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Abstract: Consider the Klein–Gordon–Zakharov equations in R
1+2, and we are inter-

ested in establishing the small global solution to the equations and in investigating the
pointwise asymptotic behavior of the solution. The Klein–Gordon–Zakharov equations
can be regarded as a coupled semilinear wave and Klein–Gordon system with quadratic
nonlinearities which do not satisfy the null conditions, and the fact that wave components
and Klein–Gordon components do not decay sufficiently fast makes it harder to conduct
the analysis. In order to conquer the difficulties, we will rely on the hyperboloidal foli-
ation method and a minor variance of the ghost weight method. As a side result of the
analysis, we are also able to show the small data global existence result for a class of
quasilinear wave and Klein–Gordon system violating the null conditions.
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1. Introduction

Background and motivations The study of nonlinear wave equations, nonlinear Klein–
Gordon equations, and their coupled systems has attracted the attention from the re-
searchers since decades ago. Among the most concerned questions are that what kinds
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of quadratic nonlinearities can guarantee the small data global existence results for the
equations, and that what is the asymptotic behavior of the global solution. The milestone
work on this subject is due to Christodoulou [4] and Klainerman [19] for nonlinear wave
equations in R

1+3, and is due to Klainerman [18] and Shatah [33] for nonlinear Klein–
Gordon equations in R

1+3. After that, consecutive progress is made in this field, from
different types of nonlinearities to various dimensions.

We now briefly revisit some existing results on the coupled wave and Klein–Gordon
equations, with or without physical models behind, which are the main motivation of
this paper. The study of the coupled wave and Klein–Gordon equations has its own
difficulties, which is due to the well-known fact that the scaling vector field L0 =
t∂t + xa∂a does not commute with the Klein–Gordon operator as well as many others.
On one hand, in R

1+3, the pioneering work is due to Bachelot [3] on the Dirac–Klein–
Gordon system and Georgiev [11] on the general wave and Klein–Gordon system with
null nonlinearities. Later on, lots of other kinds of coupled wave and Klein–Gordon
equations were studied, see for instance [6,8–10,14–17,20–22,29,31,32,38,39]. On the
other hand, in R

1+2, the slow decay nature of the wave components and the Klein–
Gordon components makes the study of the coupled wave and Klein–Gordon equations
more formidable. The first such result is due to Ma [24,25], where a class of quasilinear
wave and Klein–Gordon system was shown to admit the global solution. Shortly after
that, more types quadratic nonlinearities were treated, see [7,26,27,36].

Next, we return to the Klein–Gordon–Zakharov equations, which appear in plasma
physics, see for instance [5,28,40]. The first small data global existence result was
established by Ozawa, Tsutaya, and Tsutsumi [29] in R

1+3, and then some other al-
ternative proofs were provided in [8,16,37]. Later on, Ozawa, Tsutaya, and Tsutsumi
[30] showed that the Klein–Gordon–Zakharov equations are well-posed with different
propagation speeds in R1+3. Besides, there exists other interesting work on different as-
pects of the studies on Klein–Gordon–Zakharov equations: Guo and Yuan [12] proved
that the Klein–Gordon–Zakharov equations with first order expressions admit the global
smooth solution in R

1+2 when the initial data are bounded; it is also worth to mention
the interesting work of Masmoudi and Nakanishi [28] in which the authors studied the
convergence of the Klein–Gordon–Zakharov equations to the Schrodinger equation as
some parameters go to +∞; last but not least, we recall a recent work by Shi and Wang
[34], where the authors established the finite time blow-up result for the Klein–Gordon–
Zakharov equations with very low regularity on the initial data and with negative initial
energy, and the blow-up rates as well as the subsonic limit of the solutions were also
studied.

We recall, on one hand, that one of the successful tools in dealing with coupled
wave and Klein–Gordon equations is the hyperboloidal foliation method, dating back to
Klainerman [19] and Hormander [13], which can be regarded as the Klainerman’s vector
fieldmethod on hyperboloids, andwhichwas developed by LeFloch-Ma [21–23], and by
Klainerman–Wang–Yang [20,39]. In this method, the use of the scaling vector field L0 is
avoided, which makes it consistent with both the wave equations and the Klein–Gordon
equations. On the other hand, the ghost weight method, introduced by Alinhac [1,2], is
very powerful in studying nonlinear partial differential equations in various dimensions.
Originally the method was used on the wave equations in R

1+2, but it can also be used
to study the coupled wave and Klein–Gordon systems, see for instance [7].

Motivated by the existingwork on the coupledwave andKlein–Gordon equations, we
are interested in establishing the small data global existence result for theKlein–Gordon–
Zakharov equations in R

1+2, and in addition, we will also demonstrate the asymptotic
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behavior of the solution. In order to overcome the slow decay property of the wave and
the Klein–Gordon components in dimension two, we will combine the ghost weight
method and the hyperboloidal foliation method. As a consequence, we can generalise,
to some extent, the result on the quasilinear wave and Klein–Gordon equations in R1+2

of [36].
Model problem and main difficulties We will consider the Klein–Gordon–Zakharov
model in R1+2

− �E + E = −nE,

−�n = �|E |2. (1.1)

The unknowns are E = (E1, E2) taking values in1R2,n taking values inR, which are the
Klein–Gordon component and the wave component respectively. We take the signature
(−,+,+) in the spacetime R

1+2. As usual, � = ∂α∂α represents the wave operator,
� = ∂a∂

a represents the Laplace operator, with the Greek letters α, β, · · · ∈ {0, 1, 2}
denoting the spacetime indices, and Latin letters a, b, · · · ∈ {1, 2} representing the space
indices, and the Einstein summation convention is adopted unless otherwise specified.

The initial data are prescribed at the slice t = t0 = 2

(
E, ∂t E

)
(t0, ·) = (

E0, E1
)
,

(
n, ∂t n

)
(t0, ·) = (

n0, n1
) := (

�n�
0 ,�n�

1

)
, (1.2)

and the functions (E0, E1, n�
0 , n�

1 ) are assumed to be supported in the unit ball {x :
|x | ≤ 1}.

Due to the serious problem that wave components and Klein–Gordon components
decay insufficiently fast in R

1+2, the quadratic nonlinearities appearing in (1.1), which
violate the null conditions, are at the border line of integrability. To be more precise, in
R
1+2 linear waves decay at the speed of t−1/2, while linear Klein–Gordon components

decay at the speed of t−1. This means that the best we can expect for the nonlinearities
is

∥∥nE
∥∥
L2(R2)

� t−1,
∥∥�|E |2∥∥L2(R2)

� t−1,

which are non-integrable quantities. Thus under this situation, it is very hard to prove
the sharp pointwise decay results, as well as closing the bootstrap, of E and n.

Recall that in the framework of the hyperboloidal foliation method, we will integrate
over the hyperbolic time s = √

t2 − |x |2, which means we need to show |n| � s−1 to
close the bootstrap argument. But this does not seem to be easy, because when we go to
the n equation, the fact that the Klein–Gordon component E decays only like |E | � t−1,
as already remarked, leads to a polynomial growth even in the natural energy of the n
component.

Besides, the lack of partial derivatives on the n component in the E equation seems
also to be a problem (which is difficult to handle even in R1+3, see for instance [6,8,10,
14,15,20,22,39]), which is mainly due to the fact that the L2–type norms of n cannot
be bounded by its natural wave energy.
Main theorems We first introduce the natural energy for the wave components and
the Klein–Gordon components in the hyperboloidal foliation setting in R

1+2. Let φ =
φ(t, x) be a sufficiently nice function supported in the spacetime region {(t, x) : t ≥

1 Originally E takes values in R2, but more general cases of taking values in CN0 with N0 = 1, 2, · · · can
also be treated.
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|x | + 1}, then its natural energy on the hyperboloid Hs = {(t, x) : t2 = |x |2 + s2} is
defined by

Em(s, φ) :=
∫

Hs

(∂tφ)2 +
∑

a

(∂aφ)2 + 2(xa/t)∂aφ∂tφ + m2φ2 dx . (1.3)

The abbreviation E(s, φ) = E0(s, φ) is used.
Recall that our goal is to prove the small data global existence result to the model

problem (1.1), and to derive the pointwise decay result of the solution. Now the first
main result is illustrated.

Theorem 1.1. Consider the Klein–Gordon–Zakharov equations in (1.1), and let N ≥ 11
be an integer. There exits ε0 > 0, such that for all ε < ε0, and all compactly supported
initial data satisfying the smallness condition

‖E0‖HN+2 + ‖E1‖HN+1 + ‖n�
0 ‖HN+3 + ‖n�

1 ‖HN+2 ≤ ε, (1.4)

the Cauchy problem (1.1)–(1.2) admits a global-in-time solution (E, n), which satisfies
the following sharp pointwise decay results

|E(t, x)| � t−1, |n(t, x)| � t−1/2(t − r)−1/2. (1.5)

Furthermore, with the notation for the Lorentz boosts La = xa∂t+t∂a and 0 < δ < 1/24,
the following energy estimates are also valid

E1(s, ∂ I L J E)1/2 + E1(s, ∂∂ I L J E)1/2 � sδ, |I | + |J | ≤ N ,

E1(s, ∂ I L J E)1/2 � 1, |I | + |J | ≤ N − 3,

E(s, ∂ I L J n)1/2 � sδ, |I | + |J | ≤ N . (1.6)

Although the system (1.1) is with critical nonlinearities, the sharp pointwise decay
results of the solution (E, n) can still be obtained. And this is the first global existence
and asymptotic results, as far as we know, on the wave and Klein–Gordon systems in
R
1+2 violating the null conditions. As a comparison, Guo and Yuan [12] have proved the

global existence result for the Klein–Gordon–Zakharov equations with bounded initial
energy in R

1+2, while Shi and Wang [34] have built blow-up result and subsonic limit
result for initial data with low regularity.

The lack of null structure in equations (1.1) and the slow decay nature of waves (with
decay rate t−1/2) and Klein–Gordon components (with decay rate t−1) in dimension
R
1+2 only allow us to get the uniform energy bound for ∂ I L J E with |I | + |J | ≤ N −

3 (see equation (4.1)), and the sharp pointwise decay of |∂ I L J E | � t−1 with |I | +
|J | ≤ N − 5 (see equation (4.4)), and these are the main reasons why we need high
regularity assumptions on the initial data. For the same reasons, we also need to rely
on the compactness of the solutions in the following two ways: 1) to take advantage
of the properties (extra t − |x | decay) of ∂∂n�; 2) the variance of the ghost weight
energy estimates in Proposition 3.2 requires that t − |x | has positive sign. To reduce the
regularity on the initial data and to remove the compactness assumptions on the initial
data are two interesting and challenging problems, and they will be considered in our
future study.

We note that the divergence form nonlinearities, see for instance [7,8,16], in the n
equation is a gain in some sense, andwe now take advantage of this structure. Expressing
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the original equations in (1.1) in termsof the scalar valuedvariables (Ea, n)witha = 1, 2
gives us

− �Ea + Ea = −nEa,

−�n = �
(
(E1)2 + (E2)2

)
. (1.7)

Then we proceed to introduce the new variable (n�) with the relation

n = �n�, (1.8)

and this new variable satisfies the following wave equation:

− �n� = (E1)2 + (E2)2,
(
n�, ∂t n

�
)
(t0) = (n�

0 , n�
1 ). (1.9)

To sum up, we will consider, in the analysis, the scalar valued variables

Ea, n�, (1.10)

which are related to the original unknowns (E, n) by the relations

E = (E1, E2), n = �n�. (1.11)

And the variables (Ea, n�) are solutions to the following equations

−�Ea + Ea = �n�Ea,
(
Ea, ∂t E

a)(t0) = (Ea
0 , Ea

1 ),

−�n� = (E1)2 + (E2)2,
(
n�, ∂t n

�
)
(t0) = (n�

0 , n�
1 ). (1.12)

To achieve the sharp pointwise decay of n = �n�, we prove a new type of energy
estimates as well as a new type of Sobolev-type inequality accordingly, which is inspired
by the ghost weightmethod. This energy estimates allow us to gain t decay at the expense
of losing t −|x | decay, and fortunately the loss of t − r decay is not a problem as ∂∂n�,
roughly speaking, has an extra (t − |x |)−1 decay compared to ∂Ln�, ∂n� (see (4.7)),
for instance. On the other hand, in order to obtain the sharp pointwise decay estimates
of E , we prove the uniform energy estimates, which is thanks to the trick that we move
the good factor s′/t in the energy estimates (3.5) to the source term, and the details are
demonstrated in the proof of Proposition 4.4.

Inspired by the treatment on the Klein–Gordon–Zakharov equations in the form
(1.12), we find that our method can also be applied to the following quasilinear wave
and Klein–Gordon system:

−�v + v + Pαβ
1 v∂α∂βw + Pαβγ

2 ∂γ v∂α∂βw = 0,

−�w + Pαβ
1 v∂α∂βv + Pαβγ

2 ∂γ v∂α∂βv = 0,
(
v, ∂tv,w, ∂tw

)
(t0) = (v0, v1, w0, w1). (1.13)

In the coupled system (1.13), Pαβ
1 , Pαβγ

2 are constants, which do not need to satisfy the

null conditions.As a comparison, in [36] thenonlinearities Pαβγ
2 ∂γ v∂α∂βw, Pαβγ

2 ∂γ v∂α∂βv

are considered and certain null conditions are assumed to the nonlinearities, whilewe can
also treat here the nonlinearities Pαβ

1 v∂α∂βw, Pαβ
1 v∂α∂βv, and no null conditions are

assumed. The small data global existence result to the system (1.13) and the asymptotic
behavior of the solution (v,w) are now stated.
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Theorem 1.2. Consider the coupled wave and Klein–Gordon equations in (1.13), and
let N ≥ 11 be an integer. There exits ε0 > 0, such that for all ε < ε0, and all compactly
supported initial data satisfying the smallness condition

‖v0‖HN+1 + ‖v1‖HN + ‖w0‖HN+1 + ‖w1‖HN ≤ ε, (1.14)

the Cauchy problem (1.13) admits a global-in-time solution (v,w), which satisfies the
following pointwise decay results

|v(t, x)| � t−1, |∂∂w(t, x)| � s−1. (1.15)

We see fromTheorem 1.2 that the pointwise decay results for v, ∂∂w are sharp, which
is thanks to the use of a minor different version of the ghost weight energy estimates
(3.7).

We note that almost the same analysis as the proof of Theorem 1.1 also applies to
Theorem 1.2, but in order to avoid ambiguities, we also provide the proof for Theorem
1.2 in the “Appendix”.

Outline. The rest of this article is organised as follows.
In Sect. 2, we revisit some preliminaries on the wave equations, the hyperboloidal

foliationmethod, and the commutator estimates. Then in Sect. 3, we introduce the energy
estimates and prepare the Sobolev-type inequalities adapted to the energy estimates.
Finally we prove Theorem 1.1 and Theorem 1.2 relying on the bootstrap method in Sect.
4, and in the “Appendix” respectively.

2. Preliminaries

2.1. Notations in the hyperboloidal foliation setting. Working in the (1+2) dimensional
Minkowski spacetime, we adopt the signature (−,+,+). Recall that the Greek letters
α, β, · · · ∈ {0, 1, 2} denote the spacetime indices, and Latin letters a, b, · · · ∈ {1, 2}
represent the space indices, and the indices are raised or lowered by the Minkowski
metric η = diag(−1, 1, 1). A point in R

1+2 is denoted by (x0, x1, x2) = (t, x1, x2),

and we denote its spacial radius by r =
√
x21 + x22 . All of the functions considered are

assumed to be supported in the cone K = {(t, x) : t ≥ |x | + 1} (since the solutions are
supported in this region). A hyperboloid with hyperbolic time s (with s ≥ 2) is denoted
by Hs = {(t, x) : t2 = |x |2 + s2}. For a point (t, x) ∈ Hs

⋂K, we emphasize the
following important relations

t ≥ |x | + 1, s ≤ t ≤ s2. (2.1)

Also we use K[s0,s1] := {(t, x) : s20 ≤ t2 − r2 ≤ s21 ; r ≤ t − 1} to denote subsets of K
which are limited by two hyperboloids Hs0 and Hs1 with s0 ≤ s1.

We next introduce some vector fields

• Translations: ∂α , α = 0, 1, 2.
• Lorentz boosts: La = xa∂t + t∂a , a = 1, 2.
• Scaling vector field: L0 = S = t∂t + r∂r .
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Toadapt to thehyperboloidal foliation setting,we introduce the so-callled semi-hyperboloidal
frame which is defined by

∂0 := ∂t , ∂a := La

t
= xa

t
∂t + ∂a . (2.2)

On the other hand, the natural Cartesian frame can be expressed in terms of the semi-
hyperboloidal frame as

∂t = ∂0, ∂a = − xa

t
∂t + ∂a . (2.3)

2.2. Estimates for commutators. Wewill need to frequently use the following estimates
for commutators, which can be found in [21,35]

Lemma 2.1. Let u be a sufficiently nice function supported inK = {(t, x) : t ≥ |x |+1},
then the following inequalities are valid (a, b,m ∈ {1, 2}, α, β ∈ {0, 1, 2})

∣
∣∂αLau

∣
∣ �

∣
∣La∂αu

∣
∣ +

∑

β

∣
∣∂βu

∣
∣,

∣∣∂α∂βLau
∣∣ �

∣∣La∂α∂βu
∣∣ +

∑

γ,γ ′

∣∣∂γ ∂γ ′u
∣∣,

∣∣LaLbu
∣∣ �

∣∣LbLau
∣∣ +

∑

m

∣∣Lmu
∣∣,

∣∣∂α(s/t)
∣∣ � s−1,

∣∣La(s/t)
∣∣ +

∣∣LbLa(s/t)
∣∣ � s/t,

∣∣La(t − |x |)−γ
∣∣ � (t − |x |)−γ ,

∣∣LbLa
(
(s/t)

)∣∣ � (t − |x |)−γ t

|x | . (2.4)

Proof. We only provide the proof for the last two estimates, as the proof for other
inequalities can be found in [21,35].

We directly compute

La(t − |x |)−γ = xa∂t (t − |x |)−γ + t∂a(t − |x |)−γ

= −γ (t − |x |)−1−γ xa + γ t (t − |x |)−1−γ xa
|x |

= −γ (t − |x |)−1−γ xa
|x |

(|x | − t
) = γ (t − |x |)−γ xa

|x | ,

which leads to
∣∣La(t − |x |)−γ

∣∣ ≤ γ (t − |x |)−γ .

Next, we act Lb to the above identity to get (δab is the Kronecker delta function)

LbLa(t − |x |)−γ = γ 2(t − |x |)−γ xaxb
|x |2 + γ (t − |x |)−γ δabt

|x | − γ (t − |x |)−γ xaxbt

|x |3 .

Thus the proof is complete. �	
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3. Energy Estimates on Hyperboloids

3.1. Energy estimates. We will introduce two kinds of energy estimates in this subsec-
tion: in the first kind of energy estimates twoways are shown on how to bound the natural
energies for the wave components and the Klein–Gordon components; then the second
kind of energy estimates allow us to bound the natural energies with some weights, and
this is mainly motivated by the ghost weight method.

Let φ be a sufficiently nice function defined on a hyperboloidHs , following [21] we
define its natural energy Em (with three equivalent expressions) by

Em(s, φ) :=
∫

Hs

((
∂tφ

)2 +
∑

a

(
∂aφ

)2 + 2(xa/t)∂tφ∂aφ + m2φ2
)
dx

=
∫

Hs

((
(s/t)∂tφ

)2 +
∑

a

(
∂aφ

)2 + m2φ2
)
dx

=
∫

Hs

((
∂⊥φ

)2 +
∑

a

(
(s/t)∂aφ

)2 +
∑

a<b

(
t−1�abφ

)2 + m2φ2
)
dx, (3.1)

in which �ab := xa∂b − xb∂a are the rotation vector fields, and ∂⊥ := L0/t = ∂t +
(xa/t)∂a is the orthogonal vector field. The above integral is defined by

∫

Hs

|φ| dx =
∫

R2

∣∣φ(
√
s2 + r2, x)

∣∣ dx, (3.2)

and we denote

‖φ‖L p
f (Hs )

=
( ∫

Hs

|φ|p dx
)1/p

, 1 ≤ p < +∞, (3.3)

while ‖φ‖L∞
f (Hs ) := ‖φ‖L∞(Hs ). Note that the second and the third expressions in (3.1)

yield

∥∥(s/t)∂φ
∥∥
L2

f (Hs )
+

∑

a

∥∥∂aφ
∥∥
L2

f (Hs )
� Em(s, φ)1/2.

Energy estimates I Now, we demonstrate the first energy estimates to the hyperboloidal
setting.

Proposition 3.1. (Energy estimates for wave-Klein–Gordon equations) For m ≥ 0 and
for s ≥ s0 (with s0 = 2), it holds both

Em(s, φ)1/2 ≤ Em(s0, φ)1/2 +
∫ s

2

∥∥ − �φ + m2φ
∥∥
L2

f (Hs′ )
ds′ (3.4)

and

Em(s, φ) ≤ Em(s0, φ) +
∫ s

2

∫

Hs′
(s′/t)

∣
∣∂tφ

∣
∣
∣
∣ − �φ + m2φ

∣
∣ dxds′ (3.5)

for all sufficiently regular functions φ = φ(t, x), which are defined and supported in
K[s0,s].
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One refers to [22] for the proof. A side remark is that the energy estimates (3.5) allow
us to show the uniform energy bounds for the E component, while the energy estimates
(3.4) cannot achieve this, and the details can be found in the proof of Proposition 4.4.
Energy estimates II To proceed, we introduce a minor different version of the ghost
weight energy estimates for the wave equations, which can help compensate the loss of
t decay by the (less important in many cases) loss of t − r decay. Roughly speaking, the
version of ghost weight energy estimates below allows us to show

|∂n�| � s−1(t − r)2δ

from

|∂n�| � s−1+δ.

Consider the wave equation

− �u = f, (3.6)

and recall that in the original ghost weight method by Alinhac, the multiplier used is

earctan(r−t)∂t u,

which does not contribute to the right hand side compared with the usual multiplier ∂t u,
and this is because earctan(r−t) is only as good as a constant. However, we find that if we
instead use

(t − r)−γ ∂t u

as the multiplier, the right hand side can benefit from the (t − r)−γ factor. And thanks to
the contribution of the factor (t − r)−γ , the original non-integrable quantity might turn
to the integrable quantity s−1−γ ′

with γ ′ > 0. Note that we are allowed to benefit from
the t − r decay because the functions considered are supported in the region t − r ≥ 1.

Proposition 3.2. Consider the wave equation (3.6) and assume u is supported in K =
{(t, x) : |x | ≤ t−1}, thenwe have the following version of ghost weight energy estimates
∫

Hs

(t − r)−γ
(
s/t

)2∣∣∂u
∣
∣2 dx ≤ 2E(s0, u) + 4

∫ s

s0

∫

Hs′
(s′/t)(t − r)−γ f ∂t u dxds

′,(3.7)

in which γ > 0.

Proof. Multiplying on both sides of (3.6) with (t − r)−γ ∂t u, we get

−�u · (t − r)−γ ∂t u = f · (t − r)−γ ∂t u

= 1

2
∂t

(
(t − r)−γ

(
(∂t u)2 +

∑

a

(∂au)2
)) − ∂a

(
(t − r)−γ ∂au∂t u

)

+
γ

2
(t − r)−1−γ

∑

a

(
(xa/r)∂t u + ∂au

)2
,

and the observation that
γ

2
(t − r)−1−γ

∑

a

(
(xa/r)∂t u + ∂au

)2 ≥ 0
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further gives

1

2
∂t

(
(t − r)−γ

(
(∂t u)2 +

∑

a

(∂au)2
)) − ∂a

(
(t − r)−γ ∂au∂t u

)
≤ f · (t − r)−γ ∂t u.

Then we integrate it over the region K[s0,s] to get
∫

K[s0,s]

1

2
∂t

(
(t − r)−γ

(
(∂t u)2 +

∑

a

(∂au)2
)) − ∂a

(
(t − r)−γ ∂au∂t u

)
dxdt

≤
∫

K[s0,s]
f · (t − r)−γ ∂t u dxdt.

Note the out unit normal to the hyperboloidHs is (t,−xa) · (t2 + |x |2)−1/2 and dHs =
t−1(t2 + |x |2)1/2dx , and the Stokes formula yields

∫

Hs

(t − r)−γ
((

∂t u
)2 +

∑

a

(
∂au

)2 + 2(xa/t)∂t u∂au
)
dx

≤
∫

Hs0

(t − r)−γ
((

∂t u
)2 +

∑

a

(
∂au

)2 + 2(xa/t)∂t u∂au
)
dx

+ 2
∫ s

s0

∫

Hs′
(s′/t) f · (t − r)−γ ∂t u dxds

′,

in which we also used the relation dxdt = (s/t)dxds.
Finally, recalling those three equivalent expressions for the energy E(s, u) in (3.1)

finishes the proof. �	
Note that the energy estimates in (3.7) exclude the contribution of the positive space-

time integral of the derivatives (xa/|x |)∂t u+∂au, which is heavily relied on in the original
ghost weight method. The reason why we do not include that contribution in the energy
estimates is that: 1) in the hyperboloidal foliation setting, the derivatives (xa/|x |)∂t + ∂a
do not seem to be so good (do not seem to be as good as ∂a); 2) in the models of interest
(1.1) and (1.13), there do not exist any null structures.

We will see later that this proposition plays a vital role in showing

|∂∂n�| � s−1, (and |∂∂w| � s−1, )

for the equations (1.12) (and (1.13)), and this is necessary in order to close the bootstrap
argument.

3.2. Sobolev-type inequalities. We now state a Sobolev-type inequality adapted to the
hyperboloidal foliation setting, which will be used to obtain pointwise estimates for both
wave and Klein–Gordon components. The Sobolev-type inequalities on hyperboloids
have been proved by Klainerman, Hörmander, and LeFloch-Ma. For the proof of the one
given right below, one refers to either [35] or [21,22] for details.

Lemma 3.3. Let u = u(t, x) be sufficient smooth and be supported in {(t, x) : |x | ≤
t − 1} and let s ≥ 2, then it holds

sup
Hs

∣∣tu(t, x)
∣∣ �

∑

|J |≤2

∥∥L Ju
∥∥
L2

f (Hs )
, (3.8)

with L the Lorentz boosts and J the multi-index.
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Combine with the estimates for commutators in Lemma 2.1, we also have the fol-
lowing more practical versions of Sobolev inequalities.

Lemma 3.4. Under the same assumptions as in Lemma 3.3, we have

sup
Hs

∣
∣s u(t, x)

∣
∣ �

∑

|J |≤2

∥
∥(s/t)L Ju

∥
∥
L2

f (Hs )
, (3.9)

and

sup
Hs

∣∣s(t − r)−γ u(t, x)
∣∣ �

∑

|J |≤2

∥∥(s/t)(t − r)−γ L Ju
∥∥
L2

f (Hs )
, (3.10)

Proof. To prove (3.9), we first note

sup
Hs

∣∣s u(t, x)
∣∣ = sup

Hs

∣∣t (s/t)u(t, x)
∣∣,

then (3.9) follows from the commutator estimates in (2.4)

∣∣La(s/t)
∣∣ +

∣∣LbLa(s/t)
∣∣ � s/t.

Next, we show (3.10), and due to the fact that (t − r)−γ is not sufficiently smooth,
its proof is a little bit more complicated. We introduce the smooth cut-off function

φ0(p) =
{
0, p <

√
3
2 ,

1, p > 2
√
2

3 .
(3.11)

Let

φ(t, x) = φ0(s/t),

and we observe that

φ(t, x) =
{
0, t < 2|x |,
1, t > 3|x |. (3.12)

In addition, we also find

∑

|J |≤2

∣
∣L Jφ(t, x)

∣
∣ � 1.

The simple triangle inequality gives

sup
Hs

∣∣s(t − r)−γ u(t, x)
∣∣ ≤ sup

Hs

∣∣φ(t, x)s(t − r)−γ u(t, x)
∣∣ + sup

Hs

∣∣(1 − φ(t, x)
)
s(t − r)−γ u(t, x)

∣∣,
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which means it suffices to show

sup
Hs

∣∣φ(t, x)st−γ u(t, x)
∣∣ �

∑

|J |≤2

∥∥(s/t)t−γ L Ju
∥∥
L2

f (Hs )
,

sup
Hs

∣∣(1 − φ(t, x)
)
s(t − r)−γ u(t, x)

∣∣ �
∑

|J |≤2

∥∥(s/t)(t − r)−γ L Ju
∥∥
L2

f (Hs )
,

(3.13)

in which we used the relation that t � t − r � t within the support of φ(t, x). The
second estimate can be seen from the commutator estimates in (2.4)

∣∣La(t − |x |)−γ
∣∣ � (t − |x |)−γ ,

∣∣LbLa
(
(s/t)

)∣∣ � (t − |x |)−γ t

|x | ,

as well as the fact that

t � |x |
holds within the support of 1 − φ(t, x) which is {(t, x) : |x | ≥ t/3}. In order to show
the first estimate in (3.13), we compute

Lat
−γ = −γ t−γ xa

t
, LbLat

−γ = γ (1 + γ )t−γ xaxb
t2

− γ t−γ δab,

and these imply the first estimate in (3.13).
The proof is complete. �	

4. Bootstrap Argument

4.1. Bootstrap assumptions and its consequences. We will work on the equations in
(1.12), and for easy readability we copy (1.12)

−�Ea + Ea = �n�Ea,
(
Ea, ∂t E

a)(t0) = (Ea
0 , Ea

1 ),

−�n� = (E1)2 + (E2)2,
(
n�, ∂t n

�
)
(t0) = (n�

0 , n�
1 ).

We assume that it holds for s ∈ [s0, s1)
E1(s, ∂ I L J E)1/2 + E1(s, ∂∂ I L J E)1/2 ≤ C1εs

δ, |I | + |J | ≤ N ,

E1(s, ∂ I L J E)1/2 ≤ C1ε, |I | + |J | ≤ N − 3. (4.1)

In the above, 0 < δ < 1/24, C1 > 1 is a large number to be determined satisfying
C1ε � δ, and s1 is defined by

s1 = sup{s : s > s0, (4.1) holds}. (4.2)

In what follows, we first assume s1 > s0 is a finite number, and we then derive some
contradiction to assert that s1 = +∞, so that we have the global existence result.

As a consequence of the bootstrap assumptions, we have the following estimates.
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Lemma 4.1. Assume the bounds in (4.1) are valid, then for all s ∈ [s0, s1) it holds the
following L2 norm estimates

∥∥∂ I L J E, ∂∂ I L J E
∥∥
L2

f (Hs )
+

∥∥(s/t)∂∂∂ I L J E
∥∥
L2

f (Hs )
� C1εs

δ, |I | + |J | ≤ N ,

∥∥∂ I L J E
∥∥
L2

f (Hs )
+

∥∥(s/t)∂∂ I L J E
∥∥
L2

f (Hs )
� C1ε, |I | + |J | ≤ N − 3, (4.3)

as well as the following pointwise estimates

|∂ I L J E | � C1εt
−1sδ, |I | + |J | ≤ N − 2,

∣∣∂ I L J E
∣∣ � C1εt

−1, |I | + |J | ≤ N − 5. (4.4)

Proof. We note that the L2–type estimates in (4.3) follow directly from the definition
of the energy E1(s, E), while the pointwise estimates in (4.4) can be obtained by using
the Sobolev-type inequality (3.8). �	

4.2. Refined estimates. We first derive the energy estimates for the n� variable.

Lemma 4.2. Let the bounds in (4.1) hold, then we have

E(s, ∂ I L J n�)1/2 + E(s, ∂∂ I L J n�)1/2 + E(s, ∂∂∂ I L J n�)1/2

� ε + (C1ε)
2sδ, |I | + |J | ≤ N , (4.5)

as well as
∥∥∥(t − |x |)−2δ(s/t)∂∂ I L J n�

∥∥∥
L2

f (Hs )
� ε + (C1ε)

3/2, |I | + |J | ≤ N ,

∣∣∂∂ I L J n�
∣∣ �

(
ε + (C1ε)

3/2)s−1(t − |x |)2δ, |I | + |J | ≤ N − 2. (4.6)

Proof. We act ∂∂∂ I L J with |I | + |J | ≤ N on the n� equation to get

−�∂∂∂ I L J n� = ∂∂∂ I L J ((E1)2 + (E2)2
)
.

Consider first the estimates in (4.5), and we note that (recall N ≥ 11)
∥∥∂∂∂ I L J ((E1)2 + (E2)2

)∥∥
L2

f (Hs )

�
∑

|I1|+|J1|≤N
|I2|+|J2|≤N−5

∥∥(s/t)∂∂∂ I1L J1E
∥∥
L2

f (Hs )

∥∥(t/s)∂ I2L J2E
∥∥
L∞(Hs )

+
∑

|I1|+|J1|≤N
|I2|+|J2|≤N−5

(∥∥∂∂ I1L J1E
∥∥
L2

f (Hs )
+

∥∥∂ I1L J1E
∥∥
L2

f (Hs )

)∥∥∂ I2L J2E
∥∥
L∞(Hs )

� (C1ε)
2s−1+δ,

in which we used the relation that
∑

|I3|+|J3|≤N−7

∣∣∂∂∂ I3L J3E
∣∣ +

∑
|I4|+|J4|≤N−6∣∣∂∂ I4L J4E

∣∣ ≤ ∑
|I2|+|J2|≤N−5

∣∣∂ I2L J2E
∣∣. Then the energy estimates (3.4) imply that

E(s, ∂∂∂ I L J n�)1/2 � E(s0, ∂∂∂ I L J n�)1/2 +
∫ s

s0

∥
∥∂∂∂ I L J (

(E1)2 + (E2)2
)∥∥

L2
f (Hs′ )

ds′
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� ε + (C1ε)
2
∫ s

s0
s′−1+δ ds′ � ε + (C1ε)

2sδ.

In the same way, we obtain

E(s, ∂ I L J n�)1/2 + E(s, ∂∂ I L J n�)1/2 � ε + (C1ε)
2sδ.

Next, we turn to prove the estimates in (4.6). We apply the ghost weight energy
estimates (3.7) on the equation

−�∂ I L J n� = ∂ I L J ((E1)2 + (E2)2
)
,

to arrive at
∫

Hs

(t − r)−4δ(s/t
)2∣∣∂∂ I L J n�

∣∣2 dx

� E(s0, n
�) +

∫ s

s0

∫

Hs′
(s′/t)(t − r)−4δ∂t∂

I L J n�∂ I L J ((E1)2 + (E2)2
)
dxds′

� ε2 +
∫ s

s0

∥∥(s′/t)∂t∂ I L J n�
∥∥
L2

f (Hs′ )
∥∥(t − r)−4δ∂ I L J ((E1)2 + (E2)2

)∥∥
L2

f (Hs′ )
ds′.

Observe that
∥∥(t − r)−4δ∂ I L J ((E1)2 + (E2)2

)∥∥
L2

f (Hs )

�
∑

|I1|+|J1|≤N
|I2|+|J2|≤N−2

∥∥∂ I1L J1E
∥∥
L2

f (Hs )

∥∥(t − r)−4δ∂ I2L J2E
∥∥
L∞(Hs )

� (C1ε)
2s−1−2δ,

and, we thus obtain
∫

Hs

(t − r)−4δ(s/t
)2∣∣∂∂ I L J n�

∣∣2 dx � ε2 + (C1ε)
3
∫ s

s0
s′−1−δ ds′ � ε2 + (C1ε)

3.

Finally, we apply the Sobolev-type inequality (3.10) to deduce the pointwise estimates
appearing in (4.6). �	

We need the following result on the estimates of wave components with second order
partial derivatives, which was used in [24].

Lemma 4.3. Let u = u(t, x) be a sufficiently nice function with supportK, then it hold

∣∣∂∂u
∣∣ � (t − |x |)−1(∣∣∂Lu

∣∣ +
∣∣∂u

∣∣) +
t

t − |x |
∣∣�u

∣∣. (4.7)

As a consequence, we have
∣∣∂∂∂ I L J n�

∣∣ �
(
ε + (C1ε)

3/2)s−1(t − |x |)−1/2, |I | + |J | ≤ N − 3,
∥∥(s/t)(t − |x |)1/2∂∂∂ I L J n�

∥∥
L2

f (Hs )
� ε + (C1ε)

3/2, |I | + |J | ≤ N − 1, (4.8)
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Proof. The proof of (4.7) can be found in [7,24,26]. And, we will only show
∣∣∂∂∂ I L J n�

∣∣ �
(
ε + (C1ε)

3/2)s−1(t − |x |)−1/2, |I | + |J | ≤ N − 3,

as the other estimate in (4.8) can be derived in a very similar way.
According to (4.7), we have

∣∣∂∂∂ I L J n�
∣∣ � (t − |x |)−1(∣∣∂L∂ I L J n�

∣∣ +
∣∣∂∂ I L J n�

∣∣) +
t

t − |x |
∣∣�∂ I L J n�

∣∣.

On one hand, the estimates for commutators give

∣∣∂L∂ I L J n�
∣∣ �

∑

|I1|≤|I |

(∣∣∂∂ I1LL Jn�
∣∣ +

∣∣∂∂ I1L Jn�
∣∣),

on the other hand, the equation of n� in (1.12) implies

∣∣�∂ I L J n�
∣∣ ≤ ∣∣∂ I L J |E |2∣∣ �

∑

|I1|+|I2|≤|I |
|J1|+|J2|≤|J |

∣∣∂ I1L J1E
∣∣∣∣∂ I2L J2E

∣∣.

Successively, we have

∣∣∂∂∂ I L J n�
∣∣ �

(
ε + (C1ε)

3/2)(t − |x |)−1s−1(t − r)2δ + (C1ε)
2 t

t − |x | t
−2+2δ.

Finally the smallness of δ yields the desired estimates, and the proof is done. �	
We are now ready to provide the refined estimates of E component.

Proposition 4.4. Under the bootstrap assumptions in (4.1), the following estimates hold

E1(s, ∂ I L J E)1/2 + E1(s, ∂∂ I L J E)1/2 � ε + (C1ε)
2sδ, |I | + |J | ≤ N ,

E1(s, ∂ I L J E)1/2 � ε + (C1ε)
3/2, |I | + |J | ≤ N − 3. (4.9)

Proof. Act the vector filed ∂ I L J on the Ea equation, and we get

−�∂ I L J Ea + ∂ I L J Ea = ∂ I L J (�n�Ea).

We first provide the proof for the high order energy cases, with |I | + |J | ≤ N . The
energy estimates in (3.4) imply that

E1(s, ∂ I L J E)1/2 ≤ E1(s0, ∂ I L J E)1/2 +
∫ s

s0

∥∥∂ I L J (�n�E
)∥∥

L2
f (Hs′ )

ds′.

Easily we find that

∥∥∂ I L J (�n�Ea)∥∥
L2

f (Hs )
�

∑

|I1|+|J1|≤N
|I2|+|J2|≤N−5

(∥∥(s/t)∂∂∂ I1 L J1n�
∥∥
L2

f (Hs )

∥∥(t/s)∂ I2 L J2 E
∥∥
L∞(Hs )

+
∥∥∂∂∂ I2 L J2n�

∥∥
L∞(Hs )

∥∥∂ I1 L J1 E
∥∥
L2

f (Hs )

)

� (C1ε)
2s−1+δ,
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which further deduces that

E1(s, ∂ I L J E)1/2 � ε + (C1ε)
2sδ, |I | + |J | ≤ N .

In the same way, we also obtain

E1(s, ∂∂ I L J E)1/2 � ε + (C1ε)
2sδ, |I | + |J | ≤ N .

Note , however, that the energy estimates in (3.4) cannot be used to show the uniform
energy estimates of E , so we rely on the trick here that we turn to the energy estimates
in (3.5) which read as follows

E1(s, ∂ I L J E) ≤ E1(s0, ∂ I L J E) +
∫ s

s0

∫

Hs′
(s′/t)

∣∣∂t∂ I L J E
∣∣∣∣∂ I L J (�n�E

)∣∣ dxds′.

The important thing is that we can move the good factor s′/t to the function of n�,
which helps circumvent the lack of t decay of n� part. For |I | + |J | ≤ N − 3, we have

∫

Hs

(s/t)
∣∣∂t∂ I L J E

∣∣∣∣∂ I L J (�n�E
)∣∣ dx

�
∑

|I1|+|I2|+|J1|+|J2|≤N−3

∥
∥(s/t)(t − |x |)1/2∂∂∂ I1L J1n�

∥
∥
L2

f (Hs )

∥
∥∂t∂

I L J E
∥
∥
L2

f (Hs )

·∥∥(t − |x |)−1/2∂ I2L J2E
∥∥
L∞(Hs )

� (C1ε)
3s−3/2+2δ,

which is integrable as δ is small. Hence, we further have

E1(s, ∂ I L J E)1/2 � ε + (C1ε)
3/2

as desired.
We thus complete the proof. �	
The proof of Theorem 1.1 follows.

Proof. (Proof of Theorem 1.1) By choosing C1 large enough, and ε sufficiently small,
such that C1ε � δ, the estimates in (4.9) imply that

E1(s, ∂ I L J E)1/2 + E1(s, ∂∂ I L J E)1/2 ≤ 1

2
C1εs

δ, |I | + |J | ≤ N ,

E1(s, ∂ I L J E)1/2 ≤ 1

2
C1ε, |I | + |J | ≤ N − 3

are valid for all s ∈ [s0, s1). This means s1 must be +∞, and thus the Klein–Gordon–
Zakharov equations (1.1) admit the global solution (E, n).

The sharp pointwise decay of E is from (4.4), while the sharp pointwise decay of
n = �n� can be seen from (4.8). On the other hand, the energy estimates (1.6) can be
obtained from (4.1) and (4.5). �	
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Appendix: Proof of Theorem 1.2

Energy estimates for quasilinear wave and Klein–Gordon equations. We first rewrite
the equations in (1.13) in the following form

−�v + v + Qαβ∂α∂βw = 0,

−�w + Qαβ∂α∂βv = 0,
(
v, ∂tv,w, ∂tw

)
(t0) = (v0, v1, w0, w1), (4.10)

in which

Qαβ := Pαβ
1 v + Pαβγ

2 ∂γ v. (4.11)

Without loss of generality, we assume the following symmetry conditions

Pαβ
1 = Pβα

1 , Pαβγ
1 = Pβαγ

1 , (4.12)

which imply that

Qαβ = Qβα. (4.13)

We define the energy for the quasilinear system (4.10) as

E(s, v, w) = E1(s, v) + E(s, w) +
∫

Hs

(
Q0β∂βv∂tw + Q0β∂βw∂tv − Qαβ∂αv∂βw

−(xa/t)
(
Qaβ∂βv∂tw + Qaβ∂βw∂tv

))
dx . (4.14)

Now the energy estimates for the quasilinear system (4.10) are illustrated.

Proposition 4.5. Consider the system

− �v + v + Qαβ∂α∂βw = f,

− �w + Qαβ∂α∂βv = g,
(
v, ∂tv,w, ∂tw

)
(t0) = (v0, v1, w0, w1),

then we have

E(s, v, w) ≤ E(s0, v, w) +
∫ s

s0

∫

Hs′
(s′/t)

(
∂αQ

αβ∂βv∂tw + ∂αQ
αβ∂βw∂tv

− ∂t Q
αβ∂βv∂αw + f ∂tv + g∂tw

)
dxds′.

(4.15)

Proof. The proof is standard, and we note that the following identity can be shown using
the symmetry property of Qαβ

( − �v + v + Qαβ∂α∂βw
)
∂tv +

( − �w + Qαβ∂α∂βv
)
∂tw = f ∂tv + g∂tw

= 1

2
∂t

(
(∂tv)2 +

∑

a

(∂av)2 + v2 + (∂tw)2 +
∑

a

(∂aw)2
) − ∂a

(
∂av∂tv

) − ∂a
(
∂aw∂tw

)

+ ∂α

(
Qαβ∂βw∂tv

)
+ ∂α

(
Qαβ∂βv∂tw

) − ∂t
(
Qαβ∂βv∂αw

)

− ∂αQ
αβ∂βw∂tv − ∂αQ

αβ∂βv∂tw + ∂t Q
αβ∂βv∂αw.

Then a similar computation to the proof of Proposition 3.2 leads us to the desired results
in (4.15). �	
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We also have the following result.

Lemma 4.6. Consider the energy E(s, v, w) defined in (4.14), and we assume that

∣
∣Qαβ

∣
∣ � 1

100

s2

t2
. (4.16)

Then it holds that

E(s, v, w) � E1(s, v) + E(s, w) � E(s, v, w). (4.17)

Bootstrap assumptions. As usual, we assume the following bootstrap assumptions hold
for s ∈ [s0, s1)

E1(s, ∂ I L Jv)1/2 + E(s, ∂ I L Jw)1/2 ≤ C1εs
δ, |I | + |J | ≤ N ,

E1(s, ∂ I L Jv)1/2 ≤ C1ε, |I | + |J | ≤ N − 3,∣∣∂∂∂ I L Jw(t, x)
∣∣ ≤ C1εs

−1(t − r)−1/2, |I | + |J | ≤ N − 5, (4.18)

in which C1 > 1 is some big number to be determined, and satisfies C1ε � 1/100, and
s1 > s0 is defined by

s1 = sup{s : s > s0, (4.18) holds}. (4.19)

Direct consequences are:
∥∥∂ I L Jv

∥∥
L2

f (Hs )
+

∥∥(s/t)∂∂ I L Jv, (s/t)∂∂ I L Jw
∥∥
L2

f (Hs )
� C1εs

δ, |I | + |J | ≤ N ,

∥∥∂ I L Jv
∥∥
L2

f (Hs )
+

∥∥(s/t)∂∂ I L Jv
∥∥
L2

f (Hs )
� C1ε, |I | + |J | ≤ N − 3,

|∂ I L Jv| � C1εt
−1sδ, |I | + |J | ≤ N − 2,

∣∣∂ I L Jv
∣∣ � C1εt

−1, |I | + |J | ≤ N − 5. (4.20)

The estimates
∣∣∂ I L Jv

∣∣ � C1εt
−1 � C1ε(s/t)

2, |I | + |J | ≤ N − 5

as well as Lemma 4.6 imply that

E(s, ∂ I L J v, ∂ I L Jw) � E1(s, ∂ I L J v) + E(s, ∂ I L Jw) � E(s, ∂ I L J v, ∂ I L Jw), |I | + |J | ≤ N .

(4.21)

Improved estimates. To improve the estimates appearing in the bootstrap assumptions
(4.18), we go through the analysis in Sect. 4.2. To treat the quasilinear system (4.10)
our strategy is to apply the energy estimates (4.15) for the high order energies, while we
rely on the energy estimates (3.4), (3.5), and (3.7) for the low order energies, where we
pretend the system (4.10) is a semilinear system.

We start with the high order energy estimates of v,w components.

Lemma 4.7. Under the assumptions in (4.18), for all s ∈ [s0, s1) we have
E1(s, ∂ I L Jv)1/2 + E(s, ∂ I L Jw)1/2 ≤ ε + (C1ε)

3/2sδ, |I | + |J | ≤ N . (4.22)
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Proof. We act ∂ I L J on the equations in (4.10) to have

−�∂ I L Jv + ∂ I L Jv + Qαβ∂α∂β∂ I L Jw = f1,

−�∂ I L Jw + Qαβ∂α∂β∂ I L Jv = g1,

with

f1 = Qαβ∂α∂β∂ I L Jw − ∂ I L J (Qαβ∂α∂βw
)
,

g1 = Qαβ∂α∂β∂ I L Jv − ∂ I L J (Qαβ∂α∂βv
)
.

Then the energy estimates (4.15) and (4.21) deduce

E1(s, ∂ I L Jv) + E(s, ∂ I L Jw)

� E1(s0, ∂ I L Jv) + E(s0, ∂
I L Jw) +

∫ s

s0

∫

Hs′
(s′/t)

(
f1∂t∂

I L Jv + g1∂t∂
I L Jw

+∂αQ
αβ∂β∂ I L Jv∂t∂

I L Jw + ∂αQ
αβ∂β∂ I L Jw∂t∂

I L Jv − ∂t Q
αβ∂βv∂αw

)
dxds′.

We only provide the estimates for the term involving f1, and other terms can be bounded
in a similar way. We proceed

∫

Hs

(s/t)
∣
∣ f1∂t∂ I L Jv

∣
∣ dx �

∑

|I1|+|J1|≤N−5
|I2|+|J2|≤N

(∥∥(t/s)∂ I1L J1v
∥∥
L∞(Hs )

∥∥(s/t)∂∂ I2L J2w
∥∥
L2

f (Hs )

+
∥∥∂ I2L J2v

∥∥
L2

f (Hs )

∥∥∂∂∂ I1L J1w
∥∥
L∞(Hs )

)∥∥(s/t)∂t∂
I L Jv

∥∥
L2

f (Hs )

� (C1ε)
3s−1+2δ.

We thus have

E1(s, ∂ I L Jv) + E(s, ∂ I L Jw) � ε2 + (C1ε)
3s2δ.

The proof is done. �	
Next, we turn to prove the refined pointwise decay estimates of ∂∂w.

Proposition 4.8. We have
∥∥(s/t)(t − |x |)1/2∂∂∂ I L Jw

∥∥ � ε + (C1ε)
3/2, |I | + |J | ≤ N − 3,

∣∣∂∂∂ I L Jw
∣∣ �

(
ε + (C1ε)

3/2)s−1(t − |x |)−1/2, |I | + |J | ≤ N − 5. (4.23)

Proof. The proof is very similar to the proof of (4.8), which follows from (4.7) and
∫

Hs

(t − r)−4δ(s/t)2
∣∣∂∂ I L Jw

∣∣2 dx � ε2 + (C1ε)
3, |I | + |J | ≤ N − 2,

and we omit the details. �	
Finally, we show the refined uniform energy bounds for v.
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Proposition 4.9. It holds

E1(s, ∂ I L Jv)1/2 ≤ ε + (C1ε)
3/2, |I | + |J | ≤ N − 3. (4.24)

Proof. The proof is very similar to the proof of Proposition 4.4, and we omit it. �	
By carefully choosing C1 large enough, and ε sufficiently small, we obtain the fol-

lowing refined estimates for s ∈ [s0, s1)

E1(s, ∂ I L Jv)1/2 + E(s, ∂ I L Jw)1/2 ≤ 1

2
C1εs

δ, |I | + |J | ≤ N ,

E1(s, ∂ I L Jv)1/2 ≤ 1

2
C1ε, |I | + |J | ≤ N − 3,

∣∣∂∂∂ I L Jw(t, x)
∣∣ ≤ 1

2
C1εs

−1(t − r)−1/2, |I | + |J | ≤ N − 5,

which imply the global existence result in Theorem 1.2. Together with the estimates in
(4.20), the pointwise decay results in Theorem 1.2 are also proved.
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