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Abstract: In this paper, we study the critical behavior of percolation on a configuration
model with degree distribution satisfying an infinite second-moment condition, which
includes power-law degrees with exponent τ ∈ (2, 3). It is well known that, in this
regime, many canonical random graph models, such as the configuration model, are
robust in the sense that the giant component is not destroyed when the percolation
probability stays bounded away from zero. Thus, the critical behavior is observed when
the percolation probability tends to zero with the network size, despite of the fact that the
average degree remains bounded. In this paper, we initiate the study of critical random
graphs in the infinite second-moment regime by identifying the critical window for the
configuration model. We prove scaling limits for component sizes and surplus edges,
and show that the maximum diameter the critical components is of order log n, which
contrasts with the previous universality classes arising in the literature. This introduces
a third and novel universality class for the critical behavior of percolation on random
networks, that is not covered by the multiplicative coalescent framework due to Aldous
and Limic (Electron J Probab 3(3):1–59, 1998). We also prove concentration of the
component sizes outside the criticalwindow, and that a unique, complex giant component
emerges after the critical window. This completes the picture for the percolation phase
transition on the configuration model.

1. Introduction

Bond percolation, or simply percolation, refers to the random graph obtained by inde-
pendently keeping each edge of a graph with some fixed probability p (and deleting with
probability 1− p). Percolation is a classical and important model in statistical physics
and network science, as it serves as a canonical model for assessing robustness of a
network when the edges of the underlying network are randomly damaged, and also as
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a basic model of vaccination for the prevention of an epidemic on networks. A detailed
account ofmany of these applications can be found in [7,50]. From a theoretical perspec-
tive, percolation is one of the most elementary models that exhibits a phase transition,
i.e., there exist values pc = pc(n) such that for p > pc(1+ ε) and ε > 0, the proportion
of vertices in the largest connected component is bounded away from zero with high
probability, whereas for p < pc(1− ε) this proportion becomes negligible. The critical
behavior is observed when p ≈ pc, and fascinating behavior starts to emerge for the
percolation process around this critical value.

It turns out that there is a window of values of p where the component functionals
show intermediate and unique behavior. For example, rescaled component functionals
converge to non-degenerate scaling limits, in contrast to the fact that they always con-
centrate for other values of p. Also, the large components in this window are structurally
intermediate in the sense that neither there is a giant component with a growing num-
ber of cycles, nor do the components look like trees. This regime is called the critical
window of the percolation phase-transition. Starting with the pioneering work of Al-
dous [4], deriving scaling limits for critical component functionals has been the ground
for an enormous literature with several interesting scaling-limit results over the past
decades [5,6,11,12,27,28,44,48,49,53]. We refer the reader to [26, Chapter 1] and ref-
erences therein for an elaborate discussion of the nature of this transition, and a literature
overview.

In the literature, two fundamentally different types of behavior have been proved
for the scaling limits and the critical exponents associated to the critical window and
component sizes depending on whether the asymptotic degree distribution satisfies a
finite third-moment condition [11,28] or an infinite third - but a finite second-moment
condition [12,27]. However, the study of critical behavior in the infinite second-moment
setting was an open question.

When the degree distribution is asymptotically a power-lawwith exponent τ ∈ (2, 3),
then the finite second-moment condition fails. These networks are popularly known as
scale-free networks [7] in the literature. Many real-world networks are observed to be
scale-free [2,30,36,50]. One of the well-known features of scale-free networks is that
they are robust under random edge-deletion, i.e., for any sequence (pn)n≥1 satisfying
lim infn→∞ pn > 0, the graph obtained by performing percolation with probability
pn is supercritical. This feature has been studied experimentally in [3], using heuristic
arguments in [23–25,29] (see also [19,20,34] in the context of optimal paths in the strong
disorder regime), and mathematically in [17]. Thus, in order to observe the percolation
critical behavior, one needs to have pn → 0 with the network size, despite of the fact
that the average degree of the network remains bounded.

In this paper, we initiate the study of critical behavior in the scale-free regime. As
a canonical random graph model on which percolation acts, we take the multigraph
generated by the configuration model. When the degree distribution satisfies a power-
law with exponent τ ∈ (2, 3), it was heuristically argued in [24,29] that the critical
value is pc ∼ n−(3−τ)/(τ−1), so that the critical window is given by the collection of
values pc = pc(λ) = λn−(3−τ)/(τ−1), where λ > 0 indicates the location inside the
critical window. We establish that the scaling exponents from [24,29] are indeed true,
and discuss asymptotics of component functionals inside the critical window. We also
show that pc = pc(λ) = λn−(3−τ)/(τ−1) with λ > 0 gives the right critical window, by
showing that a giant component emerges at the end of the critical window (λ → ∞),
while components have a trivial star-like structure before the critical window (λ → 0).
The main contributions of this paper can be summarized as follows:
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Critical window. At criticality, we obtain scaling limits for the largest component sizes
and surplus edges in a strong topology. The result displays a completely new universal-
ity class of scaling limits of critical components. The scaling limits here are different
from the general multiplicative coalescent framework in [5]. In particular, the limiting
exploration process has bounded variation, so that the general tools from [5] cannot be
applied. We also study the diameter of these components and show that the maximum
diameter is of order log n.

Near-critical behavior. For pn = λnn−(3−τ)/(τ−1) with λn → 0, the graph is subcritical
and we show that the largest components sizes, rescaled by nα pn , concentrate. On
the other hand, when λn → ∞, the largest component size, rescaled by np1/(3−τ)

n ,
concentrates, and this is the unique giant component in the sense that the size of the
second largest component is much smaller than np1/(3−τ)

n . The nature of the emergence
of this giant component for pn � pc is markedly different compared to the universality
classes in the τ ∈ (3, 4) and the τ > 4 regimes, where the giant emerges when the
percolation probability satisfies (pn − pc(λ1)) � (pc(λ2) − pc(λ1)), for some strictly
positive pc and −∞ < λ1 < λ2 < ∞ [38].

Methods. Technically, analyzing percolation on random graphs like the configuration
model is challenging, because in order to make Aldous’s exploration process approach
[4] work, one is required to keep track of many functionals of the unexplored part
of the graph [48], resulting in a high-dimensional exploration process. This difficulty
was circumvented in [27,28] by using Janson’s algorithm [39]. Unfortunately, Janson’s
algorithm does not work here due to the fact that the algorithm creates n− o(n) degree-
one vertices. Instead, we sandwich the percolated graph in between two configuration
models, which yield the same scaling limits for the component sizes. Also, in order to
deduce scaling limits of the component sizes from that of the exploration process, we
prove several properties of the limiting exploration process, which are interesting from
an independent perspective.

Remark 1 (Single-edge constraint). In a parallel work [10], Bhamidi and the first two
authors consider critical percolation on simple random graphs, i.e., random graphs hav-
ing no multiple-edges, namely generalized random graphs. It turns out that the critical
window there is pc ∼ n−(3−τ)/2 � n−(3−τ)/(τ−1). This is a distinctive feature in the
infinite second-moment case that never surfaced in the other two universality classes of
critical random graphs.

Organization of the paper. In Sect. 2, we state our results precisely. In Sect. 2.1, we
give the precise definitions of the model and the scaling limits. Section 2.2 is devoted to
comments about the heuristics, and some important special cases. In Sect. 3, we study
excursions of the limiting exploration process. Section 4 contains the proofs of the results
at criticality, and in Sect. 5, we analyze the near-critical regimes.

2. Main Results

2.1. The configuration model.

2.1.1. Model description The configuration model generates random multigraphs with
any given degree sequence. Consider n vertices labeled by [n] := {1, 2, ..., n} and a
non-increasing sequence of degrees d = dn = (di )i∈[n] such that �n = ∑

i∈[n] di is
even. The configuration model on n vertices having degree sequence d is constructed as
follows [8,16]:
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Equip vertex j with d j stubs, or half-edges. Two half-edges create an edge once
they are paired. Therefore, initially we have �n = ∑

i∈[n] di half-edges. Pick any
half-edge and pair it with a uniformly chosen half-edge from the remaining unpaired
half-edges and remove both these half-edges from the set of unpaired half-edges.
Keep repeating the above procedure until all half-edges are paired.

Let CMn(d) denote the graph constructed by the above procedure. Note that CMn(d)

may contain self-loops and multiple edges. In fact, the probability that CMn(d) is a
simple graph tends to zero in our setting with an infinite second-moment condition on
the degree distribution [36, Proposition 7.12]. Before stating the main results about the
configuration model, we set up some necessary notation.

2.1.2. Notions of convergence and the limiting objects To describe the main results
of this paper, we need some definitions and notations. We use the Bachmann-Landau
asymptotic notation O(·), o(·), Θ(·) for large-n asymptotics of real numbers. For
(an)n≥1, (bn)n≥1 ⊂ (0,∞), we write an 
 bn , an ∼ bn and an � bn as a short-
hand for limn→∞ an/bn = 0, 1,∞, respectively. We often use C as a generic notation
for a positive constant whose value can be different in different lines. We also use the

standard notation of
P−→, and

d−→ to denote convergence in probability and in distribution,
respectively. The topology needed for the convergence in distribution will always be
specified unless it is clear from the context. We say that a sequence of events (En)n≥1
occurs with high probability (whp) with respect to the probability measures (Pn)n≥1
when Pn

(
En
) → 1. Define fn = OP (gn) when (| fn|/|gn|)n≥1 is tight; fn = oP (gn)

when fn/gn
P−→ 0; fn = ΘP (gn) if both fn = OP (gn) and gn = OP ( fn). Denote

�
p
↓ :=

{
x = (xi )

∞
i=1 ⊂ [0,∞) : xi+1 ≤ xi ∀i, and

∞∑

i=1

x p
i < ∞

}

with the p-norm metric d(x, y) = (∑∞
i=1 |xi − yi |p

)1/p. Let �2↓ × N∞ denote the
product topology of �2↓ and N∞ with N∞ denoting the sequences on N endowed with
the product topology. Define also

U↓ :=
{
((xi , yi ))

∞
i=1 ∈ �2↓ ×N∞ :

∞∑

i=1

xi yi < ∞ and yi = 0 whenever xi = 0 ∀i
}
,

endowed with the metric

dU((x1, y1), (x2, y2)) :=
( ∞∑

i=1

(x1i − x2i )
2
)1/2

+
∞∑

i=1

∣
∣x1i y1i − x2i y2i

∣
∣. (2.1)

Further, let U
0
↓ ⊂ U↓ be given by

U
0
↓ :=

{
((xi , yi ))

∞
i=1 ∈ U↓ : if xk = xm, k ≤ m, then yk ≥ ym

}
.

Let (U0
↓)

k denote the k-fold product space of U
0
↓.

Throughout, we write D[0,∞) to denote the space of càdlàg functions [0,∞) �→ R
equipped with the Skorohod J1-topology. Also, let D+[0,∞) ⊂ D[0,∞) be the col-
lection of functions with positive jumps only, and C[0,∞) ⊂ D[0,∞) be the col-
lection of continuous functions. For any fixed T > 0, D[0, T ], D+[0, T ], C[0, T ] are
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defined similarly for functions [0, T ] �→ R. For any function f ∈ D[0,∞), define

¯
f (t) = infs≤t f (s). Note that ¯

f is non-increasing. Moreover,

¯
f ∈ C[0,∞), whenever f ∈ D+[0,∞). (2.2)

Indeed, if
¯
f is discontinuous at some point t , then

¯
f (t−) >

¯
f (t), but that would mean

that f has a negative jump of size
¯
f (t−) −

¯
f (t) at t . Thus (2.2) holds. Next, for any

f ∈ D+[0,∞), define the zero set of f by Z f = {t ≥ 0 : f (t) −
¯
f (t) = 0}, and let

cl(Z f ) denote the closure ofZ f . An interval (l, r) is called an excursion above the past
minimum of f , or simply excursion of f (see [9, Sect. IV.2]) if

f (t) −
¯
f (t) > 0, ∀t ∈ (l, r), where l ∈ cl(Z f ) and r ∈ cl(Z f ) ∪ {∞}. (2.3)

For f ∈ D+[0, T ], we consider (l, r) ⊂ [0, T ], and define an excursion similarly as
in (2.3).

We often use boldface notation X for the stochastic process (X (s))s≥0, unless stated
otherwise. Consider a decreasing sequence θ = (θ1, θ2, . . . ) ∈ �2↓\�1↓. Denote by
Ii (s) := 1{ξi≤s} where ξi ∼ Exp(θi/μ) independently, and Exp(r) denotes the ex-
ponential distribution with rate r . Consider the process

Sλ∞(t) = λμ

‖θ‖22

∞∑

i=1

θiIi (t) − t, (2.4)

for some λ,μ > 0. Note that, for all t > 0, E[Sλ∞(t)] < ∞ since
∑

i θ
2
i < ∞, and

consequently Sλ∞(t) < ∞, almost surely. Also, for any u < t ,

E
[|Sλ∞(t) − Sλ∞(u)|] ≤ λμ

‖θ‖22

∞∑

i=1

θie
−θi u(1− e−θi (t−u)) + |t − u| ≤ (λμ + 1)|t − u|,

so that Sλ∞ has bounded variation almost surely. However, since
∑

i θi = ∞, the process
experiences infinitely many jumps in any bounded interval of time. Define the reflected
version of Sλ∞(t) by

refl(Sλ∞(t)) = Sλ∞(t) − min
0≤u≤t S

λ∞(u).

Wewill show that, for any λ > 0, the excursion lengths of the process Sλ∞ = (Sλ∞(t))t≥0
can be ordered almost surely as an element of �2↓. We denote this ordered vector of
excursion lengths by (γi (λ))i≥1. For v, t > 0, define Mt (v) :=∑ j :vθ j≤1, tθ j≤1 θ3j . We
will assume that for any t > 0,

∫ ∞

0
e−tv2Mt (v)dv < ∞. (2.5)

The technical condition in (2.5) on top of θ ∈ �2↓\�1↓ will be used to ensure that the
distribution of Sλ∞(t) is non-atomic for all t > 0 (see Lemma 4 below), which in turn
implies that we have strict ordering between excursion lengths, i.e., γi+1(λ) < γi (λ)

for all i ≥ 1 almost surely. The condition (2.5) is relatively weak, and is, for example,
satisfied for θ j = j−α for α ∈ (1/2, 1). To see this, note that v2Mt (v) is of the same
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order as v−1+1/α . However, this also shows that (2.5) is not satisfied for the extreme case
α = 1, i.e., θ j = j−1.

Also, define the counting processNλ = (Nλ(t))t≥0 to be the Poisson process that has
intensity (λμ2)−1‖θ‖22 × refl(Sλ∞(t)) at time t , conditionally on (Sλ∞(u))u≤t . Formally,
Nλ is characterized as the counting process for which

Nλ(t) − ‖θ‖22
λμ2

t∫

0

refl(Sλ∞(u))du (2.6)

is a martingale. We use the notation Ni (λ) to denote the number of marks of Nλ in the
i-th largest excursion of Sλ∞. Define

Z(λ) := ((γi (λ), Ni (λ)))i≥1, ordered as an element of U
0
↓. (2.7)

2.1.3. Results for the critical window Fix τ ∈ (2, 3). Throughout this paper, we denote

α = 1/(τ − 1), ρ = (τ − 2)/(τ − 1), η = (3− τ)/(τ − 1).

Also, let Dn be the degree of a vertex chosen uniformly at random from [n]. We start by
stating our assumptions on the degree sequences:

Assumption 1. For each n ≥ 1, let d = dn = (d1, . . . , dn) be a degree sequence
satisfying d1 ≥ d2 ≥ · · · ≥ dn . We assume the following about (dn)n≥1 as n → ∞:

(i) (High-degree vertices) For any i ≥ 1, n−αdi → θi , where θ := (θi )i≥1 ∈ �2↓\�1↓ is
such that (2.5) holds.

(ii) (Moment assumptions) (Dn)n≥1 is uniformly integrable, limn→∞ 1
n

∑
i∈[n] di = μ

for some μ > 0, and

lim
K→∞ lim sup

n→∞
n−2α

n∑

i=K+1

d2i = 0. (2.8)

In Sect. 2.2, we discuss the generality of Assumption 1 and show that power-law degrees
satisfy these assumptions. For CMn(d), the criticality parameter νn is defined as

νn =
∑

i∈[n] di (di − 1)
∑

i∈[n] di
.

Molloy and Reed [46], and Janson and Luczak [41] showed that, under some regularity
conditions, CMn(d) has a unique giant component (a component of sizeΘ(n)) with high
probability precisely when νn → ν > 1. Under Assumption 1, νn → ∞, as n → ∞
since

∑
i∈[n] d2i ≥ d21 = Θ(n2α) � n, and CMn(d) always contains a giant component

(see the remark below [37, Theorem 4.5] and consider π = 1).
We study percolation, which refers to deleting each edge of a graph independently

with probability 1− p. In case of percolation on random graphs, the deletion of edges
is also independent from the underlying graph. The percolation probability is allowed
to depend on the network size, i.e., p = pn . Let CMn(d, pn) denote the graph obtained
from percolation with probability pn on the graphs CMn(d). Fountoulakis [32] showed
that CMn(d, pn) is distributed as CMn(d p), where d p is the degree sequence of the
percolated graph. Note that the degrees in d p could be correlated, so later Janson [39]
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gave an explicit construction which is simpler to analyze. This construction was used
to identify the percolation phase transition in [39] and to study the critical window in
[27,28]. An interested reader is also referred to [28, Algorithm 4] where a construction
of the whole percolation process (CMn(d, p))p∈[0,1] is provided.

Now, under Assumption 1, if lim infn→∞ pn > 0, then CMn(d, pn) retains a giant
componentwith high probability, i.e., CMn(d, pn) is always supercritical; see the remark
below [37, Theorem 4.5]. Thus, in order to see the critical behavior, one must take
pn → 0, as n → ∞. For pn → 0, the graph always contains n − oP (n) degree-zero or
isolated vertices, which makes Janson’s construction inconvenient to work with.

For a sequence of finite graphs, the critical behavior is where we see intermediate
behavior in the sense that it inherits some features from the subcritical (such as the
absence of the giant component) and the supercritical regimes (the largest component is
not a tree). The collection of such values of p is called the critical window. However, due
to our lack of knowledge about the subcritical phase and the structural propeties therein,
it is not a priori evident here how to define the critical window. One way to define the
subcritical regime and the critical windowwould be to say that inside the critical window,
the rescaled vector of ordered component sizes converge to some non-degenerate random
vector, whereas the component sizes concentrate in the subcritical regime. This property
has been observed quite universally for the percolation critical window. In this paper, we
take this as our definition of the critical window. It is worthwhile to mention that there
is a substantial literature on how to define the critical value. See [18,35,37,43,47] for
different definitions of the critical probability and related discussions.

We will show that the critical window for percolation on CMn(d) is given by

pc = pc(λ) := λ

νn
(1 + o(1)), λ ∈ (0,∞). (2.9)

Notice that, under Assumption 1, pc ∼ n−2α+1 ∼ n−η, where η = (3− τ)/(τ −1) > 0.
The case where p 
 pc will be called the barely subcritical regime and the case
pc 
 p 
 1 will be called the barely supercritical regime. We will show that a unique
giant component emerges in the barely supercritical regime. We first state the results
about the component sizes and the complexity in the critical window, and then discuss
the barely sub-/supercritical regimes.

We will always write C(i)(p) to denote the i-th largest component in the percolated
graph. The randomgraph onwhich percolation actswill always be clear from the context.
A vertex is called isolated if it has degree zero in the graph CMn(d, pc(λ)). We define
the component size corresponding to an isolated vertex to be zero (see Remark 2 below).
For any component C ⊂ CMn(d, pc(λ)), let SP(C ) denote the number of surplus edges
given by #{edges in C } − |C | + 1. Finally, let

Zn(λ) := (n−ρ |C(i)(pc(λ))|,SP(C(i)(pc(λ)))
)
i≥1, ordered as an element of U

0
↓.

The following theorem gives the asymptotics for the critical component sizes and the
surplus edges of CMn(d, pc(λ)):

Theorem 1 (Critical component sizes and surplus edges).UnderAssumption 1, as n →
∞,

Zn(λ)
d−→ Z(λ)

with respect to the U
0
↓ topology, where Z(λ) is defined in (2.7).
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Remark 2 (Ignoring isolated components). Note that 2ρ < 1 for τ ∈ (2, 3). When
percolation is performed with probability pc, there are of the order n isolated vertices
and thus n−2ρ times the number of isolated vertices tends to infinity. This is the reason
why we must ignore the contributions due to isolated vertices, when considering the
convergence of the component sizes in the �2↓-topology. Note that an isolated vertex with
self-loops does not create an isolated component.

For a connected graph G, diam(G) denotes the diameter of the graph, i.e., the maxi-
mum graph distance between any pair of vertices. For an arbitrary graph G, diam(G) :=
max diam(C ), where the maximum is taken over all connected components. Our next
result shows that the diameter of the largest connected components is of order log n:

Theorem 2 (Diameter of largest critical clusters). Under Assumption 1,

diam(CMn(d, pc(λ))) = OP (log n).

Thus, the maximum diameter scales logarithmically in the τ ∈ (2, 3), in contrast to the
other universality classes in the τ ∈ (3, 4) and τ > 4 regimes, where graph distances
scale as a positive power of n [1,13].

2.1.4. Behavior in the near-critical regimes We now discuss asymptotic results for the
component sizes in the barely subcritical (pn 
 pc(λ)) and barely supercritical (pn �
pc(λ)) regimes. The next two theorems summarize the behavior outside the critical
window:

Theorem 3 (Barely subcritical regime). For CMn(d, pn), suppose that n−α 
 pn 

pc(λ) and that Assumption 1 holds. Then, as n → ∞,

(
(nα pn)

−1|C(i)(pn)|
)
i≥1

P−→ (θi )i≥1,

in �2↓ topology, and P(SP(C(i)(pn)) = 0) → 1, for all i ≥ 1.

Remark 3 (Components and hubs). In the barely subcritical regime, we show that the
i-th largest component is essentially the component containing the i-th largest degree
vertex, or the i-th hub. Since the hubs have degree Θ(nα), we need the assumption
that pn � n−α in Theorem 3, as otherwise the hubs become isolated, in which case
components are likely to be extremely small.

For the result in the barely supercritical regime, let pc(λ) 
 pn 
 1. The exact
asymptotics of the high-degree vertices and the tail behavior in (2.8) will not be required.
Below, we state the sufficient conditions for the concentration of the size of the giant
component. In Sect. 2.2, we will see that these conditions are satisfied when the degrees
are sampled from a power-law distribution:

Assumption 2. For each n ≥ 1, let d = dn = (d1, . . . , dn) be a degree sequence
satisfying d1 ≥ d2 ≥ · · · ≥ dn . We assume the following about (dn)n≥1:
(i) d1 = O(nα).
(ii) (Dn)n≥1 is uniformly integrable, and limn→∞ 1

n

∑
i∈[n] di = μ for some μ > 0.

(iii) Let D�
n denote the degree of a vertex chosen in a size-biased manner with the sizes

being (di/�n)i∈[n]. Then, there exists a constant κ > 0 such that

1−E[e−tp1/(3−τ )
n D�

n ] = κp(τ−2)/(3−τ)
n (tτ−2 + o(1)). (2.10)
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Let E(G) denote the number of edges in the graph G.

Theorem 4 (Barely supercritical regime). ForCMn(d, pn), suppose that pc(λ) 
 pn 

1 and that Assumption 2 hold. Then, as n → ∞,

|C(1)(pn)|
np1/(3−τ)

n

P−→ μκ1/(3−τ),
E(C(1)(pn))

np1/(3−τ)
n

P−→ μκ1/(3−τ),

and for all i ≥ 2, |C(i)(pn)| = oP (np1/(3−τ)
n ), E(C(i)(pn)) = oP (np1/(3−τ)

n ).

Remark 4 (Relation to Abel-Tauberian theorem). The infinite second-moment assump-
tion is captured by (2.10). The identity (2.10) is basically a version of the celebrated
Abel-Tauberian theorem [31,ChapterXIII.5] (see also [15,Chapter 1.7]).However, since
both D�

n and pn depend on n, the joint asymptotics needs to be stated as an assumption.
In Sect. 2.2, we discuss how this assumption is satisfied when (i) di = (1− F)−1(i/n)

(ii) di is the i-th order statistic of an i.i.d sample, where F is a power-law distribution
with τ ∈ (2, 3).

2.2. Discussion.

Critical window: emergence of hub connectivity. The critical window is the regime in
which hubs start getting connected. Hubs are the high-degree vertices, whose asymp-
totic degree is determined by Assumption 1(i). To understand the above remark more
precisely, let us denote the probability that i and j are in the same component in the
p-percolated graph by π(i, j, p). Then, for any fixed i, j ≥ 1,

lim sup
n→∞

π(i, j, pn) = 0 for pn 
 pc, (2.11)

0 < lim inf
n→∞ π(i, j, pn) ≤ lim sup

n→∞
π(i, j, pn) < 1 for pn = Θ(pc), (2.12)

lim sup
n→∞

π(i, j, pn) = 1 for pn � pc, (2.13)

Indeed, any two vertices i and j share pndid j/(�n − 1) edges in expectation. This
expectation is o(1), Θ(1), or ω(1) depending on whether pn 
 pc, pn ∼ pc, or
pn � pc. In the subcritical regime, this observation and a simple union bound yields
(2.11). For the critical case, a method of moment computation shows that the number
of edges between hubs i and j converges in distribution to Poisson(λθiθ j/μ). We don’t
prove this here, but instead refer the reader to [36, Proposition 7.13] where similar
Poisson approximation computations have been done for the configuration model. This
shows (2.12). In the super-critical regime,

P((i, j) don’t share any edge) ≤
d j∏

l=1

(

1− pndi
�n − 2l + 1

)

≤ e−pndi d j /2�n → 0,

so that 1 − π(i, j, pn) → 0 which yields (2.13). Intuitively, in the barely subcritical
regime, all the hubs are in different components. Hubs start getting connected to each
other directly, forming the critical components as the p varies over the critical window.
Finally in the barely super-critical regime the giant component, which contains all the
hubs, is formed. The features (2.11), (2.12) and (2.13) are also observed in the τ ∈ (3, 4)
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case [12]. However, the key distinction between τ ∈ (3, 4) and τ ∈ (2, 3) is that for
τ ∈ (3, 4) the paths between the hubs have lengths that grow as n(τ−3)/(τ−1), whereas
they are directly connected in the τ ∈ (2, 3) regime.

Intuitive explanation for the exploration process. Suppose that we explore the critically
percolated configuration model sequentially in a breadth-first manner. The reflected
version of the stochastic process in (2.4) turns out to be the limit of the process that counts
the number of unpaired half-edges incident to the discovered vertices. This limiting
process can be intuitively understood as follows. When we explore hubs, the exploration
process increases drastically, causing the jumps in the first term in (2.4). The negative
linear drift is an accumulation of two effects. (1) Because we explore two vertices at
each time, we get a negative drift −2t . (2) The exploration of the low-degree vertices
cumulatively causes a linear positive drift +t . The main contribution in the latter case
comes due to the degree-one vertices in the system. Thus in total, we get a drift of−t in
the exploration process (2.4).

Assumption on the degrees. Assumptions 1, 2 hold for two interesting special cases
of power-law degrees that have received special attention in the literature: Case (I)
di = (1−F)−1(i/n), Case (II) di ’s are the order statistics of an i.i.d sample from F . Here
F is some distribution function supported on non-negative integers and (1 − F)(x) =
cFk−(τ−1), for k ≤ x < k +1, and we recall that the inverse of a bounded non-increasing
function f : R �→ R is defined as

f −1(x) := inf{y : f (y) ≤ x}.

We add a dummy half-edge to vertex 1 if necessary to make
∑

i∈[n] di even. However,
we ignore this contribution since this does not change any asymptotic calculation below.
Recall that we use C as a generic notation for a constant whose value can be different
between expressions, and an ∼ bn denotes limn→∞ an/bn = 1.

For Case (I), di ∼ (cFn/ i)α for all i = o(n) and di ≤ C(n/ i)α for all i ∈ [n].
Consequently, Assumption 1(i) is satisfied with θi = cα

F i
−α . To see Assumption 1(ii),

note that

1

n

∑

i∈[n]
di ∼

∫ 1

0
(1− F)−1(x)dx = E[D],

where D has distribution function F , and

n−2α
∑

i>K

d2i ≤ C
∑

i>K

i−2α ∼ CK 1−2α → 0 as K → ∞. (2.14)

Also, Dn
d−→ D, and E[Dn] → E[D] implies that (Dn)n≥1 is uniformly integrable.

To see Assumption 2, with the above computations, we have already verified all the
conditions in Assumption 2(i), (ii). To verify Assumption 2(iii), we now show that, for
tn = tp1/(3−τ)

n with fixed t > 0,

1−E[e−tn D�
n ] = 1

�n

∑

k∈[n]
dk
(
1− e−tndk

) ∼ tτ−2
n

∫ ∞

0
cF z

−α(1− e−cF z−α

)dz,
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and thus (2.10) holds as well. Let us split the last sum in three parts by restricting to the
set {k : dk < ε(tn)−1}, {k : dk ∈ [ε(tn)−1, (εtn)−1]}, and {k : dk > (εtn)−1} and denote
them by (I), (II) and (III) respectively. Using the fact that 1− e−x ≤ x , it follows that

(I )

tτ−2
n

≤ t3−τ
n

�n

∑

k:dk<ε(tn)−1

d2k ∼ Cn2α−1t3−τ
n

∑

k≥Cn(tn/ε)1/α

k−2α

∼ Cn2α−1t3−τ
n

∫ ∞

Cn(tn/ε)τ−1
x−2αdx ∼ Cn2α−1t3−τ

n (Cn(tn/ε)
τ−1)1−2α ∼ Cε3−τ ,

(2.15)

and

(I I I )

tτ−2
n

≤ C

t (τ−2)
n �n

∑

k:dk>(εtn)−1

dk ≤ Cnα−1

tτ−2
n

∫ Cn(tnε)τ−1

1

dx

xα
∼ Cετ−2. (2.16)

Also, we compute (I I ) by

(I I )

tτ−2
n

= 1

tτ−2
n �n

∑

k:dk∈[εt−1
n ,(εtn)−1]

dk(1− e−tndk )

∼ nα−1

μtτ−2
n

∑

k∈[c0n(tnε)τ−1,c1(tn/ε)τ−1]
cFk

−α
(
1− e−tn(cFn/k)α )

= 1

ntτ−1
n

∑

z∈[c0ετ−1,c1/ετ−1]
cF z

−α(1− e−cF z−α

),

where we have put k = ntτ−1
n z, so that the z values increase by 1/(ntτ−1

n ) in the final
sum. Thus, in the iterated limit limε→0 lim supn→∞,

(I I )

tτ−2
n

→
∫ ∞

0
cF z

−α(1− e−cF z−α

)dz = κ,

which yields (2.10) by combining it with (2.15) and (2.16).
Let us now consider Case (II), i.e., the i.i.d degree setup. We have assumed that

the degree sequence is ordered in a non-decreasing manner, i.e., di is the i-th order
statistic of the i.i.d samples. We use the following construction from [21, Sect. 13.6].
Let (E1, E2, . . . ) be an i.i.d sequence of unit-rate exponential random variables and let
Γi :=∑i

j=1 E j . Let

d̄i = (1− F)−1(Γi/Γn+1). (2.17)

Then (d1, . . . , dn)
d= (d̄1, . . . , d̄n). Now, Γi ’s follow a Gamma distribution with shape

parameter n and scale parameter 1. Note that, by the stong law of large numbers,
Γn+1/n

a.s.−→ 1. Thus, for each fixed i ≥ 1, Γn+1/(nΓi )
a.s.−→ 1/Γi . Using (2.17), we see

that d satisfies Assumption 1(i) almost surely with θi = (CF/Γi )
α . To see that (θi )i≥1 ∈

�2↓\�1↓, observe that Γi/ i
a.s.−→ 1, and α ∈ (1/2, 1). Next, the first condition in Assump-

tion 1(ii) follows from the strong law of large numbers. To see the second condition, we
note that

∑
i Γ

−2α
i < ∞ almost surely. Now using the fact that Γn+1/n

a.s.−→ 1, we can
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use arguments identical to (2.14) to show that limK→∞ lim supn→∞ n−2α∑
i>K d2i = 0

on the event {∑∞
i=1 Γ −2α

i < ∞} ∩ {Γn+1/n → 1}. Thus, we have shown that the third
condition of Assumption 1(ii) holds almost surely. The verification of Assumption 2 is
also identical to Case-(I) if we do the computations conditionally on the Gamma random
variables and use the above asymptotics.

Extension to the Norros–Reittu model. A related model where one would expect the
same behavior as the configuration model is the multigraph version of the Norros-
Reittu model or the Poisson graph process [51]. Given a weight sequence (wi )i∈[n], the
Norros-Reittu multigraph is the multipgraph generated by putting Poisson(wiw j/Ln)

many edges between vertices i and j , where Ln =∑i∈[n] wi . If Assumptions 1, 2 holds
with (di )i∈[n] replaced by (wi )i∈[n], then we expect the same results for percolation on
the Norros-Reittu multigraph about the critical and near critical regimes as described
above. We do not pursue the Norros-Reittu multigraph here.

Open Problems. We next state some open problems:

Open Problem 1. Theorem 1 studies convergence of Zn(λ) for each fixed λ. It will
be interesting to study the distribution of (Zn(λ))λ>0 as a stochastic process, when the
percolated graphs are coupled through the Harris coupling. In the τ > 4 and τ ∈ (3, 4)
regimes, such evolution of critical components is described by the so-called augmented
multiplicative coalescent process. However, we do not expect the limit to be the aug-
mented multiplicative coalescent here. This is clear from the fact that the scaling limit
in (2.4) is not related to the general characterization of exploration processes that arise
in relation to multiplicative coalescent in [5]. Heuristically, one would expect that if∑

i∈C di1{i is hub} denotes themass of a component, then the componentswouldmerge
at rate proportional to their masses, but additionally, there are immigrating vertices of
degree-one that keep on increasing the component sizes as well. The description of
the process, and proving its Feller properties and entrance boundary conditions, are
interesting open challenges.

Open Problem 2. Is it possible to prove that the metric structure of components con-
verges in a suitable topology? This question is motivated by a strong notion of structural
convergence of critical components that was first established in [1] (τ > 4) and [13]
(τ ∈ (3, 4)). Since the components have small distances, it may be natural to con-
sider the local-weak convergence framework. However, the hubs within components
have unbounded degrees, which is not covered directly in the local-weak convergence
framework.

3. Properties of the Excursions of the Limiting Process

In this section, we prove some good properties of the process (2.4) that allows us to
conclude the convergence of largest excursion lengths from the stochastic process con-
vergence. In Sect. 3.1, we identify these good properties for functions in D+[0,∞) that
ensure continuity of the largest excursion map. Then, we prove in Sect. 3.2 that Sλ∞
satisfies these good properties almost surely.

3.1. Continuity of the largest excursion map. Recall the definitions of excursions from
(2.3). Also, recall from Sect. 2.1.2 that

¯
f (t) = infu≤t f (u) andZ f = {t : f (t) =

¯
f (t)}.

Define the set of excursions of f as

E f := {(l, r) : (l, r) is an excursion of f }.
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We denote the set of excursion begin-points (or left-points) and end-points (or right-
points) by L f and R f respectively, i.e.,

L f := {l ≥ 0 : (l, r) ∈ E f for some r} and R f := {r ≥ 0 : (l, r) ∈ E f for some l}.
We will use the following elementary fact:

Fact 1. Let f ∈ D+[0,∞). Then, for all r ∈ R f \{∞}, f is continuous at r . Conse-
quently, r ∈ Z f .

Proof. Using the right-continuity of f , it suffices to show that f (r) = f (r−). Suppose
that is not the case. Since f has positive jumps only, we must have that f (r−) < f (r).
Since r is an excursion ending point, there exists ε > 0 such that f (t) −

¯
f (t) > 0

for all t ∈ (r − ε, r). On the other hand, using the right-continuity of f and the fact
that f (r) > f (r−), we obtain that f (t) −

¯
f (t) > 0 for all t ∈ [r, r + ε) for some

ε > 0. Thus, there exists a sufficiently small ε > 0 such that f (t) −
¯
f (t) > 0 for all

t ∈ (r − ε, r + ε). This contradicts the fact that r ∈ cl(Z f )\{∞}. ��
For f ∈ D+[0,∞), let φi ( f ) be the length of the i-th largest excursion of f . Also, let
Ai ( f ) denote the area under i-th largest excursion of f . We will show that if fn → f in
D[0,∞) then φi andAi converge when the limiting function has some good properties.
Let us start by describing these good properties:

Definition 1 (Good functions). A function f ∈ D+[0,∞) is said to be good if the
following holds:

(a) For all r ∈ R f \{∞}, r is not a local minimum of f .
(b) There does not exist any interval (q1, q2) with q1, q2 ∈ Q+ such that (q1, q2) ⊂ Z f .
(c) For all (l, r) ∈ E f with r < ∞, there exists ε0 = ε0(l, r) > 0 such that the following

holds for all ε ∈ (0, ε0): There exists δ = δ(ε, l, r) > 0 such that

f (t) > f (r) + δ ∀t ∈ (l + ε, r − ε). (3.1)

(d) f does not have any infinite excursion, i.e., φ1( f ) < ∞.
(e) For any δ > 0, f has only finitely many excursions of length at least δ.
(f) For all i ≥ 1, φi+1( f ) < φi ( f ).

Lemma 1. Suppose that f ∈ D+[0,∞) is good. Further, let ( fn)n≥1 ⊂ D[0,∞) be
such that fn → f in D[0,∞). Moreover, let lim supn→∞ φ1( fn) < ∞, and if zn(T )

denotes the length of the largest excursion of fn starting after T , then
limT→∞ lim supn→∞ zn(T ) = 0. Then, for all m ≥ 1, as n → ∞,

(φi ( fn))i∈[m] → (φi ( f ))i∈[m], and (Ai ( fn))i∈[m] → (Ai ( f ))i∈[m].

Proof. The proof here is for m = 1, and for m > 1, we can proceed inductively. Using
Definitions 1(d), (e), as well as the assumptions of the lemma, we can take T > 0 and
n0 ≥ 1 large so that the largest excursions of fn and f end before T for all n ≥ n0. LetL
denote the set of continuous functions Λ : [0,∞) → [0,∞) that are strictly increasing
and satisfyΛ(0) = 0,Λ(T ) = T . Suppose (l, r) is the longest excursion of f on [0, T ],
and thus φ1( f ) = r − l. We will first show that limn→∞ φ1( fn) = φ1( f ).

Fix ε, δ > 0 such that (3.1) holds. Let || · ||T denote the sup-norm on [0, T ]. Recall
the definition of the metric for Skorohod J1-topology from [14, (12.13)]. Since fn → f
in D[0, T ], there exists (Λn)n≥1 ⊂ L, and n1 ≥ n0 such that for all n ≥ n1,

|| fn ◦ Λn − f ||T <
δ

2
and ||Λn − I ||T < ε, (3.2)
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where I is the identity function. Using (3.1) and (3.2), for all t ∈ (l + ε, r − ε) and
n ≥ n1,

fn ◦ Λn(t) > f (t) − δ

2
> f (r) +

δ

2
=

¯
f (r) +

δ

2
,

where the last equality is due to r ∈ Z f from Fact 1. Thus, using ||Λn − I ||T < ε from
(3.2),

fn(t) >
¯
f (r) +

δ

2
∀t ∈ (l + 2ε, r − 2ε). (3.3)

Next, note that the infimum operation is continuous in the Skorohod J1-topology [56,
Theorem 13.4.1], and thus

¯
fn → ¯

f in D[0, T ]. Moreover, using (2.2),
¯
f ∈ C[0, T ], and

therefore, there exists n2 ≥ n0, such that for all n ≥ n2

‖
¯
fn − ¯

f ‖T <
δ

4
. (3.4)

Using
¯
f (t) =

¯
f (r) for all t ∈ [l, r ], this implies that, for all n ≥ n2,

¯
f (r) =

¯
f (t) >

¯
fn(t) − δ

4
∀t ∈ (l + 2ε, r − 2ε),

and consequently (3.3) yields that for all n ≥ max{n1, n2}

fn(t) − ¯
fn(t) >

δ

4
∀t ∈ (l + 2ε, r − 2ε). (3.5)

Thus,

lim inf
n→∞ φ1( fn) ≥ r − l − 4ε = φ1( f ) − 4ε, (3.6)

which provides the required lower bound. We now turn to a suitable upper bound on
the quantity lim supn→∞ φ1( fn). We claim that, using Definition 1(b), one can find
r1, . . . , rk ∈ R f such that r1 ≤ φ1( f )+ε, T −rk < φ1( f )+ε, and ri −ri−1 ≤ φ1( f )+
ε,∀i = 2, . . . , k. Indeed, since φ1( f ) is the largest excursion length of f , if there is no
excursion end-point in between 0 and φ1( f ) + ε, then there is no excursion begin-point
in [0, ε). The latter shows that the interval [0, ε) is contained inZ f = {t : f (t) =

¯
f (t)},

which contradicts Definition 1(b). The existence of the points r2, . . . , rk can be shown
inductively using similar argument as above. Let l1, . . . , lk be the excursion begin-points
corresponding to the endpoints r1, . . . , rk . We will show that, for all i , fn will have an
excursion begin-point in (li − 4ε, li + 2ε) and end-point in (ri − 3ε, ri + 2ε), so that
the largest excursion of fn is contained inside one of the intervals (li − 4ε, ri + 2ε) for
i ∈ [k].

Using Definition 1(a), ri is not a local minimum, and thus for any ε > 0 (sufficiently
small), there exists δ > 0 and ti ∈ (ri , ri + ε) such that f (ri ) − f (ti ) > δ. We also let
δ > 0 be sufficiently small such that (3.2) holds. Thus, using (3.2), for all n ≥ n1,

f (ri ) − fn(Λn(ti )) ≥ f (ri ) − f (ti ) − δ

2
>

δ

2
.
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Since ti ∈ (ri , ri + ε), we have that tni = Λn(ti ) ∈ (ri − ε, ri + 2ε). Thus, for all n ≥ n1,
there exists a point tni ∈ (ri − ε, ri + 2ε) such that

f (ri ) − fn(t
n
i ) >

δ

2
. (3.7)

Next, using (3.4),

¯
fn(ri − 3ε) →

¯
f (ri − 3ε) ≥

¯
f (ri ) = f (ri ), (3.8)

since ri ∈ Z f . Combining (3.7) and (3.8), we see that
¯
fn(ri − 3ε) >

¯
fn(tni ), and by

(3.5), we also have that fn(ri − 3ε) −
¯
fn(ri − 3ε) > 0, when ε > 0 is so small that

ri − 3ε > li + 2ε. Thus fn must have an excursion end-point in (ri − 3ε, ri + 2ε).
Also, using Definition 1(b), f has an excursion end-point r0i ∈ (li − ε, li ). The previous
argument shows that fn has to have an excursion end-point r0ni ∈ (r0i −3ε, r0i +2ε), and
thus by (3.5), fn must have an excursion begin-point in (r0ni , li +2ε) ⊂ (li −4ε, li +2ε).
Therefore,

lim sup
n→∞

φ1( fn) ≤ max
i∈[k](ri − li ) + 6ε ≤ max

i∈[k](ri − ri−1) + 6ε ≤ φ1( f ) + 7ε. (3.9)

Hence, the convergence of the largest excursion length follows from (3.6) and (3.9).
Next, we show that limn→∞A1( fn) = A1( f ). Let e = (l, r) be the largest excursion

of f . Using (3.5), the interval (l−2ε, r+2ε) is part of some excursion of fn . Let us denote
this excursion by en = (Ln(e), Rn(e)). We will show that en is the largest excursion of
fn when n is large. Indeed, the arguments above already show that

l − 4ε ≤ Ln(e) ≤ l + 2ε, and r − 3ε ≤ Rn(e) ≤ r + 2ε,

and thus Rn(e) − Ln(e) ≥ r − l − 5ε. Now, using Definition 1(f), we can take ε > 0
sufficiently small such that φ2( fn) < r − l − 5ε for all sufficiently large n. Thus,
en = (Ln(e), Rn(e)) must be the largest excursion of fn . The convergence of A1( fn)
follows by using fn → f in D[0,∞) together with Ln(e) → l and Rn(e) → r as
n → ∞. ��
Remark 5. We emphasize that the strict ordering between excursion lengths in Defini-
tion 1(f) is only used in the convergence of Ai ( fn). This ensures that the location of
largest excursions of fn and f approximately coincide, which is strictly stronger than
requiring the convergence of excursion lengths.

Next, we define what it means for a stochastic process X ∈ D+[0,∞) to be good:

Definition 2 (Good stochastic process). A stochastic process X with sample paths in
D+[0,∞) is said to be good if the sample path satisfies all the conditions of Definition 1
almost surely.

The following is a direct consequence of Lemma 1:

Proposition 1. Consider a sequence of stochastic processes (Xn)n≥1 and a good

stochastic process X such that Xn
d−→ X. Also, let (φ1(Xn))n≥1 be tight, and if Zn(T )

denotes the length of the largest excursion ofXn starting after time T , then assume that,
for any ε > 0, limT→∞ lim supn→∞P(Zn(T ) > ε) = 0. Then, for all m ≥ 1,

(
φi (Xn),Ai (Xn)

)
i∈[m]

d−→ (
φi (X),Ai (X)

)
i∈[m].
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3.2. The limiting process is good almost surely. In this section, we will show that the
sample paths of Sλ∞ are good almost surely. Throughout this section, we assume without
loss of generality thatμ = 1 and

∑
i θ

2
i = 1 to simplifywriting.An identical proofworks

for the general μ and θ by replacing λ with λ′ = λμ/
∑

i θ
2
i . Consider the sigma-field

Ft = σ({ξi ≤ s} : s ≤ t, i ≥ 1), where (ξi )i≥1 are the exploration random variables
used in the definition of Sλ∞ in (2.4), and, for a collection of sets A , σ(A ) denotes the
minimum sigma-algebra containing all the sets in A . Then (Ft )t≥0 is a filtration and
Sλ∞ is adapted to (Ft )t≥0. Our goal is stated formally in the following proposition:

Proposition 2. The sample paths of Sλ∞ satisfy the conditions of Definition 1 almost
surely.

Proof of Proposition 2. The verification of each of the conditions in Definition 1 are
given separately below.
Verification of Definition 1(a). Let q ∈ Q+ and define the random time Tq = inf{t ≥
q : Sλ∞(t) = infu≤q Sλ∞(u)}. We will show that, almost surely,

inf{t > 0 : Sλ∞(Tq + t) − Sλ∞(Tq) < 0} = 0, on {Tq < ∞}, for all q ∈ Q+.(3.10)

Note that if q lies in the interior of some finite-length excursion then Tq ∈ (q,∞),
and also Tq is the end-point of that excursion. Therefore, {Tq : q ∈ Q+ and Tq < ∞}
contains the set of excursion end-points of Sλ∞. Now, (3.10) ensures that Tq is not a local
minimum because we can find u arbitrarily close to Tq such that Sλ∞(u) < Sλ∞(Tq).
Hence, Definition 1(a) holds for Sλ∞ almost surely.

Thus it suffices to prove (3.10). Since Q+ is countable, it is enough to prove (3.10)
for each fixed q ∈ Q+. Let Vq = {i : Ii (Tq) = 1}. Note that Tq is a stopping time.
Moreover, conditionally on the sigma-fieldFTq , the process (Sλ∞(Tq + t)− Sλ∞(Tq))t≥0
is distributed as Ŝλ∞ given by

Ŝ
λ

∞(t) = λ
∑

i /∈Vq
θiIi (t) − t. (3.11)

Define L(t) = λ
∑∞

i=1 θiNi (t) − t, where (Ni (t))t≥0 is a rate-θi Poisson process,
independently for different i . We assume that Ŝλ∞ and L are coupled by takingIi (s) =
1{Ni (s) ≥ 1}, so that Ŝ

λ

∞(t) ≤ L(t) for all t ≥ 0 almost surely. Thus, if R0 = inf{t >

0 : L(t) < 0}, then it suffices to show that

P(R0 = 0) = 1, (3.12)

and (3.10) follows. Fix ε > 0 and K ≥ 1. Then,

P(R0 ≤ ε) ≥ P(L(ε) < 0)

≥ P

(

λ

∞∑

i=K+1

θiNi (ε) < ε, and Ni (ε) = 0, ∀i ∈ [K ]
)

=
K∏

i=1

P(Ni (ε) = 0) ×P

(

λ

∞∑

i=K+1

θiNi (ε) < ε

)

= e−ε
∑K

i=1 θi

(

1−P

(

λ

∞∑

i=K+1

θiNi (ε) ≥ ε

))

≥ e−ε
∑K

i=1 θi

(

1− λ

ε
E

[ ∞∑

i=K+1

θiNi (ε)

])

= e−ε
∑K

i=1 θi

(

1− λ

∞∑

i=K+1

θ2i

)

,

(3.13)
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where the one-but-last step follows from Markov’s inequality. Thus, using the fact that
{R0 ≤ ε} ↘ {R0 = 0}, as ε ↘ 0,

P(R0 = 0) = lim
ε↘0

P(R0 ≤ ε) ≥ 1− λ

∞∑

i=K+1

θ2i ,

and since the above holds for any K ≥ 1, and
∑

i θ
2
i < ∞, we have proved (3.12).

Verification of Definition 1(b). Next, we verify that Definition 1(b) holds almost surely
for Sλ∞. Since Q+ is countable, we may again work with fixed q1, q2 ∈ Q+, i.e., it
suffices to prove that (q1, q2) �⊂ {t : Sλ∞(t) = infu≤t Sλ∞(u)} almost surely. By the
description of our thinned Lévy process, it has positive jumps only, and if there is a jump
of size θi at time t , then Sλ∞(t + θi/2) > infu≤t Sλ∞(u) = infu≤t+θi /2 S

λ∞(u). Therefore,
if (q1, q2) ⊂ {t : Sλ∞(t) = infu≤t Sλ∞(u)}, then there is no ξi such that ξi ∈ (q1, q2). We
compute

P(∀i ≥ 1 : ξi /∈ (q1, q2)) =
∞∏

i=1

P(ξi /∈ (q1, q2)) =
∞∏

i=1

(1− e−θi q1 + e−θi q2)

= exp

( ∞∑

i=1

log
(
1− e−θi q1(1− e−θi (q2−q1)

))

≤ exp

(

− e−θ1q1
∞∑

i=1

(1− e−θi (q2−q1))

)

= 0,

where the one-but-last step follows using log(1−x) ≤ −x for all x ∈ (0, 1) and e−θi q1 ≥
e−θ1q1 for all i ≥ 1, and the last step uses the fact that

∑∞
i=1(1 − e−θi (q2−q1)) = ∞,

which follows by applying the limit comparison test togetherwith (1−e−θi (q2−q1))/θi →
q2 − q1 as i → ∞, and

∑∞
i=1 θi = ∞. Thus we have verified that Definition 1(b) holds

almost surely for Sλ∞.
Verification of Definition 1(c). Similarly as above, for any q ∈ Q+, define the stopping
time Tq(ε) = inf{t ≥ q : Sλ∞(t) ≤ infu≤q Sλ∞(u) + ε}. Thus, Tq(ε) > q if Sλ∞(q) >

infu≤q Sλ∞(u) + ε and Tq(ε) = q otherwise. Observe that Tq(ε) < ∞ almost surely
since there are no infinite excursions. We claim that it is sufficient to prove

lim
ε↘0

P(Sλ∞ has an excursion end-point in (Tq (ε), Tq (ε) + 2ε), and Tq (ε) < ∞) = 1. (3.14)

Let T−
q := inf{t > q : Sλ∞(t−) = infu≤q Sλ∞(u)}. Indeed, if q lies inside some excur-

sion, i.e., Sλ∞(q) > infu≤q Sλ∞(u), then Tq(ε) ↗ T−
q as ε ↘ 0, and (3.14) shows that

T−
q must be an excursion end-point with probability 1. Now, if Sλ∞ contains an excursion

(l, r) having a point t ∈ (l, r) such that Sλ∞(t−) = infu≤l Sλ∞(u) = infu≤t Sλ∞(u), then
there exists some q ∈ Q+∩(l, r) such that T−

q is not an excursion endpoint. The later has
zero probability as we showed above. This completes the verification of Definition 1(c).

It remains to prove (3.14). As before, let L(t) = λ
∑∞

i=1 θiNi (t) − t , and let us
also work under the coupling under which Sλ∞(Tq(ε) + t) − Sλ∞(Tq(ε)) ≤ L(t) for
all t ≥ 0 almost surely. We have Sλ∞(Tq(ε)) ≤ infu≤q Sλ∞(u) + ε on {Tq(ε) < ∞},
since the process has only positive jumps. Also, if L(2ε) < −ε, then Sλ∞(Tq(ε) +
2ε) < Sλ∞(Tq(ε)) − ε ≤ infu≤q Sλ∞(u), and consequently infu≤Tq (ε)+2ε Sλ∞(u) <
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infu≤Tq (ε) Sλ∞(u) = infu≤q Sλ∞(u). Therefore, the event in (3.14) holds. Thus, using
identical computations as (3.13), it follows that

P(Sλ∞ has an excursion end-point in (Tq(ε), Tq(ε) + 2ε), and Tq(ε) < ∞)

≥ P(L(2ε) < −ε) = P

(

λ

∞∑

i=1

θiNi (2ε) < ε

)

≥ e−2ε
∑K

i=1 θi

(

1− 2λ
∞∑

i=K+1

θ2i

)

,

and (3.14) follows by taking the iterated limit limK→∞ limε→0, and using
∑

i θ
2
i < ∞.

Verification of Definition 1(d). We start by providing the martingale decomposition for
Sλ∞:

Lemma 2. The processSλ∞ admits theDoob-Meyer decomposition Sλ∞(t) = M(t)+A(t)
with the drift term A(t) and the quadratic variation for the martingale term 〈M〉(t) given
by

A(t) = λ

∞∑

i=1

θ2i min{ξi , t} − t, 〈M〉(t) = λ2
∞∑

i=1

θ3i min{ξi , t}.

Proof. Define Mi (t) = 1{ξi≤t} − θi min{ξi , t}. Then
(Mi (t))t≥0 is a martingale. (3.15)

Indeed, note that Mi (t + s) − Mi (t) = 0 if ξi ≤ t . Thus,

E[Mi (t + s) − Mi (t) | Ft ] = E[1{t<ξi≤t+s} − θi (min{ξi , t + s} −min{ξi , t}) | ξi > t]
= E[1{t<ξi≤t+s} − θi min{ξi − t, s} | ξi > t]
= P(0 < ξi ≤ s) − θiE[min{ξi , s}],

(3.16)

where the last step follows from the memoryless property of the exponential distri-
butions. Now, using the fact that

∫
xe−axdx = −e−ax (ax + 1)/a2, one can verify that

θiE[min{ξi , s}] = 1−e−θi s . Applying this to (3.16), we can conclude thatE[Mi (t+s)−
Mi (t)|Ft ] = 0, thus verifying (3.15). Moreover, the quadratic variation of (Mi (t))t≥0
is given by

〈Mi 〉(t) = θi min{ξi , t}. (3.17)

This follows from the characterization of unit-jump processes given in [52, Lemma 3.1],
together with the fact that θi min{ξi , t}, the compensator of 1{ξi≤t}, is continuous in t .
Then (3.15) and (3.17) completes the proof of Lemma 2. ��
We are now ready to verify Definition 1(d). In order to prove that Sλ∞ does not have an
excursion of infinite length almost surely, it suffices to show that

lim
t→∞ Sλ∞(t) = −∞ almost surely. (3.18)

Fix K ≥ 1 such that λ
∑

i>K θ2i < 1/2. Such a choice of K is always possible as θ ∈ �2↓.
Further define the stopping time T := inf{t : ξi ≤ t, ∀i ∈ [K ]} = maxi≤K ξi . Thus,
T < ∞ almost surely. Note that min{ξi , t} ≤ t and thus,

1

t
λ
∑

i>K

θ2i min{ξi , t} <
1

2
, almost surely.
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Therefore, for any t > T ,

A(t) = λ
∑

i∈[K ]
θ2i ξi + λ

∑

i>K

θ2i min{ξi , t} − t < λ
∑

i∈[K ]
θ2i ξi − t

2
, almost surely.

We conclude that, for any r ∈ (0, 1), t−r A(t)
a.s.−→ −∞. For the martingale part we will

use the exponential concentration inequality [55, Inequality 1, p. 899], which is stated
below:

Lemma 3. If M is any continuous time local martingale such that M(0) = 0, and
supt∈[0,∞) |M(t) − M(t−)| ≤ c, almost surely, then for any t > 0, a > 0 and b > 0,

P
(

sup
s∈[0,t]

M(s) > a, and 〈M〉(t) ≤ b
)
≤ exp

(

− a2

2b
ψ
(ac

b

))

,

where ψ(x) = ((1 + x) log(1 + x) − x)/x2.

In particular,ψ(x) ≥ 1/(2(1+ x/3)) (see [42, p. 27]). Note that 〈M〉(t) ≤ λ2t
∑∞

i=1 θ3i .

We apply Lemma 3 with a = εtr , b = λ2t
∑∞

i=1 θ3i , and c = θ1. Using Lemma 2,
〈M〉(t) ≤ b almost surely. Now, ψ(ac/b) ≥ C/(1 + tr−1), and thus for any ε > 0, and
r ∈ (1/2, 1)

P
(

sup
s∈[0,t]

|M(s)| > εtr
)
≤ 2 exp(−Ct2r−1),

for some constant C > 0, where the bound on the absolute value of M follows from the
fact that−M is also amartingale, so Lemma 3 applies to−M aswell. Now an application
of the Borel–Cantelli lemma proves that t−r |M(t)| a.s.−→ 0, for any r ∈ (1/2, 1). This
fact, together with the asymptotics of the drift term, completes the proof of (3.18). ��
Verification of Definition 1(e). Fix δ > 0. Let tk = (k − 1)δ/2 and define the event

Cδ
k :=

{

sup
t∈(tk−1,tk ]

Sλ∞(tk+1) − Sλ∞(t) > 0

}

.

Suppose that there is an excursion (l, r) with r − l > δ and l ∈ (tk−1, tk] for some k.
Since r > tk+1 and l ∈ (tk−1, tk], we have that infu≤tk+1 Sλ∞(u) = infu∈(tk−1,tk ] Sλ∞(u).
Consequently, Sλ∞(tk+1) > inf t∈(tk−1,tk ] Sλ∞(t), and therefore Cδ

k must occur. Therefore,
if Sλ∞ has infinitely many excursions of length at least δ, then Cδ

k must occur infinitely
often. Using the Borel–Cantelli lemma, the proof follows if we can show that

∞∑

k=1

P(Cδ
k) < ∞.

As before, fix K ≥ 1 such that λ
∑

i>K θ2i < 1/2, and let T := inf{t : ξi ≤ t, ∀i ∈
[K ]} = maxi≤k ξi . Notice that for each K ≥ 1,

∞∑

k=1

P (T > tk−1) =
∞∑

k=1

P (∃i ∈ [K ] : ξi > tk−1) ≤
∞∑

k=1

K e−θK (k−1)δ/2 < ∞,
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and therefore it is enough to show that

∞∑

k=1

P(Cδ
k ∩ {T ≤ tk−1}) < ∞. (3.19)

Now,

sup
t∈[tk−1,tk ]

[
Sλ∞(tk+1) − Sλ∞(t)

] ≤ M(tk+1) + sup
t∈[tk−1,tk ]

−M(t) + sup
t∈[tk−1,tk ]

[A(tk+1) − A(t)]

≤ M(tk+1) − M(tk−1) + sup
t∈[tk−1,tk ]

[M(tk−1) − M(t)]

+ sup
t∈[tk−1,tk ]

[

λ

∞∑

i=1

θ2i (min{ξi , tk+1} −min{ξi , t}) − (tk+1 − t)

]

≤ 2 sup
t∈[tk−1,tk+1]

|M(t) − M(tk−1)|

+ sup
t∈[tk−1,tk ]

[

λ

∞∑

i=1

θ2i (min{ξi , tk+1} −min{ξi , t}) − (tk+1 − t)

]

.

On the event {T ≤ tk−1}, the second term inside the supremum above reduces to

λ
∑

i>K

θ2i (min{ξi , tk+1} −min{ξi , t}) − (tk+1 − t) ≤ (tk+1 − t)λ
∑

i>K

θ2i − (tk+1 − t) < − δ

2
,

(3.20)

using λ
∑

i>K θ2i < 1/2. Thus we only need to estimate

P

(

sup
t∈[tk−1,tk+1]

|M(t) − M(tk−1)| >
δ

4

)

.

Note that (M(t)−M(tk−1))t≥tk−1 is a martingale with respect to the filtration (Ft )t≥tk−1

starting from zero. Moreover, using an identical argument as Lemma 2 yields that the
quadratic variation of (M(t) − M(tk−1))t≥tk−1 is given by

λ2
∞∑

i=1

θ3i
(
min{ξi , t} −min{ξi , tk−1}

)
.

Further, E[min{ξi , t}] = θ−1
i (1− e−θi t ). Therefore, Doob’s martingale inequality [45,

Theorem 1.9.1.3] implies

∞∑

k=1

P

(

sup
t∈[tk−1,tk+1]

|M(t) − M(tk−1)| >
δ

4

)

≤
∞∑

k=1

16λ2

δ2

∞∑

i=1

θ2i (e−θi tk−1 − e−θi tk+1) = 16λ2

δ2

∞∑

i=1

θ2i (1− e−θi δ)

∞∑

k=1

e−θi tk−1 < ∞,

and the proof of (3.19) now follows using (3.20).
Verification of Definition 1(f).We first prove the following:



Critical Percolation on Scale-Free Configuration Model 143

Lemma 4. The distribution of Sλ∞(t) has no atoms for all t > 0.

Proof. Let φt (v) = E[eivS(t)] for v ∈ R. Using the sufficient condition for random
variables to have non-atomic distribution stated in [33, p. 189], it suffices to prove that

∫ ∞

−∞
|φt (v)|dv < ∞.

Note that

φt (v) = e−ivt
∞∏

j=1

E[eivλθ j1{ξ j≤t}] = e−ivt
∞∏

j=1

(eivλθ j (1− e−θ j t ) + e−θ j t )

= e−ivt
∞∏

j=1

(
(1− e−tθ j ) cos(vλθ j ) + e−tθ j + i(1− e−tθ j ) sin(vλθ j )

)
.

Therefore,

|φt (v)|2 =
∞∏

j=1

((
(1− e−tθ j ) cos(vλθ j ) + e−tθ j

)2 + (1− e−tθ j )2 sin2(vλθ j )
)

=
∞∏

j=1

(
e−2tθ j + 2 cos(vλθ j )e

−tθ j (1− e−tθ j ) + (1− e−tθ j )2
)

=
∞∏

j=1

(
1− 2e−tθ j (1− e−tθ j )(1− cos(vλθ j ))

)

≤ e−
∑∞

j=1 2e
−tθ j (1−e−tθ j )(1−cos(vλθ j )),

where in the last step we have used the fact that 1− x ≤ e−x for all x > 0. Recall (2.5).
Let j0 ≥ 1 be such that max{(2|v|λ/π)θ j , tθ j } ≤ 1 for all j ≥ j0. Now, for j ≥ j0, we

have that e−tθ j ≥ e−1, (1− e−tθ j ) ≥ tθ j/2 and 1− cos(vλθ j ) ≥ λ2

π
v2θ2j . Thus, using

(2.5),
∫ ∞

−∞
|φt (v)|dv ≤

∫ ∞

−∞
e−

λ2 t
eπ v2Mt (2|v|λ/π)dv < ∞,

and the proof now follows. ��
In order to prove the strict ordering between excursion lengths, it is enough to show

that no two excursions of Sλ∞ have the same length almost surely. For any q ∈ Q+, if
q is in some excursion of Sλ∞, i.e., if Sλ∞(q) > inf t≤q Sλ∞(t), then we let e(q) be the
excursion containing q, and otherwise we let e(q) = ∅. Thus it is enough to show that
for any q1, q2 ∈ Q+,

P(e(q1) �= e(q2), but |e(q1)| = |e(q2)|) = 0.

Without loss of generality, let q1 < q2. Thus, if e(q1) �= e(q2), then e(q1) appears earlier
than e(q2). Let Vq2 = {i : Ii (q2) = 1}. As before, conditionally on Fq2 , the process
(Sλ∞(q2 + t) − Sλ∞(q2))t≥0 is distributed as Ŝλ∞ given by

Ŝ
λ

∞(t) =
∑

i /∈Vq2
θi (Ii (t) − (θi/μ)t) + λt. (3.21)
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Therefore, the process in (3.21) again has the form (2.4) (see (3.11)). Now, for any
x > 0, the probability that |e(q2)| = x , conditionally on Fq2 and |e(q1)| = x , is zero
using Lemma 4 together with the fact that |V c

q2 | = ∞. This concludes the verification
of Definition 1(f).

4. The Critical Window

In this section,we prove our results related to critical percolation onCMn(d). In Sect. 4.1,
we start by describing a way to approximate percolation on a configuration model by a
suitable alternative configuration model. In Sect. 4.2, we analyze the latter graph. The
first step is to set up an exploration process that approximately encodes the component
sizes in terms of excursion lengths above past minima. This exploration process is shown
to converge to Sλ∞ (Sect. 4.2.1). We must also ensure that the exploration process does
not have large excursions appearing beyond the time scale of the exploration process,
which allows us to prove that the largest component sizes converge to largest excursion
lengths of Sλ∞ (Sect. 4.2.2). Next we analyze the surplus edges (Sect. 4.2.3) and the
proof of Theorem 1 is completed in Sect. 4.2.4. Finally, we analyze the diameter of the
critical components in Sect. 4.3 and complete the proof of Theorem 2.

4.1. Sandwiching the percolated configuration model. Following the pioneering work
of Aldous [4], the main tool to prove scaling limits of the component sizes is to set up an
appropriate exploration process. The idea is to explore the graph sequentially, and the
exploration process keeps track of some functional of vertices that have been discovered
but their neighborhoods have not been explored. For percolation on the configuration
model, this could be the number of unpaired half-edges of those vertices. Now, for
random graphs with independent connection probabilities, the exploration process is
usually Markovian, but not for the configuration model. Indeed, one has to keep track
of the degree-profile outside the explored graph in order to know the distribution of the
degree of a newly discovered vertex. For d-regular graphs, Nachmias and Peres [48] used
the above approach, but this becomes difficult in the unbounded degree case. In earlier
papers with Sen [27,28], we have used a construction by Janson [39] which says that
the percolated configuration model can be viewed as a configuration model satisfying
some criticality condition, so that it is enough to analyze the behavior of these critical
configuration models. However, in the τ ∈ (2, 3) regime, this construction does not
work because it gives rise to n − o(n) many degree-one vertices. As a remedy to this
problem, we use a result of Fountoulakis [32] to show that the critical configuration
model can be sandwiched between two approximately equal configuration models, as
stated in Proposition 3 below. We emphasize that Proposition 3 holds for percolation on
the configuration model without any specific assumption on the degree distribution, as
long as �n pn � log(n), and this will be used in the proofs for the near-critical results
as well. We start by describing the approximating configuration model below:

Algorithm 1. (S0) Keep each half-edge with probability pn , independently, and delete
the half-edges otherwise. If the total number of retained half-edges is odd, then attach a
dummy half-edge to vertex 1.

(S1) Perform a uniform perfect matching among the retained half-edges, i.e., within the
retained half-edges, pair unpaired half-edges sequentially with a uniformly chosen
unpaired half-edge until all half-edges are paired. The paired half-edges create
edges in the graph, and we call the resulting graph Gn(pn).
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The following proposition formally states that Gn(pn) approximates CMn(d, pn):

Proposition 3. Let pn be such that �n pn � log(n). There exists (εn)n≥1 ⊂ (0,∞) with
εn → 0, and a coupling such that, with high probability,

Gn(pn(1− εn)) ⊂ CMn(d, pn) ⊂ Gn(pn(1 + εn)).

Proof. The proof relies on an exact construction of CMn(d, pn) by Fountoulakis [32]
which goes as follows:

Algorithm 2. (S0) Perform a binomial trial X ∼ Bin(�n/2, pn) and choose 2X half-
edges uniformly at random from the set of all half-edges.

(S1) Perform a perfect matching of these 2X chosen half-edges. The resulting graph is
distributed as CMn(d, pn).

Notice the similarity betweenAlgorithm1 (S1) andAlgorithm2 (S1). In both algorithms,
given the number of retained half-edges, the choice of the half-edges can be performed
sequentially uniformly at random without replacement. Thus, given the number of half-
edges in the two algorithms, we can couple the choice of the half-edges, and their pairing
(the restriction of a uniformmatching to a subset of half-edge remains uniformmatching
on that subset). LetH1,H

−
2 andH +

2 , respectively, denote the number of half-edges in
CMn(d, pn), Gn(pn(1− εn)) and Gn(pn(1 + εn)). From the above discussion, the proof
is complete if we can show that, as n → ∞,

P
(
H −

2 ≤ H1 ≤ H +
2

)→ 1.

We ignore the contribution due to the possible addition of only one dummy edge in
Algorithm 3 (S0), as it does not affect asymptotic computations. Notice that H1 =
2X , where X ∼ Bin(�n/2, pn), and H

+/−
2 ∼ Bin(�n, pn(1 ± εn)). Using standard

concentration inequalities [42, Corollary 2.3], it follows that

H1 = �n pn + oP (
√

�n pn log(n)),

and

H +
2 = �n pn + �n pnεn + oP (

√
�n pn log(n)).

If we choose εn such that εn � (log(n)/(�n pn))1/2 and εn → 0, then, with high prob-
ability, H1 ≤ H +

2 . Similarly we can conclude that H −
2 ≤ H1 with high probability,

and the proof of Proposition 3 follows. ��
We conclude this section by stating some properties of the degree sequence of the

graph Gn(pn) that will be crucial in the analysis below. Let d̃ = (d̃1, . . . , d̃n) be the
degree sequence induced by Algorithm 1 (S1), and let �̃n = ∑

i d̃ i be the number of
retained half-edges. Then the following result holds for d̃:

Lemma 5. (Degrees of Gn(pn)) Suppose that pn � n−α , and Assumption 1 holds. For
each fixed i ≥ 1, d̃i = di pn(1+oP (1)), �̃n = �n pn(1+oP (1)), and

∑
i∈[n] d̃ i (d̃i −1) =

p2n
∑

i∈[n] di (di − 1)(1 + oP (1)). Consequently, for pn 
 pc(λ),
∑

i∈[n] d̃
2
i = �̃n(1 +

oP (1)), whereas for pn = pc(λ),

ν̃n =
∑

i∈[n] d̃ i (d̃ i − 1)
∑

i∈[n] d̃ i
= λ(1 + oP(1)), and lim

K→∞ lim sup
n→∞

P

(∑

i>K

d̃i (d̃i − 1) > ε�̃n

)

= 0,

(4.2)

for any ε > 0.
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Proof. Note that d̃i ∼ Bin(di , pn), independently for i ∈ [n]. For each fixed i ≥
1, di pn → ∞, as pn � n−α . Thus the first fact follows using [42, Theorem 2.1].
Since, �̃n ∼ Bin(�n, pn), the second fact also follows using the same bound. To see
the asymptotics for m̃2 := ∑

i∈[n] d̃ i (d̃i − 1), note that E[m̃2] = p2nm2, where m2 =
∑

i∈[n] di (di − 1). Also, Var(d̃i (d̃ i − 1)) = 2di (di − 1)p2n(1 − pn)(1 + (2di − 3)pn).
Thus,

Var
(∑

i∈[n] d̃i (d̃i − 1)
)

(
E[∑i∈[n] d̃i (d̃ i − 1)])2

≤ 4d1 p3nm2

p4nm
2
2

= O
( 1

pnnα

)
= o(1),

where the penultimate step uses the fact that m2 = Θ(n2α), d1 = Θ(nα), and in the last
step we have again used the fact that pn � n−α . Using Chebyshev’s inequality, it now
follows that m̃2 = p2nm2(1 + oP (1)). Thus,

ν̃n = (1 + oP (1))pn

∑
i∈[n] di (di − 1)
∑

i∈[n] di
= (1 + oP (1))pnνn .

For pn 
 pc(λ), pnνn = o(1). Thus,
∑

i∈[n] d̃
2
i = �̃n(1 + oP (1)). For pn = pc(λ), the

first equality in (4.2) follows using (2.9).
We now prove the second inequality in (4.2). For any ε > 0, the required probability

is at most

P

(∑

i>K

d̃i (d̃i − 1) > ε�̃n,
�n pn
2

≤ �̃n ≤ 2�n pn

)

+ o(1)

≤ P

(∑

i>K

d̃i (d̃ i − 1) >
ε�n pn
2

)

+ o(1)

≤ 4p2n
∑

i>K di (di − 1)

ε�n pn
+ o(1) = 4pn

∑
i>K d2i

ε�n
+ o(1),

where the penultimate step follows from Markov’s inequality. The proof now follows
using (2.8) and pn = Θ(n1−2α) for pn = pc(λ). ��

4.2. Scaling limits of critical components.

4.2.1. Convergence of the exploration process Let d̃ = (d̃1, . . . , d̃n) be the degree
sequence induced by Algorithm 1 (S1) with pn = pc(λ), and consider Gn(pc(λ)). Note
that Gn(pc(λ)) has the same distribution as CMn(d̃). We start by describing how the
connected components in the graph can be explored while generating the random graph
simultaneously:

Algorithm 3 (Exploring the graph). The algorithm carries along vertices that can be
alive, active, exploring and killed, and half-edges that can be alive, active or killed.
Alive and killed half-edges correspond to unpaired and paired half-edges respectively,
whereas active half-edges correspond to half-edges that have been found during the
exploration, but have not been paired yet. Thus a half-edge can be alive and active
simultaneously. Similarly, a vertex is killed when all its half-edges have been explored,



Critical Percolation on Scale-Free Configuration Model 147

otherwise the vertex is alive. An active vertex is an alive vertex that has been found
already during the exploration, whereas an exploring vertex is currently being explored.
We sequentially explore the graph as follows:

(S0) At stage i = 0, all the vertices and the half-edges are alive but none of them are
active. Also, there are no exploring vertices.

(S1) At each stage i , if there is no active half-edge at stage i , choose a vertex v pro-
portional to its degree among the alive (not yet killed) vertices and declare all its
half-edges to be active and declare v to be exploring. Proceed to step i + 1.

(S2) At each stage i , if the set of active half-edges is non-empty, then take an active
half-edge e of an exploring vertex v and pair it with a half-edge f chosen uniformly
among the alive half-edges. Kill e, f . If f is incident to a vertex v′ that has not
been discovered before, then declare all the half-edges incident to v′ active (if any),
except f . If degree(v′) = 1 (i.e. the only half-edge incident to v′ is f ) then kill v′.
Otherwise, declare v′ to be active and larger than all other vertices that are active.
After killing e, if v does not have another active half-edge, then kill v also, and
declare the smallest vertex to be exploring.

(S3) Repeat from (S1) at stage i + 1 if not all half-edges are already killed.

Algorithm 3 gives a breadth-first exploration of the connected components of CMn(d̃).
Define the exploration process by

Sn(0) = 0, Sn(l) = Sn(l − 1) + d̃(l) Jl − 2, (4.3)

where Jl is the indicator that a new vertex is discovered at time l and d̃(l) is the degree of
the new vertex chosen at time l when Jl = 1. The−2 in (4.3) takes into account the fact
that two half-edges are killed whenever two half-edges are paired at some step. However,
at the beginning of exploring a component when Algorithm 3 (S1) is carried out, we do
not pair half-edges but the exploration process subtracts−2 nonetheless. For this reason,
there is an additional −2 in (4.3) at the beginning of exploring each component, and
thus the first component is explored when the exploration process hits −2, the second
component is explored when the process hits −4 and so on. More formally, suppose
that Ck is the k-th connected component explored by the above exploration process and
define τk = inf

{
i : Sn(i) = −2k

}
. Then Ck is discovered between the times τk−1 + 1

and τk , and τk − τk−1−1 gives the total number of edges in Ck . Call a vertex discovered
if it is either active or killed. Let Vl denote the set of vertices discovered up to time l and
I n

i (l) := 1{i∈Vl}. Note that

Sn(l) =
∑

i∈[n]
d̃ iI

n
i (l) − 2l.

In the rest of this section, we often use the asymptotics in Lemma 5 even if it is not
stated explicitly. Recall that we write F n

l = σ(I n
i (l) : i ∈ [n]). All the martingales

and related computations will be done with respect to the filtration (F n
l )l≥0.

Define the re-scaled version S̄n of Sn by S̄n(t) = n−ρSn(�tnρ�). Then,
S̄n(t) = n−ρ

∑

i∈[n]
(d̃ i − 1)I n

i (tnρ) + n−ρ
∑

i∈[n]
I n

i (tnρ) − 2t + o(1), (4.4)

where we have used the convention that I n
i (tnρ) = I n

i (�tnρ�) when tnρ is not an
integer. The following theorem describes the scaling limit of this rescaled process:
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Theorem 5. Consider the process S̄n := (S̄n(t))t≥0 defined in (4.4) and recall the
definition of Sλ∞ in (2.4). Then, under Assumption 1, as n → ∞,

S̄n
d−→ Sλ∞

with respect to the Skorohod J1-topology.

To prove Theorem 5, we need to obtain asymptotics of the first two terms in (4.4). The
first term accounts for the contribution due to the non-degree-one vertices during the
exploration. The first term is dominated by the contributions due to hubs, which allows
us to use a truncation argument. The convergence of the truncated sum is given by the
following lemma:

Lemma 6. Fix any K ≥ 1, and Ii (s) := 1{ξi≤s} where ξi ∼ Exp(θi/μ) independently
for i ∈ [K ]. Under Assumption 1, as n → ∞,

(
I n

i (tnρ)
)
i∈[K ],t≥0

d−→ (Ii (t))i∈[K ],t≥0

with respect to the Skorohod J1-topology.

The second term in (4.4) describes the proportion of time when a new vertex is found.
Since we see a new vertex of degree one in most steps of the exploration process, this
term is shown to converge to the constant function t , which is proved using martingale
arguments. This is summarized in the next lemma:

Lemma 7. For any u > 0, as n → ∞, supu≤t n−ρ
∣
∣
∑

i∈[n]I n
i (unρ) − unρ

∣
∣ P−→ 0.

We first prove Theorem 5 using Lemmas 6 and 7. The lemmas will be proved sub-
sequently. Let �̃n(u) denote the number of unpaired half-edges at time �unρ�. Thus,
�̃n(u) = �̃n − 2(�unρ� − c�unρ�) + 1, where cl is the number of components explored
up to time l. Note that �̃n − 2unρ + 1 ≤ �̃n(u) ≤ �̃n . Since �̃n = ΘP (n2ρ), we have
�̃n(u) = �̃n(1 + oP (1)) uniformly over u ≤ t . Let P̃(·) (respectively Ẽ[·]) denote the
conditional probability (respectively expectation) conditionally on (d̃ i )i∈[n].

Proof of Theorem 5. Note that, I n
i (l) = 0 for all l ≥ 1 if d̃i = 0. Now, if d̃ i ≥ 1, then

for any t ≥ 0, uniformly over l ≤ tnρ ,

Ẽ
[
I n

i (l)
] = P̃

(
I n

i (l) = 1
) ≤ ld̃i

�̃n − 2unρ + 1
. (4.5)

Let Xn,K (t) := n−ρ supu≤t
∑

i>K (d̃i − 1)I n
i (unρ). Note that I n

i (unρ) ≤ I n
i (tnρ).

Also, using I n
i (unρ) = 0 whenever d̃i = 0, it follows that (d̃ i − 1)I n

i (unρ) ≥ 0 for
all i ∈ [n] and u > 0. Thus,

Ẽ[Xn,K (t)] ≤ n−ρẼ

[∑

i>K

(d̃i − 1)I n
i (tnρ)

]

≤ t

∑
i>K d̃i (d̃ i − 1)

�̃n(t)
:= εn,K (t),

where limK→∞ lim supn→∞P(εn,K (t) > δ) = 0 for any δ > 0, due to Lemma 5.
Therefore, for any ε, δ > 0, using Markov’s inequality,

lim
K→∞ lim sup

n→∞
P
(
P̃(Xn,K (t) > ε) > δ

)
≤ lim

K→∞ lim sup
n→∞

P
(
Ẽ[Xn,K (t)] > δε

)
= 0.
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Let Bn,K := {P̃(Xn,K (t) > ε) > δ}. It follows that

P(Xn,K (t) > ε) = E
[
P̃(Xn,K (t) > ε)

] ≤ P(Bn,K ) + δ.

Taking the iterated limit limδ→0 lim supK→∞ lim supn→∞ yields, for any ε > 0,

lim
K→∞ lim sup

n→∞
P(Xn,K (t) > ε) = 0. (4.6)

Using (4.6) and Lemma 7, it is now enough to deduce the scaling limit, as n → ∞, for

S̄
K
n (t) = n−ρ

K∑

i=1

d̃ iI
n
i (tnρ) − t

and then taking K → ∞. But for any fixed K ≥ 1, Lemma 6 yields the limit of SKn ,
and the proof of Theorem 5 follows. ��
Proof of Lemma 6. By noting that (I n

i (tnρ))t≥0 are indicator processes, for any m1 ≤
m2 ≤ m3, it follows that min{I n

i (m2) −I n
i (m1),I

n
i (m3) −I n

i (m2)} = 0, and thus
[14, Theorem 13.5] implies tightness of (I n

i (tnρ))t≥0,n≥1 for each fixed i ≥ 1. Thus,
it is enough to show that

P̃
(
I n

i (ti n
ρ) = 0, ∀i ∈ [K ]) P−→ P̃ (Ii (ti ) = 0, ∀i ∈ [K ]) = exp

(
− μ−1

K∑

i=1

θi ti
)
,

for any t1, . . . , tK ∈ [0,∞). Now,

P̃
(
I n

i (mi ) = 0, ∀i ∈ [K ]) =
∞∏

l=1

(
1−

∑

i≤K :l≤mi

d̃i

�̃n − Θ(l)

)
. (4.7)

Taking logarithms on both sides of (4.7) and using the fact that l ≤ maxmi = Θ(nρ)

we get

P̃
(
I n

i (mi ) = 0 ∀i ∈ [K ]) = exp
(
−

∞∑

l=1

∑

i≤K :l≤mi

d̃i

�̃n
+ o(1)

)

= exp
(
−
∑

i∈[K ]

d̃ imi

�̃n
+ o(1)

)
.

(4.8)

Putting mi = ti nρ , Assumption 1 (i), (ii) give

mi d̃i

�̃n
= θi ti

μ
(1 + oP (1)). (4.9)

Hence (4.8) and (4.9) complete the proof of Lemma 6. ��
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Proof of Lemma 7. Define Wn(l) = ∑
i∈[n]I n

i (l) − l. Recall that Vl denotes the set
of vertices discovered up to time l, τk is the time when the k-th component has been
explored, and cl is the number of components explored up to time l. Observe that

Ẽ[Wn(l + 1) −Wn(l) | Fl ] =
∑

i∈[n]
Ẽ
[
I n
i (l + 1) | Fl

]
1{i /∈V l } − 1

=
∑

i /∈V l

d̃ i

�̃n − 2l + 2cl + 1
− 1 = 2l − 1−∑i∈V l

d̃ i − 2cl

�̃n − 2l + 2cl + 1
.

(4.10)

To see that the final term in (4.10) is negative, note that if l = τk for some k, then
∑

i∈Vτk
d̃i − 2τk = 2k, and cτk = k so that

2τk − 1−
∑

i∈Vτk

d̃i − 2cτk = −1 < 0.
(4.11)

If τk < l < τk+1, then
∑

i∈Vl\Vτk
d̃i − 2(l − τk) ≥ −1, and also cl = cτk + 1. Therefore,

using (4.11), we conclude that the final term in (4.10) is negative for all l ≥ 1, and
consequently, (Wn(l))l≥1 is a super-martingale. We will use the martingale-inequality
[54,Lemma2.54.5] stating that for any sub/super-martingale (M(t))t≥0,withM(0) = 0,

εP

(

sup
s≤t

|M(s)| > 3ε

)

≤ 3E [|M(t)|] ≤ 3
(
|E [M(t)] | +√Var (M(t))

)
. (4.12)

Using Taylor expansion,

P̃(I n
i (l) = 1) ≥ 1−

(
1− d̃ i

�̃n

)l ≥
( ld̃i

�̃n
− l2d̃

2
i

�̃
2
n

)
1{

ld̃i<�̃n

},

and thus, using Lemma 5, and l = tnρ ,

n−ρ |Ẽ[Wn(tn
ρ)]| = t − n−ρ

∑

i∈[n]
P̃(I n

i (tnρ) = 1)

≤ t
∑

i∈[n]

d̃ i1{d̃i>�̃n/tnρ
}

�̃n
+
t2nρ

∑
i∈[n] d̃

2
i

�̃
2
n

.

(4.13)

Let En denote the good event that �n pc(λ)/2 ≤ �̃n ≤ 2�n pc(λ) and pc(λ)di/2 ≤ d̃i ≤
2pc(λ)di for all i such that di > C0nρ for some C0 (sufficiently small). Using standard
concentration inequalities for the binomial distribution [42, Theorem 2.1], P(E c

n ) <

2e−nε
for some ε > 0. On the event En , d̃ i > Cnρ , and thus di > Cnρ . We can bound

∑

i∈[n]

d̃i1{d̃i>�̃n/tnρ
}

�̃n
≤ C1

�n

∑

i∈[n]
di1{di>Cnρ } = o(1),

where the final step follows using the uniform integrability from Assumption 1. The
second term in (4.13) is oP (1) using Lemma 5. Thus,

n−ρ |Ẽ[Wn(tn
ρ)]| = oP (1). (4.14)
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Next, note that for any (x1, x2, . . . ), 0 ≤ a + b ≤ xi and a, b > 0 one has
∏R

i=1(1 −
a/xi )(1− b/xi ) ≥∏R

i=1(1− (a + b)/xi ). Thus, for all l ≥ 1 and i �= j ,

P̃(I n
i (l) = 0,I n

j (l) = 0) ≤ P̃(I n
i (l) = 0)P̃(I n

j (l) = 0),

and thus

P̃(I n
i (l) = 1,I n

j (l) = 1)

= 1− P̃(I n
i (l) = 0) − P̃(I n

j (l) = 0) + P̃(I n
i (l) = 0,I n

j (l) = 0)

≤ 1− P̃(I n
i (l) = 0) − P̃(I n

j (l) = 0) + P̃(I n
i (l) = 0)P̃(I n

j (l) = 0)

= P̃(I n
i (l) = 1)P̃(I n

j (l) = 1).

(4.15)

Therefore I n
i (l) and I n

j (l) are negatively correlated. Using (4.5), it follows that

Var(I n
i (l)|(d̃i )i∈[n]) ≤ P̃(I n

i (l) = 1) ≤ ld̃i

�̃n(t)
,

uniformly over l ≤ tnρ . Therefore, using the negative correlation in (4.15),

n−2ρVar
(
Wn(tn

ρ)
∣
∣(d̃i )i∈[n]

) ≤ n−2ρ
∑

i∈[n]
Var

(
I n

i (tnρ)|(d̃i )i∈[n]
)

= n−2ρ tnρ

∑
i∈[n] d̃ i
�̃n(t)

= ΘP (n−ρ) = oP (1).

(4.16)

Using (4.14) and (4.16), the proof now follows by an application of (4.12). ��

4.2.2. Large components are explored early In this section, we prove two key results
that allow us to deduce the convergence of the component sizes. Firstly, we show that
the rescaled vector of component sizes is tight in �2↓ (see Proposition 4). This result is
then used to show that the largest components of Gn(pc(λ)) are explored before time
Θ(nρ) (Proposition 5). The latter allows us to apply Proposition 1. Let C(i) denote the
i-th largest component for Gn(pc(λ)). Recall that our convention is to take |C | = 0, if
the component consists of one vertex and no edges.

Proposition 4. Under Assumption 1, for any ε > 0,

lim
K→∞ lim sup

n→∞
P

(∑

i>K

|C(i)|2 > εn2ρ
)

= 0.

LetG K
n be the randomgraph obtained by removing all edges attached to vertices 1, . . . , K

and let d ′ be the obtained degree sequence. Further, let C K (v) and C K
(i) denote the

connected component containing v and the i-th largest component respectively in G K
n .

Let DK (v) =∑k∈C K (v) d̃k and DK
i =∑k∈C K

(i)
d̃k . Let V

∗,K
n be chosen according to the

following size-biased distribution:

P(V ∗,K
n = i) = d̃ i

�̃n −∑K
i=1 d̃i

, for i ∈ [n]\[K ].

Also, denote the criticality parameter of G K
n by νK

n .
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Lemma 8. Suppose that Assumption 1 holds. Then, for any ε > 0,

lim
K→∞ lim sup

n→∞
P

(

Ẽ

[ ∑

k∈C K (V ∗,K
n )

(d̃k − 1)

]

> ε

)

= 0.

Proof. Note that the criticality parameter of Gn(pc(λ)) is ν̃n = λ(1 + oP (1)), by
Lemma 5. Now, conditionally on the set of removed half-edges, G K

n is still a config-
uration model with some degree sequence d ′ with d ′i ≤ d̃ i for all i ∈ [n]\[K ] and
d ′i = 0 for i ∈ [K ]. Further, the criticality parameter of G K

n satisfies

νK
n =

∑
i∈[n] d ′i (d ′i − 1)
∑

i∈[n] d ′i
≤
∑

i>K d̃i (d̃i − 1)

�̃n − 2
∑K

i=1 d̃i
= λ

∑
i>K d̃i (d̃i − 1)

∑
i∈[n] d̃i (d̃i − 1)

(1 + oP (1)), (4.17)

where we have used ν̃n = λ(1 + oP (1)) in the last step. Now, by Assumption 1 and
Lemma 5, it is possible to choose K0 large such that for all K ≥ K0

νK
n < 1 with high probability.

This yields

Ẽ

[ ∑

k∈C K (V ∗,K
n )

(d̃k − 1)

]

≤ Ẽ[d̃V ∗,K
n

− 1]
(
1 +

Ẽ[d̃
V∗,Kn

]
(1− νK

n )
+ oP (1)

)
, (4.18)

where d̃
V∗,Kn

is the degree of the vertex V ∗,K
n in Gn(pc(λ)). The proof of (4.18) uses

path-counting techniques for the configuration model [40]. Since the arguments are
adaptations of [27], we move the proof to Appendix A.1. We now use Lemma 5 to
compute the asymptotics of the different terms in (4.18). Note that Ẽ[d̃

V∗,Kn
] ≤ (1 +

oP (1))
∑

i>K d̃
2
i /�̃n = OP (1), and

Ẽ[d̃
V∗,Kn

− 1] =
∑

i>K d̃i (d̃i − 1)

�̃n −∑K
i=1 d̃i

= (1 + oP (1))
pn
∑

i>K di (di − 1)
∑

i∈[n] di
P−→ 0,

in the iterated limit limK→∞ limn→∞. Thus the proof of Lemma 8 follows. ��
Proof of Proposition 4. Recall that C K

(i) denotes the i-th largest component in G K
n and

DK
i =∑k∈C K

(i)
d̃k . Denote bySK , the squared sum of the component sizes after remov-

ing components containing 1, . . . , K . Note that

∑

i>K

|C(i)|2 =
∑

i≥1
|C(i)|2 −

K∑

i=1

|C(i)|2 ≤ SK ≤
∑

i≥1
|C K

(i)|2 ≤ 4
∑

i≥1
DK
i

∑

k∈C K
(i)

(d̃k − 1),

(4.19)

where the last step uses d ′i ≤ d̃i and the fact that for any connected component C with
total degree D, we must have D − |C | ≥ |C |/4. The last fact can be seen for |C | ≥ 2
by D − |C | ≥ 2(|C | − 1) − |C | = |C | − 2 ≥ |C |/4, and for |C | = 1 and D ≥ 2,
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this follows trivially. Note here that we do not consider components with |C | = 1 and
D = 0; see Remark 2. Thus it is enough to bound the final term in (4.19). Now,

P̃

(∑

i≥1
DK
i

∑

k∈C K
(i)

(d̃k − 1) > εn2ρ
)

≤ 1

εn2ρ
Ẽ

[∑

i≥1
DK
i

∑

k∈C K
(i)

(d̃k − 1)

]

= �̃n −∑i∈[K ] d̃ i
εn2ρ

Ẽ

[ ∑

k∈C K (V ∗,K
n )

(d̃k − 1)

]

.

(4.20)

Thus, the proof follows using Lemma 8, and the fact that �̃n −∑i∈[K ] d̃ i ≤ �̃n =
OP (n2ρ). ��
The next proposition shows that, in Algorithm 3, the large components are explored
before timeΘ(nρ). LetC ≥T

max denote the size of the largest component whose exploration
is started by Algorithm 3 after time Tnρ , and let D≥T

max =
∑

k∈C≥T
max

d̃k .

Proposition 5. Under Assumption 1, for any ε > 0,

lim
T→∞ lim sup

n→∞
P
(|C ≥T

max| > εnρ
) = 0 and lim

T→∞ lim sup
n→∞

P
(
D≥T
max > εnρ

) = 0.

Proof. Define A n
K ,T := {all the vertices of [K ] are explored before time Tnρ}. Let C K

(i)

denote the i-th largest component of G K
n so that

P̃
(|C ≥T

max| > εnρ, A n
K ,T

) ≤ P̃

(∑

i≥1

∣
∣C K

(i)

∣
∣2 > ε2n2ρ

)

≤ P̃

(∑

i≥1
DK
i

∑

k∈C K
(i)

(d̃k − 1) >
ε2n2ρ

4

)

.

(4.21)

The final term tends to zero in probability in the iterated limit limK→∞ lim supn→∞, as
shown in (4.20). Next, using the fact that d̃ j nρ = Θ(�̃n), we get

P̃
(
(A n

K ,T )
c) = P̃

(∃ j ∈ [K ] : j is not explored before Tnρ
)

≤
K∑

j=1

P̃
(
j is not explored before Tnρ

) ≤
K∑

j=1

(

1− d̃ j

�̃n − Θ(Tnρ)

)Tnρ

≤
K∑

j=1

e−CT ,

(4.22)

where C > 0 is a constant that may depend on K , and the final step holds with high
probability. Now, by (4.21),

P̃
(|C ≥T

max| > εnρ
) ≤ P̃

(∑

i≥1

∣
∣C K

(i)

∣
∣2 > ε2n2ρ

)

+ P̃
(
(A n

K ,T )
c) .

The proof for P
(|C ≥T

max| > εnρ
)

follows by taking the iterated limit
limK→∞ limT→∞ lim supn→∞.
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For the upper bound on P̃
(
D≥T
max > εnρ, A n

K ,T

)
, note that

P̃
(
D≥T
max > εnρ, |C ≥T

max| ≤ εnρ/2, A n
K ,T

) ≤ P̃
(
D≥T
max(D

≥T
max − |C ≥T

max|) > ε2n2ρ/2, A n
K ,T

)

≤ P̃

(∑

i≥1
DK
i

∑

k∈C K
(i)

(d̃k − 1) >
ε2n2ρ

2

)

.

Hence, the proof for P
(
D≥T
max > εnρ

)
also follows. ��

4.2.3. Counting process that counts surplus Let Nλ
n (k) be the number of surplus edges

discovered up to time k and N̄
λ

n(u) = Nλ
n (�unρ�). Below, we prove the asymptotics for

the process N̄λ
n :

Lemma 9. Under Assumption 1, as n → ∞,

(S̄n, N̄λ
n)

d−→ (Sλ∞,Nλ),

where Nλ is defined in (2.6).

Proof. We write Nλ
n (l) = ∑l

i=2 ξi , where ξi = 1{Vi=Vi−1}. Let Ai denote the number
of active half-edges after stage i while implementing Algorithm 3. Note that

P̃ (ξi = 1 | Fi−1) = Ai−1 − 1

�̃n − 2i − 1
= Ai−1

�̃n
(1 + O(i/�̃n)) + O(�̃

−1
n ),

uniformly for i ≤ Tnρ for any T > 0. By Lemma 5, �̃n = �n pc(λ)(1 + oP (1)) =
n2ρλμ2/

∑
i θ

2
i (1 + oP (1)). Therefore, the instantaneous rate of change of the re-scaled

process N̄λ at time t , conditional on the past, is

nρ A�tnρ�
n2ρ λμ2

∑
i≥1 θ2i

(1 + oP(1)) + oP(1) =
∑

i≥1 θ2i

λμ2 refl(S̄n(t)) (1 + oP(1)) + oP(1).

(4.23)

Since the reflection of a process is continuous in Skorohod J1-topology (see [56, Lemma

13.5.1]), we can use Theorem 5 to conclude that refl(S̄n)
d−→ refl(Sλ∞), so that the com-

pensator of N̄λ
n converges. The convergence of the compensators is usually enough for

convergence of Poisson processes. Indeed, for Erdős-Rényi random graphs [4] or rank-
one inhomogeneous random graphs [11,12], showing the convergence of compensators
suffices using [22, Theorem 1]. This is because the surplus edges can be added indepen-
dently after we have observed thewhole exploration process. However, this is not true for
the configuration model because the surplus edges occur precisely at places with jumps
−2. This difficulty was circumvented in [27] for the τ ∈ (3, 4) regime. In Appendix A.2,
we adapt the arguments from [27] in the τ ∈ (2, 3) setting, which completes the proof
of Lemma 9. ��
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4.2.4. Convergence of the component sizes and the surplus edges. We first show the
asymptotics of the component sizes and surplus edges of Gn(pc(λ)) generated by Algo-
rithm 1. Recall that SP(C ) denotes the number of surplus of C . The following lemma
states the tightness of the vector of component sizes and surplus edges of Gn(pc(λ)) in
the U

0
↓-topology:

Lemma 10. For any ε > 0,

lim
δ→0

lim sup
n→∞

P

( ∑

i :|C(i)|≤δnρ

|C(i)| × SP(C(i)) > εnρ

)

= 0.

The proof of Lemma 10 is an adaptation of [27, Proposition 19] in this setting. We
provide a proof of Lemma 10 in Appendix A.3. Next, let Z′

n(λ) denote the vector
(n−ρ |C(i)|,SP(C(i)))i≥1, ordered as an element in U

0
↓. Below, we prove the scaling limit

of Z′
n(λ):

Proposition 6. Under Assumption 1, as n → ∞,

Z′
n(λ)

d−→ Z(λ) (4.24)

with respect to the U
0
↓ topology, where Z(λ) is defined in (2.7).

Proof. Recall from Proposition 2 that the limiting process Sλ∞ is good in the sense
that all the conditions in Definition 1 are satisfied. Also, Proposition 5 ensures that the
additional restriction on the pre-limit process in Proposition 1 is satisfied. Thus, using
Theorem 5, an application of Proposition 1 yields the finite-dimensional convergence
in (4.24). Finally, the convergence in the U

0
↓-topology follows using the tightness in

Lemma 10. ��
We now provide a proof of Theorem 1:

Proof of Theorem 1. Throughout the proof, we ignore the λ in a predefined notation to
simplify writing. We will work under the coupling under which Proposition 3 holds,
i.e., Gn(pc(1 − εn)) ⊂ CMn(d, pc) ⊂ Gn(pc(1 + εn)), where εn → 0. We write
C−

(i) , C(i) and C +
(i) to denote the i-th largest component of Gn(pc(1 − εn)), CMn(d, pc)

and Gn(pc(1 + εn)) respectively, and let Z−
n , Zn and Z+

n be the corresponding vectors,
rearranged as elements of U

0
↓. Then,

Z+
n and Z−

n have identical scaling limits as Proposition 6.

Let dU denote the metric for the U
0
↓ topology defined in (2.1). The proof is complete if

we can show that, as n → ∞,

dU(Z+
n ,Zn)

P−→ 0. (4.25)

First, we prove that, for any K ≥ 1,

lim
n→∞P(C−

(i) ⊂ C +
(i), ∀i ≤ K ) = 1. (4.26)

If C−
(1) is not contained in C +

(1), then |C−
(1)| ≤ |C +

( j)| for some j ≥ 2, which implies that
|C−

(1)| ≤ |C +
(2)|. Suppose that there is a subsequence (n0k)k≥1 ⊂ N along which

lim
n0k→∞P(|C−

(1)| ≤ |C +
(2)|) > 0. (4.27)
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If (4.27) yields a contradiction, then (4.26) is proved for K = 1. To this end, first note
that (n−ρ(|C−

(i) |, |C +
(i)|)i≥1)n≥1 is tight in (�2↓)

2. Thus taking a subsequence (nk)k≥1 ⊂
(n0k)k≥1 along which the random vector converges, it follows that

n−ρ
k (|C−

(i) |, |C +
(i)|)i≥1 d−→ (γi , γ̄ i )i≥1 in (�2↓)

2,

where (γi )i≥1
d= (γ̄ i )i≥1. Thus, along the subsequence (nk)k≥1,

lim
nk→∞P(|C−

(1)| ≤ |C +
(2)|) = P(γ1 ≤ γ̄ 2). (4.28)

��
Fact 2. For all i ≥ 1, γi = γ̄ i almost surely.

Proof. Under the coupling in Proposition 3,
∑

j≤i |C−
( j)| ≤

∑
j≤i |C +

( j)| and therefore
P(
∑

j≤i γ j ≤∑ j≤i γ̄ j ) = 1, for each fixed i ≥ 1. In particular, γ1 ≤ γ̄ 1 almost surely.
But, since γ1, γ̄ 1 have the same distribution, it must be the case that γ1 = γ̄ 1 almost
surely. Inductively, we can prove that γi = γ̄ i almost surely. ��
Thus, using Fact 2, (4.28) reduces to

lim
nk→∞P(|C−

(1)| ≤ |C +
(2)|) = P(γ1 ≤ γ2) = P(γ1 = γ2) = 0,

(4.29)

where the last equality follows from Definition 1(f) and Proposition 2. Note that (4.29)
contradicts (4.27), and thus (4.26) follows for K = 1. For K ≥ 2, we can use a similar
argument to show that, with high probability, ∪i≤KC

−
(i) ⊂ ∪i≤KC +

(i). If both C
−
(1) and C

−
(2)

are contained in C +
(1), then |C +

(1)| ≥ |C−
(1)| + |C−

(2)|, which occurs with probability tending
to zero. This follows using Fact 2 and P(γ̄ 1 ≥ γ1 + γ2) = P(γ1 ≥ γ1 + γ2) = 0. Thus,
C−

(2) ⊂ C +
(2) with high probability and we can use similar arguments to conclude (4.26)

for i ≤ K .
Next, we show that, for any K ≥ 1,

lim
n→∞P

(
C−

(i) ⊂ C(i) ⊂ C +
(i), ∀i ≤ K

) = 1. (4.30)

If C(1) is not contained in C +
(1), then |C(1)| ≤ |C +

(2)|. However, since |C−
(1)| ≤ |C(1)|, it

follows that |C−
(1)| ≤ |C +

(2)|. Now, one can repeat identical argument as in (4.26) to prove
that C(i) ⊂ C +

(i) for all i ≤ K with high probability. Moreover, since Gn(pc(1− εn)) ⊂
CMn(d) and C−

(i) ⊂ C +
(i) for all i ≤ K with high probability, it must also be the case that

C−
(i) ⊂ C(i) ⊂ C +

(i) for all i ≤ K with high probability. Thus we conclude (4.30). Finally,
since Z−

n and Z+
n have the same distributional limit, it follows using (4.26) that, for all

i ≤ K ,

|C +
(i)| − |C−

(i) | = oP (nρ) and SP(C +
(i)) − SP(C−

(i) )
P−→ 0.

Thus, (4.30) yields

∣
∣|C +

(i)| − |C(i)|
∣
∣ = oP (nρ) and

∣
∣SP(C +

(i)) − SP(C(i))
∣
∣ P−→ 0.

Moreover, since both (Z−
n )n≥1 and (Z+

n)n≥1 are tight in U
0
↓, it also follows that (Zn)n≥1

is tight in U
0
↓. Thus (4.25) follows and the proof of Theorem 1 is now complete. ��
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4.3. Analysis of the diameter. In this section, we investigate the asymptotics of the
diameter of Gn(pc(λ)). As in the proof of Theorem 1, an application of Proposition 3
yields the diameter of CMn(d, pc(λ)) and completes the proof.

Proof of Theorem 2. First let us fix λ < 1 and use path counting. Let Pl denote the
number of paths of length l inGn(pc(λ)). Since λ < 1, we have that ν̃n = λ(1+oP (1)) <

1 with high probability. Now, an application of [40, Lemma 5.1] yields that for all l ≥ 1,
Ẽ[Pl ] ≤ �̃n(ν̃n)

l−1. Thus, on the event {ν̃n < 1}, for any K ≥ 1,

P̃(diam(Gn(pc(λ))) > K ) ≤
∑

l>K

Ẽ[Pl ] ≤ �̃n(ν̃n)
K

1− ν̃n
(4.31)

Now, taking K = C log n for some large constant C > 0 gives the desired log n bound
on the diameter of Gn(pc(λ)) with high probability for λ < 1.

To extend to the case λ ≥ 1, we delete R highest-degree vertices to obtain a new graph
G R
n . Using (4.17), G R

n is a configuration model with the criticality parameter νR
n < 1

with high probability. Thus the above result applies for G R
n . However, after putting back

the R deleted vertices, the diameter of G >R can increase by at most a factor of R. This
implies the log n bound on the diameter of Gn(pc(λ)) with high probability for λ ≥ 1.
Finally, as remarked in the beginning of this section, the proof of Theorem 2 follows by
invoking Proposition 3. ��

5. Near-Critical Behavior

Finally we consider the near-critical behavior for CMn(d, p) in this section. The analysis
for the barely subcritical and supercritical regimes are given separately in Sects. 5.1 and
5.2 respectively.

5.1. Barely-subcritical regime. In this section, we analyze the barely-subcritical regime
(pn 
 pc) for percolation and complete the proof of Theorem 3. Recall the exploration
process from Algorithm 3 on the graph Gn(pn), starting with vertex j . Let C ( j, pn)
denote the connected component in Gn(pn) containing vertex j . We will use the same
notation for the quantities defined in Sect. 4.2.1, but the reader should keep in mind that
we now deal with different pn values. We avoid augmenting pn in the notation for the
sake of simplicity. Consider exploring the graph using Algorithm 3 but starting from
vertex j . The exploration process S j

n is given by

S j
n (0) = d̃ j , S j

n (l) = d̃ j +
∑

i :i �= j

d̃ iI
n
i (l) − 2l.

Thus the exploration process starts from d̃ j now. Now, for any u > 0, as n → ∞,

sup
u≤t

(nα pn)
−1
∣
∣
∣
∑

i :i �= j

I n
i (unα pn) − unα pn

∣
∣
∣

P−→ 0.
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This follows using identical arguments as in Lemma 7, and thus is skipped here. Consider

the re-scaled process S̄ j
n defined as S̄

j
n(t) = (nα pn)−1S j

n (�tnα pn�). Then,

S̄
j
n(t) = (nα pn)

−1d̃ j + (nα pn)
−1
∑

i :i �= j

d̃ iI
n
i (tnα pn) − 2t + oP (1)

= θ j + (nα pn)
−1
∑

i :i �= j

(d̃ i − 1)I n
i (tnα pn) − t + oP (1).

Recall that Ẽ is the conditional expectation conditionally on (d̃ i )i∈[n]. Now, since the
vertices are explored in a size-biased manner with the sizes being (d̃i/�̃n)i∈[n], for any
t ≥ 0,

Ẽ

[
1

nα pn

∑

i :i �= j

(d̃i − 1)I n
i

(�tnα pn�
)
]

≤ tnα pn

nα pn �̃n

∑

i∈[n]
d̃ i (d̃i − 1) = oP (1),

where the first inequality uses (4.5), and the final step follows from Lemma 5. Conse-
quently, S̄ j

n converges in probability to the deterministic process (θ j − t)t∈[0,θ j ]. Thus

# edges in C ( j, pn)
P−→ θ j . (5.1)

Next, the proof above shows that maxl≤θ j nα pn S
j
n (l) ≤ 2θ j nα pn with high probability.

Thus, the probability of creating a surplus edge at each step is at most 2θ j nα pn/�̃n . This
implies that the probability of creating at least one surplus edge before θ j nα pn is at most
2θ2j n

2α p2n/�̃n = OP (n2α−1 pn) = oP (1). Together with (5.1) yields

(nα pn)
−1|C ( j, pn)| P−→ θ j , and P(SP(C ( j, pn)) = 0) → 1.

From (5.1), we can also conclude that limn→∞P(i ∈ C ( j)) = 0 for all i, j ≥ 1 and
i �= j , since, if i ∈ C ( j), then the number of edges in C ( j, pn) is at least d̃ i + d̃ j =
nα pn(θi + θ j ). Thus, C (i, pn) and C ( j, pn) are disjoint with high probability.

To conclude Theorem 3, we show that the rescaled vector of ordered component sizes
is tight in �2↓. This tightness also yields that, for each fixed j ≥ 1,

|C ( j, pn)| = |C( j)(pn)|, with high probability.

To show �2↓-tightness, it is enough to show that, for any ε > 0,

lim
K→∞ lim sup

n→∞
P

(∑

i>K

|C(i)(pn)|2 > εn2α p2n

)

= 0.

This can be concluded using identical arguments as in the proof of Proposition 4 above.
The proof of Theorem 3 is now complete.
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5.2. Barely-supercritical regime. In this section, we provide the proof of Theorem 4.
Let pn = λnn−η, where λn → ∞ since pn � pc(λ). Our main tool here is a general
result [38, Theorem 5.4], that provides asymptotics of the component sizes, if one can
verify certain properties of an associated exploration process. Using Proposition 3, it
is enough to prove Theorem 4 for the graph Gn(pn) generated by Algorithm 1. Let d̃
denote the degree sequence obtained after performing Algorithm 1 (S1). Thus, Gn(pn)
is distributed as CMn(d̃). We will verify Assumptions (B1)–(B8) from [38] on the graph
Gn(pn), which allows us to conclude Theorem 4 from [38, Theorem 5.4]. We start by
describing the following exploration process on Gn(pn) from [38, Sect. 5.1]:

Algorithm 4. (S0) Associate an independent Exponential(1) clock ξe to each half-edge
e. Any half-edge can be in one of the states among sleeping, active, and dead. Initially
at time 0, all the half-edges are sleeping. Whenever the set of active half-edges is empty,
select a sleeping half-edge e uniformly at random among all sleeping half-edges and
declare it to be active. If e is incident to v, then declare all the other half-edges of v to be
active as well. The process stops when there is no sleeping half-edge left; the remaining
sleeping vertices are all isolated and we have explored all other components.

(S1) Pick an active half-edge (which one does not matter) and kill it, i.e., change its
status to dead.

(S2) Wait until the next half-edge dies (spontaneously). This half-edge is paired to the
one killed in the previous step (S1) to form an edge of the graph. If the vertex
it belongs to is sleeping, then we declare this vertex awake and all of its other
half-edges active. Repeat from (S1) if there is any active half-edge; otherwise from
(S0).

Denote the number of living half-edges upto time t by Ln(t). Let Ṽ n,k(t) denote the
number of sleeping vertices of degree k such that all the k associated exponential clocks
ring after time t . Define

Ṽ n(t) =
∞∑

k=1

Ṽ n,k(t), S̃n(t) =
∞∑

k=1

kṼ n,k(t), Ãn(t) = Ln(t) − S̃n(t). (5.2)

We show that Assumptions (B1)–(B8) from [38] hold with

ζ = κ
1

3−τ , γn = βn = p
τ−2
3−τ
n , ψ(t) = κtτ−2 − t, ĝ(t) = t, ĥ(t) = κtτ−2 + t,

where we recall the definition of κ from (2.10). The ζ in our notation corresponds to τ

in the notation of [38, Theorem 5.4]. We have used ζ instead of τ , since in our paper τ

denotes the power-law exponent.
We first find the number of vertices in Gn(pn). Let ñ := #{i : d̃ i ≥ 1}. Recall that

Vn is a vertex chosen uniformly at random from [n] and let Dn = dVn be the degree of
Vn in CMn(d). Note that

E[ñ] = E

[ ∑

i∈[n]
1{

d̃i≥1
}

]

=
∑

i∈[n]

(
1− (1− pn)

di
) = nE[1− (1− pn)

Dn ]. (5.3)
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Using that 1− (1− x)k ≤ kx for any k ≥ 1 and x ∈ (0, 1), we have E[ñ] ≤ nE[Dn].
Also, using 1− (1− x)k ≥ kx − k2x2/2 for any kx < 1, k ≥ 1 and x ∈ (0, 1),

E[1− (1− pn)
Dn ] ≥ E[1− (1− pn)

Dn1{pn Dn<1}]
≥ pnE[Dn1{pn Dn<1}] − p2n

2
E[D2

n1{pn Dn<1}]

= pnE[Dn] − pnE[Dn1{pn Dn≥1}] −
p2n
2
E[D2

n1{pn Dn<1}].
Using Assumption 2 (ii), (Dn)n≥1 is uniformly integrable and thus E[Dn1{pn Dn≥1}] =
o(1), where in the last step we have used that pn 
 1. For the third term, since (Dn)n≥1
is uniformly integrable, we have that (Dn)n≥1 is also tight. Thus, pnDn

P−→ 0. Using the

uniform integrability of (Dn)n≥1 again together with pnDn1{pn Dn<1} ≤ 1 and pnDn
P−→

0, we conclude thatE[Dn×(pnDn1{pn Dn<1})] → 0. From (5.3), and Assumption 2 (ii),
we now conclude that

E[ñ] = npn(μ + o(1)). (5.4)

Further, using standard concentration inequalities for sums of independent Bernoulli
random variables [42, (2.9), Theorem 2.8], it follows that

P(|ñ −E[ñ]| > log n
√
npn) ≤ 2e−C(log n)2 , (5.5)

for some constant C > 0. In what follows, we will often use (5.4) and (5.5) to replace
ñ by npnμ.

Conditions (B1)–(B4) [38] are straightforward. (B8) follows using maxi∈[n] d̃i =
OP (nα pn) = oP (ñγn). To verify Conditions (B5)–(B7), we first obtain below the
asymptotics of the mean-curve and then show that the processes S̃n , Ṽ n , Ãn remain
uniformly close to their expected curves. These are summarized in the following two
propositions:

Proposition 7. For any fixed u > 0, as n → ∞,

sup
t≤u

∣
∣
∣
∣

1

npnμβn

(
E[S̃n(0)] −E[S̃n(βnt)]

)− ĥ(t)

∣
∣
∣
∣→ 0, (5.6)

sup
t≤u

∣
∣
∣
∣

1

npnμβn

(
E[Ṽ n(0)] −E[Ṽ n(βnt)]

)− ĝ(t)

∣
∣
∣
∣→ 0,

sup
t≤u

∣
∣
∣
∣

1

npnμγn
E[ Ãn(βnt)] − ψ(t)

∣
∣
∣
∣→ 0. (5.7)

Proposition 8. For any fixed u > 0, as n → ∞, all the terms supt≤u |S̃n(βnt) −
E[S̃n(βnt)]|, supt≤u |Ṽ n(βnt)−E[Ṽ n(βnt)]|, and supt≤u | Ãn(βnt)−E[ Ãn(βnt)]| are
oP (npnβn) (and thus oP (npnγn)).

To prove Propositions 7 and 8, we make crucial use of the following lemma:

Lemma 11. For any t > 0, as n → ∞,

E

[ ∑

i∈[n]
d̃ie

−tβn d̃i

]

= (1 + o(1))pne
−tβn

∑

i∈[n]
die

−tβn pndi ,
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E

[ ∑

i∈[n]
e−tβn d̃i1{

d̃i≥1
}

]

= (1 + o(1))
∑

i∈[n]

(
e−tβn pndi − (1− pn)

di
)
. (5.8)

Proof. Note that if X ∼ Bin(m, p), then

E
[
Xe−sX ] = mpe−s(1− p + pe−s)m−1.

Putting m = di , p = pn , and s = tβn , it follows that

E
[
d̃ ie

−tβn d̃i
] = di pne

−tβn
(
1− pn

(
1− e−tβn

))di−1 = (1 + o(1))di pne
−tβn (1− pntβn)

di

= (1 + o(1))di pne
−tβn e−tβn pndi .

(5.9)

To prove (5.8), note that E[e−sX1{X≥1}] = E[e−sX ] − P(X = 0). The proof of (5.8)
now follows similarly. ��
Proof of Proposition 7. Note that, by Lemma 11,

E
[
S̃n(βnt)

] = E

[ ∑

i∈[n]
d̃ie

−tβn d̃i

]

= (1 + o(1))�n pne
−tβnE

[
e−tβn pn D�

n
]
,

E
[
Ṽ n(βnt)

] = E

[ ∑

i∈[n]
e−tβn d̃i1{

d̃i≥1
}

]

= (1 + o(1))n
(
E
[
e−tβn pn Dn − (1− pn)

Dn
])

,

(5.10)

where D�
n has a size-biased distribution with the sizes being (di/�n)i∈[n], and Dn is the

degree of a vertex chosen uniformly at random from [n]. By the convergence of E[Dn]
in Assumption 1,

E[Ṽ n(0)] −E[Ṽ n(βnt)] = (1 + o(1))nE
[
1− e−tβn pn Dn

] = (1 + o(1))tnβn pnμ,

where the asymptotics of nE
[
1− e−tβn pn Dn

]
follows using identical arguments as (5.3).

Further, by using (2.10),

E[S̃n(0)] −E[S̃n(βnt)] = (1 + o(1))�n pnE
[
1− e−tβne−tβn pn D�

n
]

= (1 + o(1))�n pnE[1− (1− tβn + o(βn))e
−tβn pn D�

n ]
= (1 + o(1))�n pn

(
E[1− e−tβn pn D�

n ] + tβn + o(βn)
)

= (1 + o(1))nμpnβn(κt
τ−2 + t + o(1)).

(5.11)

Thus, (5.6) and (5.7) follows. Moreover, Ln(t) is a pure death process, where Ln(0) =∑
i∈[n] d̃i , and the jumps occur at rate Ln(t), and at each jump Ln(t) decreases by 2.

Therefore, E[Ln(t)] = E[Ln(0)]e−2t and consequently, by (5.2) and (5.9),

E[ Ã(βnt)] = �n pn
(
e−2βn t − e−βn tE

[
e−tpnβn D�

n
])

+ o(nβn pn)

= nμpnγn(κt
τ−2 − t) + o(nβn pn).

Thus the proof follows. ��
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Proof of Proposition 8. Let us consider S̃n only; the other inequalities follow using
identical arguments. We will show that

E
[
sup
t≤uβn

|S̃n(t) −E[S̃n(t)]|2
]
= o((npnβn)

2), (5.12)

then an application of Markov’s inequality completes the proof. To prove (5.12), we will
use [38, Lemma 5.15], which says that

E
[
sup
t≤uβn

|S̃n(t) −E[S̃n(t)]|2
]
≤ CE

[ ∑

i∈[n]
d̃2i min{d̃i uβn, 1}

)
]

. (5.13)

Although, [38, Lemma 5.15] was stated under Assumptions (A1)–(A4) of this paper,
this particular proof does not use this assumption. The proof only uses [38, Lemma 4.2].
Indeed, the deductions in (5.62)–(5.65) of [38] does not require any assumption on the
degrees.We skip redoing the proof of (5.13) here. Using the fact that 1−e−x ≥ (1∧x)/3
in (5.13), it follows that

E
[
sup
t≤uβn

|S̃n(t) −E[S̃n(t)]|2
]
≤ CE

[ ∑

i∈[n]
d̃2i
(
1− e−uβn d̃i

)
]

.

Now, using standard concentration inequalities for tails of binomial distributions [42,
Theorem 2.1], for any i ∈ [n],

P(d̃i > 2d1 pn) ≤ Ce−Cd1 pn = Ce−Cnρλn ,

where λn = pnnη → ∞. Therefore maxi∈[n] d̃i ≤ 2d1 pn , almost surely. Thus,

1

(�n pnβn)2
E
[
sup
t≤uβn

|S̃n(t) −E[S̃n(t)]|2
]
≤ C2d1 pn

(�n pnβn)2
E

[ ∑

i∈[n]
d̃i
(
1− e−uβn d̃i

)
]

≤ C2d1 pn�n pn
(�n pnβn)2

E
[
1− e−uβn pn D�

n
]
,

(5.14)

where the last step follows using (5.10). The final term in (5.14) can be shown to be
O(βn) using identical computations as (5.11). Thus,

1

(�n pnβn)2
E
[
sup
t≤uβn

|S̃n(t) −E[S̃n(t)]|2
]
≤ C2d1 pn�n pnβn

(�n pnβn)2
= O(d1/nβn) = O

(
λ
− τ−2

3−τ
n

) = o(1),

since λn → ∞, as n → ∞. Thus the proof follows. ��
Proof of Theorem 4. The proof follows by applying [38, Theorem 5.4]. Propositions 7, 8
verify conditions (B5)–(B7) in [38], and the rest of the conditions are straightforward to
verify. ��
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A. Appendix

A.1. Path counting. Recall the notation from in Sect. 4.2.2. We complete the proof of
(4.18) using path-counting techniques for configuration models from [40, Lemma 5.1].
LetAl(v, k) denote the event that there exists a path of length l from v to k in the graph
G K
n . Also, let Pl denote the number of paths of length l. Notice that

Ẽ

[ ∑

k∈[n]
(d̃k − 1)1{

V ∗,K
n �k

}
∣
∣
∣V ∗,K

n = v

]

≤ d̃v − 1 +
(log n)2∑

l=1

∑

k∈[n]
(d̃k − 1)P̃ (Al(v, k)) + max

k∈[n](d̃k − 1) × n
∑

l≥(log n)2

Ẽ[Pl ].

(A.1)

Let Il(v, k) denote the collection of x = (xi )0≤i≤l such that x0 = v, xl = k and the xi ’s
are distinct. Then, an identical argument to the proof of [40, Lemma 5.1] shows that, for
l = o(n2ρ), the expected number of paths of length exactly l starting from vertex v and
ending at k is given by

∑

x∈Il (v,k)

d ′x0d
′
xl

∏l−1
i=1 d

′
xi (d

′
xi − 1)

(�′n − 1) · · · (�′n − 2l + 1)
≤ d ′v�′n

�′n − 2l + 3
(νK

n )l−1 =
(
1 + OP

( l

�̃n

))
d ′v(νK

n )l−1,

where �′n =∑i∈[n] d ′i . Recall that �′n = �̃n(1 + oP (1)). Thus, the second term in (A.1)
is at most

(log n)2∑

l=1

∑

k∈[n]
(d̃k − 1)

∑

xi �=x j ,∀i �= j

d ′vd ′k
∏l−1

i=1 d
′
xi (d

′
xi − 1)

(�′n − 1) · · · (�′n − 2l + 1)

≤ (1 + oP (1))d̃v

(
1

�̃n

∑

k∈[n]
d ′k(d̃k − 1)

) ∞∑

l=1

(νK
n )l−1

≤ (1 + oP (1))d̃v

(
1

�̃n

∑

k>K

d̃k(d̃k − 1)

) ∞∑

l=1

(νK
n )l−1 ≤ (1 + oP (1))

d̃vE[d̃V ∗,K
n

− 1]
1− νK

n
,

where in the one-but-last step we have used d ′i = 0 for i ≤ K , d ′i ≤ d̃ i for i > K and
νK
n < 1. The third term in (A.1) is oP (1) uniformly over v by (4.31). Thus the proof of
(4.18) follows. ��

A.2. Convergence of process tracking surplus. In this section, we complete the proof of
Lemma 9. We first argue that, for any fixed u > 0,

(
N̄

λ

n(u)
)
n≥1 is tight inR+. (A.2)

Fix ε > 0. Recall the asymptotics from Lemma 5 which will be used throughout the
proof. Also, recall that P̃ and Ẽ respectively denote the conditional probability and ex-
pectation conditionally on (d̃i )i∈[n]. To simplify writing, when we write bounds on the
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conditionals probabilities P̃ and Ẽ, we always implicitly assume that the bounds hold
with high probability. Recall from (4.23) that the compensator of N̄λ

n is approximately

proportional to refl(S̄n)
d−→ refl(Sλ∞), where the distributional convergence follows using

Theorem 5 and the continuity of the reflection map (see [56, Lemma 13.5.1]). We write
Ai denote the number of active half-edges after stage i while implementing Algorithm 3.
Thus n−ρ A�tnρ� = refl(S̄n(t)). Using the fact that the supremum of a process is con-
tinuous with respect to the Skorohod J1-topology [56, Theorem 13.4.1], we can choose
K ≥ 1 large enough so that for all sufficiently large n

P̃
(

sup
i≤�unρ�

Ai > Knρ
)

< ε. (A.3)

Fix times 0 < l1 < · · · < lm ≤ �unρ�, and let A (l1, . . . , lm) denote the event that the
surplus edges appear at times l1, . . . , lm and Al j−1 ≤ Knρ for all j ∈ [m]. Then,

P̃

( �unρ�∑

i=2

ξi ≥ m, and sup
i≤�unρ�

Ai ≤ Knρ

)

≤
∑

0<l1<···<lm≤�unρ�
P̃(A (l1, . . . , lm))

≤
∑

0<l1<···<lm≤�unρ�
Ẽ
[
P̃(surplus created at lm |Flm−1)1{Alm−1≤Knρ}1A (l1,...,lm−1)

]

≤ Knρ

�̃n − 2 �unρ� + 1

∑

0<l1<···<lm≤�unρ�
P̃(A (l1, . . . , lm−1)).

Continuing the iteration in the last step, it follows that with high probability

P̃

( �unρ�∑

i=2

ξi ≥ m, and sup
i≤�unρ�

Ai ≤ Knρ

)

≤ (1 + o(1))
(Knρ

�̃n

)m (�unρ�)m
m! ,(A.4)

where (n)m = n(n−1) . . . (n−m+1). The last term in (A.4) tends to zero in the iterated
limit limm→∞ lim supn→∞. An application of (A.3) now yields (A.2).

Next, let S′n be the process obtained by discarding the points where a surplus edgewas
added.More precisely, if ζl = Sn(l)−Sn(l−1), thenwe can define S′n(l) = S′n(l−1)+ζ ′l ,
where

ζ ′l = ζkl , with kl = inf{ j > kl−1 : ζ j �= −2}, k0 = 0.

Let S̄
′
n(t) = n−ρS′n(�tnρ�). Also, let dJ1,T denote the metric for the Skorohod J1-

topology on D([0, T ],R). We claim that, for any T > 0 and ε > 0,

lim
n→∞P

(
dJ1,T (S̄′n, S̄n) > ε

) = 0. (A.5)

First, let 1 ≤ l1 < · · · < lK ≤ �Tnρ� denote the times where the surplus edges have
occurred. Also, let A be the good event that l j + 1 < l j+1 for all j ≤ K , i.e., none of
the surplus edges occur in consecutive steps. Note that

P̃
(
A c

⋂{
sup

i≤�Tnρ�
Ai ≤ Knρ

})
≤ Tnρ

(Knρ

�̃n

)2 = O(n−ρ), (A.6)
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and thus using (A.3),P(A c) → 0. We now restrict ourselves onA . Putting l0 = 0 and
lK+1 = �Tnρ� + 1, let

Λn(l) =

⎧
⎪⎨

⎪⎩

l + j − 1 for l j−1 < l < l j ,
l j + j − 1 for l = l j − 0.5,
l j + j for l = l j .

(A.7)

Λn(t) is obtained by linearly interpolating between the values specified by (A.7). Also,
note that the definition of Λn works well onA , and onA c we define Λn(t) = t . Using
(A.2) and (A.6), it immediately follows that

sup
l≤Tnρ

|Λn(l) − l| = oP (nρ). (A.8)

Moreover, the occurrence of each surplus edge causes |S′n(l) − Sn(Λn(l))| to increase
by at most 2, so that

sup
l≤Tnρ

|S′n(l) − Sn(Λn(l))| = oP (nρ). (A.9)

Now, (A.5) follows by combining (A.8) and (A.9). We now proceed to complete the
proof of Lemma 9. Let set up some notation for the rest of the proof. Fix T > 0,
k ≥ 0 and let SurpT = {l1, . . . , lk}, where 1 ≤ l1 < l2 < · · · < lk ≤ �Tnρ� +
k. Let (zl)l≤�Tnρ�+k be a sequence of integers such that zli = −2 and zl ≥ −1 for
l /∈ {l1, . . . , lk}. Thus (zl)l≤�Tnρ�+k represents a sample path of Sn which has explored
k surplus edges, and SurpT is the set of times when surplus edges are found. Next,
(z′l)l≤�Tnρ� denote the sequence obtained from (zl)l≤�Tnρ�+k by deleting the−2’s. Thus,
(z′l)l≤�Tnρ� corresponds to a sample path of S′n . Recall that ζl = Sn(l) − Sn(l − 1). Let
ωn → ∞ sufficiently slowly. Thus,

P̃(Nλ
n (
⌊
Tnρ

⌋
+ k) = k|(S′n(l))l≤�Tnρ� = (z′l)l≤�Tnρ�, Nλ

n (
⌊
Tnρ

⌋
+ k) ≤ ωn)

=
∑

1≤l1<···<lk≤Tnρ

P

(

surplus occurs only at times l1, . . . , lk

∣
∣
∣
∣

(
S′n(l)
)
l≤Tnρ=(z′l )l≤Tnρ ,

Nλ
n (�Tnρ�+k)≤ωn

)

=
∑

1≤l1<···<lk≤Tnρ

P̃(ζl = zl , for all 1 ≤ l ≤ �Tnρ� + k)

P̃(
(
S′n(l)

)
l≤Tnρ = (z′l)l≤Tnρ , Nλ

n (�Tnρ� + k) ≤ ωn)
. (A.10)

Define m1 = {i ∈ [n] : di = z1 + 2}, and for l /∈ SurpT , we denote ml = #{i ∈
[n] : di = zl + 2} − #{ j < l : z j = zl}. Next, let al denote the number of active
half-edges at time l when the exploration process takes the path (zl)l≤�Tnρ�+k , and
a′l = S′n(l) −min j<l S′n( j). Now,

P̃(ζl = zl , ∀l ≤ ⌊Tnρ
⌋
+ k) =

∏
l /∈SurpT ml ×∏k

j=1(al j−1 − 1)

(�̃n − 1)(�̃n − 3) . . . (�̃n − 2 �Tnρ� − 2k + 1)

=
∏

l /∈SurpT ml ×∏k
j=1(al j−1 − 1)

(�̃n − 1) . . . (�̃n − 2 �Tnρ� + 1)
× (1 + oP (1))

k∏

j=1

a′l j−1

�̃
k
n

, (A.11)
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where the oP (1) term above is uniform over k ≤ ωn = log n. Thus,

(A.10) = (1 + o(1))

∑
1≤l1<···<lk≤�Tnρ�+k

∏k
j=1

a′l j−1

�̃
k
n

∑ωn
r=0

∑
1≤l1<···<lr≤�Tnρ�+r

∏r
j=1

a′l j−1

�̃
r
n

=: (1 + o(1))
βn,k

∑∞
r=0 βn,r

,

where βn,r = 0 for r > ωn . We write μ̃ = λμ2/
∑

i θ
2
i , so that �̃n = μ̃n2ρ(1 + oP (1)).

Now, using refl(S̄′n)
d−→ refl(Sλ∞), it follows that

(
(βn,r )r≥0, (S̄′n(u))u≤T

)
d−→
(( 1

r !
( 1

μ̃

∫ T

0
refl(Sλ∞(u))du

)r)

r≥0, (S
λ∞(u))u≤T

)

, (A.12)

where the convergence of (βn,r )r≥0 holds with respect to the product topology onR∞.
Next, let us ensure that

∑∞
r=0 βn,r in (A.10) converges to the desired quantity. To this

end, consider a probability space where the convergence of (A.12) holds almost surely.
On this space, supl≤Tnρ+k refl(S′n(l)) ≤ 2(supl≤Tnρ+k S

′
n(l) + ωn) =: Xn(T ), and thus

βn,r ≤ (Tnρ + ωn)
r

r !
Xn(T )r

�̃
r
n

.

Since n−ρ supl≤Tnρ+k S
′
n(l) converges, an application of Dominated Convergence The-

orem yields that

∑

r≥0
βn,r

a.s.−→
∑

r≥0

1

r !
( 1

μ̃

∫ T

0
refl(Sλ∞(u))du

)r = exp

(
1

μ̃

∫ T

0
refl(Sλ∞(u))du

)

.

(A.13)

Next, for bounded continuous functions φ1 : D([0, T ],R) → R and φ2 : N → R,

E
[
φ1
((
S̄
′
n(u)

)
u≤T

)
φ2(N̄

λ

n(T ))
]

= E
[
φ1
((
S̄
′
n(u)

)
u≤T

)
φ2(N̄

λ

n(T ))1{Nλ
n (�Tnρ�+k)≤ωn}

]
+ o(1)

= o(1) +E

[

φ1
((
S̄
′
n(u)

)
u≤T

)
1{Nλ

n (�Tnρ�+k)≤ωn} × (1 + o(1))

∑
k≥0 φ2(k)βn,k
∑

r≥0 βn,r

]

= o(1) +E

[

φ1
((
S̄
′
n(u)

)
u≤T

)×
∑

k≥0 φ2(k)βn,k
∑

r≥0 βn,r

]

→ E
[
φ1
((
Sλ∞(u)

)
u≤T

)
φ2(N

λ(T ))
]
,

where Nλ(T ), conditionally on (Sλ∞(u))u≤T , is distributed as Poisson
( 1
μ̃

∫ T
0 refl(Sλ∞(u))du). We have used (A.2) in the third step, and the final step follows

by combining (A.12) and (A.13). Hence, we have shown that, for any T > 0,
((
S̄
′
n(u)

)
u≤T , N̄

λ

n(T )
)

d−→
((
Sλ∞(u)

)
u≤T , Nλ(T )

)
. (A.14)

Next, let Un
1 < Un

2 < ... denote the location of surplus edges in the process Sn . Then,
using (A.11) yields

P̃
(
Un

j = l j , for all j ∈ [k]
∣
∣
∣
(
S̄
′
n(u)

)
u≤T , N̄

λ

n(T ) = k
)

= (1 + o(1))

1

�̃
k
n

∏k
j=1(Al j − 1)

∑
1≤l ′1<···<l ′k≤�Tnρ�+k 1

�̃
k
n

∏k
j=1(Al ′j − 1)

.
(A.15)
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From this, it can be seen that the law of n−ρ(Un
j ) j∈[k], conditionally on (S̄

′
n(u))u≤T ,

and N̄
λ

n(T ) = k, converges to the order-statistics of k i.i.d random variables with den-

sity 1{u∈[0,T ]}refl(Sλ∞(u))
∫ T
0 refl(Sλ∞(u))du

. This shows that the location of the occurrence of surplus edges,

conditionally on (S̄
′
n(u))u≤T , converges in distribution to the location of the points of

the Poisson process (2.6) on [0, T ] conditionally on
(
Sλ∞(u)

)
u≤T . Convergence of the

total number of surplus edges created, conditionally on (S̄
′
n(u))u≤T , is given by (A.14).

Thus combining (A.14) and (A.15), it follows that

((
S̄
′
n(u)

)
u≤T ,

(
N̄

λ

n(u)
)
u≤T

)
d−→
((
Sλ∞(u)

)
u≤T ,

(
Nλ(u)

)
u≤T

)
.

Now, an application of (A.5) completes the proof of Lemma 9. ��

A.3. Tightness of component sizes and surplus. In this section, we prove Lemma 10.
Let V ∗

n denote a vertex chosen in a size-biased manner with sizes being (d̃ i )i∈[n], in-
dependently of the graph CMn(d). Let C (V ∗

n ) denote the component containing V ∗
n ,

D(V ∗
n ) = ∑

k∈C (V ∗
n ) d̃k , and Di = ∑

k∈C(i)
d̃k . Since component sizes corresponding

to the components having one vertex and no edges is zero by our convention, |C(i)| ≤ Di
for all i . Thus, it is enough to show that, for any ε > 0,

P̃

( ∑

i :Di≤δnρ

Di × SP(C(i)) > εnρ

)
P−→ 0,

in the iterated limit limδ→0 lim supn→∞. The following estimate will be our crucial
ingredient. We first prove Lemma 10 using Lemma 12, and the proof of Lemma 12 will
come after that.

Lemma 12. Assume that λ < 1. Let δk = δk−0.12. Then, for δ > 0 sufficiently small,
with high probability,

P̃
(
SP(C (V ∗

n )) ≥ K , D(V ∗
n ) ∈ (δK n

ρ, 2δK n
ρ)
) ≤ C

√
δ

nρK 1.1 ,

where C is a fixed constant independent of n, δ, K.

Proof of Theorem 4. First, let us consider the case λ < 1. Fix any ε, δ > 0. Note that

P̃

( ∑

Di≤δnρ

DiSP(C(i)) > εnρ

)

≤ 1

εnρ
Ẽ

[ ∞∑

i=1

DiSP(C(i))1{|Di≤δnρ }
]

= �̃n

εnρ
Ẽ
[
SP(C (V ∗

n ))1{|C (V ∗
n )|≤δnρ }

]

= �̃n

εnρ

∞∑

k=1

∑

i≥log2(1/(k0.12δ))
P̃
(
SP(C (V ∗

n )) ≥ k, |C (V ∗
n )| ∈ (2−(i+1)k−0.12nρ, 2−i k−0.12nρ ])

≤ C

ε

∞∑

k=1

1

k1.1
∑

i≥log2(1/(k0.12δ))
2−i/2 ≤ C

ε

∞∑

k=1

√
δ

k1.04
= O(

√
δ/ε),
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where the last-but-second step follows from Lemma 12, and the inequality holds with
high probability. The proof of Lemma 10 now follows for the λ < 1 case.

Now consider the case λ > 1. Fix a large integer R ≥ 1 such that λ
∑

i>R θ2i < 1.
This can be done because θ ∈ �2↓. Using (4.22), for any δ0 > 0, it is possible to choose
T > 0 such that

lim sup
n→∞

P
(
all the vertices 1, . . . , R are explored within time Tnρ

)
> 1− δ0.

Let Te denote the first time after Tnρ when we finish exploring a component. By Theo-
rem 5, (n−ρTe)n≥1 is a tight sequence. Let G ∗

T denote the graph obtained by removing
the components explored up to time Te. Then, G ∗

T is again a configuration model condi-
tioned on its degrees. Let ν∗n denote the value of the criticality parameter for G ∗. Then
using (4.17) and the fact that λ

∑
i>R θ2i < 1, ν∗n < 1 − ε0 with high probability for

some ε0 > 0. Thus, if C ∗
(i) denotes the i-th largest component of G ∗

T , then the argument
for λ < 1 yields

lim
T→∞ lim

δ→0
lim sup
n→∞

P

( ∑

i :|C ∗
(i)|≤δnρ

|C ∗
(i)| × SP(C ∗

(i)) > εnρ

)

= 0. (A.16)

To conclude the proof for the whole graph (with λ > 1), let

K T
n := {i : |C(i)| ≤ δnρ, |C(i)| is explored before the time Te}.

Note that

∑

i∈K T
n

|C(i)| × SP(C(i)) ≤
( ∑

i∈K T
n

|C(i)|2
)1/2 ×

( ∑

i∈Kn

SP(C(i))
2
)1/2

≤
( ∑

|C(i)|≤δnρ

|C(i)|2
)1/2

× SP(Te),

where SP(t) is the number of surplus edges explored up to time tnρ and we have used
the fact that

∑
i∈K T

n
SP(C(i))

2 ≤ (
∑

i∈K T
n
SP(C(i)))

2 ≤ SP(Te)2. From Lemma 9 and
Proposition 4 we can conclude that for any T > 0,

lim
δ→0

lim sup
n→∞

P

( ∑

i∈K T
n

|C(i)| × SP(C(i)) > εnρ

)

= 0. (A.17)

The proof is now complete for the case λ > 1 by combining (A.16) and (A.17). ��
Proof of Lemma 12. We use a generic constant C to denote a positive constant inde-
pendent of n, δ, K . Consider the graph exploration described in Algorithm 3, but now
we start by choosing vertex V ∗

n at Stage 0 and declaring all its half-edges active. The
exploration process is still given by (4.3) with Sn(0) = d̃V ∗

n
. Note thatC (V ∗

n ) is explored
when Sn hits zero, and the hitting time at zero gives D(V ∗

n )/2. For H > 0, let

γ := inf{l ≥ 1 : Sn(l) ≥ H or Sn(l) = 0} ∧ 2δK n
ρ.
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Here, we let A be the intersection of all the events described in Lemma 5, which are
shown to hold with high probability. Recall that we writeFl = σ(Ii (l) : i ∈ [n])∩A .
Note that

Ẽ [Sn(l + 1) − Sn(l) | Fl ] =
∑

i∈[n]
d̃ i P̃

(
i /∈ Vl , i ∈ Vl+1 |

(
I n

i (l)
)n
i=1

)− 2

=
∑

i /∈Vl
d̃
2
i

�̃n − 2l − 1
− 2 ≤

∑
i∈[n] d̃

2
i

�̃n − 2l − 1
− 2

: = (λ − 1) +
2l + 1

�̃n − 2l − 1
×
∑

i∈[n] d̃
2
i

�̃n
≤ 0,

uniformly over l ≤ 2δK nρ for all small δ > 0 and large n, where the last step uses that
λ < 1. Therefore, {Sn(l)}2δK nρ

l=1 is a super-martingale. The optional stopping theorem
now implies

Ẽ
[
d̃V ∗

n

]
≥ Ẽ

[
Sn(γ )

] ≥ HP̃ (Sn(γ ) ≥ H) .

Thus,

P̃ (Sn(γ ) ≥ H) ≤ Ẽ[dV ∗
n
]

H
.

Put H = nρK 1.1/
√

δ. To simplify the writing, we write Sn[0, t] ∈ A to denote that
Sn(l) ∈ A, for all l ∈ [0, t]. Notice that
P̃
(
SP(C (V ∗

n )) ≥ K , D(V ∗
n ) ∈ (δK n

ρ, 2δK n
ρ)
)

≤ P̃ (Sn(γ ) ≥ H) + P̃
(
SP(C (V ∗

n )) ≥ K , Sn[0, 2δK nρ] < H, Sn[0, δK nρ] > 0
)
.

(A.18)

Now,

P̃
(
SP(C (V ∗

n )) ≥ K , Sn[0, 2δK nρ ] < H, Sn[0, δK nρ ] > 0
)

≤
∑

1≤l1<···<lK≤2δK nρ

P̃
(
surpluses occur at times l1, . . . , lK , Sn[0, 2δK nρ ] < H, Sn[0, δK nρ ] > 0

)

=
∑

1≤l1<···<lK≤2δK nρ

Ẽ
[
1{0<Sn [0,lK−1]<H,SP(lK−1)=K−1}Y

]
,

where

Y = P̃
(
K th surplus occurs at time lK , Sn[lK , 2δK n

ρ] < H, Sn[lK , γ ] > 0 | FlK−1

)

≤ CK 1.1nρ

�̃n
√

δ
≤ CK 1.1

nρ
√

δ
.

Therefore, using induction, (A.18) yields

P̃
(
SP(C (V ∗

n )) ≥ K , Sn[0, 2δK nρ] < H, Sn[0, δK nρ] > 0
)

≤ C

(
K 1.1

√
δnρ

)K
(2δnρ)K−1

K 0.12(K−1)(K − 1)!
2δK nρ
∑

l1=1

P̃
(
D(V ∗

n )| ≥ l1
) ≤ C

δK/2

K 1.1nρ
Ẽ
[
D(V ∗

n )
]
,
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where we have used the fact that #{1 ≤ l2, . . . , lK ≤ 2δnρ} = (2δnρ)K−1/(K −1)! and
Stirling’s approximation for (K − 1)! in the last step. Since λ < 1, we can use (4.18) to
conclude that, for all sufficiently large n,

Ẽ
[
D(V ∗

n ) − 1
] ≤ C,

with high probability for some constant C > 0. Thus, we get the desired bound for
(A.18). The proof of Lemma 12 is now complete. ��
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