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Abstract: We study the Cauchy problem for the integrable nonlocal focusing nonlinear
Schrödinger (NNLS) equation iqt (x, t) + qxx (x, t) + 2q2(x, t)q̄(−x, t) = 0 with the
step-like initial data close, in a certain sense, to the “shifted step function” χR(x) =
AH(x − R), where H(x) is the Heaviside step function, and A > 0 and R > 0 are
arbitrary constants. Our main aim is to study the large-t behavior of the solution of this

problem. We show that for R ∈
(

(2n−1)π
2A ,

(2n+1)π
2A

)
, n = 1, 2, . . ., the (x, t) plane splits

into 4n + 2 sectors exhibiting different asymptotic behavior. Namely, there are 2n + 1
sectors, where the solution decays to 0, whereas in the other 2n + 1 sectors (alternating
with the sectors with decay), the solution approaches (different) constants along each ray
x/t = const . Our main technical tool is the representation of the solution of the Cauchy
problem in terms of the solution of an associated matrix Riemann–Hilbert problem and
its subsequent asymptotic analysis following the ideas of the nonlinear steepest descent
method.

1. Introduction

Weconsider theCauchyproblem for the integrable nonlocal focusingnonlinearSchrödinger
(NNLS) equation with step-like initial data:

iqt (x, t) + qxx (x, t) + 2q2(x, t)q̄(−x, t) = 0, x ∈ R, t > 0, (1.1a)

q(x, 0) = q0(x), x ∈ R, (1.1b)

where

q0(x) →
{
0, x → −∞,

A, x → ∞,
(1.1c)
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with some A > 0. Here and below q̄ denotes the complex conjugate of q. We assume
also that the solution q(x, t) satisfies the boundary conditions (1.1c) for all t > 0:

q(x, t) →
{
0, x → −∞,

A, x → ∞,
(1.2)

where the convergence is sufficiently fast.
The NNLS equation (1.1a) was introduced by Ablowitz and Musslimani [4] as a re-

duction r(x, t) = −q̄(−x, t) in the coupled system of nonlinear Schrödinger equations:

iqt (x, t) + qxx (x, t) − 2q2(x, t)r(x, t) = 0, (1.3a)

irt (x, t) − rxx (x, t) + 2r2(x, t)q(x, t) = 0, (1.3b)

(see also [24] for multidimensional versions of the NNLS) and has attracted much
attention in recent years due to its distinctive properties. Particularly, the NNLS equation
is PT symmetric [7], i.e., if q(x, t) is its solution, so is q̄(−x,−t). Therefore, the NNLS
equation is closely related to the PT symmetric theory,which is a field inmodern physics
being actively studied (see e.g. [11,14,25,33,51] and references therein). Also, the exact
soliton and breather solutions of this equation have a number of unusual properties. In
particular, (i) solitons can blow up in a finite time and (ii) the NNLS equation supports
both dark and anti-dark soliton solutions simultaneously (see e.g. [2,5,28,40,47–49]
and references therein; see also [50], where the general soliton solutions for the coupled
Schrödinger equations (1.3) are presented).

Apart from deriving exact solutions of the NNLS equation, it is important, in the
both mathematical and physical perspective, to consider initial value problems with
general initial data. The NNLS equation is an integrable system, i.e. it is a compatibility
condition of two linear equations (the so-called Lax pair, see (2.1) below) and, therefore,
it can be, in principle, treated by the powerful inverse scattering transform (IST) method
[1,23,41]. This method allows reducing the original nonlinear problem to a sequence of
linear ones, and in this sense to find the “exact” representation of the solution. The IST
method was successfully applied in [5] to the Cauchy problem for the NNLS equation
on the whole line in the class of functions rapidly decaying as x → ±∞ (see also [26],
where the complete integrability of (1.1a) in this class was proved).

Although the IST method provides some sort of exact formulas for the solutions,
the qualitative analysis of the Cauchy problem for the NNLS equation, particularly, the
long-time asymptotics of its solution, is a challenging problem.By using the ISTmethod,
the original problem for an integrable system can be reduced to the matrix Riemann–
Hilbert (RH) factorization problem in the complex plane of the spectral parameter.
The jump matrix in this problem is oscillatory, which allows applying the so-called
nonlinear steepest decent method [20] for studying its long-time behavior. This method
was inspired by earlier works of Manakov [37] and Its [31] and finally put in a rigorous
and systematic shape by Deift and Zhou [20] (see also [15–19,38] and references therein
concerning the Deift and Zhoumethod and its extensions). The nonlinear steepest decent
method consists of series of transformations of the originalRHproblem in such away that
for the large values of a parameter (say, the time t in the original nonlinear evolutionary
equation) this problem can be solved explicitly in terms of special functions (e.g., the
parabolic cylinder functions, Riemann theta functions, Painleve transcendents etc.).

Problemswith step-like initial data (with different behavior at different infinities) have
also been considered for a variety of integrable systems, which include the Korteweg–de
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Vries equation [6,21,27,30], the focusing and defocusing NLS equations [9,12], the
Toda lattice [17,46] and the modified Korteweg–de Vries equation [35] among many
others. A wide range of important physical phenomena manifest themselves in the be-
havior of solutions of such problems for large times, e.g., collisionless and dispersive
shock waves [28], rarefaction waves [29], asymptotic solitons [34], modulated waves
[46], elliptic waves [12], trapped solitons [3] to name but a few. Particularly, the so-
called modulated instability (Benjamin–Feir instability in the context of water waves)
phenomenon, which is suggested as a possible mechanism for the generation of rogue
waves [42], has been attributed in [10] to the local focusing nonlinear Schrödinger equa-
tion with nonzero boundary conditions.

In [44] we present the large-time analysis of problem (1.1)–(1.2) in the case of initial
data close (in the sense of closeness of the associated spectral functions) to the “pure step
function with the step located at x = 0”: q0(x) = 0 for x < 0 and q0(x) = A for x > 0.
In that case it is shown that there are two regions in the half-plane−∞ < x < ∞, t > 0,
where the solution has qualitatively different large time behavior. Namely, for x < 0 the
solution is slowly decaying as t → ∞ and is described by the Zakharov–Manakov-type
formula [37], where the power decay rate depends on ξ = x

4t . On the other hand, for
x > 0 the solution converges to a constant c = c(ξ) (depended on the direction ξ ),
which can be described explicitly in terms of the spectral functions associated to the
initial data.

Notice that this asymptotic picture is in sharp contrast with that in the case of the
conventional (local) nonlinear Schrödinger equation

iqt (x, t) + qxx (x, t) + 2q2(x, t)q̄(x, t) = 0. (1.4)

Indeed, in the casewhen the initial data decay to zeroonone side (as in our problem), there
are three sectors with different asymptotic behavior: the Zakharov–Manakov (decaying)
sector, the plane wave sector, and the sector of modulated elliptic oscillations [12].
Moreover, if the both sides of the initial step are non-zero, then there can be five or even
more asymptotic zones, see [13,15] for the focusing NLS equation and [8,22,29] for the
defocusing NLS equation.

Since the NNLS equation is not translation invariant, the behavior of the solutions of
problem (1.1)–(1.2) may depend significantly on the details of the shape of the initial
data. The present paper aims to rigorously demonstrate this effect taking the initial data
close to a “shifted step”, i.e., the pure step function with the step located at x = R with
some R > 0:

q0(x) =
{
0, x < R,

A, x > R.
(1.5)

“Close” means that the spectral functions associated with the initial data have properties
similar to those in the case of the pure shifted step initial data (1.5), see Assumption A
in Sect. 2 below.

The paper is organized as follows. In Sect. 2 we briefly present the formalism of
the inverse scattering transform method in the form of the associated Riemann–Hilbert
factorization problem, developed in details in [44], and discuss the properties of the
spectral functions associated to the initial data (1.5). Then, in Sect. 3, we perform the
asymptotic analysis of problem (1.1)–(1.2) in the case of initial data close (in the sense
mentioned above) to the “shifted step” (1.5) following the ideas of the nonlinear steepest
decent method [20] (see also [36]) for studying the large-time behavior of solutions of
integrable nonlinear PDEs and taking into account specific characteristics (of the jump
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and residue conditions) of the basic Riemann–Hilbert problem. The behavior of the
solution of problem (1.1)–(1.2) at the edges of the sectors specified in Sect. 3 (as sectors
with qualitatively different large time behavior of the solution) is discussed in Sect. 4.

2. Inverse Scattering Transform and the Riemann–Hilbert Problem

2.1. Direct scattering. The focusing NNLS equation (1.1a) is a compatibility condition
of two linear differential equations (the Lax pair) [4]

{
�x + ikσ3� = U (x, t)�,

�t + 2ik2σ3� = V (x, t, k)�,
(2.1)

where σ3 = (
1 0
0 −1

)
, �(x, t, k) is a 2 × 2 matrix-valued function, k ∈ C is an auxiliary

(spectral) parameter, and thematrix coefficientsU (x, t) and V (x, t, k) are given in terms
of q(x, t):

U (x, t) =
(

0 q(x, t)
−q̄(−x, t) 0

)
, V =

(
V11 V12
V21 V22

)
, (2.2)

where V11 = −V22 = iq(x, t)q̄(−x, t), V12 = 2kq(x, t) + iqx (x, t), and V21 =
−2kq̄(−x, t) + i(q̄(−x, t))x .

Assuming that there exists q(x, t) satisfying (1.1) and (1.2), we define the 2 × 2-
valued functions � j (x, t, k), j = 1, 2, −∞ < x < ∞, 0 ≤ t < ∞ as the solutions of
the linear Volterra integral equations [44]:

�1(x, t, k) = N−(k) +
∫ x

−∞
G−(x, y, k) (U (y, t)

−U−)�1(y, t, k)eik(x−y)σ3 dy, k ∈ (C+,C−), (2.3a)

�2(x, t, k) = N+(k) −
∫ ∞

x
G+(x, y, k) (U (y, t)

−U+) �2(y, t, k)eik(x−y)σ3 dy, k ∈ (C−,C+), (2.3b)

where

N+(k) =
(
1 A

2ik
0 1

)
, N−(k) =

(
1 0
A
2ik 1

)
, G±(x, y, k) = �±(x, t, k)[�±(y, t, k)]−1,

with �±(x, t, k) = N±(k)e−(ikx+2ik2t)σ3 , U+ =
(
0 A
0 0

)
, U− =

(
0 0

−A 0

)
. Here k ∈

(C+,C−), whereC± = {k ∈ C | ± Im k > 0},means that the first and the second column
of amatrix can be analytically continued into respectively the upper and lower half-plane
as bounded functions. Then � j (x, t, k)e−(ikx+2ik2t)σ3 , j = 1, 2 are the (Jost) solutions
of the Lax pair (2.1) for all k ∈ R \ {0} and thus �1 and �2 are related by

�1(x, t, k) = �2(x, t, k)e−(ikx+2ik2t)σ3 S(k)e(ikx+2ik2t)σ3, k ∈ R \ {0}, (2.4)

where S(k) is the so-called scattering matrix; it can be obtained in terms of the initial
data only, evaluating (2.3) at t = 0: S(k) = �−1

2 (0, 0, k)�1(0, 0, k).
Since the matrices U (x, t) and N±(k) satisfy the symmetries �U (−x, t)�−1 =

U (x, t) and, respectively, �N−(−k)�−1 = N+(k) with � = (
0 1
1 0

)
, it follows that
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��1(−x, t,−k)�−1 = �2(x, t, k) for k ∈ R \ {0}. In turn, this implies that the scat-
tering matrix S(k) can be written as

S(k) =
(

a1(k) −b(−k)

b(k) a2(k)

)
, k ∈ R \ {0}, (2.5)

with some b(k), a1(k), and a2(k) such that a j (−k) = a j (k), j = 1, 2. Moreover, a1(k)

and a2(k) have analytic continuations into the upper and lower half-planes respectively.
We summarize the properties of the spectral functions in the following proposition
(C± = {k ∈ C | ± Im k ≥ 0}) [44]:
Proposition 1. The spectral functions a j (k), j=1,2, and b(k) have the following prop-
erties

1. a1(k) is analytic in k ∈ C
+ and continuous in C+ \ {0}; a2(k) is analytic in k ∈ C

−
and continuous in C−.

2. a j (k) = 1 + O
( 1

k

)
, j = 1, 2 and b(k) = O

( 1
k

)
as k → ∞ (the latter holds for

k ∈ R).

3. a1(−k̄) = a1(k), k ∈ C+ \ {0}; a2(−k̄) = a2(k), k ∈ C−.
4. a1(k)a2(k) + b(k)b(−k) = 1, k ∈ R \ {0} (follows from det S(k) = 1).

5. As k → 0, a1(k) = A2a2(0)
4k2

+ O
( 1

k

)
and b(k) = Aa2(0)

2ik + O (1).

Remark 1. Item 5 of Proposition 1 follows from the behavior of � j (x, t, k) as k → 0,
which has an additional symmetry [44]:

�
(1)
1 (x, t, k) = 1

k

(
v1(x, t)
v2(x, t)

)
+ O(1), �

(2)
1 (x, t, k) = 2i

A

(
v1(x, t)
v2(x, t)

)
+ O(k),

(2.6a)

�
(1)
2 (x, t, k) = −2i

A

(
v2(−x, t)
v1(−x, t)

)
+ O(k), �

(2)
2 (x, t, k) = −1

k

(
v2(−x, t)
v1(−x, t)

)
+ O(1),

(2.6b)

with some v j (x, t), j = 1, 2, where �
(i)
j (x, t, k) denotes the ith column of � j (x, t, k).

2.2. Spectral functions for the “shifted step” initial data. In the case of pure “shifted
step” initial data (1.5), the associated spectral functions can be calculated explicitly:

a1(k) = 1 +
A2

4k2
e4ik R, (2.7a)

a2(k) = 1, (2.7b)

b(k) = A

2ik
e2ik R . (2.7c)

Indeed, evaluating (2.4) for x = −R and t = 0 it follows that the scattering matrix S(k)

can be determined by

S(k) = e−ik Rσ3�−1
2 (−R, 0, k)�1(−R, 0, k)eik Rσ3 . (2.8)
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Taking into account (1.5), from (2.3) for t = 0 we have

�1(−R, 0, k) = N−(k), (2.9a)

�2(−R, 0, k) = N+(k) −
∫ R

−R
G+(−R, y, k)

(
0 −A
0 0

)
�2(y, 0, k)e−ik(R+y)σ3 dy,

(2.9b)

where �2(x, 0, k) for x ∈ [−R, R] solves the integral equation

�2(x, 0, k) = N+(k) −
∫ R

x
G+(x, y, k)

(
0 −A
0 0

)
�2(y, 0, k)eik(x−y)σ3 dy,

x ∈ [−R, R]. (2.10)

Direct calculations show that

G+(x, y, k) =
(

e−ik(x−y) A
2ik

(
eik(x−y) − e−ik(x−y)

)
0 eik(x−y)

)
,

and, therefore, the solution �2(x, 0, k) of (2.10) is given by

�2(x, 0, k) =
(
1 A

2ik e2ik(R−x)

0 1

)
, x ∈ [−R, R] . (2.11)

Substituting (2.9) and (2.11) into (2.8) gives (2.7).
The locations of zeros of a1(k) in C+, which clearly depend on A and R, and the

behavior of the argument of a1(k) for k ∈ R are described in the following proposition
(throughout the paper, the notation n1, n2, n1, n2 ∈ Z, n1 ≤ n2 stands for the set
{n1, n1 + 1, . . . , n2}; if n1 > n2, then it is assumed to be the empty set).

Proposition 2. (i) For 0 < R < π
2A , a1(k) has one simple zero inC+ at k = ik0, k0 > 0,

where k0 is the unique solution of the transcendental equation

k = A

2
e−2k R, k ∈ R. (2.12)

Moreover, for all ξ > 0,
∫ −ξ

−∞
d arg a1(k) ∈ (−π, π). (2.13)

(ii) For (2n−1)π
2A < R <

(2n+1)π
2A , n ∈ N, a1(k) has the following properties:

• a1(k) has 2n + 1 simple zeros in C+: {ik0; {p j ,−p j }n
j=1}. Here k0 > 0 is the

solution of (2.12), {Re p j }n
j=1 are the ordered set of solutions of equation

k = ± A

2
sin(2k R)e2k R cot(2k R), (2.14)

considered for k < 0 (see also Fig. 1), and

Im p j = −Re p j cot(2Re p j R), j = 1, n. (2.15)

Notice that

Re p j ∈
(

− jπ

2R
,− (2 j − 1)π

4R

)
, j = 1, n. (2.16)



Long-Time Asymptotics for the Integrable Nonlocal Focusing Nonlinear Schrödinger Equation 93

Fig. 1. “Evolution” of the zeros p j , j = 1, 2, 3, as R → ∞

• Let ω0 = 0, ω j = (2 j−1)π
4R for j = 1, n, and ωn+1 = ∞. Then

∫ −ωn− j+1

−∞
d arg a1(k) = (2 j − 1)π, j = 1, n, (2.17a)

∫ −ξ

−∞
d arg a1(k) ∈ ((2 j − 1)π, (2 j + 1)π),

− ωn− j+1 < −ξ < −ωn− j , j = 0, n. (2.17b)

(iii) If R = (2n+1)π
2A for some n ∈ N ∪ {0}, then a1(k) has 2n + 3 simple zeros in C+ at

{± A
2 , ik0, {p j ,−p j }n

j=1}, where k0 > 0 is the solution of (2.12), Re p j ( j = 1, n)
are the solutions of (2.14), and Im p j are determined by (2.15).

Proof. Observe that the equation a1(k) = 0 is equivalent to the system
{

k1 = ∓ A
2 sin(2k1R)e−2k2R,

k2 = ± A
2 cos(2k1R)e−2k2R,

(2.18)

where k = k1 + ik2, k ∈ C+ \ {0}. Due to the symmetry relation a1(k) = a1(−k̄) it is
sufficient to consider (2.18) for k1 ≥ 0 only.

(i) Assuming k1 = 0, the system (2.18) reduces to the equations k2 = ± A
2 e−2k2R and

thus a1(k) has exactly one, purely imaginary simple zero (with k2 > 0) for all R > 0
and A > 0, and its imaginary part is the solution of (2.12).
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(ii) Assuming k2 = 0, the second equation in (2.18) implies that k1 must be equal to
π+2πn
4R with some n ∈ N ∪ {0}. But then, from the first equation in (2.18) we conclude

that k1 = A
2 . Therefore, k = A

2 is a simple zero of a1(k) if and only if there exists
n ∈ N ∪ {0} such that π + 2πn = 2AR.

(iii) Now, let’s look at the location of zeros of a1(k) in the open quarter plane k1 > 0,
k2 > 0. Dividing the equations in (2.18) we arrive at (cf. (2.15))

k2 = −k1 cot(2k1R), k1 	= nπ

4R
, n ∈ N, (2.19)

from which we conclude (cf. (2.16)) that

k1 ∈
(

(2n − 1)π

4R
,

nπ

2R

)
, n ∈ N. (2.20)

Substituting (2.19) into the first equation in (2.18) and taking into account the sign of
sin(2k1R) for k1 satisfying (2.20), we obtain an equation for k1 in the form

k1 = A

2
sin(2k1R)e2k1R cot(2k1R) for k1 ∈

(
(4n − 3)π

4R
,
(2n − 1)π

2R

)
, n ∈ N,

(2.21a)
or

k1 = − A

2
sin(2k1R)e2k1R cot(2k1R) for k1 ∈

(
(4n − 1)π

4R
,

nπ

R

)
, n ∈ N. (2.21b)

Since the r.h.s. of (2.21a) and (2.21b) monotonically decrease in the corresponding
intervals for k1, it follows that Eq. (2.21) have no solutions for 0 < R ≤ π

2A , whereas

for (2n−1)π
2A < R ≤ (2n+1)π

2A Eq. (2.21) have n simple solutions {k1, j }n
j=1 such that

k1, j ∈
(

(2 j−1)π
4R ,

jπ
2R

)
, j = 1, n (cf. (2.16)).

Concerning the winding properties of arg a1(k), (2.13) (for 0 < R < π
2A ) follows

from the inequality

A2

4k2(m)

e4ik(m) R > −1, where k(m) = (1 − 2m)π

4R
, m ∈ N, (2.22)

whereas (2.17) (for (2n−1)π
2A < R <

(2n+1)π
2A ) follows from

A2

4k2(m)

e4ik(m) R > −1 for k(m) = (1 − 2m)π

4R
, m ∈ N, m > n, (2.23a)

A2

4k2(m)

e4ik(m) R < −1 for k(m) = (1 − 2m)π

4R
, m ∈ N, m ≤ n. (2.23b)


�
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2.3. The basic Riemann–Hilbert problem and inverse scattering. The Riemann–Hilbert
formalism of the inverse scattering transform method is based on constructing a piece-
wisemeromorphic, 2×2-valued function in the k-complex plane, which has a prescribed
jump across a contour in the complex plane and prescribed conditions at singular points
(in case they are present).

The analytic properties of the Jost solutions � j suggest defining the 2 × 2-valued
function M(x, t, k), piece-wise meromorphic in C \ R, as follows [44]:

M(x, t, k) =

⎧
⎪⎪⎨
⎪⎪⎩

(
�

(1)
1 (x,t,k)

a1(k)
, �

(2)
2 (x, t, k)

)
, k ∈ C

+ \ {0},
(

�
(1)
2 (x, t, k),

�
(2)
1 (x,t,k)

a2(k)

)
, k ∈ C

− \ {0}.
(2.24)

Then the scattering relation (2.4) implies that the boundary values M±(x, t, k) =
lim

k′→k,k′∈C± M(x, t, k′), k ∈ R satisfy the multiplicative jump condition

M+(x, t, k) = M−(x, t, k)J (x, t, k), k ∈ R \ {0}, (2.25)

where

J (x, t, k) =
(
1 + r1(k)r2(k) r2(k)e−2ikx−4ik2t

r1(k)e2ikx+4ik2t 1

)
, (2.26)

with the reflection coefficients r1 and r2 defined by

r1(k) := b(k)

a1(k)
, r2(k) := b(−k)

a2(k)
. (2.27)

Observe that by the determinant relation (see item 4 in Proposition 1) we have

1 + r1(k)r2(k) = 1

a1(k)a2(k)
. (2.28)

Moreover,
M(x, t, k) → I, k → ∞, (2.29)

where I is the 2 × 2 identity matrix.
Taking into account the singularities of � j (x, t, k), j = 1, 2 and a1(k) at k = 0 (see

Proposition 1 and Remark 1), the behavior of M(x, t, k) at k = 0 can be described as
follows:

M(x, t, k) =
(

4
A2a2(0)

v1(x, t) −v2(−x, t)
4

A2a2(0)
v2(x, t) −v1(−x, t)

)
(I + O(k))

(
k 0
0 1

k

)
, k → i0+, (2.30a)

M(x, t, k) = 2i

A

(
−v2(−x, t) v1(x,t)

a2(0)

−v1(−x, t) v2(x,t)
a2(0)

)
+ O(k), k → i0−, (2.30b)

or, in terms of M only,

lim
k→i0+

M(x, t, k)

(
1
k 0
0 k

)
= M(x, t, i0−)

(
0 A

2i− 2i
A 0

)
. (2.31)

Now, being motivated by the properties of a1(k) and a2(k) in the case of “shifted
step” initial data (see Proposition 2), we make the following additional assumptions on
a1(k) and a2(k) in the case of general step-like initial data satisfying (1.1c):
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Assumptions A:
(a-1) a1(k) has 2n+1, n ∈ N∪{0}, simple zeros inC+\{0} at k = ik0 with k0 > 0,
at {p j }n

j=1 and at {−p j }n
j=1 with Im p j > 0 and Re pn < · · · < Re p1 < 0.

(a-2) a2(k) has no zeros in C−.
(b) There are ωm > 0, m = 0, n + 1, such that

− ∞ = −ωn+1 < Re pn < −ωn < Re pn−1 < −ωn−1 < · · ·
< Re p1 < −ω1 < ω0 = 0, (2.32)

∫ −ωn−m+1

−∞
d arg (a1(k)a2(k)) = (2m − 1)π, m = 1, n, (2.33a)

and
∫ −ξ

−∞
d arg (a1(k)a2(k)) ∈ ((2m − 1)π, (2m + 1)π),

− ωn−m+1 < −ξ < −ωn−m, m = 0, n. (2.33b)

In accordance with this assumption, M(x, t, k) satisfies the residue conditions:

Res
k=ik0

M (1)(x, t, k) = γ0

ȧ1(ik0)
e−2k0x−4ik20 t M (2)(x, t, ik0), |γ0| = 1, (2.34a)

Res
k=p j

M (1)(x, t, k) = η j

ȧ1(p j )
e2i p j x+4i p2j t M (2)(x, t, p j ), j = 1, n, (2.34b)

Res
k=−p j

M (1)(x, t, k) = 1

η̄ j ȧ1(−p j )
e−2i p j x+4i p2j t M (2)(x, t,−p j ), j = 1, n, (2.34c)

where γ0 and η j come from the relations �
(1)
1 (0, 0, ik0) = γ0�

(2)
2 (0, 0, ik0) and

�
(1)
1 (0, 0, p j ) = η j�

(2)
2 (0, 0, p j ) for the eigenfunctions of the first equation from

the Lax pair (2.1).

Remark 2. If b(k) allows analytical continuation into a sufficiently large band in the
complex plane, the norming constants take the form:

γ0 = b(ik0), η j = b(p j ).

The matrix-valued function M defined in (2.24) can be uniquely characterized as a
solution of

Basic Riemann–Hilbert Problem: Given (i) b(k) for k ∈ R, (ii) a j (k), j =
1, 2 having the properties of Proposition 1 and satisfying Assumptions A, with
{ik0, {p j ,− p̄ j }n

1} being the zeros of a1(k) in C
+, and (iii) γ0 and {η j }n

1, find the
2 × 2-valued function M(x, t, k), piece-wise meromorphic in k relative to R and
satisfying the following conditions:

(i) Jump conditions. The boundary values M±(x, t, k) = M(x, t, k ± i0), k ∈
R \ {0} satisfy the condition

M+(x, t, k) = M−(x, t, k)J (x, t, k), k ∈ R \ {0}, (2.35)

where the jump matrix J (x, t, k) is given by (2.26), with r j (k) given in terms of
b(k) and a j (k) by (2.27).
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(ii) Normalization at k = ∞:

M(x, t, k) = I + O(k−1), k → ∞.

(iii) Residue conditions (2.34).
(iv) Pseudo-residue condition at k = 0: M(x, t, k) satisfies (2.31).

Assume that the RH problem (i)–(iv) has a solution M(x, t, k). Then the solution
of the Cauchy problem (1.1), (1.2) is given in terms of the (12) and (21) entries of
M(x, t, k) as follows:

q(x, t) = 2i lim
k→∞ k M12(x, t, k), (2.36)

and
q(−x, t) = −2i lim

k→∞ k M21(x, t, k). (2.37)

Remark 3. We coin a term “pseudo-residue” for condition (2.31) since M hasn’t, in
general, an isolated singularity at k = 0, but after applying appropriate transformations
of the basic Riemann–Hilbert problem it turns into a conventional residue condition (see
the RH problem (3.17)–(3.22) below).

The solution of the RH problem is unique, if it exists. Indeed, if M and M̃ are
two solutions, then condition (2.31) provides the boundedness of M M̃−1 at k = 0
and, therefore, the applicability of standard arguments based on the Liouville theorem:
M M̃−1 turns to be a function analytic in the whole complex plane approaching I at
infinity; thus it equals I identically.

Remark 4. From (2.36) and (2.37) it follows that in order to present the solution of (1.1),
(1.2) for all x ∈ R, it is sufficient to have the solution of the RH problem for, say, x ≥ 0
only.

3. The Long-Time Asymptotics

In this section we study the long-time asymptotics of the solution of the Cauchy problem
(1.1), (1.2). Our analysis is based on the adaptation of the nonlinear steepest-decent
method [20] to the (oscillatory) RH problem (i)–(iv).

3.1. Jump factorizations. Introduce the variable ξ := x
4t and the phase function

θ(k, ξ) = 4kξ + 2k2. (3.1)

In view of (2.36) and (2.37), we will study the RH problem for ξ > 0 only. Moreover,
we will consider x , t > 0 in the open sectors, where −ξ ∈ (−ωn−m+1,−ωn−m) for
some m = 0, n (see Fig. 3), and will study the asymptotics as t → ∞ while keeping ξ

fixed. A special attention will be paid to the directions ξ = ±Re pn−m , see Sect. 4.
The jump matrix (2.26) allows, similarly to [43], two triangular factorizations:

J (x, t, k) =
(

1 0
r1(k)

1+r1(k)r2(k)
e2i tθ 1

)(
1 + r1(k)r2(k) 0

0 1
1+r1(k)r2(k)

) (
1 r2(k)

1+r1(k)r2(k)
e−2i tθ

0 1

)

(3.2a)
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Fig. 2. Signature table

=
(
1 r2(k)e−2i tθ

0 1

) (
1 0

r1(k)e2i tθ 1

)
. (3.2b)

Since the phase function θ(k, ξ) is the same as in the case of the local NLS, its signature
table (see Fig. 2) suggests that we follow the standard steps [16,20] to remove the
diagonal factor in (3.2a). The original RH (relative to the real axis) can then be deformed
to a new one relative to a cross, where the jump matrix converges, as t → ∞, to the
identity matrix uniformly away from any vicinity of the stationary phase point k = −ξ .

In order to get rid of the diagonal factor in a factorization like (3.2a), one usually
[16,20] introduces a (scalar) function δ(k) that solves the scalar RH problem with the
jump condition δ+(k) = δ−(k)(1 + r1(k)r2(k)) for k ∈ (−∞,−ξ). In the case 1 +
r1(k)r2(k) > 0 for all k ∈ R, as takes place for the local NLS equation, δ(k) is defined
via a Cauchy integral involving ln(1 + r1(k)r2(k)). However, in the case of the nonlocal
NLS equation, the values of 1 + r1(k)r2(k) are, in general, complex, which would lead
to a strong singularity of δ(k) at k = −ξ . In order to avoid this, we proceed as follows:

1. First, define some “partial delta functions”:

δs(k) = δs(k;ωn−s, ωn−s+1) = exp

{
1

2π i

∫ −ωn−s

−ωn−s+1

ln(1 + r1(ζ )r2(ζ ))

ζ − k
dζ

}
,

s = 0, m − 1 for m ≥ 1, (3.3a)

δm(k) = δm(k, ξ ;ωn−m+1) = exp

{
1

2π i

∫ −ξ

−ωn−m+1

ln(1 + r1(ζ )r2(ζ ))

ζ − k
dζ

}
, (3.3b)

where−ξ ∈ (−ωn−m+1,−ωn−m), m = 0, n and the following branches of logarithm
are chosen for s = 0, m (notice that since we deal with ξ > 0, the behavior of r j (k)

at k = 0 does not affect δm(k)):

ln(1 + r1(ζ )r2(ζ )) = ln |1 + r1(ζ )r2(ζ )| + i

(∫ ζ

−∞
d arg(1 + r1(z)r2(z)) + 2πs

)
.

(3.4)
2. Second, define

δ(k, ξ) :=
m∏

s=0

δs(k). (3.5)
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In this way, we have that (i) δ(k, ξ) → 1 as k → ∞ and (ii) it satisfies, for each
−ξ ∈ (−ωn−m+1,−ωn−m), m = 0, n (see (2.32)), the jump condition

δ+(k, ξ) = δ−(k, ξ)(1 + r1(k)r2(k)), k ∈ (−∞,−ξ) \ {−ωn−s}m−1
s=0 . (3.6)

Moreover, it has particular singularities at k = −ωn−s , s = 0, m − 1, and k = −ξ .

Namely, adapting the convention that
m2∏

s=m1

Fs = 1 if m1 > m2 and integrating by parts

in (3.3), (3.5) takes the form

δ(k, ξ) = (k + ξ)iν(−ξ)
m−1∏
s=0

(k + ωn−s)
−1 exp

{
m∑

s=0

χs(k)

}
, (3.7)

with

χs(k) = − 1

2π i

∫ −ωn−s

−ωn−s+1

ln(k − ζ ) dζ ln(1 + r1(ζ )r2(ζ )), s = 0, m − 1 for m ≥ 1,

(3.8a)

χm(k) = − 1

2π i

∫ −ξ

−ωn−m+1

ln(k − ζ ) dζ ln(1 + r1(ζ )r2(ζ )), (3.8b)

and

ν(−ξ) = − 1

2π
ln |1 + r1(−ξ)r2(−ξ)| − i

2π

(∫ −ξ

−∞
d arg(1 + r1(ζ )r2(ζ )) + 2πm

)
,

(3.9)
so that (see Assumptions A(b) (2.33) and relation (2.28)) Im ν(−ξ) satisfies the inequal-
ities

−1

2
< Im ν(−ξ) <

1

2
.

Remark 5. In our asymptotic analysis, it is important to have Im ν(−ξ) ∈ (− 1
2 ,

1
2 ). This

property will provide the convergence, as t → ∞, of the solution of the deformed
Riemann–Hilbert problem (relative to the cross centered at k = −ξ ) to the identity
matrix, see Sect. 3.2 below.

Now we define

M̃(x, t, k) = M(x, t, k)δ−σ3(k, ξ), (3.10)

and notice that M̃ satisfies the following conditions:

• normalization

M̃(x, t, k) → I, k → ∞; (3.11)

• jump conditions

M̃+(x, t, k) = M̃−(x, t, k) J̃ (x, t, k), k ∈ R \
(
{−ωn−s}m−1

s=0 ∪ {0}
)

, (3.12a)



100 Y. Rybalko, D. Shepelsky

where

J̃ (x, t, k) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
1 0

r1(k)δ−2− (k,ξ)

1+r1(k)r2(k)
e2i tθ 1

)(
1 r2(k)δ2+(k,ξ)

1+r1(k)r2(k)
e−2i tθ

0 1

)
, k ∈ (−∞,−ξ) \ {−ωn−s}m−1

s=0 ,

(
1 r2(k)δ2(k, ξ)e−2i tθ

0 1

)(
1 0

r1(k)δ−2(k, ξ)e2i tθ 1

)
, k ∈ (−ξ,∞) \ {0};

(3.12b)
• residue conditions at zeros of a1(k):

Res
k=ik0

M̃ (1)(x, t, k) = γ0

ȧ1(ik0)δ2(ik0, ξ)
e−2k0x−4ik20 t M̃ (2)(x, t, ik0), |γ0| = 1,

(3.13a)

Res
k=p j

M̃ (1)(x, t, k) = η j

ȧ1(p j )δ2(p j , ξ)
e2i p j x+4i p2j t M̃ (2)(x, t, p j ), j = 1, n,

(3.13b)

Res
k=−p j

M̃ (1)(x, t, k) = 1

η̄ j ȧ1(−p j )δ
2(−p j , ξ)

e−2i p j x+4i p2j t M̃ (2)(x, t,−p j ),

j = 1, n; (3.13c)

• pseudo-residue condition at k = 0:

lim
k→i0+

M̃(x, t, k)

(
1
k 0
0 k

)
= M̃(x, t, i0−)

(
0 A

2i δ
2(0, ξ)

− 2i
A δ−2(0, ξ) 0

)
; (3.14)

• singularity conditions at k = −ωn−s , s = 0, m − 1:

M̃±(x, t, k)(k + ωn−s)
−σ3 = O(1), k → −ωn−s . (3.15)

Conditions (3.11)–(3.15) constitutes the Riemann–Hilbert problem, whose solution
is (by the Liouville theorem) unique, if it exists.

3.2. The RH problem deformations. In order to turn oscillations to exponential decay
in the Riemann–Hilbert problem (3.11)–(3.15), we “deform” the contour off the real
axis. When doing it, we assume that the reflection coefficients r j (k), j = 1, 2, can be
analytically continued into the whole complex plane. This takes place, for example, if
q0(x) is a local (finitely supported) perturbation of the pure step initial data (1.5). Other-

wise, it is possible to approximate r j (k) and
r j (k)

1+r1(k)r2(k)
by some rational functions with

well-controlled errors (see [16]). The modern way to deal with non-analytic reflection
coefficients is to use the ∂̄ generalization of the nonlinear steepest descent method (for
the local NLS equation, see [38,39]).
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Fig. 3. The domains �̂ j , j = 0, . . . , 4 and the contour �̂ = γ̂1 ∪ ... ∪ γ̂4

Define M̂(x, t, k) as follows (see Fig. 3; here �̂0 is chosen in such a way that all
zeros of a1(k) are located in it):

M̂(x, t, k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M̃(x, t, k), k ∈ �̂0,

M̃(x, t, k)

(
1 −r2(k)δ2(k,ξ)

1+r1(k)r2(k)
e−2i tθ

0 1

)
, k ∈ �̂1,

M̃(x, t, k)

(
1 0

−r1(k)δ−2(k, ξ)e2i tθ 1

)
, k ∈ �̂2,

M̃(x, t, k)

(
1 r2(k)δ2(k, ξ)e−2i tθ

0 1

)
, k ∈ �̂3,

M̃(x, t, k)

(
1 0

r1(k)δ−2(k,ξ)
1+r1(k)r2(k)

e2i tθ 1

)
, k ∈ �̂4.

(3.16)

By (3.12b), M̂(x, t, k) has no jump across the real axis while having point singularities
at k = −ωn−s , s = 0, m − 1 and at k = 0. Specifically,

M̂(x, t, k)(k + ωn−s)
−σ3 = O(1), k → −ωn−s, s = 0, m − 1, (3.17)

whereas the singularity condition at k = 0 takes the form of a conventional residue
condition:

Res
k=0

M̂ (2)(x, t, k) = c0(ξ)M̂ (1)(x, t, 0), (3.18)

with c0(ξ) = Aδ2(0,ξ)
2i . Indeed, item 5 of Proposition 1 implies that

r1(k) = 2k

i A
+ O(k2), k → 0,

and thus, by (3.16) for k ∈ �̂2, we have

M̂ (2)(k) = Aδ2(0, ξ)

2ik
M̂ (1)(0) + O(1), k → i0+.
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Similarly, by (3.16) for k ∈ �̂3 and the development of r2(k)

r2(k) = A

2ik
+ O(1), k → 0,

we have

M̂ (2)(k) = Aδ2(0, ξ)

2ik
M̂ (1)(0) + O(1), k → i0−,

and thus (3.18) follows.
The jump conditions for M̂(x, t, k) are formulated on �̂:

M̂+(x, t, k) = M̂−(x, t, k) Ĵ (x, t, k), k ∈ �̂, (3.19a)

with the jump matrices

Ĵ (x, t, k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 r2(k)δ2(k,ξ)

1+r1(k)r2(k)
e−2i tθ

0 1

)
, k ∈ γ̂1,

(
1 0

r1(k)δ−2(k, ξ)e2i tθ 1

)
, k ∈ γ̂2,

(
1 −r2(k)δ2(k, ξ)e−2i tθ

0 1

)
, k ∈ γ̂3,

(
1 0

−r1(k)δ−2(k,ξ)
1+r1(k)r2(k)

e2i tθ 1

)
, k ∈ γ̂4,

(3.19b)

Other characteristic properties of M̂(x, t, k) follows from their analogues for M̃(x, t, k):
the normalization condition

M̂(x, t, k) → I, k → ∞ (3.20)

and the residue conditions

Res
k=ik0

M̂ (1)(x, t, k) = c1(x, t)M̂ (2)(x, t, ik0), |γ0| = 1, (3.21a)

Res
k=p j

M̂ (1)(x, t, k) = f j (x, t)M̂ (2)(x, t, p j ), j = 1, n, (3.21b)

Res
k=−p j

M̂ (1)(x, t, k) = f̂ j (x, t)M̂ (2)(x, t,−p j ), j = 1, n, (3.21c)

where

c1(x, t) = γ0e−2k0x−4ik20 t

ȧ1(ik0)δ2(ik0, ξ)
, f j (x, t) = η j e

2i p j x+4i p2j t

ȧ1(p j )δ2(p j , ξ)
,

f̂ j (x, t) = e−2i p j x+4i p2j t

η̄ j ȧ1(−p j )δ
2(−p j , ξ)

. (3.22)

Similarly to M̃ , M̂(x, t, k) can be characterized as a unique solution of the RH
problem specified by conditions (3.17)–(3.22).
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Proposition 3. For any fixed ξ = x
4t with ξ > 0, the solution of the Riemann–Hilbert

problem (3.17)–(3.22) can be “reduced”, as t → ∞, to a sectionally meromorphic
matrix-valued function Mas(ξ, t, k), in the sense that q(x, t) extracted from the large-k
asymptotics of M̂(x, t, k) and Mas(ξ, t, k) are exponentially close as t → ∞:

q(x, t) = 2i lim
k→∞ k Mas

12 (ξ, t, k) + exponentially small terms, t → ∞, (3.23)

q(−x, t) = −2i lim
k→∞ k Mas

21 (ξ, t, k) + exponentially small terms, t → ∞. (3.24)

Here Mas solves one of the following Riemann–Hilbert problems, depending on the
value of ξ , with a single residue condition at k = 0 (to simplify the notations, we set

Re p0 := 0 and
m2∏

s=m1

Fs = 1 if m1 > m2):

(i) for −ωn−m+1 < −ξ < Re pn−m, m = 0, n, Mas solves

Mas
+ (ξ, t, k) = Mas− (ξ, t, k)J as(ξ, t, k), k ∈ �̂, (3.25a)

Mas(ξ, t, k) → I, k → ∞, (3.25b)

Res
k=0

Mas (2)(ξ, t, k) = cas
0 (ξ)Mas (1)(ξ, t, 0), (3.25c)

with

cas
0 (ξ) = Aδ2(0, ξ)

2i

m−1∏
s=0

(
ωn−s

pn−s

)2

, (3.26)

and

J as(ξ, t, k) =
(

m−1∏
s=0

k + ωn−s

k − pn−s

)σ3

Ĵ (x, t, k)

(
m−1∏
s=0

k + ωn−s

k − pn−s

)−σ3

, k ∈ �̂. (3.27)

(ii) for Re pn−m < −ξ < −ωn−m, m = 0, n − 1, Mas solves

Mas
+ (ξ, t, k) = Mas− (ξ, t, k)J as(ξ, t, k), k ∈ �̂, (3.28a)

Mas(ξ, t, k) → I, k → ∞, (3.28b)

Res
k=0

Mas (1)(ξ, t, k) = cas#
0 (ξ)Mas (2)(ξ, t, 0), (3.28c)

with

cas#
0 (ξ) = 2i p2n−m

Aδ2(0, ξ)

m−1∏
s=0

(
pn−s

ωn−s

)2

, (3.29)

and

J as(ξ, t, k) =
(

d(k)

m−1∏
s=0

k + ωn−s

k − pn−s

)σ3

Ĵ (x, t, k)

(
d(k)

m−1∏
s=0

k + ωn−s

k − pn−s

)−σ3

, k ∈ �̂,

(3.30)
with d(k) = k

k−pn−m
.
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Proof. (i) First, consider −ωn−m+1 < −ξ < Re pn−m , m = 0, n. Then M̂(x, t, k) has
m singular points k = −ωn−s , s = 0, m − 1, and m exponentially growing residue
conditions at k = pn−s , s = 0, m − 1, see (3.21b). Introducing M̌(x, t, k) by

M̌(x, t, k) := M̂(x, t, k)

(
m−1∏
s=0

k + ωn−s

k − pn−s

)−σ3

, k ∈ C, (3.31)

we obtain that M̌(x, t, k) is, on one hand, bounded at k = −ωn−s , s = 0, m − 1, and
on the other hand, has exponentially decaying residue conditions at all points of the
discrete spectrum: ik0, p j , −p j , j = 1, n. Direct calculations show that M̌(x, t, k) has

the residue condition at k = 0 and the jump across �̂ as indicated in (3.25) and (3.26).
It follows that q(x, t) and q(−x, t) obtained via (2.36) and (2.37) from the large-k
asymptotics of M(x, t, k) are exponentially close, as t → ∞, to that obtained from Mas

provided the latter exists as a solution of the RH problem (3.25).
(ii) Now consider Re pn−m < −ξ < −ωn−m , m = 0, n − 1. Then M̂(x, t, k) has

m singular points at k = −ωn−s , s = 0, m − 1, and m + 1 exponentially growing
residue conditions at k = pn−s , s = 0, m. Applying the same transformation (3.31) and
ignoring the decaying residue conditions, we arrive at the Riemann–Hilbert problem
with the exponentially growing residue condition at k = pn−m (see (3.22)):

M̃as
+ (ξ, t, k) = M̃as− (ξ, t, k) J̃ as(ξ, t, k), k ∈ �̂, (3.32a)

M̃as(ξ, t, k) → I, k → ∞, (3.32b)

Res
k=pn−m

M̃as (1)(ξ, t, k) = f (x, t)M̃as (2)(ξ, t, pn−m), (3.32c)

Res
k=0

M̃as (2)(ξ, t, k) = cas
0 (ξ)M̃as (1)(ξ, t, 0), (3.32d)

where f (x, t) = fn−m(x, t)
m−1∏
s=0

(
pn−m−pn−s
pn−m+ωn−s

)2
, cas

0 (ξ) is given by (3.26), and

J̃ as(x, t, k) =
(

m−1∏
s=0

k + ωn−s

k − pn−s

)σ3

Ĵ (x, t, k)

(
m−1∏
s=0

k + ωn−s

k − pn−s

)−σ3

, k ∈ �̂.

In order to copewith the problemof growing residue condition,wemake the following
transformation (recall that d(k) = k

k−pn−m
)

M̂as(ξ, t, k) = M̃as(ξ, t, k)d−σ3(k). (3.33)

Then M̂as(ξ, t, k) solves the RH problemwith exponentially decaying residue condition
at k = pn−m :

M̂as
+ (ξ, t, k) = M̂as− (ξ, t, k) Ĵ as(ξ, t, k), k ∈ �̂, (3.34a)

M̂as(ξ, t, k) → I, k → ∞, (3.34b)

Res
k=pn−m

M̂as (1)(ξ, t, k) = p2n−m

f (x, t)
M̂as (2)(ξ, t, pn−m), (3.34c)
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Fig. 4. Asymptotic behavior of the solution for n = 0 and n = 1

Res
k=0

M̂as (2)(ξ, t, k) = p2n−m

cas
0 (ξ)

M̂as (1)(ξ, t, 0), (3.34d)

where Ĵ as(ξ, t, k) is given by (3.30). Ignoring the decaying residue condition at k =
pn−m , we arrive at the Riemann–Hilbert problem (3.28). Therefore, as in case (i), (3.23)
and (3.24) hold provided (3.28) has a solution Mas . The existence of solutions of the
RH problems (3.25) and (3.28) can be justified for t sufficiently large, see the proof of
Theorem 1 below. 
�

Proposition 3 suggests the rough (up to terms of order o(1)) asymptotics of q(x, t):

Proposition 4. As t → ∞, q(x, t) has the following asymptotics (see Fig. 4):

q(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aδ2(0, ξ)

m−1∏
s=0

(
ωn−s

pn−s

)2

+ o(1), −Re pn−m < ξ < ωn−m+1,

o(1), −ωn−m+1 < ξ < Re pn−m or ωn−m < ξ < −Re pn−m ,

−4p2n−m

Aδ2(0, −ξ)

m−1∏
s=0

(
pn−s

ωn−s

)2

+ o(1), Re pn−m < ξ < −ωn−m ,

(3.35)
where m = 0, n.

Remark 6. The asymptotic formulas (3.35) hold in the case of the “shifted step” initial
value (1.5) with n = 0 for 0 < R < π

2A , and with the corresponding value of n ∈ N for
(2n−1)π

2A < R <
(2n+1)π

2A .

Remark 7. The spectral functions associated to the “shifted step” initial value (1.5) with
0 < R < π

2A satisfy conditions of the Theorem 1 in [44]. The rough asymptotics, as
well as the precise one (see Theorem 1 below) are consistent with that obtained in [44].

Remark 8. The ordering of Re p j and−ω j , j = 1, n in (2.32) is crucial for our analysis.
Indeed, let n = 1 and assume that −ω1 < Re p1 < 0. Then, applying (3.31) for
−ω1 < −ξ < Re p1, we (asymptotically) arrive at the following Riemann–Hilbert
problem:

M̃as
+ (x, t, k) = M̃as− (x, t, k) J̃ as(x, t, k), k ∈ �̂, (3.36a)

M̃as(x, t, k) → I, k → ∞, (3.36b)

Res
k=p1

M̃as (2)(x, t, k) = f −1
1 (x, t)(p1 + ω1)

2M̃as (1)(x, t, p1), (3.36c)
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Res
k=0

M̃as (2)(x, t, k) = c0
ω2
1

p21
M̃as (1)(x, t, 0), (3.36d)

where J̃ as(x, t, k) =
(

k+ω1
k−p1

)σ3
Ĵ (x, t, k)

(
k+ω1
k−p1

)−σ3
, k ∈ �̂, and f −1

1 (x, t) is expo-

nentially growing. Since the residue conditions (3.36c) and (3.36d) are formulated for
the same column, we cannot proceed as in the proof of Proposition 3 above.

Applying the nonlinear steepest descent method [16,20] we are able to justify the
existence of solutions of the RH problems (3.25) and (3.28) and to make the asymptotics
presented in (3.35) more precise.

Theorem 1. Consider the Cauchy problem (1.1) and assume that the initial value q0(x)

converges to its boundary values fast enough and that associated spectral functions
a j (k), j = 1, 2 satisfy Assumptions A. Assuming that the solution q(x, t) of (1.1) exists,
it has the following long-time asymptotics, uniformly in ξ in compact subsets of the

corresponding intervals (to simplify the notations, we set Re p0 := 0 and
m2∏

s=m1

Fs = 1

if m1 > m2):

(i) for −ωn−m+1 < −ξ < Re pn−m, m = 0, n we have three types of asymptotics,
depending on the value of Im ν(−ξ):
1) if Im ν(−ξ) ∈ (− 1

2 ,− 1
6

]
, then

q(x, t) = Aδ2(0, ξ)

m−1∏
s=0

(
ωn−s

pn−s

)2

+t−
1
2−Im ν(−ξ)α1(ξ) exp{−4i tξ2 + i Re ν(−ξ) ln t} + R1(ξ, t).

2) if Im ν(−ξ) ∈ (− 1
6 ,

1
6

)
, then

q(x, t) = Aδ2(0, ξ)

m−1∏
s=0

(
ωn−s

pn−s

)2

+ t−
1
2−Im ν(−ξ)α1(ξ) exp{−4i tξ2 + i Re ν(−ξ) ln t}

+ t−
1
2 +Im ν(−ξ)α2(ξ) exp{4i tξ2 − i Re ν(−ξ) ln t} + R3(ξ, t).

3) if Im ν(−ξ) ∈ [ 1
6 ,

1
2

)
, then

q(x, t) = Aδ2(0, ξ)

m−1∏
s=0

(
ωn−s

pn−s

)2

+t−
1
2 +Im ν(−ξ)α2(ξ) exp{4i tξ2 − i Re ν(−ξ) ln t} + R2(ξ, t).

(ii) for −Re pn−m < −ξ < ωn−m+1, m = 0, n:

q(x, t) = t−
1
2−Im ν(ξ)α3(ξ) exp{4i tξ2 − i Re ν(ξ) ln t} + R2(−ξ, t)

(iii) for Re pn−m < −ξ < −ωn−m, m = 0, n − 1:

q(x, t) = t−
1
2 +Im ν(−ξ)α4(ξ) exp{4i tξ2 − i Re ν(−ξ) ln t} + R2(ξ, t)
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(iv) for ωn−m < −ξ < −Re pn−m, m = 0, n − 1we have three types of asymptotics,
depending on the value of Im ν(ξ):
1) if Im ν(ξ) ∈ (− 1

2 ,− 1
6

]
, then

q(x, t) = −4p2n−m

Aδ2(0,−ξ)

m−1∏
s=0

(
pn−s

ωn−s

)2

+t−
1
2−Im ν(ξ)α5(ξ) exp{4i tξ2 − i Re ν(ξ) ln t} + R1(−ξ, t),

2) if Im ν(ξ) ∈ (− 1
6 ,

1
6

)
, then

q(x, t) = −4p2n−m

Aδ2(0,−ξ)

m−1∏
s=0

(
pn−s

ωn−s

)2

+ t−
1
2−Im ν(ξ)α5(ξ) exp{4i tξ2 − i Re ν(ξ) ln t}

+ t−
1
2 +Im ν(ξ)α6(ξ) exp{−4i tξ2 + i Re ν(ξ) ln t} + R3(−ξ, t).

3) if Im ν(ξ) ∈ [ 1
6 ,

1
2

)
, then

q(x, t) = −4p2n−m

Aδ2(0,−ξ)

m−1∏
s=0

(
pn−s

ωn−s

)2

+t−
1
2 +Im ν(ξ)α6(ξ) exp{−4i tξ2 + i Re ν(ξ) ln t} + R2(−ξ, t).

Here

δ(k, ξ) = (k + ξ)iν(−ξ)
m−1∏
s=0

(k + ωn−s)
−1 exp

{
m∑

s=0

χs(k)

}
, (3.37)

and

ν(−ξ) = − 1

2π
ln |1 + r1(−ξ)r2(−ξ)| − i

2π

(∫ −ξ

−∞
d arg(1 + r1(ζ )r2(ζ )) + 2πm

)
,

(3.38)
with

χs(k) = − 1

2π i

∫ −ωn−s

−ωn−s+1

ln(k − ζ ) dζ ln(1 + r1(ζ )r2(ζ )), s = 0, m − 1, (3.39a)

χm(k) = − 1

2π i

∫ −ξ

−ωn−m+1

ln(k − ζ ) dζ ln(1 + r1(ζ )r2(ζ )). (3.39b)

The constants α j (ξ), j = 1, 6 are as follows:

α1(ξ) =
√

π(cas
0 (ξ))2

m−1∏
s=0

(ξ + pn−s)
2

ξ2r2(−ξ)�(iν(−ξ))
exp

{
−π

2
ν(−ξ) +

3π i

4
− 2

m∑
s=0

χs(−ξ) + 3iν(−ξ) ln 2

}
,
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α2(ξ) =
√

π
m−1∏
s=0

(ξ + pn−s)
−2

r1(−ξ)�(−iν(−ξ))
exp

{
−π

2
ν(−ξ) +

π i

4
+ 2

m∑
s=0

χs(−ξ) − 3iν(−ξ) ln 2

}
,

α3(ξ) =
√

π
m−1∏
s=0

(pn−s − ξ)2

r2(ξ)�(−iν(ξ))
exp

{
−π

2
ν(ξ) +

π i

4
− 2

m∑
s=0

χs(ξ) − 3iν(ξ) ln 2

}
,

α4(ξ) =
√

πξ2
m∏

s=0
(ξ + pn−s)

−2

r1(−ξ)�(−iν(−ξ))
exp

{
−π

2
ν(−ξ) +

π i

4
+ 2

m∑
s=0

χs(−ξ) − 3iν(−ξ) ln 2

}
,

α5(ξ) =
√

π
m∏

s=0
(pn−s − ξ)2

ξ2r2(ξ)�(−iν(ξ))
exp

{
−π

2
ν(ξ) +

π i

4
− 2

m∑
s=0

χs(ξ) − 3iν(ξ) ln 2

}
,

α6(ξ) =
√

π
(

cas#
0 (−ξ)

)2 m∏
s=0

(pn−s − ξ)−2

r1(ξ)�(iν(ξ))
exp

{
−π

2
ν(ξ) +

3π i

4
+ 2

m∑
s=0

χs(ξ) + 3iν(ξ) ln 2

}
,

where

cas
0 (ξ) = Aδ2(0, ξ)

2i

m−1∏
s=0

(
ωn−s

pn−s

)2

, cas#
0 (ξ) = 2i p2n−m

Aδ2(0, ξ)

m−1∏
s=0

(
pn−s

ωn−s

)2

.

Finally, the remainders R j (ξ, t), j = 1, 3 are as follows:

R1(ξ, t) =

⎧⎪⎨
⎪⎩

O
(
t−1

)
, Im ν(−ξ) > 0,

O
(
t−1 ln t

)
, Im ν(−ξ) = 0,

O
(
t−1+2| Im ν(−ξ)|) , Im ν(−ξ) < 0,

(3.40)

R2(ξ, t) =

⎧⎪⎨
⎪⎩

O
(
t−1+2| Im ν(−ξ)|) , Im ν(−ξ) > 0,

O
(
t−1 ln t

)
, Im ν(−ξ) = 0,

O
(
t−1

)
, Im ν(−ξ) < 0,

(3.41)

and

R3(ξ, t) = R1(ξ, t) + R2(ξ, t) =
{

O
(
t−1+2| Im ν(−ξ)|) , Im ν(−ξ) 	= 0,

O
(
t−1 ln t

)
, Im ν(−ξ) = 0.

(3.42)

Sketch of proof of Theorem 1. We apply the nonlinear steepest descent method to the
Riemann–Hilbert problems (3.25) and (3.28). The implementation of the method is
close to that presented in [43], so here we briefly describe the main steps of the proof,



Long-Time Asymptotics for the Integrable Nonlocal Focusing Nonlinear Schrödinger Equation 109

paying attention to its peculiarities due to Assumptions A and referring the reader to
[43] for details.

We begin with the asymptotics for the Riemann–Hilbert problem (3.25), the analysis
for (3.28) being similar (see also Remark 9). First, we reformulate (3.25) in such a way
that instead of the residue condition we have the jump across a small counterclockwise
oriented circle S0 centered at k = 0:

M̌as(ξ, t, k) =

⎧
⎪⎨
⎪⎩

Mas(ξ, t, k)

(
1 − cas

0 (ξ)

k
0 1

)
, k inside S0,

Mas(ξ, t, k), otherwise .

Then M̌as(ξ, t, k) solves the Riemann–Hilbert problem

M̌as
+ (ξ, t, k) = M̌as− (ξ, t, k) J̌ as(ξ, t, k), k ∈ �̂ ∪ S0, (3.43a)

M̌as(ξ, t, k) → I, k → ∞, (3.43b)

with

J̌ as(ξ, t, k) =

⎧⎪⎨
⎪⎩

J as(ξ, t, k), k ∈ �̂,(
1 − cas

0 (ξ)

k
0 1

)
, k ∈ S0.

(3.44)

Introduce the rescaled variable z by

k = z√
8t

− ξ, (3.45)

so that

e2i tθ = e
iz2
2 −4i tξ2 .

Introduce the “local parametrix” m̌as
0 (ξ, t, k) as the solution of a RH problem with the

“simplified” jumpmatrix J as(ξ, t, k) in the sense that in its construction, r j (k), j = 1, 2
are replaced by the constants r j (−ξ) and δ(k, ξ ; {ωn−s}m−1

s=0 ) is replaced by (cf. (3.7))

δ �
(

z√
8t

)iν(−ξ) m−1∏
s=0

(ωn−s − ξ)−1 exp

{
m∑

s=0

χs(−ξ)

}
.

Such RH problem can be solved explicitly in terms of the parabolic cylinder functions
[31,43].

Indeed, m̌as
0 (ξ, t, k) (cf. m̃0(x, t, k) in [43]) can be determined by

m̌as
0 (ξ, t, k) = �(ξ, t)m�(ξ, z(k))�−1(ξ, t), (3.46)

where

�(ξ, t) = e
(2i tξ2+

m∑
s=0

χs (−ξ))σ3

(
(8t)

iν(−ξ)
2

m−1∏
s=0

(ωn−s − ξ)

)−σ3

, (3.47)
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m�(ξ, z) is determined by

m�(ξ, z) = m0(ξ, z)D−1
j (ξ, z), z ∈ � j , j = 0, 4, (3.48)

see Fig. 5, where

D0(ξ, z) = e−i z2
4 σ3 ziν(−ξ)σ3 ,

D1(ξ, z) = D0(ξ, z)

(
1

ras
2 (−ξ)

1+ras
1 (−ξ)ras

2 (−ξ)

0 1

)
, D2(ξ, z) = D0(ξ, z)

(
1 0

ras
1 (−ξ) 1

)
,

D3(ξ, z) = D0(ξ, z)

(
1 −ras

2 (−ξ)

0 1

)
, D4(ξ, z) = D0(ξ, z)

(
1 0

−ras
1 (−ξ)

1+ras
1 (−ξ)ras

2 (−ξ)
1

)
,

with

ras
1 (k) = r1(k)

m−1∏
s=0

(
k − pn−s

k + ωn−s

)2

, ras
2 (k) = r2(k)

m−1∏
s=0

(
k + ωn−s

k − pn−s

)2

, (3.49)

and m0(ξ, z) is the solution of the following RH problem in z-plane, relative to R, with
a constant jump matrix:

m0+(ξ, z) = m0−(ξ, z) j0(ξ), z ∈ R, (3.50a)

m0(ξ, z) = (I + O(1/z)) e−i z2
4 σ3 ziν(−ξ)σ3 , z → ∞, (3.50b)

where

j0(ξ) =
(
1 + ras

1 (−ξ)ras
2 (−ξ) ras

2 (−ξ)

ras
1 (−ξ) 1

)
. (3.51)


�
It is theRHproblem form0(ξ, z) that can be solved explicitly, in terms of the parabolic

cylinder functions, see, e.g., Appendix A in [43]. Since we are interested what happens
for large t , we actually need from m0(ξ, z) (and, correspondingly, m�(ξ, z)) its large-z
asymptotics only. The latter has the form

m�(ξ, z) = I +
i

z

(
0 β(ξ)

−γ (ξ) 0

)
+ O(z−2), z → ∞,

where

β(ξ) =
√
2πe− π

2 ν(−ξ)e− 3π i
4

ras
1 (−ξ)�(−iν(−ξ))

, (3.52a)

γ (ξ) =
√
2πe− π

2 ν(−ξ)e− π i
4

ras
2 (−ξ)�(iν(−ξ))

. (3.52b)

Now, having defined the parametrix m̌as
0 (ξ, t, k), we define M̆as(ξ, t, k) as follows (cf.

m̂(x, t, k) in [43]):

M̆as(ξ, t, k) =

⎧
⎪⎨
⎪⎩

M̌as(ξ, t, k)(m̌as
0 )−1(ξ, t, k)V (k), k inside S−ξ ,

M̌as(ξ, t, k), k inside S0,
M̌as(ξ, t, k)V (k), otherwise ,

(3.53)
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Fig. 5. Contour and domains for m�(ξ, z) in the z-plane

where V (k) =
(
1 − cas

0 (ξ)

k
0 1

)
, and S−ξ is a small counterclockwise oriented circle cen-

tered at k = −ξ . Then the sectionally analyticmatrix M̆as solves the followingRiemann–
Hilbert problem on the contour �̂1 = �̂ ∪ S−ξ :

M̆as
+ (ξ, t, k) = M̆as− (ξ, t, k) J̆ as(ξ, t, k), k ∈ �̂1, (3.54)

M̆as(ξ, t, k) → I, k → ∞, (3.55)

with the jump matrix (cf. (3.23) in [43])

J̆ as(ξ, t, k) =

⎧
⎪⎨
⎪⎩

V −1(k)m̌as
0−(ξ, t, k) J̌ as(ξ, t, k)(m̌as

0+)
−1(ξ, t, k)V (k), k ∈ �̂1, k inside S−ξ ,

V −1(k)(m̌as
0 )−1(ξ, t, k)V (k), k ∈ S−ξ ,

V −1(k) J̌ as(ξ, t, k)V (k), otherwise.
(3.56)

Observe that the solution of the original problem is given in terms of M̆as(ξ, t, k) as
follows:

q(x, t) = 2i

(
cas
0 (ξ) + lim

k→∞ k M̆as
12 (ξ, t, k)

)
, (3.57)

and

q(−x, t) = −2i lim
k→∞ k M̆as

21 (ξ, t, k). (3.58)

Notice that (m̌as
0 )−1(ξ, t, k) has the following large-t asymptotics:

(m̌as
0 )−1(ξ, t, k) = �(ξ, t)(m�)−1(ξ,

√
8t(k+ξ))�−1(ξ, t) = I +

B(ξ, t)√
8t(k + ξ)

+r̃(ξ, t),

(3.59)



112 Y. Rybalko, D. Shepelsky

where the entries of B(ξ, t) are as follows (cf. with (3.32) in [43]):

B11(ξ, t) = B22(ξ, t) = 0, (3.60a)

B12(ξ, t) = −iβ(ξ)e
4i tξ2+2

m∑
s=0

χs (−ξ)

(8t)−iν(−ξ)
m−1∏
s=0

(ωn−s − ξ)−2, (3.60b)

B21(ξ, t) = iγ (ξ)e
−4i tξ2−2

m∑
s=0

χs (−ξ)

(8t)iν(−ξ)
m−1∏
s=0

(ωn−s − ξ)2, (3.60c)

and the remainder is (cf. (3.33) in [43]):

r̃(ξ, t) =
(

O
(
t−1−Im ν(−ξ)

)
O

(
t−1+Im ν(−ξ)

)
O

(
t−1−Im ν(−ξ)

)
O

(
t−1+Im ν(−ξ)

)
)

, t → ∞. (3.61)

The jumpmatrix in (3.56) can be estimated similarly to [43], giving that‖ J̆ as(ξ, t, ·)−
I‖L2(�̂1)∩L∞(�̂1)

→ 0 as t → ∞, with uniform error estimates for ξ in compact subsets
of the intervals indicated in the statement of Theorem 1. Particularly, this provides the
unique solvability of the RH problem (3.54). Moreover, we evaluate the asymptotics of
M̆as(ξ, t, k) as t → ∞ using its integral representation in terms of the solution of the
singular integral equation:

M̆as(ξ, t, k) = I +
1

2π i

∫

�̂1

μ(ξ, t, s)( J̆ as(ξ, t, s) − I )
ds

s − k
, (3.62)

where μ solves the integral equation μ− Cwμ = I , with w = J̆ as − I and the Cauchy-
type operator Cw defined as follows:

Cw f = (C− f w)(k) = 1

2π i
lim

k′→k
k′∈−side

∫

�̂1

f (s)w(s)

s − k′ ds.

SinceV (k) is uniformly boundedon �̂1 anddoes not dependon t and x , we canproceed as
in [43] and conclude that the main term in the large-t evaluation of M̆as in (3.62) is given
by the integral along the circle S−ξ . In this way we obtain the following representation
for M̆as(ξ, t, k) (see (3.30) and (3.34) in [43]):

lim
k→∞ k

(
M̆as(ξ, t, k) − I

)

= − 1

2π i

∫

S−ξ

V −1(k)
(
(m̌as

0 )−1(ξ, t, k) − I
)

V (k) dk + R(ξ, t).

Taking into account (3.59) we conclude that

lim
k→∞ k

(
M̆as(ξ, t, k) − I

)
= Bas(ξ, t) + R(ξ, t), (3.63)

where R(ξ, t) =
(

R1(ξ, t) R1(ξ, t) + R2(ξ, t)
R1(ξ, t) R1(ξ, t) + R2(ξ, t)

)
and (see (3.60))

Bas(ξ, t) = 1√
8t

⎛
⎝

cas
0 (ξ)

ξ
B21(ξ, t)

(cas
0 (ξ))2

ξ2
B21(ξ, t) − B12(ξ, t)

−B21(ξ, t) − cas
0 (ξ)

ξ
B21(ξ, t)

⎞
⎠ . (3.64)
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Remark 9. In the analysis of the Riemann–Hilbert problem (3.28), the reflection coeffi-
cients ras

j (k), j = 1, 2 (see (3.49)) have the form

ras
1 (k) = r1(k)d−2(k)

m−1∏
s=0

(
k − pn−s

k + ωn−s

)2

, ras
2 (k) = r2(k)d2(k)

m−1∏
s=0

(
k + ωn−s

k − pn−s

)2

,

where d(k) = k
k−pn−m

.Moreover, V (k) =
(

1 0

− cas#
0 (ξ)

k 1

)
in the definition of M̆as(ξ, t, k)

(see (3.53)). Therefore,

q(x, t) = 2i lim
k→∞ k M̆as

12 (ξ, t, k), (3.65)

q(−x, t) = −2i

(
cas#
0 (ξ) + lim

k→∞ k M̆as
21 (ξ, t, k)

)
, (3.66)

and Bas(ξ, t) and R(ξ, t) in (3.63) are as follows:

Bas(ξ, t) = 1√
8t

⎛
⎝ − cas#

0 (ξ)

ξ
B12(ξ, t) −B12(ξ, t)

(cas#
0 (ξ))2

ξ2
B12(ξ, t) − B21(ξ, t)

cas#
0 (ξ)

ξ
B12(ξ, t)

⎞
⎠ , (3.67)

and R(ξ, t) =
(

R1(ξ, t) + R2(ξ, t) R2(ξ, t)
R1(ξ, t) + R2(ξ, t) R2(ξ, t)

)
.

4. Transition Regions

Theorem 1 presents the asymptotics of q(x, t) along the rays ξ = x
4t = const uniformly

for all ξ in compact subsets of R \ {±Re pm,±ωm |m = 1, n}, i.e., for all fixed ξ ∈ R

except the boundaries of sectors with qualitatively different asymptotic behavior. Since
the asymptotic regimes (decaying and non-decaying) in the adjacent sectors do notmatch
as ξ approaches the edges of the sectors, there must be certain transition zones between
the sectors. The study of transition zones is a challenging and all-important problem.
These zones are a rich source of interesting nonlinear effects, such as shock waves and
asymptotic solitons, among many others.

One can distinguish three types of qualitatively different transition zones:

(1) zones near the rays ξ = ±Re pm , m = 1, n,
(2) zones near the rays ξ = ±ωm , m = 1, n,
(3) a zone as ξ approaches 0.

First, we address the transition zones for ξ = ±Re pm , m = 1, n and show that in
these zones, q(x, t) asymptotically behaves as solitary kinks propagating along the rays
ξ = ±Re pm .
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Theorem 2. Fix an integer m such that 0 ≤ m ≤ n − 1. Then, under assumptions of
Theorem 1, the solution q(x, t) of problem (1.1), (1.2) has the following asymptotics
along the rays ξ = ±Re pn−m:

q(x, t) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2i p2n−mcas
0 (−Re pn−m)

p2n−m + cas
0 (−Re pn−m) f as

n−m(x ′, t)
+ F1,n−m(x ′, t), t → ∞, x = −4Re pn−mt + x ′,

−2i p2n−m f as
n−m(x ′, t)

p2n−m + cas
0 (−Re pn−m) f as

n−m(x ′, t)
+ F2,n−m(x ′, t), t → ∞, x = 4Re pn−mt − x ′,

(4.1)
where cas

0 (ξ) is given by (3.26), f as
n−m(x ′, t) is given by

f as
n−m(x ′, t) = ηn−m exp{2i pn−m x ′ − 4i t (Re2 pn−m + Im2 pn−m)}

ȧ1(pn−m)δ2(pn−m,−Re pn−m)
(4.2)

m−1∏
s=0

(
pn−m − pn−s

pn−m + ωn−s

)2

,

and Fj,n−m(x ′, t), j = 1, 2 are decaying terms. The asymptotics (4.1) holds for all
x ′ ∈ R and t � 0 such that

‖(x ′, t) − (x̃ ′, t j )‖R2 ≥ ε′ for all j ∈ Z, (4.3)

with any fixed ε′ > 0, where (x̃ ′, t j ), j ∈ Z are the zeros of the denominators of the
principal terms in (4.1):

x̃ ′ = ln |Cn−m |
2 Im pn−m

, t j = Re pn−m ln |Cn−m | + φn−m Im pn−m

4|pn−m |2 Im pn−m
+

π j

2|pn−m |2 , (4.4)

with φn−m = argCn−m and

Cn−m = −ηn−mcas
0 (−Re pn−m)

p2n−mȧ1(pn−m)δ2(pn−m,−Re pn−m)

m−1∏
s=0

(
pn−m − pn−s

pn−m + ωn−s

)2

≡ |Cn−m |eiφn−m .

More precisely, the decaying terms Fj,n−m(x ′, t), j = 1, 2 have the following form
depending on the value of Im ν(Re pm−m):

1) if Im ν(Re pm−m) ∈ (− 1
2 ,− 1

6

]
, then

F1,n−m(x ′, t) = t− 1
2−Im ν(Re pm−m )

(p2n−m + cas
0 (−Re pn−m) f as

n−m(x ′, t))2

× α7 exp{−4i t Re2 pm−m + i Re ν(Re pm−m) ln t} + R1(Re pn−m, t)

ε′2 ,

F2,n−m(x ′, t) = t−
1
2−Im ν(Re pm−m )

(i p2n−m Im pn−m + Re pn−m · cas
0 (−Re pn−m) f as

n−m(x ′, t))2

(p2n−m + cas
0 (−Re pn−m) f as

n−m(x ′, t))2

× α9 exp{4i t Re2 pm−m − i Re ν(Re pm−m) ln t} + R1(Re pn−m, t)

ε′2 .
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2) if Im ν(Re pm−m) ∈ (− 1
6 ,

1
6

)
, then

F1,n−m(x ′, t) = t− 1
2−Im ν(Re pm−m )

(p2n−m + cas
0 (−Re pn−m) f as

n−m(x ′, t))2
α7 exp{−4i t Re2 pm−m

+ i Re ν(Re pm−m) ln t}

+ t−
1
2 +Im ν(Re pm−m ) (p2n−m Re pn−m − i Im pn−m · cas

0 (−Re pn−m) f as
n−m(x ′, t))2

(p2n−m + cas
0 (−Re pn−m) f as

n−m(x ′, t))2

× α8 exp{4i t Re2 pm−m − i Re ν(Re pm−m) ln t} + R3(Re pn−m, t)

ε′2 .

F2,n−m(x ′, t) = t−
1
2−Im ν(Re pm−m )

(i p2n−m Im pn−m + Re pn−m · cas
0 (−Re pn−m) f as

n−m(x ′, t))2

(p2n−m + cas
0 (−Re pn−m) f as

n−m(x ′, t))2

× α9 exp{4i t Re2 pm−m − i Re ν(Re pm−m) ln t}

+ t−
1
2 +Im ν(Re pm−m ) f as

n−m
2
(x ′, t)

(p2n−m + cas
0 (−Re pn−m) f as

n−m(x ′, t))2

× α10 exp{−4i t Re2 pm−m + i Re ν(Re pm−m) ln t} + R3(Re pn−m, t)

ε′2 .

3) if Im ν(Re pm−m) ∈ [ 1
6 ,

1
2

)
, then

F1,n−m(x ′, t) = t−
1
2 +Im ν(Re pm−m )

(p2n−m Re pn−m − i Im pn−m · cas
0 (−Re pn−m) f as

n−m(x ′, t))2

(p2n−m + cas
0 (−Re pn−m) f as

n−m(x ′, t))2

× α8 exp{4i t Re2 pm−m − i Re ν(Re pm−m) ln t} + R2(Re pn−m, t)

ε′2 ,

F2,n−m(x ′, t) = t−
1
2 +Im ν(Re pm−m ) f as

n−m
2
(x ′, t)

(p2n−m + cas
0 (−Re pn−m) f as

n−m(x ′, t))2

× α10 exp{−4i t Re2 pm−m + i Re ν(Re pm−m) ln t} + R2(Re pn−m, t)

ε′2 .

with

α7 =
√

π(cas
0 (−Re pn−m))2 p4n−m

m−1∏
s=0

(pn−s − Re pn−m)2

Re2 pn−mr2(Re pn−m)�(iν(Re pn−m))

× exp

{
−π

2
ν(Re pn−m) +

3π i

4
− 2

m∑
s=0

χs(Re pn−m) + 3iν(Re pn−m) ln 2

}
,

α8 =
√

π
m−1∏
s=0

(pn−s − Re pn−m)−2

Re2 pn−mr1(Re pn−m)�(−iν(Re pn−m))
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× exp

{
−π

2
ν(Re pn−m) +

π i

4
+ 2

m∑
s=0

χs(Re pn−m) − 3iν(Re pn−m) ln 2

}
,

α9 =
√

π
m−1∏
s=0

(pn−s − Re pn−m)2

Im2 pn−mr2(Re pn−m)�(−iν(Re pn−m))

× exp

{
−π

2
ν(Re pn−m) − 3π i

4
− 2

m∑
s=0

χs(Re pn−m) − 3iν(Re pn−m) ln 2

}
,

(4.5)

α10 =
√

π pn−m
4

m−1∏
s=0

(pn−s − Re pn−m)−2

Im2 pn−mr1(Re pn−m)�(iν(Re pn−m))

× exp

{
−π

2
ν(Re pn−m) − π i

4
+ 2

m∑
s=0

χs(Re pn−m) + 3iν(Re pn−m) ln 2

}
,

(4.6)

and R j (Re pn−m, t), j = 1, 2, 3 are given by (3.40), (3.41) and (3.42).

Proof. Similarly to Item (i) in Proposition 3, it can be shown that along the ray ξ =
−Re pn−m (see Fig. 3), the long-time behavior of q(x, t) can be described in terms of
the solutions of the RH problem (cf. (3.25))

Mas
+ (ξ, t, k) = Mas− (ξ, t, k)J as(ξ, t, k), k ∈ �̂, (4.7a)

Mas(ξ, t, k) → I, k → ∞, (4.7b)

Res
k=0

Mas (2)(ξ, t, k) = cas
0 (ξ)Mas (1)(ξ, t, 0), (4.7c)

Res
k=pn−m

Mas (1)(ξ, t, k) = f as
n−m(x ′, t)Mas (2)(ξ, t, pn−m), (4.7d)

where ξ = −Re pn−m , J as(ξ, t, k) is given by (3.27) and f as
n−m(x ′, t) ≡ fn−m(x, t)

m−1∏
s=0

(
pn−m−pn−s
pn−m+ωn−s

)2
with x = −4t Re pn−m + x ′ is given by (4.2). Notice that the shift

x ′ ∈ R doesn’t affect the value of the slow variable ξ ≡ x
4t ∼ −Re pn−m as t → ∞.

Using theBlaschke-Potapov factors (see, e.g., [23]) one can show that theRHproblem

Res
k=0

Ḿas (2)(ξ, t, k) = cas
0 (ξ)Ḿas (1)(ξ, t, 0), (4.8a)

Res
k=pn−m

Ḿas (1)(ξ, t, k) = f as
n−m(x ′, t)Ḿas (2)(ξ, t, pn−m), (4.8b)

Ḿas(ξ, t, k) → I, k → ∞, (4.8c)

can be solved explicitly for all x ′ ∈ R and t > 0 away from any fixed vicinities of the
singular points x̃ ′, t j , j ∈ Z, see (4.4), by (we drop the arguments of the respective
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functions)

Ḿas(x ′, ξ, t, k) =
⎛
⎜⎝

(p2n−m+cas
0 f as

n−m )k−p3n−m

(p2n−m+cas
0 f as

n−m )(k−pn−m )

cas
0 p2n−m

(p2n−m+cas
0 f as

n−m )k
p2n−m f as

n−m

(p2n−m+cas
0 f as

n−m )(k−pn−m )

(p2n−m+cas
0 f as

n−m )k−pn−m cas
0 f as

n−m

(p2n−m+cas
0 f as

n−m )k

⎞
⎟⎠ , (4.9)

where x ′ and t satisfy condition (4.3).
Notice that Ḿas(x ′, ξ, t, k) = O(ε′−1) as (x ′, t) → (x̃ ′, t j ) and Ḿas(x ′, ξ, t, k) =

O(1) as x ′ → ±∞, which implies that the asymptotics in Theorem 2 are uniform w.r.t.
x ′ outside any (fixed) neighborhood of x ′ = x̃ ′.

Since Ḿas solves RH problem (4.8), M̌as(x ′, ξ, t, k) defined by

M̌as(x ′, ξ, t, k) =
{

Mas(ξ, t, k)(Ḿas)−1(x ′, ξ, t, k), k outside S−ξ ,

Mas(ξ, t, k), otherwise ,

where S−ξ is a small counterclockwise oriented circle, satisfies the following RH prob-
lem on �̂1 = �̂ ∪ S−ξ :

M̌as
+ (x ′, ξ, t, k) = M̌as− (x ′, ξ, t, k) J̌ as(x ′, ξ, t, k), k ∈ �̂1, (4.10a)

M̌as(x ′, ξ, t, k) → I, k → ∞, (4.10b)

with

J̌ as(x ′, ξ, t, k) =

⎧
⎪⎨
⎪⎩

Ḿas(x ′, ξ, t, k)J as(ξ, t, k)(Ḿas)−1(x ′, ξ, t, k), k ∈ �̂1, k outside S−ξ ,

(Ḿas)−1(x ′, ξ, t, k) k ∈ S−ξ ,

J as(ξ, t, k), k ∈ �̂1, k inside S−ξ .

(4.11)
Notice that q(x, t) is given in terms of M̌as as follows (recall that −ξ = Re pn−m):

q(x, t) = 2i p2n−mcas
0 (−Re pn−m)

p2n−m + cas
0 (−Re pn−m) f as

n−m(x ′, t)
+ 2i lim

k→∞ k M̌as
12 (x ′, ξ, t, k), (4.12)

q(−x, t) = −2i p̄2n−m f as
n−m(x ′, t)

p2n−m + cas
0 (−Re pn−m) f as

n−m(x ′, t)
− 2i lim

k→∞ k M̌as
21 (x ′, ξ, t, k), (4.13)

for all x ′ ∈ R, t > 0 satisfying (4.3). Constructing m̌as
0 (ξ, t, k) as in the proof of

Theorem 1 (see (3.46)), we define M̆as(x ′, ξ, t, k) by

M̆as(x ′, ξ, t, k) =
{

M̌as(x ′, ξ, t, k)(m̌as
0 )−1(ξ, t, k)Ḿas(x ′, ξ, t, k), k inside S−ξ ,

M̌as(x ′, ξ, t, k), otherwise .

(4.14)
Then M̆as(x ′, ξ, t, k) solves the following RH problem on the contour �̂1:

M̆as
+ (x ′, ξ, t, k) = M̆as− (x ′, ξ, t, k) J̆ as(x ′, ξ, t, k), k ∈ �̂1, (4.15a)

M̆as(x ′, ξ, t, k) → I, k → ∞, (4.15b)
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with the jump matrix (we drop the arguments of Ḿas(x ′, ξ, t, k))

J̆ as(ξ, t, k) =

⎧
⎪⎨
⎪⎩

(Ḿas)−1m̌as
0−(ξ, t, k) J̌ as(x ′, ξ, t, k)(m̌as

0+)
−1(ξ, t, k)Ḿas , k ∈ �̂1, k inside S−ξ ,

(Ḿas)−1(m̌as
0 )−1(ξ, t, k)Ḿas , k ∈ S−ξ ,

J̌ as(ξ, t, k), k ∈ �̂1, k outside S−ξ .

(4.16)
Taking into account that Ḿas is bounded inside S−ξ and arguing as in the proof of
Theorem 1 we have

lim
k→∞ k

(
M̆as(ξ, t, k) − I

)
= − 1

2π i

∫

S−ξ

(Ḿas)−1
(
(m̌as

0 )−1(ξ, t, k) − I
)

Ḿas dk

+
R(ξ, t)

ε′2 ,

and thus

lim
k→∞ k

(
M̆as(x ′, ξ, t, k) − I

)
= B́as(x ′, ξ, t) +

R(ξ, t)

ε′2 , (4.17)

where R(ξ, t) =
(

R1(ξ, t) R1(ξ, t) + R2(ξ, t)
R1(ξ, t) R1(ξ, t) + R2(ξ, t)

)
and (see (3.60))

B́as(x ′, ξ, t) = 1√
8t

(
Ḿas

11 Ḿas
12 B21 − Ḿas

21 Ḿas
22 B12 (Ḿas

12 )
2B21 − (Ḿas

22 )
2B12

−(Ḿas
11 )

2B21 + (Ḿas
21 )

2B12 −Ḿas
11 Ḿas

12 B21 + Ḿas
21 Ḿas

22 B12

)

(4.18)
(here Ḿas

i j = Ḿas
i j (x ′, ξ, t,−ξ)). 
�

Remark 10. As x ′ → ±∞, the principal terms in (4.1) match the asymptotics (3.35) in
the adjacent sectors. Moreover, they resemble singular, kink-type exact solutions of the
focusing NNLS equation [44], which correspond to the reflectionless potentials:

qA,φ(x, t) = A

1 − e−Ax−i A2t+iφ
, φ ∈ R. (4.19)

On the other hand, the principal terms in (4.1) satisfy the NNLS equation (1.1a) if and
only if

pn−m ∈ iR, |pn−m | =
∣∣∣∣

Aδ2(0, ξ)

2

∣∣∣∣ =

∣∣∣∣∣∣∣

ηn−m
∏m−1

s=0

(
pn−m−pn−s
pn−m+ωn−s

)2

ȧ1(pn−m)δ2(pn−m,−Re pn−m)

∣∣∣∣∣∣∣
;

in this case, the leading terms in (4.1) coincide with (4.19) with some A, φ ∈ R.

Describing the transition zones of type (2) and (3) are open, challenging problems,
which will be considered elsewhere. Here we notice that for the transition zones of type
(2), we face the problem that ν(ξ) takes the value 1

2 , namely, | Im ν(−ωm)| = 1/2,
which causes problems with the solvability of the asymptotic RH problem of type (3.25)
or (3.28), since the norm of the corresponding Cauchy-type operator does not decay as
t → ∞.
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In the case when ξ approaches 0 (the transition region of type (3)), we encounter
another difficulty: the slow variable ξ and the singularity of the Riemann–Hilbert prob-
lem (see (2.30) and (3.18)) merge (cf. [32], where the problem for the classical focusing
nonlinear Schrödinger equation with singularities on the continuous spectrum is consid-
ered). We partially address the latter problem in [45], for initial data close to (1.5) with
R = 0, where we present the asymptotics along the curves s = x2−α

4t = const , with any

fixed s ∈ (0,∞) and α ∈ (0, 1). In this case, the asymptotics inside the parabola t = x2
4s

is an open problem as well.
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