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Abstract: Due to degeneracy near the boundary, the question of high regularity for
solutions to the steady Prandtl equations has been a longstanding open question since
the celebrated work of Oleinik. We settle this open question in affirmative in the absence
of an external pressure. Our method is based on energy estimates for the quotient, g = £,
u being the classical Prandtl solution, via the linear derivative Prandtl (LDP) equation. As
a consequence, our regularity result leads to the construction of Prandtl layer expansion
up to any order.

1. Introduction
1.1. Steady Prandtl equation. The 2D, steady, Prandtl equations are given by

ik Uiy =y = a"pE(x’O)} on (x, ) € (0, L) x R,. 1)
iy +vy, =0

The quantity pg(x,0) above is considered prescribed, and oy pg(x, 0) evidently acts
as a forcing term to the Prandtl equations. In this paper, we are concerned with the
homogeneous Prandtl equations, that is pg = 0.

The Prandtl Eq. (1) are thought of as an evolution equation, with x being a time-like
variable, and y being space-like. This can be formally seen through a crude derivative
count udy ~ dyy, which indicates (1) is a quasilinear, parabolic equation. As a result,
the Eq. (1) are supplemented with boundary conditions at y = 0, y — o0, and an initial
condition at x = 0. The quantity L appearing in (1) is thought of as the time over which
we are considering the evolution. To summarize the datum that is prescribed is

ily=0 = 0ly=0 =0,  dlypoo = up(o0),  itls=o = Uo(y). 2

The conditions at y = 0 are called the no-slip condition, which is the classical boundary
condition for viscous flows. The condition at y = oo is classically known as the Euler
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matching condition, and physically describes the horizontal component, u#, matching up
with some ambient Euler flow at co. Thus, the quantity u g (00) is a prescribed constant.
We can, without loss of generality, assume this constant is 1.

The Prandtl system (1)—(2) is a celebrated system of PDEs that arise naturally when
considering the physically important problem of describing the vanishing viscosity limit
of Navier-Stokes flows on domains with boundaries. The precise link to the inviscid
limit problem will be made clear later in the introduction, in Sect. 1.2. In addition, the
Prandtl system by itself poses significant mathematical challenges that have attracted
substantial attention over the years, beginning with the seminal work of Oleinik, [47].

The following local regularity result for the Prandtl system, (1)—(2), is classical ([47],
P. 21, Theorem 2.1.1):

Theorem 1 (Oleinik). Assume Uy € C®(Ry) satisfies the following
Uo(y) > 0fory >0, Uy0) >0, Uy =U©0) =0, 3)

Then for some L > O, there exists a solution, [u, v] to (1)—(2) satisfying, for some
Yo, mg > 0,

sup  sup it U, ily, ilyy, itx| S C(Up), @)
x€(0,L) y€(0,y0)

sup  sup uy >mo > 0. o)
x€(0,L) y&(0,y0)

The method employed by Oleinik to prove Theorem 1 is to pass to the following
change of coordinates, known as the von-Mise transform:

(x, ) = (x, /0 uCe,y)dy), (e, y) =iy, y), il = dyliiy}.  (6)

The equation above is quasilinear, degenerate diffusion equation. Estimates (4)—(5) are
subsequently proven using maximum principle techniques.

Despite this, establishing higher regularity has been an important open problem.
One cannot simply differentiate the Eq. (6) and repeat Oleinik’s argument because the
commutators that arise from this process are uncontrollable near the boundary {¢y =
0} = {y = 0}. One contribution of the present paper is to resolve this problem by
introducing a novel set of energy estimates enabling us to proving higher regularity
estimates.

Theorem 2. Assume the data Uy(y) is provided satisfying conditions (3). Assume also
generic compatibility conditions at the corner (0, 0) (as defined explicitly in Definition
1) up to order My. Fix N > O sufficiently large relative to universal constants, and
assume the exponential decay of derivatives:

18{ UpeN¥ || < Cofor j=1,..., Mo. )
Then there exists an 0 < L << 1 depending on Cy so that on 0 < x < L, Oleinik’s

solutions guaranteed by Theorem 1 obey the following estimates for 0 < 2o + 8 < My

M
andfory < 3% —

- N =
15 0F ie™ || Lo + [10Y D]l L < Co.
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The system governing the behavior of the higher order derivatives of [u, v] is, nat-
urally, the linearized Prandtl equations. We now state precisely the linearized Prandtl
system we consider, where we will work with some more generality than is strictly re-
quired for the proof of Theorem 2. Indeed, we consider the following problem for the
unknown vector field, [up, v,]:

UxUp +updylt + VOyUp + Vpdylt — dyyitp = f, (x,y) € (0,L) x Ry

Oxttp +0yv, =0, (x,y) € (0,L) x Ry (8)
[, vp] ly=0 = [uo(x), 01, Jim up (e ) =0, vplemo = Vo(y)-

The boundary condition ug(x) is a prescribed, smooth function (which certainly is al-
lowed to be zero). We note that in our prescription of (8), the initial datum is now
prescribed at the level of v, |x— as opposed to u, as in (1).

The method that we use to obtain Theorem 2 is sufficiently robust also to obtain
estimates for (8). This is an important distinction between our technique and that of
Oleinik. Indeed, the proof of Theorem 1 relies on a very specific use of the maximum
principle which cannot apply to the more general, linearized problem. We now state our
main result regarding the linearized Prandtl system, (8).

Theorem 3. Fix any My and an N large relative to universal constants. Assume com-
patibility conditions on the initial datum, V), as specified in Definitions 1 and 2. Assume
also that

195 Voe" || 12, < Co < 0o fork =1,....2Mo+3. 9)
Assume the forcing, f, satisfies the bounds

19519, FeN¥ 112 + 10520, F (W)l 12 < €1 < o0 fork =0,.... M. (10)

Then the following estimates are valid

0Zvplize S C(Co, Cr) for0 <o < Mo+ 1, (11)

1950 upe i S C(Co, € for0 <+ 5 < Mo+ 1, (12)
aqp Ny ﬂ +1

1950y upe™ Iz S C(Co, C) fora + —— < Mo + 1. (13)

1.2. Inviscid limit of Navier—Stokes. We now describe the link of Theorems 2 and 3
with the related and very important problem of describing the vanishing viscosity limit
of Navier-Stokes flows. Consider the steady, incompressible Navier—Stokes equations
with viscosity € posed on the domain

2 := (0, L) x R;, with coordinates x € (0, L) and Y € R,.
ubs.

The equations for the velocity field u™V5 := [ v™V5] and pressure PV read

uVS . vuNS s vpNS = eAuNS, div(uNS) =0on 2
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with the following boundary conditions

ulV Sly:() =0, (no-slip condition),
uNSIYTOo = [uS(Y), 0], (convergence to an Euler flow) ,

us |x=0, = in-flow and out-flow provided through asymptotic expansion.

The shear Euler profile ug(Y) is given data. The in-flow and out-flow data are prescribed
individually through the expansion (14).

A fundamental question in fluid mechanics is to characterize the limit of u™S as
€ | 0. Due to the mismatch of the no-slip boundary condition satisfied by uS for
€ > 0 and the typical no-penetration condition satisfied by a generic Euler flow, (which
is vS ly—o = 0), one cannot expect L> convergence of #”¥S to an Euler flow [uS(Y ), 0].
Instead, one expects convergence to what is now known as the Prandtl boundary layer.

The first step in quantifying the asymptotic in € behavior of u™V5 is to rescale the
normal variable, ¥, and the normal component of the velocity, vV according to

. Y
(xv y) - (-xv E) 5

NS
.Y
[UF e, y), VG y), PEGroy)] = | UYS 1y, Ym0 1)
NG
The original, unscaled, variables (x, Y) are known as “Euler variables”, whereas the
new, scaled variables (x, y) are known as “Prandtl variables”.
One subsequently asymptotically expands [U€, V¢, P€] in the following manner:

, PNS(x, Y)] )

n
U =u? +”(;)7 + Zﬁ' (u’e +uip) + N0y (@ =y 4 Moy @),
i=1

n—1
e _ .0 1 i i i+1 n_ n No,,(€) ._ No,,(€)
\%4 —vp+ve+Z\/E (vp+ve )+ € v, +e v =g+ €00, (14)

i=1

n
PE=Pl+ PO+ Y Ve (Pl Py)+ €M P@ = s PO,

i=1

where the coefficients are independent of €. First, the Euler flow [uS(Y ), 0] is a given

shear flow satisfying the assumptions delineated in Theorem 4. Next, [ui, vi,] are Euler

correctors, which satisfy elliptic equations in the Euler variables (x, Y). The terms

[u;, v";,] are Prandtl correctors, which satisfy parabolic equations in Prandtl variables,
(x, ¥). x behaves as a time-like variable whereas y behaves as a space-like variable.

Let us also introduce the following notation:

ﬁ’p = u’p - u;,|y:0, 17;, = v;, - v;,|y:0, Uy 1= v, — Vy|y=0. (15)

The profile %, 7% from (15) is classically known as the “boundary layer”; one sees

from (14) that it is the leading order approximation to the Navier-Stokes velocity, U€.

We sometimes use the notation [u, v] = [ﬁ?,, 13?,] due to the distinguished nature of the

leading order boundary layer. Indeed, the quantity [ﬁg, ﬁg] will solve the Prandtl Eq. (1).
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As a matter of notation, we adopt the convention that for a given function, f(x, y), the
quantity f := f — f(x,0).
The final layer,

[u(e)’ @ P(e)] — [u(e), p(e)]_

are called the “remainders” and importantly, they depend on €.

An important first step in understanding the asymptotic behavior of (U€, V¢, P€) is
to understand the approximate terms in the expansion (14), that is, all the terms aside
from the remainders. One outcome of the present paper is that our analysis to establish
Theorems 2, 3 will also help us to construct each term in the approximate solution and
prove regularity estimates on these terms. Informally, our result below in this direction,
Theorem 4, says given reasonably well-behaved boundary data on the sides x = 0, L,
each of the terms in [uy, vy, Ps] (see (14)) can be constructed and are sufficiently regular.
In order to state such a result precisely, we must introduce the equations satisfied by each
term in [uy, vy, Pg].

We now list the equations to be satisfied by the sub-leading order terms from (14).
For 1 <i < n, the i’th Euler layer satisfies the following system:

0 [ 0, i __. ¢l
U, 0xul, + dyu, v, + 0y P, =: flls,lv

uld v+ dy Pl =t fh 5. 16
deud, + dyv. =0,

) 0 . . ) .
Vely=0 = —vply=0,  Velv=0.L = Vg o1} Uelx=0=Ug.

In this case, since Eq. (16) is elliptic in (x, Y) we provide boundary data on both
sides, x = 0, L. The given data for this problem is therefore the three functions
Up(Y), Vg o(Y), Vi 1 (Y). The forcing terms f% |, ff , are specifically given in Defi-
nition 5, and should be regarded as given for the purposes of stating the result.

For 1 <i <n — 1, the i’th Prandtl layer satisfies

@0u’, + b0t + dyit[vh — vl |y—0] + DOyul, + 0 P — dyyu’, = [,
deuly +9yv), =0, P, =0 (17)

ulp|y:0 = _ulgl)‘207 [”lp, Ul,,]y—)oo =0, U;;|x:0 = V}l>~

In this case, Eq. (17) is parabolic, with x controlling the evolution. As a result, the given
data is the function V},(y). The forcing term, f @ is defined in Definition 5. It should
be regarded as given for the present discussion. For i = n, the difference is that v;’, will
be defined so as to satisfy v;',| y=0 = 0, unlike vl in (17), and subsequently cut-off as
y 1 0o. The key point is that system (17) is of the form considered in (8) and so we can
apply Theorem 3.

‘We summarize now the given data in order to construct [uy; v, ]. The parameters n, Ny
as in the expansions of equation (14) can be considered part of the given data. Next, the
outer Euler shear flow ug(Y), initial datum for the leading order Prandtl layer, U?, ),
initial datum for the intermediate Prandtl layers, \_/;, (v), and data on the sides for the
Euler profiles: Vi o(Y); Vi, (Y); Uj o(Y)" are all given functions.
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Theorem 4 (Construction of Approximate Navier—Stokes Solution). Fix any Ny > 1
and any n > 2. Assume the shear flow uS(Y ) € C*°, whose derivatives decay rapidly,
and which is bounded above and below: ¢y < u(e) < Cy for some universal constants
0 < cg < Cog < 00. Assume (3) regarding 02, and the conditions

Vi (0) = 8% =0, =0, (18)
Vol"(0) = 8xyg" |i=0.y—0, (19)
— . o _ ] . .

Upy(O)U 00 — fo Ope W {100 —rOm}ay =0, o)

where r@ (y) := \_/I’, U?,y - U?; \_/;;),, and g = gD (D, u2|yzo) is an explicit quantity
depending on the forcing £ and the boundary data uélyzo, and is defined in (32). We

assume on the data standard elliptic compatibility conditions at the corners (0, 0) and
(L, 0). Define the weight wy (Y) to be either (V)N or eNY.

0y Vo |+ VE | | +10y Ul o IS wy' for 0 <k < K

and 1 <i <n, 1)
05V | +105(U] — Ul(00)) [S e ™ for 0 <k < K
and 1 <i <n. (22)

Then, for L << 1, all profiles in [us, vs] exist and are smooth on §2. The following
estimates hold:

=0

-0 -
ul,zo,upy|y:0>0,u =0,

0 _ -0
pyyly=0 = Upyyyly=0

N, K
IV (i, vple ™ oo S 1for 0 <k < —,

i ki ki Sy K ; (23)
It oo + 135U oo + VA e T lloo S for0 <k < - and 1 <i <,
o K
||Vk{u'e, Vilwn oo S 1for0 <k < 5 and for1 <i <n.
7
In addition the following estimate on the remainder forcing holds:
n—1-2Ng
| Frwyll S 7 (24)

where Fg is the quantity defined in (126).

These constructions and regularity theory of the approximate solution to Navier—
Stokes are of intrinsic interest. We also remark that another motivation for establishing
our result is that these leading order constructions are important from the point of view
of applications to the validity theory. Indeed, the estimates that we establish in this paper
are in use in the works [25,26].
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1.3. Notations. We adopt several notation conventions throughout the paper. First, for
functions f(x, y), we define the norm || f| := || fll;2 = (fOL Jo° flx, y)*dy dx)%.
Next, we define the antiderivative via I,[f] := [; f(x’,y)dx’. We define (f, g) :=
| fgdy to be the inner product in the y variable.

1.4. Main ideas. The key ingredient in the analysis of (36) is a quotient estimate for ¢, .
We illustrate the main estimates for the simplified equation:

—0yyli1%qy ) + Vyyyy = 0. (25)

By taking d, of the main part of (36), taking the inner-product with g, (Lemma 10),
and rearranging the main contributions, we obtain (upon omitting at each line below
easy to estimate terms)

- (3xy {ﬁz%cy} ,Clx) + (”xyyy.vv ‘IX)

O [ .22
Yy | Wy + (nyyv ‘Ixy)y:o + (nyy’ ‘nyy)
a _2 2 — - -
~ ?x / Gy + (Uqxyy + 2ityGxy + Uyyq, Gxy) y=0

+ (i€ qxyy + 20l yqyy + 2ilxy Gy, Gryy)
9 -2 2 - 2 - -
~ Ex / U-qyy, + f Ugyyy + (zuy%cw qu)y:o - (”qu’ qx}’)y:O

- (L_‘quw quy)

d i T = —
- ?X/ 42, +/uq§yy (i ay 0xy) s + (xyydy )
# (s 40) = (00 4s) g (26)

The key positive boundary contribution (#4ygxy, gxy)y=0 holds naturally for Prandtl so-
lutions as uy[y—o > 0.

Next, for the term (uxyqyy, gxy) the key pointis that i,y [y—o # 0. Itis thus important
to avoid the degeneracy at y = 0 in the term ||uqyy || by invoking a higher order norm
term:

lgyyll S lloyyyll for y << 1. 27)

In order to close, we must further estimate vyyyy from the Eq. (25), which gives (Lemma
11

0yyyyll < 182y {2y} I- (28)

Finally, we establish decay in y in Lemma 12.
We introduce

W =a+60>0 (29)
in our construction of approximate solutions and regard LDP (36) as an initial value
problem for given v|,—g or g|x=p. We finally recover ud =u |x=0 and solve the original
system, (8), via a necessary integrability condition (20).
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The first three positive quantities in (26) form our basic energy norm, | - ||¢ in (40).
The remainder of our analysis is centered around propagating control over a slightly
stronger norm, X, and upgrading to higher d, derivatives. We note here that similar
quotient estimates to those developed in this paper have played a role in establishing the
validity of the Prandtl layer expansion, see for instance [25,26,35].

2. Regularity for the Prandtl and Linearized Prandtl Equations

Our objective in this section is to establish Theorems 2 and 3, both of which will follow
from the study of the system (8).

2.1. Linearized derivative Prandtl equation (LDP). We homogenize the system (8) to
remove the boundary condition u|y—o = ug(x) via:

(0.¢]
u=up—uoY(y), v=vp+uox()ly(y), Iy := / v(©)do.  (30)
y
Here, we select ¥ to be a C* function satisfying the following:

v =1, /Oowzo, ¥ decaysas y 1 0o, Y% 0)=0fork>1. (1)
0

According to (8), the homogenized unknowns [u, v] satisfy the system:

U0y + Udyit + VOyu + v0yl — dyyu =: g1,
Uy + Vy = 0, (32)
[, vlly=0 =0, lim u(x,y) =0, vl=0 = Vo(y),
y—>0o0

where the following quantities have been introduced:

g1:=f+G,
G = —L_{wuox — llelflxl() — l_)'(/f/u() — lzyu()x]w + 1////“07 (33)
Vo(y) i= Vo — ug(0) Iy ().
By applying 9y, we obtain the system:
—UVyy + Vilyy — UDyy + Vilyy — Uyyy = Iy g1. (34)

We rewrite the Rayleigh operator as

— vy + Vilyy = —0y{i2qy), g = 35)

S| e

By further taking d, we derive the following linear Derivative Prandtl Equation (LDP)
for the quotient, g, which is the main focus of our paper:

— Oxy{it*qy} + 0jv + Kk A+ kU = dryg1,
1 _ (36)
qly=0 =0, glx=0 = E|x=o(Y)Vo(y) = fo(y).
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We have introduced the artificial parameter k above. The system of interest is k = 1.
The reason for including this artificial parameter is, in Proposition 2 below, we also treat
the k = 0 case of nonlinear Prandtl, (1). We have defined the following operators:

AQ) = Dyyy Ly [y ] + Dyyvy — ULy [Vyyy] = DVyyys (37
U@®) = —tgyyu’ + v,ul),. (38)

We now state our basic proposition for the homogenized system. To do so, we need
to specify norms in which we measure the quantity, g, as well as the forcing, f. Let x
denote the following cut-off function:

lon0<y<l

/
Oony =2 x' (y) <O0forall y. (39)

x(y)={

Fix w = ¥ for the N from Theorem 2. Denote by ¢ := Bffq. We will now define
several norms:

llgllx : sup (”’ZQxy”L?V + lgyyyw(l — X)”L%) + ”‘/ﬁq;cyyw” + [[vyyyyw]|

0<x<L

+ ”\/ ﬁnyy ”y:Oy

llglle := sup ”’/_MIxy”L%_ + ”\/E(’Ixyy” + IV uyqxylly=0
L

0<x<
lgllze = sup llgyyywil =}z + lvyyyywil =}l + llgxyywil = x40
0<x<L
lgllx, ==1g®lx, lalg = 1g¥le. lglln, = llg®lz,
k
lgllxe, = llgllx;-
i =0
We also define the following norm in which we control the forcing term:
1 Uy, = €™ 05Dy £ 1+ 11 (9005 By £ 1 (41

Proposition 1. Let the initial data, Vo (y), the forcing, f, and the boundary data, up(x),
satisfy the compatibility conditions (48) and (49). Assume also the integral condition,
(53). Then there exists a unique solution to (8) satisfying the following estimate:

lallxe S 1flg,, +C (Vo uo).

Theorem 2 is a corollary of Proposition 1 upon differentiating the Prandtl Eq. (1), in
x. Theorem 3 is also an immediate corollary of Proposition 1.

2.2. Compatibility conditions and reconstruction ofu®. Ttis possible and natural to solve
(8) for a given initial condition u® = ul,—o, instead of a given v?. In such a formulation,
no integrability condition, (53), is needed, but vY must be determined from solving

O+ityv+iiu® —u, =gy atx =0. (42)

—uvy + UI/Ly
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In this case, the compatibility conditions are 8!: v2(0) = aj; v?, (0) = 0, where

,
a)’;v‘)::aj;{—zz[ {au
0
,
shod =t fo [ g —aeid v} (44
0

y
However, in our v-formulation, it is interesting to reconstruct u® via a given ini-
tial condition Vp. The purpose of this subsection is to reconstruct u” from V() under a
necessary integrability condition on Vp, (53).
Our aim now is to derive compatibility conditions for the initial data. By computing
dx of (32) and evaluating at y = 0, we obtain the condition:

_uoﬁx+u8y+g1}}, (43)

S| = K| =
= O

Vyyyly=0(x) = dxg1ly=0(x),  x € (0, L).

The first order compatibility condition that arises from this entails matching now the
initial datum evaluated at y = 0 with the boundary datum evaluated at x = 0 in the
standard manner for initial-boundary value problems:

V5" (0) = Vg (0) = 8xg11y=0(0). (45)

The first equality above follows from the property of "’ (0) = 0, whereas the second
equality above is the natural outcome of the aforementioned matching process.

We also require the second-order compatibility which can be obtained as follows.
Taking o, of (34):

— 0y {—itvyy + ity + Dityy — Uy} + 30 = dyyg1.
Evaluating at y = 0 gives the identity:
33v]y=0(x) = dxyg1ly=0(x) for x € (0, L).
This then gives our second order compatibility condition of
03 V0(0) = 92 Vo(0) = dxyg11y—=0(0). (46)

This derivation motivates our definition of compatibility conditions, which we state
formally now.

Definition 1 (Compatibility at Corners). The first and second order compatibility con-
ditions are given by

JV0(0) = drg1ly=0(0), 3} Vo(0) = diyg1ly=0(0). (47)

Higher order compatibility conditions can be derived in the same manner, and are stated
implicitly as follows

03 (9vlm) ©) =05 211,20 (0) (48)

03 (9vlm0) ©) =05"0,811,=0(0). (49)
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Starting from the ¢ formulation in (36), we will further distribute on the Rayleigh term:
oy [@a. | = oy (g, + 0,0, {5y — uby) +0,030 = 0,81,

We now compute at {x = 0}:

2 > 2
U qxy :_/ dy {’2 qu} dy’
y
— [0, (B — 030+ 2aiingy — 5%+ gy — vy +u5sy | Ay
= v 10x&1 U+ 2Ulcgy — Uxlty + VVyy — VyUy + 1 Uxyp dy
)7

—_ {8xg1 — 930+ 2itit gy — DU + Doy, — vyBy + u%xy} . (50)

Itis clear that all quantities are vanishing at y = 0. We thus have that gy |x—o € L2(R,).
A computation of 9, shows:

duygr + 00 + 0y {2iniigy — B + Duyy — vy 0y + 10y, | 3o
= 0,,81(0,0) + 03v],=0(0) =0,

Thus g, itself is in L?. Using this we may easily bootstrap to higher order in 0y compat-

ibility conditions for v which we refrain from writing. These conditions in turn assure
that:

Lemma 1. Assume the compatibility conditions on Vyy given in Definition 1. Assume
exponential decay on 8;‘ Vo for k > 1. Then there exist functions fi(y) € L%} Ry N
C*°(R;) for exponential weight w such that

05dylizo = fe(y) € Ly (Ry) fork = 1. (51)
Moreover, fi depend only on the given profile Vi and the forcing term gi.

Our task now is to establish criteria on the initial data, Vg so that uo(y) = Uplx=0
can be bounded. We evaluate the velocity Eq. (8) at x = 0 to obtain the equation:

L =f)—r@), u’0) =ug0), r(y):=Voiy—iuVj,  (52)
where we have defined the operators

0= 0._ 0 = 0 0=
— U vy, Lyyu = + VU, — U Vyy,

0._ .0 , =0 B
Lyju” = —uy, +vu Uyyy Vy

y

To invert Eq. (52) for u®(y), we assume the following condition on the datum V(y):

1,0, 0)uo(0) — /0 de () — r(») dy = 0.

This, then, motivates the following definition upon replacing notationally #(0, y) =
Uo(y):
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Definition 2 (Compatibility Integral Condition). We say the datum, Vj(y) satisfies the
“compatibility integral condition” if

0 y - _ _
/ er,fl- v(0,2) dZ(VOUé _ UOV()/) dy
0

= T4 (0)uo(0) + / " oo 170D £ () gy, (53)
0

Lemma 2. Elements of the three dimensional kernel of L),y can be written as the fol-
lowing linear combination: c1u + cyiig + cug, where cy, c2, ¢ € R. Here:

oY am)? :
Ug ‘= U —5— eXp vdw | dz,
1 lul 1
y z y z
uR:zﬁS/ ﬁexp[—f ﬁ]—ﬁf ﬁsexp[—/ 171|.
0 1 0 1

Proof. Note L yu = 0 if and only if Lju = c for a constant c. One solution to the
homogeneous equation, £ju = 0, is i. By supposing the second spanning solution is of

the form &y := ia(y), we may derive the equation: a”(y) = [17 - 2%]61/()/). Solving
this equation gives one solution:

_ 2 N _ 2 z
d(y) = '”(_1? exp [/} a], a(y) = /y '”(_ly exp U ﬁdw] dz. (54
|| 1 1 lul 1

O
We shall need asymptotic information about #:
Lemma 3. As defined in Lemma 2, uy satisfies the following asymptotics:
lgly=0 ~ —1land iz, ~1asy |0, (55)

lgy, ilsy, s ~ explv(c0)y]las y 1 oo.

Proof. For convenience, denote g(y) = exp(fl’v v). By rewriting v = v(00)+(v—v(00)),
and using that the latter difference decays rapidly, we obtain the basic asymptotics
g ~ exp(v(co)y) as y 1 oo. An expansion of a, given in (54), near y = 0 gives
ay) ~ [’ bdz ~ —1lf = 1= 1. Thus: isly=0 ~ (1 — §) ~ —1. Aty = oo, we
have the asymptotics:

_ [V la? oo _
iy = u/ g(z) ~ / exp [v(c0)z] dz ~ exp[v(c0)y].
1 1

|i|?
We now differentiate to obtain
lit(1)]?

u

ilsy = itya +ia'(y) = iya(y) + g(y) ~ exp[v(00)y].
To evaluate ity at y = 0, we need more precision. Expansions give:

o a(? (1)
ua'(y) = F g(y) i, 0)y

g(y) fory ~ 0, and

AP 7 g@)

P
uya(y) My(0)|14(1)|/1 |ﬁ|28(Z) uy(0) Jy 22
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We have used the fact that # does not contribute a factor of % following the singularity

of Ziz Indeed, Taylor expanding, using that ﬁ()),y (0) = ityyy(0) = 0 (see the first identity

in (23)), and the elementary identity for any a, b € R, ﬁ — }l = ﬁ, one obtains:

1
i@ ity (0)222

+O0(2).

It remains to show ly gz(—f) dz ~ —%y). We decompose the integral into region [ 1, y.]

and [y, y] for 0 < y < z < y,. The [1, y,] integral contributes an O(1) constant. In
the [y, y] region, the Taylor expansion is valid:

y y Yy - _ 1 1
/ @dz ~ / &g)dz +g'(y) : zy dz ~g(y) (— - —) +8' (MNP (y),
y < Vx < y

Z Vi

* *

where |¢p(y)| < |log y|. We now use that 0(0) = U,(0) = 0 and g' () =0v(y)gly) to
show that g'(y) ~ y. Thus, g’(y)¢(y) vanishes as y — 0. We thus have verified that

~ _8W
1(y) o

We now compute two derivatives:
sy = Uyya +2iya’ (y) +ua” (y)
1 _ -
~d"(y) ~ 9y {W exp [v(OO)y]} ~ exp[v(c0)y] as y 1 .

O

Lemma 4. Assume the integral condition, (53) is satisfied by the initial data vy. Then
the solution u® to (52) exists and satisfies:

051%™ oo < Cx (V0. 1) fork > 1, (56)
u°(0) = uo(0) and lim u°(y) = 0. (57)
ytoo

Proof. First, we compute the Wronskian of ﬁ(}, and i,

y
W = itiyy — digity = ii(1)? exp U 1')] )
1

Next, we express the solution to (52) in the following manner:

© =0 v - i [ ae K (@ - @) a:
us(0) lu(D)] 0
L _ (Y. ey
+———u [ uge” N U(f(z) —r(z)dz. (58)
u()z - Jo
We now compute it (0) = —%eﬂo V. Using this, we now evaluate at y = 0o and

observe that the terms with a ii; prefactor vanish according to the integral condition,
(53).

1
la(1)|?

uy(0)

‘au)?”om)e_fl% -

/mﬁe‘ffvﬁ(f —r(y)dy =0.
0
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This proves that x° as defined in (58) is bounded as y 1 0o. We next notice that the
derivative of ny iie= /i U(f —r(z)) is the integrand itself, which decays fast enough to
eliminate its at oo. Therefore we also see that B;fuo for k > 1 decays rapidly.

Finally, we need to ensure that u’ — 0 as y 1 oco. It is clear that £ yu’ = 0, and
so we are free to modify u® by factors of ii. Thus we modify (58) by subtracting off a
factor of cit, for ¢ appropriately selected so as to ensure #°(00) = 0. This concludes the
proof. 0O

Summarizing the above,

Lemma 5. Assume smooth data, Vyy, are prescribed that satisfies the compatibility con-
ditions (48), (49), as well as higher order compatibility conditions. Assume also that Vy
satisfies the integral condition (53). Let ¢ = % solve (36) and u® be constructed from
v via (52). Then [u = ul — f(f vy, v] solve (32). Further, let [u,, vp] be reconstructed
Sfrom [u, v] using (30). Then [up, v,] are solutions to (8). Moreover, the initial datum

ud = U|x=0 satisfies the decay estimates (56).

2.3. Construction of approximate solution. First, we recall the definition iy = u + 6
from (29). We also define

o .7
u
Definition 3. (9-Approximant)
— By (ﬁ§q§9>) 0@+ A®) +kUW") = FO), (60)
aPy=0=0.  ¢P=0=0s(». (61)

where the forcing F © .= dxyg1. We also introduce the notation Vy(y) = u Qg ().

Definition 4 (6-Dependent Compatibility Conditions). We now define the compatibility
required on the initial conditions we take, Qg (y). We assume that u°(y) is given. We
need to enforce standard parabolic compatibility conditions on Qg(y) at y = 0. These
can be read off from the Eq. (60) in the usual manner. For instance, for the first order
compatibility condition, we obtain

> Go Ugx vy
=q 90, =/ Z 4220, — 2 ) ay. 62
0Q0,1() == ¢, (0, y) : <(ﬁ§)+ i o ﬁ§> y (62)
where
Go(y) == (F<9> —«U (uo) — kA (v<9>) leco (63)

We thus need to ensure that Qg 1(0) = 0, which is the “first order compatibility condi-
tion”. Higher order compatibility conditions are obtained in a similar manner.
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To construct solutions to (60), we will introduce an artificial truncation at y = N
and then send N — oco. Moreover, will make iy (y) constant for y > % To do this, we

define ﬁ;N) € C satisfying the following properties

_(N iig(x,y) for0 <y <&
iy (e yy = R0 = (64)
ug(x, 5) for > <y=<N
We shall now consider the problem on (x, y) € (0, L) x (0, N),
2
([ a5 e a0 1) < 0
) (65)
g Mymon =0, g5V yzon =0, gm0 = fo(y).
We fix a Fourier sine basis adapted to the interval [0, N], by letting
2w
ei(y) = sin(i —y). (66)
N
For each n < oo, we search for solutions, q(”’N’g) € span{e;} fori =1, ..., n, which

satisfy, fore;,i = 1,...,n,

2
<3x ((ﬁém) q}(,N,n,H)) ,d) + (ayy (gq(N,n,9)> ,el//) +2ﬁyq§N’"’0)e,’-(O)
+K (l_)xyylx [uy/,n,e)] ,ei) +K ({;yyU;N,n,e), ei) +K (Ix [%(y/}\",n,e)]  Beyei + l_)xe;)
+K (U;I;/’",e), vye; + ﬁe,/») +K (U (uo) ,€i> - (F((’), 65) )

We now propose g V-9 = Y bl(")(x)el. The first claim is that there exist coef-

ficients, bl.(")(x) such that g% satisfies (67). Inserting this expansion into (67), we
obtain

(ax {(a;’v))z Zb,("’(x)e;} ,e;> + (ayy{ﬁ 3 b e, e;/>
=1 =1

+2 (:zy > b ()€} (0). ] (0)) +k Y I [b;m(x)] (Vxyydy (ite)) , ;)
=1 =1

n

+ by (x) (Dyyy (iter) . ;) + Kk (Le[dyy (@ Y b (X)er(9))]. Duye; + Dre))
=1

n
+K <8yy (12 Z bl(”) (x)el) , Dyei + ﬁe{-) + (KU(MO), ei>

=1

n
2 (ﬁgmaxﬁgv) > b (x)e). 4) - (F“”, e,-) . (68)
=1
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We thus obtain an n x n system of ODE’s for bl(") [ =1,...,n, which can be solved
using standard ODE theory. Indeed, fori = 1, ..., n, we have the following system of
ODEs:

ri" o+ 3 Alb™ ) + Y Kl [b,(") (x)] — Fi(x), fori=1,....n

=1 =1

(69)
where
Al(x) = (dyy (e () . €] () + 2ity (x, 0)e;(0)e] (0) + K (Dyydy (iler) , €;)
+ i (Dyy (itey) , Vyej + Vej) (70)
KL (x) :=k (Dayydy (it€r) , €;) +ic (dyy (ier), Dyye; + Dre)) 1)
rt.= (uge;, ef) (72)
Fi(x) := (F(Q), e,-) . (73)

This can be solved for each fixed n € N, as the coefficients Aﬁ (%), Kil (x), F;(x) are
smooth. Moreover, the coefficients I” form a symmetric, positive definite matrix. To
establish positive definiteness, we fix a vector b = (b;)"! 1 Multiplying 6" I'b =

[[gn || 72 where n := ) j b e iE In turn, this implies that n = 0, which also implies that
bj = 0.

We now would like to send n, N — oo, for which we need to rely upon uniform
bounds. By linearity of (68), we can replace the ¢;(y) by ¢™™-?), which gives

N _ _
<| ( )|2 (,N, 0)7 q}(]n N, 9)) (ayy (uq(n,N,O)) ’q;ryz,N,e)) + Zuqu;”’N’g)(O)F
i (17xyy1x I:van,N,O)] ’ q(n,N,e)) +K(1—)yyv)()n,N,0)’ q(n,N,G))
i (Ix [Ug,zv,e)] , ﬁxyq(”’N’e) + ﬁxqgn,N,9)> i (U%,N,e) 5 q(n N.O) | vq(n N, 0))

i (U(uo), q(n,N,Q)) _ ( Ny M(N)q)(}n N.O) q)()n N, 9)) (F(e> (n,N,Q)) (74

We now introduce some notation to clarify the next two lemmas:

N N
Eao () =g 9 afy "Nl + g akq N .2
Do (x) =IIVady ™ gy Ml + IVadgqfy "l

Lemma 6. The function ¢ satisfies the following inequality for k > 0,

N -
Sup ||M( )ak (I1N9)||2 +||\/_8k (nN@) 2+My(0)|8)1:q)(,n’N’6)(0)|2

qyy

- (N
< Collg F OO0 + 11, + g ; )akq“’“)u:oni%. (75)
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Proof. Our starting point is (74). By expanding the second term above using v™%) =
g™ N we obtain

(g "N, g V) = Vgl VI, — ity Olgy N O

1
_9 (u q;n N, 0), q}(]n N, 9)) 7 (ﬁyyyyq(n,N,G), q(n,N,G)> . (76)

The contribution at y = 0 is absorbed into the third term from (74) upon using the
prefactor of 2.
We now estimate

_ L _ _(0
|2 (uyyq}(yn,N,Q)’ q§n N 9)) _ Z(uyyyyq(n,N,Q)’ q(n,N,Q))| S C@ ”ué )q}(}n,Nﬂ) ”i§

We next, estimate the fourth through eighth terms from (74) above by
KCoEo(x)? (Do(x)? + 401l 4), and the ninth term from (74) by or.(1)Cy sup, £(x),
upon invoking that 8 > 0.

From here, we achieve our basic energy identity

N
sup " gy NNz + IWagly g, + iy O)lgy N O

0 -0
< CollE) 12 +or. (D) [1u® ||21+oL(1)sup iz a7, + g gl e=oll7;

which, for L sufficiently small, ensures the estimate (75). This concludes the proof of
estimate (75)

Estimate (76) follows in essentially an identical manner to (75) upon differentiating
k times in x. The only exception is we need to treat

k N.O) qk N,0 (n,N 9) (n,N,0) qk (n,N,0)
(8x K. q)(,’; )) = |Wigyy 2 +2@y35qy" " B gy )
* (ﬁyya;lc{‘l(n’e’N)7 3;15‘1;’;’9’1\])) +0a,

where the commutators in C, are defined by

k

k k— k—
C = E <J) ((8 ity O g8 ok (n@N))+2<8 i1y 0 Jq(nezv) 3kq§;;9 N))
j=1
k— 0.N) ak_(n,0,N
(afua j gl oM, akqn ))) (77)

We can easily estimate now

1 1
IC2l = Co&wy(x)2 Dy (x) 2, (78)
which concludes the proof of the lemma. O

Lemma 7. The function ¢™N-? satisfies the following inequality for k > 1:

N
sup g o gV, + Va1

- (N
< Collog F I + 1’1 + g : )8"q<”“>|x:o||i§. 79)
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Proof. We start from the weak formulation, (68), which, together with el’/ = (M)zei,

N
immediately implies the validity of the following identity

0 N _ _
Ok <| ( )|2 (nNO)’q}(]r;yN 9)) (Byy (uq(n,/v,e)) qyy,y/\y/ 9))+2uy|q§n,zv,9)(0)|z

—K (Exyylx |:v§:n'N'9)] q\(g A 0)) - K(U U(n N, 0), qu N, 9))
— (I, [vg,zv,e)] By + g N D) i (U)(];,N,Q) Byg N0 _ gV 9))

N N
— (U, q(n N9))+( ( )8 u( )q)(}an‘) q)(]r}l},Nﬁ)> _ _ (F(0)7q§§N9)>

(80)

From here, we can integrate by parts both terms using also that for each fixed n < oo,
dyyly=0 = qyyly=n = 0, which produces for the first two terms above

N ,O,N —(N 0,N 0,N 0,N 0,N
Z(sonz S a2, + (0,76 as N gy ) + (o855 g ).

Expanding out vy;ye N = 83(uq(”’9’N )), we obtain furthermore the following identity

2
. N 6,N N,
2(80']) = 35 ((9 )q)(g/ ) L2 + ||\/_%(z’ylv ) L +Ri,

where we have defined

Ry = — 2 <Iz}yq}(}};0N)’q)()};9 N)) 4( (nGN)’q}(}r;ON))
- (ﬁyyyyq(”’e’N) (n 0. N)) ( (N)%(cny 6.8, qﬁ')’ 0 N)) (81)
We can see that we may easily estimate
Rl S gy ™M U2 Qlggy ™l + gyl 2)- (82)

We next estimate in a straightforward manner using that 6 > 0,

9
. 1 1
601 = CoEr0F (Dr)? + 1l )
j=4
This concludes the proof of the lemma for k = 1. The k > 1 case works in a largely
identical manner. O

We note that our compatibility conditions from Definition 1 imply that higher order x
derivatives of the Eq. (60) holds at {x = 0}, and therefore we can evaluate the ODE (69)
to obtain the initial condition for b (and higher order derivatives thereof). Combining
(75), (79), and (75), we may thus send n — oo and N — oo to obtain a distributional
solution to (60), which can then be upgraded to a strong solution in the usual manner.
We state this now as a lemma:

Lemma 8. Fix any 6 > 0. Assume compatibility conditions on g\ —o according to
Definition 1. Assume F©) satisfies Zﬁi"o 18 FD (y)|| < oo. Then there exists an L =
L(0) > 0 such that there exists a unique solution to (60) on the interval (0, L).
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2.4. Uniform estimates in 0. In this section, we provide uniform in 6 estimates for the
problem (60). As such, we shall define the 6#-dependent version of our basic X norm

lglx, :== sup (lliEoqryllx=xo + Igyyyw (1 — x)lx=x,)
0<xo<L
+ [Vigeyywl + [lvyyyywll, (83)
k
lgllxes = 1lg lIx,- (84)
=0

We adopt the notation that

pe=plalx) . pw = pr(1dlxy). 5

where p is an inhomogeneous polynomial of one variable of unspecified power. In
general, we will suppress those constants which depend on ||g| x,, and only display
those which depend on (|71l x .,

Lemma 9. The following inequalities are valid:

g1 + ||{q§">, gyl + g™ ()7 < o +llgllx, ) (86a)
o ® )=+ 1, o o® vEw ) < oL (DA + lIgllx,,,) (86b)
||q(k)w|| + ||v§’;)vw|| S T+1gllxe, (86¢)
g% lloo + 10E Nloo + 17 1o < 1+0L(DIgllx s (86d)

(86€)
1, v lloo < 1+0L(DlIgllx - (86f)

Proof. The first step is to obtain control over ||q;];) || via interpolation.
la§0 =2 (50 =87 Naog {1 < L™ supaog Pz < L™ lgllx,,
Near the {y = 0} boundary, one interpolates:
(o (3) ot 198 2) 1 S + (51 (5) -1 12)
S8llg W%, + L2621 ™I%,

Optimizing V8 + L8 !, one obtains § = L2/3. Thus, ||q(k) < L1/3||q||xkﬂ. From here,
a basic Poincare 1nequahty gives:

g1 = 11g$ 1x=0 + / a1 S VLGP =0l + LllgH) |

From here, Hardy inequality gives immediately ||q(k)( ) I I < ||q(k) Il
The next step is to establish the uniform bound via straightforward Sobolev embed-
ding:

lg® P < sup g 17 S 1a0 Lm0 )17 + Lllg& ()17 S T+0L(MDllglx,.4-
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A Hardy computation gives:

lg®w@ =0 1 S1g& l2.0e + g w @ =01 S g llxes-

We record the following expansions which follow from the product rule upon recalling
that v = ugqg:

k
|v(k)| < Z |,2jq(k—j)|

Jj=0
k
s
1 S g +lal gy
j=0
k— k—
§’§?|<Z|u q“ D1+l 1w gy
Jj=0
- (87)
(k— k
il S D g * P+ ey 1+ a1+ 1d gy
Jj=0

k
|v(k)| <Z|-J (k—j)|+|ﬁ§} (k— J)|+|v}q)(k ])|+|u q(k ])l
=0

=

k k— k— k—j) k—j)
)(cy)y Z ( j)|+|”}yq( ])|+|vyyq( ! |+|”§CI)E)7 ]|

k
+|UyQ§y j)|+|u qx yy])|

We will restrict to k = 0 for the remainder of the proof, as the argument works for
general k in a straightforward way. From (87), ||v, || follows obviously. Next,

gyl Slityygll + litygy |l + gyl S VL +oL()lgx,- (88)

From here, [|vyyy[ljoc can be interpolated in the following way:

y y
(Uyyy, Uyyy X (E)) = (ay{y}X (‘) ) |Uyyy|2)
y _ y
_ (yx (5) Vyyy, ax Vyyyy ) <y5 X (5) , Ivyyy|2)

2 2
58 ”Uyyyy” +||w8vyyy|| .

For the far-field component, we may majorize via:

M 2
(B3 vy (1 = X GN) 1 S W50y I
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Here Y5 = 1—x (%), the key point being that both {1— x (5)} and /(%) are supported
in the region where ¥/s = 1. To estimate this term, we may integrate by parts:

(‘pv,vyy’ vyyy) =- (W)yy’ Uyyyy) - (5_11/’/vyys vyyy)
"
= — (Vuyy, vyyyy) + <52%, |Uyy|2)

2 2 2
58 ”Uyyyy” +N6||Uyy|| .

Thus,
(89)

||Uyyy|| §8||Uyyyy|| + N8||vyy||~

We combine the above with (88) to select 8 = L%* to achieve control over ||8§ v® || for
j=1,23.
We now use the elementary formula ﬁ = % — %
1 v Usg — Usy ®y
Yursy (0)ug

to write:

v v

T Uy ™ Uy )y + [y — sy (O)y] sy () y

Using the estimates g 2 y as y | 0 and |us — ug,(0)y| S yZasy | 0, itis easy
to see that the second quotient above is bounded and in fact C*°. We may thus limit our
study to g := % We let k| + ko = 3 and differentiate the formula:

1 [ 1
qgo(x,y) = —/ vy(x,y’)dy’Zf vy (x, ty) dt,
Yy Jo 0

where we changed variables via ty = y’. From here, we can obtain:
'
It OIS [ Py e, deloe S oy ©0)

Away from the {y = 0} boundary, we estimate trivially:

Y - y
gy {1 = (3)}wl  Nagyywit = x (52
< VLligyywllx=0 + LIV igxyyw.

From here, obtaining ||g,w|| follows from Hardy. We now turn our attention to the
weighted estimates for vy, vyy, Vyy, Uxyy, which follow from (87), whereas for vy, we

use the Prandtl equation to produce the identity:

Uyyy =lyyyq + 3ilyyqy + 3ityqyy + Uqyyy
= (—uvyy + vuyy) q +3ilyyqy + 3y qyy + UGyyy

The uniform estimates subsequently follow from straightforward Sobolev embed-
0

dings.
‘We now perform our first energy estimate.



1424 Y. Guo, S. Iyer

Lemma 10 (& Estimate). Assume q solves (36). Then the following inequality is valid:

Iz, , SliEdkgeyle=oll® +oL(D) (puy +kpusn) (1+ 121%
k.0 (k.0)

on
+or(DCWU®) +or (D19 .y g1 ()17
Proof. We have the following energy inequality,
Oy _ = _ 2 0
Saods g1 + Va0 g 1 +2a,0) (39" @) < Zh1 02
where the integral I,Ei)l is defined
S (k+2 k+2 k+1
. . » o
70 =30 (407 (o a. a0 + (sl a9 0 o)
j=1
k+1 k1 .
s
() Cotnat i)
=0~ 7
k+1 k41 ) )
o3 (50 (et a0, at ) (110,850
=0~/
Ml . . : ,
+KZ< , )(a){ B L [0 00 |+ 05,08 0O, k1))
j=o ™ 7
k+1 k+1 ) )
" ( , ) ((1c[ot 0] 0, [adaat1g@))
=0~/
k+1 k4l .
k+1—j j - - 1—j
+ (o -’v;ey),ay{a,{vaf”q(@)}))wz( ) )a){uyax+ T4@ )3+ 0)
j=1
11
0
+ (0 PO 01 @) =3I | 93)
=1

For this estimate, we further integrate over x € [0, xo], where 0 < x¢9 < L. This
produces

L
_ p = 0
sup (205 gy I3 + I1Viadf gyyII? +211V/iy 0 gy 13— < /0 IZDL 98
X
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We recall now the various contributions into I,Ez)l from (93). We start with the first
of these, via

L k+2 k+2 ] ) o i
[ (1RO (om0

k+l
3;2 : >ﬁ9

<

~

2
| o gy )

k2

(2)
dx ~ "itg (5%) _
S o g e 0%
27:] *

Sor(hp (Iléllx(k>) lg1%,,

1
: i 3150 17005 g,

k+2>

We have used the fact that 242 ~ 3] 8} yv for any j, in particular with j = ( and

then appealed to (86d). We also use (86a) to bound ||8x qy | for j = M

‘We now move to 84 term from the specification of I,E the first of which reads

+1°

L k+l1 k+1
k+l—j
f 173 ! </ IZ( )( a0 gy, 05y ) I (95)
0 0
The j = k + 1 case from above contributes
0 k+1 = k+1 a)]cﬁlﬁ = —ak+1
[ (@ 08t ) < |527] L Vi s IV g1

S (L+oLMIGlxg) (1+ lglxg) 1VEds quyyll.

Above, we have used the Hardy and Agmon inequalities, as well as (86b), which gives

ak+y kv,
| %Yy < 10O 2100 + 10012700
e P el P TR T S
k k k -
ST+ 101+ 11501 S 0 (D) (1+11g11x) -
The intermediate cases, j = 1, ..., k can be bounded above by
a5

The next term is

| Va0 g 11V g, 1 S (100D po) gl gl

L k+1

k+1
0 1 —
/0 |Z/E+)1 3l f |Z< > (28 oyiady” ]‘1»’ akH‘Iyy) |
t k+1 k+1 gkr1= ket 1
=/O | (2”ya gy, 0" be |+ Z / 3J g, 0 ‘Iyy) |

1<J<1<+]

L

j — ak+1—
D> /0 | (2fa,a gy 95,0 ) 1 (96)

bl < j<k+l
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First, using uy, = l_](’)/ (y) — I:[vyyy] and also integration by parts gives:

L L
(96.1) < /O |(ityy 85+ gy, 351 gy) | + /0 ity (0)[05* g, (0) |

<o (M1 + pp)lgll, + 1Yy |95 gy 15—

We now absorb that the crucial boundary term above can be absorbed into the left-hand
side of (94) due to the factor of 2 in (94) as compared with the factor of 1 above.

We now treat, where we have used again that i, = —v, and subsequently (86a)—(86b)
to bound the i contributions:

L . . L . .
96.2) < /0 (25 gy. ol g, ) 1+ /0 (25, 0,0t g, )|

L
j — ok—j+1
+/ 10,0y T qy05 g, (0)]
0

L L
5/0 |<8§+1‘1w8]“yy3k+1 ! >|+/o |<a§+1‘1w8] ot jny)'

L
j — ok—j+1
+/ 10,0y T gy 05 g, (0)]
0

(M)_ L
1082 gy oo 18R gy 1185 gyl + 1198 2 ity lloo 10 %) gy 105!

+or(Mlglx,,
SorMpw (lalk,, +1).

Similarly, we obtain by invoking the definition of ||g|| x,, as well as (86a)

Qy”

L L
96.3) < /0 |(a,’§”ﬁyyqy,a§“qy)|+ /0 |05 gy, 051 gy)

k 1— 1—
+/ | Z (a]uvy ]qy,8k+1 ) /(; | Z (a]uy k+ quv,ak+IQy>|

j k+1 j k+|

k+1
§||3xvyyy||L§L30”q;/”LgOLZ ”3x+ 61y|| + ||8xvyy||L2L°,°||ny||L°°L2 ”8 kel CIyy”
k+1 k+1
(k—1) k+1 (k—1) ) k+1
+ 1105 gy e 10y Cly||||3 gyl + 110 va||L°°||3 gyy 13 gyl

gOL(l) (1 + ||6]||X(k>) (1 + ||61||X<k>)

Next, we move to:

1

s k+1 L i k+1—7
fo II/§+14I<Z( ; ) fo (a0 )1 @)

Jj=0

We split the above term into several cases. First, let us handle the j = 0 case for which
(4) gives us the required bound by Hardy’s inequality :

. 1 _
1(97)[j = 01| §||§uyyy||oo||a§qu|| IVaH qayyll S oD pwyllg ik, -
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We now handle the case of 1 < j < k/2, which requires a localization using x as
defined in (39). We invoke (86b) for the v contribution and (86d):
k
[ODI = x| S8 Dyyyllrger2 1980 g 1121 gl < 0L WPy llglk,

For the localized component, we integrate by parts in y and invoking Lemma 9:

k+1

k+1
" |
ODIx] = / @Fqyx’, ity 0"~ ’q>+Z / (9%avx. odiyyol™q)

k+1

ket —
+Z/ (@Xayx. iy s qy)

akfl

k
k-1 7= 7= k
S0y gyl ||8x2 Dyyy 108 gl Lo + 1l Gy 1102 Dyyyy 110 >CI||L/°:C

loc

k
+ 105 gy 11182 Dyyy lloc 135 gy |
Sor(Mpwllgli,, (98)

We now treat the case in which k/2 < j < k, which still requires localization and
(86d) and (86b)

K -
ODx=111 S 195y Valll02 qll 2 e 198V Tyl e 2

Sor(Mpwlily,,

Finally, we deal with the case when y < 1 for k/2 < j < k, which again requires
integration by parts in y as in (98), upon invoking (86a), (86b)

k

1O SN05 gy 11855y 111072 gl e
k

+ 105 quy 195 By 1102 g1l 52,

_ —1) = k/2

+ 105 gy 1105V By oo 08

SorMpw (1+19lk,,)

We now move to the A terms. By Hardy’s inequality in y, we obtain

k+1 i
K/o Il£+)16| <"Z< )/ (E)vay}ak . jlx[vy]va;]f“‘I)

k
<ol

qu”

Dyyy (¥ >||oo||a<k+” Lvyll85 gyl

k
+iea% g )08 2 L [0y 1) oo 135 gy 1.

Next, we similarly have

k+
k+1 _ kl
[z B ) [ttt
(

k1

S 18y 7 Byy (M) oo 1BE vy () 1195 gy 1.
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Next, we have

k+1 k+1 L
e
K/O T <KZ( )/0 | (fmeot™ 1 [30] 081q) |
k+1
k+1
<« ( )/ | (o500 1102u), 05q) |
k+1

k+1 - —j
+i Z( )f | (od5.08" 7 Ldv1, 0*1g, ) |

k+l
) _
kol ? vx>< Moo 05V L, [vyy ] 1185+ gyl

+ifal ) O o 105V I oy ] 111185+ gy
A+1>

#1108 2L oy ] ) 1o lOE D iy 195+ g, |
k+l
7)
+ i 9Dy 118 2 Ly [vyy ] D)oo 135 gyl
k+1 k41
j — nk+1—
"/ |II§+)1 ol =K Z( )/ |(8){Uax+ j”ny’ak >|
0 =0 J 0
k+1

— Z <k+1> (/0 |(3§+1 ,vaa vy,8k+1 )|
+/L|(a"+‘ Tyl 0, 0k* )|>
0 X yy

k+
Skl 2 By () e 1% vy 1195 g, |
k |

(k+1)
+K||ax U”oo”a

3k+1

Uyy” l X CIy”

) _
+ il 2 vy (M loo 138+ By 1135+ gy
(B4 _
+icllae T Blloo oS vy 115 gy -
Summarizing the A contributions by repeated use of Lemma 9 with k + 1 for the v
contribution gives:

X0
sup [ (008, 00kg) 5 kon (e (1+1a1, ).

xo<L

Next, we have the contributions at y = 0:

s k+1 L k
e
/O L 1ol < Z( ) )/0 0fi, 0" q,(0)05 g, (0)]
j=1

<o () (1+ py) 105 a4y )l 2 195y )1 12 < 0L.(1) (14 piiy) gl -

Above, we have used that 7 ii, (x, 0) = —3 ', (x, 0), and then (86b).
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Finally, we have the u9 contributions for which we rely upon (86b) for k + 1 for the
v term:

L L
0
K/O |II£+)1 sl = K/O | (8§+1U7 8)1561){) | = K/(; ( OBkHnyy Uyy a)]cﬁlvx» 8k )
S oM’ 1l - (M oo llIFH Dayy 195 gy |
S KOL(DP(kH) ||5]||X<k>
This concludes the proof of the lemma. O

Lemma 11 ( 8)16‘ 83 Estimate). Assume v is a solution to (36). Then the following estimate
holds: ’

135 Vyyyy 200 SIglleg + oL (P +xpusn) (1+ g lxy,)

: (99)
+ 10, (DC () + 5,95 81 210c-

Proof. We apply 8!; to the Eq. (36) to obtain the following pointwise inequality:
| St a2g 7 + al al gy~ |+ 1l @y + i g

yyyy
(k—j) — (k—j) - =J) (k—j)
+|u“u)](2q” J |+K|nyyl [vy J ]|+K|vyyvy J |+K|stlx [vyyy] ]I

+|ij)(!§,;1)|+x|v(k) u |+K|U(k) 0

SXYy |+|axygll

(100)

Placing the terms on the right-hand side above in LIZU . gives the desired result by
applying Lemma 9 with k and k + 1:

(100 < 181, o ”noonuquyn
1(100.2)| < 198~ 1||oo||vyy loollg {1
1(100.3) | S 158 oo 104 o g1
1(100.4) | S 155 Voo 58 oo llg 1
1(100.5)11 < 15 Voo 158 10 g &)
1(100.6, )| < wllo 11w E [l
1(100.8,9)|| < (||vk>||oo+K||Uk+l ||oo> [
1(100.10, 1D < rellue®, el (3) oo 1053

yyy ”

These estimates immediately establish the proof of the lemma. O

We now move to a || - ||, estimate, for which we first recall the definition in (40).

Lemma 12 (Weighted 8)](‘ H*). Assume q solves (36). Then the following estimate is
valid:

9135, S1980s81 - wx I + Cilqo) + koL (1)C (u”)

(101)
+ (o (pgy +xorMpge) (1+ a1, ) -
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Proof. We take 8§ of Eq. (60), which produces:

— Oxy (ueqﬁk)) + viky)yy = a;‘axyg, — k¥ A() —kdtU

k
J1= aj2= (k=j)
— Oxy Z Z Cji.jo.jOx UgOx Uoqy

j=1 ji+ja=j

(102)

We now square and integrate both sides in y, for frozen x = xo, against the weight
w(l — x), which produces the inequality

(=0 (a) + 080 ) w =012

<19 grw( = 0l + kI8 A@WA = 0l + kI Uw( = 0l

k—
+ 105y Z Yo chpdaedlisgy " | wd =005 (103)
j=1ji+p=j ’

We start by expanding out the terms on the left-hand side, which gives

o t@3a®y = o), |- wit = 2,
= o 1 = wlliog + a1 = x)wlio, — 4lisiog)sw(l = 0l
= Alligyitoxq) w1 = )l — Hlidiarygy w(l = I3, — Hlisieyg ) w = 07,
~ (208, ueqi’?yw%l = 0%) =4 (v Foitacgl) w1~ 0)?)
— 4y fgyiioxgy w? (1 = x)?) = 4T dgitey g w (1 = x)%)
— 4 | igitayg N w (1 — )?) = P+ ...+ Pi1.
All terms are estimated in a straightforward manner except for P;, upon invoking i, +
vy = 0, so we begin with:
1P3l S llite 12 l1g ) - wii—y,
Pal S ity 12110y 120 1wl
Ps| < Niavyy 1219wl
Pel < Nititywl|3 llg ) 13 o -
P8l S Nt lloolv$5h wll = X Hlemao g &) wil — x}l=xo
Pyl S Nty by lloolg s wll = x Hlemxg 1055 i1 = X Hlx=ao»

(k) (k)

Prol S Ny loolgOwll — x}lemro 10E) w1 = 1 llxms

k k
Pl S it ywlloollg ) e=so 10§50, w1 = X} llx=xo-
Upon integrating in x and applying Lemma 9, we may summarize the above estimates
via:

P3|+ -+ [Psl + Pl + -+ Pl Sor(Wp (1llxy,) (1+gllx,) -
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We thus move to P7 for which we integrate by parts once in y to obtain

P, =2 <v5’;{ i3q %), w1 - X)z) +4 (v;’;?y, figiigyq S w? (1 — X)Z)
+4 (v)(,];)y, i2ww, (1 — X)Z) 4 (u§,’;>y, 2w (1 — x)x/) — P+ + Pra

We now expand using that v = ugq,
K . akgs k- - - -
vﬁy)y 1= 0, {i1q}yyy = 9y {ilyyyq + 3ilyyqy + iy qyy +iqyyy )
k
. i e g ke
= cha,{uyyyax ]q + 3cj8){uyy8x ]qy + 3cj8){uyax ]qyy + cja){uax ]qyyy.
i=0
First, upon integrating by parts once in y (ignoring commutator terms, which are dealt
with below), let us highlight the main positive contribution from the last term above, for
j=0:
P -2 2.2 -2 2.2
2 (uaﬁqyyy, ugqfcl;)yy{l —x}Yw )X_XO = (2uu9q§_’§,)y, q)(cl;)yy {1—x}w )

N _
= aullal i (1 = xhwld_y, — ((783) gl afy (1= 01 w?)

X=x0

X=X
Hence:
k -2 (k 2 2
—2 (”;y)yy’ a5y w1 = x} )x:xo
_.3 -
= dullg@ylal>w(t = )12y, = (199 P (@) w1 = x1?)
’ X X=X(
k P gy S L i
- (quy’ dy {[”§yyq( D+ 3itfyqy ! + 3} gy, 1]
xﬁng{l — x}z}) + (2v§,’§,)y, q§’;>yay {ﬁng {1— X}z})x N
=X0
k
o
+ Y cj@fudy ! gy, agqt) wil = X )x=y
j=1
= 3 lg® @l wil — X} Py + 1 4+ T 104
Ll w(l — 2o, + M 6. (104)

First, we estimate upon integrating from x = 0 to x = xo,

X0 B ;
|/0 11 (x)dx| S or (1) sup [lalZg, wil = x} 37—y, S orMllgl,-
X

Next,

o o P
7 == (¢ iy g FPiGu - X}z)x=x0 — @®l ¢ Digiigyw(1 = x)emsy

(k) -j (k—

o o i
_ (quyuyyy,qy ,/)ung{1 _ X}2> (k) - j

Y=x - (‘bcyyuyyys q(kij)’z92wwy{l - X}Z)X:XO
=X0

k) -j — )=
- (qiy)yuﬁyy,q(k Digw?(1 - X}x’)x:xo =T+ +T25.
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We will estimate each term above with the help of the Prandtl identities, which follow
from (1), for u:

|i83yy | S 183 {ivyy + Dityy }
(105)

= ilz 5 - = = === =2 -
lityyyy| S 10x {uyvyy + UVyyy + Vyllyy + UDVyy + U uyy} |
Inserting this expansion into term 7> 1, gives

e . -
2l S1 (o @ytyah) a®Daguw(t = x1?) 1+ 16] @oyyyal), a“ PG 1 - )

jo- - k i) - P k i) -
1 (0 Gy 5)al) a*Digu (1 = 002) 1+1 (o] @o5yy0a ) g %D idu (1 = x2) |

nf =2 - k —i)-
+1 (31 (Uzuy)')%((y))uq(k J)ung{l - X}z) [=T11+ - +1215-

First, upon integration in x and using (86c¢), (86d)

L
fO|Tz,1,1|5/O g%, qW w1 — x a5l

</O g1 = x 3wz 1 oo 535 oo 1D w{1 = X} lx=xo-

~

< A+or(Mpe)? lglixeor (DI + llgllx,)-

Next, upon invoking (86b) and (86d),

./o 172,121 <|/ (ayys aMagw(1 = x)?o i v,,,)]

g ool lloollg i {1 = x 3wl 1880 By {1 = x 3w

SA+or(Mp)* liglixeor (D) (1+1lglx,) -
Next, upon invoking (86b), (86d), (86f), we have

L
/0 72131 5/0 (%) a¥005,000a,, (1 - xPw?id) |

g = xdwllllg ™ o 10515y () leollaf By w1 — x 3,
S +or(po)* llgllixeon () (1+lglx,) -

Next, upon invoking (86b), (86d), we have

L L
fo |T2,1,4|5f0 I(q)E’;)y,q ung{l—X}23,<5k_1>5y3)§k>178)§k)17yy>|

S = x3wlllg ™ oo lldP Dlloo 105V Dy oo 185 Dyyw{1 — X},

S(1+oe(Mpliglix)) (A +oL(Mpi)* lgllxeor () (1+11Gllx,) -



Regularity and Expansion for Steady Prandtl Equations 1433

Next, upon invoking (86d)

fomls|<|f g g™ vabva l>z‘)yyyﬁ§{1—x}zwz)|
g1 — x}wn||q<k>||oo||a§">5||§o||a§"—”ﬁyyy{1 - x}wl
Slglx, (1+oL(Wp (llgllx,)) (1 +oL (D p) o (1) (1+ pi)
Sor () +or(Mpyy +or(Mlgly,,-

We now move to:

L E%)
/nms/ | (a5 gy (1 = x)? [a95 + 0Pl ]) |
0 0
Sllgdywit = x g™ Ml [||ﬁ§,"*‘>||oo||ﬁ;’;?w{1 —
+Ho M ool w1 — x}u] ity (¥} o
S llglix, (1+0L(Mlglx,) (1 + oL pe-1) oL (D) (1+11711x,) -

Above, we have invoked (86b) and (86d).
Next, we use (105) and Lemma 9 to estimate,

X0 ko ik .
- k—
/ Taal < §:<.) f 1q®) ity ay ™ P (1 = x})x=rg dxo
0 =0 J/) Jx

S /|(q;l§;)};u)yy’ q)()k)u2w2{1 - X}z)x=x0 dxo

f 18,9, gyl = %12 emsy drol

k—
+ Z @ ahy. a2 w1 = X},

j=1""
S Nityyylloo lliig & wil = x g P w{l — x|
+ g wil = xS, willlgy lloo
+ 105555 w2 gy willay 2 e

S oM +oL (M p)liglix;.

Next, again by invoking Lemma 9, we estimate

[sz,4| <1 (a9 w0 - 2@ [a®) + 5al ]|
X
Slg&wil = xHlx=ry g “lloo [nay;?w{l — =0 155 oo

#H10 loo x 1545 w1 = ) llimvo |

Sor(pllgll,,
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[ 175151 (a0 = it =y [#95 + 5 )
S 18 Nioell g™ oo toe [ 158 oo toc 13 10

10 o 1555 oo toc |

S or(pellaly,,
We now estimate the following:
k— k—
/ml S (a8 @y o @20 = x0?) 141 (a9l gl @1 = 07) |
X
_ k— - k—
+ 1@ gl w1 = D)+ (g, wdyal ™ iPww, (1 - 1)) |

- k—
+1(a) dhal @0 - 00 = 1))

Sor(Mpillgl,,

Above, we have used the estimates which proceed below, with the use of the identities
(105) and Lemma 9:

/|T3,1|5|(q§§§,qy w1 = [aol) +59al)) |
X
any;?yw{l—x}nx:xom;“w{l—x}ux:xo[na; Mool oo

15 ool 75 oo |
/xm,ﬂ S wll = xHle=rolg“H{1 = w0 ™ ez 1557 () oo
/xm,ﬂ g8 w1 = xHle=rylg "1 = w0 ez 1855 oo Nty (7)) lloo
/x 17341 Slglhw{l = xHa=xo 1055 ool w{l = xHlizzo
/x 1351 <109 s toe 1% ezt 155 oo oe-

We now move to, using Lemma 9 to control the v contribution:

f|T4| </ quy,unyyy it w2{1 X}2> /(‘])E];)ya _y(byv” w2{1 X}z)
— —j = i k—ij-
+ |/ qili))}’ i*CIny”Mywz{l_X}) /(q)g;)ya ilcb'y]”zwwy{l_x}z)
+f<q§'§)y,ﬁyqyy’ w{l — x}x/>

5/ [”qg;)yw{l - X}Illqy;)w{l - X}||x:x0||l—)§1;71>”00
X
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+ g8 wil = x Mg S wil = xHlemr 158 lloo
+ g w{l = xHle=so llg & w1 = x M=o 1555 lloo ity lloo

+ g8 w{l = xHle=so llg N w1 = xHlx=xo 1555 M lloo

k k —(k—1
H108 limvo toe 19 ez toc 155 o toc

Sor(Mpellgly,,

Next, since iy is bounded by Theorem 1,

[msri [ (s fu?t - 07+ w1 - 0 + 2l = '}
X X

5[ [nq;’;)yw{l — X = IV E, w1 = L= ity lloo
X

+ g8, w{l = xHlemro 05, w1 = x =,

+ ||61x” W= =xq,loc ”va {1- X}|x—x0 lac]

SorMlgl,,

To conclude, we have

k 2 anj=ak—j 2 2
/|T6| =] _Z/ ( ) q;(cv)y’ y [M a){uax ]nyyw {1—x} ])x:x

S f g8 w{l = xHle=xo 155 oo llg s 11 = X 3w lle=xo
X

< or(Mpiliglx,,

all of which are acceptable contributions due to the cut-off {1 — x}.

This now concludes our treatment (104) and consequently the left-hand side of (103).
We now move to the terms from the right-hand side of (103), upon using Lemma 9 for
the v contribution,

o
/ ey {08! a0y gyhw{l — x} )3y,
X

(k+1) k) = a(k—1 k+1)
/||[ NP agk-Ng, + gy h g gk=

X X )S dy
+ oPaa®asl gy, +oPa®i,olg,
+ofao gy | wll - I,

S /[na;k 0y lloo 0 Byywil = xHle=ro 18 gyw{l — xHIZg
X
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+ 105 Doy 12 108 5, 12105V gyw(l — x 33—y,

+ 185,13 108V gyyw{l — X313y,

a(k—1>-

+ 105715 ool Oy 21100 gyw{l — x M-y,

185,100 w1 = 013, |

< or(pellgl%,,

‘We now move to the A terms:
k— k— - k —i (k—j
8 A = vayy [ ( /)] +vyyv( D U)JCI [v§y /)] —v’v;yyj)

We estimate dlrectly:

_j k—
ot e [0 Tl = @I, S 158w = @I, v 1%

k—
153,08 w1 — 3122y, S 158 wil — X312y, o 12

ol wil = X3,

1154 Le[oy” (1 = w22y, S 115
197 10555 (1 = xdw@) 122, < 105 sl w(l = X}y,

Upon integrating in x, the above terms are majorized by or(1)p(llq|lx,,,,)(1 +
llglx,), upon applying Lemma 9 for k + 1. We now move to the U (u°) terms:

/ 05U O Pu(1 - )2 5/ (12, P12+ 120, Pl w1 —
<2 0%, il = X HFg + 19, w{T = XI55
Integrating, the above is majorized by C (u®) o (1) p(117 | x «s1))> uponapplying Lemma
9 for k + 1. Similarly, the g contributions are clearly estimated via ||0yy g’l‘{l — xlw|?. o
Proposition 2. For k > 0, and let g solve (36). Then:
lgllx, SC(go)+ 195d,yg1wll* +or, (1[853, 8,y g1 (V) I + k0L (1)C ()
+or () (p (1lxe) + <P (1211 x0,)) (Cao) + a1, ) -

Proof. We add together (91), a small multiple of (99) and (101). On the left-hand side,
this produces

(106)

sup [|q§.’;§w{1 X} + |uq<k>|2] + [l wil — x 117 107

+ 1080 lioe + g8y w1l = x 112 + 1g &) Va2,
which can clearly be combined to majorize ||g®| x. On the right-hand side
19y d5 grw{l — x}* + C(go) + koL (NCw®) + oL () (p (I4llx,)
+6p (1711 x4.) (€ @0) +1a @1 ) +o(D g e (108)
&

+oL(1)[[dxxydf g1 (V)1 + liigl, (0, )|
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Of these, the o(1)||g® || ¢ term is absorbed to the left-hand side. Finally, the initial value
lig ) (0, -)|? is obtained through (51). -

We can upgrade to higher y regularity by using the equation. In this direction, we
establish the following lemma:

Lemma 13. Let g solve (36). Then the following inequality is valid for any k > 0,
j j—4 .
135 vll S 195 Fll + puollgllxy, +C®), 0= j <4+2k. (109)
Proof. We will first address the case of k = 1, j = 5. We take 9, of Eq. (60) to obtain
by using simply the definitions (37)—(38),
1030l <UF I + oL I8,U (1) 152 + k110, AW + 19y (24, ) |

SIF + 0L (C (1) +kp gl + 100y (220,) 1 (110)

We next expand using the product rule and estimate using Lemma 9,
-2 - - -2 2(=2
135y (20, ) | S12Ed 305+ 18 @y |+ 103 () gy |

Mgy (72) ayll+ 1 (ty), gyl + ity gy |
Sliglixg, ath
It is clear that we can upgrade to higher y regularity by iterating the above. O
We now come to the proofs of two of our main results.

Proof of Proposition 1. Proposition 1 is a direct consequence of Proposition 2 and
Lemma 13. O

Proof of Theorem 2 . We begin by reformulating the Prandtl Eq. (1) into the D-Prandtl
system, analogous to (36), which produces (U = A = f =0)

—axy[ﬁ2qy}+a;!u=o, g = 5 (112)

From here, Proposition 2 is applied with g1 = 0,k = 0, and ¢ = g to give

lgllx, = 1gllx; < C (g0) < C (Uo)-

Above, we have used that the constant C(go) depends on |[itgyy || x=o. From (112), we
obtain

_ Uyy _
—iiqyy = _% + 20l qy, (113)
from which
_ 1 _ -
”MCIxy”x=O = ”EUyyy”x:O + ||ZMXQy||x=0 =< C(Up). (114)

It is important to note that vyyy|x=0(0) = 0 from uy|,—¢ = 0 according to the Prandtl
Eq. (1). Above, we use that the quantities 89’ V|x=¢ forany N > 01is determined according
to the initial data, uf,), |x=0. Hence, (112) becomes

lgllx, = 1711x, < C@®).
This concludes the proof. O
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3. Construction of Approximate Navier-Stokes Solution

3.1. Specification of equations. We will assume the expansions:
US =" +eMu, VE=i"+eMy, P =PpPr+eNop, (115)
We will denote the partial expansions:

i—1
i JJ J ~j i i
uS—E \/Eue+2 \/Eu,,, Ug = Ug + /€ Up, (116)
Jj=0 Jj=0
i—1

i
é:Z\/EJ +Z\/E]vp, ﬁ§=v§+ elv;, (117)
j=1
i
Pi=Y "' Pl ﬁ;=P;+JE’{P;;+¢EPI§v“}. (118)
=0

We will also define uf’i = Zj‘:o ﬁj ué to be the “Euler” components of the partial sum.

Similar notation will be used for u; P vf i ‘f) ' The following will also be convenient:

i=1

n n
P . Z i P . Z i
U, = \/E Up, Vg = ﬁ vy
i=0 i=0

ug =ul +ul, vy =0l +0E.

n
S A S
i=0

(119)

The P;;a terms are “‘auxiliary Pressures” in the same sense as those introduced in [27]
and [31] and are for convenience. We will also introduce the notation:
Py

o i i =i i i =i i
Uy =, —up|y:0, v, =0, —v[,(x,O), v, =V, — U,|y=0. (120)

We first record the properties of the leading order (i = 0) layers. For the outer Euler
flow, we will take a shear flow, [uS(Y ), 0, 0]. The derivatives of ug decay rapidly in Y
and that is bounded below, |u8| > 1.

For the leading order Prandtl boundary layer, the equations are given in (1), for the
i’th Euler layer, i > 1, the equations are given by (16), whereas for the i ’th Prandtl layer
the equations are given by (17).

The relevant definitions of the forcing terms in those equations are given below. Note

that as a matter of convention, summations that end with a negative number are empty
sums.
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Definition 5 (Forcing Terms).

i 1
_fll?,l = exlz\/_] {ue+up(x OO)"'“ IZ\/_] uéx

j=1
+\/_ l—l i_l(.x,OO)}Mi_l'i' e t—l]
— 1 —
+“eY12‘/_] Ue+Ul IZ\/—J J fAul ,
j=1
i—1 J— —1 Jj— i—1 -1 i—1
_sz = U,y Z\/_ Ue"‘” Z\/— eY"‘\/_ [2 Uy ity Uéx]
j=1

i—2 i—2
- - L - P TV
+{u’c 1+u’p 1(x,oo)} E NGV NES E e’ {u£+u;,(x,oo)}
= =1
—\/EAvéfl,

i) i—1 —Li i 0 —100 0 i—1 , —L¢ Pl
—f® .= Veul + e v, — vy, 0)uy + €72 fuy, — ug(0))uly " + e 2 {ug!
—0 v i1 Ei—1 _ 70 ye i=l _ i1 —Liy=iel
Yx}ul, +€ 2{u Sx}{up —u, (x,00)} +€ v, {usy
l_l . 1 . . 1 1
- “gy} +14’ij1 Z\/Ej_ (ul +u;,) +6_7(v§._1 — v;)u’p;] +6_7(U;
—
i1 i1 i1

. , S o _ o
—vl(x, ()))ujuy1 +Jeul, Z NGRS Z Ve uy +ul, Z NGRS

j=0 j=1 j=0
—uf,(x,oo)}+u22\/?uf,x+/ Oy {\/E ul Z\/E]pr+\/gvéx
j=0 Y
i—1 o ‘ i—1 o i—1
X Z\/Ej{uf,—ufj(x,oo)}+\/22viyz e]vlj,+\/gvéz ejvfn
=0 j=0 j=0

=
el Veugu Ve T T — w00
+ vl Tl eu T o e+ e o o e T dz

For i = 1 only, we make the following modifications. The aim is to retain only the
required order /€ terms into £ (. £ will then be adjusted by including the superfluous

terms. Define:

f<1) :——u(l),uex|y O_”px”e|Y o—ueY(O)yupx vougy ;Y(O)yu(l),y. (121)

For the final Prandtl layer, we must enforce the boundary condition v;’7| y=0 = 0.
Define the quantities [u , v, Pp] to solve

U U + 1 pdyil + Dyilvy, + DDyt + 05 Pp — dyyttpy = 0,
ety +9yv, =0, 3P, =0 (122)

[”1” vp] |y:O = [_“Z’ 0] |y:0a ”p|y—>oo =0 vp|x:0 = V};.
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Note the change in boundary condition of v |y—9 = O which contraststhei =1, ...,n—

1 case. This implies that v, = 3 uy dy’. For this reason, we must cut-off the Prandtl
layers:

u

<~ S

=y (Vey) up +Vex' (Vey) /Oy up(x, y)dy',
Vp =X (~/EY) Up.

Here £" is the error contributed by the cut-off:

=

EW = ﬁaxul; +u'1’,8x12 + ﬁayu’;, + u;aya — u';,yy — fm,
Computing explicitly:
y
EM =(1 — ) fD + i/ex’ (Vey) vp(x. ) +ﬁxﬁx’/ ‘)
0
y
+17\/Ex’up+6f)x”/ up+Jex'u,
0
y
+e%XWf up+2ex"up +ex upy. (123)
0

We will now define the contributions into the next order, which will serve as the
forcing for the remainder term:

+1) . ~ 0 0 0
(D= /" [eupxx+vg ’u?y—upy}+{ue—ue(0)}u"
n .
n J J J n -0 n n 1 n

Uy E Je (ue+u,,)+[usx—usx}up+(vs —vs)upy

j=1
+2
+{v; —vel(x,O)}u;’,y]+\/En€(")+«/gn Aul)

n—1
2
+ VU S e ul + e Z e uly + Ul
=1
1 P 1
. . - e
+ 0y ]+ €T " ZI’ dHVET Y Vel (124)

j=1
and

(n+l) ._ n n n n,n n n
g = € [vsa),vp+8yvxvp+8xv up+u Oy v — Acv),

nel
+/€" (u’;,axv; + v;;ayv;)] + (ﬁ)n ay vl Z(\/E)f—lvg
j=1
i1

+ \/En_lvz,’ Z NG RN [vivly +uldcvl]

j=1

n—1 n—1
VU (Vo) T awvd & T 0t YOV Ul Avt. (125)
j=I j=0
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Finally, we have

Fg = ¢ No <3yf(n+l) - Eaxg(n+1)) : (126)

3.2. Construction of Euler layers. Our starting point is the system (16). Going to vor-
ticity yields the system we will analyze:

0 i 0 i @) . i i
Uy AV, + U yyv, = FV 1= any,I — 3xfE,2, (127)
4 - . . . :
Vely=0 = =V}, ly=0, Vplx=0,L = Vg (0.1} Uelx=0="Uk -

The data for u' |~ is required because u’, = u’, le=0— Jo viy will be recovered through
the divergence free condition upon constructing v,.
We will quantify the decay rates as ¥ 1 oo for the quantities Vi , , and F @,

Definition 6. In the case of i = 1, define w,,; = Y™ if|v61|x:0| S Y ™orwy, = emY
if |ve1 li—o| < e™™Y asY 4 oo. This now fixes whether or not w,, will refer to polynomial

or exponential growth rates. For other layers, we will assume:

' -1
Ve 0.0y S Wy, form; >>my

|[FD| < wljl for some [; >> 0. (128)
Finally, let m := min{m;, [;}.
Define:
S(x,Y) = (1 - f) Vio®) i gy 2 ALD) im0 (109)
L/ v 10,0) Ly, (L, 0) 7
and consider the new unknown:
=0l — 8,
which satisfies the Dirichlet problem:
A +ulyy o= FO + AS, 30 =0. (130)
From here, we have for any m < m/ — n¢ for some fixed ng, perhaps large,
v wnllgt S 1. (131)

To go to higher-order estimates, we must invoke that the data are well-prepared in
the following sense: taking two 812, to the system yields:

07ve (0, Y) =07 Vio(¥), (132)

OyVL(L,Y) =03 V; L(Y), (133)
. 1 . . .

9ex. 0) =0y [ob e 0+l @ @, 0 + FO 0 (134)
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Our assumption on the data, which are compatibility conditions, ensure:

32 V;.0(0) = 1(0,0) +ulyy, (0)0}71(0,0) + FO 0, 0)] (135)

1
M{ pxx

32 Vio(L) L, O)+uLYY(O)v’ YL,00+F9(L, 0)} (136)

_ ! [
- u(e) (0) pxx
It is natural at this point to introduce the following definition:

Definition 7. (Well-Prepared Boundary Data) Consider the corner (0, 0). There exists
a value of (82 V! |y = 0) |x=0 which is obtained by evaluating (134) at x = 0. There exists

a value of <8Yvé |x:0) |y=0 which is obtained by evaluating (132) at ¥ = 0. These two

values should coincide. The analogous statement should also hold for the corner (L, 0).
In this case, we say that the boundary data are “well-prepared to order 2”. The data are
“well-prepared to order 2k” if we can repeat the procedure for 3}2,]‘

We thus have the following system:

—u Aveyy + ugyyvclyy + 8yu0v1 + 28)3,u2ve1y
—2u%y Av!y, —ulyy AV = ayy FO. (137)
We can define another homogenization in the same way:
// //
oY) x L) :

S x,Y:(l——)—z’1 e B v‘_lx,O,

2 (x,Y) 3%é(o)yp( )L82’1(L0) » (x,0)
(138)

which is smooth and rapidly decaying by the assumption that the data are well-prepared.
Let us consider the system for ¥ := v!y,, — B(2). The first step is to rewrite:

u0

i _ [ eYY z i = i
Vppy = eYY+ 0 ctF =—v+ S0+ F'.
e

We can now rewrite the system (137) in terms of v:
—ulAs +uly v+ 0yulv! + 203100,
— 20, (ay {0+ 5} +dy {5+32 + F])
—uly Fl = ulAS) +uly Sy + dyy F'. (139)
Obtaining estimates for v yields for any m < m; — no:
0wl S 1. (140)
Translating to the original unknown gives:
10yys Veyyas Veryy - w2 S 1. (141)
Using the equation and Hardy in Y, we can obtain:

i i 1 i
exx’ Vexxxs VexY» Vexxy

v ~wumllp2 S 1 (142)
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Thus, we have the full 3 estimate. ug can be recovered through the divergence free
condition:

X
u,(x,Y) :=ulb(0,Y) — /0 dyv,(x',Y)dx'. (143)
The compatibility conditions can be assumed to arbitrary order by iterating this

process, and thus we can obtain:

Proposition 3. There exists a unique solution vé satisfying (127). With u’e defined through
(143), the tuple [ui,, vé] satisfy the system (16). For any k > 0 and M < m: — ng for
some fixed value ng > 0:

IH{ul, vy wmllge < Crom. (144)

Proof. The existence follows from Lax-Milgram, whereas the estimates follow from
continuing the procedure resulting in (141)—(142). O

Corollary 1. Assume m; >> my fori =2, ...,n. Then:

I ucf viywom ll e S 1. (145)

In particular, if m; = N >> 1, then (145) is valid with m| = %

Proof. This follows from two points. First, for the i = 1 case, the forcing is absent and
therefore the parameter /; can be taken arbitrarily large. In particular this implies that
m' = mj. Second, a subsequent application of the above proposition shows that the

i-th layer quantities decay like m| — ng. An examination of the forcing terms f} |, f& ,

shows that these quantltles decay as wml1 —no- Thus, for i > 2, we can take the parameter

li=my—ny= ml.. Therefore, if m is sufficiently large, % <<m;—10ng. O
Recall the definition of m; from Definition 6. The main estimate here is:

Lemma 14. Let v} be a solution to (127). For any m' < m := min{m;, l;}. Then, the
following estimate holds:
10 W [l pice S 1. (146)

~

Proof. We first homogenize vé by introducing v, := vé — S, where S was defined in

(129). Recall the definition of x in (39). We will localize using 1 — x (%) for some large,
fixed N > 1. A direct computation produces the following:

() = fr=r )t () s
+28y{1—x< )}vey+8yy{1—x<§)}ﬁe
o2
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—v(Xyg
Letw = w;,l. Now we define the quotient ¢ = % which satisfies:
Agd 22 gp v s R (147)
w+8 Tw+s w+§
=T

Case 1: wy,; are polynomials in'Y . The following inequalities hold, independent of small
8:

Wyy

<1, |
w+ 8 w+48

| (1- x(%)}l < o(). (148)

The second inequality above holds because |wyy| < ¥ ~2|w| for polynomial decay, so
by taking N large, we can majorize the desired quantity by o(1). To apply the maximum
principle to ¢°, we introduce the following barrier, for m large and fixed and for f =
f(x) := 10 — (1 + x)* (which we note satisfies f”(x) < —1):

R w
8 8 YY s

=q° £ f(mx) | su +sup | — .
91 =q" + f( )< p|w+8| pl w4 I)
Immediate computations gives 7s [qi 1> 0and 7 [qf] < 0. Due to the homogenization,
Uelx=0 = Uelx=z = 0, which immediately implies that ¢% |,—o < 0 and ¢ |,—; < 0,
and qf|x:0 > 0, qu|x:L > 0. Due to the presence of the cut-off, qi|Y:% = 0. Thus,
applying the maximum principle to both ¢° , qi on the domain (x, Y) € (0, L) x (%, 00),
gives:

Wyy
¢’ lloo S sup |—— |+ sup|——¢’.
w+6 w
Applying both estimates in (148) gives [|¢°|loo < 1 uniformly in § > 0. Due to the
cutoff {1 — x (%)}, all quantities are supported away from Y = 0, we may differentiate

the Eq. (147), in Y to obtain the new system:

wy s Wyy wy 5 R Wyy 5
Agd +2 +[ +20 [—}] =9 -9 { } .
4y w+8qYY w+38 d w+48 1y 4 w+48 Y w+48 a

Clearly, we may repeat the above argument for the unknown qf, . Bootstrapping further
to qu and using the equation, we establish:

)

For each fixed Y, q)f(x*, y) = 0 for some x, = x.(Y) € [0, L] since q‘S(O, Y) =
g%(L,Y) = 0. Thus, using the Fundamental Theorem of Calculus ||q)‘z lloo < 1. Finally,
we use the pointwise in Y equality:
pe

v .
|51§—61x|=5|w(w—i(8)|—>0a85¢0, pwinY.

Thus, for each fixed Y, there exists a §, = 8,(Y) > 0 such that for 0 < § < §,(Y),
|qﬁ — gx| < 1/2. Thus, |gx(Y)| < 1. This is true for all Y. Thus, ||gx|lcc < 1.
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Case 2: wy,; are exponential in Y. In this case, we start with (147), and perform H k
energy estimates. We replace (148) with:

R M
| ——=(Y)"|| < oo forlarge M. (149)
w+48

From here, straightforward energy estimates show ||¢’|| pk S 1 for any k as in es-

~

timate (144). This is achieved by repeatedly differentiating in Y and using that the
cutoff {1 — X(%)} localizes away from the boundary {Y = 0}. We thus conclude

165 1o < 11¢%N g+ < 1 using Sobolev embedding. The proof then concludes as in
the polynomial case. O

Proof of Theorem 4. Theorem 4 is a consequence of Theorem 1, Proposition 3, Corollary
1, and Lemmas 13, 14. 0O
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