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Abstract: The Muskat problem, in its general setting, concerns the interface evolution
between two incompressible fluids of different densities and viscosities in porous media.
The interface motion is driven by gravity and capillarity forces, where the latter is due
to surface tension. To leading order, both the Muskat problems with and without surface

tension effect are scaling invariant in the Sobolev space H1+ d
2 (Rd), where d is the

dimension of the interface.We prove that for any subcritical data satisfying the Rayleigh-
Taylor condition, solutions of the Muskat problem with surface tension s converge to
the unique solution of the Muskat problem without surface tension locally in time with
the rate

√
s when s → 0. This allows for initial interfaces that have unbounded or

even not locally square integrable curvature. If in addition the initial curvature is square
integrable, we obtain the convergence with optimal rate s.

1. Introduction

In the studies of fluid flows, interfacial dynamics is broad and mathematically chal-
lenging. Some interfacial problems in fluid dynamics that have been rigorously studied
include the water wave problem, the compressible free-boundary Euler equations, the
Hele-Shaw problem, the Muskat problem and the Stefan problem. The dynamics of the
interface between the fluids strongly depends on properties of the fluids and of the me-
dia through which they flow. However, a common feature in all the above problems is
that the interface is driven by gravity and surface tension. Gravity is incorporated in the
momentum equations as an external force. On the other hand, surface tension balances
the pressure jump across the interface (Young-Laplace equation):

�p� = sH, (1.1)

where �p� is the pressure jump, H is the mean-curvature of the interface, and s > 0
is the surface tension coefficient. Well-posedness in Sobolev spaces always holds when
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surface tension is taken into account but only holds under the Rayleigh-Taylor stability
condition on the initial data when surface tension is neglected. It is a natural problem to
justify the models without surface tension as the limit of the corresponding full models
as surface tension vanishes. This question was addressed in [4,5,8,9,29,36,37] for the
problems listed above. The common theory is the following: if the initial data is stable,
i.e. it satisfies the Rayleigh-Taylor stability condition, and is sufficiently smooth, then
solutions to the problem with surface tension converge to the unique solution of the
problem without surface tension locally in time. The general strategy of proof consists
of two points.

(i) To leading order, the surface tension term sH provides a regularizing effect. For
sufficiently smooth solutions, the difference between sH and its leading contribution
can be controlled by the energy of the problem without surface tension. This yields
a uniform time of existence T∗ for the problem with surface tension s → 0.

(ii) For sufficiently smooth solutions and for some θ ∈ [0, 1), the weighted mean
curvature sθ H is uniformly in s bounded (in some appropriate Sobolev norm) by
the energy of the problem without surface tension. It follows that sH , the difference
between the two problems, vanishes as s1−θ as s → 0, establishing the convergence
on the time interval [0, T∗]. Note that the optimal rate corresponds to θ = 0.

Therefore, the vanishing surface tension limit becomes subtle if the initial data is suf-
ficiently rough so that it can accommodate curvature singularities. As a matter of fact,
in the aforementioned works, the initial curvature is at least bounded. In this paper, we
prove that for the Muskat problem, the zero surface tension limit can be established for
rough initial interfaces whose curvatures are not bounded or even not locally L2. Re-
garding quantitive properties of the zero surface tension limit, the convergence rates in
the aforementioned works are either unspecified or suboptimal. In this paper, we obtain
the optimal convergence rate for the Muskat problem. The next subsections are devoted
to a description of the Muskat problem and the statement of our main result.

1.1. The Muskat problem. The Muskat problem [43] concerns the interface evolution
between two fluids of densities ρ± and viscositiesμ± governed by Darcy’s law for flows
through porous media. Specifically, the fluids occupy two domains �± = �±

t ⊂ R
d+1

separated by an interface � = �t , with �+ confined below a rigid boundary �+, and
�− likewise above �−. We consider the case when the surfaces �± and � are given by
the graphs of functions, that is, we designate b± : R

d
x → R and η : Rt × R

d
x → R for

which

� = {(x, η(t, x)) : x ∈ R
d}, (1.2)

�± = {(x, b±(x)) : x ∈ R
d}, (1.3)

�− = {(x, y) ∈ R
d × R : b−(x) < y < η(t, x)}, (1.4)

�+ = {(x, y) ∈ R
d × R : η(t, x) < y < b+(x)}, (1.5)

� = �+ ∪ �−. (1.6)

We also consider the case where one or both of �± = ∅. In each domain �±, the fluid
velocity u± and pressure p± obey Darcy’s law:

μ±u± + ∇x,y p
± = −ρ±ged+1, divx,yu

± = 0 in �±, (1.7)
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where g denotes the gravitational acceleration, and ed+1 is the upward unit vector in the
vertical direction. For any two objects A+ and A− associated with the domains �+ and
�− respectively, we denote the jump

[[A]] = A− − A+

whenever this difference is well-defined. In particular, set

g = g[[ρ]].
At the interface, there are three boundary conditions. First, the normal component of the
fluid velocity is continuous across the interface

[[u · n]] = 0 on �, (1.8)

wherewefixn to be theupwardnormal of the interface, specificallyn = 〈∇η〉−1(−∇η, 1)
with

〈·〉 =
√
1 + | · |2.

Second, the interface is transported by the normal fluid velocity, leading to the kinematic
boundary condition

ηt = 〈∇η〉u− · n|�t . (1.9)

Third, according to the Young-Laplace equation, the pressure jump is proportional to
the mean curvature through surface tension:

[[p]] = sH(η) ≡ −sdiv(〈∇η〉−1∇η) on �t (1.10)

where s ≥ 0 is the surface tension coefficient and

H(η) = −div(〈∇η〉−1∇η) (1.11)

is twice the mean curvature of �.
Finally, there is no transportation of fluid through the rigid boundaries:

u± · ν± = 0 on �±, (1.12)

where ν± = ±〈∇b〉−1(−∇b±, 1) is the outward normal of�±. If�± = ∅, this condition
is replaced by the decay condition

lim
y→±∞ u±(x, y) = 0. (1.13)

For the two-phase problem, we have ρ± andμ± both as positive quantities. We will also
consider the one-phase problem where the top fluid is treated as a vacuum by setting
ρ+ = μ+ = 0 and �+ = ∅.

In the absence of the boundaries �±, both the Muskat problems with and without

surface tension to leading order admit Ḣ1+ d
2 (Rd) as the scaling invariant Sobolev space

in view of the scaling

η(x, t) �→ λ−1η(λx, λ3t) and η(x, t) �→ λ−1η(λx, λt).
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In either case, the problem is quasilinear. The literature onwell-posedness for theMuskat
problem is vast. Early results can be found in [6,7,17,23,31,49,51]. For more recent
developments, we refer to [22,24–26,30,34] forwell-posedness, to [12,20–22,27,28,32,
34] for global existence, and to [13,14] for singularity formation. Directly related to the
problem addressed in the current paper is local well-posedness for low regularity large
data. Consider first the problem without surface tension. In [18], the authors obtained
well-posedness for H2(T) data for the one-phase problem, allowing for unbounded
curvature. For the 2D Muskat problem without viscosity jump, i.e. μ+ = μ−, [22]
proves well-posedness for data in all subcritical Sobolev spaces W 2,1+(R). In L2-based

Sobolev spaces, [39] obtains well-posedness for data in all subcritical spaces H
3
2 +(R).

We also refer to [2] for a generalization of this result to homogeneous Sobolev spaces
Ḣ1(R)∩ Ḣ s(R), s ∈ ( 32 , 2), allowing non-L

2 data. In [45], local well-posedness for the
Muskat problem in the general setting as described above was obtained for initial data

in all subcritical Sobolev spaces H1+ d
2 +(Rd), d ≥ 1. The case of one fluid with infinite

depth was independently obtained by [3]. Regarding the problem with surface tension,
[39,40] consider initial data in H2+(R). In the recent work [46], well-posedness for data

in all subcritical Sobolev spaces H1+ d
2 +(Rd), d ≥ 1, was established.

1.2. Main result. In order to state the Rayleigh-Taylor stability condition solely in terms
of the interface, we define the operator

RT(η) = 1 − [[B(η)J (η)]]η ≡ 1 −
(
B−(η)J−(η)η − B+(η)J+(η)η

)
, (1.14)

where J±(η) and B±(η) are respectively defined by and (2.14) and (2.21) below. Our
main result is the following.

Theorem 1.1. Consider either the one-phase Muskat problem or the two-phase Muskat
problem in the stable regime ρ− > ρ+. The boundaries �± can be empty or graphs
of Lipschitz functions b± ∈ Ẇ 1,∞(Rd). For any d ≥ 1, let s > 1 + d

2 be an arbitrary
subcritical Sobolev index. Consider an initial datum η0 ∈ Hs(Rd) satisfying

inf
x∈Rd

RT(η0) ≥ 2a > 0, dist(η0, �
±) ≥ 2h > 0. (1.15)

Let sn be a sequence of surface tension coefficients converging to 0. Then, there exists
T∗ > 0 depending only on ‖η0‖Hs and (a, h, s, μ±, g) such that the following holds.

(i) The Muskat problems without surface tension and with surface tension sn have a
unique solution on [0, T∗], denoted respectively by η and ηn, that satisfy

ηn ∈ C([0, T∗]; Hs(Rd)) ∩ L2([0, T∗]; Hs+ 3
2 (Rd)), (1.16)

η ∈ L∞([0, T∗]; Hs(Rd)) ∩ L2([0, T∗]; Hs+ 1
2 (Rd)) ∩ C([0, T∗]; Hs′(Rd)) ∀s′ < s,

(1.17)

‖(ηn, η)‖L∞([0,T∗];Hs ) + ‖(ηn, η)‖
L2([0,T∗];Hs+ 1

2 )
+

√
s‖ηn‖

L2([0,T∗];Hs+ 3
2 )

≤ F(‖η0‖Hs , a−1), (1.18)

inf
t∈[0,T∗]

inf
x∈Rd

RT(ηn(t)) > a, inf
t∈[0,T∗]

dist(ηn(t), �
±) > h, (1.19)

inf
t∈[0,T∗]

inf
x∈Rd

RT(η(t)) > a, inf
t∈[0,T∗]

dist(η(t), �±) > h, (1.20)
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where F : R
+ × R

+ → R
+ is nondecreasing and depends only on (h, s, μ±, g).

(ii) As n → ∞, ηn converges to η on [0, T∗] with the rate √
sn:

‖ηn − η‖L∞([0,T∗];Hs−1) + ‖ηn − η‖
L2([0,T∗];Hs− 1

2 )
≤ √

snF(‖η0‖Hs , a−1). (1.21)

If in addition s ≥ 2, then we have the convergence with optimal rate sn:

‖ηn − η‖L∞([0,T∗];Hs−2) + ‖ηn − η‖
L2([0,T∗];Hs− 3

2 )
≤ snF(‖η0‖Hs , a−1). (1.22)

The convergence (1.21) holds for initial data in any subcritical Sobolev spaces H1+ d
2 +

(Rd). In particular, this allows for initial interfaces whose curvatures are unbounded in
all dimensions and not locally square integrable in one dimension. The former is because

H(η0) ∈ H−1+ d
2 +(Rd) �⊂ L∞(Rd) and latter is due to the fact that in one dimension we

have H(η0) ∈ H− 1
2 +ε(R) �⊂ L2

loc(R). This appears to be the first result on vanishing
surface tension that can accommodate curvature singularities of the initial interface. On
the other hand, the convergence (1.22) has optimal rate sn and holds under the additional
condition that s ≥ 2. This is only a condition in one dimension since s > 1 + d

2 ≥ 2 for
d ≥ 2. Note also that s ≥ 2 is the minimal regularity to ensure that the initial curvature is
square integrable, yet it still allows for unbounded curvature. See the technical Remark
1.3.

The proof of Theorem 1.1 exploits the Dirichlet-Neumann reformulation [45,46] for
the Muskat problem in a general setting. See also [3] for the one-fluid case. Part (i) of
Theorem 1.1 is a uniform local well-posedness with repsect to surface tension. The key
tool in proving this is paralinearization results for the Dirichlet-Neumann operator taken
from [1,45]. The convergences (1.21) and (1.22) rely on contraction estimates for the
Dirichlet-Neumann operator proved in [45] for a large Sobolev regularity range of the
Dirichlet data. Together with [45] and [46], Theorem 1.1 provides a rather complete
local regularity theory for (large) subcritical data.

Remark 1.2. In [8] and [9], the first results on the zero surface tension limit for Muskat
were obtained respectively in 2D and 3D for smooth initial data, i.e. �0 ∈ Hs0 for
some sufficiently large s0. The interface is not necessarily a graph but if it is then the
convergence estimates therein translate into

‖ηn − η‖L∞([0,T∗];H1(Td )) ≤ C
√
sn, d = 1, 2, (1.23)

which has the same rate as (1.21).

Remark 1.3. The condition s ≥ 2 in (1.22) is due to the control of low frequencies
in the paralinearization and contraction estimates for the Dirichlet-Neumann operator
G(η) f (see (2.8) for its definition). Precisely, the best currently available results (see
Sects. 2.4 and 2.5 below) require f ∈ Hσ (Rd) with σ ≥ 1

2 . The proof of the L∞
t Hs−2

x

convergence in (1.22) appeals to these results with σ = s − 3
2 .

Remark 1.4. It was proved in [45] that the Rayleigh-Taylor condition holds uncondition-
ally in the following configurations:

• the one-phase problem without bottom or with Lipschitz bottoms;
• the two-phase problem with constant viscosity (μ+ = μ−).
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When the Rayleigh-Taylor condition is violated, analytic solutions to the problem with-
out surface tension exist [49]. The works [47,48] and [15,16] strongly indicate that these
solutions are not limits of solutions to the problem with surface tension. We also refer
to [35] for the instability of the trivial solution (with surface tension) and to [33] for the
stability of bubbles (without surface tension).

Remark 1.5. In Theorem 1.1, the initial data is fixed for all surface tension coefficients
sn . In general, one can consider ηn|t=0 = ηn,0 uniformly bounded bounded in Hs(Rd)

such that the conditions in (1.15) hold uniformly in n. Then, for any s > 1+ d
2 , we have

‖ηn − η‖L∞([0,T∗];Hs−1) + ‖ηn − η‖
L2([0,T∗];Hs− 1

2 )

≤ (√
sn + ‖ηn,0 − η0‖Hs−1

)F(‖η0‖Hs , a−1). (1.24)

On the other hand, if s > 1 + d
2 and s ≥ 2 then

‖ηn−η‖L∞([0,T∗];Hs−2)+‖ηn−η‖
L2([0,T∗];Hs− 3

2 )
≤ (

sn+‖ηn,0−η0‖Hs−2
)F(‖η0‖Hs , a−1).

(1.25)

Remark 1.6. By interpolating the convergence estimate (1.21) and the uniform bounds
in (1.18), we obtain the vanishing surface tension limit in Hs′ for all s′ ∈ [s − 1, s):

‖ηn − η‖L∞([0,T∗];Hs′ ) + ‖ηn − η‖
L2([0,T∗];Hs′+ 1

2 )
≤ s

s−s′
2

n F(‖η0‖Hs , a−1). (1.26)

Convergence in the highest regularity L∞
t Hs

x is more subtle and can possibly be estab-
lished using the Bona-Smith type argument [10]. This would imply in particular that η

is continuous in time with values in Hs
x , η ∈ Ct Hs

x . In the context of vanishing viscosity
limit, this question was addressed in [41], while convergence in lower Sobolev spaces
(compared to initial data) was proved in [19]. For gravity water waves, the Bona-Smith
type argument was applied in [44] to establish the continuity of the flow map in the
highest regularity.

Remark 1.7. The proof of the local well-posedness in all subcritical Sobolev spaces
in [45] uses a parabolic regularization. Theorem 1.1 provides an alternative proof via
regularization by vanishing surface tension. We stress that the assertions about η in
Theorem 1.1 do not make use of the local well-posedness results in [45].

The rest of this paper is organized as follows. In Sect. 2, we recall the reformulation of
the Muskat problem in terms of the Dirichlet-Neumann operator together with results
on the Dirichlet-Neumann operator established in [1,45]. Section 3 is devoted to the
proof of uniform-in-s a priori estimates. In Sect. 4, we prove contraction estimates for
the operators J± which arise in the reformulation of the two-phase problem. The proof
of Theorem 1.1 is given in Sect. 5. Finally, in “Appendix 5”, we recall the symbolic
paradifferential calculus and the Gåarding inequality for paradifferential operators.

2. Preliminaries

2.1. Big-O notation. If X and Y are Banach spaces and T : X → Y is a bounded linear
operator, T ∈ L(X,Y ), with operator norm bounded by A, we write

T = OX→Y (A).
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We define the space of operators of orderm ∈ R in the scale of Sobolev spaces Hs(Rd):

Opm ≡ Opm(Rd) =
⋂

s∈R
L(Hs(Rd), Hs−m(Rd)).

We shall write T = OOpm (A) when T ∈ Opm and for all s ∈ R, there exists C = C(s)
such that T = OHs→Hs−m (CA).

2.2. Function spaces. In the general setting, to reformulate the dynamics of the Muskat
problem solely in terms of the interface, we require some function spaces.

We shall always assume that η ∈ W 1,∞(Rd) and either �± = ∅ or b± ∈ Ẇ 1,∞(Rd)

with dist(η, b±) > 0. Recall that the fluid domains �± are given in (1.2). Define

Ḣ1(�±) = {v ∈ L1
loc(�

±) : ∇x,yv ∈ L2(�±)}/R, ‖v‖Ḣ1(�±) = ‖∇x,yv‖L2(�±).

(2.1)
For any σ ∈ R, we define the ‘slightly homogeneous’ Sobolev space

H1,σ (Rd) =
{
f ∈ L1

loc(R
d) : ∇ f ∈ Hσ−1(Rd)

}
/R, ‖ f ‖H1,σ (Rd ) = ‖∇ f ‖Hσ−1(Rd ).

(2.2)
When b± ∈ Ẇ 1,∞(Rd), we fix an arbitrary number a ∈ (0, 1) and define the ‘screened’
fractional Sobolev spaces

H̃
1
2

∓a(η−b±)
(Rd) =

{
f ∈ L1

loc(R
d) :

∫

Rd

∫

|k|≤∓a(η−b±)

| f (x + k) − f (x)|2
|k|d+1 dkdx < ∞

}
/R.

(2.3)

According to Proposition 3.2 [45], the spaces H̃
1
2
∓a(η−b±)

(Rd) are independent of η in

W 1,∞(Rd) satisfying dist(η, b±) > h > 0. Thus, we can set

H̃
1
2± (Rd) =

⎧
⎨

⎩
Ḣ

1
2 (Rd) if �± = ∅,

H̃
1
2
∓a(η−b±)

(Rd) if b± ∈ Ẇ 1,∞(Rd).
(2.4)

It was proved in [38,50] that there exist unique continuous trace operators

Tr�±→� : Ḣ1(�±) → H̃
1
2± (�) ≡ H̃

1
2± (Rd) (2.5)

with norm depending only on ‖η‖Ẇ 1,∞(Rd ) and ‖b±‖Ẇ 1,∞(Rd ).

Finally, for σ > 1
2 , we define

H̃σ±(Rd) = H̃
1
2± (Rd) ∩ H1,σ (Rd) (2.6)

and equip it with the norm ‖ · ‖H̃σ± = ‖ · ‖
H̃

1
2±
+ ‖ · ‖H1,σ .
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2.3. Dirichlet–Neumann formulation. Given a function f ∈ R
d , let φ solve the Laplace

equation
⎧
⎪⎨

⎪⎩

x,yφ = 0 in �−,

φ = f on �,
∂φ

∂ν− = 0 on �−,

(2.7)

with the final condition replaced by decay at infinity of φ if �− = ∅. Then, we define
the (rescaled) Dirichlet-Neumann operator G− ≡ G−(η) by

G− f = 〈∇η〉∂φ−

∂n
. (2.8)

The operator G+(η) for the top fluid domain �+ is defined similarly. The solvability of
(2.7) is given in the next proposition.

Proposition 2.1 ([45] Propositions 3.4 and 3.6). Assume that either �− = ∅ or b− ∈
Ẇ 1,∞(Rd). If η ∈ W 1,∞(Rd) and dist(η, �−) > h > 0, then for every f ∈ H̃

1
2− (Rd)

there exists a unique variational solution φ− ∈ Ḣ1(�−) to (2.7). Precisely, φ satisfies
Tr�−→�φ = f ,

∫

�−
∇x,yφ · ∇x,yϕdxdy = 0 ∀ϕ ∈ {

v ∈ Ḣ1(�−) : Tr�−→�v = 0
}
, (2.9)

together with the estimate

‖∇x,yφ‖L2(�−) ≤ F(‖∇η‖L∞)‖ f ‖
H̃

1
2− (Rd )

(2.10)

for some F : R
+ → R

+ depending only on h and ‖∇xb−‖L∞(Rd ).

As the functionsb± arefixed in Ẇ 1,∞(Rd),we shall omit the dependenceon‖∇xb−‖L∞(Rd )

in various estimates below.
The Muskat problem can be reformulated in terms of G± as follows.

Proposition 2.2 ([46] Proposition 1.1). (i) If (u, p, η) solve the one-phaseMuskat prob-
lem then η : R

d → R obeys the equation

∂tη = − 1

μ− G−(η)
(
gρ−η + sH(η)

)
. (2.11)

Conversely, if η is a solution of (2.11) then the one-phase Muskat problem has a solution
which admits η as the free surface.

(i i) If (u±, p±, η) is a solution of the two-phase Muskat problem then

∂tη = − 1

μ− G−(η) f −, (2.12)

where f ± := p±|� + ρ±gη satisfy
{
f − − f + = gη + sH(η),
1

μ− G−(η) f − − 1
μ+G+(η) f + = 0.

(2.13)

Conversely, if η is a solution of (2.12) where f ± solve (2.13) then the two-phase Muskat
problem has a solution which admits η as the free interface.
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To make use of the results on the Dirichlet-Neumann operator established in [1,45,
46], it is convenient to introduce the linear operators

J± = J±(η) : v �→ f ± (2.14)

where f ± : R
d → R are solutions to the system

(
Id −Id

μ+G−(η) −μ−G+(η)

) (
f −
f +

)
=

(
v

0

)
. (2.15)

Introduce

L = L(η) = μ+ + μ−

μ− G− J−. (2.16)

For the two-phase case, L coincides with μ++μ−
μ+ G+ J+ in view of (2.13). Thus, writing

L = (
μ−

μ++μ− + μ+

μ++μ− )L yields the symmetric formula

L = G− J− + G+ J+. (2.17)

This formula holds for the one phase problem (2.11) as well. Indeed, when μ+ = 0
we have J+ = 0 and J− = Id, and hence L = G−. In view of (2.16), Proposition 2.2
implies the following.

Lemma 2.3 The Muskat problem (both one-phase and two-phase) is equivalent to

∂tη +
1

μ+ + μ− L(η)(gη + sH(η)) = 0. (2.18)

The next proposition gathers results on the existence and boundedness of the operators
J±, G±, and L in Sobolev spaces.

Proposition 2.4 ([1] Theorem 3.12, and [45] Propositions 3.8, 4.8, 4.10 and Remark
4.9). Let μ+ ≥ 0 and μ− > 0. Assume dist(η, �±) > h > 0.

(i) If η ∈ W 1,∞(Rd) then

‖J±‖
L(H

1
2 ,H̃

1
2± )

+ ‖G±‖
L(H̃

1
2± ,H− 1

2 )
+ ‖L‖L(H

1
2 ,H− 1

2 )
≤ F(‖η‖W 1,∞), (2.19)

where F is nondecreasing and depends only on (h, μ±).
(ii) If η ∈ Hs(Rd) with s > 1 + d

2 then for any σ ∈ [ 12 , s], we have

‖J±‖L(Hσ ,H̃σ±) + ‖G±‖L(H̃σ± ,Hσ−1) + ‖L‖L(Hσ ,Hσ−1) ≤ F(‖η‖Hs ), (2.20)

where F is nondecreasing and depends only on (h, μ±, s, σ ).
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2.4. Paralinearization. Given a function f , define the operators

B± f ≡ B±(η) f = 〈∇η〉−2(∇η · ∇ + G±(η)) f, (2.21)

V± f ≡ V±(η) f = (∇ − ∇ηB±) f. (2.22)

We note here that B± f = ∂yφ
±|� and V± f = ∇xφ

±|� , where φ solves (2.7). More-
over, as a consequence of (2.20) and product rules, we have

‖B±(η)‖H̃σ±→Hσ−1 + ‖V±(η)‖H̃σ±→Hσ−1 ≤ F(‖η‖Hs ) (2.23)

for all s > 1 + d
2 and σ ∈ [ 12 , s].

The principal symbol of G−(η) is

λ(x, ξ) =
√

〈∇η〉2|ξ |2 − (∇η · ξ)2, (2.24)

while that of G+(η) is −λ(x, ξ). Note that λ(x, ξ) ≥ |ξ | with equality when d = 1.
Next we record results on paralinearization of G±(η).

Theorem 2.5 ([1] Propostion 3.13, [45] Theorem 3.18). Let s > 1+ d
2 and let δ ∈ (0, 1

2 ]
satisfy δ < s − 1 − d

2 . Assume that η ∈ Hs and dist(η, �±) > h > 0.
(i) For any σ ∈ [ 12 , s − δ], there exists a nondecreasing function F depending only

on (h, s, σ, δ) such that

∓G±(η) = Tλ + OH̃σ±→Hσ−1+δ (F(‖η‖Hs )), (2.25)

L(η) = Tλ + OHσ →Hσ−1+δ (F(‖η‖Hs )). (2.26)

(ii) For any σ ∈ [ 12 , s], there exists a nondecreasing function F depending only on

(h, s, σ, δ) such that for all f ∈ H̃σ±(Rd), we have

∓G±(η) f = Tλ( f − TB± f η) − TV± f · ∇η + O
H̃σ±→Hσ− 1

2
(F(‖η‖Hs )(1 + ‖η‖

Hs+ 1
2 −δ

)) f,

(2.27)

L(η) f = Tλ( f − T[[BJ ]] f η) − T[[VJ ]] f · ∇η + O
Hσ →Hσ− 1

2
(F(‖η‖Hs )(1 + ‖η‖

Hs+ 1
2 −δ

)) f.

(2.28)

Proof (2.25) was proved in Proposition 3.13 in [1] for σ ∈ [ 12 , s− 1
2 ] but its proof allows

for σ ∈ [ 12 , s − δ]. On the other hand, (2.27) was proved in Theorem 3.17 in [45]. Let
us prove (2.26) and (2.28). We recall from (2.17) that L = G− J− + G+ J+. Applying
(2.25) we have

∓G± J± f = Tλ J
± f + OH̃σ±→Hσ−1+δ (F(‖η‖Hs ))J± f.

By virtue of (2.20) we have ‖J±‖L(Hσ ,H̃σ±) ≤ F(‖η‖Hs ), and thus

∓G± J± f = Tλ J
± f + OHσ →Hσ−1+δ (F(‖η‖Hs )) f.
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It follows that

L(η) f = Tλ[[J ]] f + OHσ →Hσ−1+δ (F(‖η‖Hs )) f

= Tλ f + OHσ →Hσ−1+δ (F(‖η‖Hs )) f,

where in the second equality we have used the fact that [[J ]] = Id. This completes the
proof of (2.26). Finally, (2.28) can be proved similarly upon using the paralinearizaion
(2.27). ��
Finally, the mean curvature operator H(·), defined by (1.11), can be paralinearized as
follows.

Proposition 2.6 ([46] Proposition 3.1). Let s > 1 + d
2 and let δ ∈ (0, 1

2 ] satisfying
δ < s − 1− d

2 . Then there exists a nondecreasing function F depending only on s such
that

H(η) = Tlη + O
Hs+ 3

2 →Hs− 1
2 +δ

(F(‖η‖Hs ))η (2.29)

where

l = 〈∇η〉−3λ2. (2.30)

In addition, if σ ≥ −1 then

‖H(η)‖Hσ ≤ F(‖η‖Hs )‖η‖Hσ+2 . (2.31)

2.5. Contraction estimates. Let s > 1 + d
2 and consider η j ∈ Hs(Rd) satisfying

dist(η j , �
±) > h > 0, j = 1, 2. We have the following contraction estimates for

G±(η1) − G±(η2).

Theorem 2.7 ([45] Corollary 3.25 and Proposition 3.31).For any σ ∈ [ 12 , s], there exists
a nondecreasing function F : R

+ → R
+ depending only on (h, s, σ ) such that

‖G±(η1) − G±(η2)‖H̃ s±→Hσ−1 ≤ F(‖(η1, η2)‖Hs
)‖η1 − η2‖Hσ (2.32)

and

‖G±(η1) − G±(η2)‖H̃σ±→Hσ−1 ≤ F(‖(η1, η2)‖Hs
)‖η1 − η2‖Hs . (2.33)

Theorem 2.8 ([45] Theorem3.24).Let δ ∈ (0, 1
2 ] satisfy δ < s−1− d

2 . Letσ ∈ [ 12 +δ, s].
For any f ∈ H̃ s±, there exists a nondecreasing function F depending only on (h, s, σ )

such that

∓(
G±(η1) f − G±(η2) f

) = −Tλ1B±(η1) f (η1 − η2) − TV±(η1) f · ∇(η1 − η2)

+ OH̃s±→Hσ−1

(
F(‖(η1, η2)‖Hs

)‖η1 − η2‖Hσ−δ

)
f,

(2.34)

where λ1 is defined by (2.24) with η = η1.
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3. Uniform A Priori Estimates

Conclusion (i) in Theorem 1.1 concerns the uniform local well-posedness of the Muskat
problem with surface tension. Key to that is the following a priori estimates that are
uniform in the vanishing surface tension limit s → 0.

Proposition 3.1 Let s > 1 + d
2 , μ

− > 0, μ+ ≥ 0, s > 0, and h > 0. Suppose

η ∈ C([0, T ]; Hs(Rd)) ∩ L2([0, T ]; Hs+ 3
2 (Rd)) (3.1)

is a solution to (2.18) with initial data η0 ∈ Hs(Rd) such that

inf
t∈[0,T ] inf

x∈Rd
RT(η(t)) > a > 0, (3.2)

inf
t∈[0,T ] dist(η(t), �±) > h. (3.3)

Then, there exists a nondecreasing function F : R
+ × R

+ → R
+ depending only on

(h, s, μ±) such that

‖η‖L∞([0,T ];Hs ) ≤ ‖η0‖Hs exp
(
(s + g)TF(‖η‖L∞([0,T ];Hs ), a

−1)
)

(3.4)

and

s‖η‖2
L2([0,T ];Hs+ 3

2 )
+ g‖η‖2

L2([0,T ];Hs+ 1
2 )

≤ F1

(
‖η0‖Hs exp

(
(s + g)TF(‖η‖L∞([0,T ];Hs ), a

−1)
)
, a−1

)
(3.5)

where F1(m, n) = m2F(m, n).

Proof Set B = [[B(η)J (η)]]η and V = [[V(η)J (η)]]η. We shall write Q = Q(t) =
F(‖η(t)‖Hs , a−1) when F(·, ·) is nondecreasing and depends only on (h, s, μ±). Note
that F may change from line to line. From (2.18) we have

(μ+ + μ−)∂tη + gL(η)η + sL(η)H(η) = 0 (3.6)

for both the one-phase and two-phase problems. Fix δ ∈ (
0,min( 12 , s − 1 − d

2 )
)
. By

virtue of the paralinearization (2.28) (with σ = s) we have

gL(η)η = g(Tλ(η − TBη) − TV · ∇η) + O
Hs→Hs− 1

2

(
gQ(1 + ‖η‖

Hs+ 1
2−δ

)
)
η.

On the other hand, (2.26) (with σ = s − 1
2 ) together with (2.31) gives

sL(η)H(η) = sTλH(η) + O
Hs+ 3

2 →Hs− 3
2 +δ

(sF(‖η‖Hs ))η

Combining this with the linearization (2.29) for H(η) yields

sL(η)H(η) = sTλTlη + O
Hs+ 3

2 →Hs− 3
2 +δ

(sF(‖η‖Hs ))η,

where we have applied Theorem A.2 to have Tλ = OOp1(F(‖η‖Hs )).
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Then in view of (3.6) we obtain

(μ+ + μ−)∂tη + sTλTlη + g(Tλ(η − TBη) − TV · ∇η)

= O
Hs→Hs− 1

2

(
gF(‖η‖Hs )(1 + ‖ηs‖

H
1
2−δ

)
)
η + O

Hs+ 3
2 →Hs− 3

2 +δ
(sF(‖η‖Hs ))η.

(3.7)

Note that λ ∈ �1
δ , l ∈ �2

δ and (B, V ) ∈ W 1+δ,∞ ⊂ �0
δ , with seminorms bounded by

F(‖η‖Hs ). The symbolic calculus in Theorem A.3 then gives

TλTlη = Tλlη + OOp3−δ (F(‖η‖Hs )),

Tλ(Id − TB) = Tλ(1−B) + OOp1−δ (F(‖η‖Hs )),

TV · ∇ = iTξ ·V = iRe(Tξ ·V ) + OOp1−δ (F(‖η‖Hs )),

where Re(Tξ ·V ) = 1
2 (Tξ ·V + T ∗

ξ ·V ). It then follows from (3.7) that

(μ+ + μ−)∂tη + sTλlη + g
(
Tλ(1−B)η − iRe(Tξ ·V )η

)

= O
Hs→Hs− 1

2
(gF(‖η‖Hs )(1 + ‖ηs‖

H
1
2−δ

))η + O
Hs+ 3

2 →Hs− 3
2 +δ

(sF(‖η‖Hs ))η.

(3.8)

We set ηs = 〈D〉sη. Appealing to Theorem A.3 again we have

[〈D〉s, Tλl ] = OOps+3−δ (F(‖η‖Hs )),

[〈D〉s, Tλ(1−B)] = OOps+1−δ (F(‖η‖Hs , a−1)),

[〈D〉s,Re(Tξ ·V )] = OOps+1−δ (F(‖η‖Hs )),

where [A, B] = AB − BA and in the second line we have used the lower bound (3.2)
for (1− B) together with the fact that λ ≥ |ξ |. Note that we have adopted the convention
that F(‖η‖Hs ) ≡ F(‖η‖Hs , 0). This implies

(μ+ + μ−)∂tηs + sTλlηs + g
(
Tλ(1−B)ηs − Re(Tξ ·V )ηs

)

= O
L2→H− 1

2
(gQ(1 + ‖ηs‖

H
1
2−δ

))ηs + OOp1−δ (gQ)ηs + O
H

3
2 →H− 3

2 +δ
(sQ)ηs .

(3.9)

Since iRe(Tξ ·V ) is skew-adjoint, by testing (3.9) against ηs , we obtain

(μ+ + μ−)

2

d

dt
‖ηs‖2L2 + s(Tλlηs , ηs)L2 + g(Tλ(1−B)ηs , ηs)L2

≤ Q
{
g
[
(1 + ‖ηs‖

H
1
2 −δ

)‖ηs‖L2‖ηs‖
H

1
2
+ ‖ηs‖

H
1
2 −δ

‖ηs‖
H

1
2

]
+ s‖ηs‖

H
3
2 −δ

‖ηs‖
H

3
2

}
,

(3.10)

where (·, ·)L2 denotes the L2 pairing. The term involving 1 + ‖ηs‖
H

1
2−δ

is treated as

follows:

(1 + ‖ηs‖
H

1
2−δ

)‖ηs‖L2‖ηs‖
H

1
2

≤ ‖ηs‖L2‖ηs‖
H

1
2
+ ‖ηs‖L2‖ηs‖

H
1
2−δ

‖ηs‖
H

1
2

≤ Q‖ηs‖
H

1
2−δ

‖ηs‖
H

1
2
.

(3.11)
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In view of (3.2) and the fact that λ(x, ξ) ≥ |ξ |, we have the lower bounds

λ(1 − B) ≥ a|ξ |, lλ = 〈∇η〉−3λ3 ≥ 1

〈‖η‖W 1,∞〉3 |ξ |3.

Moreover, λ(1 − B) ∈ �1
δ and lλ ∈ �3

δ with seminorms bounded by F(‖η‖Hs ). Then
applying the Gåarding’s inequality (A.9) gives

‖�(D)ηs‖2
H

3
2

≤ Q
(
‖ηs‖

H
3
2
‖ηs‖

H
3
2−δ

+ (Tlληs, ηs)L2

)
, (3.12)

‖�(D)ηs‖2
H

1
2

≤ Q
(
‖ηs‖

H
1
2
‖ηs‖2

H
1
2−δ

+ (Tλ(1−B)ηs, ηs)L2

)
, (3.13)

where�(D) denotes the Fourier multiplier with symbol� defined by (A.3). In addition,
we have

‖u‖Hr ≤ C(‖�(D)u‖Hr + ‖u‖L2) ∀r ∈ R.

Thus, (3.10) amounts to

(μ+ + μ−)

2

d

dt
‖ηs‖2L2 +

1

Q
(
s‖ηs‖2

H
3
2
+ g‖ηs‖2

H
1
2

)

≤ Q(g‖ηs‖
H

1
2−δ

‖ηs‖
H

1
2
+ s‖ηs‖

H
3
2−δ

‖ηs‖
H

3
2
).

(3.14)

We use Young’s inequality and interpolation as follows:

‖ηs‖
H

1
2−δ

‖ηs‖
H

1
2

≤ ‖ηs‖2δL2‖ηs‖2(1−δ)

H
1
2

≤ (10Q)
2(1−δ)

δ ‖ηs‖2L2 +
1

100Q2 ‖ηs‖2
H

1
2

(3.15)

and similarly,

‖ηs‖
H

3
2−δ

‖ηs‖
H

3
2

≤ ‖ηs‖2
δ
3

L2 ‖ηs‖2(1−
δ
3 )

H
3
2

≤ (10Q)
2(3−δ)

δ ‖ηs‖2L2 +
1

100Q2 ‖ηs‖2
H

3
2
.

(3.16)

Applying these inequalities to (3.14), and then subtracting terms involving ‖ηs‖
H

1
2
, we

obtain for a larger Q if needed that

μ+ + μ−

2

d

dt
‖ηs‖2L2 +

1

Q (s‖ηs‖2
H

3
2
+ g‖ηs‖2

H
1
2
) ≤ (g + s)Q‖ηs‖2L2 . (3.17)

A Grönwall’s argument then leads to

‖η‖2L∞([0,T ];Hs ) +
1

QT

(
s‖η‖2

L2([0,T ];Hs+ 3
2 )

+ g‖η‖2
L2([0,T ];Hs+ 1

2 )

)

≤ ‖η0‖2Hs exp
(
(s + g)TQT

)
,

where QT = F(‖η‖L∞([0,T ];Hs ), a
−1) with F depending only on (h, s, μ±). In partic-

ular, we have the Hs estimate (3.4). As for the dissipation estimate, we have

s‖η‖2
L2([0,T ];Hs+ 3

2 )
+ g‖η‖2

L2([0,T ];Hs+ 1
2 )

≤ ‖η0‖2Hs exp
(
(s + g)TF(‖η‖L∞([0,T ];Hs ), a

−1)
)
QT .
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On the other hand, plugging (3.4) into QT gives

QT = F(‖η‖L∞([0,T ];Hs ), a
−1)

≤ F
(
‖η0‖Hs exp

(
(s + g)TF(‖η‖L∞([0,T ];Hs ), a

−1)
)
, a−1

)

Therefore, upon setting F1(m, n) = m2F(m, n) we obtain

s‖η‖2
L2([0,T ];Hs+ 3

2 )
+ g‖η‖2

L2([0,T ];Hs+ 1
2 )

≤ F1

(
‖η0‖Hs exp

(
(s + g)TF(‖η‖L∞([0,T ];Hs ), a

−1)
)
, a−1

)

which finishes the proof of (3.5). ��

4. Contraction Estimates for J±

Our goal in this section is to prove contraction estimates for J±(η) at two different
surfaces η1 and η2. This is only a question for the two-phase problem since for the
one-phase problem we have J− = Id and J+ ≡ 0. Given an object X depending on η,
we shall denote X j = X |η=η j and the difference

Xδ = X1 − X2.

Proposition 4.1 Let s > 1 + d
2 and consider η j ∈ Hs(Rd) satisfying dist(η j , �

±) >

h > 0, j = 1, 2. For any σ ∈ [ 12 , s], there exists F : R
+ → R

+ depending only on
(h, s, σ, μ±) such that

‖J±
δ ‖Hs→H̃σ± ≤ F(Ns)‖ηδ‖Hσ , (4.1)

‖J±
δ ‖Hσ →H̃σ± ≤ F(Ns)‖ηδ‖Hs , (4.2)

where we denoted
Ns = ‖(η1, η2)‖Hs . (4.3)

We shall prove Proposition 4.1 for the most general case of two fluids and with bottoms,
i.e. μ+ > 0 and �± �= ∅. Adaption to the other cases is straightforward.

4.1. Flattening the domain. There exist η±∗ ∈ Cs+100
b (Rd) such that

b−(x)+
h

2
≤ η−∗ (x) ≤ η j (x)− h

2
, η j (x) ≤ η+∗(x)− h

2
≤ b+(x)−h ∀x ∈ R

d (4.4)

and for some C = C(h, s, d),

‖η±∗ ‖Cs+100
b (Rd ) ≤ C(1 + ‖η1‖L∞ + ‖η2‖L∞). (4.5)

For j = 1, 2 we set �∗ = �+
j,∗ ∪ �−

j,∗ where

�±
∗, j = {(x, y) : x ∈ R

d ,±η(x) ≤ ±y ≤ ±η±∗ (x)}. (4.6)

Note that �∗ = {(x, y) : x ∈ R
d , η−∗ (x) ≤ y ≤ η+∗(x)} is independent of j ∈ {1, 2}.

For small τ > 0 to be chosen, define ρ j (x, z) : R
d × [−1, 1] by

� j (x, z) = (1 − z2)e−τ |z|〈Dx 〉η j (x) − 1

2
z(1 − z)η−∗ (x) +

1

2
z(1 + z)η+∗(x). (4.7)
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Lemma 4.2 There exists K > 0 depending only on (s, d) such that if τK‖η j‖Hs ≤ h
12

then

∂z� j (x, z) ≥ h

12
a.e. (x, z) ∈ R

d × (−1, 1), j = 1, 2. (4.8)

For j = 1, 2, the mapping

� j : R
d × [−1, 1] � (x, z) �→ (x, � j (x, z)) ∈ �∗

is a Lipschitz diffeomorphism and respectively maps R
d × [0, 1] and R

d × [−1, 0] onto
�+∗, j and �−

∗, j . Moreover, there exists C = C(h, s, d) such that

‖∇� j‖L∞(Rd×(−1,1)) ≤ C(1 + Ns), (4.9)

‖∇(�−1
j )‖L∞(�∗) ≤ C(1 + Ns). (4.10)

Proof We first note that � j (x, 0) = � j = {(x, η j (x)) : x ∈ R
d}, � j (x, 1) =

{(x, η+∗(x)) : x ∈ R
d} and � j (x,−1) = {(x, η−∗ (x)) : x ∈ R

d}. Thus, in order to
prove that � j is one-to-one and onto, it suffices to prove that ∂z� j (x, z) ≥ c > 0 for
a.e. (x, z) ∈ R

d × (−1, 1). For z ∈ (−1, 1)\{0} we have

∂z� j (x, z) = 1

2
(1 − 2z)(η j (x) − η−∗ (x)) +

1

2
(1 + 2z)(η+∗(x) − η j (x))

− 2z(e−τ |z|〈Dx 〉 − 1)η j (x) − sign(z)τ (1 − z2)e−τ |z|〈Dx 〉〈Dx 〉η j (x).

For z ∈ [ 13 , 1], 1 − 2z ∈ [−1, 1
3 ] and 1 + 2z ∈ [ 53 , 3]. In addition, by (4.4) we have

∓(η−η±∗ ) ≥ h/2. Consequently,

1

2
(1 − 2z)(η j (x) − η−∗ (x)) +

1

2
(1 + 2z)(η+∗(x) − η j (x)) ≥ h

6
. (4.11)

Similarly we obtain (4.11) for z ∈ (−1,− 1
3 ) and z ∈ [− 1

3 ,
1
3 ]\{0}. Next writing

(e−τ |z|〈Dx 〉 − 1)η j (x) = −τ

∫ |z|

0
e−τ z′〈Dx 〉〈Dx 〉η j (x)dz

′

we obtain that

∂z� j (x, z) ≥ h

6
− τK‖η j‖Hs ∀(x, z) ∈ R

d × (−1, 1)

for some constant K = K (s, d). Note that the condition s > 1 + d
2 has been used.

Choosing τ > 0 such that τK‖η j‖Hs ≤ h/12 gives ∂z� j (x, z) ≥ h/12 for a.e. (x, z) ∈
R
d × (−1, 1).
Since

∂z� j (x, z) = −2ze−τ |z|〈Dx 〉η j (x) − sign(z)τ (1 − z2)e−τ |z|〈Dx 〉〈Dx 〉η j (x)

− 1

2
(1 − 2z)η−∗ (x) +

1

2
(1 + 2z)η+∗(x),

there exists K ′ = K ′(s, d) such that

‖∂z� j (x, z)‖W 1,∞(Rd×(−1,1)) ≤ K ′‖η j‖Hs−1 + K ′τ‖η j‖Hs + K ′(1 + Ns−1),
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where we have used (4.5). Then in view of the fact that τ‖η j‖Hs ≤ hK−1, we obtain

‖� j‖W 1,∞(Rd×(−1,1)) ≤ C(1 + Ns), C = C(h, s, d), (4.12)

whence (4.9) follows. On the other hand, we have �−1
j (x, y) = (x, κ j (x, y)) where

y = � j (x, z) ⇐⇒ z = κ j (x, y) a.e. (x, z) ∈ R
d × (−1, 1). (4.13)

Then the relation κ j (x, � j (x, z)) = z yields

∂yκ j (x, � j (x, z)) = 1

∂z� j (x, z))
, ∂xκ j (x, � j (x, z)) = − ∂x� j (x, z)

∂z� j (x, z))
. (4.14)

Thus, in view of (4.8) and (4.12), we obtain (4.10). ��
Lemma 4.3 Set

ϒ(x, y) =
{

�1 ◦ �−1
2 , (x, y) ∈ �∗,

(x, y), (x, y) ∈ �\�∗
(4.15)

and

M = ∇ϒ∇ϒ t

| det∇ϒ | . (4.16)

Then, ϒ is a Lipschitz diffeomorphism on � and

1

C(1 + Ns)
≤ det∇ϒ(x, y) ≤ C(1 + Ns) a.e. (x, y) ∈ �, (4.17)

‖∇ϒ‖L∞(�) + ‖∇(ϒ−1)‖L∞(�) ≤ F(Ns). (4.18)

Moreover, M satisfies

‖M − Id‖L∞(�) ≤ F(Ns)‖ηδ‖Hs , (4.19)

‖M − Id‖L2(�) ≤ F(Ns)‖ηδ‖
H

1
2
. (4.20)

Proof According to Lemma 4.2, ϒ is a Lipschitz diffeomorphism on �∗. For (x, y) ∈
�\�∗ wehaveϒ = Id, and henceϒ is aLipschitz diffeomorphismon� andM−Id = 0.
It thus suffices to consider (x, y) ∈ �∗. On �∗ we have ϒ(x, y) = (x, �1(x, κ2(x, y)),
and so

∇ϒ(x, y) =
(

1 0
a(x, y) b(x, y)

)

where

a(x, y) = ∂x�1(x, κ2(x, y)) + ∂z�1(x, κ2(x, y))∂xκ2(x, y),

b(x, y) = ∂z�1(x, κ2(x, y))∂yκ2(x, y).

Using (4.14) (with j = 2) gives

a(x, y) = ∂x�1(x, κ2(x, y))∂z�2(x, κ2(x, y)) − ∂x�2(x, κ2(x, y))∂z�1(x, κ2(x, y))

∂z�2(x, κ2(x, y))
,

b(x, y) = ∂z�1(x, κ2(x, y))

∂z�2(x, κ2(x, y))
.
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In view of (4.8) and (4.12) we obtain

1

C(1 + Ns)
≤ det∇ϒ(x, y) = b(x, y) ≤ C(1 + Ns) a.e. (x, y) ∈ �∗. (4.21)

Next we compute

M − Id = 1

b

(
1 − b a
a a2 + b(b − 1)

)
.

Using the above formulas for a and b together with (4.7) and (4.8) we deduce that

‖(a, b − 1)‖L∞(�∗) ≤ F(Ns)‖ηδ‖Hs ,

‖(a, b − 1)‖L2(�∗) ≤ F(Ns)‖ηδ‖
H

1
2
.

This combined with (4.21) leads to (4.18), (4.19) and (4.20). ��

4.2. Proof of Proposition 4.1. The proof proceeds in three steps.

Step 1. We first recall from (2.15) that J±v = f ± where f ± solve
(

Id −Id
μ+G−(η) −μ−G+(η)

) (
f −
f +

)
=

(
v

0

)
. (4.22)

From the definition of the Dirichlet-Neumann operator we see that f ± = q±|� where
q± solve the two-phase elliptic problem

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

q± = 0 in �±,

q− − q+ = v on �,
∂nq−
μ− − ∂nq+

μ+ = 0 on �,

∂ν±q± = 0 on �±.

(4.23)

To remove the jump of q at � we take a function θ : � → R satisfying

θ(x, η(x)) = −1

2
v(x), θ ≡ 0 near �±, (4.24)

‖θ‖Ḣ1(�) ≤ C(1 + ‖η‖W 1,∞)‖v‖
H

1
2 (Rd )

, C = C(d). (4.25)

Then, the solution of (4.23) can be taken to be q± := (r ± θ)|�± where r ∈ Ḣ1(�)

solves ⎧
⎪⎨

⎪⎩

−r = ±θ in �±,
∂nr
μ+ − ∂nr

μ− = −∂nθ( 1
μ+ + 1

μ− ) on �,

∂ν±r = 0 on �±.

(4.26)

A function θ satisfying (4.24) and (4.30) can be constructed as follows. Let ς(z) : R →
R
+ be a cutoff function that is identically 1 for |z| ≤ 1

2 and vanishes for |z| ≥ 1. Set

θ(x, z) = −1

2
ς(z)e−|z|〈Dx 〉v(x), θ(x, y) = θ

(
x,

y − η(x)

h

)
. (4.27)
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Then, θ(x, y) = 0 for |y−η(x)| ≥ h, and hence θ1 ≡ 0 near�± in view of the condition
dist(η, �±) > h. Moreover, (4.30) is satisfied.

Integration by parts leads to the following variational form of (4.26):
∫

�

(1�−

μ− +
1�+

μ+

)
∇r · ∇φ dxdy =

∫

�

(1�−

μ− − 1�+

μ+

)
∇θ · ∇φ dxdy, ∀φ ∈ Ḣ1(�).

(4.28)

For example, for ς(z) : R → R
+ a cutoff function that is identically 1 for |z| ≤ 1

2 and
vanishes for |z| ≥ 1, we set

θ(x, z) = −1

2
ς(z)e−|z|〈Dx 〉v(x), θ(x, y) = θ

(
x,

y − η(x)

h

)
. (4.29)

Then, θ(x, y) = 0 for |y−η(x)| ≥ h, and hence θ1 ≡ 0 near�± in view of the condition
dist(η, �±) > h. Moreover, we have

‖θ‖Ḣ1(�) ≤ C(1 + ‖η‖W 1,∞)‖v‖
H

1
2 (Rd )

, C = C(d). (4.30)

By virtue of the Lax-Milgram theorem, there exists a unique solution r ∈ Ḣ1(�) to
(4.34) which obeys the bound

‖r‖Ḣ1(�) ≤ C(μ±)‖θ‖Ḣ1(�) ≤ C(1 + ‖η‖W 1,∞)‖v‖
H

1
2 (Rd )

. (4.31)

Consequently,
J±v = f ± = Tr�±→�(r ± θ), (4.32)

and hence by the trace operation (2.5),

‖J±v‖
H̃

1
2± (Rd )

≤ F(Ns)‖v‖
H

1
2 (Rd )

. (4.33)

We note that θ defined by (4.29) depends on η, and so does r .

Step 2. In this step we prove contraction estimates for J±
δ = J±

1 − J±
2 in H̃

1
2± . Recall

that ϒ defined by (4.15) is a Lipschitz diffeomorphism on �. Let θ1 be defined as in
(4.29) with η = η1, and let θ2 = θ1 ◦ ϒ . Let us check that θ2 obeys (4.24) and (4.30)
for η = η2. Indeed, using the fact that ϒ : �2 → �1 we have

θ2(x, η2(x)) = θ1(x, ϒ(x, η2(x))) = θ1(x, η1(x)) = −1

2
v(x).

On the other hand, since ϒ ≡ Id near �± and θ1 ≡ 0 near �±, we deduce that θ1 ≡ 0
near �±. Finally, the bound (4.30) for θ2 follows from (4.30) for θ1 and the Lipschitz
bound (4.18) for ϒ .

According to Step 1, we have

J±
j v = Tr�±

j →� j
(r j ± θ j )

where r j ∈ Ḣ1(�) satisfies
∫

�

(1�−

μ− +
1�+

μ+

)
∇r j · ∇φ dxdy =

∫

�

(1�−

μ− − 1�+

μ+

)
∇θ j · ∇φ dxdy ∀φ ∈ Ḣ1(�).

(4.34)
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Set r̃2 = r2 ◦ ϒ−1 and recall that θ1 = θ2 ◦ ϒ−1. Combining (4.31) and (4.17) gives

‖̃r2‖Ḣ1(�) ≤ F(Ns).

Since map φ �→ φ ◦ ϒ−1 is an isomorphism on Ḣ1(�), with M = ∇ϒ∇ϒ t/| det∇ϒ |
we have for all φ ∈ Ḣ1(�) that

∫

�

(1�−
1

μ− +
1�+

1

μ+

)
∇r̃2M∇φt dxdy =

∫

�

(1�−
1

μ− − 1�+
1

μ+

)
∇θ1M∇φt dxdy, (4.35)

where gradients of scalar functions are understood as row vectors, and the rows of the
Jacobian matrix ∇ϒ are the gradients of each component of ϒ . Taking the difference
between (4.35) with j = 2 and (4.34) with j = 1, we obtain

∫

�

(1�−
1

μ− +
1�+

1

μ+

)
∇ (̃r2 − r1)∇φt dxdy = −

∫

�

(1�−
1

μ− +
1�+

1

μ+

)
∇r̃2(M − Id)∇φt dxdy

+
∫

�

(1�−
1

μ− − 1�+
1

μ+

)
∇θ1(M − Id)∇φt dxdy

(4.36)

for all φ ∈ Ḣ1(�). Setting φ = r̃2 − r1 and using the estimate (4.19) for M − Id in
L∞(�) we obtain

‖̃r2 − r1‖Ḣ1(�) ≤ C(μ±)‖M − Id‖L∞(�)(‖̃r2‖Ḣ1(�) + ‖θ1‖Ḣ1(�))

≤ F(Ns)‖ηδ‖Hs‖v‖
H

1
2
.

(4.37)

On the other hand, using (4.20) for M − Id in L2(�) instead gives

‖̃r2 − r1‖Ḣ1(�) ≤ C(μ±)‖M − Id‖L2(�)(‖∇r̃2‖L∞(�) + ‖∇θ1‖L∞(�))

≤ F(Ns)‖ηδ‖
H

1
2
‖v‖Hs ,

(4.38)

where in the last inequality we have used the fact that

‖̃r2‖L∞(�) + ‖θ1‖L∞(�) ≤ F(Ns)‖v‖Hs .

Since r2 = r̃2 ◦ ϒ , θ2 = θ ◦ ϒ , and ϒ : �±
2 → �±

1 , �2 → �1 we have

Tr�±
2 →�2

(r2 ± θ2) = Tr�±
1 →�1

(̃r2 ± θ1),

and hence

J±
δ v = Tr�±

1 →�1
(r1 ± θ1) − Tr�±

2 →�2
(r2 ± θ2)

= Tr�±
1 →�1

(r1 ± θ1) − Tr�±
1 →�1

(̃r2 ± θ1)

= Tr�±
1 →�1

(r1 − r̃2).

In view of (4.37) and (4.38), the trace operation (2.5) yields

‖J±
δ v‖

H
1
2±

≤ F(Ns)‖ηδ‖Hs‖v‖
H

1
2
, (4.39)

‖J±
δ v‖

H
1
2±

≤ F(Ns)‖ηδ‖
H

1
2
‖v‖Hs . (4.40)
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For the proof of (4.1), we shall only need (4.40).

Step 3. We have J±
j v ≡ J±(η j )v = f ±

j where

{
f −
j − f +j = v,
1

μ− G
−
j f −

j − 1
μ+G+

j f
+
j = 0,

j = 1, 2. (4.41)

By taking differences we obtain f −
δ = f +δ and

1

μ− G−
1 f −

δ − 1

μ+G
+
1 f

+
δ = 1

μ+G
+
δ f +2 − 1

μ− G−
δ f −

2 , (4.42)

where we recall the notation G±
δ = G±

1 − G±
2 . Combining the contraction estimate

(2.32) with the continuity (2.20) for J±, we deduce that

‖G+
δ f +2 ‖Hσ−1 + ‖G−

δ f −
2 ‖Hσ−1 ≤ F(Ns)‖ηδ‖Hσ ‖v‖Hs ∀σ ∈ [1

2
, s]. (4.43)

We take δ ∈ (0, 1
2 ] satisfying σ < s − 1− d

2 . In light of the paralinearization (2.25) for
G±

1 , we have

1

μ− G−
1 f −

δ − 1

μ+G
+
1 f

+
δ = Tλ1

( 1

μ− f −
δ +

1

μ+ f +δ
)
+ R1 = μ+ + μ−

μ−μ+ Tλ1 f
−
δ + R1,

‖R1‖Hν−1+δ ≤ F(Ns)‖ f −
δ ‖H̃ν− ∀ν ∈ [1

2
, s − δ].

(4.44)
It follows from (4.42),(4.43) and (4.44) that if

ν ∈ [1
2
, s − δ], ν + δ ≤ σ, σ ∈ [1

2
, s], (4.45)

then

‖Tλ1 f
−
δ ‖Hν−1+δ ≤ F(Ns)‖ f −

δ ‖H̃ν− + F(Ns)‖ηδ‖Hσ ‖v‖Hs . (4.46)

Applying Lemma A.6 we have

‖�(D) f −
δ ‖Hν+δ ≤ F(‖η1‖Hs )‖Tλ1 f

−
δ ‖Hν+δ−1 + F(‖η1‖Hs )‖ f −

δ ‖H1,ν .

But for τ > 1
2 ,

‖ · ‖H̃ τ± ≤ C‖�(D) · ‖H τ + C‖ · ‖
H̃

1
2±
,

whence (4.46) implies that

‖ f −
δ ‖H̃ν+δ− ≤ F(Ns)‖ f −

δ ‖H̃ν− + F(Ns)‖ηδ‖Hσ ‖v‖Hs (4.47)

provided that ν and σ satisfy (4.45).
We note that (4.40) implies that

‖ f −
δ ‖

H̃
1
2−

≤ F(Ns)‖ηδ‖
H

1
2
‖v‖Hs , (4.48)
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and hence (4.1) holds for σ = 1
2 . Now fix σ ∈ ( 12 , s]. We use (4.47) to bootstrap the

base estimate (4.48) to

‖ f −
δ ‖H̃σ− ≤ F(Ns)‖ηδ‖Hσ ‖v‖Hs . (4.49)

Indeed, we can always take δ smaller if necessary so that 1
2 + δ < σ . Plugging (4.48)

into (4.47) with ν = 1
2 yields (4.49) with 1

2 + δ in place of σ . Continuing this n steps, n
being the greatest integer such that 1

2 + nδ ≤ σ , we obtain (4.49) for 1
2 + nδ in place of

σ . This is justified since ν = 1
2 + (n − 1)δ satisfies (4.45). Thus, for possibly one more

step to gain σ − ( 12 + nδ) derivative, we obtain (4.49). The proof of (4.1) is complete.
Finally, (4.2) can be proved similarly except that one uses the contraction estimate

(2.33) to estimate G±
δ f ±

2 in (4.43).

5. Proof of Theorem 1.1

Let s > 1 + d
2 , μ

− > 0, μ+ ≥ 0, and s ∈ (0, 1]. Consider an initial datum η0 ∈ Hs(Rd)

satisfying

inf
x∈Rd

RT(η0) ≥ 2a > 0, (5.1)

dist(η0, �
±) ≥ 2h > 0. (5.2)

Theorem 1.1 will be proved in Propositions 5.1, 5.2 and 5.5 below. Precisely, Proposition
5.1 establishes the uniform local well-posedness for the Muskat problem with surface
tension belonging to any bounded set, say s ∈ (0, 1]. Then, in Propositions 5.2 and
5.5, we prove that in appropriate topologies, η(s) converges to η with the rate

√
s and s

respectively.

Proposition 5.1 There exists a time T∗ > 0dependingonly on‖η0‖Hs and (a, h, s, μ±, g)
such that the following holds. For each s ∈ (0, 1], there exists a unique solution

η(s) ∈ C([0, T∗]; Hs(Rd)) ∩ L2([0, T∗]; Hs+ 3
2 (Rd)) (5.3)

to the Muskat problem with surface tension s, η(s)|t=0 = η0 and

‖η(s)‖2L∞([0,T∗];Hs ) + ‖η(s)‖2
L2([0,T∗];Hs+ 1

2 )
+ s‖η(s)‖2

L2([0,T∗];Hs+ 3
2 )

≤ F(‖η0‖Hs , a−1)

(5.4)
for some nondecreasing function F : R

+ × R
+ → R

+ depending only on (h, s, μ±, g).
Furthermore, for all s ∈ (0, 1] we have

inf
t∈[0,T∗]

inf
x∈Rd

RT(η(s)(t)) >
3

2
a, (5.5)

inf
t∈[0,T∗]

dist(η(s)(t), �±) >
3

2
h. (5.6)

Proof According to Theorems 1.2 and 1.3 in [46], for each initial datum η0 ∈ Hs

satisfying dist(η0, �±) ≥ 2h > 0 and for each s > 0, there exists Ts > 0 such that the
Muskat problem has a unique solution

η(s) ∈ C([0, Ts]; Hs) ∩ L2([0, Ts]; Hs+ 3
2 )
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satisfying inf t∈Ts dist(η(s)(t), �±) > 3
2h. We stress the continuity in time of the Hs

norm of η(s). Now we have in addition that η0 satisfies the Rayleigh-Taylor condition
(5.1). Thus, we define

T ∗
s = sup{T ∈ (0, Ts] : inf

t∈[0,T ] inf
x∈Rd

RT(η(s)(t)) >
3

2
a}. (5.7)

We shall prove that T ∗
s > 0 for each s ∈ (0, 1] and there exists T∗ > 0 such that T ∗

s ≥ T∗
for all s ∈ (0, 1].
Step 1. We claim that there exist θ > 0 depending only on s, and F0 : R

+ → R
+

depending only on (h, s, μ±, g) such that
∥∥∥[[B(η(s)(t))J (η(s)(t))]]η(s)(t) − [[B(η0)J (η0)]]η0

∥∥∥
L∞(Rd )

≤ (t
θ
2 + tθ )F0(Es(t))

(5.8)
for all t ≤ Ts, where

Es(t) = ‖η(s)‖2C([0,t];Hs ) + s‖η(s)‖2
L2([0,t];Hs+ 3

2 )
. (5.9)

Set

A(t) = [[B(η(s)(t))J (η(s)(t))]]η(s)(t) − [[B(η0)J (η0)]]η0.
The continuity properties (2.20) and (2.23) of J± and B± imply that

‖A(t)‖Hs−1 ≤ ‖[[B(η(s)(t))J (η(s)(t))]]η(s)(t)‖Hs−1 + ‖[[B(η0)J (η0)]]η0‖Hs−1

≤ F(‖η(s)(t)‖Hs
)
+ F(‖η(s)(0)‖Hs

)

≤ F(Es(t)).
(5.10)

On the other hand, denoting B±(η(s)(t)) = B±
t and J±(η(s)(t)) = J±

t , we can write

A(t) = (
B−

t J−
t − B+

t J
+
t

)
η(s)(t) − (

B−
0 J−

0 − B+
0 J

+
0

)
η0

= (B−
t − B−

0 )J−
t η(s)(t) +B−

0 (J−
t − J−

0 )η(s)(t) +B−
0 J−

0 (η(s)(t) − η0)

− (B+
t − B+

0)J
+
t η(s)(t) − B+

0(J
+
t − J+0 )η(s)(t) − B+

0 J
+
0 (η(s)(t) − η0).

We treat the first two terms since the other terms are either similar or easier. The con-
traction estimate (2.32) with σ = s − 1

2 gives

‖G±(η(s)(t)) − G±(η0)‖
H̃ s±→Hs− 3

2
≤ F(Es(t))‖η(s)(t) − η0‖

Hs− 1
2
.

From this and the definition of B± it is easy to prove that

‖B+
t − B+

0‖H̃ s±→Hs− 3
2

≤ F(Es(t))‖η(s)(t) − η0‖
Hs− 1

2
.

Then recalling the continuity of J± from Hs− 1
2 → H̃

s− 1
2± we obtain

‖(B−
t − B−

0 )J−
t η(s)(t)‖

Hs− 3
2

≤ F(Es(t))‖η(s)(t) − η0‖
Hs− 1

2
.
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Next regarding B−
0 (J−

t − J−
0 )η(s)(t) we use the contraction estimate (4.1) with σ =

s − 1
2

‖J−
t − J−

0 ‖
Hs→H̃

s− 1
2±

≤ F(Es(t))‖η(s)(t) − η0‖
Hs− 1

2

together with the continuity (2.23) to have

‖B−
0 (J−

t − J−
0 )η(s)(t)‖

Hs− 3
2

≤ F(Es(t))‖η(s)(t) − η0‖
Hs− 1

2
.

Therefore, we arrive at

‖A(t)‖
Hs− 3

2
≤ F(Es(t))‖η(s)(t) − η0‖

Hs− 1
2
. (5.11)

To bound ‖η(s)(t) − η0‖
Hs− 1

2
we first use the mean-value theorem and equation (2.18)

to have

‖η(s)(t) − η0‖
H− 1

2
≤

∫ t

0
‖∂tη(s)(τ )‖

H− 1
2
dτ

≤ F(Es(t))
∫ t

0
g‖η(s)(τ )‖

H
1
2
+ s‖H(

η(s)(τ )
)‖

H
1
2
dτ

≤ F(Es(t))
(
tg‖η(s)‖C([0,t];Hs ) + t

1
2 s‖η(s)‖

L2([0,t];Hs+ 3
2 )

)

≤ (t
1
2 + t)F(Es(t))

(
g‖η(s)‖C([0,t];Hs ) +

√
s‖η(s)‖

L2([0,t];Hs+ 3
2 )

)

for all s ∈ (0, 1] and t ≤ Ts. Interpolating thiswith the obvious bound‖η(s)(t)−η0‖Hs ≤
F(Ms(t)) gives

‖η(s)(t) − η0‖
Hs− 1

2
≤ (t

θ0
2 + tθ0)F(Es(t)) (5.12)

for some θ0 ∈ (0, 1) andF depending only on (h, s, μ±, g). Then in view of (5.11), this
implies

‖A(t)‖
Hs− 3

2
≤ (t

θ0
2 + tθ0)F(Es(t)).

Fixing s′ ∈ (max{1 + d
2 , s − 3

2 }, s) and interpolating this with the Hs bound (5.10) we
obtain

‖A(t)‖Hs′−1 ≤ (t
θ
2 + tθ )F(Es(t))

for some θ ∈ (0, 1). Using the embedding Hs′−1 ⊂ L∞(Rd) we conclude the proof of
(5.8).

Step 2. We note that (5.8) implies the continuity of

[0, Ts] � t �→ inf
x∈Rd

RT(η(s)(t)).

Thus, in view of the definition (5.7) and the initial condition (5.1), we have T ∗
s > 0 for

all s ∈ (0, 1].
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By the definition of T ∗
s , conditions (3.1), (3.2) and (3.3) in Proposition 3.1 are satisfied

for all T ≤ T ∗
s . Thus, the estimates (3.4) and (3.5) imply the existence of a strictly

increasing F2 : R
+ × R

+ → R
+ depending only on (h, s, μ±, g) such that

F2(m, 0) > m2 ∀m > 0 (5.13)

and
Ms(T ) ≤ F2

(
‖η0‖Hs + TF2

(
Ms(T ), a−1), a−1

)
(5.14)

for all s ∈ (0, 1] and T ≤ T ∗
s , where

Ms(T ) = ‖η(s)‖2C([0,T ];Hs ) + ‖η(s)‖2
L2([0,T ];Hs+ 1

2 )
+ s‖η(s)‖2

L2([0,T ];Hs+ 3
2 )

.

Set

T2 = ‖η0‖Hs

2F2

(
F2

(
2‖η0‖Hs , a−1

)
, a−1

) (5.15)

independent of s. We claim that

Ms(T ) ≤ K0 := F2
(
2‖η0‖Hs , a−1) ∀T ≤ min{T2, T ∗

s }, ∀s ∈ (0, 1]. (5.16)

Assume not, then there exists s0 ∈ (0, 1] and T3 ≤ min{T2, T ∗
s0

} such that Ms0(T3) >

K0. Since Ms0(0) = ‖η0‖2Hs < K0, the continuity of T �→ Es0(T ) then yields the
existence of T4 ∈ (0, T3) such that Ms0(T4) = K0. Consequently, at T = T4, (5.14)
gives

F2
(
2‖η0‖Hs , a−1) ≤ F2

(
‖η0‖Hs + T4F2

(
F2

(
2‖η0‖Hs , a−1), a−1

)
, a−1

)

≤ F2

(
‖η0‖Hs + T2F2

(
F2

(
2‖η0‖Hs , a−1), a−1

)
, a−1

)

≤ F2

(3
2
‖η0‖Hs , a−1

)
,

where we have used the definition of T2 in the last inequality. This contradicts the fact
that F2 was chosen to be strictly increasing.

Now for all T ≤ min{T2, T ∗
s }, we use (5.8) and the fact that Es(·) ≤ Ms(·) to have

inf
t∈[0,T ] inf

x∈Rd
RT(η(s)(t)) ≥ inf

x∈Rd
RT(η0) − (T

θ
2 + T θ )F0(Ms(T ))

≥ 2a − (T
θ
2 + T θ )F0(K0).

Choosing T∗ ≤ T2 sufficiently small so that

(T
θ
2∗ + T θ∗ )F0(K0) <

1

2
a (5.17)

we obtain

inf
t∈[0,T ] inf

x∈Rd
RT(η(s)(t)) >

3

2
a ∀T ≤ min{T∗, T ∗

s }. (5.18)

Clearly, T∗ is independent of s. Moreover, (5.18) and the definition of T ∗
s show that

T∗ ≤ T ∗
s for all s ∈ (0, 1]. Finally, since T∗ ≤ min{T2, T ∗

s }, (5.16) and the definition of
T ∗
s guarantee that the estimates (5.4), (5.5) and (5.6) hold true. ��
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Proposition 5.2 There exists F : R
+ × R

+ → R
+ depending only on (h, s, μ±, g) such

that
‖η(s1) − η(s2)‖2L∞([0,T∗];Hs−1)

+ ‖η(s1) − η(s2)‖2
L2([0,T∗];Hs− 1

2 )

≤ (s1 + s2)F
(‖η0‖Hs , a−1)

(5.19)

for all s1 and s2 in (0, 1].
Proof Denote η j = η(s j ), j = 1, 2, and ηδ = η1 − η2 which exists on [0, T∗]. We fix
δ ∈ (

0,min( 12 , s − 1 − d
2 )

)
. From (2.18) we have that ηδ evolves according to

(μ+ + μ−)∂tηδ = −g(Lδη1 + L2ηδ) − s1L1H(η1) + s2L2H(η2). (5.20)

By (2.20) and (2.31),

‖L j H(η j )‖
Hs− 3

2
≤ F(‖η j‖Hs )‖H(η j )‖

Hs− 1
2

≤ F(‖η j‖Hs )‖η j‖
Hs+ 3

2
. (5.21)

We now paralinearize L2 and Lδ . Applying (2.26) with σ = s − 1
2 − δ gives

L2ηδ = Tλ2ηδ + O
Hs− 1

2−δ→Hs− 3
2
(F(Ns))ηδ. (5.22)

As for Lδ we write

Lδ =
∑

±=+,−
G±

δ J±
1 + G±

2 J±
δ . (5.23)

Using (2.25) at σ = s − 1
2 − δ, we have

∑

±=+,−
G±

2 J±
δ = Tλ2(J

−
δ − J+δ ) +

∑

±=+,−
O

H̃
s− 1

2−δ

± →Hs− 3
2
(F(Ns))J

±
δ .

Recall that Ns is given by (4.3). However,

J−
δ − J+δ = (J−

1 − J+1 ) − (J−
2 − J+2 ) = Id − Id = 0

and by virtue of Proposition 4.1 (with σ = s − 1
2 − δ),

J±
δ = O

Hs→H̃
s− 1

2−δ

±
(‖ηδ‖

Hs− 1
2−δ

).

We thus obtain
∑

±=+,−
G±

2 J±
δ = O

Hs→Hs− 3
2

(F(Ns)‖ηδ‖
Hs− 1

2−δ

)
. (5.24)

As for G±
δ J±

1 , we apply Theorem 2.8 with σ = s − 1
2 and (2.20) to have

∓G±
δ J±

1 f = −Tλ1B
±
1 J±

1 f ηδ − TV±
1 J±

1 f · ∇ηδ + O
Hs→Hs− 3

2

(F(Ns)‖ηδ‖
Hs− 1

2−δ

)
f,

and hence
∑

±=+,−
G±

δ J±
1 f = −Tλ1[[B1 J1]] f ηδ − T[[V1 J1]] f · ∇ηδ + O

Hs→Hs− 3
2

(F(Ns)‖ηδ‖
Hs− 1

2−δ

)
f.
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Combining this with (5.24) yields

Lδ f = −Tλ1[[B1 J1]] f ηδ − T[[V1 J1]] f · ∇ηδ + O
Hs→Hs− 3

2

(F(Ns)‖ηδ‖
Hs− 1

2−δ

)
f. (5.25)

From (5.22) and (5.25) we have

L2ηδ + Lδη1 = Tλ2ηδ − Tλ1[[B1 J1]]η1ηδ − T[[V1 J1]]η1 · ∇ηδ

+ O
Hs− 1

2−δ→Hs− 3
2
(F(Ns))ηδ + O

Hs→Hs− 3
2

(F(Ns)‖ηδ‖
Hs− 1

2−δ

)
η1

Interchanging η1 and η2 gives

L1ηδ + Lδη2 = Tλ1ηδ − Tλ2[[B2 J2]]η2ηδ − T[[V2 J2]]η2 · ∇ηδ

+ O
Hs− 1

2−δ→Hs− 3
2
(F(Ns))ηδ + O

Hs→Hs− 3
2

(F(Ns)‖ηδ‖
Hs− 1

2−δ

)
η2.

But L1ηδ + Lδη2 = L2ηδ + Lδη1, thus taking the average of the above identities yields

L2ηδ + Lδη1 = T(λ(1−[[BJ ]]η))αηδ − T([[VJ ]]η)α · ∇ηδ + O
Hs− 1

2−δ→Hs− 3
2
(F(Ns))ηδ

+ O
Hs→Hs− 3

2

(F(Ns)‖ηδ‖
Hs− 1

2−δ

)
(η1 + η2),

where

(
λ(1 − [[BJ ]]η)

)
α

= 1

2

(
λ1(1 − [[B1 J1]]η1) + λ2(1 − [[B2 J2]]η2)

)

and similarly for ([[VJ ]]η)α . It then follows from (5.20) and (5.21) that

(μ+ + μ−)∂tηδ = −gT(λ(1−[[BJ ]]η))αηδ + gT([[VJ ]]η)α · ∇ηδ +R1,

‖R1‖
Hs− 3

2
≤ gF(Ns)‖ηδ‖

Hs− 1
2−δ

+ (s1 + s2)F(Ns)Ns+ 3
2
.

(5.26)

Next we perform Hs−1 energy estimate for (5.26). Introduce ηδ,s−1 = 〈D〉s−1ηδ . Upon
commuting (5.26) with 〈D〉s−1 and applying Theorem A.3 we arrive at

(μ+ + μ−)∂tηδ,s−1 = −gT(λ(1−[[BJ ]]η))αηδ,s−1 + giRe
(
T([[VJ ]]η)α ·ξ

)
ηδ,s−1 +R,

‖R‖
H− 1

2
≤ gF(Ns)‖ηδ,s−1‖

H
1
2−δ

+ F(Ns)

2∑

j=1

s j‖η j‖
Hs+ 3

2
,

(5.27)
where F depends only on (h, s, μ±). Moreover, the uniform estimate (5.4) implies that

Ns ≤ F(‖η0‖Hs , a−1). (5.28)

Testing (5.27) against ηδ,s−1 yields

(μ+ + μ−)

2

d

dt
‖ηδ,s−1‖2L2 = − g

(
T(λ(1−[[BJ ]]η))αηδ,s−1, ηδ,s−1

)
L2 + (R, ηδ,s−1)L2 ,

where we have used the fact that iRe
(
T([[VJ ]]η)α ·ξ

)
is skew-adjoint.

From (5.5) we have that (λ(1 − [[BJ ]]η))α is an elliptic symbol in �1
δ :

(λ(1 − [[BJ ]]η))α ≥ a|ξ |, M1
δ

(
(λ(1 − [[BJ ]]η))α

) ≤ F(Ns, a
−1),
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whereF depends only on (h, s, μ±, g). Applying the Gårding inequality (A.9), we have

‖ηδ,s−1‖2
H

1
2

≤ F(‖η0‖Hs , a−1)
((
T(λ(1−[[BJ ]]η))α ηδ,s−1, ηδ,s−1

)
L2 + ‖ηδ,s−1‖

H
1
2
‖ηδ,s−1‖

H
1
2 −δ

)
.

This combined with the estimate forR in (5.27) and (5.28) implies

(μ+ + μ−)

2

d

dt
‖ηδ,s−1‖2L2 +

g

QT∗
‖ηδ,s−1‖2

H
1
2

≤ gQT∗‖ηδ,s−1‖
H

1
2−δ

‖ηδ,s−1‖
H

1
2
+QT∗‖ηδ,s−1‖

H
1
2

2∑

j=1

s j‖η j‖
Hs+ 3

2
,

(5.29)

where
QT∗ = F(‖η0‖Hs , a−1), (5.30)

F depending only on (h, s, μ±, g). Using interpolation and Young’s inequality, we have

‖ηδ,s−1‖
H

1
2−δ

‖ηs‖
H

1
2

≤ ‖ηδ,s−1‖2δL2‖ηδ,s−1‖2(1−δ)

H
1
2

≤ (10QT∗)
2(1−δ)

δ ‖ηδ,s−1‖2L2 +
1

100Q2
T∗

‖ηδ,s−1‖2
H

1
2
,

s j‖η j‖
Hs+ 3

2
‖ηδ,s−1‖

H
1
2

≤ s2j100Q2
T∗‖η j‖2

Hs+ 3
2
+

1

100Q2
T∗

‖ηδ,s−1‖2
H

1
2
.

(5.31)

Thus, for possibly a larger F in QT∗ , we obtain

(μ+ + μ−)

2

d

dt
‖ηδ,s−1‖2L2 +

g

QT∗
‖ηδ,s−1‖2

H
1
2

≤ gQT1‖ηδ,s−1‖2L2 +QT∗

2∑

j=1

s2j‖η j‖2
Hs+ 3

2
.

(5.32)
Finally, since ηδ|t=0 = 0 and by (5.4)

s j

∫ T∗

0
‖η j‖2

Hs+ 3
2
dt ≤ F(‖η0‖Hs , a−1),

an application of Grönwall’s lemma leads to the estimate (5.19). ��
Now let sn → 0 and rename ηn = η(sn) solution to the Muskat problem with surface
tension sn on [0, T∗]. The uniform estimates in (5.4) show that along a subsequence ηn
converges weakly-* to

η ∈ L∞([0, T∗]; Hs) ∩ L2([0, T∗]; Hs+ 1
2 ) (5.33)

together with the bounds

‖η‖L∞([0,T∗];Hs ) + ‖η‖
L2([0,T∗];Hs+ 1

2 )
≤ F(‖η0‖Hs , a−1). (5.34)

The estimate (5.19) implies that (ηn)n is a Cauchy sequence in C([0, T∗]; Hs−1) ∩
L2([0, T∗]; Hs− 1

2 ). Therefore,

ηn → η in C([0, T∗]; Hs−1) ∩ L2([0, T∗]; Hs− 1
2 ); (5.35)
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in particular, η|t=0 = η0. Moreover, by interpolating between L∞
t Hs

x and Ct Hs−1, we
deduce that η ∈ C([0, T∗]; Hs′) for all s′ < s. Since ηn → η in Ct Hs−1

x ⊂ Ct L∞
x , (5.6)

gives

inf
t∈[0,T∗]

dist(η(t), �±) ≥ 3

2
h. (5.36)

Lemma 5.3 η is a solution on [0, T∗] of the Muskat problem without surface tension
with initial data η0.

Proof For each n, we have from (2.18) that

∂tηn +
1

μ+ + μ− L(ηn)(gηn + sH(ηn)) = 0 (5.37)

For any compactly supported test function ϕ ∈ C∞((0, T∗) × R
d), we have

∫ T∗

0
ηn∂tϕdxdt = 1

μ+ + μ−

∫ T∗

0

∫

Rd
ϕL(ηn)(gηn + sH(ηn))dxdt. (5.38)

Clearly, (5.35) implies that

∫ T∗

0
ηn∂tϕdxdt →

∫ T∗

0
η∂tϕdxdt.

The continuity (2.20) of L combined with (2.31) and the uniform bound (5.4) yields

sn‖L(ηn)H(ηn)‖
L2([0,T∗];Hs− 3

2 )
≤ F(‖ηn‖L∞([0,T∗];Hs ))sn‖ηn‖

L2([0,T∗];Hs+ 3
2 )

� √
snF(‖η0‖Hs , a−1).

Since s − 3
2 > 0, this implies

∣∣∣∣

∫ T∗

0

∫

Rd
ϕL(ηn)

(
snH(ηn)

)
dxdt

∣∣∣∣ ≤ ‖ϕ‖L2
x,t

‖L(ηn)
(
snH(ηn)

)‖L2
x,t

� √
sn‖ϕ‖L2

x,t
F(‖η0‖Hs , a−1) → 0.

Next we write

L(ηn)ηn − L(η)η = (
L(ηn) − L(η)

)
ηn + L(ηn)(ηn − η)

= μ+ + μ−

μ−
(
G−(ηn)J

−(ηn) − G−(η)J−(η)
)
ηn + L(ηn)(ηn − η)

= μ+ + μ−

μ−
{(
G−(ηn) − G−(η)

)
J−(ηn)ηn − G−(η)

(
J−(ηn) − J−(η)

)
ηn

}

+ L(ηn)(ηn − η).

Combining (2.32) and (2.20) we obtain

‖(G−(ηn) − G−(η)
)
J−(ηn)ηn‖

L2([0,T∗];Hs− 3
2 )

≤ F(‖(ηn, η)‖L∞([0,T∗];Hs ))‖ηn − η‖
L2([0,T∗];Hs− 1

2 )
.
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On the other hand, (2.20) and (4.1) yield

‖G−(η)
(
J−(ηn) − J−(η)

)
ηn‖

L2([0,T∗];Hs− 3
2 )

≤ F(‖(ηn, η)‖L∞([0,T∗];Hs ))‖ηn − η‖
L2([0,T∗];Hs− 1

2 )
.

Finally, by (2.20) we have

‖L(ηn)(ηn − η)‖
L2([0,T∗];Hs− 3

2 )
≤ F(‖ηn‖L∞([0,T∗];Hs ))‖ηn − η‖

L2([0,T∗];Hs− 1
2 )

.

Putting together the above considerations, we obtain

∣∣∣∣

∫ T∗

0

∫

Rd
ϕ
(
L(ηn)ηn − L(η)η

)
∣∣∣∣

≤ ‖ϕ‖L2
x,t
F(‖(ηn, η)‖L∞([0,T∗];Hs ))‖ηn − η‖

L2([0,T∗];Hs− 1
2 )

→ 0

by virtue of the strong convergence (5.35) and the uniform Hs bound in (5.4). We have
proved that

∫ T∗

0
η∂tϕdxdt = 1

μ+ + μ−

∫ T∗

0

∫

Rd
ϕL(η)(gη)dxdt

for all compactly supported smooth test functions ϕ. Therefore, η is a solution on [0, T∗]
of the Muskat problem without surface tension. ��
Lemma 5.4 We have

inf
t∈[0,T∗]

inf
x∈Rd

RT(η(t)) ≥ 3

2
a. (5.39)

Proof Set

K = [[B(ηn)J (ηn)]]ηn − [[B(η)J (η)]]η.

Arguing as in the proof of (5.11) we find that

‖K‖Hs−2 ≤ F(‖(ηn, η)‖Hs )‖ηn − η‖Hs−1

� F(‖η0‖Hs , a−1)‖ηn − η‖Hs−1 .

On the other hand, by estimating each term in K we have

‖K‖Hs−1 ≤ F(‖(ηn, η)‖Hs ) � F(‖η0‖Hs , a−1).

Choosing s′ ∈ (max{ d2 , s − 2}, s − 1), then interpolating the above estimates gives

‖K‖L∞([0,T∗];L∞(Rd ) ≤ F(‖η0‖Hs , a−1)‖ηn − η‖θ
L∞([0,T ];Hs−1)

for some θ ∈ (0, 1). Then, (5.39) follows from this and (5.5). ��
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Now in view of the properties (5.34), (5.36) and (5.39) of η, we see that in the proof
of (5.19), if we replace η(s1) with ηn , η(s2) with η, and (s1, s2) with (sn, 0), then we
obtain the convergence estimate

‖ηn − η‖L∞([0,T∗];Hs−1) + ‖ηn − η‖
L2([0,T∗];Hs− 1

2 )
≤ √

snF(‖η0‖Hs , a−1). (5.40)

Furthermore, assume that η1 and η2 are two solutions on [0, T∗] of the Muskat problem
without surface tension with the same initial data η0 and that both satisfy (5.34), (5.36)
and (5.39). Then the proof of (5.19) with s1 = s2 = 0 yields that η1 ≡ η2 on [0, T∗]. This
proves the uniqueness of η. In other words, we have obtained an alternative proof for the
local well-posedness of the Muskat problem without surface tension for any subcritical
data satisfying (5.1) and (5.2).

The next proposition improves the rate in (5.40) to the optimal rate.

Proposition 5.5 If in addition s ≥ 2, then

‖ηn − η‖L∞([0,T∗];Hs−2) + ‖ηn − η‖
L2([0,T∗];Hs− 3

2 )
≤ sF(‖η0‖Hs , a−1), (5.41)

where F : R
+ × R

+ → R
+ depends only on (h, s, μ±, g).

Proof We follow the notation in the proof of Proposition 5.2 but set η1 = ηn and η2 = η.
Then, ηδ = ηn − η satisfies

(μ+ + μ−)∂tηδ = −g(Lδη1 + L2ηδ) − snL1H(η1). (5.42)

Applying (2.20) and (2.31) with σ = s − 3
2 ≥ 1

2 yields

‖L1H(η1)‖
Hs− 5

2
≤ F(‖η1‖Hs )‖H(η1)‖

Hs− 3
2

≤ F(‖η1‖Hs )‖η1‖
Hs+ 1

2
. (5.43)

Next we paralinearize L2 and Lδ . For L2 we apply (2.26) with σ = s − 3
2 ≥ 1

2

L2ηδ = Tλ2ηδ + O
Hs− 3

2 →Hs− 5
2 +δ

(F(Ns))ηδ. (5.44)

Lδ can be written as in (5.23). Using (2.25) with σ = s − 3
2 ≥ 1

2 together with the fact
that J−

δ − J+δ = 0, we obtain
∑

±=+,−
G±

2 J±
δ =

∑

±=+,−
O

H̃
s− 3

2± →Hs− 5
2 +δ

(F(Ns))J
±
δ .

Applying Proposition 4.1 with σ = s − 3
2 ≥ 1

2 , we obain

J±
δ = O

Hs→H̃
s− 3

2±
(‖ηδ‖

Hs− 3
2
),

and hence
∑

±=+,−
G±

2 J±
δ = O

Hs→Hs− 5
2 +δ

(F(Ns)‖ηδ‖
Hs− 3

2
).

On the other hand, Theorem 2.8 can be applied with σ = s − 3
2 ≥ 1

2 , implying
∑

±=+,−
G±

δ J±
1 f = −Tλ1[[B1 J1]] f ηδ − T[[V1 J1]] f · ∇ηδ + O

Hs→Hs− 5
2 +δ

(F(Ns)‖ηδ‖
Hs− 3

2

)
f.
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We thus obtain

Lδ f = −Tλ1[[B1 J1]] f ηδ − T[[V1 J1]] f · ∇ηδ + O
Hs→Hs− 5

2 +δ
(F(Ns)‖ηδ‖

Hs− 3
2
) f.

(5.45)
Applying this with f = η1, then combining with (5.44) and symmetrizing we arrive at

L2ηδ + Lδη1 = T(λ(1−[[BJ ]]η))αηδ − T([[VJ ]]η)α · ∇ηδ

+ O
Hs− 3

2 →Hs− 5
2 +δ

(F(Ns))ηδ + O
Hs→Hs− 5

2 +δ
(F(Ns)‖ηδ‖

Hs− 3
2
)η1.

Plugging this and (5.43) into (5.20) leads to

(μ+ + μ−)∂tηδ = −gT(λ(1−[[BJ ]]η))αηδ + gT([[VJ ]]η)α · ∇ηδ +R′
1 +R′

2,

‖R′
1‖Hs− 5

2 +δ
≤ gF(Ns)‖ηδ‖

Hs− 3
2
,

‖R′
2‖Hs− 5

2
≤ snF(Ns)‖η1‖

Hs+ 1
2
.

(5.46)

Next we set ηδ,s−2 = 〈D〉s−2ηδ and commute the first equation in (5.46) with 〈D〉s−2

to obtain after applying Theorem A.3 that

(μ+ + μ−)∂tηδ,s−2 = −gT(λ(1−[[BJ ]]η))αηδ,s−2 + giRe
(
T([[VJ ]]η)α ·ξ

)
ηδ,s−2 +R1 +R2,

‖R1‖
H− 1

2 +δ
≤ gF(Ns)‖ηδ,s−2‖

H
1
2
,

‖R2‖
H− 1

2
≤ snF(Ns)‖η1‖

Hs+ 1
2
,

(5.47)
where F depends only on (h, s, μ±). An L2 energy estimate as in (5.29) yields

(μ+ + μ−)

2

d

dt
‖ηδ,s−2‖2L2 +

g

QT∗
‖ηδ,s−2‖2

H
1
2

≤ gQT∗‖ηδ,s−2‖
H

1
2−δ

‖ηδ,s−2‖
H

1
2
+ snQT∗‖η1‖Hs+ 1

2
‖ηδ,s−2‖

H
1
2
,

(5.48)

where QT∗ is given by (5.30). Interpolating as in (5.31) we obtain

(μ+ + μ−)

2

d

dt
‖ηδ,s−2‖2L2 +

g

QT∗
‖ηδ,s−2‖2

H
1
2

≤ gQT1‖ηδ,s−2‖2L2 + s2nQT∗‖η1‖2
Hs+ 1

2
.

(5.49)
From the uniform estimate (5.4) we have

∫ T∗

0
‖η1‖2

Hs+ 1
2
dt ≤ F(‖η0‖Hs , a−1).

Thus, applying Gönwall’s lemma to (5.49) we arrive at (5.41). ��
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Appendix A. Paradifferential Calculus

In this appendix, we recall the symbolic calculus of Bony’s paradifferential calculus.
See [11,42].

Definition A.1 1. (Paradifferential symbols) Given ρ ∈ [0,∞) and m ∈ R, �m
ρ (Rd)

denotes the space of locally bounded functions a(x, ξ) on R
d × (Rd\0), which are C∞

with respect to ξ for ξ �= 0 and such that, for all α ∈ N
d and all ξ �= 0, the function

x �→ ∂α
ξ a(x, ξ) belongs to W ρ,∞(Rd) and there exists a constant Cα such that,

∀|ξ | ≥ 1

2
, ‖∂α

ξ a(·, ξ)‖Wρ,∞(Rd ) ≤ Cα(1 + |ξ |)m−|α|.

Let a ∈ �m
ρ (Rd), we define the semi-norm

Mm
ρ (a) = sup

|α|≤2(d+2)+ρ

sup
|ξ |≥ 1

2

‖(1 + |ξ |)|α|−m∂α
ξ a(·, ξ)‖Wρ,∞(Rd ). (A.1)

2. (Paradifferential operators) Given a symbol a, we define the paradifferential opera-
tor Ta by

T̂au(ξ) = (2π)−d
∫

χ(ξ − η, η)̂a(ξ − η, η)�(η)̂u(η) dη, (A.2)

where â(θ, ξ) = ∫
e−i x ·θa(x, ξ) dx is the Fourier transform of a with respect to the first

variable; χ and � are two fixed C∞ functions such that:

�(η) = 0 for |η| ≤ 1

5
, �(η) = 1 for |η| ≥ 1

4
, (A.3)

and χ(θ, η) satisfies, for 0 < ε1 < ε2 small enough,

χ(θ, η) = 1 if |θ | ≤ ε1|η|, χ(θ, η) = 0 if |θ | ≥ ε2|η|,
and such that

∀(θ, η), |∂α
θ ∂β

η χ(θ, η)| ≤ Cα,β(1 + |η|)−|α|−|β|.

Theorem A.2 For all m ∈ R, if a ∈ �m
0 then

Ta = OOpm
(
Mm

0 (a)
)
. (A.4)

Theorem A.3 (Symbolic calculus). Let a ∈ �m
r , a′ ∈ �m′

r and set δ = min{1, r}. Then,
(i)

TaTa′ = Taa′ + OOpm+m′−δ

(
Mm

r (a)Mm′
0 (a′) + Mm1

0 (a)Mm′
r (a′)

)
; (A.5)

(ii)

T ∗
a = Ta + OOpm−δ

(
Mm

r (a)
)
. (A.6)
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Remark A.4 In the definition (A.2) of paradifferential operators, the cut-off � removes
the low frequency part of u. In particular, if a ∈ �m

0 then

‖Tau‖Hσ ≤ CMm
0 (a)‖∇u‖Hσ+m−1 = CMm

0 (a)‖u‖Hσ+m,1 ,

and similarly for other estimates involving paradifferential operators.

Proposition A.5 (Gåarding’s inequality). Assume a ∈ �m
r with m ∈ R and r ∈ (0, 1]

such that for some c > 0

inf
(x,ξ)∈Rd×(Rd\{0})

Re(a(x, ξ)) ≥ c|ξ |m . (A.7)

Then, for all σ ∈ R, there exists F : R
+ × R

+ → R
+ nondecreasing such that

‖�(D)u‖2
H

m
2

≤ F(Mm
r (a), c−1)

(
Re(Tau, u)L2 + ‖u‖2

H1,m−r
2

)
(A.8)

and

‖�(D)u‖2
H

m
2

≤ F(Mm
r (a), c−1)

(
Re(Tau, u)L2 + ‖u‖

H
m
2
‖u‖

H1,m2 −r

)
(A.9)

provided that both sides are finite. Here, �(D) is the Fourier multiplier with symbol �
given by (A.3).

Proof We have

Re(Tau, u)L2 = 1

2

(
(Tau, u)L2 + (T ∗

a u, u)L2

)

= (TRe(a)u, u)L2 +
1

2
((T ∗

a − Ta)u, u)L2).

According to Theorem A.3 (ii), T ∗
a − Ta is of order m − r and

‖((T ∗
a − Ta)u, u)L2)‖ ≤ ‖(T ∗

a − Ta)u‖
H

m−r
2

‖u‖
H

m−r
2

≤ CMm
r (a)‖u‖2

H
m−r
2

.

Set b = (Re(a))
1
2 . By virtue of (A.7) we have b ∈ �

m
2
r and M

m
2
r (b) ≤ F(Mm

r (a)). We
write

(TRe(a)u, u)L2 = (TbTbu, u)L2 + ((Tb2 − TbTb)u, u)L2

= (Tbu, T ∗
b u)L2 + ((Tb2 − TbTb)u, u)L2

= ‖Tbu‖2L2 + (Tbu, (T ∗
b − Tb)u)L2 + ((Tb2 − TbTb)u, u)L2 .

Applying Theorem A.3 (ii) once again we deduce that T ∗
b − Tb is of order m

2 − r and

∣∣(Tbu, (T ∗
b − Tb)u)L2

∣∣ ≤ ‖Tbu‖
H− r

2
‖(T ∗

b − Tb)u)L2‖
H

r
2

≤ F(Mm
r (a), c−1)‖u‖2

H1,m−r
2

,

where we used Remark A.4 in the last inequality. On the other hand, an application of
Theorem A.3 (i) yields

∣∣((Tb2 − TbTb)u, u)L2

∣∣ ≤ F(Mm
r (a), c−1)‖u‖2

H1,m−r
2

.
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Thus, we obtain

‖Tbu‖2L2 ≤ (TRe(a)u, u)L2 + F(Mm
r (a), c−1)‖u‖2

H1,m−r
2

. (A.10)

By shifting derivative differently in the above inner products, we have the variant

‖Tbu‖2L2 ≤ (TRe(a)u, u)L2 + F(Mm
r (a), c−1)‖u‖

H1,m2
‖u‖

H1,m2 −r . (A.11)

Next we note that Tb−1Tb − �(D) = Tb−1Tb − T1 is of order −r and

‖�(D)u‖
H

m
2

= ‖Tb−1Tbu‖
H

m
2
+ ‖(Tb−1Tb − �(D))u‖

H
m
2

≤ F(Mm
r (a), c−1)‖Tbu‖L2 + F(Mm

r (a), c−1)‖u‖
H1,m2 −r .(A.12)

Finally, a combination of (A.10) and (A.12) leads to (A.8), and a combination of (A.11)
and (A.12) leads to (A.9). ��
The proof of (A.12) also proves the following lemma.

Lemma A.6 Let a ∈ �m
r , r ∈ (0, 1], be a real symbol satisfying a(x, ξ) ≥ c|ξ |m for all

(x, ξ) ∈ R
d × R

d . Then for all s ∈ R we have

‖�(D)u‖Hs ≤ F(Mm
r (a), c−1)‖Tau‖Hs−m + F(Mm

r (a), c−1)‖u‖H1,s−r . (A.13)
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