aj ′)X

=
�∑

j=0

(āj |aj )X −
�−1∑

j=0

(āj |e−εE ei
√

ε hj+1aj+1)X.

(82)

Then

Z (N ,β,X,�)
c (F) = lim

R→∞

∫
dμV(h)

∫

CR
X

Da e−(ā|Q(h) a)X 〈va�
|(1 + F) PN va0〉 (83)

If E > 0, then the quadratic form Re (ā|Q(h) a)X is strictly positive, so the Gaussian
integral over a converges absolutely and the limit R → ∞ can be taken by dropping
the restriction on the integral domain. In particular, for F = 0,

Z (N ,β,X,�)
c =

∫
dμV(h)

∫

CX

Da e−(ā|Q(h) a)X (ā�|a0)XN

N ! (84)
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Proof. Inserting (78) into (76) gives an analogue of (83), in which the single limit of (83)
is replaced by � + 1 individual limits R0, . . . , R� → ∞. I now show that the Gaussian
integral is absolutely convergent, which, again by dominated convergence, implies that
the limit is simply given by the integral without a restriction on a, and that the limit
can be taken by setting Ri = R for all i and taking R → ∞. Absolute convergence
follows from the positivity of the real part, which is equivalent to operator positivity of
QS(h) = 1

2 (Q(h) +Q(h)†), and it holds because for E > 0, the diagonal part ofQS(h)

strictly dominates the nondiagonal parts (note that ‖e−εE ei
√

ε hj ‖ = ‖e−εE‖ < 1). For
E = 0 and h = 0, QS(0) = −�, the Laplacian on {0, . . . , �}, which is nonnegative. In
general, set K = e−εE and Uj = ei

√
εhj . Then K is a positive operator because E is

hermitian, and Uj is unitary for all j because hj is real-valued. Consequently,

〈〈a||a′〉〉 = (a|K a′) (85)

is a positive definite scalar product on CX, and

Re (ā|Q(h) a)X =
�∑

j=0

(āj |(1 − K ) aj )X + 1
2 〈〈a0||a0〉〉 + 1

2 〈〈a�||a�〉〉

+ 1
2

�∑

j=1

〈〈aj−1 −Ujaj ||aj−1 −Ujaj 〉〉

≥
�∑

j=0

(āj |(1 − K ) aj )X

(86)

Because 0 < K ≤ 1 if E ≥ 0, and 0 < K < 1 if E > 0, the lower bound is a nonnegative
quadratic form if E ≥ 0 and strictly positive if E > 0. Thus (83) holds. By (51), the
result for F = 0 is (84). ��

4.5. The covariance. TheoperatorQ(h), givenby (81), is amatrixQ(h) ∈ M�+1(B(FB))

that is upper triangular: setting Aj = e−εE ei
√

εhj

Q(h) =

⎡

⎢⎢⎢⎢⎣

1 −A1 0 0 . . . 0
0 1 −A2 0 . . . 0

. . .
. . .

0 0 0 1 −A�

0 0 0 . . . 0 1

⎤

⎥⎥⎥⎥⎦
(87)

Therefore, detQ(h) = 1, and the inverse of Qh, the covariance

C(h) = Q(h)−1 (88)

exists and is also upper triangular, and given by a terminating Neumann series as

(C(h))j,j ′ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 j > j ′
1 j = j ′

j ′∏
k=j+1

Ak j < j ′
(89)

(see Appendix B). Because the inverse is given by a finite sum, C(h) is entire analytic
in h. In fact, for every finite �, it is a trigonometric polynomial in h.
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4.6. Remarks on the structures arising from (84). Equation (84) is useful in various
respects. It represents the partition function as a Gaussian integral both in the original
boson field a and in the auxiliary field h. Integrating over the auxiliary field will give a
regularized version of the formal functional integral for boson systems; see Sect. 4.6.2.
Instead integrating over the a-field gives a representation in terms of the auxiliary field
only. This will be used to derive a random-walk representation which is similar to that
of [1–3] (see Sect. 5) but, being an integral with respect to a real Gaussian measure it
also provides a starting point for a field-theoretical analysis by convergent expansions.

4.6.1. Stochastic field equation One can also derive a complex stochastic equation for
a by integration by parts in the integral. Let 〈F(a)〉 denote the normalized canonical
expectation value, then using

(Q(h)a)k (x) = − ∂
∂ āk (x)

e−〈ā,Q(h)a〉 (90)

and integrating by parts gives for k < � the ‘Schwinger-Dyson’ equation 〈Q(h)a〉 = 0,
which, in a formal continuum limit corresponds to the Gaussian white noise average
over h of the equation

(
∂τ − � + ei

√
εh(τ,x) − 1

)
a(τ, x) = 0. (91)

4.6.2. The complex integral obtained after integrating out the auxiliary field For sim-
plicity I consider here the case of an on-site interaction, i.e. vx,y = vη−dδx,y, with
v ∈ R, v > 0. More general v’s can be treated as well in terms of expansions, but
the essential points are visible already in this case. With this choice of v, the h-integral
factorizes both over the time slice index j and over the space index x, as follows. The
h-dependent part of the quadratic form (ā|Q(h)a)X is

�∑

j=1

(ãj−1|ei
√

εhj aj )X =
�∑

j=1

∫

x
ei

√
εhj,x ãj−1,x aj,x (92)

with ãj−1 = e−εEaj−1, so its exponential factorizes; the assumption that v is on-site
implies that also the Gaussian integral factorizes. Calling z = ãj−1,x aj,x, the integral
over h = hj,x is then simply

�(z) =
∫

dμv(h) ez e
i
√

εh =
∞∑

n=0

zn

n! e− 1
2 εv n2 (93)

The function V(z) = − ln�(z) is then the interaction term in the action for the a-
integral. Obviously, |�(z)| ≤ e|z| for all |z|, so the large-field behaviour is bounded by
a quadratic term. Moreover V(z) = z + 1

2εvz
2 for small |z|, i.e. V contains a quartic

interaction term for small fields.

Z (N ,β,X,�)
c =

∫

CX

Da e−(ā|Q(0) a)X−∑j

∫
x V(ãj−1,x aj,x) (ā�|a0)XN

N ! (94)

Clearly, ãj−1,x aj,x is complex, and therefore this representation loses the positivity of
v. However, it is possible to obtain a representation with a positive interaction term,
in the sense that one can prove that the action can be changed to one with a positive
interaction term without changing the limit ε → 0. This will be done below in Sect. 7.
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4.6.3. The probabilistic expectation obtained after integrating over the a-fields The a-
integral in (84) is Gaussian as well. Performing this integral, the polynomial of degree
N in the integrand results in a permanent of order N , specifically

Z (N ,β,X,�)
c = 1

N !
∑

σ∈SN

∫

x1,..,xN

∫
dμV(h)

N∏

k=1

C(h)(0,xk),(�,xσ(k)). (95)

The integrand is still complex because C(h) is a complex function, but this function
will be shown to be bounded. The Gaussian measure itself is real and normalized, i.e. a
probability measure. This motivates the notation

〈F(h)〉h =
∫

F(h)dμV(h). (96)

Introduce the additional notation for the X-averaged permanent,

PN ,XCj,j ′ =
∑

π∈SN

∫

x1,...,xN

N∏

n=1

C(j,xn),(j ′,xπ(n)). (97)

Then

Z (N ,β,X,�)
c = 1

N !
〈
PN ,XC(h)0,�

〉
h (98)

A similar expression holds for the generating function with F insertion. This represen-
tation will be the basis for most of the bounds given in this paper.

5. The Random-Walk Representation

In this section, I derive a random-walk representation of the partition function for the
canonical ensemble, which is the lattice analogue of the interacting-Brownian-motion
representations used in [1–3]. Given the structure ofQ(h) and (89), this is now a straight-
forward exercise in Gaussian integration.

By (89), the kth factor in the product in (95) is given by

C(h)(0,xk),(�,xσ(k)) =
⎡

⎣
�∏

jk=1

(
e−εE ei

√
εh jk

)
⎤

⎦

(0,xk ),(�,xσ(k))

. (99)

In the basis of position eigenstates, e−i
√

εh jk is diagonal, and thus writing out all matrix
products gives

C(h)(0,xk),(�,xσ(k)) =
∑

y(k)

�∏

j=1

(
e−εE)

y(k)
j−1,y

(k)
j

ei
√

εh j (y
(k)
j )

(100)

where y(k) = (y(k)
0 , . . .y(k)

� ) with y(k)
0 = xk , y

(k)
� = xσ(k) and y(k)

j ∈ X for all j ∈
{1, . . . , � − 1}. It is natural to interpret y(k) as a walk from xk to xσ(k), and write
y(k) : xk → xσ(k) as well as

P(y(k)) =
�∏

j=1

(
e−εE)

y(k)
j−1,y

(k)
j

(101)
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for the product of transition amplitudes along the walk. Let X = {1, . . . , �} ×X. Define
the density associated toy(k) by ν(k) : X → R, where, for (j, x) ∈ X, ν(k)

j,x = η−d δ
x,y(k)

j
.

Then
�∏

j=1

ei
√

εh j (y
(k)
j ) = ei

√
ε(h,ν(k))X (102)

Let ν(y) = ∑N
k=1 ν(k). Then

N∏

k=1

C(h)(0,xk),(�,xσ(k)) =
∑

y(1),..,y(N )

N∏

k=1

P(y(k)) ei
√

ε(h|ν(y))X (103)

The Gaussian integral over h can now be done by the standard formula
∫

dμV(h) ei
√

ε(h|ν(y))X = e− ε
2 (ν(y)|Vν(y))X, (104)

and the bilinear form in the exponent then worked out in terms of summations over k
and k′ ∈ {1, . . . , N } using the definition of ν. With the notations

τj = j

�
β,

∫

τ

F(τ ) = ε

�∑

j=1

F(τj ) (105)

this implies the random-walk representation of the canonical partition function in the
translation-invariant case3 as follows.

Theorem 7. Let Z (N ,β,X,�)
c (H,F) be as in (72) and Z (N ,β,X,�)

c = Z (N ,β,X,�)
c (H, 0). Then

Z (N ,β,X,�)
c = 1

N !
∑

σ∈SN

∫

x1,..,xN

∑

y(1),..,y(N )

y(k):xk→xσ(k)

e−V(y(1),..,y(N ))
N∏

k=1

P(y(k)) (106)

with

V(y(1), ..,y(N )) = 1

2

∑

1≤k,k′≤N

∫

τ

v
(
y(k)(τ ) − y(k′)(τ )

)
(107)

and P(y(k)) given by (101).

Thus thepartition function is a sumover collections of N randomwalksy(1), . . . ,y(N )

that have a local-in-time interaction v. The interaction is local in time because in (107),
the walks y(k)(τ ) − y(k′)(τ ), with the same τ , appear in the interaction v. This is, of
course, a direct consequence of the instantaneous nature of the interaction in the quantum
Hamiltonian. Theorem 7 provides a discrete analogue of the representation in terms of
symmetrized interacting Brownian motions given in [3]. (Interactions that are nonlocal
in time, as studied in [3], can of course be obtained here as well by an appropriate modifi-
cation. For instance, to get the time-averaged ‘Edwards-type’ interaction also studied in
[3], one would modify (107) by taking v(y(k)(τ )−y(k′)(τ ′)), including an extra integral
over τ ′, and balancing it by a factor β−1.

3 a simple generalization of this formula holds for v that are not translation-invariant.



1182 M. Salmhofer

The convergence of this partition function for interacting random loops as ε → 0 to
the canonical boson partition function holds as a direct consequence of the Lie product
formula (71). There is also a straightforward generalization to F �= 0 given by (63).
While it is heuristically clear that the coherent-state FIR and the interacting random-
walk (IRW) representation are related since they equal the same partition function, the
proof of Theorem 7 provides a simple and rigorous derivation of the IRW representation
from the regularized FIR for the canonical ensemble. It makes the role of the factor (51)
in this derivation explicit, and it provides a natural finite-dimensional approximation of
the Wiener integral over Brownian motions.

6. Analysis 1: Covariances

This section contains the basic estimates for the covariance. They are elementary and
the proofs are easy, but they will be crucial because they are uniform in the auxiliary
field h.

From now on, the spatial lattice constant will be set to unity, η = 1.

6.1. Stochasticity and bounds for the covariance.

Lemma 8. IfE generates a stochastic process (see (25)), then for all j ′ ≥ j , allx, x′ ∈ X,
and all h

∣∣C(h)(j,x),(j ′,x′)
∣∣ ≤ C(0)(j,x),(j ′,x′) =

(
e(j ′−j)ε E)

x,x′ . (108)

Proof. By (89), and writing out the matrix products in the random-walk notation of
(100),

C(h)(j,x),(j ′,x′) =
∑

y:x→x′

j ′∏

j=j+1

(
e−εE)

y j−1,y j
ei

√
εhj,y j (109)

All h-dependent factors have absolute values equal to 1, and, by hypothesis, the matrix
elements of e−εE are all nonnegative, hence unaffected by taking absolute values. Thus

∣∣C(h)(j,x),(j ′,x′)
∣∣ ≤

∑

y:x→x′

j ′∏

j=j+1

(
e−εE)

y j−1,y j

= C(0)(j,x),(j ′,x′)

=
(
e−(j ′−j)ε E)

x,x′ .

(110)

��

6.2. Modified covariances. In this section, a number of modifications of the operator
Q(h) are introduced, and their properties, as well as those of their inverses, are discussed.
These modifications will be related to different actions that all reproduce the same limit
for the canonical partition function as ε → 0.
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6.2.1. Q1 Let B0, . . .B� be linear operators onCX and B be the diagonal matrix Bjj ′ =
Bj δj,j ′ . Then

Q1(h) = Q(h) B =

⎡

⎢⎢⎢⎢⎣

B0 −A1B1 0 0 . . . 0
0 B1 −A2B2 0 . . . 0

. . .
. . .

0 0 0 B�−1 −A�B�

0 0 0 . . . 0 B�

⎤

⎥⎥⎥⎥⎦
(111)

If B0, . . . ,B� are invertible, then Q1 is invertible, with the inverse C1(h) = Q1(h)−1

satisfying

C1(h)(j,x),(j ′x′) =
∫

y
(B−1

j )x,y C(h)(j,y),(j ′x′) (112)

Lemma 9. Let B0 = 1 and Bj = e−i
√

εhj . Then AjBj = eεE for all j ∈ {1, . . . , �}, and

Q1(h)j,j ′ = δj,j ′ e−i
√

ε h j − δj+1,j ′ e−εE (113)

is invertible, and
C1(h)(0,x),(j ′x′) = C(h)(0,x),(j ′x′). (114)

If E generates a stochastic process, then for all h and all j, j ′, x, x′
∣∣C1(h)(j,x),(j ′,x′)

∣∣ ≤ C1(0)(j,x),(j ′,x′). (115)

Proof. Equation (114) holds because B0 = 1. By definition,

C1(h) = B(h)−1 C(h). (116)

Every Bj is diagonal in the spatial indices, so B(h)−1 is diagonal, and

∣∣∣B(h)−1
(j,x),(j,x)

∣∣∣ ≤ 1 = B(0)−1
(j,x),(j,x) (117)

Thus (115) follows by matrix multiplication and Lemma 8. ��

6.2.2. Q2 and Q3. Consider furthermore the following two operators motivated by a
small-ε expansion. Let u : X → R and let Ẽ be a self-adjoint linear operator onCX, and
regard, as with h, functions of u as multiplication operators, i.e. (e−εu)x,x′ = e−εux δx,x′ .
Define Q2(h, u) and Q3(h) by

Q2(h, u)j,j ′ = δj,j ′ (1 − i
√

ε h j ) e
−εu − δj+1,j ′ e−εẼ (118)

and
Q3(h)j,j ′ = δj,j ′ (1 − i

√
ε h j ) − δj+1,j ′ (1 − εẼ). (119)

Let
Tε = {h ∈ C

X : ∣∣Im hj,x
∣∣ < ε−1/2 ∀(j, x) ∈ X} (120)

Lemma 10. Let h ∈ R
X and u ∈ R

X.



1184 M. Salmhofer

(a) Q2(h, u) is invertible and its inverse

C2(h, u) = Q2(h, u)−1 (121)

has norm bounded uniformly in h. C2 is analytic in h on Tε .

(b) If e−εẼ < e−εu, then

Re (ā|Q2(h, u) a)X = Re (ā|Q2(0, u) a)X

≥
�∑

j=0

(b̄j |(1 − K̃ ) bj )X > 0.
(122)

(Here K̃ = e
ε
2 ue−εẼe ε

2 u and bj = e− ε
2 u aj .)

(c) If Ẽ generates a stochastic process, then
∣∣C2(h, u)(j,x),(j ′,x′)

∣∣ ≤ C2(0, u)(j,x),(j ′,x′). (123)

For any δ > 0, there is �0 = �(δ, β, ‖Ẽ‖, ‖u‖) so that for all � > �0, all j, j ′ ∈
{0, . . . , �} and all x, x′ ∈ X

∣∣∣∣C2(0, u)(j,x),(j ′,x′) −
(
e−(j ′−j)ε(Ẽ−u)

)

x,x′

∣∣∣∣ < δ (124)

Consequently, for � > �0, the right hand side of (123) is bounded uniformly in j, j ′
and �: ∣∣C2(h, u)(j,x),(j ′,x′)

∣∣ ≤ eβEmin + δ (125)

where Emin = infspec (Ẽ − u).

Proof. (a) Viewed as a matrix in j, j ′, Q2 is upper triangular, and the diagonal part D
of Q2, given by

D(h, u)j,j ′ = δj,j ′ (1 − i
√

ε h j ) e
−εu, (126)

is invertible for all u, h ∈ R
X. For all h ∈ Tε , the inverse D(h, u)−1 is analytic in h on

Tε because its h-dependence is via factors of ((1 − i
√

ε h j,x) e−εux)−1. The inverse of
Q2 is given by a Neumann series that terminates after at most � + 1 terms, hence has the
same analyticity properties.

(b) The first equality in (122) holds because the h-dependent term drops out of the
hermitian part of Q; the inequalities then follow by hypothesis.

(c) The proof of (123) is a straightforward adaptation of that of Lemma 8, writing out
the terms in the finite Neumann sum for C2 as matrix products, and using that by (126),∣∣∣D(h, u)−1

(j,x),(j ′,x′)

∣∣∣ ≤ D(0, u)−1
(j,x),(j ′,x′). Because C2 is upper triangular, it suffices to

prove (124) and (125) for j ′ ≥ j . So let j ′ ≥ j and j̃ = j ′ − j . Then j̃ ∈ {0, . . . , �},
and

C2(0, u)j,j ′ = eεu
(
e−εẼeεu

)j̃

(127)

Both A = −Ẽ and B = u are bounded operators, so an easy variation of the standard
proof of the Lie product formula (as given, e.g., in [39]) results in

∥∥∥eε(A+B)j̃ − (
eε A eε B)j̃

∥∥∥ ≤ j eε(j̃−1)(‖A‖+‖B‖)
∥∥∥eε(A+B) − eε A eε B

∥∥∥ (128)
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An estimate of the last factor gives O(ε2), hence (for details, see Appendix C or [39])

C2(0, u)j,j ′ = eεu e−ε(j ′−j)(Ẽ−u) + R (129)

with ‖R‖ ≤ 1
�

f (β(‖Ẽ‖ + ‖u‖), where f (x) = x2ex . Because 0 ≤ j ′ − j ≤ �,

0 ≤ (j ′ − j)ε ≤ β, hence
∣∣∣e−(j ′−j)ε(Ẽ−u)

x,x′
∣∣∣ ≤ max{1, e−βEmin }. Given δ > 0, �0 is

defined by the condition ‖eβu/�0 − 1‖max{1, e−βEmin } + ‖R‖ ≤ δ. By the assumption
that η = 1, |Rx,y| ≤ ‖R‖. Thus for � > �0, (125) holds. ��
Lemma 11. Let h ∈ R

X and u ∈ R
X.

(a) Q3(h) is invertible and its inverse C3(h) = Q3(h)−1 has norm bounded uniformly
in h. C3 is analytic in h on Tε .

(b) If Ẽ > 0 then

Re (ā|Q3(h) a)X ≥ Re (ā|Q3(0) a)X

≥ ε

�∑

j=0

(āj |Ẽ aj )X > 0.
(130)

(c) If Ẽx,y ≤ 0 for all x �= y and if ε is so small that 1 − εẼx,x ≥ 0 for all x, then

∣∣C3(h)(j,x),(j ′,x′)
∣∣ ≤ C3(0)(j,x),(j ′,x′). (131)

Moreover, the right hand side of (131) is bounded uniformly in �.

Proof. Similar to the proof of Lemma 10. ��

6.2.3.Q4. To place the kinetic term Ẽ in the time-local (j = j ′) term, consider

Q4(h)j,j ′ = δj,j ′ (1 + εẼ − i
√

ε h j ) − δj+1,j ′ 1. (132)

The bounds for this covariance are analogous to the previous ones; the argument is
slightly different, and will be given in several steps in the following, without collecting
it in a single Lemma.

If Ẽ > 0, then

Re (ā|Q4(h) a)X = Re (ā|Q4(0) a)X ≥ ε

�∑

j=0

(ā|Ẽa)X > 0. (133)

Lemma 12. Let B be the algebra of bounded operators on a Hilbert space and Q,H ∈
B. Furthermore, let Q0 be a positive operator and H = H†, and let

Q = Q0 + iH. (134)

Then Q−1 exists , and
∥∥Q−1

∥∥ ≤
∥∥∥Q−1

0

∥∥∥. For v �= 0

Re 〈v|Qv〉 ≥ 〈v|Q0v〉 > 0. (135)
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Proof. Because Q0 > 0, it is invertible and has a positive square root Q
1
2
0 . Set A =

Q−1/2
0 H Q−1/2

0 . Then

Q = Q
1
2
0 (1 + iA) Q

1
2
0 . (136)

Because A = A†, ‖(1 + iA)v‖2 = ‖v‖2 +‖Av‖2 ≥ ‖v‖2. Thus ∥∥(1 + iA)−1
∥∥ ≤ 1, hence

Q−1 exists and ∥∥∥Q−1
∥∥∥ ≤ ‖Q− 1

2
0 ‖2 =

∥∥∥Q−1
0

∥∥∥ (137)

where the last equality holds since Q
− 1

2
0 is self-adjoint. Moreover

〈v|Qv〉 = 〈v|Q0v〉 + i〈Q
1
2
0 v|AQ

1
2
0 v〉 (138)

so (135) holds. ��
If Ẽ > 0, and because h is real,Q4(h) satisfies the hypotheses of Lemma 12 with

Q0 =Q4(0). In the estimate of products as above, then use
∣∣∣Q4(h)−1

x,y

∣∣∣ ≤
∥∥∥Q4(h)−1

∥∥∥ ≤
∥∥∥Q4(0)

−1
∥∥∥. (139)

When doing the terminating Neumann series for this inverse, use the spectral theorem
for Ẽ and the elementary inequality that for all x ≥ 0 and j ≤ � ∈ N0

(
1 +

x

�

)j = ej ln(1+ x
�
) ≤ e

j
�
x ≤ ex (140)

to see that the norm ofQ4(0)−1 is bounded uniformly in �.

Lemma 13. If Ẽ ≥ 0 and the off-diagonal matrix elements of Ẽ are negative, then
C4(h) =Q4(h)−1 satisfies

∣∣C4(h)(j,x),(j ′,x′)
∣∣ ≤ C4(0)(j,x),(j ′,x′) (141)

and the right hand side is bounded uniformly in �.

Proof. The diagonal ofQ4(h), as a matrix in the j indices, contains

D(hj ) = 1 + εẼ + i
√

εhj (142)

By hypothesis, Ẽ = Ẽd + Ẽod where the off-diagonal part satisfies (Ẽod)x,x′ < 0 for all
x and x′. By hypothesis, the geometric series for the inverse

D(hj )
−1 =

∞∑

n=0

(1 + εẼd + i
√

εhj )
−1
[
−εẼod (1 + εẼd + i

√
εhj )

−1
]n

(143)

converges. Ẽd and hj commute, since both are diagonal in x. (Moreover Ẽ ≥ 0 implies
ed(x) = Ẽx,x ≥ 0.) Use

∣∣∣∣
1

1 + εed(x) + i
√

εhj,x

∣∣∣∣ ≤ 1

1 + εed(x)
(144)

and (Ẽod)x,x′ < 0 to see that
∣∣∣D(hj )

−1
x,x′
∣∣∣ ≤

∣∣∣D(0)−1
x,x′
∣∣∣. Using the terminating Neumann

series forQ−1
4 then concludes the proof. ��
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7. Analysis 2: Time-Continuum Limit

The existence of the time-continuum limit � → ∞ for the integrals (83), (94), and (95)
for the canonical partition function holds simply by the Lie product formula, and it is
already in this form very useful to do analysis. Sometimes, however, one is interested
in actions that resemble more closely those occurring in formal continuum-time func-
tional integrals. Heuristically, they are obtained by dropping higher-order terms in ε, but
proving that these terms can really be dropped is not straightforward. For many-fermion
systems, it has been done using tree expansion techniques and determinant bounds,
sometimes combined with multiscale analysis [11]. Later [18,37,41], it was done with-
out multiscale techniques. All these proofs rely on determinant estimates which allow
for convergent perturbation expansions under suitable conditions. The bosonic case is
harder. In [8], existence of the time-continuum limit for a FIR of the many-boson system
in the grand-canonical ensemble was proven by multiscale techniques (renormalization
group using a decimation transformation in time). Reference [8] contains much more
than just the proof that the limit exists; it also gives a rigorous justification for an effective
action with a fixed short-time cutoff, which can be used in the analysis of Bose–Einstein
condensation in the thermodynamic limit [9]. The analysis required to do this involves
decompositions in large and small fields, a conceptually clear and analytically powerful
field theoretical method which, however, entails some technical overhead.

In this section, I prove that a variety of different actions give rise to the same limit
ε → 0 of the partition function and the unnormalized expectation values of the canonical
ensemble of bosons. The proof given here does not require any multiscale technique,
only the uniform bounds on covariances given in the last section. This makes it possible
to avoid a large-field analysis. As mentioned, it is not strictly necessary for the further
analysis of the system to consider modified actions, but it serves to illustrate the applica-
tion of the main observations made above, namely (i) the analyticity of the covariances
in the auxiliary field h (ii) their uniform boundedness as functions of h, and (iii) the
fact that the permanent in the canonical ensemble factorizes easily over covariances
and hence allows for a straightforward use of (i) and (ii) in remainder estimates. The
factorization can be expressed in terms of the cycles of permutations, and then used to
study the thermodynamic limit by convergent decoupling expansions [42].

Recall that ε → 0 always means � → ∞ with ε = β/�; this will be important in
estimates since convergenceor uniformboundedness as ε → 0 reallymeans convergence
or uniform boundedness as � → ∞, and statements that constants are independent of ε

will mean that they are independent of � as well.

7.1. Convergence of modified partition functions. For simplicity, I consider only the
case F = 1 here.

The following lemma implies that the h-dependence can be moved to the diagonal
part of the Q-matrix, without changing the partition function.

Lemma 14. Let Q1 be as in (113) and C1(h) = Q1(h)−1. Then

Z (N ,β,X,�)
c = 1

N !
〈
PN ,XC1(h)0,�

〉
h (145)

Proof. This follows immediately from (98) and (114). ��
It is interesting tonote that formally, already this gives rise to an integral representation

where the interaction term is local in time. Assuming for simplicity that the interaction
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is local, i.e. vx,y = vxδx,y,
∫

dμV(h) e−(ā|Q1(h) a)X = e−(ā|Q1(0) a)X−ε
∑

j

∫
x V(|aj,x|2) (146)

where V = − ln�, with � given in (93). The interaction term then has the properties
that it is local in the time index j , hence positive, and moreover � can grow at most like
e|a|2 as |a| → ∞. Formally, one can also derive this representation directly from the
trace using a modified coherent-state formula. That derivation is, however, not rigorous
because integrals that get exchanged do not converge absolutely. This is reflected here
in that Re (ā|Q1(h) a)X is not positive for arbitrary h, hence Q1(h) cannot be used as
a covariance for a Gaussian integral, so again, going from the right hand side of (145)
to the right hand side of (146) involves non-convergent integrals. This problem may be
bypassed by an additional regularization suppressing large a.

In a heuristic procedure, a further step is to expand the exponential to linear order,
e−i

√
εhj,x = 1 − i

√
εhj,x + O(ε) and drop the order ε remainder. The integral over h

then becomes Gaussian, and results in a quartic interaction for the a fields. This does not
really work, but, as shown in the following, a slight modification does, using integration
by parts in the auxiliary field h, as given by Lemma 22 in Appendix D.

Lemma 15. Assume that E generates a stochastic process. Let Q2(h, u) be defined as
in (118), with ux = 1

2vx,x and Ẽ = E , and

Z (N ,β,X,�)
2 = 1

N !
〈
PN ,XC2(h, u)0,�

〉
h (147)

Then Z (N ,β,X,�)
2 → Z (N ,β,X)

c (H, 0) as � → ∞.

Proof. By (71), and Lemma 14, Z (N ,β,X,�)
c (H,F) converges to Z (N ,β,X)

c (H,F) as � →
∞, so it suffices to prove

Z (N ,β,X,�)
2 − Z (N ,β,X,�)

c (H, 0) −→
�→∞ 0. (148)

Overview of the proof.—The permanentPN ,X contains a product over n ∈ {1, . . . , N }
of C1(h)(0,xn),(�,xπ(n)) in Zc and a product of C2(h)(0,xn),(�,xπ(n)) in Z2. By the discrete
product rule and the resolvent formula, a difference

(Q2(h, u) − Q1(h))j,j ′ = δj,j ′
(
1 − i

√
εhj − e−i

√
εhj − ε

2
u
)
+ O(ε

3
2 ) (149)

will be made explicit. This term is of order ε for any u (e.g. for u = 0), but because
a sum over ı ∈ {0, . . . , �} arises as well and ε� = β, a straightforward estimate only
implies that the difference of partition functions is finite, but not that it vanishes. To get
a better estimate, integrate by parts using Lemma 22, with u chosen to cancel a term
arising in the integration by parts (a ‘tadpole-like’ self-interaction). Because E generates
a stochastic process and u is real, Ẽ also generates a stochastic process. Thus the uniform
bounds (115) and (123) hold, and they imply that the integral of the difference over h is

bounded by O(ε
3
2 ), which, even after multiplication with �, still vanishes as ε → 0.

Details of the proof.—The difference of partition functions is

Z (N ,β,X,�)
2 − Z (N ,β,X,�)

c (H, 0) = 1
N ! 〈D(h)〉h (150)
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with

D(h) = PN ,XC2(h, u)0,� − PN ,XC1(h)0,�

=
∑

π∈SN

∫

y1,..,yN

[
N∏

n=1

C2(h, u)(0,yn),(�,yπ(n)) −
N∏

n=1

C1(h)(0,yn),(�,yπ(n))

]

=
∑

π∈SN

∫

y1,..,yN

N∑

m=1

∏

n<m

C2(h, u)(0,yn),(�,yπ(n))

∏

n>m

C1(h)(0,yn),(�,yπ(n))

[C2(h, u) − C1(h)](0,ym ),(�,yπ(m))

(151)

In the last equality, the discrete product rule was used. Now

C2(h, u) − C1(h) = C2(h, u) [Q1(h) − Q2(h, u)] C1(h) (152)

The difference of Q’s is a diagonal matrix, so

(C2(h, u) − C1(h, u))(0,ym),(�,yπ(m))
=

�∑

ı=0

∫

x
C2(h)(j,ym ),(ı,x) �̃ı,x C1(h)(ı,x),(j ′,yπ(m))

(153)
with

�̃ı,x = e−i
√

εhı,x − (1 − i
√

εhı,x) e
−εux . (154)

Set

F(h) =
∏

n<m

C1(h)(0,yn),(�,yπ(n))

∏

n>m

C2(h, u)(0,yn),(�,yπ(n))

C1(h)(j,ym),(ı,x) C2(h, u)(ı,x),(j ′,yπ(m))

(155)

(F depends on ε and on π, ı, x, y1, . . . , yN , etc.). Then

1
N ! 〈D(h)〉h = 1

N !
∑

π∈SN

∫

y1,..,yN

�∑

ı=0

∫

x

〈
�̃ı,x F(h)

〉

h
(156)

The sum over ı is the one mentioned in the overview. All other summations run over
index sets that are independent of �. To show that this expression vanishes in the limit
� → ∞, it will suffice to use the bound

∣∣ 1
N ! 〈D(h)〉h

∣∣ ≤ |X|N (� + 1) max
π,ı

y1,...yN

∣∣∣∣∣
∑

x∈X

〈
�̃ı,x F(h)

〉

h

∣∣∣∣∣. (157)

By Taylor expansion,
�̃ı,x = �ε(hı,x) + εux + ρε (158)

with �ε given in (249) and

|ρε | ≤ u2x
2

ε2 + ε
3
2
∣∣uxhı,x

∣∣. (159)
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By Lemmas 10 (a) and 11 (a), the function F is analytic in h in a neighbourhood of RX,
and by (115) and (123),

|F(h)| ≤ F(0). (160)

Let Fmax = max F(0), where themaximum is taken overπ, ı, x, y1, . . . , yN . ByLemma
10 (c), Fmax is bounded uniformly in �. The Gaussian measure dμV(h)is normalized,
its covariance satisfies Vj,j ′ = δj,j ′ v, and v is independent of ε. Thus, for all r ≥ 0
there is Kr > 0 so that for all � and all ı, x

〈|hı,x|r
〉
h ≤ Kr . (161)

(The constant Kr depends on v; K0 = 1 by normalization of μV.) Thus

(� + 1)

∣∣∣∣∣
∑

x∈X
〈ρε F(h)〉h

∣∣∣∣∣ ≤ Fmax (� + 1)

(
u2x
2

ε2 + ε
3
2 |ux| K1

)
(162)

so that this contribution vanishes in the limit � → ∞ (since ε = β
�
). Because

∂
∂hı,x

C1(h)(j,y),(j ′,y′) = i
√

ε

∫

x
C1(h)(j,y),(ı,x) e

−i
√

ε hı,x C1(h)(ı,x),(j ′,y′) (163)

and
∂

∂hı,x
C2(h)(j,y),(j ′,y′) = i

√
ε

∫

x
C2(h)(j,y),(ı,x) C2(h)(ı,x),(j ′,y′) (164)

it follows, again from (115) and (123) that
〈∣∣∣ ∂F

∂hı,x

∣∣∣
〉

h
< ∞ and that (253) and (254) hold.

Thus Lemma 22 applies, and

(� + 1) max
π,ı

y1,...yN

∣∣∣∣∣
∑

x∈X

〈
�ε(hı,x) F(h)

〉
h

∣∣∣∣∣ ≤ const ε
1
2 −→

ε→0
0. (165)

��

7.2. Recovering the a-integral. Under the stronger condition that the real part of the
quadratic form defined by Q2(0, u) is strictly positive, one can now go backwards and
rewrite the permanent as a Gaussian integral over a, up to an additional h-dependent
factor that arises from the determinant ofQ2. BecauseQ2 is upper triangular in the time
slice index j and because the diagonal part is diagonal in x as well, this determinant is

detQ2(h, u) =
∏

j,x

(1 − i
√

ε hj,x) e
−εux

(166)

Assume Ẽ −u > 0 and recall the definition ofDa in (79). By Lemma 10 (b),Q2(h, u)+
Q2(h, u)† > 0, thus the Gaussian integral given by Q2 is absolutely convergent and

∫
Da e−(ā|Q2(h,u)a)X = detQ2(h, u)−1 (167)

(see Lemma 24). By (274),

PN ,XC2(h, u)0,� = detQ2(h, u)
∫

e−(ā|Q2(h,u)a)X (ā�|a0)XN Da (168)
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Lemma 16. Let

B(h, u) = e−i
√

ε(1|h)X

detQ2(h, u)
(169)

Under the hypotheses of Lemma 15,
〈
B(h, u)

1

N ! PN ,XC2(h, u)0,�

〉

h
−→
�→∞ Z (N ,β,X)

c (170)

Proof. The proof is an easy generalization of that of Lemma 15, the only difference
being the presence of the factor

B(h, u) =
∏

j,x

e−i
√

εhj,x

(1 − i
√

εhj,x)e−εux
. (171)

This just gives additional contributions to the discrete product rule, namely

B(h, u) − 1 =
∑

ı,x

(
∏

j<ı

eεux

1 − i
√

εhj,x

)
�ε(hı,x) + εux + ρ(hı,x, ux)

1 − i
√

εhı,x
(172)

where
ρ(hı,x, ux) = (e−i

√
εhj,x − 1)(eεux − 1) + eεux − 1 − εux (173)

is analytic in hı,x and of order ε
3
2 hı,x+ε2u2x. Lemma22 applies to the factor�ε(hı,x)+εux

in the same way as in the proof of Lemma 15. Again, the linear growth in � of the sum
over ı is suppressed by the extra powers of ε obtained by the integration by parts. ��

By (168) and Lemma 16,

Z (N ,β,X)
c = lim

�→∞

〈
e−i

√
ε(1|h)X

∫
e−(ā|Q2(h,u)a)X 1

N ! (ā�|a0)XN Da

〉

h
(174)

By (118) and Fubini’s theorem, Z (N ,β,X)
c = lim�→∞ Z

(N ,β,X)
� with

Z
(N ,β,X)
� = e−εũN

∫
Da e−(ā|Q2(0,u)a)X 1

N ! (ā�|a0)XN
〈
e−i

√
ε(1+āae−εu|h)X

〉

h
(175)

The prefactor involving ũ = |X|−1
∫
x ux is included for later convenience. It makes only

an inessential change because its limit as � → ∞ is 1. To remove the u-dependence from
the term coupling h to a, change variables in the integral to a′

j,x = e− ε
2 uxaj,x. (This also

cancels the u-dependence ofQ2(0, u) in the quadratic form.) The Gaussian expectation
over h can now be performed and gives (dropping the primes from the notation)

Z
(N ,β,X)
� = e�ε

∫
x ux−εũN

∫
Da e−(ā|Q(ε)a)X− 1

2 ε((1+āa|V(1+āa))X 1
N ! (ā�|eεua0)X

N

(176)
with

Q(ε)

j,j ′ = δj,j ′1 − δj,j ′e−εEε , e−εEε = e
εu
2 e−εẼ e

εu
2 . (177)

Expanding the quadratic form of the interaction term then gives the integral representa-
tion with a positive interaction term, as follows.
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Theorem 17. LetQ(ε) be given by (177), with Ẽ = E and ux = 1
2vxx. If Ẽ − u > 0, then

Z
(N ,β,X)
� = e

β
2 ṽ−εũN

∫
Da e−(ā|(Q(ε)+εm)a)X− 1

2 ε(āa|Vāa)X 1
N ! (ā�|eεua0)X

N (178)

with ṽ = ∫
x(vx,x − ∫

y vx,y) and mx = ∫
y vx,y.

In the translation invariant case where vx,y = v(x − y), ṽ = v(0) − v̂(0), where the
hat denotes the Fourier transform, i.e. v̂(0) = ∫

x v(x), and mx = v̂(0) is independent
of x. Moreover, ux = 1

2v(0) = ũ, so (ā�|eεua0)NX = eεũN (ā�|a0)NX , so that the prefactor
involving ũ gets cancelled. It is now convenient to use the notations a(τ, x) = aj,x,
relabelling to a discrete time index τ = εj = β

�
j ∈ ε{0, . . . , �},

(∂τa)(τ, x) = 1

ε
(a(τ + ε, x) − a(τ, x)) = 1

ε
(aj+1,x − aj,x) (179)

and (as already introduced) ε
∑

j = ∫
τ
. Rewriting all terms in this notation then gives

Theorem 1.
The integral representations involving the variants of the kinetic term in the action

stated in Theorem 1 right after (31) are obtained similarly, by usingQ3 andQ4 instead of
Q2. By Lemmas 11, 12 and 13, the proofs that the limit � → ∞ exists and is unchanged
for these modified actions are straightforward adaptations of the ones given for Q2.

8. Remarks About the Grand-Canonical Ensemble

Here I briefly outline the connection to the grand canonical ensemble. By definition (see
(24)), the grand canonical partition function is the Laplace transform of N �→ Z (N ,β,X)

c .
The setup of the canonical ensemble has a few technical advantages, in particular, on
a lattice with nonzero spacing, the Hamiltonian, as well as its kinetic and interaction
parts, become bounded operators when restricted to the N -particle space, so that one
can regard fixing particle number as a natural regularization for defining bosonic models
mathematically. One can then also try to study the grand canonical ensemble based on
results for the canonical one. In the following, I discuss a few significant points where
the ensembles differ, and how things fit together.

8.1. The periodic boundary condition in time. The integral over the a fields in the
canonical ensemble does not have a periodic boundary condition in the Gaussian: there
is no matrix element in Q that couples j = � and j = 0. The reason for this is explicit
from (51)—the projection PN removes the exponential, replacing it by the N ’th order
term in its expansion. It is therefore plausible that the exponential, and hence the periodic
boundary condition, will be reinstated by the sum over N in (24). But there are of course
convergence issues when going beyond formal considerations. When (84) is inserted
into (24) and the sum over N is formally exchanged with the limit and the integral, one
gets

∞∑

N=0

eNβμ

N ! (ā�|a0)XN = ee
βμ (ā�|a0)X (180)
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This series converges for all values of βμ, a� and a0. But the additional term created
in the exponent spoils positivity of the real part of the quadratic form, hence leads to a
divergent Gaussian integral, if μ > 0. This is explained in more detail in Appendix B.

The appearance of a factor eβμ only in the term coupling the time slices j and 0 is
also unusual. The standard combination E − μ1 can be obtained simply by rearranging
the product

eβμN Z (N ,β,X)
c = TrFB

[
e−β(H−μN)

]
(181)

similarly to what is done in (24), which changes E to Eμ = E−μ1 everywhere. That the
sum over N in (24) converges for μ < 0 and E ≥ 0 is then a simple consequence of the
nonnegativity of the interaction term v. If v > 0, the condition μ < 0 can be dropped.

8.2. The covariance. The covariance of the canonical ensemble is upper triangular be-
cause of the absence of a periodic boundary condition in time in the operator Q. With
the just described absorption of μ into the kinetic term Eμ, the summation over N gives

∞∑

N=0

1

N ! (ā�|a0)XN = e(ā�|a0)X (182)

and (84) gets replaced by

Z (N ,β,X,�)
g =

∫
dμV(h)

∫

CX

Da e−(ā|K(h) a)X (183)

with
K(h)j,j ′ = Q(h)j,j ′ − δj,�δ0,j ′1. (184)

(Here e−εEμ appears inQ.) As shown in Appendix B, the covariance is given for h = 0
by the standard time-ordered Green function for free bosons, Eq. (231).

Theorem 18. Assume that Eμ > 0. Then the integral (183) is absolutely convergent. The
grand-canonical covariance G(h) = K(h)−1 exists for all h, and has a norm bounded
uniformly in h. It is analytic in h if |Im hj,x| <

√
εemin, where emin is the smallest

eigenvalue of Eμ. If Eμ generates a stochastic process, then for all j ′ ≥ j , all x, x′ ∈ X,
and all h, the covariance G(h) = K(h)−1 for the grand canonical ensemble satisfies the
bound

∀h ∈ R
X : ∣∣G(h)(j,x),(j ′,x′)

∣∣ ≤ G(0)(j,x),(j ′,x′). (185)

Proof. This proof is an application of Lemma 21, and I will use the notations introduced
in Appendix B. Let Aj = e−εEμei

√
εhj . Because Eμ > 0,

∥∥Aj

∥∥ = ‖e−εEμ‖ < 1
uniformly in h, and A0 = 1, hence P = A0 . . .A� has norm ‖P‖ < 1. By Lemma 21,
the inverse G exists, is given by (223), and has norm bounded uniformly in h ∈ R

X

because the same holds for all factors appearing in (223). In particular, the inverse
(1 − P)−1 is given by a convergent geometric series. Expanding out this series gives a
linear combination of products of Aj ’s, with nonnegative coefficients. Thus the bound
(185) follows by straightforward adaptation of the proof of Lemma 8. Analyticity in
the ε-dependent neighbourhood of RX holds because the norm of e−εEei

√
εh remains

strictly smaller than 1 on that set. ��
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Thus, all arguments based on the uniform bounds for the covariance, integration by
parts, etc., have their analogues for the grand canonical ensemble, and similar theorems
about convergence of integrals with modified actions hold, in particular, there is a rep-
resentation with an |a|4 interaction term in the action. (I omit the statements and proofs
here to avoid further repetition.) As mentioned in Sect. 3 for the the canonical ensemble,
positivity of the interaction, i.e. v > 0, implies that the integral (27) converges absolutely
also beyond μ = 0 and it defines an analytic function of μ. By the identity theorem,
the continuation represents the partition function for all μ. A similar statement can be
proven for the grand canonical ensemble.

8.3. The determinant. A further interesting and striking difference between the ensem-
bles is the role played by the (inverse of the) determinant arising from the Gaussian
a-integral. In the canonical case, the determinant is simply equal to one. In the grand
canonical case, the determinant differs from one, and the expansion of ln detK(h) in
powers of h creates the well-known expansion in terms of loops corresponding to virtual
particle-antiparticle pairs with higher and higher order interactions. These virtual pair
creation processes do not happen in the canonical ensemble because there is a restric-
tion to fixed N . Thus the constraint of fixed particle number shows up explicitly as the
determinant being one.

Moreover, there is no backward-in-time propagation in the canonical ensemble be-
cause the covariance is upper triangular in time. By contrast, the grand canonical covari-
ance G(h) is not upper triangular. It is simply the time ordered boson two-point function
in the external field h, hence allows forward and backward propagation. All these fea-
tures make explicit that fluctuations are different in the canonical and grand canonical
ensemble.

Finally, there is another, more technical point. The inverse of the determinant in the
grand canonical ensemble does not factorize. The permanent in the canonical ensemble
factorizes over cycles of permutations, allowing for a simple polymer expansion. In
analogy to the proofs given in Sect. 7, the uniform bounds on the covariances can be
used to prove convergence of this expansion for E > 0 [42].

9. The Effect of a Condensate in the Canonical Ensemble

In his famous work [12], Bogoliubov treated condensation of the weakly interating Bose
gas by an ansatz in which the creation and annihilation operators of the kinetic-energy
zero mode are replaced by multiples of the identity, and diagonalizing the resulting
effective Hamiltonian by a canonical transformation, the Bogoliubov transformation. He
was thus able to derive the linear spectrum of low-energy excitations of the condensate,
which is known to be experimentally accurate. Even the elements of the Bogoliubov
transformation could be identified in experiments [45].

At sufficiently low temperatures β−1, weakly interacting bosons are thus expected
to condense into a state resembling the lowest-energy state of the free boson system.
The latter is determined by the zero mode of the one-particle kinetic term which, in a
translation-invariant system, is spatially constant. In the FIR, this corresponds to de-
composing the integration variable into a ‘condensate field’ which is integrated over a
low-dimensional subspace of field space, and all modes orthogonal to it. Condensation
as a phase transition then corresponds to the condensate field acquiring a nonvanishing
expectation value, which spontaneously breaks the U (1) symmetry of particle number
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conservation. In the FIR, this is the symmetry of action and integration measure under
aτ,x �→ eiθ aτ,x (where θ is independent of τ and x). In the following, I do this field de-
composition as a change of variables in the a integral, without, for the moment, making
the assumption that the zero mode field is also constant in time (which is the usual zeroth
order approximation for expansions). This decomposition can be applied irrespective of
what ensemble is studied, but again, I will focus on the canonical ensemble here. It also
makes only a technical difference which of the discretizations discussed above one uses;
for convenience of presentation, I take the action with the time-local |a|4 term and the
quadratic formQ4 for the kinetic term.

Assume that E is given by the discrete Laplacian. Then E has a nontrivial kernel,
namely the constant functions on X. By (22), E ≥ 0 can be changed to E + ε1 with
ε > 0, at the expense of having an explicit factor eβNε in front of the partition function.
Assume, moreover, that v is strictly positive, v > 0. Then the integral (27) converges
absolutely for any ε, even ε < 0, and consequently, the limit ε → 0 can be taken. It is
thus possible to proceed by introducing ε. Because Eε > 0, Theorem 1 applies, and one
can also postpone taking the limit ε → 0 to a convenient point. Thus the integral is

Z�
(N ,β,X) =

∫
Da e−SX(a) 1

N ! (ā(β)|a(0))X
N (186)

with

SX(a) =
∫

τ,x
ā(τ, x) [(−∂τ + m + Eε)a](τ, x) + 1

2

∫

τ

∫

x,y
|a(τ, x)|2 v(x − y) |a(τ, y)|2

(187)
and m = v̂(0). For simplicity of presentation, vx,y = vδx,y (at η = 1) is taken in the
following. Then v̂(0) = v as well.

9.1. Orthogonal decomposition. The fundamental equation of it all is

a = b + c (188)

where c = (cτ )τ∈T is independent of x and

(1|b(τ ))X =
∫

x
b(τ, x) = 0. (189)

This is an orthogonal decomposition: (c(τ )|b(τ ))X = 0 for all τ . With this,

Da = DTc D′b DTc =
∏

τ∈T
dc(τ )∧dc(τ )

2π i D′b = Db
∏

τ∈T
δ

(∫

x
b(τ, x)

)
(190)

and

S(a) = A0(c) +A2(b, c) +A3(b, c) +A4(b) (191)
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with

A0(c) = |X|
∫

τ

[c(τ )(−∂τ + ε + m)c(τ ) +
v

2
|c(τ )|4]

A2(b, c) = v

2

∫

τ,x

[
4|c(τ )|2|b(τ, x)|2 − c(τ )2b(τ, x)

2 − c(τ )
2
b(τ, x)2

]

+ (b̄|(−∂τ + Eε + m)b)X

A3(b, c) = v
∫

τ,x
|b(τ, x)|2

(
c(τ ) b(τ, x) + c(τ ) b(τ, x)

)

A4(b) = v

2

∫

τ,x
|b(τ, x)|4.

(192)

The contribution to the action S that is linear in b vanishes because of the orthogonality
of b and c. For the same reason,

(ā(β)|a(0))X = (c(β)|c(0))X + (b̄β |b0)X = |X|c(β) c(0) + (b̄β |b0)X (193)

and a binomial expansion gives

Z� = |X|N
N∑

K=0

1
(N−K )!

∫
DTc e−A0(c)

(
c(β) c(0)

)N−K
Y(β,K ,X)

� (c) (194)

with

Y(β,K ,X)
� (c) = 1

K !
∫

D′b e−A2(b,c)−A3(b,c)−A4(b)
(

1

|X|
∫

x
b(β, x)b(0, x)

)K

(195)

The sum over K in (194) suggests that the condensate now plays the role of a particle
reservoir—at fixed c, the ensemble described by the b integral is no longer at fixed N , but
rather, all particle numbers K ∈ {0, . . . , N } contribute to the partition function. To be a
true reservoir in a thermodynamical sense, the condensate fluctuations would have to be
so small that it becomes approximately constant also in time τ , and that the likeliest values
of K are small compared to N . This is expected in the thermodynamic limit at sufficiently
large β and with N growing together with |X| so that ρ = N

|X| is fixed and large enough.
However, in the present setup, c may still receive important contributions from the b-
integral, especially because of the slow decay of the b-covariance (see Sect. 9.4 below).

9.2. Quadratic form for the b fields. By definition of the time derivative and by its
boundary condition (see Theorem 1 and (132)), the operator Q(c) defining the action
A2 as a quadratic form in b is still upper triangular in the time slice indices j and j ′.
Explicitly, in the notation where times τ = εj are labelled by j ∈ {0, . . . , �},

A2(b, c) =
�∑

j=0

((bj , bj )|L(cj ) (bj , bj )
�)X −

�−1∑

j=0

(bj |bj+1) (196)

with

L(c) = 12 ⊗ (1 + εm + εE) + εv

[ |c|2 c2

c2 |c|2
]

⊗ 1 (197)
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The c-dependent matrix appearing in (197) is obviously nonnegative (but does have an
eigenvalue zero). The determinant of L(cj ) is no longer equal to one. However, and this
is again peculiar to the canonical ensemble, detL(c) = 1 + O(ε), and the matrix Q

corresponding to the quadratic form A2 in b is therefore invertible if ε is small enough.

9.3. Time-independent condensate field. In the canonical partition function, there is no
chemical potential that can be tuned to give a mexican hat potential. Instead it is the
power (51) that introduces a tendency towards a nonzero value of c. A first understanding
of this can be gained by assuming that c is constant in time, c(τ ) = c(0) = c0 for all τ ,
and taking the contribution from K = 0 only. Then c(β)c(0) = |c0|2. Fixing ρ = N

|X|
means that |X| = σN with σ = 1

ρ
. Then for large N , the factor

|X|N |c0|2N
N ! ≈ (σ |c0|2e)N√

2πN
= 1√

2πN
eN (1+ln(σ |c0|2)) (198)

in the integrand drives the maximum of the integrand in c0, hence also the most prob-
able value of c0, away from zero. The above replacements amount to considering the
simplified function

Z� = 1√
2πN

∫
dc̄0∧dc0

2π i e−NF(|c0|2) Y(β,0,X)
� (c0) (199)

with

F(γ ) = σ

[
(1 + βm)γ +

vβ

2
γ 2
]

− 1 − ln(σγ ) (200)

The 1 term in the square brackets is due to the boundary condition for the discretized time
derivative which implies that its integral does not evaluate to zero on a constant field.
Explicitly, when inserting a j -independent field into (82) (with E = 0 and h = 0): the
difference of the two sums does not vanish, but gives |X||c0|2 = Nσγ . As discussed, the
logarithm in F comes from the power in the integral for the canonical partition function,
and it implies that F takes its minimum at a γ0 �= 0. As mentioned, the true ensemble
average ismore complicated than this. In particular,ρ0 = N−K

|X| is the condensate density,
and whether condensation really takes place at a given temperature is a question of the
distribution of K ’s.

9.4. Positivity in the continuum limit. Assume that the system is translation-invariant
and the kinetic term E is a lattice approximation of the Laplacian. Then for c0 �= 0,
the eigenvalues of the matrix Q (defining the quadratic form (196)) exhibit the typical
Bogoliubov spectrum in the spatial continuum limit η → 0,

EB(p) = |p|
√
w2 + p2 (201)

where w2 = 2v|c0|2.
Lemma 19. For all t ≥ 0, the x-space kernel of e−t |p|

√
w2+p2 is positive.
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Proof. Let

F̂(p) = |p|
√
w2 + p2 − p2 − w2

2
, (202)

Then

F̂(p) = − v4

2(|p| +√w2 + p2)2
= −v4

2

∫ ∞

0
t dt e−t (|p|+

√
w2+p2) (203)

The Fourier transform Gt of e−t (|p|+
√

w2+p2) is the convolution of that of e−t |p| and that
of e−t

√
w2+p2 , which are both strictly positive functions, hence strictly positive, so that

F(x − y) = −
∫ ∞

0
t dt Gt (x − y) < 0 (204)

for all x and y. By iterated convolution, e−τ F (x, y) is positive for all x and y, and the
same holds, again by convolution, for e−τ EB (x, y). ��

The decay is, however, slow since the kernels that get convolved only have power
law decays. Specifically [43],

e−t |p|(x, y) =
⎧
⎨

⎩

1
π2

t
(t2+|x−y|2)2 for d = 3

�( d+12 ) π− d+1
2 t

(t2+|x−y|2) d+12
for d > 3. (205)

This slow decay suggests that a stochastic representation as a random walk in a fluctu-
ating condensate background has long jumps, hence differs from the one corresponding
to Brownian motion. The cubic term A3 also leads to branching and coalescence, cor-
responding to processes where one of two scattering particles emerges from, or gets
absorbed in, the condensate.

10. Conclusion and Outlook

The coherent-state and auxiliary-field integrals for the boson systemderived here provide
a simple regularized version of the standard formal time-continuum functional integrals
used in condensed-matter physics. The integral for the canonical partition function and
expectation values exhibits a few significant differences to the usually considered grand-
canonical case: there is no periodic boundary condition in time in the quadratic form
defining the Gaussian integral, propagation is only in forward time direction, and the
inverse determinant fromGaussian integration is equal to one. The integrals also allow to
derive a straightforward random-walk expansion, which can be viewed as a regularized
version of the Brownian motion representation used in [1–3].

It is often stated that the Wick rule fails for the canonical expectation values of
products of field operators. The integral representations for the canonical expectation
values provide an easy way to understand this – in Gaussian integrals, the Wick rule is
derivedby integration byparts, and the power of (ā�|a0)X that arose from the projection to
the N -particle spaceF (N )

B , see Lemma 4, gives rise to additional terms in that procedure.
In presence of an operator insertion F, this factor gets modified, see, e.g. (62), but it
remains a polynomial in the fields. It is easy to derive a modified Wick rule using
the standard formalism of field Laplacians for representing Gaussian expectations (see
Appendix E and [39]).
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At the heart of the technical results of this paper are the pointwise bounds, uniformly in
h, for the regularized covariances, which are similar to those used in [36] and subsequent
works on the loop vertex expansion. Although it turns out that they are very simple to
prove (see Lemma 8 for an example), it was not completely obvious a priori that they
would be available in the discrete-time regularization. Above, I have used them to show
that there is a considerable freedom in chosing the discretized action without changing
the time-continuum limit of the partition function. Although this is expected, the point
here is that the proofs require only very elementary bounds, such as the combination of
resolvent equations like (152), Taylor expansion like in (158) and integration by parts
as in (258). Moreover, these techniques can be used to derive convergent expansions for
expectation values, which allow to take the infinite-volume limit [42].

One should not jump to the conclusion that this already makes more involved ma-
chinery, such as a decomposition in large and small fields, unnecessary in the analysis
of bosonic many-body problems, however. If renormalization becomes necessary, e.g.
when regularizing determinants or performing any operation in which expansions in the
fields are required, it is not yet clear whether uniform bounds will apply.

The bulk of this paper has dealt with the canonical ensemble, but (as discussed in
some detail in Sects. 3 and 8), the essential bounds carry over to the grand-canonical
case. Moreover, one can also take the approach to use results for the canonical ensemble
to make statements about the grand canonical one, by summation over N , provided one
has good enough control over the N -dependence.

Finally, I have given a brief discussion coming back to the originalmotivation, namely
the connection to stochastic representations. The energy of excitations in a Bose conden-
sate is no longer quadratic, but given by (201), hence linear in momentum for small |p|,
E(p) = w|p|, with w the velocity of sound. Nevertheless, in the formal time-continuum
limit, this kinetic term still generates a stochastic process (albeit with long-range jumps).
It will be interesting to see if the uniform bounds derived in this paper, for which this
positivity was crucial, continue to hold in a regularized version of the functional integral.

In summary, I have rigorously derived several discrete-time regularizations of the
many-boson coherent-state integral, stated in Theorems 1, 2, and 3, as well as in (95).
Some of them are in terms of the complex fields a that index bosonic coherent states, oth-
ers use an auxiliary field h, which is real and governed by a positive Gaussian measure,
with an interaction term that comes as an inverse determinant (for the grand canonical
ensemble) or a permanent of covariances (in the canonical ensemble), hence does not
grow at large fields h. All of these representations have the same time-continuum limit.
They can be used to study the properties of correlation functions for the Bose ensem-
bles in the thermodynamic limit by methods of statistical mechanics, under suitable
hypotheses by straightforward polymer-expansion techniques. The uniform bounds for
the covariances proven here lead to simplifications also in the proof of convergence of
these expansions.
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A. Coherent-State Formulas

In terms of the orthonormal basis (6), the expansion of the coherent state is

va =
∑

ν∈NX
0

eν

∏

x∈X

aνx
x√
νx!

(206)

which is norm convergent for any a ∈ C
X by inspection. Equation (39) then follows by

inserting the expansion.

By the commutation relations, axa
†
x
n
� = nη−da†x

n−1
�. Thus the vector wn,x(a) =

∑n
ν=0

ηdaν

ν! a†x
ν
� satisfies

axwn,x(a) = ax wn−1,x(a), (207)

so v(N )
a =

N∑
n=0

(a|a†)Xn

n! � satisfies

lim
N→∞axv

(N )
a = ax va . (208)

Since the exponential series for va is norm convergent, ‖v(N )
a − va‖ → 0 for N → ∞.

For all x ∈ X, the operators ax and a
†
x have the common dense domain D = D√

nx , and
va ∈ D. Let w ∈ D. Then

〈w|axva〉 = 〈a†x w|va〉 = lim
N→∞〈a†x w|v(N )

a 〉 = lim
N→∞〈w|axv(N )

a 〉
= 〈w|axva〉

(209)

Since D is dense inFB , (37) holds.
To see (43), let ψ ∈ FB . Then the basis coefficients ψν = 〈eν |ψ〉 are square

summable over ν ∈ N
X
0 , and the sum

|κa〉〈κa |ψ〉 =
∑

ν,ν′∈NX
0

eν ψν′
∏

x

ā
ν′
x

x aνx
x√

νx!ν′
x!

(210)

converges absolutely and uniformly onC|X|
R , hence can be exchangedwith the a-integral.

Writing ax = ρxeiθx ,
1

2π i
dā ∧ da = d(ρ2

x )
dθx
2π

(211)

http://creativecommons.org/licenses/by/4.0/
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The integral on the right hand side of (44) factorizes into a product over x of
∫ R

0
d(ρ2

x )e
−ρ2

x ρ
νx+ν′

x
x

∫
dθx
2π

eiθ(νx−ν′
x) (212)

The θ -integral vanishes unless νx = ν′
x. The ρx-integral is an incomplete Gamma func-

tion �(νx + 1, R2), which increases to νx! as R → ∞. Thus

PR(ψ) =
∫

CR
X

dXa |κa〉〈κa |ψ〉 =
∑

ν

ψν fν(R) eν (213)

where

fν(R) =
∏

x

�(νx + 1, R2)

νx! ∈ (0, 1) (214)

Thus SR = ∑
ν |ψν(1 − fν(R))|2 converges, and and fν(R) → 1 as R → ∞. By the

dominated convergence theorem, applied to the sum over ν, SR → 0 as R → ∞. Since
the eν are an ONB, SR = ‖ψ − PR(ψ)‖2, so (43) holds.

To see (44), use that the series expansion

〈κa |A κa〉 =
∑

ν,ν′
〈eν′ |A eν〉

∏

x

ā
ν′
x

x aνx
x√

νx!ν′
x!

(215)

converges absolutely and uniformly for a ∈ C
X
R , because A, as a trace class operator, is

bounded hence |〈eν′ |A eν〉| ≤ ‖A‖. So the integral over a can be exchanged with the
summation. By the same arguments as above, the sum reduces to a single summation
over ν, and ∫

CR
XdXa

〈κa |A κa〉 =
∑

ν

fν(R) 〈eν |A eν〉 (216)

BecauseA is trace class, the sum
∑

ν |〈eν |A eν〉| converges. Thus, again by the dominated
convergence theorem, (44) follows.

Equations (45) and (46) are immediate consequences of the following Lemma.

Lemma 20. Let K = (a†|Ka)X, where K is an operator on X that is diagonalizable by
a unitary transformation, and assume that all eigenvalues Kα of K satisfy Re Kα ≤ 0.
Then eK is a bounded operator on FB and

eKva = veKa . (217)

Proof. By hypothesis there is a unitary transformation U so that E = U†DU , where the
diagonal matrixD has the eigenvalues Kα of E as diagonal entries. Set ã = Ua, then the
ãα also have canonical commutation relations, [ãα, ã†

α′ ] = η−dδα,α′ and [ãα, ãα′ ] =
0, and K = ηd

∑
α Kαñα with ñα = ã†αãα . The ñα all commute, and thus eK =∏

α e
ηd Kα ñα . Every factor in this product is a bounded operator, since nα ≥ 0 and

Re Kα ≤ 0. Thus eK is bounded. Moreover, (a|a†)X = ∑
α ãαã†α , where ã = ηd Ūa,

and thus va = ∏
α e

ãα ã
†
α�. Because nα commutes with a†

α′ if α �= α′, it suffices to
consider the action of Bα = eηd Kα ñα on wα(ãα) = eãα ã

†
α�. Bα is bounded, so its
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application can be exchanged with the norm-convergent exponential series for wα(ãα),
and

Bαwα(ãα) =
∞∑

n=0

ãnα
n! Bα a†α

n
�

=
∞∑

n=0

ãnα
n! e−τKαn a†α

n
� = wα(e−τKα ãα).

(218)

In going from the first to the second line, it was used that a†α
n
� is an eigenvector of ñα

with eigenvalue η−d n. Transforming back to the original basis completes the proof. ��

B. Inversion Formulas

Let B be a Banach algebra with identity 1 and A0, . . . ,A� ∈ B. Define Q and K in
M�+1(C) ⊗ B by

Qj,j ′ = δj,j ′ 1 − δj+1,j ′Aj , (219)

and
Kj,j ′ = Qj,j ′ − δj,� δ0,j ′ A0 (220)

where j, j ′ ∈ {0, . . . , �}. The following lemma states the formulas for the inverses

Q−1 = C and K−1 = G, (221)

for the general case where the Aj need not commute.

Lemma 21. For all A1, . . . ,A� ∈ B, Q is invertible with inverse

Cj,j ′ = 1j ′≥j

j ′∏

ı=j+1

Aı (222)

(where the empty product equals 1). Let P =
�∏

ı=0
Aı . If 1 − P is invertible, then K is

invertible, with inverse

Gj,j ′ = 1j ′≥j

j ′∏

ı=j+1

Aı

�∏

ı=j+1

Aı (1 − P)−1
j ′∏

ı=0

Aı (223)

Proof. Considered as a matrix in the indices j and j ′, Q is upper triangular, more
precisely of the form identity plus a nilpotent term R. So it is invertible, and the inverse
given is by a terminating Neumann series in powers of R. This gives (222). LetDj,j ′ =
δj,� δ0,j ′ A0 so that K = Q − D. Due to the special form of D, the resolvent equation

G = C + G D C (224)

reads for the matrix elements

Gj,j ′ = Cj,j ′ + Gj,� A0 C0,j ′ . (225)
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Because A0C0,� = P, the equation for j ′ = � reads

Gj,� = Cj,� + Gj,� P (226)

By hypothesis, 1 − P is invertible, so

Gj,� = Cj,� (1 − P)−1 (227)

and
Gj,j ′ = Cj,� + Cj,� (1 − P)−1 A0 C0,j ′ (228)

Inserting (222), and noting that the indicator functions in that expression evaluate to 1
in Cj,� for all j , and in C0,j ′ , for all j ′, one gets (223). ��

By inserting 1 = 1j ′≥j + 1j ′<j , (223) can be rewritten in the form

Gj,j ′ = 1j ′≥j

⎡

⎣
�∏

1+ı=j+1

Aı (1 − P)−1
j∏

ı=0

Aı

⎤

⎦
j ′∏

ı=j+1

Aı

+ 1j ′<j

�∏

+ı=j+1

Aı (1 − P)−1
j ′∏

ı=0

Aı

(229)

If AjAj ′ = Aj ′Aj for all j, j ′ ∈ {0, . . . , �}, this simplifies to

Gj,j ′ = 1j ′≥j (1 − P)−1
∏

ı∈{j+1,...,j ′}
Aı

+ 1j ′<j (1 − P)−1
∏

ı �∈{j ′+1,...,j }
Aı .

(230)

If (as in the casewhere all auxiliary fields vanish)Aı = e−εE withβ = ε�, then (denoting
τj = jε = β

j
�
)

Gj,j ′ = (1 − e−βE )−1
[
1τj ′≥τj e−(τj ′−τj )E + 1τj ′<τj e−(β−(τj ′−τj ))E] (231)

i.e. Gj,j ′ is the standard time-ordered two-point function (“propagator”) for free bosons
with kinetic term E at inverse temperature β, evaluated at the discrete times τj and τj ′ .

A sufficient condition for 1− P to be invertible is that ‖P‖ < 1, which in turn holds
if ‖Aı‖ ≤ 1 for all ı ∈ {0, . . . , �} and ∥∥Aı0

∥∥ < 1 for some ı0. For Aj = e−εE ei
√

εhj

with real hj , a sufficient condition is that E > 0. These conditions are not necessary for
invertibility of 1 − P. But they are necessary for the convergence of the coherent-state
functional integral of the grand-canonical ensemble. The series

∞∑

N=0

eNβμ

N ! (ā�|a0)XN = ee
βμ (ā�|a0)X (232)

converges for all values of βμ, a� and a0. Upon formal exchange of the summation
and integration in (24), the resulting term in the exponent is just the difference D of
Q and K, with A0 = eβμ1 of norm ‖A0‖ = eβμ. If μ > 0, this is bigger than one,
and invertibility of P can fail for particular X, and even if it holds, it will typically not
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hold with a norm of the inverse that is uniform in X. Moreover, the quadratic form does
not have a positive real part, and therefore the Gaussian integral diverges, which in turn
invalidates the exchange of summation and integration. Similarly, if one wants to use the
complex contour integral for enforcing that the particle number is N , one should take
integration radius |z| < 1 (see (66)).

C. Baker–Campbell–Hausdorff Formulas

The Baker–Campbell–Hausdorff expansion is well-known and has been considered in
many works, often with the aim to simplify the recursion for generating more and
more terms in the expansion [28,44,46]. The point here is, on the other hand, to avoid
combinatorics by deriving and bounding remainder terms in integral form. I assume in
the following that A and B are elements of some Banach algebra with identity, and show
that

et (A+B) = etAetB (1 + H2(t))

= etA etB e
t2
2 [B,A] (1 + H3(t))

(233)

with H2(t) = O(t2) and H3 = O(t3) analytic in A and B, and both having explicit
bounds in terms of the norms of A and B. The application will be with t = ε ∼ �−1

very small. It is then of course irrelevant whether the error term is in the exponent or
‘downstairs’, as it is small in norm compared to 1, so one can put it in the exponent
simply by taking the logarithm. Indeed it is in general an advantage if the error term is
not in the exponent. The way the expansion is generated also allows to go to any higher
order, with an according remainder term. Variants of the Lie product formula including
higher order terms in the exponent, and with accordingly improved convergence rate
as � → ∞, can be proven straightforwardly using these results. They are useful for
generalizations of the systems discussed here, e.g. for certain Fermi–Bose mixtures.

Let
V(t) = e−tA et (A+B). (234)

Then V(0) = 1 and
d
dsV(s) = e−sA B esA V(s) (235)

hence

V(t) = 1 +
∫ t

0
ds e−sA B esA V(s) (236)

Let W(t) = e−tB V(t). Then W(0) = 1 and

d
dsW(s) = e−sB (e−sA B esA − B

)
esB W(s) (237)

The usual interpolation

e−sA B esA − B =
∫ s

0
dr e−rA [B,A] erA (238)

gives

d
dsW(s) = e−sB

∫ s

0
dr e−rA [B,A] erA esB W(s) (239)
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Since et (A+B) = etAetBW(t), integration of (239) gives

et (A+B) = etAetB (1 + H2(t)) (240)

with

H2(t) =
∫ t

0
ds e−sB

∫ s

0
dr e−rA [B,A] e−(s−r)A es(A+B) (241)

For ε ≥ 0, a straightforward (and in general wasteful) bound for H2 leads to

∥∥∥e−ε(A+B) − e−εAe−εB
∥∥∥ ≤ ε2 eε(2‖B‖+4‖A‖) 1

2
‖[A, B]‖. (242)

Better bounds can be obtained if one or both of A and B are positive.)
To go one order higher, go back to (239) and expand further, by writing

e−rA [B,A] erA = [B,A] +
∫ r

0
dq e−qA [[B,A],A] eqA (243)

and iterating, to get

e−sB
∫ s

0
dr e−rA [B,A] erA esB

= s e−sB [B,A] esB + e−sB
∫ s

0
dr
∫ r

0
dq e−qA [[B,A],A] eqA esB

= s [B,A] + H̃3(s)

(244)

with

H̃3(s) = −s
∫ s

0
dr e−rB[B, [B,A]] erB

+ e−sB
∫ s

0
dr
∫ r

0
dq e−qA [[B,A],A] eqA esB

(245)

involving double commutators. The equation for W then implies

d
ds

(
e− s2

2 [B,A] W(s)

)
= e− s2

2 [B,A] H̃3(s) W(s) (246)

so integration over s gives

et (A+B) = etA etB e
t2
2 [B,A] (1 + H3(t)) (247)

with

H3(t) =
∫ t

0
ds e− s2

2 [B,A] H̃3(s) e− s2
2 [B,A] e−sB e−sA es(A+B). (248)

Obviously this iteration can be continued to arbitrary orders and it gets more and more
tedious as one goes on. But at each step one has an integral formula for the remainder
which is useful for bounds.
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D. Integration by Parts

For h ∈ R let
�ε(h) = e−i

√
εh − 1 + i

√
εh. (249)

By Taylor expansion of the exponential, �ε(h) = − ε
2h

2 + O(ε
3
2h3). The following

elementary statements are used in the sequel:

�ε(h) = i
√

εh �ε(h) with �ε(h) =
∫ 1

0

(
1 − e−i

√
εs h
)
ds (250)

and

i
√

ε
∂�ε

∂h
= −ε

2
+ ihε

3
2 Rε(h) (251)

with Rε(h) = ∫ 1
0 s2ds

∫ 1
0 dt e−i

√
εhst .

Recall the notation (96). Let B be a Banach algebra, and let F : RX → B be in
L1(RX, dμV), i.e. 〈|F(h)|〉h < ∞.

Lemma 22. Let F : R
X → B, h �→ F(h) be differentiable in h and assume that

〈|F(h)|〉h < ∞, and for all (j, x) ∈ X,
〈∣∣∣ ∂F

∂hj,x

∣∣∣
〉

h
< ∞.

(a) For all (j, x) ∈ X,
〈
�ε(hj,x) F(h)

〉
h = − ε

2vx,x 〈F(h)〉h
+ ε

3
2 ivx,x

〈
F(h) hj,x Rε(hj,x)

〉
h

+ i
√

ε

〈
hj,x �ε(hj,x)

∫

y
vx,y

∂F

∂hj,y

〉

h

(252)

(b) If, in addition, the function F depends on ε = β/� and if there is M > 0 such that
for all � ≥ 1, all j ∈ {0, . . . , �} and all x and y ∈ X

〈∣∣hj,x
∣∣ ‖F(h)‖〉h ≤ M (253)

and 〈∣∣hj,x
∣∣2
∥∥∥∥

∂F

∂hj,y

∥∥∥∥

〉

h

≤ M
√

ε (254)

then ∥∥〈[�ε(hj,x) + ε
2vx,x

]
F(h)

〉
h

∥∥ ≤ ε
3
2 M

(∣∣vx,x
∣∣ +
∫

y

∣∣vx,y
∣∣
)

. (255)

In particular, for all δ > 0

ε− 3
2 +δ

〈[
�ε(hj,x) + ε

2vx,x
]
F(h)

〉
h −→

ε→0
0 . (256)

Proof. By (250), 〈
�ε(hj,x) F(h)

〉
h = i

√
ε
〈
hj,x Gε(h)

〉
h (257)

with Gε(h) = F(h) �ε(hj,x) . Integration by parts w.r.t. the Gaussian measure dμV

gives
〈
hj,x Gε(h)

〉
h =

〈∫

y
vx,y

∂Gε

∂hj,y

〉

h

. (258)
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When the derivative with respect to hj,x acts on �ε , the sum over y reduces to the term
y = x, and (251) gives the first two summands on the right hand side of (252). The
action of the derivative on F gives the third summand.

To prove (b), move the first term on the right hand side of (252) to the left hand side.
Since hj,x is real,

∣∣Rε(hj,x)
∣∣ ≤ 1

3 , hence

∣∣vx,x
〈
F(h) hj,x Rε(hj,x)

〉
h

∣∣ ≤ M

3
vx,x (259)

by hypothesis of part (b). Similarly, noting that
∣∣�ε(hj,x

∣∣ ≤ 1
2

√
ε
∣∣hj,x

∣∣, one obtains by
(254)

∣∣∣∣∣

〈
hj,x �ε(hj,x)

∫

y
vx,y

∂F

∂hj,y

〉

h

∣∣∣∣∣ ≤ M

2
ε

∫

y

∣∣vx,y
∣∣ (260)

Thus both remainder terms are bounded by ε
3
2 times a constant, which implies (255)

and (256). ��
Note that becauseV(j,x),(j ′,x′) = δj,j ′ vx,x′ is local in ‘time" j , the summation on the

right hand side of (258) involves only the spatial variable y, but no extra summation over
a ‘time-slice’ index j ′. This is essential since every j summation goes over � + 1 ∼ ε−1

variables, hence potentially creates inverse powers of ε in remainder estimates.
In the standard representation of theGaussian expectation 〈·〉h as a sumover Feynman

graphs, the first summand in (252) corresponds to the tadpole (self-contraction) graph.

E. Determinants, Permanents, and Laplacians

Lemma 23. Let a, b, q ∈ C and Re q > 0. Then

q
2π i

∫

C

e−q|z|2+āz+z̄b dz̄ ∧ dz = e
āb
q . (261)

Proof. Call the left hand side of (261) Iq(a, b). Because Re q > 0 this integral exists,
and it is absolutely convergent, hence can be taken as the limit R → ∞ of the integral
over CR = {z ∈ C : |z| ≤ R}, which will be denoted by I Rq (a, b). At fixed R, expand in
ā and b. The compactness of the integration region justifies the exchange of summations
and integral. This gives

I Rq (a, b) = q
2π i

∞∑

m,n=0

āmbn

m!n!
∫

e−q|z|2 zm z̄n dz̄ ∧ dz

=
∞∑

m,n=0

āmbn

m!n! q
∫ R

0
2rdr e−qr2 rm+n

∫ 2π

0

dθ
2π e

iθ(m−n)

=
∞∑

m=0

(āb)m

m!2 q
∫ R2

0
sm e−qs ds

(262)

The last integral is bounded in absolute value by (Re q)−m−1m!, so the series converges
absolutely and R → ∞ can be taken under the sum. Finally,

lim
R→∞ q

∫ R2

0
sm e−qs ds = q−mm! (263)
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and the sum over m then gives the exponential. To see (263), first transform to t = qs
(calling R2 = L):

q
∫ L

0
sm e−qs ds = q−m

∫

γ1

e−t tmdt (264)

where γ1 is the straight line from 0 to qL ∈ C. The integrand is an entire function of s,
so the contour can be deformed to γ2 + γ3, where γ2 is the straight line from 0 to LRe q
and γ3 the straight line parallel to the imaginary axis from LRe q to Lq. The latter can
be parametrized by t = Lu + iLvr , u = Re q, v = Im q and r ∈ [0, 1]. Then

∣∣∣∣
∫

γ3

e−t tmdt

∣∣∣∣ ≤ Lm+1 e−uL |v| (u2 + v2)m/2 (265)

which vanishes as L → ∞. ��
Lemma 24. Let Q ∈ MN(C) with Q + Q† > 0, and a, b ∈ C

N. Then

det Q
∫

CN

N∏

n=1

dz̄n∧dzn
2π i e〈z|Qz〉+〈a|z〉+〈z|b〉 = e〈a|Q−1b〉. (266)

Here 〈a|b〉 = ā�b denotes the standard inner product on CN.

Proof. The proof will by reduction to Lemma 23, using a diagonalization argument. Let
Q0 = 1

2 (Q + Q†) and H = 1
2i (Q − Q†) then Q = Q0 + iH , H = H†, Q0 = Q†

0 > 0.
Thus Q satisfies the hypotheses of Lemma 12, and the same decomposition as in the

proof of that lemma will be used here: let B = Q
1
2
0 be the positive square root of Q0 and

A = B− 1
2 HB− 1

2 . Then A = A†, so 1 + iA is normal, hence diagonalized by a unitary
transformation: 1 + iA = U †DU with diagonal D and U † = U−1. Q = B(1 + iA)B,
so transforming to w = UBz gives

J =
∫

CN

N∏

n=1

dz̄n∧dzn
2π i e〈z|Qz〉+〈a|z〉+〈z|b〉

= (det B)−2
∫

CN

N∏

n=1

dw̄n∧dwn
2π i e〈w|Dw〉+〈UB−1a|w〉+〈w|UB−1b〉

(267)

The Jacobian from the transformation withU is one because the determinantsU andU †

appear and multiply to 1. The w-integral factorizes because D is diagonal. The real part
of every eigenvalue of D equals 1, so Lemma 23 applies. The product of eigenvalues is
det D−1, which combines with det B−2 to det Q−1. The product of exponentials gives
a quadratic form in the exponent as

〈UB−1a|D−1UB−1b〉 = 〈a|B−1U †D−1UB−1b〉 = 〈a|Q−1b〉 (268)

so (266) follows. ��
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Permanent formulas, such as (70) and (95), follow fromLemma 24 by differentiation.
Denote

〈 f 〉Q = det Q
∫

CN

N∏

n=1

dz̄n∧dzn
2π i e〈z|Qz〉 f (z). (269)

Let a, b ∈ R
N. For m1, . . . ,mK and n1, . . . , nK in {1, . . . ,N}

〈
K∏

k=1

z̄mk znk 〉Q =
[

K∏

k=1

∂
∂bmk

∂
∂ank

〈e〈a|z〉+〈z|b〉 〉Q
]

a=b=0

=
[

K∏

k=1

∂
∂bmk

∂
∂ank

e〈a|Q−1b〉
]

a=b=0

=
[

1
K !

K∏

k=1

∂
∂bmk

∂
∂ank

〈a|Q−1b〉K
]

a=b=0

=
∑

π∈SK

K∏

k=1

Q−1
nk ,mπ(k)

.

(270)

As in Section 2.3 of [39], the generating function identity can be used to rewrite the
Gaussian integral of polynomials in terms of the field space Laplacian. The result is
stated in the following Lemma. (The operator Q in that lemma may be h-dependent.)

Lemma 25. Let Q be a linear operator on C
X and Q +Q† > 0. Then

detQ
∫

Da e−(ā|Qa)X

K∏

k=1

ājk ,xk aj ′
k ,x

′
k

=
[
e�C

K∏

k=1

ājk ,xk aj ′
k ,x

′
k

]

a=0

(271)

where C = Q−1 and

�C =
∑

j,j ′,x,x′
C(jk ,xk ),(j ′

k ,x
′
k )

∂
∂aj,x

∂
∂ āj ′,x′

(272)

With the notation δ
δaj,x

= ε−1η−d ∂
∂aj,x

, the Laplacian can be rewritten as

�C = ( δ
δa |C δ

δā )X = (C δ
δā | δ

δa )X (273)

Techniques using these Laplacians will be useful in doing convergent expansions, in
analogy to [40].

By (270),

detQ
∫

Da e−(ā|Qa)X

K∏

k=1

ājk ,xk aj ′
k ,x

′
k

=
∑

π∈SK

K∏

k=1

C(j ′
k ,x

′
k ),(jπ(k),xπ(k))

. (274)
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