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Abstract: The Bershadsky–Polyakov algebras are the minimal quantum hamiltonian
reductions of the affine vertex algebras associated to sl3 and their simple quotients have
a long history of applications in conformal field theory and string theory. Their repre-
sentation theories are therefore quite interesting. Here, we classify the simple relaxed
highest-weight modules, with finite-dimensional weight spaces, for all admissible but
nonintegral levels, significantly generalising the known highest-weight classifications
(Arakawa in Commun Math Phys 323:627–633, 2013, Adamović and Kontrec in Clas-
sification of irreducible modules for Bershadsky–Polyakov algebra at certain levels).
In particular, we prove that the simple Bershadsky–Polyakov algebras with admissible
nonintegral k are always rational in categoryO , whilst they always admit nonsemisimple
relaxed highest-weight modules unless k + 3

2 ∈ Z�0.

1. Introduction

1.1. Background. The Bershadsky–Polyakov algebras BPk, k ∈ C, are among the sim-
plest and best-known nonregular W-algebras [4,5]. They may be characterised [6] as the
minimal (or subregular) quantum hamiltonian reductions of the level-k universal affine
vertex algebras Vk(sl3). Here, we are interested in their representation theories and, in
particular, those of their simple quotients BPk.

Whenk+3
2 ∈ Z�0,BPk is known tobe rational andC2-cofinite [1,7],meaning that the

representation theory is semisimple and that there are finitelymany simpleBPk-modules,
up to isomorphism. More recently, the representation theory of BPk was explored for
certain other levels in [2,3]. There, the highest-weight modules were classified and
some nonhighest-weight modules were described. These works both relied on explicit
formulae for singular vectors in BPk. Here, we shall extend these classifications to more
general levels where the singular vector method is unavailable. Instead, we shall exploit
the properties [8,9] of minimal quantum hamiltonian reduction.
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In particular, we are interested in the relaxed highest-weight theory of the simple
Bershadsky–Polyakov algebrasBPk. Relaxed highest-weight modules are a type of gen-
eralised highest-weight module [10–12] that have been shown to be essential to achieve
consistent modular properties for many nonrational vertex operator algebras, for exam-
ple the admissible-level affine ones associated with sl2 [10,12–19], their affine cousins
[18–27] and other close relatives [28,29].We therefore expect them to play a central role
in Bershadsky–Polyakov representation theory and, indeed, in the representation theory
of most nonrational W-algebras. This will be discussed further in [30].

Here, we classify the simple relaxed highest-weight BPk-modules with
finite-dimensional weight spaces, in both the untwisted and twisted sectors, when k is ad-
missible and nonintegral. The much more difficult nonadmissible and integral cases are
left for future investigations. This classification includes the highest-weight classifica-
tion as a special case.We also show that there are nonsemisimple relaxed highest-weight
BPk-modules when k is admissible, nonintegral and 2k + 3 /∈ Z�0. In a companion pa-
per [31], these relaxed modules are constructed from the highest-weight modules of the
Zamolodchikov algebra [32], the regular W-algebra associated to sl3, using the inverse
quantum hamiltonian reduction procedure of [18,33]. This results in beautiful character
formulae for the relaxed BPk-modules, generalising those found in [16,19] for Lk(sl2)
and Lk(osp(1|2)).

1.2. Results. Our strategy in classifying relaxed highest-weight BPk-modules starts
from the highest-weight classification. The idea for the latter is to use Arakawa’s cele-
brated results on minimal quantum hamiltonian reduction [9]. However, we must first
establish a subtle technical result concerning the surjectivity of the minimal reduction
functor. This is the content of our first main result.

Main Theorem 1 (Theorem 4.8). Let k be an admissible nonintegral level. Then, every
simple (untwisted) highest-weight BPk-module may be realised as the minimal quantum
hamiltonian reduction of a simple highest-weight Lk(sl3)-module.

In [1], an explicit singular vector formula is used to prove this theoremwhen 2k+3 ∈
Z�0. Our general proof also uses the existence of a generating singular vector, but is
necessarily very different because an explicit formula is unavailable.

Given this result, it is straightforward to classify the simple (untwisted and twisted)
highest-weight BPk-modules and determine how they are related to one another. For
this, write k + 3 = u

v , where u � 3 and v � 2 are coprime, and introduce the set �u,v

of ̂sl3 weights λ = λI − u
vλF satisfying λI ∈ Pu−3

� , λF ∈ Pv−1
� and λF

0 �= 0. Here, P�
�

denotes the dominant integral weights of ̂sl3 whose level is �.

Main Theorem 2. Let k be admissible and nonintegral. Then:

(a) [Theorem 4.9] The isomorphism classes of the simple untwisted and twisted highest-
weight BPk-modules, Hλ and Htw

λ , are each in bijection with �u,v. The connection
between the ̂sl3 weights λ ∈ �u,v and the native BPk data is given explicitly in
Eqs. (4.2) and (4.9).

(b) [Theorem 4.10] Every (untwisted or twisted) highest-weight BPk-module is simple,
so BPk is rational in the Bernšteı̆n–Gel’fand–Gel’fand category Ok.

(c) [Proposition 4.13] The module conjugate to Hλ, λ ∈ �u,v, is Hμ, where μ =
[λ0, λ2, λ1] ∈ �u,v. The module conjugate to Htw

λ is highest-weight if and only if
λF
1 = 0, in which case it is Htw

ν , where ν = [λ2 − u
v , λ1, λ0 + u

v ] ∈ �u,v.
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(d) [Proposition 4.14] The spectral flow of the untwisted (twisted) highest-weight module
labelled by λ ∈ �u,v is highest-weight if and only if λF

1 = 0, in which case it is the
untwisted (twisted) highest-weight module labelled by [λ2 − u

v , λ0 + u
v , λ1] ∈ �u,v.

This then generalises the highest-weight classifications of [1], when 2k + 3 ∈ Z�0, and
[2], for k = − 5

3 and − 9
4 . We refer to Sect. 2.2 for an introduction to the conjugation and

spectral flow functors referred to above.
To extend the highest-weight classification to simple twisted relaxed highest-weight

modules, with finite-dimensional weight spaces, we adapt the methodology developed
in [24] for affine vertex algebras. This uses Mathieu’s notion of a coherent family [34],
extending it from semisimple Lie algebras to the twisted Zhu algebra of BPk. Let �u,v
consist of the ̂sl3 weights λ ∈ �u,v satisfying λF

1 �= 0. Writing k + 3 = u
v as above,

it follows that �u,v is empty unless v � 3. Moreover, �u,v admits a free Z3-action
generated by λ �→ [λ2 − u

v , λ0, λ1 + u
v ] (Lemma 4.19).

Main Theorem 3 (Theorem4.20) . Let k be admissible and nonintegral. Then:
(a) The isomorphism classes of the simple twisted relaxed highest-weight BPk-modules

Rtw[ j],λ, each of which have finite-dimensional weight spaces, form families that are

in bijection with �u,v/Z3. The connection between the ̂sl3 weights λ ∈ �u,v and the
native BPk data is given explicitly in Eqs. (4.9) and (4.16).

(b) The members of each of these families are indexed by all but three of the cosets
[ j] ∈ C/Z, the exceptions being determined as the images of the Z3-orbit of λ under
(4.9).

(c) The module conjugate to Rtw[ j],λ is Rtw[− j],μ, where μ = [λ2 − u
v , λ0 + u

v , λ1] ∈ �u,v.

Moreover, the spectral flow of each Rtw[ j],λ is never a relaxed highest-weight module.
Our finalmain result relates to the existence of nonsemisimple relaxed highest-weight

BPk-modules when v � 3. Roughly speaking, these “fill in” the three “holes” in the
allowed values of [ j] in each family of simple relaxedmodules above. However, there are
twoways of filling each hole, eachway related to the other by taking contragredient duals.
This is very similar to the analogous nonsemisimple picture conjectured in [12,16], and
proven in [18,19], for Lk(sl2). In the case at hand, we establish this picture by combining
a mix of the theory developed in [19,24] with the rationality of BPk in category Ok
(Theorem 4.10). This seems robust and we expect it to generalise to higher-rank cases.

Main Theorem 4 (Theorem4.24) . Let k be admissible and nonintegral. Then:
(a) Every λ ∈ �u,v defines two indecomposable nonsemisimple relaxed highest-weight

BPk-modules Rtw,+
[ j],λ and R

tw,−
[ j],λ, where j is determined from λ by (4.9).

(b) Rtw,+
[ j],λ has a submodule isomorphic to the conjugate of Htw

μ , where μ = [λ0, λ2 −
u
v , λ1 + u

v ] ∈ �u,v, and its quotient by this submodule is isomorphic to Htw
λ . The

structure of Rtw,−
[ j],λ is similar, but with submodule and quotient exchanged.

Conjugation and spectral flow works as for the simple relaxed modules, except that
the conjugate of a +-type module is of −-type (and vice versa). These nonsemisimple
modules prove that BPk has a nonsemisimple module category, for k admissible and
nonintegral. It follows thatBPk is neither rational norC2-cofinite for these levels. Never-
theless, these nonsemisimple modules are, along with their spectral flows, the building
blocks (the “atypical standards”) for the resolutions that underpin the so-called stan-
dard module formalism [35,36] for modular transformations and Verlinde formulae for
nonrational vertex operator algebras. We intend to return to this in a forthcoming paper
[30].
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1.3. Outline. We start by defining the universal Bershadsky–Polyakov vertex operator
algebras BPk and their simple quotients BPk in Sect. 2.1. It is worthwhile remarking
that we choose the conformal structure so that the charged generators G± have equal
conformal weight 3

2 . Equivalently, the Heisenberg field is a Virasoro primary. Accord-

ingly, we study both untwisted and twistedBPk-modules. Section2.2 then introduces the
all-important conjugation and spectral flow automorphisms and explains how they lift
to invertible functors of appropriate categories of BPk-modules. Happily, the untwisted
and twisted sectors of the categories of interest are related by spectral flow.

In Sect. 3, we embark on the first part of the journey: to understand how to identify
BPk-modules, untwisted and twisted, relaxed and highest-weight. After defining these
types of modules, we introduce Zhu algebras and determine that of BPk in Proposition
3.8. This leads to an easy classification of untwisted highest-weight BPk-modules (The-
orem 3.11). The more-involved twisted classification (Theorem 3.23) is then detailed.
For this, we review the identification [1] of the twisted Zhu algebra with a central exten-
sion of a Smith algebra [37] (Proposition 3.15) and classify the simple weight modules,
with finite-dimensional weight spaces, of this extension in Theorem 3.22. For later use,
we also introduce coherent families of modules, following [34], for the twisted Zhu
algebra.

The hard work then begins in Sect. 4 where we convert these classification results
for the universal Bershadsky–Polyakov algebras BPk into the corresponding results for
their simple quotientsBPk. Section4.1 is devoted toMain Theorem 1, first reviewing the
highest-weight theory of the simple affine vertex operator algebra Lk(sl3) [38,39] and
some basic, though deep, results about minimal quantum hamiltonian reduction [6,8,9].
The actual proof of this crucial result is deferred to Appendix A so as not to disrupt the
flow of the arguments too much.

From this, we immediately deduce the classification of highest-weightBPk-modules,
as inMain Theorem 2. The remainder of Sect. 4.2 then addresses how the highest-weight
modules are related by the conjugation and spectral flow functors. This will be important
for the standardmodule analysis in [30]. Section4.3 then lifts this classification to simple
relaxed highest-weight BPk-modules, establishing Main Theorem 3. The existence of
nonsemisimple relaxed highest-weight modules, hence Main Theorem 4, is the focus of
Sect. 4.4.

In Sect. 5, we conclude by illustrating our classification results with some examples.
The rational cases with v = 2 were already investigated in [1], so here we content
ourselves with a quick overview of the “smallest” nontrivial example BP−1/2 and the
slightly more involved example BP3/2. The latter is interesting because it has a simple
current extension that may be regarded as a bosonic analogue of the N = 4 super-
conformal algebra. In particular, it has three fields of conformal weight 1, generating a
subalgebra isomorphic to L1(sl2), and four weight 3

2 fields.

We also study three nonrational examples. Two, namely BP−9/4 and BP−5/3, were
already discussed in [2] and here we take the opportunity to explicitly extend their
highest-weight classifications to the full relaxed classifications. We finish by describing
the exampleBP−4/3 which we believe has not been analysed before. After describing its
relaxed highest-weight modules explicitly, we note an interesting fact: it seems to admit
a simple current extension isomorphic to the minimal quantum hamiltonian reduction of
L−3/2(g2). It follows then that this g2 W-algebra should have a Z3-orbifold isomorphic
to BP−4/3, as well as a Z2-orbifold isomorphic to L1/2(sl2) [16,40].
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2. Bershadsky–Polyakov Algebras

2.1. Bershadsky–Polyakov vertex operator algebras. We begin by defining one of the
families of vertex operator algebras that we will study here.

Definition 2.1. Given k ∈ C, k �= −3, the level-k universal Bershadsky–Polyakov
algebra BPk is the vertex operator algebra with vacuum 1 that is strongly and freely
generated by fields J (z), G+(z), G−(z) and L(z) satisfying the following operator
product expansions:

L(z)L(w) ∼ − (2k + 3)(3k + 1)1

2(k + 3)(z − w)4
+

2L(w)

(z − w)2
+

∂L(w)

(z − w)
,

L(z)J (w) ∼ J (w)

(z − w)2
+

∂ J (w)

(z − w)
, L(z)G±(w) ∼

3
2G±(w)

(z − w)2
+

∂G±(w)

(z − w)
,

J (z)J (w) ∼ (2k + 3)1

3(z − w)2
, J (z)G±(w) ∼ ±G±(w)

(z − w)
, G±(z)G±(w) ∼ 0,

G+(z)G−(w) ∼ (k + 1)(2k + 3)1

(z − w)3
+
3(k + 1)J (w)

(z − w)2

+
3:J J :(w) + 3

2 (k + 1)∂ J (w) − (k + 3)L(w)

z − w
. (2.1)

This family of vertex operator algebras was first described in [4,5] where it was con-
structed via a new type of quantum hamiltonian reduction from the corresponding fam-
ily of universal affine vertex operator algebras Vk(sl3) associated to sl3. In the general
framework of quantum hamiltonian reductions [6], BPk is the minimal reduction corre-
sponding to taking the nilpotent of sl3 to be a root vector.

From (2.1), we see that the conformal weights of the generating fields J (z), G+(z),
G−(z) and L(z) are 1, 3

2 ,
3
2 and 2, respectively, whilst the central charge is

c = − (2k + 3)(3k + 1)

k + 3
. (2.2)

We shall expand the homogeneous fields of BPk in the form

A(z) =
∑

n∈Z−�A+εA

Anz−n−�A , (2.3)

where �A is the conformal weight of A(z) and εA = 1
2 , if �A ∈ Z + 1

2 and A(z) is

acting on a twisted BPk-module (see Sect. 3 below), and εA = 0 otherwise. Standard
computations now give the mode relations.
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Proposition 2.2. The commutation relations of the modes of the generating fields ofBPk

are

[Lm, Ln] = (m − n)Lm+n − (2k + 3)(3k + 1)

k + 3

m3 − m

12
δm+n,01,

[Lm, Jn] = −n Jm+n, [Lm, G±
s ] = (

m

2
− s)G±

m+s,

[Jm, Jn] = 2k + 3

3
mδm+n,01, [Jm, G±

s ] = ±G±
m+s, [G±

r , G±
s ] = 0,

[G+
r , G−

s ] = 3:J J :r+s − (k + 3)Lr+s +
3

2
(k + 1)(r − s)Jr+s

+ (k + 1)(2k + 3)
r2 − 1

4

2
δr+s,01.

(2.4)

Here, the indices m and n always take values in Z while r and s take values in Z + 1
2 , if

acting on an untwistedmodule, and inZ, if acting on a twistedmodule.We call the (unital
associative) algebra generated by the modes of the fields of BPk the untwisted mode
algebra U, in the first case, and the twisted mode algebra Utw, in the latter case. Each
is a completion of the corresponding algebra generated by the modes of the generating
fields.

Definition 2.3. • A fractional level k ∈ C for the Bershadsky–Polyakov algebras is
one that is not critical, meaning that k �= −3, and for which BPk is not simple.
• The level-k simple Bershadsky–Polyakov vertex operator algebra BPk is the unique
simple quotient of BPk.

According to [41, Thms. 0.2.1 and 9.1.2], the fractional levels are precisely the k satis-
fying

k + 3 = u
v
, where u ∈ Z�2, v ∈ Z�1 and gcd{u, v} = 1. (2.5)

If k is fractional, then we shall refer to BPk as a Bershadsky–Polyakov minimal model
and favour the alternative notation BP(u, v). We note that the central charge of the
minimal model BP(u, v) takes the form

c = − (3u − 8v)(2u − 3v)
uv

= 1 − 6(u − 2v)2

uv
. (2.6)

Whilst the central charge is invariant under exchanging u
v with 4v

u , the corresponding
simple vertex operator algebras are not isomorphic. We shall see this explicitly when
we analyse their representation theories in Sect. 4.

2.2. Automorphisms. There are two types of automorphisms of BPk that will prove
useful for the classification results to follow: the conjugation automorphism γ and the
spectral flow automorphisms σ�, � ∈ Z. It is easy to verify that their actions, given below
on the generating fields, indeed preserve the operator product expansions (2.1).
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Proposition 2.4. There exist conjugation and spectral flow automorphisms γ and σ�,
� ∈ Z, of the vertex algebra underlying BPk. They are uniquely determined by the
following actions on the generating fields:

γ (J (z)) = −J (z), γ (G+(z)) = +G−(z), γ (G−(z)) = −G+(z), γ (L(z)) = L(z),

σ �(J (z)) = J (z) − 2k + 3

3
�z−11, σ �(G+(z)) = z−�G+(z),

σ �(L(z)) = L(z) − �z−1 J (z) +
2k + 3

6
�2z−21, σ �(G−(z)) = z+�G−(z)

(2.7)

The σ� with � �= 0 are not vertex operator algebra automorphisms because they do not
preserve the conformal structure. Note that conjugation has order 4, whilst spectral flow
has infinite order. Together, they satisfy the dihedral group relation

γ σ� = σ−�γ, (2.8)

though we do not have γ 2 = 1.

Proposition 2.5. Conjugation and spectral flow act on the modes of the generating fields
J (z), G+(z), G−(z) and L(z) of BPk as follows:

γ (Jn) = −Jn, γ (G+
r ) = +G−

r , γ (G−
r ) = −G+

r , γ (Ln) = Ln,

σ �(Jn) = Jn − 2k + 3

3
�δn,01, σ �(G+

r ) = G+
r−�, σ �(G−

r ) = G−
r+�,

σ �(Ln) = Ln − �Jn +
2k + 3

6
�2δn,01.

(2.9)

Anextremelyuseful observation is that ifwe extend thedefinitionofσ� to allow � ∈ Z+1
2 ,

then we see that σ 1/2 exchanges the twisted and untwisted mode algebras U and Utw

introduced above.
Our main application for these automorphisms is to construct new BPk-modules

from old ones. This amounts to applying the automorphism (or its inverse) before acting
with the representation morphism. As we prefer to keep representations implicit, we
implement this twisting notationally through the language of modules as follows. Given
a BPk-automorphism ω and a BPk-module M, define ω∗(M) to be the image of M
under an (arbitrarily chosen) isomorphism ω∗ of vector spaces. The action of BPk on
ω∗(M) is then defined by

A(z) · ω∗(v) = ω∗(ω−1(A(z))v), A(z) ∈ BPk, v ∈ M. (2.10)

In other words, ω(A(z)) · ω∗(v) = ω∗(A(z)v). In view of this, we shall hereafter drop
the star that distinguishes the automorphism ω from the corresponding vector space
isomorphism ω∗.

Each BPk-automorphism ω thus lifts to an autoequivalence of any category of BPk-
modules that is closed under ω-twists. The examples we have in mind are the category
Wk of weight modules, with finite-dimensional weight spaces (see Definition 3.1 below),
and the analogous category W tw

k of twisted modules. In particular, the conjugation and
spectral flow automorphisms lift to invertible endofunctors that provide an action of the
infinite dihedral group on Wk and W tw

k . Extending the above formulae for σ� to allow
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� ∈ Z + 1
2 , we see that the lift of σ 1/2 moreover defines an equivalence between Wk

and W tw
k . We remark that one of the important consistency requirements for building a

conformal field theory from a module category over a vertex operator algebra is that it
is closed under twisting by automorphisms, especially conjugation.

3. Identifying Bershadsky–Polyakov Modules

Our aim is to classify the simple relaxed highest-weight modules, untwisted and twisted,
for the Bershadsky–Polyakov minimal models BP(u, v). In order to have well defined
characters, necessary to construct partition functions in conformal field theory, we shall
also require that the weight spaces of these simple relaxed highest-weight modules are
finite-dimensional. By [42], it therefore suffices to classify the simple weight modules,
with finite-dimensional weight spaces, of the untwisted and twisted Zhu algebras of
BP(u, v).

A direct assault on this classification seems quite difficult. Our alternative strategy is
threefold: First, we understand the classification for certain associative algebras which
have the untwisted and twisted Zhu algebras of BP(u, v) as quotients. (These algebras
turn out to be the untwisted and twisted Zhu algebras of the universal Bershadsky–
Polyakov vertex operator algebras BPk, but this is inessential to the argument.) This
allows us to identifyBP(u, v)-modules in terms of data for these more easily understood
associative algebras. Second, we use Arakawa’s results [9] on minimal quantum hamil-
tonian reductions to directly obtain the highest-weight classification for the BP(u, v),
at present only known for v = 2 [1]. Third, we combine these results to arrive at the
relaxed classification by further developing the methods developed in [19,24].

In this section, we complete the first step of this strategy. As nothing we do in this
step is special to the minimal models, we shall work in the setting of BPk-modules. Of
course, all BP(u, v)-modules are a priori BPk-modules.

3.1. Relaxed highest-weight BPk-modules. In Sect. 2.1, we introduced the untwisted
mode algebraU of the universal Bershadsky–Polyakov vertex operator algebra BPk and
its twisted version Utw. Any BPk-module is obviously a U-module and, similarly, any
twistedBPk-module is aUtw-module. As these algebras are graded by conformal weight
(eigenvalue of [L0,−]), we have the following generalised triangular decompositions,
as in [8]:

U = U< ⊗ U0 ⊗ U> and Utw = Utw
< ⊗ Utw

0 ⊗ Utw
> . (3.1)

Here, U<, U0 and U> are the unital subalgebras generated by the modes An , for all
homogeneous A(z) ∈ BPk, with n < 0, n = 0 and n > 0, respectively (and similarly
for their twisted versions).

Definition 3.1. • A vector v in a twisted or untwistedBPk-moduleM is a weight vec-
tor of weight ( j,�) if it is a simultaneous eigenvector of J0 and L0 with eigenvalues
j and � called the charge and conformal weight of v, respectively. The nonzero
simultaneous eigenspaces of J0 and L0 are called the weight spaces of M. If M has
a basis of weight vectors and each weight space is finite-dimensional, then M is a
weight module.
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• A vector in an untwisted BPk-module is a highest-weight vector if it is a simul-
taneous eigenvector of J0 and L0 that is annihilated by the action of U>. An un-
twisted BPk-module generated by a single highest-weight vector is called an un-
twisted highest-weight module.
• A vector in a twisted BPk-module is a highest-weight vector if it is a simultaneous
eigenvector of J0 and L0 that is annihilated by G+

0 and the action of Utw
> . A twisted

BPk-module generated by a single highest-weight vector is called a twisted highest-
weight module.
• A vector in a twisted or untwisted BPk-module is a relaxed highest-weight vector
if it is a simultaneous eigenvector of J0 and L0 that is annihilated by the action of
Utw

> orU>, respectively. ABPk-module generated by a single relaxed highest-weight
vector is called a relaxed highest-weight module.

As every BP(u, v)-module is also a BPk-module (with k + 3 = u
v ), these definitions

descend to BP(u, v)-modules in the obvious way.
A simple consequence of these definitions is that an untwisted relaxed highest-weight

vector of BPk is automatically a highest-weight vector. We shall therefore be concerned
with classifying untwisted highest-weight modules and twisted relaxed highest-weight
modules. The name “relaxed highest-weight module” was originally coined in [11] for
the simple affine vertex operator algebra Lk(sl2) and now seems to be quite widespread.
Such modules had, however, appeared in earlier works such as [10]. Here, we follow the
definition proposed for quite general vertex operator algebras in [12].

From the actions of the conjugation and spectral flow automorphisms, given explicitly
in (2.9) and (2.10), we deduce the following useful facts.

Proposition 3.2. • If M is a twisted or untwisted BPk-module and v ∈ M is a weight
vector of weight ( j,�), then γ (v) and σ�(v) are weight vectors in γ (M) and σ�(M)

of weights (− j,�) and ( j + 2k+3
3 �,� + j� + 2k+3

6 �2), respectively.

• Let M be an untwisted BPk-module. Then, v ∈ M is a highest-weight vector of
weight ( j,�) if and only if σ 1/2(v) is a highest-weight vector in the twisted module
σ 1/2(M) of weight ( j + 2k+3

6 ,� + 1
2 j + 2k+3

24 ).

• M is a simple untwisted highest-weight BPk-module if and only if σ 1/2(M) is a
simple twisted highest-weight BPk-module.

In particular, to classify all simple highest-weight BPk-modules, it is enough to only
classify the untwisted ones.

We remark that there are simple weightBPk-modules that are not highest-weight, nor
even relaxed highest-weight. In particular, ifM is a simple relaxed highest-weight BPk-
module, then σ�(M) is simple and weight, but is usually only relaxed highest-weight
for a few choices of �. We believe, however, that the simple objects of the categoriesWk

andW tw
k of untwisted and twisted weight BPk-modules are all spectral flows of simple

relaxed highest-weight BPk-modules.

3.2. The untwisted Zhu algebra. Themain tools thatwe shall use to classifyBershadsky–
Polyakov modules are the functors induced between these modules and those of the
corresponding (untwisted) Zhu algebra. Although originally introduced by Zhu [42],
the idea behind this unital associative algebra was already well known to physicists (see
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[43] for example). Here, we use a (slightly restricted) abstract definition that is based
on the physicists’ “zero-modes acting on ground states” approach to Zhu algebras. We
refer to [12, App. B] for further details (and motivation).

Suppose that V is a vertex operator algebra with conformally graded mode algebra
U = U< ⊗U0 ⊗U>, as in (3.1). Let U′

> denote the ideal of U> generated by the modes
An (so that U> = C1 ⊕ U′

> as vector spaces).

Definition 3.3. The untwisted Zhu algebra of V is the vector space

Zhu
[

V
] = U0

U0 ∩ (UU′
>)

, (3.2)

equipped with the multiplication (defined for homogeneous A of conformal weight �A
and extended linearly)

[

A0
][

B0
] = [

A0B0
] =

∞
∑

n=0

(

�A

n

)

[

(A−�A+n B)0
]

, (3.3)

where
[

U0
]

is the image in Zhu
[

V
]

of U0 ∈ U0.

Zhu defined two functors between the categories of V- and Zhu
[

V
]

-modules. We
shall refer to them as the Zhu functor and the Zhu induction functor. The first is quite
easy to define.

Definition 3.4. The Zhu functor assigns to any V-module M, the Zhu
[

V
]

-module

Zhu[M] = MU′
> , the subspace of M whose elements are annihilated by U′

>.

The second is not so easily defined, but morally amounts to inducing a Zhu
[

V
]

-module,
treating it as a U0-module equipped with a trivial U′

>-action, and taking a quotient
that imposes, among other things, the generalised commutation relations (Borcherds
relations) of V. The details may be found in [42,44].

Proposition 3.5 ([42]). There exists a functor, which we call the Zhu induction functor,
that assigns to any Zhu

[

V
]

-module N a V-module Ind[N] such that Zhu
[

Ind[N]
]  N.

The Zhu functor is thus a left inverse of the Zhu induction functor, at the level of iso-
morphism classes of modules. However, it is not a right inverse in general. Nevertheless,
it is if we restrict to a certain class of simple V-modules.

Definition 3.6. A (twisted or untwisted)V-moduleM is lower-bounded if it decomposes
into (generalised) eigenspaces for the Virasoro zero-mode L0 and the corresponding
eigenvalues are bounded below. IfM is lower-bounded, then the (generalised) eigenspace
of minimal L0-eigenvalue is called the top space of M and will be denoted by Mtop.

If M is a lower-bounded V-module, then Mtop is naturally a Zhu
[

V
]

-module. In fact,
it may be identified with Zhu[M] if M is also simple, though this will not be true in
general. Simple lower-bounded V-modules have the following property.

Theorem 3.7 ([42]). Zhu[−] and Ind[−] induce a bijection between the sets of isomor-
phism classes of simple lower-bounded V-modules and simple Zhu

[

V
]

-modules.
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To classify the simple lower-bounded V-modules, it is therefore sufficient to classify
the simpleZhu[V ]-modules and apply Ind[−].We remark that forV = BPk orBP(u, v),
the simple lower-bounded weight modules coincide precisely with the simple relaxed
highest-weight modules.

The first order of business is therefore to get information about the untwisted Zhu

algebra Zhu
[

BPk
]

.

Proposition 3.8. Zhu
[

BPk
]

is a quotient of C[J, L].

Proof. Since the fields G±(z) have half-integer conformal weights, they do not have
zeromodes when acting on untwistedmodules.More generally, only the (homogeneous)
fields of integer conformalweight have zeromodes. Express the zeromode of such a field
as a linear combination of monomials in the modes of the generating fields J (z), G±(z)
and L(z). Next, use the commutation relations to order the modes so that the mode index
weakly increases from left to right—it is easy to see that this is always possible despite
the nonlinear nature of the commutation relations (2.4). Now remove any monomial

which contains a positive mode. The image of the zero mode in Zhu
[

BPk
]

is thus a

polynomial in
[

J0
]

and
[

L0
]

. Since
[

L0
]

is central inZhu
[

BPk
]

, themultiplication (3.3)

of Zhu
[

BPk
]

matches that of C[J, L]. There is therefore a surjective homomorphism

C[J, L] → Zhu
[

BPk
]

determined by J �→ [

J0
]

and L �→ [

L0
]

. ��

It is in fact easy to show that Zhu
[

BPk
]

 C[J, L], though we will not need this result
in what follows.

3.3. Identifying simple untwisted highest-weight BPk-modules. Having identified

Zhu
[

BPk
]

as a quotient of the free abelian algebra C[J, L], we may identify its finite-

dimensional simple modules as C[J, L]-modules.

Definition 3.9. A C[J, L]-module is said to be weight if J and L act semisimply and
their simultaneous eigenspaces are all finite-dimensional.

The simple weight modules of C[J, L] are therefore one-dimensional. We shall denote
them by Cv j,�, where λ and � are the eigenvalues of J and L , respectively, on v j,�. As

every simple Zhu
[

BPk
]

-module must also be simple as a C[J, L]-module, we arrive at

our first identification result.

Proposition 3.10. Every simple weight Zhu
[

BPk
]

-module, and hence every simple

weight Zhu
[

BP(u, v)
]

-module, is isomorphic to some Cv j,�, where λ,� ∈ C.

Proposition 3.5 and Theorem 3.7 then guarantee that if Cv j,� is a Zhu
[

BPk
]

-module,

then there exists a simple untwisted BPk-module H j,� which is uniquely determined
(up to isomorphism) by the fact that its top space is isomorphic to Cv j,� (as a C[J, L]-
module). As this top space is one-dimensional, H j,� is a highest-weight module.
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Theorem 3.11. Every simple untwisted relaxed highest-weight BPk-module, and hence
every simple untwisted relaxed highest-weight BP(u, v)-module, is isomorphic to some
H j,�, where λ,� ∈ C.

Note that there will be other simple weight BPk- and BP(u, v)-modules such as those
obtained from theH j,� by applying spectral flow. Simple nonweight modules also exist
in general [2], but they will not concern us here.

3.4. The twisted zhu algebra. The theory that extends Zhu algebras and functors to
twisted modules was developed independently, and in different levels of generality, by
Kac and Wang [45] and by Dong, Li and Mason [46]. From the point of view of “zero
modes acting on ground states” however, the twisted story is almost identical to the
untwisted one. This is discussed in detail in [47, App. A].

Given a vertex operator algebraVwith twistedmode algebraUtw = Utw
< ⊗Utw

0 ⊗Utw
> ,

let Utw
>

′ be the ideal of Utw
> generated by the modes An . Then, the twisted Zhu algebra

and twisted Zhu functor of V may be characterised as follows.

Definition 3.12. • The twisted Zhu algebra of V is the vector space

Zhutw
[

V
] = Utw

0

Utw
0 ∩ (UtwUtw

>
′
)
, (3.4)

equipped with the multiplication defined in (3.3), but where
[

U0
]

is now the image
in Zhutw

[

V
]

of U0 ∈ Utw
0 .

• The twisted Zhu functor assigns to any twisted V-moduleM the Zhutw
[

V
]

-module

Zhutw
[

M
] = MUtw

>
′
of elements of M that are annihilated by Utw

>
′.

The obvious analogues of Zhu’s theorems for the twisted setting then hold.

Theorem 3.13 ([46]).

• There exists a twisted Zhu induction functor that takes a Zhutw
[

V
]

-module N to a
V-module Indtw

[

N
]

satisfying Zhutw
[

Indtw
[

N
]]  N.

• Zhutw
[−]

and Indtw
[−]

induce a bijection between the sets of isomorphism classes
of simple lower-bounded twisted V-modules and simple Zhutw

[

V
]

-modules.

Again, the simple lower-bounded twisted weightV-modules coincide with the simple
twisted relaxed highest-weight modules when V = BPk or BP(u, v).

Our aim is to show that Zhutw
[

BPk] is a quotient of some reasonably accessible
associative algebra. In contrast to the untwisted case detailed in Sect. 3.2, the fields
G±(z) do have zero modes when acting on twisted modules. We therefore expect that

Zhutw
[

BPk] will be more complicated than Zhu
[

BPk
]

—in particular, we expect it to

be nonabelian—and so its representation theory will be more interesting.

Definition 3.14. Let Zk denote the (complex) unital associative algebra generated by
J, G+, G− and L , subject to L being central and

[J, G±] = ±G±, [G+, G−] = fk(J, L), where fk(J, L) = 3J 2−(k+3)L−1

8
(k+1)(2k+3)1.

(3.5)
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Proposition 3.15. Zhutw
[

BPk] is a quotient of Zk.

Proof. Every homogeneous field of BPk has a zero mode when acting on a twisted
module.As in the proof of Proposition 3.8, it follows that the zeromodes of the generating
fields have images that generate Zhutw

[

BPk]. The fact that the generator
[

L0
]

is central
is standard [45,46], but is also easy to verify directly in this case.

We therefore start by using (3.3) to compute the products of the images of J0 and
G±

0 in Zhutw
[

BPk]:

[

J0
][

G±
0

] =
∞
∑

n=0

(

1

n

)

[

(Jn−1G±)0
] = [

(J0G±)0
]

+
[

(J−1G±)0
] = ±[

G±
0

]

+
[:J G±:0

]

,

(3.6)

[

G±
0

][

J0
] =

∞
∑

n=0

(

3/2

n

)

[

(G±
n−3/2 J )0

] = [

(G±
−3/2 J )0

]

+
3

2

[

(G±
−1/2 J )0

]

= [

(J−1G±)0
] ± [

(∂G±)0
] ± [

G±
0

] = [:J G±:0
]

. (3.7)

Here, we have noted that G±
−3/2 J = G±

−3/2 J−11 = J−1G±
−3/21 ∓ G±

−5/21 = :J G±: ∓
∂G±, that G±

−1/2 J = ∓G± (similarly) and that (∂G±)0 = − 3
2G±

0 . With the surjection

induced by A �→ [

A0
]

, A = J, G±, L , this proves the first relation in (3.5). The same
method works for the second relation; we omit the somewhat more tedious details. ��

It turns out that Zk is in fact isomorphic to Zhutw
[

BPk], though again we do not need
this for what follows. One can establish this isomorphism by combining the fact that
Zhutw

[

BPk] is known [48] to be isomorphic to the finite W-algebra associated to sl3
and the minimal nilpotent orbit, while an explicit presentation of this finite W-algebra
is given in [49]. Either way, Zk is a central extension of a Smith algebra, these algebras
being introduced and studied in [37] as examples of associative algebras generalising the
universal enveloping algebra of sl2. This is of course well known, see [1,2] for instance.
The representation theory of Zk is therefore quite tractable, a fact that we shall exploit
in the next section.

3.5. Identifying simple twisted relaxed highest-weight BPk-modules. As in the un-
twisted case, we wish to identify simple Zhutw

[

BPk]-modules as Zk-modules. For this,
we need a classification of the simple Zk-modules. As Zk is “sl2-like”, similar classifi-
cation methods may be used. We shall mostly follow the approach presented in [50] for
sl2.

To begin, a triangular decomposition for Zk is given by

Zk = C[G−] ⊗ C[J, L] ⊗ C[G+]. (3.8)

The existence of this decomposition is an easy extension of [37, Cor. 1.3], which guaran-
tees a Poincaré–Birkhoff–Witt-style basis for Zk. The analogue of the Cartan subalgebra
of sl2 is then spanned by J and L .

Definition 3.16. • A vector in a Zk-module is a weight vector of weight ( j,�) if it is
a simultaneous eigenvector of J and L with eigenvalues j and �, respectively. The
nonzero simultaneous eigenspaces of J and L are called the weight spaces. If the Zk-
module has a basis of weight vectors and its weight spaces are all finite-dimensional,
then it is a weight module.
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• A vector in a Zk-module is a highest-weight vector (lowest-weight vector) if it is a
weight vector that is annihilated by G+ (by G−). A highest-weight module (lowest-
weight module) is a Zk-module that is generated by a single highest-weight vector
(by a single lowest-weight vector).
• Aweight Zk-module is dense if its weights coincide with the set [ j]×{�}, for some
coset [ j] ∈ C/Z and some � ∈ C.

We note that Zk possesses a “conjugation” automorphism γ defined by

γ (J ) = −J, γ (G+) = +G−, γ (G−) = −G+, γ (L) = L . (3.9)

Conjugating a highest-weight Zk-module of highest weight ( j,�) then results in a
lowest-weight module of lowest weight (− j,�) and vice versa. The structures of
highest- and lowest-weight Zk-modules are therefore equivalent.

To construct highest-weight Zk-modules, we realise them as quotients of Verma Zk-
modules. Let Z�

k denote the (unital) subalgebra of Zk generated by J , L and G+. Let

C j,�, with j,� ∈ C, be the one-dimensional Z�
k -module, spanned by v, on which we

have Jv = jv, Lv = �v and G+v = 0. The Verma Zk-module V j,� is then the induced
module Zk ⊗Z�

k
C j,�, as usual. It is easy to check that V j,� is a highest-weight module

with highest-weight vector v = 1 ⊗ v and one-dimensional weight spaces of weights
( j − n,�), n ∈ Z�0. Let H j,� denote the unique simple quotient of V j,�.

For convenience, we define

hn
k(J, L) =

n−1
∑

m=0

fk(J − m1, L)

= n(n21 − 3

2
n(2J + 1) +

1

2
(6J 2 + 6J + 1) − (k + 3)L − 1

8
(k + 1)(2k + 3)1),

(3.10)

where the fk were defined in (3.5).

Proposition 3.17. • The Verma module V j,� is simple, so H j,� = V j,�, unless
hn
k( j,�) = 0 for some n ∈ Z�1.

• Verma Zk-modules may have at most three composition factors. Exactly one of these
is infinite-dimensional.
• If hn

k( j,�) = 0 for some n ∈ Z�1 and N is the minimal such n, then H j,� 
V j,�

/

V j−N ,� and dimH j,� = N.

Proof. The first statement follows easily by noting that every proper nonzero submodule
of V j,� is generated by a singular vector of the form (G−)nv, n ∈ Z�1. The condition
to be a singular vector is

0 = G+(G−)nv =
n−1
∑

m=0

(G−)n−1−m [G+, G−](G−)mv =
n−1
∑

m=0

(G−)n−1−m fk(J, L)(G−)mv

(3.11)

=
n−1
∑

m=0

(G−)n−1 fk(J − m1, L)v = (G−)n−1
n−1
∑

m=0

fk( j − m1,�)v = hn
k( j,�)(G−)n−1v.

(3.12)
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Since hn
k is a cubic polynomial in n, there can be at most three roots in Z�1, hence at

most three highest-weight vectors. The remaining statements are now clear. ��
Unlike sl2, there exist nonsemisimple finite-dimensional Zk-modules. Examples include
the highest-weight modules obtained by quotienting a Verma module with three com-
position factors by its socle.

This proposition completes the classification of finite-dimensional Zk-modules and
highest-weight Zk-modules. To obtain the analogous classification of lowest-weight Zk-
modules, we apply the conjugation automorphism γ . The conjugate of a simple Verma
module V j,� is the lowest-weight Verma module of lowest weight (− j,�). However,
if V j,� is not simple and N is the smallest positive integer such that hN

k ( j,�) = 0, then
the conjugate of H j,� is isomorphic toHN− j−1,�.

It remains to determine the simple weight Zk-modules that are neither highest- nor
lowest-weight. Such modules are necessarily dense. As for sl2, the classification of
simple dense Zk-modules is greatly simplified by identifying the centraliser Ck of the
subalgebra C[J, L] in Zk.

Lemma 3.18. The centraliser Ck is the polynomial algebra C[J, L , G+G−].
Proof. Note first that G+G− obviously commutes with J , by (3.5). Consider a Poincaré–
Birkhoff–Witt basis ofZk givenbyelements of the form J a Lb(G+)c(G−)d , fora, b, c, d ∈
Z�0. It is easy to check that such a basis element belongs to Ck if and only if c = d. To
show that J , L and G+G− generate Ck, it therefore suffices to show that (G+)c(G−)c

may be written as a polynomial in J , L and G+G−, for each c ∈ Z�0.
Proceeding by induction, this is clear for c = 0. So take c � 1 and assume that

(G+)c−1(G−)c−1 is a polynomial in J , L and G+G−. Then, the commutation rules (3.5)
give

(G+)c(G−)c = (G+G−)(G+)c−1(G−)c−1 + G+[(G+)c−1, G−](G−)c−1

= (G+G−)(G+)c−1(G−)c−1 +
c−1
∑

n=1

(G+)n fk(J, L)(G+)c−1−n(G−)c−1.

(3.13)

The first term on the right-hand side is a polynomial in J , L and G+G−, by the inductive
hypothesis. For the remaining terms, note that as L is central and G+ J = (J − 1)G+,
we have (G+)n J = (J − n1)(G+)n and hence

c−1
∑

n=1

(G+)n fk(J, L)(G+)c−1−n(G−)c−1 =
c−1
∑

n=1

fk(J −n1, L)(G+)c−1(G−)c−1, (3.14)

which is likewise a polynomial in J , L and G+G−. ��
Recall that the weight spaces of a simple weight Zk-module are simple Ck-modules

(see [50, Lem. 3.4.2] for example). The fact that Ck is abelian now gives the following
result.

Proposition 3.19. The weight spaces of a simple weightZk-module are one-dimensional.

To understand these weight spaces, one therefore needs to know the eigenvalues of J ,
L and G+G− on a given simple weight Zk-module. The latter will vary with the weight
( j,�) in general, so it is convenient to note that we may replace G+G− by a central
element ofZk, something like aCasimir operator, whose eigenvalue is therefore constant.
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Lemma 3.20. The element

� = G+G− + G−G+ + 2J 3 + J − 2J ((k + 3)L +
1

8
(k + 1)(2k + 3)1) (3.15)

is central in Zk and we have γ (�) = −� and Ck = C[J, L ,�].
Proof. We start by noting that

[G+G−, G+] = −G+ fk(J, L) = −G+(3J 2 − (k + 3)L − 1
8 (k + 1)(2k + 3)1). (3.16)

Since [J n, G+] = G+((J + 1)n − J n), we can cancel the terms appearing on the right-
hand side (starting with 3J 2) by adding counterterms to G+G−. In this way, we arrive
at an element ˜� ∈ Zk that commutes with J , G+ and L:

˜� = G+G− + J 3 − 3

2
J 2 +

1

2
J − J ((k + 3)L +

1

8
(k + 1)(2k + 3)1). (3.17)

By using G+G− = G−G+ + fk(J, L), we obtain a second expression for ˜�. Adding the
two expressions, we see that

� = 2˜� + (k + 3)L +
1

8
(k + 1)(2k + 3)1 (3.18)

also commutes with J , G+ and L . But, the explicit form (3.15) shows that it also com-
mutes with G− because the conjugation automorphism (3.9) gives γ (�) = −�. ��

By (3.15), the eigenvalue of� on a highest-weight vector (+) or lowest-weight vector
(−) of weight ( j,�) is given by

ω±
j,� = (2 j ± 1)( j ( j ± 1) − (k + 3)� − 1

8
(k + 1)(2k + 3)). (3.19)

These eigenvalues satisfy the following relations:

ω−
− j,� = −ω+

j,� = ω+− j−1,�. (3.20)

We note that the first equality is consistent with conjugation.
We now construct dense Zk-modules by induction. Let C j,�,ω be a one-dimensional

Ck-module, spanned by v, on which we have Jv = jv, Lv = �v and �v = ωv, for
some j,�, ω ∈ C. Define the induced module R j,�,ω = Zk ⊗Ck C j,�,ω and note that
a basis of R j,�,ω is given by v = 1 ⊗ v and the (G±)nv with n ∈ Z�1. The weights
therefore coincide with [ j] × {�} and so R j,�,ω is a dense Zk-module generated by v.

Proposition 3.21. • For each n ∈ Z�0, (G−)n+1v is a highest-weight vector ofR j,�,ω

if and only if ω = ω+
j−n−1,�.

• For each n ∈ Z�0, (G+)n+1v is a lowest-weight vector of R j,�,ω if and only if
ω = ω−

j+n+1,�.

• The dense Zk-module R j,�,ω is simple if and only if ω �= ω+
i,� (equivalently ω �=

ω−
i,�) for any i ∈ [ j].

• R j,�,ω has at most four composition factors. If it is not simple, then one composi-
tion factor is infinite-dimensional highest-weight and another is infinite-dimensional
lowest-weight; any other composition factors are finite-dimensional.
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Proof. The existence criteria for highest- and lowest-weight vectors is straightforward
calculation using (3.20). The simplicity ofR j,�,ω is equivalent to the absence of highest-
and lowest-weight vectors. However, ω �= ω−

j−n,� for all n ∈ Z�0 implies that ω �=
ω+

j−n−1,� for all n ∈ Z�0, by (3.20). Combining with ω �= ω+
j+n,� for all n ∈ Z�0, we

get the desired condition. The statements about composition factors now follow from
the fact thatω−ω±

i,� is a cubic polynomial in i , so it can have at most three roots i ∈ [ j].
��
It follows from this proposition that we have isomorphisms R j,�,ω  R j+1,�,ω when
these modules are simple. We shall therefore denote these simple dense Zk-modules by
R[ j],�,ω, where [ j] ∈ C/Z.

Theorem 3.22. Every simple weight Zk-module is isomorphic to one of the modules in
the following list of pairwise-inequivalent modules:

• The finite-dimensional highest-weight modules H j,� with j,� ∈ C such that
hn
k( j,�) = 0 for some n ∈ Z�1.

• The infinite-dimensional highest-weight modules H j,� = V j,� with j,� ∈ C such
that hn

k( j,�) �= 0 for all n ∈ Z�1.

• The infinite-dimensional lowest-weight modules γ (H j,�) = γ (V j,�) with j,� ∈
C such that hn

k( j,�) �= 0 for all n ∈ Z�1.

• The infinite-dimensional dense modules R[ j],�,ω with [ j] ∈ C/Z and �,ω ∈ C

such that ω �= ω+
i,� for any i ∈ [ j].

Proof. The classification was already completed after Proposition 3.17 for the first three
cases, that is when the simple weight module has either a highest- or lowest-weight (or
both). If the simple weight module has no highest- or lowest-weight, choose an arbitrary
weight space. This is a simple Ck-module, hence it is one-dimensional (Proposition
3.19) and spanned by v say. As there are no highest- or lowest-weight vectors, G+ and
G− act freely on v and so the simple weight module is dense and so isomorphic to one
of the R[ j],�,ω in the list. ��

As in the untwisted case, the fact thatZhutw
[

BPk] is a quotient ofZk means that every

simple Zhutw
[

BPk]-module is also simple as a Zk-module. Theorem 3.13 then guaran-

tees that every simple weight Zhutw
[

BPk]-module M corresponds to a simple twisted

relaxed highest-weight BPk-moduleM = Indtw
[

M
]

which is uniquely determined (up
to isomorphism) by the fact that its top space is isomorphic toM (as a Zk-module).

Theorem 3.23. Every simple twisted relaxed highest-weight BPk-module, and hence
every simple twisted relaxed highest-weight BP(u, v)-module, is isomorphic to one of
the modules in the following list of pairwise-inequivalent modules:

• The highest-weight modules Htw
j,� with j,� ∈ C such that hn

k( j,�) = 0 for some
n ∈ Z�1.
• The highest-weight modules Htw

j,� = Vtw
j,� with j,� ∈ C such that hn

k( j,�) �= 0
for all n ∈ Z�1.
• The conjugate highest-weight modules γ (Htw

j,�) = γ (Vtw
j,�) with j,� ∈ C such

that hn
k( j,�) �= 0 for all n ∈ Z�1.

• The relaxed highest-weight modules Rtw[ j],�,ω with [ j] ∈ C/Z and �,ω ∈ C such
that ω �= ω+

i,� for all i ∈ [ j].
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Again, we remark that spectral flow will allow us to construct simple twisted weight
BPk-modules that are not relaxed highest-weight, in general.

3.6. Coherent families. A crucial observation of Mathieu [34] concerning simple dense
g-modules, for g a simple Lie algebra, is that they may be naturally arranged into co-
herent families. Here, we extend this observation to dense Zk-modules in preparation
for showing that it also extends to Zhutw

[

BP(u, v)
]

-modules. While Mathieu’s general
results rely heavily on the properties of his twisted localisation functors, our discussion
of this simple case will be quite elementary.

Definition 3.24. A coherent family of Zk-modules is a weight module C for which:

• L and � act as multiples, � and ω respectively, of the identity on C.
• There exists d ∈ Z�0 such that for all j ∈ C, the dimension of the weight space
C( j,�) of weight ( j,�) is d.
• For each U ∈ Ck, the function taking j ∈ C to trC( j,�)

U is polynomial in j .

Coherent families are highly decomposable. Indeed, a coherent family ofZk-modules
necessarily has the form

C =
⊕

[ j]∈C/Z

C[ j]. (3.21)

If all of the C[ j] are semisimple as Zk-modules, then C is said to be semisimple. If
any of the C[ j] are simple as Zk-modules, then C is said to be irreducible. It follows
immediately from Proposition 3.19 that the common dimension d of the weight spaces
of an irreducible coherent family of Zk-modules is 1.

We would like to form a coherent family of Zk-modules by summing over some
collectionof densemodulesR[ j],�,ω, [ j] ∈ C/Z,whilst holding� andωfixed.However,
this is mildly ambiguous because there will always be at least one [ j] (generically three)
for which the corresponding element in the collection will not be simple and so we
should then specify precisely which module we mean. For such j , we shall specify this
in three distinct ways (though there are others).

• The first is to define R[ j],�,ω to be R
ss
j,�,ω, where the semisimplification Mss of a

(finite-length) module M is the direct sum of its composition factors. This is well
defined as R

ss
j,�,ω  R

ss
j+1,�,ω.

• An alternative is to define R[ j],�,ω to be R
+
[ j],�,ω = R j+,�,ω, where we choose

j+ ∈ [ j] to have smaller real part than those of the solutions i ∈ [ j] of ω = ω+
i,�.

This ensures that R
+
[ j],�,ω has no highest-weight vectors.

• We may instead define R[ j],�,ω to be R
−
[ j],�,ω = R j−,�,ω, where we choose j− ∈

[ j] to have larger real part than those of the solutions i ∈ [ j] of ω = ω−
i,�. This

ensures that R
−
[ j],�,ω has no lowest-weight vectors.

For each of the three choices above, we take the direct sum of theR[ j],�,ω over [ j] ∈
C/Z. The result is easily verified to be an irreducible coherent family of Zk-modules.

It will be denoted by C
ss
�,ω, C

+
�,ω or C

−
�,ω, respectively. The first is semisimple, whilst

the second is nonsemisimple with G+ acting injectively and the third is nonsemisimple
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with G− acting injectively. It is easy to check that the conjugates of these irreducible
coherent families are

γ (C
ss
�,ω)  C

ss
�,−ω, γ (C

+
�,ω)  C

−
�,−ω and γ (C

−
�,ω)  C

+
�,−ω. (3.22)

For classifying simpleBP(u, v)-modules, the semisimple coherent families C
ss
�,ω are

most suitable. Note that C
ss
�,ω is the unique irreducible semisimple coherent family of

Zk-modules on which L acts as multiplication by � and � acts as multiplication by ω,

up to isomorphism. We shall return to C
+
�,ω and C

−
�,ω in Sect. 4.4 when considering the

existence of nonsemisimple BP(u, v)-modules.

Proposition 3.25. • Every simple weightZk-module embeds into a unique irreducible
semisimple coherent family.
• Every irreducible semisimple coherent family of Zk-modules contains an infinite-
dimensional highest-weight submodule.

Proof. By Theorem 3.22, a simple dense Zk-moduleM is isomorphic to someR[ j],�,ω,
where [ j] ∈ C/Z and �,ω ∈ C satisfy ω �= ω+

i,� for any i ∈ [ j]. As Rss
[ j],�,ω =

R[ j],�,ω, we have an embedding M ↪→ C
ss
�,ω. The target is obviously unique, up to

isomorphism, since no other irreducible semisimple coherent family has the correct L-
and �-eigenvalues.

A simple highest-weight Zk-module M is isomorphic to H j,�, for some j,� ∈ C.
Take ω = ω+

j,�, so that R j,�,ω is not simple and there is a highest-weight vector of

weight ( j,�) in R
ss
j,�,ω, by Proposition 3.21. This vector generates a copy ofH j,�, so

we again have an embedding M ↪→ C
ss
�,ω with unique target.

Finally, if M is a simple lowest-weight Zk-module, then we have an embedding
γ (M) ↪→ C

ss
�,ω for some unique �,ω ∈ C. By (3.22), we have M ↪→ C

ss
�,−ω. This

covers all possibilities, by Theorem 3.22, so the first statement is established.
For the second, a given irreducible semisimple coherent family C

ss
�,ω is uniquely

specified by choosing �,ω ∈ C. As ω −ω+
i,� is a cubic polynomial in i , there is at least

one solution in C, i = j say. Then, R j,�,ω is not simple and has an infinite-dimensional
highest-weight submodule, by Proposition 3.21, hence so does R

ss
j,�,ω ⊂ C

ss
�,ω. ��

4. Modules of the Simple Admissible-Level Bershadsky–Polyakov Algebras

Recall [51] that if I is an ideal of a vertex operator algebra V, then Zhu
[

V/I
] 

Zhu
[

V
]

/Zhu
[

I
]

. If Jk denotes the maximal ideal of BPk, then classifying the relaxed

highest-weight modules of BPk = BPk/Jk is then just a matter of classifying those
of BPk and then testing which have Zhu-images annihilated by Zhu

[

Jk
]

. The twisted
classification then follows, roughly speaking, from spectral flow. Unfortunately, it is
hard to compute Zhu

[

Jk
]

in general.
Instead, we shall combine Arakawa’s celebrated classification [39] of the highest-

weight modules of all simple admissible-level affine vertex operator algebras Lk(g),
specialised to g = sl3, with his results [9] on minimal quantum hamiltonian reduction.
The result will be a classification of the highest-weight modules for the Bershadsky–
Polyakov minimal models from which we will extract the full (twisted and untwisted)
relaxed highest-weight classification.
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4.1. Admissible-level sl3 minimal models. Recall from (2.5) the fractional levels of
BPk and their parametrisation in terms of u and v. These are also the fractional levels
for the affine vertex operator algebras associated to sl3—Vk(sl3) is not simple [41,
Thm. 0.2.1] when k is a fractional level. For such k, the simple quotient will be denoted
by Lk(sl3) = A2(u, v).

Definition 4.1. An admissible level k for the affine vertex operator algebras associated
to sl3, and the Bershadsky–Polyakov algebras, is a fractional level for which u � 3.

Every highest-weight module for the affine Kac–Moody algebra ̂sl3 is a Vk(sl3)-
module [51]. Let Lλ denote the simple highest-weight ̂sl3-module of highest weight
λ = λ0ω0+λ1ω1+λ2ω2,where theλi are theDynkin labels and theωi are the fundamental
weights. To be a level-k module, we must have λ0 + λ1 + λ2 = k. Let P�

� denote the

set of dominant integral level-� weights of ̂sl3, that is the set of weights λ satisfying
λi ∈ Z�0 and λ0 + λ1 + λ2 = �. This set is obviously empty unless � ∈ Z�0. Let wi ,
i = 0, 1, 2, denote the Weyl reflection corresponding to the simple root αi of ̂sl3.

The following definition specialises that of [38] to ̂sl3 (see also [52, App. 18.B]).

Definition 4.2. Let k be an admissible level. A level-k admissible weight λ of ̂sl3 is one
of the form

λ = w · (λI − u
v
λF,w), (4.1)

where w ∈ {1, w1} is a Weyl transformation of sl3, · is the shifted Weyl group action,
λI ∈ Pu−3

� , λF,w ∈ Pv−1
� and λ

F,w1
1 � 1. A weight of the form (4.1) will be called a

w = 1 or w = w1 admissible weight according as to which w is used.

We remark that one may allow w to range over the full Weyl group, adding appropriate
restrictions on the λF,w, but this gives no further admissible weights. In fact, every set of
w = w′ admissible weights is equal to either the w = 1 or w = w1 sets and, moreover,
these two sets are disjoint [53, Prop. 2.1].

Arakawa’s highest-weight classification for affine vertex operator algebras now spe-
cialises as follows.

Theorem 4.3. ([39]) For k admissible, the simple level-k highest-weight module Lλ is
an A2(u, v)-module if and only if λ is admissible.

Denote by H0(−) the minimal quantum hamiltonian reduction functor [6] taking
Vk(sl3)-modules to BPk-modules, so that H0(Vk(sl3)) = BPk. For definiteness, we
take the nilpotent element of sl3 defining this functor to be the negative highest-root
vector f θ . We assemble some useful results about this functor, specialised to our setting.

Theorem 4.4. • [8, Thm. 6.3] IfKλ denotes the Verma module ofVk(sl3) with highest
weight λ, then H0(Kλ) is isomorphic to the Verma module V j,� of BPk with

j = λ1 − λ2

3
and � = (λ1 − λ2)

2 − 3(λ1 + λ2)
(

2(k + 1) − λ1 − λ2
)

12(k + 3)
. (4.2)

• [9, Thm. 6.7.4] H0(Lλ) = 0 if and only if λ0 ∈ Z�0. For λ0 /∈ Z�0, we have
instead H0(Lλ)  H j,�, where j and � are given by (4.2).
• [9, Cor. 6.7.3] The restriction of H0(−) to the category ̂Ok of level-k ̂sl3-modules
is exact.
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• H0(−) induces a surjection from the set of isomorphism classes of simple highest-
weight Vk(sl3)-modules to the union of {0} and the set of isomorphism classes of
simple highest-weight BPk-modules. Moreover, there are at most two inequivalent
Lλ mapping onto the same H j,�.

Proof. We only prove the last assertion. It follows from the second assertion above and
by inverting (4.2) to obtain two solutions (λ1, λ2) for each ( j,�). We have to ensure
that at least one solution gives λ0 /∈ Z�0. But, a simple calculation gives

λ0 = k − λ1 − λ2 = −1 ±
√

4(k + 3)� + (k + 1)2 − 3 j2, (4.3)

so the zeroth Dynkin labels of the two solutions sum to −2. ��
Definition 4.5. For k admissible, we shall call a level-k weight λ of ̂sl3 surviving if it
is admissible and λ0 /∈ Z�0. Theorem 4.4 then ensures that H0(Lλ) is nonzero (and is
moreover a simple BPk-module).

Lemma 4.6. • Every w = w1 admissible weight is surviving.

• A w = 1 admissible weight λ is surviving if and only if λ
F,1
0 � 1.

• w0· gives a ( j,�)-preserving bijection between the w = 1 surviving weights and
the w = w1 admissible weights.
• If λ and μ are distinct w = 1 surviving weights, then H0(Lλ) and H0(Lμ) are not
isomorphic.

Proof. The zeroth Dynkin label of a level-k admissible ̂sl3-weight λ has one of the
following two forms:

λ0 = λI
0 − u

v
λ

F,1
0 (w = 1) or λ0 = λI

0 +λI
1 − u

v
(λ

F,w1
0 +λ

F,w1
1 )+1 (w = w1).

(4.4)
Consider first aw = 1 admissible weight λ. Since λF,1 ∈ Pv−1

� , we clearly have λ0 ∈ Z

if and only if λ
F,1
0 = 0. On the other hand, a w = w1 admissible weight λ necessarily

has 0 < λ
F,w1
0 + λ

F,w1
1 < v, since λF,w1 ∈ Pv−1

� and λ
F,w1
1 � 1. It follows that the

Dynkin label λ0 can never be an integer in this case. The first two statements are thus
established.

For the third, let μ be a level-k weight. Explicit calculation shows that the Dynkin
labels of w0 · w1 · μ are

[

μ2 − u
v
, μ0, μ1 +

u
v

]

. (4.5)

Let λ = w1 · (λI − u
vλF,w1) be a w = w1 admissible weight. Then, w0 · λ has the form

μ = μI − u
vμF,1 with

μI =
[

λI
2, λI

0, λI
1

]

and μF,1 =
[

λ
F,w1
2 + 1, λ

F,w1
0 , λ

F,w1
1 − 1

]

. (4.6)

It is easy to see that μI ∈ Pu−3
� and μF,1 ∈ Pv−1

� , so μ is a w = 1 admissible weight.

Moreover, μF,1
0 � 1 implies that μ is surviving. Since w0 · (−) is clearly self-inverse,

we have the desired bijection between w = 1 surviving weights and w = w1 admissible
weights. To show that it is ( j,�)-preserving, we show that the functions j (λ) and �(λ)
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defined by (4.2) are invariant under λ �→ w0 ·λ. This is clear from (w0 ·λ)1 = k+1−λ2
and (w0 · λ)2 = k + 1 − λ1.

Finally, let λ and μ be surviving weights and suppose that H0(Lλ)  H0(Lμ), so
that j (λ) = j (μ) and �(λ) = �(μ). We have just seen that λ and w0 · λ always give
the same j and �. But, if λ is a w = 1 surviving weight, then μ = w0 · λ is a w = w1
surviving weight. Since the intersection of the sets of w = 1 and w = w1 admissible
weights is empty [53, Prop. 2.1], we have λ �= μ. As there are at most two weights
corresponding to a given choice of j and � (Theorem 4.4), this shows that there are
never two distinct w = 1 surviving weights giving the same j and �. ��
In what follows, a surviving weight shall be understood to mean a w = 1 surviving
weight unless otherwise indicated. The set of (w = 1) surviving level-k weights will be
denoted by �u,v. We shall also start dropping the label w from λF,w, understanding that
we mean w = 1 unless otherwise indicated.

Let Ik denote the maximal ideal of Vk(sl3), so that Lk(sl3) = Vk(sl3)/Ik. If k is an
admissible level, then Theorem 4.3 says that Ik ·Lλ = 0 if and only if λ is an admissible
weight. If, in addition, v � 2, then

H0(Lk(sl3)) = H0(Lkω0)  H0,0 = BPk, (4.7)

by Theorem 4.4. Moreover, the exactness of H0(−) means that the maximal ideal Jk of
BPk is then isomorphic to H0(Ik). It follows that H0(Lλ) is a BPk-module if and only
if H0(Ik) · H0(Lλ) = 0.

Recall that H0(−) corresponds to tensoringwith a ghost vertex operator superalgebra
G, graded by the fermionic ghost number, and taking the degree-0 cohomology with
respect to a given differential (see Appendix A.1 for the details). Denote the cohomology
class of a (degree-0) cocycle a by [a] (we trust that this notation will not be confused
with the notation for Zhu algebra images in Sect. 3). Given (degree-0) cocycles a and v

of the BRST complexes Ik ⊗ G and Lλ ⊗ G, respectively, the action of [a] ∈ H0(Ik)
on [v] ∈ H0(Lλ) is given by [a] · [v] ≡ [a](z)[v] = [a(z)v] ∈ H0(Ik · Lλ). For λ

admissible, we therefore obtain

H0(Ik) · H0(Lλ) ⊆ H0(Ik · Lλ) = 0. (4.8)

This proves the following assertion.

Proposition 4.7. Let k be admissible with v � 2. If Lλ is an Lk(sl3)-module, then
H0(Lλ) is a BPk-module.

This also motivates the following assumption, which we shall understand to be in force
for everything that follows.

Assumption 1. In what follows, we shall restrict to fractional levels k = −3 + u
v with

u � 3 and v � 2. The restriction on u means that k is an admissible level for sl3,
whilst the restriction on v guarantees that the minimal quantum hamiltonian reduction
of Lk(sl3) = A2(u, v) is BPk = BP(u, v) (for u � 3, we have H0(A2(u, 1)) = 0
instead).

Of course, to obtain a classification of simple highest-weight BPk-modules from
Arakawa’s classification of simple highest-weight Lk(sl3)-modules (Theorem 4.3), we
need a converse of Proposition 4.7. This is much more subtle.
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Theorem 4.8. Let k be as in Assumption 1. Then, every simple highest-weight BPk-
module is isomorphic to the minimal quantum hamiltonian reduction of some simple
highest-weight Lk(sl3)-module.

Note that if λ0 ∈ Z�0, then H0(Lλ) = 0 is a BPk-module, irrespective of whether or
not it is an Lk(sl3)-module. It is therefore enough to show that if λ0 /∈ Z�0 and Lλ is
not a BPk-module, then H0(Lλ) is not a BPk-module. Equivalently, we must show that
λ0 /∈ Z�0 and Ik · Lλ �= 0 implies that H0(Ik) · H0(Lλ) �= 0. We defer the somewhat
intricate proof of this assertion to Appendix A.

4.2. Simple highest-weight BP(u, v)-modules. From Theorems 4.3 and 4.6 and Lemma
4.8, we conclude that the H0(Lλ), with λ ∈ �u,v, form a complete set of mutually
nonisomorphic simple untwisted highest-weight modules for the Bershadsky–Polyakov
minimal model vertex operator algebra BP(u, v) (assuming that the level is as in As-
sumption 1). The charge (J0-eigenvalue) j and conformal weight (L0-eigenvalue) � of
the highest-weight vector of H0(Lλ) was given in (4.2): H0(Lλ)  H j,�. This is then
a classification of the simple untwisted highest-weight BP(u, v)-modules. Moreover,
Proposition 3.2 extends this to a classification of their twisted cousins.

Theorem 4.9. Let k be as in Assumption 1. Then:

• Every simple untwisted highest-weight BP(u, v)-module is isomorphic to one of the
H j,�, where j and � are determined from the Dynkin labels of a unique surviving
weight λ ∈ �u,v by (4.2).
• Every simple twisted highest-weight BP(u, v)-module is isomorphic to one of the
Htw

j,�, where j and � are determined from the Dynkin labels of a unique surviving
weight λ ∈ �u,v by

j = λ1 − λ2

3
+
2k + 3

6
and � = (λ1 − λ2)

2 − 3(λ1 + λ2)
(

2(k + 1) − λ1 − λ2
)

12(k + 3)

+
λ1 − λ2

6
+
2k + 3

24
. (4.9)

Moreover, the H j,� and Htw
j,� determined by the surviving weights are all mutually

nonisomorphic.

In light of this classification, we let Hλ = H j,� and Htw
λ = Htw

j,�, where j and �

are given in terms of λ ∈ �u,v by (4.2) and (4.9), respectively. Note that this implies
that

Htw
λ  σ 1/2(Hλ), (4.10)

by Proposition 3.2. With this new notation, the vacuummoduleH0,0 is identified asHλ,
where λ = [k, 0, 0] has λI = [u − 3, 0, 0] and λF = [v − 1, 0, 0].

We record the following strengthening of Theorem 4.9, following [54, Thm. 10.10],
for later use.

Theorem 4.10. Let k be as in Assumption 1. Then, every highest-weight BP(u, v)-
module, untwisted or twisted, is simple.
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Proof. Weprove this for untwistedmodules as the twisted case follows immediately from
(4.10) and the invertibility of spectral flow. Since the simple quotient of any highest-
weight BP(u, v)-moduleH is isomorphic to someHλ with λ ∈ �u,v, by Theorem 4.9,
it is enough to show that H cannot have a composition factor isomorphic to Hμ for
some μ ∈ �u,v distinct from λ. Indeed, it is enough to show that the Verma module
Vλ = V j,� of BPk does not have such a composition factor.

Recall that Kλ denotes the Verma module of Vk(sl3) of highest weight λ and let
[

Kλ : Lν

]

denote the multiplicity with whichLν appears as a composition factor ofKλ.
By Theorem 4.4, quantum hamiltonian reduction takesKλ toVλ and onlyLμ andLw0·μ
are sent to Hμ. As reduction is exact, we must have

[

Vλ : Hμ

] = [

Kλ : Lμ

]

+
[

Kλ :
Lw0·μ

]

(noting that μ and w0 · μ are distinct since μ ∈ �u,v).
It follows that if Vλ has Hμ, μ �= λ, as a composition factor, then Kλ has either Lμ

or Lw0·μ as a composition factor. But, λ, μ and w0 · μ are all admissible ̂sl3-weights
(corresponding to w = 1, 1 and w1, respectively, see Lemma 4.6), hence they are
dominant. This is therefore impossible by the linkage principle for Verma ̂sl3-modules.
��
Because the Bernšteı̆n–Gel’fand–Gel’fand category Ou,v of level-k BP(u, v)-modules
admits contragredient duals, it follows from Theorem 4.10 that every extension between
Hλ and Hμ, with λ �= μ, splits. It is likewise easy to see that a nonsplit self-extension
ofHλ requires a nonsemisimple action of J0 or L0 (which is forbidden inOu,v).Ou,v is
thus semisimple and, by Theorem 4.9, has finitely many isomorphism classes of simple
objects. We may therefore summarise this as follows: BP(u, v) is rational in category
Ou,v.

In order to extend the highest-weight classification of Theorem 4.9 to twisted relaxed
highest-weight BP(u, v)-modules, we need to know when the top space (Htw

j,�)top =
Zhutw

[

Htw
j,�

]

is infinite-dimensional. The condition for this is beautifully succinct when
expressed in terms of surviving weights.

Proposition 4.11. The top space of the simple twisted highest-weight BP(u, v)-module
Htw

λ is finite-dimensional if and only if λF
1 = 0. When λF

1 = 0, the dimension of this top
space is λI

1 + 1.

Proof. By Proposition 3.17, (Htw
j,�)top is finite-dimensional if and only if hn

k( j,�) = 0
for some n ∈ Z�1 and, if it is finite-dimensional, then the dimension is the smallest such
n. Substituting (4.9) into the definition (3.10) of hn

k and simplifying, we find that

hn
k( j,�) = n(n − λ1 − 1)(n + λ2 + 1 − u

v
). (4.11)

The only possible roots inZ�1 are thus n = λ1+1 and n = u
v −λ2−1. As λ = λI − u

vλF ,
the former requires λ1 ∈ Z so λF

1 = 0 and n = λI
1 + 1 ∈ Z�1. On the other hand, the

latter requires n = −(λI
2 + 1) + u

v (λF
2 + 1) which is only an integer if λF

2 = v − 1.
However, this contradicts λF ∈ Pv−1

� and λF
0 � 1 (Lemma 4.6). ��

Corollary 4.12. Given k as in Assumption 1, there are (up to isomorphism):

• 1
4 (u − 1)(u − 2)v(v − 1) simple untwisted highest-weight BP(u, v)-modules;

• 1
2 (u−1)(u−2)(v−1) simple twisted highest-weight BP(u, v)-modules with finite-

dimensional top spaces;
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• 1
4 (u − 1)(u − 2)(v − 1)(v − 2) simple twisted highest-weight BP(u, v)-modules

with infinite-dimensional top spaces;

In particular, there are no simple twisted highest-weightBP(u, v)-modules with infinite-
dimensional top spaces when v = 2. This is in accord with the fact that the BP(u, 2)
with u � 3 are rational [1].

Recall that the conjugation automorphism γ of BP(u, v), given in (2.9), negates J0
and preserves L0. At the level of their eigenvalues, this is effected in (4.2) by exchanging
the Dynkin labels λ1 and λ2 of λ. The result of this exchange is clearly still a surviving
weight, by Lemma 4.6.

Proposition 4.13. For each λ ∈ �u,v, we have:

• γ (H[λ0,λ1,λ2])  H[λ0,λ2,λ1].
• If λF

1 = 0, then γ (Htw
λ )  Htw

μ , where μ = [λ2 − u
v , λ1, λ0 + u

v ], hence μI =
[λI

2, λ
I
1, λ

I
0] and μF = [λF

2 + 1, 0, λF
0 − 1]. Otherwise, γ (Htw[λ0,λ1,λ2]) is not highest-

weight (though it is relaxed highest-weight).

Proof. The result of conjugating a simple untwisted highest-weight BP(u, v)-module
is clear from the above remarks, because the top spaces are one-dimensional. For the
twisted case, first note that the conjugate of Htw

λ will be again highest-weight if its top
space is finite-dimensional (otherwise the top space of the conjugate module will be
an infinite-dimensional lowest-weight Zk-module). By Proposition 4.11, this requires
λF
1 = 0, hence λ1 = λI

1. Assuming this, let j and � denote the charge and conformal
weight, respectively, of the highest-weight vector of Htw

λ . Then, the highest-weight
vector of γ (Htw

λ ) has charge λ1 − j and conformal weight �.
We therefore need to find μ ∈ �u,v corresponding to these eigenvalues under (4.9).

Solving for μ, we find two solutions:

μ0 = λ2 − k − 3, μ1 = λ1 and μ2 = λ0 + k + 3,

or μ0 = k + 1 − λ2, μ1 = −λ0 − 2 and μ2 = k + 1 − λ1.
(4.12)

We know from the proof of Lemma 4.6 that only one of these is a w = 1 surviving
weight and the other is a w = w1 survivor obtained from the w = 1 one by applying
the shifted action of w0. It is easy to check that the first solution is the w = 1 survivor
by writing it in the form

μ0 = λI
2 − u

v
(λF

2 + 1), μ1 = λI
1 and μ2 = λI

0 − u
v
(λF

0 − 1). (4.13)

Indeed,λF
0 � 1 implies thatμI = [λI

2, λ
I
1, λ

I
0] ∈ Pu−3

� ,μF = [λF
2 +1, 0, λ

F
0 −1] ∈ Pv−1

�
and μF

0 � 1, hence that μ ∈ �u,v. ��
It remains to determine when the spectral flow of a simple highest-weight BP(u, v)-

module is another such module. By Proposition 3.2, it suffices to consider the untwisted
case. Again the key is the finite-dimensionality of the top space: σ (Hλ) will be highest-
weight if and only if Htw

λ = σ 1/2(Hλ) has a finite-dimensional top space, that is if and
only if λF

1 = 0 (Proposition 4.11). Indeed, if λF
1 = 0 and v denotes the highest-weight

vector of Hλ, then that of σ (Hλ) is easily checked to be (G−
1/2)

λI
1σ (v). We compute

its charge and conformal weight, then determine the (unique w = 1) surviving weight
that gives these eigenvalues under (4.2), as in the proof of Proposition 4.13. We thereby
obtain the following proposition.
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Proposition 4.14. If λ ∈ �u,v satisfies λF
1 = 0, then σ (Hλ)  Hμ, where μ = [λ2 −

u
v , λ0+ u

v , λ1] ∈ �u,v, hence μI = [λI
2, λ

I
0, λ

I
1] and μF = [λF

2 +1, λ
F
0 −1, 0]. If λF

1 �= 0,
then σ (Hλ) is not highest-weight (nor relaxed highest-weight).

Combining this with the dihedral relation (2.8) and Proposition 4.13, we obtain the
following characterisation of the spectral flow orbit of a simple untwisted highest-weight
BP(u, v)-moduleHλ.We recall fromProposition 3.2 that a twistedmemberσ�+1/2(Hλ),
� ∈ Z, of this orbit is highest-weight if and only if its untwisted predecessor σ�(Hλ) is.

Theorem 4.15. Take λ ∈ �u,v and define μ, ν, μ̄, ν̄ ∈ �u,v by

μI = [λI
2, λ

I
0, λ

I
1], μF = [λF

2 + 1, λF
0 − 1, 0],

μ̄I = [λI
1, λ

I
2, λ

I
0], μ̄F = [λF

1 + 1, 0, λF
0 − 1] and

ν I = [λI
1, λ

I
2, λ

I
0], νF = [1, v − 2, 0],

ν̄ I = [λI
2, λ

I
0, λ

I
1], ν̄F = [1, 0, v − 2].

(4.14)

• σ (Hλ) is highest-weight if and only if λF
1 = 0. In this case, σ (Hλ)  Hμ.

• σ−1(Hλ) is highest-weight if and only if λF
2 = 0. In this case, σ−1(Hλ)  Hμ̄.

• σ 2(Hλ) is highest-weight if and only if λF = [1, 0, v − 2]. In this case, σ 2(Hλ) 
Hν .
• σ−2(Hλ) is highest-weight if and only if λF = [1, v−2, 0]. In this case, σ−2(Hλ) 
Hν̄ .
• For |�| ∈ Z�3, σ�(Hλ) is highest-weight if and only if v = 2. In this case,
σ±3(Hλ)  Hλ.

Note that when v = 2, every λ ∈ �u,v has λF = [1, 0, 0]. The spectral flow orbits thus
take the form

· · · σ 1/2�−→ Hλ
σ 1/2�−→ Htw

λ

σ 1/2�−→ Hμ
σ 1/2�−→ Htw

μ

σ 1/2�−→ Hν
σ 1/2�−→ Htw

ν

σ 1/2�−→ Hλ
σ 1/2�−→ · · · ,

(4.15)
whereμ and ν are as in (4.14) (withμF = νF = [1, 0, 0]).We picture the v � 3 spectral
flow orbits in Figure1.

Fig. 1. A picture of the weights of the three types of spectral flow orbits through a simple highest-weight
BP(u, v)-module with v � 3. The charge increases from left to right, whilst the conformal weight increases
from top to bottom. The given constraints on the Dynkin labels of λF must be satisfied by the simple untwisted
highest-weight BP(u, v)-moduleHλ appearing at that point in the orbit. Note that the unpictured modules in
each infinite orbit, indicated by · · · , are neither highest-weight nor relaxed highest-weight: their conformal
weights are unbounded below
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4.3. Simple relaxed highest-weight BP(u, v)-modules. As we noted in Theorem 3.11,
every simple untwisted relaxed highest-weight BP(u, v)-module is highest-weight. The
classification of simple untwisted relaxed highest-weight modules was therefore com-
pleted in Theorem 4.9. It remains to classify the simple twisted relaxed highest-weight
modules, specifically those whose top spaces are simple dense Zk-modules (those whose
top spaces are simple lowest-weight Zk-modules are conjugates of the simple twisted
highest-weight BP(u, v)-modules classified in Theorem 4.9).

A simple twisted relaxed highest-weight BPk-module M is a BPk-module if and
only if its top space Mtop = Zhutw

[

M
]

is annihilated by Zhutw
[

Jk
]

, where Jk denotes
the maximal ideal of BPk. An obvious consequence of Theorem 4.9 is that Zhutw

[

Jk
]

annihilates Zhutw
[

Htw
λ

]  H j,�, with j and � determined by λ as in (4.9), if and only
if λ ∈ �u,v. We extend this to the simple relaxed highest-weight modules Rtw[ j],�,ω of
Theorem 3.23 using an argument similar to that of [24, Prop. 4.2].

Proposition 4.16. The irreducible semisimple coherent family C
ss
�,ω of Zk-modules is a

Zhutw
[

BP(u, v)
]

-module if and only if one of its infinite-dimensional submodules is.

Proof. Obviously, C
ss
�,ω being a Zhutw

[

BP(u, v)
]

-module implies that every one of its
submodules are too, in particular the infinite-dimensional ones.

To prove the converse, we lean heavily on the general methodology developed in [24]
to classify relaxed highest-weight modules for affine vertex operator algebras, though
the argument here is easier because the relevant coherent families have one-dimensional
weight spaces. The first step is to consider the subalgebra Ak = Zhutw

[

Jk
]∩Ck, where

we recall that Ck = C[J, L ,�] (Lemma 3.20). The relevance is that a simple weight
Zhutw

[

BPk]-moduleM is aZhutw
[

BP(u, v)
]

-module if and only ifAk annihilates some
nonzero element of M. This fact is proved in exactly the same way that [24, Lem. 4.1]
is (see also [55]) and so we omit the details.

We next note that the action of Ak preserves each of the one-dimensional weight
spaces of the irreducible semisimple coherent family C

ss
�,ω and that this action is poly-

nomial: for each a ∈ Ak ⊂ C[J, L ,�], there is a polynomial pa in three variables such
that a acts on the weight space C

ss
�,ω( j,�, ω) as multiplication by pa( j,�, ω). Since�

and ω are fixed by the choice of coherent family, we may regard pa as a single-variable
polynomial.

If we now assume that one of the infinite-dimensional submodules of C
ss
�,ω is a

Zhutw
[

BP(u, v)
]

-module, then it is annihilated by Zhutw
[

Jk
]

and thus by Ak. Thus, for
every a ∈ Ak, we have pa( j,�, ω) = 0 for infinitely many distinct values of j , whence
pa(−,�, ω) must be the zero polynomial. But, then a annihilates all of C

ss
�,ω, whence

C
ss
�,ω is a Zhutw

[

BP(u, v)
]

-module. ��
Note that the top space of every (simple) Rtw[ j],�,ω embeds into some irreducible

semisimple coherent family and that every such family has an infinite-dimensional
highest-weight submodule H j ′,�, by Proposition 3.25. From Theorem 4.9, we have
classified all the simple highest-weightBP(u, v)-modules in terms of surviving weights.
Proposition 4.16 thus determines the irreducible semisimple coherent families that are
Zhutw

[

BP(u, v)
]

-modules and in this way we find all the Rtw[ j],�,ω that are simple
BP(u, v)-modules. Algorithmically, this classification proceeds as follows.

Let �u,v denote the set of (w = 1) admissible ̂sl3-weights λ of level k with λF
0 �= 0,

so that λ ∈ �u,v (Lemma 4.6), and λF
1 �= 0, so thatHtw

λ has an infinite-dimensional top
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space (Proposition 4.11). Then, �u,v parametrises the isomorphism classes of the simple
highest-weight BP(u, v)-modules with infinite-dimensional top spaces.

• For each λ ∈ �u,v, compute j and � using (4.9), then substitute into (3.19) to
compute ω:

ω = ω+
j,� = − 2

27
(λ1 − λ2 + k + 3)(2λ1 + λ2 − k)(λ1 + 2λ2 − 2k − 3). (4.16)

This gives the eigenvalues of J , L and � on the highest-weight vector of (Htw
λ )top.

• Then, the Rtw
[ j ′],�,ω

are, for all [ j ′] ∈ C/Z satisfying ω+
i,� �= ω for every i ∈ [ j ′],

simple relaxed highest-weight BP(u, v)-modules (by Theorem 3.23 and Proposition
4.16) and all such modules are obtained, up to isomorphism, in this way.

As with the highest-weight BP(u, v)-modules classified in Sect. 4.2, it is convenient
to let Rtw[ j],λ = Rtw[ j],�,ω, where � and ω are given in terms of λ by (4.9) and (4.16),
respectively.

We may now summarise this classification as follows.

Theorem 4.17. Let k be as in Assumption 1 and let j be such that Rtw[ j],λ is simple. Then,

Rtw[ j],λ is a (twisted) BP(u, v)-module if and only if λ ∈ �u,v.

In fact, we shall see that a complete classification does not require considering every
possible weight λ ∈ �u,v. First however, we recall from Corollary 4.12 that there are no
highest-weight BP(u, v)-modules with infinite-dimensional top spaces, hence �u,v =
∅, when v = 2.

Corollary 4.18. Let k be as in Assumption 1 with v = 2. Then, every simple (twisted)
relaxed highest-weight BP(u, v)-module is highest-weight.

Again, this is consistent with the fact [1] thatBP(u, 2) is rational for every u ∈ 2Z�0+3.
It is therefore convenient to slightly refine Assumption 1 as follows.

Assumption 2. In what follows, we shall restrict to fractional levels k = −3 + u
v with

u, v � 3.

The levels of Assumption 2 are also known as nondegenerate admissible levels in the
literature. We shall understand that Assumption 2 is in force for the rest of this section.

Given an irreducible semisimple coherent familyC
ss
�,ω ofZhutw

[

BP(u, v)
]

-modules,
we ask how many inequivalent infinite-dimensional highest-weight submodules it pos-
sesses. By Proposition 3.21, the direct summands R[ j],�,ω are not simple for at least
one, and at most three, [ j] ∈ C/Z and each nonsimple summand has precisely one
infinite-dimensional highest-weight submodule. The answer to our question is therefore
either one, two or three. In fact, for k as in Assumption 2, the answer is always three.

Lemma 4.19. If k is as in Assumption 2, then each irreducible semisimple coherent fam-
ily C

ss
�,ω of Zhutw

[

BP(u, v)
]

-modules has precisely three infinite-dimensional highest-
weight submodules. The map �u,v → C

2 given by λ �→ (�,ω) is thus 3-to-1. Moreover,
the highest weights λ = λI − u

vλF of these three submodules are related by the following
Z3-action:

· · · �−→ [λ0, λ1, λ2] �−→ [λ2 − u
v , λ0, λ1 + u

v ] �−→ [λ1, λ2 − u
v , λ0 + u

v ] �−→ · · · ,

· · · �−→ [λI
0, λ

I
1, λ

I
2] �−→ [λI

2, λ
I
0, λ

I
1] �−→ [λI

1, λ
I
2, λ

I
0] �−→ · · · ,

· · · �−→ [λF
0 , λF

1 , λF
2 ] �−→ [λF

2 + 1, λF
0 , λF

1 − 1] �−→ [λF
1 , λF

2 + 1, λF
0 − 1] �−→ · · · .

(4.17)
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Proof. It is easy to see from (4.17) that if λ ∈ �u,v, then so do its images under the
Z3-action. The three highest-weight modules corresponding to the Z3-orbit are thus
BP(u, v)-modules with infinite-dimensional top spaces if any is. Moreover, substituting
λ1 �→ λ0 = k − λ1 − λ2 and λ2 �→ λ1 + k + 3 into (4.9) and (4.16) shows that � and
ω are invariant under this Z3-action. The three highest-weight modules therefore arise
as submodules of the same irreducible semisimple coherent family. These modules are
mutually inequivalent because their highest weights can only coincide if λI

0 = λI
1 =

λI
2 = u−3

3 and λF
0 = λF

1 = λF
2 + 1 = v

3 . But, this requires both u and v to be divisible
by 3. ��

From Corollary 4.12, we now have a precise count of the number of irreducible
semisimple coherent families of Zhutw

[

BP(u, v)
]

-modules. Each direct summand of
such a family is the top space of a simple twisted relaxed highest-weight BP(u, v)-
module, by Theorem 3.13. With Equation (2.9), Lemma 3.20, and Proposition 4.16, we
have the following theorem.

Theorem 4.20. Let k be as in Assumption 2. Then:

• There are 1
3 |�u,v| = 1

12 (u−1)(u−2)(v−1)(v−2) irreducible semisimple coherent

families of Zhutw
[

BP(u, v)
]

-modules C
ss
�,ω, up to isomorphism.

• The families of twisted relaxed highest-weight BP(u, v)-modules Rtw[ j],λ = Rtw[ j],�,ω

are in 1-to-1 correspondence with �u,v/Z3, where Z3 acts freely as in (4.17).
• For each λ ∈ �u,v, the twisted relaxed highest-weight module Rtw[ j],λ is a simple
BP(u, v)-module for all cosets [ j] ∈ C/Z except three, namely the three distinct
cosets that contain a root i of the polynomial ω+

i,� − ω.
• The conjugate of the simple twisted relaxed highest-weightBP(u, v)-moduleRtw[ j],�,ω

is γ (Rtw[ j],�,ω)  Rtw[− j],�,−ω.

Note that if (�,ω) corresponds to a coherent family of Zhutw
[

BP(u, v)
]

-modules,
then the conjugation functor requires that so must (�,−ω). In fact, it is easy to check
that � is invariant and ω is antiinvariant under the Z2-action [λ0, λ1, λ2] ↔ [λ2 −
u
v , λ1, λ0 + u

v ], that is
[λI

0, λ
I
1, λ

I
2] ←→ [λI

2, λ
I
1, λ

I
0], [λF

0 , λF
1 , λF

2 ] ←→ [λF
2 + 1, λI

1, λ
I
0 − 1], (4.18)

which obviously preserves belonging to �u,v. With (4.17), this defines an action of
W = S3 on �u,v. The orbits clearly have length 6 unless ω = 0, in which case Lemma
4.19 forces them to have length 3. It is easy to check that this is consistent with the
explicit factorisation of ω given in (4.16).

We remark that the spectral flow images σ�(Rtw[ j],λ), � �= 0, of these simple twisted
relaxed highest-weight BP(u, v)-modules are likewise simple BP(u, v)-modules, but
they are not relaxed highest-weight because their conformal weights are not bounded
below.

4.4. Nonsimple relaxed highest-weight BP(u, v)-modules. In Sect. 3.6, we introduced
three classes of irreducible coherent families of Zk-modules. The first, the semisimple
class, was the key ingredient in the classification arguments of the previous section. Here,
we will analyse the other two classes in order to demonstrate the existence of certain
nonsemisimple twisted relaxed highest-weight BP(u, v)-modules, assuming that k is as
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in Assumption 2. We will also describe the structure of these nonsemisimple modules
in terms of short exact sequences.

Consider therefore the irreducible nonsemisimple coherent familyC
±
�,ω ofZk-modules

on which G± acts injectively. Recall that its simple direct summands are the R[ j],�,ω,
for all but (up to) three [ j] ∈ C/Z, and that its nonsimple direct summands are denoted

by R
±
[ j],�,ω. We begin by determining the structure of these nonsimple Zk-modules in

the case relevant to studying BP(u, v)-modules.

Proposition 4.21. Let λ ∈ �u,v and let j , � and ω be defined by (4.9) and (4.16).

Then, the nonsimple Zk-module R
±
[ j],�,ω has exactly two composition factors, H j,�

and γ (H− j−1,�), both of which are Zhutw
[

BP(u, v)
]

-modules. Moreover, we have the
following nonsplit short exact sequences:

0 −→ γ (H− j−1,�) −→ R
+
[ j],�,ω −→ H j,� −→ 0,

0 −→ H j,� −→ R
−
[ j],�,ω −→ γ (H− j−1,�) −→ 0. (4.19)

Proof. We only consider R
+
[ j],�,ω as the argument for R

−
[ j],�,ω is identical. First, note

that H j,� is an infinite-dimensional Zhutw
[

BP(u, v)
]

-module, by Theorem 4.9. The

irreducible semisimple coherent family C
ss
�,ω is therefore a Zhutw

[

BP(u, v)
]

-module

too, by Proposition 4.16, hence so is the lowest-weightmodule γ (H− j−1,�) ⊂ R
ss
[ j],�,ω.

AsR
ss
[ j],�,ω is the semisimplification ofR

+
[ j],�,ω, they have the same composition factors.

To demonstrate that there are no more factors beyond the two already found, it suffices
to show that H− j−1,� is infinite-dimensional.

Since the conjugate ofH− j−1,� is a Zhutw
[

BP(u, v)
]

-module,H− j−1,� must cor-
respond to some μ ∈ �u,v, by Theorem 4.9. Proceeding as in the proof of Lemma 4.6,
we find that the unique solution is μ = [λ0, λ2 − u

v , λ1 + u
v ], hence μI = [λI

0, λ
I
2, λ

I
1]

andμF = [λF
0 , λF

2 +1, λF
1 −1]. BecauseμF

1 = λF
2 +1 �= 0, it follows thatμ ∈ �u,v and

soH− j−1,� is infinite-dimensional, as desired. This establishes the first exact sequence

in (4.19). It is clearly nonsplit because G+ acts injectively on R
+
[ j],�,ω. ��

At this point, it is not clear if the R
±
[ j],�,ω corresponding to λ ∈ �u,v are

Zhutw
[

BP(u, v)
]

-modules, even though their composition factors are. We settle this
using a simplified version of the argument of [24, Thm. 5.3].

Proposition 4.22. Let λ ∈ �u,v and let j , � and ω be defined by (4.9) and (4.16). Then,

the nonsimple Zk-module R
±
[ j],�,ω is a Zhutw

[

BP(u, v)
]

-module.

Proof. Again, we shall only detail the argument for R
+
[ j],�,ω. Recall that J

k denotes

the maximal ideal of BPk and so Zhutw
[

Jk
] · H j,� = 0, by virtue of H j,� being a

Zhutw
[

BP(u, v)
]

-module. From the first exact sequence in (4.19), we conclude that

Zhutw
[

Jk
] · R+

[ j],�,ω ⊆ γ (H− j−1,�).
As Zk is noetherian (this is an easy generalisation of [37, Cor. 1.3]), so is its quotient

Zhutw
[

BPk] (Proposition 3.15). The idealZhutw
[

Jk
] ⊂ Zhutw

[

BPk] is therefore gener-
ated by a finite number of elements a1, . . . , an which we may, without loss of generality,
choose to be eigenvectors of J . Let ji denote the J -eigenvalue of ai , i = 1, . . . , n.
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Choose j ′ ∈ [ j] such that j ′ � j −max{ j1, . . . , jn}. Then, ai takes the J -eigenspace
ofR

+
[ j],�,ω of eigenvalue j ′ into the J -eigenspace of γ (H− j−1,�) of eigenvalue j ′+ai �

j . But, the eigenvalues of J acting on γ (H− j−1,�) are bounded below by j + 1, hence

ai annihilates the J -eigenspace of R
+
[ j],�,ω of eigenvalue j ′, for each i . It follows that

Zhutw
[

Jk
]

annihilates this eigenspace. But, this eigenspace generates R
+
[ j],�,ω, hence

Zhutw
[

Jk
]

(being an ideal) annihilates R
+
[ j],�,ω. ��

By Zhu-induction (Theorem 3.13), one may construct from each Zhutw
[

BP(u, v)
]

-

module R
±
[ j],�,ω a twisted BP(u, v)-module whose twisted Zhu image (its top space)

is R
±
[ j],�,ω. Consider the submodule of this induced module obtained by summing all

the submodules whose intersection with the top space R
±
[ j],�,ω is zero. Quotienting

by this submodule results in a twisted BP(u, v)-module, which we shall denote by

R
tw,±
[ j],λ = R

tw,±
[ j],�,ω, that hasR

±
[ j],�,ω as its top space and has the property that its nonzero

submodules intersect this top space nontrivially. In a sense, Rtw,±
[ j],�,ω is the smallest

BP(u, v)-module whose top space is R
±
[ j],�,ω.

The Rtw,±
[ j],λ are clearly nonsemisimple, because their top spaces are. This proves the

following result.

Theorem 4.23. When k is as in Assumption 2, the simple vertex operator algebra
BP(u, v) admits nonsemisimple modules. In physical language, the corresponding min-
imal model conformal field theory is logarithmic.

Aswe havementioned before, theBershadsky–Polyakovminimalmodels corresponding
to BP(u, 2), with u ∈ 2Z�0 + 3, were shown to be rational in [1].

Our final task is then to determine the structure of these nonsemisimple BP(u, v)-
modules. For this, it is convenient to introduce new modules Wtw,±

[ j],λ = W
tw,±
[ j],�,ω that

are obtained by treating R
±
[ j],�,ω as a module over the twisted mode algebra Utw

0 of

(3.1), letting Utw
> act as 0, and then inducing to a Utw-module. It follows that Wtw,±

[ j],λ is

a “relaxed Verma” BPk-module whose top space is R
±
[ j],�,ω. In a sense, it is the largest

BPk-module with this top space.
As such, we may consider the sum N

tw,±
[ j],λ of all the submodules of Wtw,±

[ j],λ whose

intersection with the top spaceR
±
[ j],�,ω is zero. Because this top space is nonsemisimple,

N
tw,±
[ j],λ is a proper submodule of the maximal submoduleMtw,±

[ j],λ ofWtw,±
[ j],λ. Its utility lies

in the fact that it provides an alternative construction of the BP(u, v)-module Rtw,±
[ j],λ:

R
tw,±
[ j],λ  W

tw,±
[ j],λ

/

N
tw,±
[ j],λ. (4.20)

This exploits the fact that Rtw,±
[ j],λ is, in a sense, the smallest BPk-module with top space

R
±
[ j],�,ω.
We now proceed in an analogous fashion to [19, Sec. 4].
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Theorem 4.24. Let k be as in Assumption 2 and let λ ∈ �u,v define j , � and ω via
(4.9) and (4.16). We then have the following nonsplit short exact sequences of BP(u, v)-
modules:

0 −→ γ (Htw− j−1,�) −→ R
tw,+
[ j],�,ω −→ Htw

j,� −→ 0,

0 −→ Htw
j,� −→ R

tw,−
[ j],�,ω −→ γ (Htw− j−1,�) −→ 0. (4.21)

Proof. Once again, we only give the argument for Rtw,+
[ j],�,ω. First, note that the twisted

Verma module Vtw
j,� is clearly isomorphic to the quotient Wtw,+

[ j],�,ω

/

γ (Vtw− j−1,�), by

(4.19) and the exactness of induction. Hence, Htw
j,� is also a quotient and (4.20) gives

R
tw,+
[ j],�,ω

M
tw,+
[ j],�,ω

/

N
tw,+
[ j],�,ω

 W
tw,+
[ j],�,ω

M
tw,+
[ j],�,ω

 Htw
j,�, (4.22)

since relaxed highest-weight modules have unique irreducible quotients. Thus,Htw
j,� is

a quotient of Rtw,+
[ j],�,ω.

Next, note that the (unique) maximal submodule of γ (Vtw− j−1,�) is γ (Vtw− j−1,�) ∩
N

tw,+
[ j],�,ω, because the only submodule of γ (Vtw− j−1,�) intersecting its top space nontriv-

ially is γ (Vtw− j−1,�) itself. We therefore have

γ (Htw− j−1,�) = γ (Vtw− j−1,�)

γ (Vtw− j−1,�) ∩ N
tw,+
[ j],�,ω

 γ (Vtw− j−1,�) +N
tw,+
[ j],�,ω

N
tw,+
[ j],�,ω

, (4.23)

which is clearly a submodule of Wtw,+
[ j],�,ω

/

N
tw,+
[ j],�,ω  R

tw,+
[ j],�,ω. Thus, γ (Htw− j−1,�)

embeds into Rtw,+
[ j],�,ω.

To demonstrate exactness of the first sequence of (4.21), we note that

R
tw,+
[ j],�,ω

γ (Htw− j−1,�)
 W

tw,+
[ j],�,ω

γ (Vtw− j−1,�) +N
tw,+
[ j],�,ω

 Vtw
j,�

(

γ (Vtw− j−1,�) +N
tw,+
[ j],�,ω

)/

γ (Htw− j−1,�)

(4.24)
using (4.20) and (4.23). This shows that Rtw,+

[ j],�,ω

/

γ (Htw− j−1,�) is a twisted highest-
weight BP(u, v)-module. By Theorem 4.10, it is simple and therefore isomorphic to
Htw

j,�, by (4.22). This completes the proof. ��

5. Examples

We conclude by illustrating the above classification results with some specific examples
of Bershadsky–Polyakov minimal models. The examples with v = 2 extend the results
of [1] whilst the (u, v) = (3, 4) and (4, 3) examples extend those of [2].

Example: BP(3, 2). For k = − 3
2 , the central charge of the minimal model is c = 0.

Since λI ∈ P0
� = {[0, 0, 0]} and λF ∈ P1

� is constrained by λF
0 � 0 so that λF =

[1, 0, 0], we only have λ = [0, 0, 0]− 3
2 [1, 0, 0] = [k, 0, 0]. There is therefore a unique

simple untwisted highest-weight module H−3ω0/2 = H0,0 and a unique simple twisted
highest-weight moduleHtw−3ω0/2

= Htw
0,0 (up to isomorphism). This is clearly the trivial

minimal model.
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Fig. 2. The charges and conformal weights ( j, �) of the untwisted (left) and twisted (right) simple highest-
weightBP(5, 2)-modules, arranged by theDynkin labels of the integral partsλI of the corresponding surviving
weights λ. The subscript on the twisted labels gives the dimension of the top space. Conjugation γ is indicated
by reflection about the dashed line and spectral flow σ by 120◦ anticlockwise rotation about each triangle’s
centre

Example: BP(5, 2). For k = − 1
2 , the central charge is instead c = 2

5 and we have
λI ∈ P2

� and λF = [1, 0, 0]. There are thus |P2
�| = 6 simple untwisted highest-weight

modules and so 6 simple twisted highest-weight modules, all with finite-dimensional top
spaces. We illustrate these modules in Figure2, arranging them according to λI and list-
ing the charges and conformal weights of their highest-weight vectors. We also indicate
the effect of the conjugation and spectral flow automorphisms in this arrangement.

Example: BP(9, 2). We discuss one further minimal model with v = 2, that with k = 3
2

and c = − 22
3 . This time, there are |P6

�| = 28 simple untwisted highest-weight modules
and, of course, each has a single twisted cousin. As always when v = 2, the top spaces
are all finite-dimensional and the fractional part λF of the corresponding ̂sl3-weights is
[1, 0, 0].

An interesting feature of this minimal model is that the (integer) spectral flows of the
vacuum module H0,0 correspond to λI = [0, 6, 0] and [0, 0, 6], hence ( j,�) = (2, 1)
and (−2, 1). Recalling that spectral flows of the vacuum module are always simple
currents [56], it follows that BP(9, 2) admits an order-3 simple current extension A.
Moreover, if E and F denote the highest-weight vectors of the simple current mod-
ules H2,1 and H−2,1, respectively, then it is easy to check that E , F and J define a
(nonconformal) embedding of the sl2 minimal model A1(3, 1) = L1(sl2) into A.

Defining G
+ = G−

−1/2E and G
− = G+−1/2F , we see that A has four linearly

independent fields of conformal weight 32 and that they decompose into two sl2-doublets

(G−, G
+
) and (G

−
, G+). A may thus be regarded as some sort of bosonic analogue of

the N = 4 superconformal vertex operator superalgebra, see Figure3. However, a major
difference is that the elements E , J , F , G± G

±
and L do not strongly generate A. For

example, the singular part of the operator product expansion of G+(z) and G
−
(w) is

a simple pole whose coefficient is the ( j,�) = (0, 2) field corresponding to T − =
(G+−1/2)

2F .
It is nevertheless easy to explore the representation theory of A. The set of 28 (iso-

morphism classes of) simple untwisted highest-weight BP(9, 2)-modules decomposes
into 10 spectral flow orbits: 9 of length 3 and one fixed point. It is easy to check from the
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Fig. 3. The states with conformal weight � � 2 of the “N = 4-like” vertex operator algebra A = H−2,1 ⊕
H0,0 ⊕ H2,1 that extends BP(9, 2). Here, T + = G−

−1/2G
+
and T − = G+−1/2G

−

charges and conformalweights that only four of these orbits define untwistedA-modules.
There are therefore precisely 4 simple untwisted A-modules:

A = H−2,1 ⊕ H0,0 ⊕ H2,1, H−1,1/6 ⊕ H0,−1/3 ⊕ H1,1/6,

H−1,−1/6 ⊕ H0,1/3 ⊕ H1,−1/6 and H0,−2/9. (5.1)

One can also classify the simple twisted A-modules, but now there are several more
twisted sectors to consider.

Example: BP(3, 4). Consider next the Bershadsky–Polyakov minimal model with k =
− 9

4 and c = − 23
2 . This model arises as the p = 4 member of a series Bp of interesting

vertex operator algebras constructed in [57]. As λI ∈ P0
� and λF ∈ P3

� satisfies λF
0 � 1,

there are |P2
�| = 6 simple untwisted highest-weight modules and 6 simple twisted

highest-weight modules, 3 of which have finite-dimensional top spaces. We illustrate
these in Figure4 as we did for BP(5, 2), but arranging the data according to λF instead
of λI . One can check that this recovers the highest-weight classification of [2].

In this illustration, the spectral flow functor σ is again represented by a 120◦ anti-
clockwise rotation, but does not preserve being highest-weight (because v �= 2). Indeed,
the three spectral flow orbits through the simple highest-weight BP(3, 4)-modules are

· · · σ 1/2�−→ H0,−1/2
σ 1/2�−→ Htw−1/4,−9/16

σ 1/2�−→ · · · ,

· · · σ 1/2�−→ H1/4,−3/8
σ 1/2�−→ Htw

0,−5/16
σ 1/2�−→ H−1/4,−3/8

σ 1/2�−→ Htw−1/2,−9/16
σ 1/2�−→ · · · ,

· · · σ 1/2�−→ H1/2,−1/4
σ 1/2�−→ Htw

1/4,−1/16
σ 1/2�−→ H0,0

σ 1/2�−→ Htw−1/4,−1/16
σ 1/2�−→ H−1/2,−1/4

σ 1/2�−→ Htw−3/4,−9/16
σ 1/2�−→ · · · ,

(5.2)
where the · · · indicate simple BP(3, 4)-modules that are not highest-weight.

The three simple twistedhighest-weightmoduleswithλF
1 > 0have infinite-dimensional

top spaces. They also share the same conformal weight � = − 9
16 and ω-parameter ω =

ω+
j,� = 0, the latter computed as in (4.16). It therefore follows that BP(3, 4) admits one

family of simple twisted relaxed highest-weight modulesRtw[ j],−9/16,0, j �= − 1
4 ,− 1

2 ,− 3
4

(mod 1), as per Theorem 4.20. As a consistency check, substituting k = − 9
4 and

� = − 9
16 into (3.19) indeed gives

ω+
j,−9/16 − ω = (2 j + 1)( j2 + j + 3

16 ) − 0 = 2( j + 1
4 )( j + 1

2 )( j + 3
4 ), (5.3)
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Fig. 4. The charges and conformal weights ( j, �) of the untwisted (left) and twisted (right) simple highest-
weight BP(3, 4)-modules, arranged by the Dynkin labels of the fractional parts λF of the corresponding
surviving weights λ. The subscript on the twisted labels gives the dimension of the top space. Conjugation γ

is indicated by reflection about the dashed line, restricted to the modules with finite-dimensional top spaces
(the conjugate of a highest-weight module with an infinite-dimensional top space is not highest-weight)

as expected.
This family was first constructed in [2, Thm. 7.2], though four exceptional values of

j (mod 1)were given there instead of three. Here, we have also proven that there are no
other families.We also note that Theorem4.24 proves the existence of six nonsemisimple
twisted relaxed highest-weightBP(3, 4)-modules, each characterised by a nonsplit short
exact sequence:

0 −→ γ (Htw−3/4,−9/16) −→ R
tw,+
[−1/4],−9/16,0 −→ Htw−1/4,−9/16 −→ 0,

0 −→ γ (Htw−1/2,−9/16) −→ R
tw,+
[−1/2],−9/16,0 −→ Htw−1/2,−9/16 −→ 0,

0 −→ γ (Htw−1/4,−9/16) −→ R
tw,+
[−3/4],−9/16,0 −→ Htw−3/4,−9/16 −→ 0, (5.4a)

0 −→ Htw−1/4,−9/16 −→ R
tw,−
[−1/4],−9/16,0 −→ γ (Htw−3/4,−9/16) −→ 0,

0 −→ Htw−1/2,−9/16 −→ R
tw,−
[−1/2],−9/16,0 −→ γ (Htw−1/2,−9/16) −→ 0,

0 −→ Htw−3/4,−9/16 −→ R
tw,−
[−3/4],−9/16,0 −→ γ (Htw−1/4,−9/16) −→ 0. (5.4b)

There are other nonsemisimpleBP(3, 4)-modules. In particular, there exist staggered
(logarithmic) modules on which J0 acts semisimply but L0 has Jordan blocks of rank
2. This follows from the well known fact [58,59] that staggered modules exist for the
triplet vertex operator algebra W(1, 4) of central charge − 25

2 . The connection is that
the coset of BP(3, 4) = B4 by the Heisenberg subalgebra generated by J is the singlet
algebra I(1, 4) [57] and that the latter has W(1, 4) as an (infinite-order) simple current
extension [60]. We shall not study these staggered BP(3, 4)-modules here, but intend to
investigate them more generally in a sequel.

Example: BP(4, 3). The minimal model with k = − 5
3 and c = −1 was also studied

in [2]. This time, we have λI ∈ P1
� and λF ∈ P2

�, hence there are |P1
�||P1

�| = 9
simple untwisted highest-weight modules. Moreover, 6 of the simple twisted highest-
weight modules have finite-dimensional top spaces whilst the top spaces of the other 3
are infinite-dimensional. We arrange the highest-weight data in an sl3-covariant fashion
in Figure5, making the scale for λI significantly smaller than that for λF to improve
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Fig. 5. The charges and conformal weights ( j,�) of the untwisted (left) and twisted (right) simple highest-
weight BP(4, 3)-modules, arranged by the Dynkin labels of the integral (small-scale) and fractional (large-
scale) parts λF of the corresponding surviving weights λ. The subscript on the twisted labels gives the
dimension of the top space

clarity. It follows that there is again only one family of generically simple relaxed highest-
weight BP(4, 3)-modules. This family must therefore be closed under conjugation and
so ω = 0. This can of course be checked explicitly using (4.16).

Along with the simple twisted relaxed highest-weight BP(4, 3)-modulesRtw[ j],−1/8,0,

j �= − 1
6 ,− 1

2 ,− 5
6 (mod 1), we also deduce the existence of six nonsemisimple twisted

relaxed highest-weight BP(4, 3)-modules, characterised by the following nonsplit short
exact sequences:

0 −→ γ (Htw−5/6,−1/8) −→ R
tw,+
[−1/6],−1/8,0 −→ Htw−1/6,−1/8 −→ 0,

0 −→ γ (Htw−1/2,−1/8) −→ R
tw,+
[−1/2],−1/8,0 −→ Htw−1/2,−1/8 −→ 0,

0 −→ γ (Htw−1/6,−1/8) −→ R
tw,+
[−5/6],−1/8,0 −→ Htw−5/6,−1/8 −→ 0, (5.5a)

0 −→ Htw−1/6,−1/8 −→ R
tw,−
[−1/6],−1/8,0 −→ γ (Htw−5/6,−1/8) −→ 0,

0 −→ Htw−1/2,−1/8 −→ R
tw,−
[−1/2],−1/8,0 −→ γ (Htw−1/2,−1/8) −→ 0,

0 −→ Htw−5/6,−1/8 −→ R
tw,−
[−5/6],−1/8,0 −→ γ (Htw−1/6,−1/8) −→ 0. (5.5b)

As with the case (u, v) = (3, 4) discussed above, there are other nonsemisimple
BP(4, 3)-modules, in particular there are staggered (logarithmic) modules (as was al-
ready noted in [2]). We review the argument briefly for completeness.

First, note [2, Sec. 5.2] that the Bershadsky–Polyakovminimal model vertex operator
algebraBP(4, 3) embeds in the symplectic bosons vertex operator algebraB (also known
as the bosonic ghost system, βγ ghosts and the Weyl vertex algebra) with c = −1. We
recall that B is strongly generated by β and γ , both of conformal weight 1

2 , subject to
the operator product expansions

β(z)β(w) ∼ 0 ∼ γ (z)γ (w) and β(z)γ (w) ∼ −1

z − w
. (5.6)



Classifying Relaxed Highest-Weight Modules 895

Fig. 6. The charges and conformal weights ( j, �) of the untwisted (left) and twisted (right) simple highest-
weight BP(5, 3)-modules, arranged by the Dynkin labels of the integral (small-scale) and fractional (large-
scale) parts λF of the corresponding surviving weights λ. The subscript on the twisted labels gives the
dimension of the top space

An embedding BP(4, 3) ↪→ B is then given by

J �−→ 1

3
:βγ :, G+ �−→ 1

3
√
3
:βββ:, G− �−→ − 1

3
√
3
:βββ:, L �−→ 1

2
(:∂βγ : − :∂γβ:).

(5.7)

This suggests, and it is easy to check [2, Prop. 5.9], that BP(4, 3) is (isomorphic to) the
Z3-orbifold of B corresponding to the automorphism e2π iJ0 . As B is known [29,61,62]
to admit a family of staggered modules, each member related to the others by spectral
flow, so does BP(4, 3). In fact, BP(4, 3) admits three such families.

Example: BP(5, 3). We conclude with the Bershadsky–Polyakov minimal model with
k = − 4

3 and c = 3
5 . With λI ∈ P2

� and λF ∈ P2
�, there are |P2

�||P1
�| = 18 simple

untwisted highest-weight modules and the twisted highest-weight modules divide into
12 with finite-dimensional top spaces and 6 with infinite-dimensional top spaces. We
illustrate the highest-weight data in Figure6. There are thus two families of generically
simple twisted relaxed highest-weight modules, one with � = 1

8 and one with � =
− 3

40 . As these conformal weights differ, each family must be closed under conjugation
and so we have ω = 0 for both (again). We therefore have simple twisted relaxed
highest-weightBP(5, 3)-modulesRtw[ j],1/8,0, j �= − 7

6 ,− 1
2 ,

1
6 (mod 1), andRtw[ j],−3/40,0,

j �= − 5
6 ,− 1

2 ,− 1
6 (mod 1), along with the 12 nonsemisimple versions guaranteed by

Theorem 4.24.
An interesting feature of this minimal model is the existence of modules H±2/3,1

corresponding to λI = [0, 2, 0], [0, 0, 2] and λF = [2, 0, 0]. These are not spectral
flows of the vacuummodule, but we nevertheless conjecture that they are simple currents
generating an order-3 simple current extension C of BP(5, 3). As with BP(9, 2) (and
assuming this conjecture), the highest-weight vectors E and F of H2/3,1 and H−2/3,1,
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Fig. 7. The states with conformal weight � � 2 of the extended algebra C = H−2/3,1 ⊕ H0,0 ⊕ H2/3,1 of

BP(5, 3). Here, G
+ = G+−1/2F and G

− = G−
−1/2E , whilst :E E : and :F F : are proportional to (G+−1/2)

2F

and (G−
−1/2)

2E , respectively

respectively, generate a copy of an sl2 minimal model, this time A1(5, 2) = L1/2(sl2).
But unlike the situation for BP(9, 2), the embedding A1(5, 2) ↪→ C is conformal.

We recall from [16, Sec. 10], see also [63], that A1(5, 2) has a simple current whose
top space is the four-dimensional simple sl2-module with conformal weight 3

2 . We
therefore conjecture that this order-2 simple current extension of A1(5, 2) is isomorphic
to C, illustrating the low-conformal weight states of C in Figure7 for convenience (and
noting that the A1(5, 2) Cartan element H is identified with 3J ). This extended vertex
operator algebra was conjectured to be the minimal quantum hamiltonian reduction of
L−3/2(g2) in [16, Sec. 10]. This was settled affirmatively in [40, Thm. 6.8].

The conjectured embeddingsBP(5, 3) ↪→ C ←↩ A1(5, 2)may be tested through rep-
resentation theory. Indeed, A1(5, 2) has two simple highest-weight modules with finite-
dimensional top spaces, in addition to the vacuumand simple currentmodule. Their direct
summay be identified with the simpleC-moduleH−1/3,3/10⊕H0,4/5⊕H1/3,3/10. Like-
wise, there are four simple highest-weight A1(5, 2)-modules with infinite-dimensional
top spaces and they combine to give two simple C-modules H−7/6,1/8 ⊕ H−1/2,1/8 ⊕
H1/6,1/8 andH−5/6,−3/40⊕H−1/2,−3/40⊕H−1/6,−3/40. The story is predictably similar
for the relaxed highest-weight modules.

We finish by noting that BP(5, 3) also admits staggered (logarithmic) modules be-
cause A1(5, 2) does [18,58], see also [23]. In fact, we expect that staggered BP(u, v)-
modules exist for all v � 3 and hope to return to this in the future.
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Appendix A: Proof of Theorem 4.8

In this appendix, we adopt the notation of Sect. 4.1 and assume throughout that λ0 /∈ Z�0

so that H0(Lλ) �= 0 (and that the level k is as in Assumption 1).With these assumptions,
the aim is to prove the following assertion:

Ik · Lλ �= 0 ⇒ H0(Ik) · H0(Lλ) �= 0. (A.1)

H0(−) is a cohomological functor which involves tensoring with a ghost vertex operator
superalgebra whose vacuum element will be denoted by |0〉. With this, we shall prove
(A.1) by exhibiting elements χ ∈ Ik and v ∈ Lλ for which χ ⊗ |0〉 and v ⊗ |0〉 are
(degree-0) closed elements of the appropriate BRST complexes and the (clearly closed)
element χnv ⊗ |0〉 is not exact, for some n ∈ Z. Using brackets to denote cohomology
classes, [χnv ⊗ |0〉] then gives a nonzero element of H0(Ik) · H0(Lλ):

[χ ⊗ |0〉] · [v ⊗ |0〉] ≡ [χ ⊗ |0〉](z)[v ⊗ |0〉] = [χ(z)v ⊗ |0〉] �= 0. (A.2)

As noted at the end of Sect. 4.1, this amounts to a proof of Theorem 4.8. To prove (A.1)
however, we need to delve a little deeper into the details ofminimal quantum hamiltonian
reduction for Vk(sl3).

A.1. Minimal quantum hamiltonian reduction. Recall from [6] that theminimal quantum
hamiltonian reduction functor H0(−) computes the cohomology of the tensor product of
a given Vk(sl3)-module with certain ghost vertex operator superalgebras. Specifically,
we need a fermionic ghost system Fα for each positive root α ∈ �+ of sl3 and one
bosonic ghost system B corresponding to the two simple roots α1 and α2. Denoting the
fermionic ghosts by bα and cα , α ∈ �+, and the bosonic ghosts by β and γ , we take the
defining operator product expansions to be

bα(z)cα(w) ∼ 1

z − w
and β(z)γ (w) ∼ 1

z − w
, (A.3)

understanding that the remaining operator product expansions between ghost generating
fields are regular. The tensor product of these ghost vertex operator superalgebras will
be denoted by G = Fα1 ⊗ Fα2 ⊗ Fθ ⊗ B, for convenience.
We fix a basis of sl3 for the computations to follow. Let Ei j denote the 3×3 matrix with
1 in the (i, j)-th position and zeroes elsewhere. Then, we set

eθ = E13,
eα1 = E12, hα1 = E11 − E22, f α1 = E21,

eα2 = E23, hα2 = E22 − E33, f α2 = E32,
f θ = E31. (A.4)

Here, θ = α1 + α2 is the highest root of sl3 and we shall also set hθ = hα1 + hα2 =
E11 − E33.
To define H0(M) for a Vk(sl3)-module M, one first grades M ⊗ G by the fermionic
ghost number, that is by the total number of c-modes minus the total number of b-
modes. Equivalently, the ghost number is the eigenvalue of the zero mode of the field
∑

α∈�+
:bα(z)cα(z):. Next, one introduces [5,6] the following fermionic field of ghost

number 1:

d(z) = (

eθ (z)+1
)

cθ (z)+
(

eα1(z)+β(z)
)

cα1(z)+
(

eα2(z)+γ (z)
)

cα2(z)+:bθ (z)cα2(z)cα1(z):.
(A.5)
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Table 1. The ghost numbers #, charges ˜j and conformal weights ˜� of the generating fields of the vertex
operator superalgebra Vk(sl3) ⊗ G

eθ eα1 eα2 hα1 hα2 f α1 f α2 f θ bα1 cα1 bα2 cα2 bθ cθ β γ

# 0 0 0 0 0 0 0 0 −1 1 −1 1 −1 1 0 0
˜j 0 1 −1 0 0 −1 1 0 1 −1 −1 1 0 0 1 −1
˜� 0 1

2
1
2 1 1 3

2
3
2 2 1

2
1
2

1
2

1
2 0 1 1

2
1
2

A straightforward computation verifies that d(z)d(w) ∼ 0. We then form a differential
complex by requiring that d(z) is homogeneous of conformal weight 1 and equipping
M ⊗ G with the differential d = d0 (which obviously squares to 0).
With (A.5), this requirement on d(z) requires that the conformal weight of cθ is also
1, whilst that of eθ is 0. The latter may be achieved by adding 1

2∂hθ to the standard
Sugawara energy-momentum tensor T Sug. of Vk(sl3). When this is done, homogeneity
and (A.5) now fix the conformal weight ˜� of all the generating fields as in Table 1. The
energy-momentum tensor of Vk(sl3) ⊗ G is thus

˜L = T Sug. +
1

2
∂hθ +

∑

α∈�+

T Fα

+ TB,

where T Fαi = 1

2
:∂bαi cαi + ∂cαi bαi :,

T Fθ = :∂bθ cθ : and TB = 1

2
:∂γβ − ∂βγ :.

(A.6)

The central charge matches that of BPk, see (2.2):

8k
k + 3

− 6k + 1 + 1 − 2 − 1 = − (2k + 3)(3k + 1)

k + 3
. (A.7)

As thenotation suggests,˜L is closed and its image in cohomology (that is, in H0(Vk(sl3)⊗
G, d) = H0(Vk(sl3))  BPk) is L . Note that the “symmetric” deformation of adding
1
2∂hθ to T Sug. ensures this result. There are other deformations consistent with d being
a differential—they correspond to adding a multiple of ∂ J to L . Speaking of which, the
element

˜J = 1

3
(hα1 − hα2) + :bα1cα1 : − :bα2cα2 : − :βγ : (A.8)

is likewise closed and its image in cohomology is J [6]. We give the charge (˜J0-
eigenvalue) of the generating fields of Vk(sl3) ⊗ G in Table 1 for completeness. We
also note that

˜G+ = f α2 + :hα2β: − :bα1cθ : − :bα1cα1β: + 2:bα2cα2β: + :bθ cθ β: + :ββγ : + (k + 1)∂β

and ˜G− = f α1 − :hα1γ : + :bα2cθ : − 2:bα1cα1γ : + :bα2cα2γ : − :bθ cθ γ : + :γ γβ: − (k + 1)∂γ

(A.9)
are both closed. Their images in cohomology are G+ and G−, respectively [8].
We remark that deforming the energy-momentum tensor of Vk(sl3) means that we now
have two distinct mode conventions for affine fields. Our convention will be that mode
indices with respect to the deformed conformal weight will be denoted with parentheses.



Classifying Relaxed Highest-Weight Modules 899

Thus, for an affine generator a with deformed conformal weight ˜� as in Table 1, we
shall write

a(z) =
∑

n∈Z
anz−n−1 =

∑

n∈Z−˜�

a(n)z
−n−˜�. (A.10)

We shall not bother to so distinguish mode indices for ghost fields: their expansions will
always be taken with respect to the conformal weights in Table1.

A.2. The proof. We start with a well known fundamental result for the highest-weight
vector v of Lλ, recalling that we are assuming throughout that λ0 /∈ Z�0 and that k
satisfies Assumption 1. Let |0〉 denote the vacuum vector of G. By [9, Lem. 4.6.1 and
Prop. 4.7.1], we have the following lemma.

Lemma A.1. For all n ∈ Z�0, (eθ−1)
nv ⊗ |0〉 is closed and inexact. In particular,

[v ⊗ |0〉] �= 0.

We next consider the maximal ideal Ik of Vk(sl3).

Lemma A.2. Ik is generated by a single singular vector χ whose sl3-weight and con-
formal weight are (u − 2)θ and (u − 2)v, respectively. Moreover, χ ⊗ |0〉 is closed.

Proof. This follows easily from [38, Cor. 1], which says that the maximal submodule
of a Verma module whose highest weight is admissible is generated by singular vectors
of known weight. In our case, the highest weight is kω0 (which is admissible because
k is) and the only generating singular vector that is nonzero in the quotient Vk(sl3) of
this Verma module has weight w · (kω0), where w is the Weyl reflection corresponding
to the root −θ + vδ. Here, δ denotes the standard imaginary root of ̂sl3. This singular
vector is χ and its sl3- and conformal weights are now easily computed. The fact that
χ ⊗ |0〉 is closed follows from χ being a highest-weight vector. ��
In fact, χ ⊗ |0〉 is also inexact, though we will not need to a priori establish this fact for
what follows.
We remark that a nice conceptual proof of [38, Cor. 1] starts from the celebrated fact

that the submodule structure of a Verma module only depends on the corresponding
integral Weyl group [64]. This structure is therefore the same for all admissible highest-
weight ̂sl3-modules, irrespective of their level. In particular, this structure matches that
of a Verma module whose simple quotient is integrable, integrability being equivalent
to admissibility for simple highest-weight modules with v = 1. However, the fact that
the maximal submodule is generated by singular vectors is well known in the integrable
case, see [65] or [66].
Suppose now that χ(z)v = 0. Because χ generates Ik, it follows that Ik · v = 0.

Since v generates Lλ, as a Vk(sl3)-module, and Ik is a two-sided ideal of Vk(sl3), we
get Ik ·Lλ = 0. Thus, the hypothesis of (A.1), thatLλ is not an Lk(sl3)-module, requires
that χnv �= 0 for some n ∈ Z. As χ has sl3-weight (u − 2)θ , our knowledge of the
weights of Lλ lets us refine this requirement to χ−(u−2)−iv �= 0 for some i ∈ Z�0.
There is therefore a minimal N ∈ Z�0 such that χ−(u−2)−N v �= 0.
As Lλ is simple, there therefore exists a Poincaré–Birkhoff–Witt monomial U ∈

U(̂sl3) such that
Uχ−(u−2)−N v = v (A.11)

(rescaling χ if necessary). We choose an ordering for U so that

f α
n�0 < hα

n<0 < eα
n<0 < f α

n>0 < hα
n>0 < eα

n�0 (A.12)
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(obviously wemay omit the hα
0 and K ). This means, for example, that the f α

n with n � 0
are ordered to the left while the eα

n with n � 0 are ordered to the right. For n � 0, we
have eα

0χ = 0 and eα
n v = 0, hence

eα
n χ−(u−2)−N v = (eα

0χ)−(u−2)−N+nv = 0. (A.13)

We may therefore assume that U contains no eα
n -modes with n � 0. Similarly,

hα
n χ−(u−2)−N v = (u − 2)θ(hα)χ−(u−2)−(N−n)v = 0 (A.14)

for n > 0, by the minimality of N . Thus, we may assume that U contains no hα
n -modes

with n > 0 either. Finally, v is not in the image of any f α
n , with n � 0, hα

n , with n < 0,
or eα

n , with n < 0. All these modes may therefore also be excluded fromU . We conclude
that U may be taken to be a monomial in the modes f α

n with n > 0.
Given a partition ξ = [ξ1 � ξ2 � · · · ], let �(ξ) denote its length and |ξ | denote its

weight. We write f α
ξ = f α

ξ1
f α
ξ2

· · · . Then, there exist partitions ξ , π and ρ such that

U = f θ
ξ f α2

π f α1
ρ and so

f θ
ξ f α2

π f α1
ρ χ−(u−2)−N v = v. (A.15)

Moreover, considering sl3- and conformal weights gives

�(π) = �(ρ), �(ξ) + �(π) = u − 2 and |ξ | + |π | + |ρ| = u − 2 + N . (A.16)

Lemma A.3. Let F(z), F ∈ sl3, be an affine field and let U0 be a monomial in the
negative root vectors f α

0 of ̂sl3. Then, the modes of the field (U0χ)(w) satisfy

[Fm, (U0χ)n] = (F0U0χ)m+n, for all m, n ∈ Z. (A.17)

Proof. Observe that U0χ is annihilated by the Fm with m > 0. Consequently, the
assertion follows easily from the operator product expansion

F(z)(U0χ)(w) ∼ (F0U0χ)(w)

z − w
. (A.18)

��
We apply Lemma A.3 to the left-hand side of (A.15), noting that the f -modes all
annihilate v. The result is

f θ
ξ f α2

π f α1
ρ χ−(u−2)−N v = (( f θ

0 )�(ξ)( f α2
0 )�(π)( f α1

0 )�(ρ)χ)0v, (A.19)

using (A.16). This looks complicated, but it allows us to determine the partitions ξ , π
and ρ.

Lemma A.4. If any of the parts of ξ ,π orρ are greater than1, then f θ
ξ f α2

π f α1
ρ χ−(u−2)−N v

= 0.

Proof. Suppose that ξ has a part ξi > 1 (the argument is identical if π or ρ has a part
greater than 1). Then, we can form a new partition ξ ′ from ξ by subtracting 1 from ξi and
reordering parts if necessary. Note that �(ξ ′) = �(ξ) and |ξ ′| = |ξ | − 1. Then, Lemma
A.3 and N being minimal give

0 = f θ
ξ ′ f α2

π f α1
ρ χ−(u−2)−(N−1)v = (( f θ

0 )�(ξ
′)( f α2

0 )�(π)( f α1
0 )�(ρ)χ)−(u−2)+|ξ ′|+|π |+|ρ|−N+1v

= (( f θ
0 )�(ξ)( f α2

0 )�(π)( f α1
0 )�(ρ)χ)0v. (A.20)

But, this is the right-hand side of (A.19). ��
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Combining (A.15), which is manifestly nonzero, with Lemma A.4 now forces all parts
of ξ , π and ρ to be 1. As partition lengths and weights are now equal, the relations of
(A.16) are easily solved to give |ξ | = u − 2 − N and |π | = |ρ| = N . In particular,
(A.15) now becomes

( f θ
1 )u−2−N ( f α2

1 )N ( f α1
1 )N χ−(u−2)−N v = v. (A.21)

By rescaling χ again, if necessary, we arrive at following key result.

Proposition A.5. If N is the minimal integer such that χ−(u−2)−N v �= 0, then

( f α2
1 )N ( f α1

1 )N χ−(u−2)−N v = (eθ−1)
u−2−N v. (A.22)

The idea now is to use the fact that the right-hand side of (A.22) is inexact when tensored
with |0〉 (Lemma A.1) to prove that the same is true for χ−(u−2)−N v. For this, we need
to replace the action of f α2

1 and f α1
1 with elements that preserve exactness, for example

any closed elements.

Lemma A.6. For all i, j ∈ Z�0, we have

(

˜G+
(1/2)

)i (
˜G−

(1/2)

) j
(χ−(u−2)−N v ⊗ |0〉) = ( f α2

1 )i ( f α1
1 ) jχ−(u−2)−N v ⊗ |0〉. (A.23)

Proof. We start with (A.9), which gives

˜G−
(1/2) = f α1

(1/2) −
∑

m∈Z
hα1

(m)γ−m+1/2 + · · · = f α1
1 −

∑

m∈Z
hα1

m γ−m+1/2 + · · · , (A.24)

where the · · · stands for pure ghost terms. As these ghost terms annihilate |0〉, we have
˜G−

(1/2)

(

( f α1
1 ) jχ−(u−2)−N v ⊗ |0〉

)

= ( f α1
1 ) j+1χ−(u−2)−N v ⊗ |0〉

−
∞
∑

m=1

hα1
m ( f α1

1 ) jχ−(u−2)−N v ⊗ γ−m+1/2|0〉,

(A.25)

for any j ∈ Z�0. Now, m � 1 implies that hα2
m v = 0, hence that

hα1
m ( f α1

1 ) jχ−(u−2)−N v = [hα1
m , ( f α1

1 ) j ]χ−(u−2)−N v + ( f α1
1 ) j [hα1

m , χ−(u−2)−N ]v.

(A.26)
The first commutator on the right-hand side is a sum of terms, each obtained from ( f α1

1 ) j

by replacing one of the f α1
1 by −2 f α1

m+1. However, each of these terms is 0 by Lemma
A.4. On the other hand, the second commutator is proportional to χ−(u−2)−(N−m), so it
annihilates v by minimality of N . We therefore obtain

˜G−
(1/2)

(

( f α1
1 ) jχ−(u−2)−N v ⊗ |0〉

)

= f α1
1 ( f α1

1 ) jχ−(u−2)−N v ⊗ |0〉, (A.27)

from which we conclude inductively that (˜G−
(1/2))

j (χ−(u−2)−N v ⊗ |0〉) = ( f α1
1 ) j

χ−(u−2)−N v ⊗ |0〉, for all i ∈ Z�0.
To deduce (A.23), we now repeat the argument by acting with ˜G+

(1/2) on ( f α2
1 )i ( f α1

1 ) j

χ−(u−2)−N v⊗|0〉. There are no essential differences between this case and that described
above, so we omit the details.
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Corollary A.7. χ−(u−2)−N v ⊗ |0〉 is closed and inexact.

Proof. We have already seen that χ−(u−2)−N v ⊗ |0〉 is closed. Suppose therefore that
it is exact. As [d, ˜G±

(1/2)] = 0, since ˜G± is closed, it now follows from Proposition A.5
and Lemma A.6 that

(˜G+
(1/2))

N (˜G−
(1/2))

N (χ−(u−2)−N v ⊗ |0〉) = ( f α2
1 )N ( f α1

1 )N χ−(u−2)−N v ⊗ |0〉 = (eθ−1)
u−2−N v

(A.28)

is also exact. But, this contradicts Lemma A.1. ��
This corollary completes the proof of Theorem 4.8.

We concludewith a few remarks about this proof. First, proving that quantum hamilto-
nian reduction indeed realises all simple highest-weight modules is obviously desirable
and has been studied in several settings. However, Arakawa’s general results [9,54] in
this direction for universal minimal and regular W-algebras do not immediately imply
the desired results for their simple quotients. Indeed, the cases where this completeness
result for simple W-algebras is known seem to be cases in which the simple quotient is
rational and C2-cofinite, see for example [1,54,67]. Our proof, applying as it does to
the nonrational and non-C2-cofinite simple Bershadsky–Polyakov algebras, is therefore
quite novel and seems to be very different from the rational proofs in the literature.
Second, this proof relies on certain key facts that might be regarded as special to

the Bershadsky–Polyakov algebras. In particular, we use the explicit realisation (A.9)
of the charged generators of BPk. However, the pure ghost terms played no role in the
proof, so it may be possible to generalise this part of the argument to other minimal,
or perhaps even subregular, W-algebras. On the other hand, the proof also exploits the
fact that the maximal ideal of Vk(sl3) is generated by a single singular vector, which
does not normally hold when generalising to nonadmissible levels. It is therefore not
clear that this proof can be adapted for the nonadmissible case, but it would of course
be interesting to try.
Alternatively, it may be that one can prove more general completeness results of

this type by further developing the inverse quantum hamiltonian reduction methods
introduced in [18,33] and extended to the Bershadsky–Polyakov algebras in [31]. These
methods have the advantage of building up the representation theory iteratively from
that of the so-called exceptional W-algebras [67], in particular from the regular ones.
This may then lead to uniform methods for all W-algebras, at least when the level is
admissible and (sufficiently) nondegenerate. We hope to have the opportunity to report
on this promising direction in the future.
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