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Abstract: We propose a way to separate variables in a rational integrable gl(n) spin
chain with an arbitrary finite-dimensional irreducible representation at each site and
with generic twisted periodic boundary conditions. Firstly, we construct a basis that
diagonalises a higher-rank version of the Sklyanin B-operator; the construction is based
on recursive usage of an embedding of a gl(k) spin chain into a gl(k + 1) spin chain
which is induced from a Yangian homomorphism and controlled by dual diagonals
of Gelfand–Tsetlin patterns. Then, we show that the same basis can be equivalently
constructed by action of Bäcklund-transformed fused transfer matricies, whence the
Bethe wave functions factorise into a product of ascending Slater determinants in Bax-
ter Q-functions. Finally, we construct raising and lowering operators—the conjugate
momenta—as normal-ordered Wronskian expressions in Baxter Q-operators evaluated
at zeros of B—the separated variables. It is an immediate consequence of the proposed
construction that the Bethe algebra comprises the maximal possible number of mutually
commuting charges—a necessary property for Bethe equations to be complete.
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1. Motivation and Results

Recently there has been substantial progress in developing the separation of variables
(SoV) program for higher-rank rational gl(n) spin chains. Initially pioneered in theworks
of Sklyanin [1,2] for the gl(2) case and in analogy with classical integrable systems,
the SoV program aims to facilitate the solution of an integrable system by reducing it to
a set of decoupled "one-dimensional" problems which also implies factorisation of the
wave functions.

An important part of Sklyanin’s approach relies on the so-called B-operator as we
review in Sect. 2.4. It is a specific polynomial in u which was constructed for systems
of arbitrarily high rank in [3] but its connection to the factorisation of wave functions
remained unclear for quite a while until the recent findings of [4–6].

One of the motivations to study higher-rank systems comes from the AdS/CFT inte-
grable system ofN =4 SYMwhich has a high-rank superconformal algebra psu(2, 2|4)
as a symmetry. The quantum spectral curve [7,8] which encodes the AdS/CFT spec-
trum is a set of equations on Baxter Q-functions which one believes to be the "one-
dimensional" wave functions in a suitable SoV basis as is the case for spin chains. One
hopes that their usage would substantially simplify the structure of correlation functions,
as was already demonstrated in one special example [9]. SoV techniques of [10,11] and
their generalisations were recently employed in the computation of fishnet-type dia-
grams [12–14], and one expects that SoV will play an important role in further studies
of the dual fishchain theories [15–17].

While unitary representations of the conformal algebra are non-compact and, more-
over, the algebra is supersymmetric when applied to undeformed N = 4 SYM, it was
shown in [18,19] that certain features of such representations can be mapped to those of
compact gl(n) representations if n is large enough. This map requires considering spin
chains in representations beyond the defining (vector) representation of gl(n). More-
over, it was clarified in [6] how considering arbitrary gl(n) representations facilitates
understanding the regular structure of the SoV spectrum. These recent developments
motivate us to further consider spin chains in arbitrary compact representations of gl(n),
in addition to the obvious fundamental nature of the study of quantum integrability and
representation theory itself.

In this paperwe continue our analysis [6] of the interplay between the SoVB-operator
[3,4,20,21] and the idea of an SoV basis construction proposed in [5]. Our main result
is the construction of an SoV basis for inhomogeneous gl(n) spin chains with any finite-
dimensional irrep of gl(n) at each local spin site and with periodic boundary conditions
twisted by a matrix G. This basis factorises the Bethe algebra wave functions �(x) into
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a product of Slater determinants

�(x) = 〈x|�〉 =
L∏

α=1

n−1∏

k=1

det
1≤i, j≤k

q̂i (xα
k j ). (1.1)

Here xα
k j are eigenvalues of the separated variables Xα

k j—the operatorial zeros of B(u),
B(Xα

k j ) = 0, and q̂i are eigenvalues of the Baxter operators q̂i acting on a Bethe algebra

eigenstate |�〉. Analytically, q̂i (u) = zu/�

i (uMi + . . .) are twisted polynomials in the
spectral parameter u of degrees Mi that depend on a chosen state |�〉; and z1, . . . , zn
are eigenvalues of the spin chain twist matrix G.

The proposedSoVbasis comprises eigenvectors of theB-operator that are constructed
by action of fused transfer matrices on a suitable reference state 〈0|. When the α-th spin
chain site carries the highest-weight representation να = (να

1 , . . . , να
n ), we find

〈�B| = 〈0|
L∏

α=1

n−1∏

k=1

Tμ̄α
k
(θα + � να

n )

Tk,να
k+1

(θα + � να
n )

, (1.2)

where 〈�B| differs from 〈x| by a rescaling defined in (5.21). In (1.2), θα are the spin
chain inhomogeneities, and Tμ̄α

k
is the transfer matrix in the representation μ̄α

k . μ̄α
k =

(μ̄α
k1, . . . , μ̄

α
kk) is an integer partition with k components that satisfies certain constraints

and relates to separated coordinates as xα
k j = θα+�(μα

k j +1− j), whereμα
k j = μ̄α

k j +να
k+1.

Tk,νk+1 is the transfer matrix in the representation (νk
k+1), where the partition (νk

k+1) is
graphically the rectangular Young diagram of size k × νk+1. For the case of rectangular
representations (S A) construction (1.2) can be shown to be the same as in [6]. The case
of the defining representation of Y(gl(n)) was also covered in [22], and of symmetric
representations (S1) of Y(gl(2)) in [23].

Unlike the SoV bases previously appearing in the literature, we construct the basis
not just by action of transfer matricies but also by their inverses. While initially seeming
like a complication, the action by fractions has a remarkable meaning. We find that the
above ratios of transfermatrices evaluated at the inhomogeneities coincide preciselywith
auxiliary transfer matrices arising in the Bäcklund flow procedure [24–28]. Utilising this
technology allows us to rewrite the SoV basis as

〈�B| = 〈0|
L∏

α=1

n−1∏

k=1

T
(k)

μ̄α
k
(θα + � να

k+1), (1.3)

where T
(k)

μα
k
(u) is a transfer matrix defined on the GL(k) strip obtained by performing a

Bäcklund flow GL(n) → GL(n − 1) → · · · → GL(k).
One can now apply the Wronskian solution

T
(k)
ξ (u) =

det
1≤i, j≤k

Q
[2ξ̂ j ]
i (u)

Q12...k(u)
(1.4)

to (1.3) to evaluate the overlap 〈x|�〉 and derive (1.1), for appropriately normalised |�〉.
In (1.4) we used the following notations: f [2n](u) := f (u + n�) denotes shifts of the
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spectral parameter, ξ̂ j := ξ j − j + 1 are the shifted weights, Q12...k = det
1≤i, j≤k

Q
[2(1− j)]
i ,

and Qi are Baxter operators that are related to q̂i via a gauge transformation (5.9).
It is a simple consequence of the above-mentioned results that the eigenvectors |�〉

with the required normalisation are built using separated variables

|�〉 =
L∏

α=1

n−1∏

k=1

det
1≤i, j≤k

q̂i (Xα
k j )|�〉, (1.5)

where |�〉 is the unique reference state selected by the condition 〈x|�〉 = 1. If we
choose twisted polynomials q̂i , i = 1, . . . ,n that are not eigenvalues of the operators q̂i ,
the construction (1.5) would be a sensible definition of off-shell Bethe states correlating
with the developed SoV paradigm.

In [6] we noticed a remarkable relation between the B-operator and the so-called
Gelfand–Tsetlin subalgebra of the Yangian Y(gl(n)) [29]. Specifically, when the spin
chain twist G is taken to be the companion twist matrix the B-operator attains the form

B(u) = GT1(u)GT[2]
2 (u) . . .GT[2(n−2)]

n−1 (u) + nilpotent. (1.6)

The operators GTa(u) denote the generators of the Gelfand–Tsetlin subalgebra of the
Yangian which is a maximal commutative subalgebra with several nice properties. In
particular, its generators are diagonalised in the so-calledGelfand–Tsetlin basiswith non-
degenerate spectrum and their eigenvalues can be labelled by arrays known as Gelfand–
Tsetlin patterns. On the other hand, "nilpotent" refers to a term which is strictly-upper
triangular in the properly ordered Gelfand–Tsetlin basis, and hence the eigenvalues of
B(u) coincide with the eigenvalues of the above product of Gelfand–Tsetlin generators.

In the present work we further probe this relation generalising the study from rectan-
gular representations addressed in [6] to arbitrary finite-dimensional irreps of gl(n). For
this generalised set up, we prove that the B-operator is diagonalisable with 〈x| being its
eigenvectors.

There are important technical improvements compared to [6] to cope with degen-
eracies in the spectrum of B. In particular, to prove that 〈x| do indeed form a basis for
generic twist eigenvalues and inhomogeneities, we introduce auxiliary twist parameters
w1, . . . , wn−1 and show that this (n − 1)-parametric deformation continuously relates
theGelfand–Tsetlin basis with the basis of 〈x|. Furthermore, we devise a sequence of em-
bedding morphisms from lower-rank spin chains to the larger-rank spin chains pertinent
to diagonalisation of B.

Finally, let us point out that we do not rely on any statements about completeness of
Bethe equations. In fact, the situation is quite the opposite one—an important ingredient
of completeness theorems follows immediately from the proposed construction. Namely
one shows that the Bethe algebra is a maximal commutative subalgebra of the algebra of
the endomorphisms of the spin chain’s Hilbert space. Indeed, the SoV basis is generated
by action of transfer matrices, but it would be impossible to generate a basis if there was
an extra independent operator that commutes with the transfer matrices.

Maximality of the Bethe algebra implies that the eigenstates in the Hilbert space
can be unambiguously labelled by eigenvalues of Bethe algebra generators. As we can
take Q-operators as generators and zeros of the Q-operators satisfy Bethe equations, we
conclude that all physical states of the spin chain are labelled, and can be distinguished,
by solutions of the Bethe equations.
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What is not guaranteed by the above argument is that each solution of the Bethe
equations labels some physical state. This question can be resolved by explicit counting
but this requires certain care, especially for spin chains in arbitrary representations that
we consider, as is discussed after (5.27). For the case of the fundamental representation
the question was resolved in various ways in the literature. We mention [30] where it
was discussed for the supersymmetric gl(2|1) case in the SoV framework of the same
type as considered in this paper; and [31] where completeness is proven for gl(n) spin
chains with and without twist, and for any value of inhomogeneities. The results of [31]
also generalise to the supersymmetric gl(m|n) case [32].

AssumptionsThe results of the paper are derived under the following assumptions on the
values of parameters: Inhomogeneities θ1, . . . , θL should satisfy θα − θβ �= � k, for any
k ∈ Z andα �= β. Our SoVbasis construction holds in principle for any twist eigenvalues
z1, . . . , zn, including the degenerate case where zi = z j for some i �= j . However, we
work in a special reference frame where the spin chain twist matrix is a modification of
the companion matrix with eigenvalues z1, . . . , zn. To be able to rotate to the frame with
a diagonal twist one should impose that zi �= z j for i �= j . Aside from the mentioned
restrictions, θα and z j can be arbitrary. Modification of the companion matrix depends
on the auxiliary twist parameters w1, . . . , wn−1 and these ones should be assumed to
be in generic position. This generic position assumption does not affect statements that
depend only on the twist eigenvalues such as the conclusion about maximality of the
Bethe algebra.

Structure of the paperThe rest of this paper is organised as follows. In Sect. 2we review
some aspects of the Yangian algebra and its representations as well as the Bethe algebra
and the twists wewill use. In Section 3 we review the Gelfand–Tsetlin algebra, introduce
the embedding morphism and use it to generate the Gelfand–Tsetlin eigenvectors. In
Sect. 4 we discuss some properties of theB-operator and use the embeddingmorphism to
prove that it is diagonalisable by explicitly constructing a maximal linearly independent
set of its eigenvectors which deform the Gelfand–Tsetlin eigenvectors. In Sect. 5 we
show that the constructed B-eigenvectors do indeed constitute a separated variable basis
by demonstrating that they can be constructed by action of the Bethe algebra. We write
down the Bethe wave functions in the SoV basis, and use the obtained results to construct
canonically conjugate momentum operators. In the appendices we prove some technical
results.

2. gl(n) Spin Chain

2.1. Yangian Y(gl(n)). The algebraic structure underlying a rational gl(n) spin chain is
the Yangian algebra Y(gl(n)). Y(gl(n)) is the associative unital algebra with generators
Ti j (u), i, j = 1, 2, . . . ,n subject to the RTT relation

(u − v)[Ti j (u), Tkl(v)] = �
(
Tkj (u)Til(v) − Tkj (v)Til(u)

)
(2.1)

for some arbitrary fixed � ∈ C
×.

The RTT relation can be conveniently by introducing two copies of C
n, referred to

as auxiliary spaces, and labelled as a and b. We then construct the triple tensor product

End
(
C
n) ⊗ End

(
C
n) ⊗ Y(gl(n)). (2.2)



316 P. Ryan, D. Volin

Next, we define the monodromy matrix T (u) as

T (u) =
n∑

i, j=1

Ei j ⊗ Ti j (u) (2.3)

where Ei j are the usual basis elements of End
(
C
n
)
with 1 in position (i, j) and 0

everywhere else. The RTT relation is then the statement that

Rab(u − v)Ta(u)Tb(v) = Tb(v)Ta(u)Rab(u − v) (2.4)

where Rab(u) denotes the R-matrix

Rab(u) = u 1ab − � Pab (2.5)

where Pab denotes the permutation operator on the two auxiliary spaces and Ta(u) or
Tb(u) denotes which of the two auxiliary spaces the monodromy matrix is acting on.

Representations of Y(gl(n)) on some Hilbert space H define quantum integrable
models. One constructs them starting from the Lax matrix Lν(u) defined by

Lν(u) = u − � Pν, Pν :=
n∑

i, j=1

Ei j ⊗ πν(E j i ), (2.6)

where ν is some Young diagram ν = (ν1, . . . , νn) labelling a finite-dimensional irrep
Vν of gl(n) and πν maps the fundamental representation generators Ei j to this irrep.
Then one takes

T (u) = LνL

L (u − θL) . . .Lν2

2 (u − θ2)Lν1

1 (u − θ1) ∈ End(Cn ⊗ H), (2.7)

with the full Hilbert space H being a product H = ⊗L
α=1 Vνα

of the representations
Vνα

of the α-th spin chain site. Here Lνα

α acts non-trivially on C
n ⊗Vνα

and trivially on
the other components of the tensor product. Note that

Ti j (u) = δi j u
L − uL−1

(
δi j

L∑

α=1

θL + � E j i

)
+ . . . , (2.8)

where Ei j = ∑
α πνα

(Ei j ) are the generators of the global gl(n) action on the spin chain.
The parameters θα ∈ C are known as the spin chain inhomogeneities and we impose

the genericness condition
θα − θβ /∈ �Z (2.9)

for pairwise distinct α, β = 1, 2, . . . , L which is required for the spectrum of both the
separated variables and the Gelfand–Tsetlin algebra to be non-degenerate.

A useful feature of Lν is its gl(n)-invariance

[Lν(u),Ei j ⊗ 1 + 1 ⊗ πν(Ei j )] = 0 (2.10)

which further implies a GL(n) symmetry [Lνα
(u), K ⊗ �να

(K )] = 0, K ∈ GL(n),
where �να

denotes the representation of GL(n) corresponding to πνα
on gl(n). This

property further extends to the monodromy matrix T (u):

�ν(K )T (u)�ν(K )−1 = K −1T (u)K ,

�ν(K ) := �νL
(K ) ⊗ · · · ⊗ �ν1(K ). (2.11)

In other words, applying the same GL(n) transformation to each spin chain site is
equivalent to performing the inverse transformation on the auxiliary space C

n.
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2.2. Bethe algebra. The Bethe algebra is the algebra of integrals of motion of the XXX
chain comprising transfermatriciesTξ (u) labelled byYoung diagrams ξ .More precisely,
the transfer matricies define a commutative family of operators

[Tξ (u), Tξ ′(v)] = 0 (2.12)

which are polynomials in the spectral parameter u and the coefficients of these polyno-
mials generate the Bethe algebra.

Not all Tξ (u) are independent however. An independent set of generators for the
Bethe algebra can be obtained from the Talalaev formula1 [33]

det(1 − T (u)e−�∂u ) =
n∑

a=0

(−1)a
Ta,1(u)e−a�∂u , (2.13)

whereTa,1(u)denotes the transfermatrix corresponding to theYoungdiagramconsisting
of a single column with a boxes. Concretely,

Ta,1(u) =
∑

1≤i1<i2<···<ia≤n

T
[

i1i2...ia
i1i2...ia

]
(u). (2.14)

Here T
[

i1i2...ia
i1i2...ia

]
(u) are quantum minors, defined by

T
[

i1i2...ia
j1 j2... ja

]
(u) =

∑

σ∈Sa

Tiσ(1) j1(u)T [−2]
iσ(2) j2

(u) . . . T [−2(a−1)]
iσ(a) ja

(u) (2.15)

where Sa denotes the symmetric group on a letters.
All transfer matricies Tξ (u) can be constructed using the fusion procedure [34] and

can be expressed in terms of Ta,1 by means of the Cherednik–Bazhanov–Reshetikhin
(CBR) formula [35,36]

Tξ (u) = det
1≤i, j≤ξ1

TξTj +i− j,1(u + �(i − 1)), (2.16)

where ξT denotes the transpose of ξ .

2.3. Twist. The spectrum of transfer matricies as constructed above is degenerate. For
example for L = 1 all transfer matricies are central elements of U (gl(n)) and so they
are scalar multiples of the identity operator acting on the spin chain. In order to remove
these degeneracies it is convenient to twist by a matrix G ∈ GL(n). More precisely, one
constructs the twisted monodromy matrix T(u) defined by the replacement

T (u) → T(u) := T (u)G. (2.17)

While twisting does not define a homomorphism of the Yangian algebra since it maps
the identity to G, it does preserve the commutation relation (2.1) due to the GL(n)

invariance of the R-matrix (2.5)

[Rab(u), G ⊗ G] = 0, G ∈ GL(n) (2.18)

1 To our knowledge, the power of this simple formula was recognised for the first time in [33]. Another re-
lated fundamental result, that Baxter Q-functions satisfy

∑n
a=0(−1)a

Ta,1(u)e−a�∂u Q[2] = 0, was identified
earlier [24].



318 P. Ryan, D. Volin

and hence algebraic relations such as (2.12) and (2.16) are unchanged by twisting. From
now on we will take all transfer matricies Tξ to be constructed with T instead of T .

In this paper we shall consider the case when G is diagonalisable with pairwise
distinct eigenvalues z1, z2, . . . , zn. Note that by theGL(n) symmetry of T (u) the twisted
Bethe algebra is only sensitive to the twist eigenvalues—the transfer matrix with twist
g = diag(z1, . . . , zn) can be brought to the transfer matrix with any twist G similar to
g by a simple basis change.

In our previous work [6] it proved very fruitful (from the perspective of computation
simplicity when constructing an SoV basis) to consider the case where G is the so-called
companion twist matrix with the eigenvalues z1, . . . , zn

Gi j = (−1) j−1χ jδi1 + δi, j+1, (2.19)

where χ j are elementary symmetric polynomials in z1, . . . , zn. In the present work we
find it useful to introduce a generalisation of the above twist which we call the modified
companion twist (MCT). It features new parametersw1, w2, . . . , wn−1. Specifically, we
have

Gi j = χ jδi1

w| j−1|
+ δi, j+1w j , w| j | := (−1) j

j∏

k=1

wk . (2.20)

We stress that the w1, . . . , wn−1 do not affect the eigenvalues of the twist matrix.
For demonstration purposes, we write out the the MCT matricies explicitly for n =

2, 3, 4:

(
χ1 − χ2

w1
w1 0

)
,

⎛

⎝
χ1 − χ2

w1

χ3
w1w2

w1 0 0
0 w2 0

⎞

⎠ ,

⎛

⎜⎝

χ1 − χ2
w1

χ3
w1w2

− χ4
w1w2w3

w1 0 0 0
0 w2 0 0
0 0 w3 0

⎞

⎟⎠ . (2.21)

2.4. B-operator. To introduce one of the key objects of this paper, the B-operator,
we first discuss its classical counterpart appearing in the study of a spectral curve
det (λ − L(u)) = 0, where L(u) is a classical monodromy matrix. An eigenvector � of
L is a rational function on the curve and, provided the necessary analytic conditions are
met, it is fixed by position of its poles, see e.g. [37]. The poles can be described by the
pairs (λ, u) = (epσ , xσ ), where xσ are zeros of B(u) and epσ = A(xσ ). The polynomial
B(u) and the rational function A(u) were constructed for gl(n) systems in [38,39], and
the expression for B(u) explicitly reads

B(u) =
∑

L
[

J1
i1

]
L

[
J2
J1 i2

]
. . . L

[
Jn−1
Jn−2 in−1

]
vi1 . . . vin−1 , (2.22)

where Jk := { jk1, jk2, . . . , jkk} is a multi-index, L
[

J
J ′

]
denotes the corresponding mi-

nor of the matrix L , and v is a reference vector that specifies a normalisation for the
eigenvector �: v · � = 1. An alternative combination of mondoromy matrices yielding
the same function B(u) was proposed in [40].

Remarkably, for the Poisson bracket {L(u)⊗, L(v)} = [ P
u−v

, L(u) ⊗ L(v)] which is a
classical counterpart of (2.1) one can derive {xσ , pσ ′ } = δσσ ′ . Choosing this canonical
set of coordinates separates the variables in the Hamilton-Jacobi equation reducing it to
a set of identical one-dimensional equations

det
(

e
∂W
∂xσ − L(xσ )

)
= 0, σ = 1, . . . , d, (2.23)
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where d is the number of degrees of freedom.
An appropriate quantisation of this formalism should yield a quantum SoV which is

the key idea behind Sklyanin’s SoV program.
The quantum B-operator was proposed for gl(3) in [20,21] and generalised to gl(n)

in [3,4]. In terms of the twisted monodromy matrix T(u) = T (u)G and a particular
choice of the reference vector v, it takes the form

B(u) =
∑

J1,...,Jn−1

T
[

J1
n

]
T[2] [J2

J1 n

]
T[4] [J3

J2 n

]
. . .T[2n−4] [Jn−1

Jn−2 n

]
, (2.24)

where the entries of the multiindex Jk = { jk1, jk2, . . . , jkk} are constrained to be 1 ≤
jk1 < · · · < jkk ≤ n−1, and k = 1, . . . ,n−1. The sum is then over all possible values
of jki .

In [6] we set G to be the companion twist matrix and expressed the corresponding
B-operator in terms of bare (untwisted) monodromy matrix elements Ti j (u). The same
computation can be repeated whenwe take G to be themodified companion twist (MCT)
(2.20) and we obtain

B(u) =
∑

J1,...,Jn−1

T
[

J1
1

]
T [2] [J2

1 J1+1

]
T [4] [J3

1 J2+1

]
. . . T [2n−4] [Jn−1

1 Jn−2+1

]
wJ1wJ2 . . . wJn−1 , (2.25)

where wJk := ∏k
i=1 w jki . Notice that we can obtain B with MCT from B with the

usual companion twist by simply replacing Ti j (u) → wi Ti j (u) which preserves the
elementary RTT relation. Hence algebraic relations involving B with the companion
twist determined in [6] can be upgraded to ones with the MCT by simply performing
this transformation.

One of the main goals of this paper is to diagonalise B(u) and to demonstrate that
its eigenvectors form a separated variable basis. In order to aid with this, we recall
that in [6] the explicit form (2.25) was shown to be closely related to another maximal
commutative subalgebra (different from the previously mentioned Bethe algebra) of
Y(gl(n)). Namely, it was noticed that the leading term in (2.25)where Jk = {1, 2, . . . , k}
for k = 1, 2, . . . ,n − 1 belongs to the Gelfand–Tsetlin subalgebra of Y(gl(n)) and so
the remaining terms in B can be viewed as a deformation controlled by the parameters
w1, . . . , wn−1. In the next section we will recall some details of the Gelfand–Tsetlin
algebra.

3. Gelfand–Tsetlin Algebra and Embedding Morphism

As was mentioned, the structure of the SoV basis we will construct is closely related
to the Gelfand–Tsetlin basis and so knowledge of the latter is crucial for what follows.
In this section we will review some aspects of the GT algebra. These tools will then be
used to show that B is diagonalisable and furthermore every eigenvector 〈�B| of B can
be written as

〈�B| = 〈�GT| +O (. . . ) , (3.1)

where 〈�GT| denotes an element of the Gelfand–Tsetlin basis andO (. . . ) denotes terms
which vanish in the auxiliary singular twist limit

ASTL : w1 
 w2 
 · · · 
 wn−1. (3.2)

Since the eigenvectors of B turn out to be the eigenvectors 〈x| of separated variables, we
thus obtain that the SoV basis is a continuous deformation of the Gelfand–Tsetlin basis,
with deformation parameters w1, . . . , wn−1.
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3.1. Gelfand–Tsetlin algebra. The Gelfand–Tsetlin (GT) subalgebra of Y(gl(n)) can
be interpreted as the Bethe algebra of the gl(n) XXX chain with the twist matrix G =
diag(z1, z2, . . . , zn) considered in the singular twist limit2

STL : z1 
 z2 
 · · · 
 zn. (3.3)

The Gelfand–Tsetlin generators GTa(u), a = 1, 2, . . . ,n are then defined as

GTa(u) = lim
z1
···
zn

Ta,1(u)

χa
(3.4)

which can easily be shown to be equal to the quantum minor T
[
12...a
12...a

]
(u).

GTa are diagonalisable and their eigenstates 〈�GT| are labelled as follows [41]. Each
� is an L-tuple

� =
(
�1,�2, . . . , �L

)
, (3.5)

where each �α is a GT pattern. Namely, it is an array

να
1 να

2 . . . να
n

λα
n−1,1 . . . λα

n−1,n−1
. . . . . .

λα
21 λα

22
λα
11

(3.6)

in which the nodes λα
aj ∈ Z are subject to the branching rules

λα
a+1, j ≥ λα

aj ≥ λα
a+1, j+1, a = 1, 2, . . . ,n − 1, j = 1, 2, . . . , a, (3.7)

andνα
j ≡ λα

n, j arefixednumbers definedby the chosen representationνα = (να
1 , . . . , να

n )

at α-th site of the spin chain.
The eigenvalues of GTa are

〈�GT|GTa(u) =
L∏

α=1

a∏

j=1

(u − θα − �(λα
aj + a − j))〈�GT|. (3.8)

We see thatGTa(u) measures the value of the a-th rows of the GT patterns which make
up 〈�GT|. This hierarchical organisation comes from the original procedure to build up
GT patterns: one considers the tautological homomorphism φGT : Ti j → Ti j which, for
i, j being restricted to range 1, 2, . . . , a, can be considered as an injection of Y(gl(a))

into e.g. Y(gl(a + 1)). One then builds the ascending chain

Y(gl(1))
φGT

−−→ . . .Y(gl(a))
φGT

−−→ Y(gl(a + 1)) . . .
φGT

−−→ Y(gl(n)) (3.9)

for which GTa are precisely the central elements (quantum determinants) of Y(gl(a)).
The center of Y(gl(n)) acts as

〈�GT|GTn(u) =
n∏

j=1

ν j (u − �(n − j))〈�GT|, ν j (u)

2 Not to be confused with the ASTL defined above.
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:=
L∏

α=1

(u − θα − � να
j ). (3.10)

For each GTa there is also a corresponding raising operator GP+
a and a lowering

operator GP−
a which act on the GT basis as [41]

〈�GT|GP±
a (θα + �(λα

aj + a − j)) ∝ 〈� ± δα
aj

GT|. (3.11)

Here � ± δα
aj denotes a GT pattern where the node (a, j) of the α-th pattern has been

changed by ±1. The coefficient of proportionality is non-zero provided that the pattern
� ± � δα

aj satisfies the branching rules, i.e. corresponds to a consistent GT pattern.

GP±
a (u) can be written explicitly in terms of quantum minors. Specifically,

GP+
a(u) = T

[
12...a−1 a
12...a−1 a+1

]
(u), GP−

a (u) = T
[
12...a−1 a+1
12...a−1 a

]
(u). (3.12)

Dual diagonals We will find it convenient to introduce an alternative labelling of the
GT pattern entries, by μα

k j , where μα
k j = λα

n−k+ j−1, j . For example, for gl(4) we have

να
1 να

2 να
3 να

4
μα
11 μα

22 μα
33

μα
21 μα

32
μα
31

. (3.13)

This new labelling naturally suggests to parameterise GT patterns by what we refer to
as dual diagonals μα

k where we define

μα
k = (μα

k1, μ
α
k2, . . . , μ

α
kk), k = 1, . . . ,n − 1. (3.14)

Since the minimum value of each μα
k j allowed by the branching rules is μα

k j = να
k+1, it

is also convenient to introduce the parameters

μ̄α
k j = μα

k j − να
k+1 (3.15)

which measure how much a given dual diagonal has been excited above its minimum
value. Clearly, μ̄α

k corresponds to a gl(k)Young diagram. As we will see, dual diagonals
turn out to be a natural labelling of GT patterns in the context of separation of variables.

3.2. Embedding morphism. As was described above, the Gelfand–Tsetlin algebra is
constructed by considering the tautological injection Ti j �→ Ti j ofY(gl(k)) intoY(gl(k+
1)). Now consider a different (nearly) tautological injection ofY(gl(k)) intoY(gl(k+1))
defined by

φ : Ti j (u) �→ T1+i,1+ j (u). (3.16)

We use it for a different purpose: to construct a special embedding of a gl(k) spin chain
into a gl(k +1) chain that shall be called embedding morphism. Formally the embedding
morphism is an induced map φ : Hk → Hk+1, where Hk is the Hilbert space of the
gl(k) spin chain of length L with spin chain sites in irreps (να

1 , . . . , να
k ), fully defined

by the following property

φ : 〈0k |J �→ 〈0k+1|φ(J ), (3.17)
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where J is any element of Y(gl(k)), and 〈0k | is the lowest-weight vector of the gl(k)

chain—the state whose GT pattern has the lowest possible entries μα
i j = να

i+1 for i =
1, 2, . . . , k − 1, j = 1, 2, . . . , i .

Define V(k) := φ(Hk). By abuse of notation we may also use V(k) = φm(Hk), for
m = 2, 3, . . . ,n − k and so in particular we think about V(k) as a subspace in the full
gl(n) spin chain which represents a smaller gl(k) chain.

Remarkably, the embedding morphism has a simple coordinatisation using GT pat-
terns:

φ

⎛

⎜⎜⎝

να
1 . . . να

k

μα
i j

�
�

��
�

�

⎞

⎟⎟⎠ ∝

να
1 . . . να

k να
k+1

μα
i j

να
k+1

να
k+1

. .
.

�
�

��
�

�
, (3.18)

i.e. the image of a state with the GT pattern �′ for the gl(k) spin chain is the state for
the gl(k + 1) chain with the GT pattern which has the right-most dual diagonal at the
lowest possible value and the remaining triangular block coinciding with �′.

The above implies the following property of Hk+1 which we will frequently use. If
〈�| ∈ Hk+1 is obtained from a vector in Hk by action of φ then T11(u) = GT1(u) ∈
Y(gl(k + 1)) with the eigenvalue νk+1(u). Since the eigenvalue of T11, and hence of the
global Cartan generator E11, is at its lowest possible value and the eigenvalue of E11 is
lowered by Tj1, j > 1 it follows that

〈�|Tj1(u) = δ j1νk+1(u)〈�|, j = 1, . . . , k + 1. (3.19)

To see why the property (3.18)) indeed holds it is enough to check that the raising opera-
torsGP+

a act accordingly because their action generates the whole Hilbert space starting
from the lowest-weight state. To this end consider yet another family of homomorphisms
[41] ψm : Y(gl(k)) −→ Y(gl(k + m)) for m = 1, 2, . . . defined by

ψm : Ti j (u) �→ (GTm(u + m�))−1 T
[
1...m m+i
1...m m+ j

]
(u + m�). (3.20)

One can show that, for any quantum minor T
[A
B

]
(u),

ψm : T
[
A
B

]
(u) �→ (GTm(u + m�))−1 T

[
1...m A+m
1...m B+m

]
(u + m�), (3.21)

and that ψm = (ψ1)
m . Then

ψ1(GP±
a (u)) = (GT1(u + �))−1GP±

a+1(u + �). (3.22)

Define an embedding morphism of spin chains ψ1 : Hk → Hk+1 by (3.17) with φ

replaced by ψ1. Given (3.22), relation (3.18)) with φ replaced by ψ1 is obvious: on
one hand, (3.22) states that action of raising and lowering operators commutes, up to
normalisation, with ψ1. On the other hand, one gets in the image of ψ1 precisely the
states ofHk+1 that are generated by GP+

2,GP+
3, . . . ,GP+

k acting on 〈0k+1|. Finally, one
notes that the last dual diagonal cannot be excited by these operators if the node μα

k1
attains its lowest value μα

k1 = να
k+1. But μα

k1 can only change by action of GP+
1 which

cannot be represented as ψ1(GP+
a).
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Now we remark that the embeddings ψ1 and φ coincide. Indeed, for any 〈�| of the
gl(k + 1) chain with μα

k1 = να
k+1 one has 〈�|Tj1(u) = δ j1νk+1(u)〈�| as was established

above, and so one computes

〈�|ψ1(Ti j (u)) = (νk+1(u + �))−1〈�|T
[
1 1+i
1 1+ j

]
(u + �)

= 〈�|φ(Ti j (u)). (3.23)

Hence ψ1(Ti j (u)) = φ(Ti j (u)) when restricted to V(k), and so (3.18)) holds.

3.3. A roadmap to the GT basis. Finally, we present a special generation of states in
the GT basis based on the embedding morphism. The idea is to consider a recursive
procedure

· · · → Hk ↪
φ−→ V(k)

S−→ Hk+1 ↪
φ−→ · · · , (3.24)

where S is the introduced-below composite raising operator that excites the largest dual
diagonal from its lowest to the desired value. The recursion starts from the lowest weight
state of the gl(2) spin chain which spans V(1) and terminates with the full Hilbert space
Hn.

We start by considering a state 〈�| ∈ Hk+1 obtained from a state inHk by action of
the embedding morphism. By definition,� is an L-tuple of patterns� = (�1, . . . , �L)

and each �α has μα
k j = να

k+1, j = 1, . . . , k. From here we will construct a state where
μα

k j = να
k+1 + 1, j = 1, . . . , a, μα

k j = να
k+1 for j > a, for some 1 ≤ a ≤ k. By the

properties of the GT raising operators we know that we can obtain such a state by acting
on 〈�| with the operators which raise those particular nodes, obtaining

〈�|GP+
1GP+

2 . . .GP+
a , (3.25)

where each GP+ is evaluated at θα + � να
k+1. This can be written explicitly in terms of

minors as
〈�|T

[
1
2

]
T

[
12
13

]
. . . T

[
12...a−1 a
12...a−1 a+1

]
. (3.26)

By straightforward application of the quantum column expansion of minors [41] one
can show that (3.26) coincides, up to a non-zero coefficient, with

〈�|T
[
12...a
23...a+1

]
(θα + � να

k+1). (3.27)

From here, one can further excite the excited nodes, filling up a certain number of nodes
successively by 1 until the full dual diagonal has reached the desired value. In summary,
we have the following. For a Young diagram μ̄k of height hμ̄k ≤ k, let us define a
composite operator Sμ̄k (u) by

Sμ̄k (u) =
→∏

j∈col(μ̄k )

Sμ̄k , j (u + �( j − 1)), (3.28)

where the product is over the number of columns col(μ̄k) of μ̄k ; and Sμ̄k, j is the raising

operator associated to the j-th column of μ̄k . Specifically, if we let h j
μ̄k

denote the
number of boxes in the j-th column of μ̄k then

Sμ̄k , j (u) = T

[
1 2 ... h j

μ̄k

2 3 ... h j
μ̄k

+1

]
(u). (3.29)
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Then 〈�|
L∏

α=1
Sμ̄α

k
(θα + �να

k+1) is a state in Hk+1 whose k-th dual diagonals are excited

to values μ1
k, μ

2
k, . . . , μ

L
k .

Finally, by running the recursion (3.24), we can write any element of the GT basis as

〈�GT| = 〈0|
←∏

k

L∏

α=1

φn−k−1
(
Sμ̄α

k
(θα + � να

k+1)
)

, (3.30)

where the first product ranges over k = 1, . . . ,n − 1.

4. Diagonalising the B-Operator

As was reviewed in the introduction, the eigenvectors of separated variables have been
conjectured, and proven in certain cases, to be eigenvectors of the B-operator. The most
general result achieved so farwas to construct [6] a family ofB eigenvectors forgl(n) spin
chains in (S A) representations. Unfortunately, for certain classes of representations the
spectrum ofB is degenerate3 and so linear independence of the eigenvectors constructed
in [6] cannot be inferred from the eigenvalues of B alone. Furthermore, it is not even
granted that B is diagonalisable.

In this section we present a procedure that resolves both of these issues and further-
more generalises the results of [6] to arbitrary compact representations. The idea is to
construct the eigenvectors of B by ascending through the spin chains of increasing rank

· · · → Hk ↪
φ−→ V(k)

Tμ̄k−−→ Hk+1 ↪
φ−→ · · · . (4.1)

The procedure is rooted in the following two observations. Firstly,

B(k+1)|V(k)
∼ φ

(
B(k)

)
|V(k)

, (4.2)

where B(k) denotes the B-operator for the gl(k) spin chain, and ∼ means equality up
to multiplication by an operator which is proportional to the identity when restricted to
V(k). This property allows one to build all eigenstates of B(k+1) for which the last dual
diagonal is not excited, simply by applying the embedding morphism to smaller-rank
chains.

Secondly, we excite the last dual diagonal of gl(k + 1) patterns by action of transfer
matrices Tμ̄k , where the choice of representation μ̄k dictates how the diagonal should
be excited. This step closely follows the results of [6].

To check that the outlined procedure does indeed produce a basis ofHn, we analyse
it in the ASTL (3.2) where it degenerates to the construction (3.24) of GT eigenvectors
which are known to form a basis.

3 It is non-degnerate for symmetric and antisymmetric powers of fundamental representations, their con-
jugates, and some other special cases.
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4.1. Properties of B. From (2.25), it is straightforward to deduce the decomposition
(1.6) of B into diagonal and nilpotent upper-triangular components which we abbreviate
as B = BGT + Nil. The relative magnitude of the Nil term is controlled by auxiliary
twist parameters, and we can fully suppress it by taking the ASTL (3.2). Hence, we can
perceive eigenvectors of B as a continuous deformation of the GT eigenvectors for finite
values of w1, . . . , wn−1 and therefore label them by the GT patterns: An eigenvector
of B is denoted by 〈�B| if it becomes 〈�GT| in the ASTL. Due to degeneracy of the
spectrum of BGT, there are legitimate questions about existence and unicity of such
vectors, but we overcome these issues by explicitly building them in the next subsection.
Meanwhile, the eigenvalue of B on 〈�B| is guaranteed to be equal to that of BGT on
〈�GT|:

〈�B|B(u) =
L∏

α=1

n−1∏

k=1

k∏

j=1

(u − xα
k j )〈�B|, xα

k j = θα + � (μα
k j − j + 1), (4.3)

whereμα
k j are the entries of theGTpatterns� as explained in (3.13).B(u) is a polynomial

in u of degree L n(n−1)
2 so we can write it as

B(u) =
L∏

α=1

n−1∏

k=1

k∏

j=1

(u − Xα
k j ), (4.4)

and Xα
k j are defined unambiguously as the operators with eigenvalues xα

k j . They form
a maximal commutative subalgebra of End(Hn) provided B(u) is diagonalisable and
its diagonalisation is performed in a u-independent way. This becomes clear when we
construct 〈�B| explicitly in the next section.

Let us now understand how the crucial property (4.2) comes about. The r.h.s. of
(4.2) is the image of B(k), and B(k) is defined by (2.25) with n being replaced with k.
It is an operator acting on Hk . The l.h.s. of (4.2) contains the operator B(k+1) acting
on Hk+1. We illustrate its restriction to the subspace V(k) for the case k + 1 = n. From

(3.19) and the definition of minors (2.15) it follows that T [2r ]
[

Jr+1
1 Jr+1

]
is only non-zero

if Jr+1 contains 1. Denote then Jr+1 = (1 J ′
r+1 + 1) and then simplify, using (3.19),

T [2r ]
[
1 J ′

r+1+1
1 Jr+1

]
= νn(u + �r)φ

(
T [2(r−1)]

[
J ′

r+1
Jr

])
. Overall, one gets

B(n)|V(n−1) =
n−2∏

r=0

νn(u + � r) φ
(
B(n−1)

)
|V(n−1) . (4.5)

Obviously, the above conclusion holds when we replace n with k + 1 which confirms
(4.2).

As already outlined, (4.2) ensures that eigenvectors of B(k) become eigenvectors of
B(k+1) upon using the embedding morphism. Moreover, one guarantees that 〈�B| ∈
V(k) ⊂ Hn if and only if at most the first k − 1 dual diagonals are excited above their
minimal values (for each �α of the pattern � = (�1, . . . , �L)). This is not a trivial
conclusion as 〈�B| deforms 〈�GT| and so its relation to the subspacesV(k) could become
obscured. It allows us to consider Xα

k′ j as operators defined for any gl(k) chain with
Xα

k′ j = φ∗(Xα
k′ j ), where φ∗ is a pullback of the embedding morphism. For k > k′, these

operators, for generic representations, are dynamical having all possible eigenvalues
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permitted by branching rules. For k ≤ k′, Xα
k′ j are non-dynamical and they attain only

their lowest values.

4.2. Building upB eigenvectors. In the previous subsectionwe clarified how the embed-

dingHk ↪
φ−→ V(k) ⊂ Hk+1 works. This subsection focuses mostly on the excitation step

V(k)

Tμ̄k−−→ Hk+1. We understand by now that one should focus on exciting the longest
dual diagonal as all the other diagonals should have been excited to the desired values
at lower-rank stages of the recursion.

The B-operator is independent of the twist matrix eigenvalues z1, . . . , zn and hence
so are its eigenvectors. Since we expect to construct eigenvectors of B with transfer
matricies Tξ , it is natural then to check the case of the null twist first, where the null
twist is defined as the MCT with z j = 0. In [6] we derived the following commutation
relation between B and transfer matricies T

N
ξ computed in the null twist frame:

T
N
ξ (v)B(u) = fξ (u, v)B(u)TN

ξ (v) +R(u, v), (4.6)

where fξ (u, v) is a function given explicitly by

fξ (u, v) =
hξ∏

a=1

u − v + �(a − 1 − ξa)

u − v + �(a − 1)
, (4.7)

and R(u, v) = ∑n
j=1 Tj1(v) × . . . . This relation also holds when the auxiliary param-

eters wi are introduced, the only difference is in the rescaling by positive powers of wi
of terms of R.

Our goal is to engineer a situation when the remainder R(u, v) vanishes. Then we
can use (4.6) to intertwine between eigenstates of B.

We say that 〈�| is an admissible vector at point v if it is an eigenstate of B and it
satisfies 〈�|Tj1(v) = 0 for all j and the given value of v.

From (4.6), it is clear that if 〈�| is admissible at point v then 〈�|TN
ξ (v) is an eigenstate

of B provided that the action of T
N
ξ (v) on 〈�| is non-zero. However, recall that we are

eventually interested in action of transfer-matrices Tξ with non-null twist, and it is not
obvious that 〈�|TN

ξ (v) coincides with 〈�|Tξ (v) under the above assumptions. To cover
this point, we briefly discuss the relevant properties of transfer matriciesTξ , more details
can be found in [6].

Transfer matriciesTξ (u) can be obtained as the trace of the fused monodromymatrix
Tξ . The elements ofTξ (u) arewhatwe refer to as ξ -minorsTξ

[A
B

]
(u). For agl(k+1) spin

chain,A andB are sets of indices taking values 1, 2, . . . , k+1 that are in correspondence
with semi-standard Young tableaux of shape ξ

A =
a

s

A1,1 A1,2 . . . A1,ξ1

A2,1 . . .

. . .

, B =
B1,1 B1,2 . . . B1,ξ1

B2,1 . . .

. . .

. (4.8)
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Tξ

[A
B

]
(u) are constructed by applying appropriate symmetrization of the indices in

the ordered product

−−−−→
hξ∏

a=1

ξa∏
s=1

T
[Aa,s
Ba,s

]
(u + �(s − a)), of which (2.15) is an example for

ξ = (1a). The transfer matrix Tξ is then defined as Tξ (u) = ∑
A Tξ

[A
A

]
(u), where

the sum is over all admissible tableaux A. It is then a straightforward computation to
demonstrate

Tξ (v) =
∑

A
wATξ

[
A
A+1

]
(v) +

∑

j

Tj1(v) × O(z1, . . . , zk+1), (4.9)

where wA := ∏
a∈A wa .

The first term in (4.9) coincides with T
N
ξ and we clearly see that the second term

vanishes when acting on an admissible vector at point v and thus indeed 〈�|TN
ξ (v) =

〈�|Tξ (v). One may ask how z1, . . . zk+1—the eigenvalues of the MCT of the gl(k + 1)
spin chain are related to z1, . . . zn—the original MCT eigenvalues. The point here is
that none of the constructed states depend on zi and so this relation is immaterial. The
auxiliary parameters wi should however be compatible with the injection (3.16) used
in the embedding procedure: If w

(k)
i denote the auxiliary parameters used for transfer

matrices of Y(gl(k)) then w
(k+1)
i+1 = w

(k)
i , i = 1, . . . , k.

Let 〈�′| be an eigenvector of B(k). Then we use (3.19) to readily see that 〈�| =
φ(〈�′|) is an admissible vector at points θα + � να

k+1. Hence, to excite the k-th dual
diagonals μα

k j of patterns �α , α = 1, . . . , L we should consider the following product

〈�|
L∏

α=1

Tμ̄α
k
(θα + � να

k+1) (4.10)

as one can confirm from the explicit vale of fξ (u, v) (4.7) for ξ = μ̄α
k . The only thing to

check is that the action of Tμ̄α
k
at the point (θα + � να

k+1) on 〈�| results in a vector which
is still admissible at points (θβ + � ν

β
k+1) for β �= α. This is verified by considering the

following fused RTT relation [6]:

(v − v′)[Tj1(v), Tμ̄k

[
A
B

]
(v′)] =

∑

a∈A
Ta1(v) × · · · −

∑

a∈A
Ta1(v

′) × . . . . (4.11)

Taking v = (θβ + � ν
β
k+1), v

′ = (θα + � να
k+1) and using (3.19) and (4.11) we conclude

that if 〈�| is admissible at points v, v′ then 〈�|Tμ̄k (v) is admissible at the point v′.
Summarising, the recursion (4.1) yields the following recipe for an explicit build up

of the eigenstates of the operator B with pattern �

〈�B| = 〈0|
L∏

α=1

n−1∏

k=1

φn−k−1
(
Tμ̄α

k
(θα + � να

k+1)
)

. (4.12)

Here 〈0| is the lowest weight state (the GT vacuum) of the gl(n) spin chain, and terms
in the product with lower values of k should be left of those with higher values of k. We
remind the reader that φr amounts to the simple replacement of all Ti j with Ti+r, j+r .
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We should still demonstrate that the constructed states are linearly independent. To
this end choose null-twist transfer matrices in (4.12) and use the CBR formula (2.16) to
rewrite them as a sum over products of transfer matricies in anti-symmetric representa-
tions. We then take the ASTL (3.2) of (4.12). The leading contribution comes from the
term in the CBR expansion with the most number of products,4 and it exactly coincides
with the composite raising operator (3.28). Hence the ASTL of 〈�B| exists and coin-
cides with 〈�GT|. So 〈�B| must be non-zero and moreover all 〈�B| must be linearly
independent for generic enoughwi because 〈�GT| are linearly independent. Hence 〈�B|
form a basis (for generic wi ) and thus B is diagonalisable.

One may ask what would happen if μ̄α
k in (4.10) are chosen to be some arbitrary

integer partitions that do not satisfy the branching rules of the GT patterns and hence
cannot be interpreted as dual diagonals. Then, if (4.10) is non-zero it would be an
eigenvector of B that is, in general, a linear combination of 〈�B|. Hence the outlined
construction (4.12) and generated eigenvectors 〈�B| are not unique. However, obvious
advantages of the proposed algorithm are that it has clear regular structure and that we
can demonstrate that it indeed produces a basis. How one can use this basis is discussed
in the next section.

5. Separation of Variables

In this section we show that the basis (4.12) leads to separation of variables for the Bethe
algebra eigenstates.

If a basis is generated by action of transfer matrices on some reference state then
factorisation ofwave functions is immediately obvious [5].One can also use other objects
in the Bethe algebra such as Q-operators5 to reach the same conclusion. However, this
is not how the basis (4.12) is constructed currently because lower rank transfer matrices
embedded into Y(gl(n)) using φ are typically not elements of the Bethe algebra.

One of the main results to be demonstrated is that we can generate states (4.12) using
auxiliary transfer matricies T

(k)

μ̄α
k
, k = 1, . . . ,n − 1 who are Bäcklund transforms of the

original transfer matrices and who also belong to the Bethe algebra. Namely, we can
demonstrate the following equality for any 〈�| ∈ V(k)

〈�|
L∏

α=1

φn−k−1
(
Tμ̄α

k
(θα + � να

k+1)
)

= 〈�|
L∏

α=1

T
(k)

μ̄α
k
(θα + � να

k+1). (5.1)

We first review the basic properties of the Bäcklund flow in Sect. 5.1 and then focus
on derivation of (5.1) in Sect. 5.2, with some technicalities delegated to Appendix B.
After (5.1) is established, it is straightforward to use standard Wronskian formulae to
get the results about separation of variables announced at the beginning of the paper, as
is demonstrated in Sects. 5.3 and 5.4.

4 After using the constraint that the transfer matrix corresponding to the empty diagram T∅ is simply the
identity operator.

5 While Q-operators do not belong to the Yangian as an abstract algebra, they do when we descend to
representations discussed in this paper. Also note that "other objects" does not mean new conserved charges
but rather their repackaging using e.g. Q-operators instead of transfer matrices.
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5.1. Quantum Eigenvalues, Q-system and Bäcklund flow. Given aYoung diagram ξ and
a group element g ∈ GL(n) with eigenvalues z1, z2, . . . , zn, its character χξ (g) in the
representation ξ can be obtained from a summation over semi-standard Young tableaux.
A semi-standard Young tableau T of shape ξ is obtained by filling up each box in the
Young diagram ξ with elements of the set {1, 2, . . . ,n} subject to the condition that
the numbers weakly decrease in every row and strictly decrease in every column.6 The
character can then be computed as

χξ (g) =
∑

T

∏

(a,s)⊂ξ

z#(a,s), (5.2)

where #(a, s) denotes the number in position (a, s) of the tableau T and the product is
over all boxes (a, s) of the diagram ξ .

A similar formula exists for transfer matricies [42–44]:

Tξ (u) =
∑

T

∏

(a,s)⊂ξ

�#(a,s)(u + �(s − a)), (5.3)

where the functions � j (u), j = 1, 2, . . . ,n are referred to as quantum eigenvalues of
the Y(gl(n)) monodromy matrix and satisfy

[�i (u),� j (v)] = 0, i, j = 1, 2, . . . ,n. (5.4)

We will present an explicit construction of them below in terms of another set of quan-
tities, the Q-operators [24,28,45–47].

Recall the generating function (2.13) for the transfermatriciesTa,1: det(1−T(u)e−�∂u ) =∑n
a=0(−1)a

Ta,1(u)e−a�∂u . It then follows from (5.3) that we can write

det(1 − T(u)e−�∂u ) =
(
1 − �n(u)e−�∂u

)
. . .

(
1 − �1(u)e−�∂u

)
(5.5)

which can easily be seen by expanding the r.h.s. and comparing coefficients of e−a�∂u .
The Q-operators Qi (u), i = 1, . . . ,n are annihilated by the above finite-difference
operator

det(1 − T(u)e−�∂u )Q
[2]
i (u) = 0, i = 1, 2, . . . ,n. (5.6)

The Q-operators have been explicitly constructed, by means of various different tech-
niques, in [28,46–50]. The complete family of Q-operators comprises operators QI ,
I ⊂ {1, 2, . . . ,n} that are related to Qi by means of the Q Q relations

QI i j Q
[−2]
I = QI i Q

[−2]
I j − QI j Q

[−2]
I i (5.7)

supplemented with Q∅(u) = 1. The analytic structure of Q-operators for spin chains in
arbitrary representation is known [47] to have the following form

QI (u) = NIqI (u)

|I |∏

j=1

�
[
ν̂

[2(1−|I |)]
j (u)

]
, q̂I (u) := qI

∏

j∈I

z
u
�

j , (5.8)

6 Note that our convention is the opposite to the widely used one where the numbers in a tableau strictly
increase in each column and weakly increase in each row. The resulting classical character is not sensitive to
this difference, however it becomes important for the construction of transfer matrices.
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where ν̂ j (u) := ∏L
α=1(u − θα − � ν̂α

j ) with ν̂α
j being the shifted weights ν̂α

j := να
j −

j + 1, qI (u) is an operator-valued monic polynomial, and q12...n = 1. Finally NI is

normalisation which is well-defined with NI = ∏
j<k

zi j −zik
zi j zik

for I = {i1, . . . , i|I |}
but is not relevant for our discussion, and �[F(u)] has the property �[F(u + �)] =
F(u)�[F(u)].

If I is a single index i , (5.8) becomes

Qi (u) = q̂i (u)� [ν1(u)] (5.9)

which should be considered as a gauge transformation between twoways to parameterise
Baxter Q-operators.

By using (5.6) together with (5.5) it easy to see that a solution for �k(u) is given by

�k(u) = Q
[−2]
σ(Ik−1)

Qσ(Ik−1)

Q
[2]
σ(Ik )

Qσ(Ik )

, k = 1, . . . ,n, (5.10)

where Ik := {1, 2, . . . , k}, while σ denotes some element of the permutation group
Sn. Clearly, the quantum eigenvalues �k are not invariant under choice of σ as they
are sensitive to the order of terms in the factorisation (5.5). However their (quantum)
symmetric combinations, transfer matricies, are invariant under this choice.

We will now introduce the notion of the Bäcklund transform. It traces its origins to
the solutions of the Hirota bilinear equation on the gl(n) strip [24,34,51] but we shall
define it in more compact terms. Consider the so-called Wronskian solution of the CBR
formula [24,48]

Tξ (u) =
det

1≤i, j≤n
Q

[2ξ̂σ ( j)]
σ(i) (u)

Qσ(In)(u)
, (5.11)

where ξ̂ j = ξ j − j + 1 are the shifted weights and whose equivalence with (5.3) follows
as a result of the Q Q-relations. The (n − k)-th Bäcklund transform of the transfer
matrix Tξ (u) that shall be denoted as T

(k)
ξ (u) is obtained by restricting the range of the

determinant in (5.11) to k components:

T
(k)
ξ (u) =

det
1≤i, j≤k

Q
[2ξ̂σ ( j)]
σ(i) (u)

Qσ(Ik )(u)
. (5.12)

From (5.10), it is easy to deduce thatT(k)
ξ are expressed in terms of quantum eigenvalues

as

T
(k)
ξ (u) =

∑

T

∏

(a,s)⊂ξ

�#(a,s)(u + �(s − a)), (5.13)

where the only difference with (5.3) is that the tableaux T are filled with the numbers
{1, 2, . . . , k}, instead of the full set {1, 2, . . . ,n}.
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Fig. 1. Gluing of diagrams Fα
k and μ̄α

k . The dotted line is the boundary of the diagram ν̄α . Crossed squares
depict the column which should be of the same height for Fα

k and ν̄α

5.2. Action of transfer matrices. We prove (5.1) in two steps. First, we prove that

TFα
k +μ̄α

k
(θα + � να

n )

TFα
k
(θα + � να

n )
= T

(k)

μ̄α
k
(θα + � να

k+1), (5.14)

and then we prove the equality between the l.h.s. of (5.14) acting on 〈�| ∈ V(k) and
the l.h.s. (5.14). The second step is more technical and we leave it to Appendix B, and
we also prove in Appendix A that the ratio of transfer matricies in the l.h.s. of (5.14) is
well-defined. This subsection deals with (5.14).

In our proofs we assume that inhomogeneities assume some generic value (that is we
avoid a certain subset ofmeasure zerowhere the invoked arguments could fail). But since
the l.h.s. of (5.1) is polynomial in inhomogeneities, the final result should be correct
for any θα . It is however only useful if (4.12) form a basis for which sake a sufficient
condition θα − θβ /∈ �Z for pairwise distinct α, β is imposed.

In (5.14),TFα
k +μ̄α

k
andTFα

k
are usualY(gl(n)) transfermatricies and ”+”means gluing

of Young diagram shapes aligned on top. Denote by ν̄α the reduced Young diagram with
ν̄α

j = να
j − να

n . Then Fα
k is any Young diagram satisfying the following constraints: its

width (value of the first component Fα
k1) is equal to ν̄α

k+1, the height of its last column is
equal to the height of the ν̄α

k+1-th column of ν̄α , and it must be that Fα
k + μα

k ⊂ ν̄α , see
Fig. 1.

The key feature we need is vanishing of quantum eigenvalues at specific points:

�r (θα + � να
r ) = 0, α = 1, 2, . . . , L , r = 1, . . . ,n. (5.15)

It follows from

�r (u) = zσ(r)νr (u)
q[−2]
σ(Ir−1)

qσ(Ir−1)

q[2]
σ(Ir )

qσ(Ir )

(5.16)
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which canbe derived from (5.8), andwe assume to avoid situationswhen the denominator

of
q[−2]

σ(Ir−1)

qσ(Ir−1)

q[2]
σ(Ir )

qσ(Ir )
has a pole at θα + � να

r .

Consider Tξ (θα + � να
n )—the transfer matrix in the representation ξ evaluated at the

point θα +� να
n , and consider its expansion in quantum eigenvalues (5.3). For this special

point, only a limited subset of tableaux T contribute to this expansion. Indeed, let T be
a tableau that provides a non-zero contribution to the sum. Then it cannot contain n at
position a = 1, s = 1 because �n(θα + � να

n ) = 0. But since the numbers in a tableau
should weakly decrease to the right and strictly decrease down, T cannot contain n at
all. This tableau cannot also contain n− 1 at position a = 1, s = 1+ ν̄α

n−1, due to (5.15)
for r = n−1. Then any boxes to the right of the column s = ν̄α

n−1 cannot contain n−1.
By repeating the argument we get that boxes of T to the right of the column s = ν̄α

k+1
can be populated at most by the indices 1, 2, . . . , k.

Now we turn to the case when ξ = Fα
k + μ̄α

k . Let R be the maximal number for which
ν̄α

R = ν̄α
k+1, and r + 1 be the minimal number for which ν̄α

r+1 = ν̄α
k+1. Then we observe

two features. Firstly, entries in the μ̄α
k part of the tableau T can be only populated by

indices 1, 2, . . . , r . Secondly, the height of the last column of Fα
k (denoted by crosses

in Fig 1) is R and, since ν̄α
R+1 is strictly smaller than ν̄α

R , this last column can be only
populated by indices 1, 2, . . . , R. Hence it is fixed uniquely. Note that an immediate
corollary of this discussion is that Tξ (θα + � να

n ) = 0 if ξ is any shape not contained in
ν̄α , in contrast to the fact that the transfer matrix is invertible otherwise as is shown in
Appendix A.

Because for any non-vanishing T the last column of the Fα
k part is fixed uniquely,

values in other boxes of the Fα
k part do not affect possible values in the boxes of the μ̄α

k
part and vice versa, and so the sum (5.3) factorises:

TFα
k +μ̄α

k
(θα + � να

n )

=
⎛

⎝
∑

TF

∏

(a,s)⊂Fα
k

�#(a,s)(θα + � να
n + �(s − a))

⎞

⎠

×
⎛

⎝
∑

Tμ

∏

(a,s)⊂μ̄α
k

�#(a,s)(θα + � να
k+1 + �(s − a))

⎞

⎠ . (5.17)

The first factor obviously evaluates to TFα
k
(θα + � να

n ). For the second one, recall that
the possible entries in the tableaux Tμ̄ are constrained to be from the set {1, 2, . . . , r},
but then this term is precisely T

(r)

μ̄α
k
(θα + � να

k+1), cf. (5.13). By using the same arguments

as we invoked after (5.15) we show that all T
(k)

μ̄α
k
(θα + � να

k+1) for R − 1 ≥ k ≥ r are in

fact equal to one another and hence (5.14) indeed holds.
We supplement this conclusion with the result of Appendix B and conclude the

remarkable equality (5.1). An immediate consequence of (5.1) is that the basis (4.12)
can now be constructed as

〈�B| = 〈0|
L∏

α=1

n−1∏

k=1

T
(k)

μ̄α
k
(θα + � να

k+1) . (5.18)

We are now one step away from writing concise expressions for wave functions in the
SoV basis which is our next goal.



Separation of Variables for Rational gl(n) Spin Chains 333

5.3. Wave functions and separated variables. Expressing the basis (5.18) using the
Wronskian solution (5.12) gives

〈�B| = 〈0|
L∏

α=1

n−1∏

k=1

det
1≤i, j≤k

Q
[2 ˆ̄μ j ]
σ(i) (θα + � να

k+1)

Qσ(Ik )(θα + � να
k+1)

. (5.19)

It is convenient to introduce a new reference vector 〈�σ | := 〈0|
L∏

α=1

n−1∏
k=1

(
Qσ(Ik )(θα

+� να
k+1)

)−1 for which

〈�B| = 〈�σ |
L∏

α=1

n−1∏

k=1

det
1≤i, j≤k

Qσ(i)(xα
k j ), (5.20)

where we have used that xα
k j = θα + �(μα

k j − j + 1), see (4.3). The Gamma-function
contribution to the Q-operators (5.9) nicely factorises from the determinants and we
accordingly introduce 〈x| as rescaled basis vectors 〈�B|:

〈x| :=
L∏

α=1

n−1∏

k=1

1

�
[
ν1(xα

k j )
] 〈�B|

= 〈�σ |
L∏

α=1

n−1∏

k=1

det
1≤i, j≤k

q̂σ(i)(xα
k j ). (5.21)

Let us choose the normalisation 〈�σ |�〉 = 1 for all the Bethe algebra eigenvectors |�〉.
Then their wave functions �(x) in the constructed basis are

�(x) = 〈x|�〉 =
L∏

α=1

n−1∏

k=1

det
1≤i, j≤k

q̂σ(i)(xα
k j ) , (5.22)

where q̂i (u) is the eigenvalue of q̂i (u) on the state |�〉.
With the last formula we achieved our goal of wave function factorisation, and its

explicit form justifies why the operators Xα
k j—zeros of B(u) whose eigenvalues on 〈x|

are xα
k j should be considered as separated variables. By choosing σ to be the identity

permutation we immediately obtain (1.1).
Define |�〉 by the property 〈x|�〉 = 1 for all 〈x|. Then (5.22) implies that all |�〉 can

be constructed as

|�〉 =
L∏

α=1

n−1∏

k=1

det
1≤i, j≤k

q̂σ(i)(Xα
k j )|�〉. (5.23)

We note that |�〉 is not itself an eigenvector of the Bethe algebra. In some situations
it could be beneficial to select a certain Bethe eigenstate |0〉 as a reference and build
excitations as

|�〉 =

L∏
α=1

n−1∏
k=1

det
1≤i, j≤k

q̂σ(i)(Xα
k j )

L∏
α=1

n−1∏
k=1

det
1≤i, j≤k

q̂(0)
σ (i)(X

α
k j )

|0〉, (5.24)
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where q̂(0)
σ (i) is the eigenvalue of q̂σ(i) on |0〉. The most natural candidate for |0〉 is

one of the ferromagnetic vacua of the spin chain. It is distinguished by the property
q(0)
σ (12...k) = 1, k = 1, . . . ,n. In the reference frame where the twist is diagonal it is the
highest-weight vector with respect to an appropriate choice of the Borel subalgebra:

Ti j (u)|0〉 = 0, σ−1(i) > σ−1( j),

Tj j (u)|0〉 = νσ−1( j)(u)|0〉, (5.25)

and it should be rotated to the modified companion twist frame which we are using in
this paper.

The most drastic simplification of (5.24) happens when we consider spin chains in
symmetric powers of the fundamental representation. In this case να

j = 0 for j > 1 and

so, by analysis of Sect. 5.2, we can replace T
(k)

μ̄α
k
with T

(1)
μ̄α

k
in (5.18). In particular, μ̄α

k

consists of a single row. Consequently, (5.24) becomes

|�〉 =

L∏
α=1

n−1∏
k=1

q̂σ(1)(Xα
k1)

L∏
α=1

n−1∏
k=1

q̂(0)
σ (1)(X

α
k j )

|0〉 =
L∏

α=1

n−1∏

k=1

qσ(1)(Xα
k1)|0〉 ∝

∏

r

B(ur )|0〉, (5.26)

where ur are zeros of qσ(1) (the so-called momentum-carrying Bethe roots). We see that,
in this special case,

∏
r
B(ur ) acting on the ferromagnetic vacuum creates all the Bethe

states. This result was conjectured based on numerical evidence and analytical tests for
low numbers of magnons in [4] and then proven for gl(3) [52] and gl(n) cases [6].

Finally, we make a few comments about the Bethe equations. To simplify our ex-
position, we will consider all spin chain sites to have the same representation, that is
να = ν for all α = 1, . . . , L . In this case it is convenient to introduce the polynomial
Qθ (u) = ∏L

α=1(u − θα). We also normalise the twist matrix to det G = 1.
Originally, theBethe equations for spin chains in arbitrary representationwerewritten

down in [53]. These were the equations on zeros of qσ(12...)(u) (nested Bethe roots).
Instead of such type of Bethe equations, one can write polynomial conditions that should
be obeyed by (twisted) polynomials q̂i . As a consequence of (5.7) and Q∅ = 1 one
derives det

1≤i, j≤n
Qi (u − �( j − 1)) = Q12...n. Then the requirement that q12...n = 1 in

(5.8) provides a quantisation condition on possible values of q̂i :

det
1≤i, j≤n

q̂i (u − � ( j − 1)) ∝
n∏

j=2

ν1∏

k=ν j+1

Qθ (u − �(k + n − j)), (5.27)

where ∝ means equality up to a constant multiplication. This quantisation condition
is the same as the demand that the Wronskian solution (5.11) for transfer matrices Tξ

yields identity if we take ξ to be the empty Young diagram.
There exists also a dual description, in terms of Q-functions QI defined by QI :=

ε Ī I Q Ī , where ε is the Levi-Civita symbol in n dimensions and Ī means the compli-
mentary set to I (no summation over Ī is performed). Again, we can exploit (5.7) to
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conclude that det
1≤i, j≤n

Qi (u − �( j − 1)) =
n−1∏
k=1

Q12...n(u − �(k − 1)) which, in terms of

q̂i := εī i q̂ī becomes

det
1≤i, j≤n

q̂i (u + �( j − 1)) ∝
n−1∏

j=1

ν j∏

k=νn+1

Qθ (u + �( j − k)). (5.28)

Note that fixing either qi or qi would be sufficient to compute any element of the Bethe
algebra.

As was discussed in the introduction, the Bethe algebra is proven to be maximal by
existence of the SoV basis. Maximality implies that the above quantisation conditions
should have at least as many solutions as the dimension of the Hilbert space, this type of
argument can be a powerful tool towards a proof of completeness of Bethe equations, see
e.g. [54,55]. In the case of a spin chain in the defining representation, ν = (1, 0, . . . , 0),
the condition (5.28) reads det

1≤i, j≤n
q̂i (u+� ( j−1)) ∝ Qθ (u). It contains only the physical

solutions for arbitrary values of inhomogeneities [31] and hence can be used alone to
fully characterise the spectrum of the model. Similarly, for the conjugate representation
ν = (1, 1, . . . , 1, 0), the condition (5.27) reads det

1≤i, j≤n
q̂i (u − � ( j − 1)) ∝ Qθ (u − �)

and also is enough to characterise the spectrum.
For more complicated representations than the mentioned two, there are more solu-

tions to (5.27) or (5.28) than the dimension of the Hilbert space. We should then impose
extra restrictions. This can be done by the requirement thatTξ (u) should be polynomials
in u for any ξ and that qI (u) computed from qi (u) via (5.8) and (5.7) are also polyno-
mials in u for any I . By generalising the ideas of [56] it is possible to repackage these
requirements in a structurally simple manner that allows one simple explicit counting
of the physical solutions of (5.27) and to confirm that their number coincides with the
dimension of the Hilbert space. This result will be presented in [57].

5.4. Conjugate momenta. This paper, and also [6], realises to a large extent Sklyanin’s
SoV program for compact rational gl(n) spin chains. Indeed, the operators Xα

k j are
naturally a quantisation of zeros xσ of the classical B(u), and wave functions in the
proposed SoV basis are products of determinants of Baxter Q-functions who solve
(5.6)—a quantisation of (2.23).

To accomplish the program, we should also quantise A(u) to get the conjugate mo-
menta Pα

k j and then identify the spin chain with a representation of the algebra generated
by Pα

k j and X
α
k j . Quantisation of A(u) was formally suggested in [3,20,21], however the

procedure proposed there becomes singular when explicitly applied to highest-weight
spin chains, see for example the discussion in [5]. Here we shall introduce conjugate
momenta by different means and it would be interesting to explore whether our proposal
matches a regularised way to quantise A(u).

The canonically conjugate momenta P±α
k j associated to the separated coordinatesXα

k j
satisfy the commutation relation

[P±α
k j ,Xβ

k′ j ′ ] = ±� δαβδkk′δ j j ′ P
±α
k j . (5.29)
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We propose their following realisation

P±α
k j = c±α

k j :
det

1≤i,l≤k
Qσ(i)(Xα

kl ± �δ jl)

det
1≤i,l≤k

Qσ(i)(Xα
kl)

:, (5.30)

where c±α
k j is some simple function of the separated variables to be fixed in a moment.

We use a normal ordering prescription : : where X’s are placed to the left of all the
coefficients of Baxter Q-operators. To see that the prescription (5.30) works, we utilise
(5.19) and act on 〈x| with P±α as defined above. By using that 〈x|Xα

k j = xα
k j 〈x|, we

immediately obtain (up to normalisation) the state where μα
k j has been replaced with

μα
k j ± 1. In particular the action of P±α

k j on 〈x| is well-defined.
The coefficient c±α

k j in (5.30) is required in order to respect the branching rules of GT
patterns. Namelly, we have the constraints μα

k−1, j ≥ μα
k j ≥ μα

k, j+1 and μα
k, j−1 ≥ μα

k j ≥
μα

k+1, j on a given GT pattern �α and so P+α
k j should vanish when we act on a state with

μα
k j = μα

k, j−1 or μα
k j = μα

k−1, j , and similarly for P−α
k j . Using the fact that μα

k j is related
to xα

k j as x
α
k j = θα + �(μα

k j − j + 1) we see that we should take

c+α
k j = (Xα

k−1, j − Xα
k j )(X

α
k, j−1 − Xα

k j − �) (5.31)

and similarly
c−α

k j = (Xα
k j − Xα

k+1, j )(X
α
k j − Xα

k, j+1 − �). (5.32)

The separated variables Xα
k j are defined for indices in the range 1 ≤ k ≤ n − 1 and

1 ≤ j ≤ k, but c±α
k j can contain factors with Xα

k j outside of this range. In order to get
around this we define operators Xα

j, j+1, j = 0, . . . ,n − 1 to be scalar multiples of the

identity operator with eigenvalue θα + �(να
j+1 − j). Furthermore, if c±α

k j should contain
a factor with Xα

k j outside of this newly established set of operators, we simply declare
that factor to be absent.

6. Outlook

Now that we have access to the wave functions of the Bethe algebra the next obvious
step is to use the obtained results to compute scalar products and form factors of various
operators. Scalar products in the SoV approach have previously been considered for the
gl(2) case in [58,59]. These results were generalised in [60] for the defining representa-
tion of gl(3) by introducing a second set of separated variablesYα

k j as operatorial roots of
a C-operator whose right eigenstates factorise the left eigenstates of the Bethe algebra.
This was then used to compute the scalar product between two Bethe states, in agree-
ment with the functional orthogonality approach developed in [9,61]. Generalisation of
this interplay between operatorial and functional scalar products was then subsequently
extended to gl(n) spin chains in [62].

The focus of this work has been on compact spin chains. An open question is the
generalisation of the discussed techniques to the case of non-compact and supersym-
metric spin chains, such as those with su(p, q|m) symmetry necessary for AdS/CFT
applications. The computation of scalar products and form-factors in the non-compact
case was considered in [61] based on the functional formalism, and it was related to an
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operatorial constriction of states in [62] for a certain class of non-compact highest-weight
representations, similar to what was done here, and it would be interesting to extend this
procedure to all highest-weight representations. An SoV basis was constructed in [30]
for the case of the defining representation of gl(m|n) super spin chains and the Hubbard
model, and it would be interesting to attempt relating the constructed basis to the B-
type operator constructed in [63], as well as generalise findings beyond the fundamental
representation, as it was done here in the bosonic setting.

One should also generalise the discussed techniques to models based on the principal
series representations of gl(n). The SoV framework for models with principal series
representations of gl(2) has been carried out in [10,11], with some initial progress being
made for the gl(3) case in [64]. A feature of the principal series setting is that, in
contrast to the compact case, it is not necessary to introduce a boundary twist in order
for the B-operator to be diagonalisable, and hence such a twist is not usually employed.
However, doing somay be beneficial as theB-operator can still be related to theGelfand–
Tsetlin subalgebra with the use of the companion twist. Study of the Gelfand–Tsetlin
subalgebra in the principal series setting was carried out in [65–67]. The SoV framework
in the principal series setting of gl(2)was recently utilised in [12] for the computation of
Basso-Dixon correlators in two-dimensional fishnet CFT [68,69] and a set of separated
variables for the case of so(1, 5) spin chains were constructed in [14] which are related
to the computations of [13].

Finally, it would be interesting to extend our results to other quantum integrable
models. In particular, an SoV basis for the case ofUq(ŝl(n))was constructed in [67] and
it would be interesting to check if it diagonalises the B-operator proposed in [3].
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A Invertability of Transfer Matricies

Here we prove that Tξ (θα + � να
n ) is invertible when ξ ⊂ ν̄α , where ν̄α denotes the

reduced Young diagram ν̄α
j = να

j − να
n , j = 1, . . . ,n. We will see below that provided

inhomogeneities are largely separated, that is |θα − θβ | 
 1 for α �= β then the transfer
matricies effectively become equal to those of L = 1. Hence, we start by considering
this case. Any given transfer matrix Tξ (u) is a polynomial in θα and the entries of the
twist matrix G. Hence if we can prove the claim for a specific value of the twist then it
must be true generically, i.e. away from some measure zero subset. To this end, let us
make use of the fact that transfer matricies are central for L = 1 when G = 1 where the
computation simplifies. In what follows we will omit the α-index.
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A convenient tool to prove the claim is the quantum eigenvalues introduced in Sect. 5.
By acting on the highest-weight state it is easy to see that � j (u) = (u − θ − � ν j ). The
transfer matrix Ta,1(u) can be written as a sum over quantum semi-standard Young
tableaux of the form

ia...

i2
i1

(A.1)

subject to the constraint i1 < i2 < · · · < ia . By using the recipe to assign products of
quantum eigenvalues to a tableau we associate the factor

∏a
k=1(u − θ − �(νik + a − k))

to the above tableau. Let us now evaluate this factor at θ + � νn. We obtain

(−�)a(ν̄ia )(ν̄a−1 + 1) . . . (ν̄i1 + a − 1). (A.2)

Since ν̄ j ≥ 0 for all j = 1, . . . ,n it follows that the above expression is non-negative.
Note that if some weight νk = νn, it forces ν̄k = ν̄k+1 = · · · = ν̄n = 0 and hence the
indices k, k + 1, . . . ,n cannot appear in the tableau as they provide vanishing contribu-
tions. Hence, in order to have a non-vanishing term we must at least have ν̄a ≥ 1 and
hence ν̄1 ≥ ν̄2 ≥ · · · ≥ ν̄a ≥ 1. Hence, Ta,1(θ + � νn) is non-zero if

(1a) ⊂ ν̄. (A.3)

Now we consider an arbitrary Young diagram ξ . Tξ (θ + � νn) can be written as a sum
over Young tableaux as before, and we will consider the factors of quantum eigenvalues
associated to each column separately. The admissible indices such that a given column
is non-vanishing directly effects what indices can appear in the columns to the right.
Indeed, we already know the first column will always be non-negative, and we will get
a non-zero contribution if

(1ξT1 ) ⊂ ν̄. (A.4)

Now we go to the second column which gives the contribution

(−�)ξ
T
2 (ν̄i

ξT2
− 1)(ν̄i

ξT2
−1 − 2) . . . (ν̄i1 + ξT2 − 2). (A.5)

Since the first column is non-zero, if we put some number k in the top box of the second
column we must have that ν̄α

k > 1 and hence the second column will be non-zero if

ν̄1 ≥ ν̄2 ≥ · · · ≥ ν̄ξT2
≥ 2. (A.6)

Hence, the contribution from the first two columns will be non-zero if

(1ξT1 1ξT2 ) ⊂ ν̄. (A.7)

Continuing in the same way, we find that if ξ ⊂ ν̄ there will always be a tableau which
does not vanish and the signs of the contributions of all non-vanishing tableaux are all
the same and equal to the sign of (−1)|ξ |, where |ξ | denotes the number of boxes in the
Young diagram ξ . Hence for L = 1 Tξ (θ + � νn) is non-zero.
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Now we consider L > 1. The transfer matrix Tξ is obtained by taking the trace of
the fused monodromy matrix Tξ (u) which itself is a product of fused R-matricies Rξ,να

Tξ (u) =
∑

i1,...,iL

Rξ,ν1

i1i2
(u − θ1) ⊗ · · · ⊗ Rξ,νL

iL i1
(u − θL), (A.8)

where the sum ranges over 1, 2, . . . , dim ξ . Since Rξ,νβ
(u) ∼ u|ξ | at large u, with |ξ |

denoting the number of boxes in the Young diagram ξ , we can consider Tξ (θα + � να
n )

in the limit |θβ − θα| 
 1 for all β �= α. In this limit Tξ (θα + � να
n ) coincides (up to

irrelevant normalisation) with the L = 1 transfer matrix which we know is invertible
and so Tξ (θα +� να

n ) is invertible for generic values of inhomogeneities, completing the
proof.

B Action of Transfer Matricies: Technical Details

We need to prove that

〈�|
L∏

α=1

TFα
k +μ̄α

k
(θα + � να

n )

TFα
k
(θα + � να

n )

= 〈�|
L∏

α=1

φn−k−1
(
Tμ̄α

k
(θα + � να

k+1)
)

(B.1)

if 〈�| ∈ V(k). This result easily follows from the following one which we are going to
prove: For a state of the form

〈�I | := 〈�|
∏

γ∈I

φn−k−1
(
Tμ̄

γ
k
(θγ + � ν

γ

k+1)
)

, (B.2)

where 〈�| ∈ V(k) and I is a subset of {1, . . . , L}, it is true that

〈�I |φ
(
Tμ̄α

k
(θα + � να

k+1)
)

= 〈�I |
TRn−1+···+Rk−1+μ̄α

k

TRn−1+···+Rk−1

(B.3)

for α /∈ I . Here both transfer matrices on the r.h.s. are evaluated at θα + � να
n , and

Rn−1 + · · · + Rk−1 is a specific choice of Young diagram Fα
k to be made precise below.7

We will need two technical results. First, let us note that quantum minors satisfy the
following commutativity property [41]. If A and B are subsets of {1, 2, . . . ,n} then

[T
[
A
B

]
(u), Tab(v)] = 0 (B.4)

for all a ∈ A and b ∈ B. Next, suppose 〈�| of GT1, . . . ,GTr for some r , for which
the dual diagonal μα

r takes its minimal allowed value μα
r j = να

r+1, j = 1, . . . , r and
μα

r+1 takes its maximal allowed value given the previous constraint μα
r+1, j = να

r+1,
j = 1, . . . , r + 1. Then we have

〈�|Tj,n−r (θα + � μα
n−r+1,1) = 0, j = n − r − 1, . . . ,n (B.5)

7 Recall that the ratio in the l.h.s. of (B.1) is invariant under variations of Fα
k subject to certain constraints,

we are making one particular choice that simplifies computations.
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which is simply the statement that the dual diagonal μα
r+1 cannot be excited further

without changing μα
r and that μα

r cannot be lowered without first lowering μα
r+1. The

proof of this is very similar to that of the statements (3.36-3.38) in [6] adapted to this
more general setting and so we do not repeat it here. The motivation for this statement
is that when we act with transfer matricies TRn−1+···+Rk−1+μ̄α

k
the action on 〈�I | will

factorise, and each TR j factor will act as a raising operator exciting a dual diagonal to
its maximal where it is equal to the next dual diagonal, allowing us to use the previous
result.

Let ν̄α denote the reduced Young diagram ν̄α
j = να

j −να
n , j = 1, . . . ,n−1. ν̄α splits

into the rectangular regions R j , j = 1, . . . ,n − 1, where the width of R j is ν̄α
j − ν̄α

j+1
and its height is j . By Rn−1 + · · · + Rk−1 we denote the subdiagram of ν̄α comprising
the first ν̄α

k−1 columns of ν̄α . Note that the state 〈�I | is an admissible vector at point
θα + � να

n and so the action of TRn−1+···+μ̄α
k
(θα + � να

n ) with the MCT (2.20) coincides
with that of the null twist, cf. page 17.

For simplicity of exposition, we will assume that all weights να
j are distinct, and will

comment later on what happens when they are not. For all weights being distinct, the
region R j has non-vanishing width and furthermore we have the following factorisation

TRn−1+···+μ̄α
k
(u) = TRn−1(u)TRn−2+···+μ̄α

k
(u + � ν̄α

n−1). (B.6)

To see this we utilise the CBR formula (2.16) which says that for some Young diagram
ξ one has

Tξ (u) =
∑

σ∈Sn

TξT1 +σ(1)−1,1(u + �(σ (1) − 1)) × . . . . (B.7)

When we use the null twist, all ξ are constrained to have height at most n − 1, and for
the case of interest to us we have ξT1 = n− 1. In the above sum, if for some permutation
σ we have σ(1) �= 1 then σ(1) > 1 and so the sum contains a transfer matrix of height
greater than n − 1 and so must vanish. Hence, we must have that the transfer matrix
factorises into TξT1

(u)× . . . where . . . refers to the transfer matrix corresponding to the
Young diagram obtained from ξ by removing its first column. If the second column also
has height n − 1 then it also factors out and so on. Hence (B.6) follows, where now

TRn−1(u) = Tn−1,1(u) . . . Tn−1,1(u + �(ν̄α
n−1 − 1)), (B.8)

and so the r.h.s. (B.8) coincides with the composite raising operator (3.28) for the right-
most dual diagonal. Hence, evaluating at u = θα + � να

n we see that acting with TRn−1

takes us from 〈�I | to the state 〈�′
I | with μα

n−1, j = μα
n−2, j = να

n−1, j = 1, . . . ,n − 2
and μα

n−1,n−1 = να
n−1 which satisfies (B.5).

The action of TRn−2+···+μ̄α
k
(u + �ν̄α

n−1) on 〈�′
I | is expressed as a sum over tableaux

∑
A T

[A
A+1

]
whereA+1 cannot contain the number 2 by (B.5), and soA cannot contain

1, forbidding us from having transfer matricies of size n − 1 and so the action again
factorises into

〈�I |TRn−1TRn−2TRn−3+···+μ̄α
k
(u + �ν̄α

n−2). (B.9)

Hence when the TRn−2 factor acts on 〈�|TRn−1 it will excite the dual diagonals to the
configuration where μα

n−2, j = μα
n−3, j = να

n−2, j = 1, . . . ,n− 3 and μα
n−2,n−2 = να

n−2
and again the results of (B.5) apply, further limiting the indicies which can populate the
tableaux making up the TRn−3+... factor.
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The end result is that the action of TRn−1+... completely factorises into

〈�I |TRn−1TRn−2 . . . TRk−1Tμ̄α
k
(θα + � να

k+1), (B.10)

where we have omitted the spectral parameters of the TR j factors for brevity and Tμ̄α
k

should be understood as
∑

A Tμ̄α
k
whereA can only be populated with indices from the

set {n − k, . . . ,n − 1}. Then, using (B.4) we can move this factor to the left, obtaining

〈�I |TRn−1+···+μ̄α
k
(θα + � να

n )

= 〈�I |φn−k−1
(
Tμ̄α

k
(θα + � να

k+1)
)

TRn−1+···+Rk−1(θα + � να
n ).

(B.11)

This completes the proof since invertiblity of the transfer matrix was proven in the
previous appendix.

Finally, let us briefly discuss the case of coinciding weights. As we have seen above,
each factorisation into a rectangular region results in a reduction of the number of indices
in the factors which appear to the right of it. If two weights coincide, say να

j = να
j+1 then

the rectangle R j has vanishing width and so does not contribute to the factorisation. One
could then expect that at the end the right most factor could contain more than just the
indices n− k, . . . ,n−1, ruining our conclusion. However, if two weights coincide then
〈�I | will have extra dual diagonals μα

k+1, μ
α
k+2, . . . whose entries are all equal to να

k+1.
They will extend the range of indices in (B.5) which annihilate 〈�| similar to the case
of rectangular representations discussed in [6], which will further constrain the indices
that can appear in the sum over tableaux. Taking this into account we find that the end
conclusion is the same.
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