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Abstract: We establish global regularity and stability for the irrotational relativistic Eu-
ler equationswith equation of state p̄ = K ρ̄, where 0 < K < 1/3, for small initial data in
the expanding direction of FLRW spacetimes of the form (R×T

3,−dt̄2 + t̄2δi j dxi dx j ).
This provides the first case of non-dust fluid stabilization by spacetime expansion where
the expansion rate is of power law type but non-accelerated. In particular, the time in-
tegral of the inverse scale factor diverges as t → ∞. The result implies that structure
formation in cosmological evolution associated with the development of shocks in fluids
necessarily requires a phase of deccelerating expansion of the Universe to occur in the
case that the matter is massive.

1. Introduction

In this article, we consider the relativistic Euler equations

v̄μ∇̄μρ̄ + (ρ̄ + p̄)∇̄μv̄μ = 0, (1.1)

(ρ̄ + p̄)v̄μ∇̄μv̄ν + h̄μν∇̄μ p̄ = 0, (1.2)

with a linear equation of state

p̄ = K ρ̄, 0 < K < 1/3, (1.3)

on Milne-like spacetimes of the form

((0,∞) × T
3, ḡ = −dt̄2 + t̄2δi j dx

i dx j ),

where ∇̄μ is the Levi-Civita connection of ḡ, the fluid four-velocity v̄μ in normalized
according to ḡμνv̄

μv̄ν = −1, and h̄μν = ḡμν + v̄μv̄ν defines a positive definite inner
product on the subspace of the cotangent space that is ḡ-orthogonal to v̄μ = ḡμνv̄

μ.
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We show that the canonical homogeneous solutions (1.8) to (1.1)–(1.2) are nonlin-
early stable in the expanding direction of spacetime, in the sense that sufficiently small
irrotational perturbations of these solutions exist globally towards the future and remain
close to the background solutions. In particular, no shocks form in the fluids.

1.1. Fluid regularization in expanding spacetimes. We now discuss how the main result
of this paper relates to previous work on the relativistic Euler equations.

It is well known, due to the seminal work of Christodoulou [6], that there exist
arbitrary small perturbations of the canonical constant solutions to the relativistic Euler
equations with a relatively general equation of state on Minkowski spacetime that form
shock singularities in finite time. In particular, these homogeneous fluid solutions are
unstable.

In expanding spacetimes shock formation can be suppressed. The standard models in
cosmology representing expanding spacetimes are derived from the FLRW class, which
in the case of zero spatial curvature takes the form

((0,∞) × T
3,−dt̄2 + a(t̄)2δi j dx

i dx j ) . (1.4)

For such spacetimes there exists a dissipative effect on the fluid induced by the space-
time expansion that leads to the stability of homogeneous fluid solutions and thereby
global regularization of the relativistic Euler equations. This effect is referred to as
fluid stabilization. The complementary phenomenon of shock formation fluids in fi-
nite time is associated with structure formation during cosmological evolution in the
physics literature [5]. Fluid stabilization was discovered by Brauer, Rendall and Reula
in the Newtonian case in particular for dust K = 0 [23] and rigorously established in
the scenario of relativistic self-gravitating fluids in exponentially expanding spacetimes
(a(t̄) = et̄ ) by Rodnianski and Speck in [20] for the parameter values 0 < K < 1/3.
Their result was later complemented by a series of works by Lübbe-Valiente Kroon [15],
Hadžić-Speck [10], Oliynyk [16] and Friedrich [9] where the allowable range for K was
enlarged to 0 ≤ K ≤ 1/3. See also [17] for recent results addressing the case K > 1/3.

While the aforementioned results concern the case of exponentially expanding space-
times, in [21] Speck considered the relativistic Euler equation with linear equation of
state on spacetimes with a scale factor a(t̄) that obeys an integrated growth condition of
the form ∫ ∞

1
a(t̄)−1dt̄ < ∞

or a stronger condition on the behaviour of a(t̄) depending on the value of K ∈ (0, 1/3]
and proved stability of homogeneous fluid solutions. In addition, he proved that for the
particular case of radiation fluids (K = 1/3) shocks do form if the expansion rate fails
to obey integrability, i.e. if ∫ ∞

1
a(t̄)−1dt̄ = ∞.

In particular this implies that radiation fluid shocks would form on our Milne-like model
(1.4). For dust (K = 0) only a(t̄)−2 needs to be integrable. In Speck’s theorem an even
faster expansion rate is required to stabilize massive fluids 0 < K < 1/3 compared
to radiation fluids, and so it seems that stability may a priori fail to hold in general for
massive non-dust fluids at the threshold where a(t̄)−1 fails to be integrable. If we restrict
the scale factor to the polynomial class a(t) = tq , then linear expansion q = 1 separates
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the accelerating regime q > 1 from the deccelerating regime q < 1. This threshold is
interesting as it also appears independently in the context of stability of solutions to the
Einstein equations as we discuss in the following.

1.2. Localization of the Einstein equations. In a seminal work on the Einstein-non-
linear scalar field system, where the potential of the scalar field emulates a positive
cosmological constant and thus generates spacetime expansion at an exponential rate,
Ringström demonstrated that exponential expansion leads to a decoupling of regions of
spacetime for late times [18]. As a consequence, to determine the future asymptotics of
solutions to the Einstein equations in a small coordinate neighborhood only the initial
data in a slightly larger coordinate neighborhood is required. In this sense, the Einstein
equations localize in the presence of exponential expansion.

In a follow-up work [19], Ringström relaxed the rate of spacetime expansion to the
class of power law inflation, which in our terminology corresponds to scale factors
a(t̄) = t̄ q , where q > 1 and showed that for this class the localization property still
holds. We point out that the threshold q = 1 is precisely the one, where

∫∞
1 a(t̄)−1dt̄

diverges. However, the Milne model, which is a spacetime on that threshold, clearly
does not possess this localization property. This is because the Milne model is a quotient
of Minkowski spacetime and as a consequence no two regions can causally decouple.
We conclude that at this threshold rate of expansion the causal structure of spacetime
changes drastically and this has consequences for the treatment of the Einstein equations.
Nevertheless the Milne model is stable as a solution to the Einstein equations [2,3]. The
nature of the proof is however substantially different to the power law inflation scenario
since the localization property does not hold.

1.3. Fluid regularization in non-accelerated spacetimes. We have now identified the
threshold rate a(t̄) = t̄ as one between two causally different regimes from the per-
spective of the Einstein equations. Furthermore the result of Speck [21] shows shock
formation for radiation fluids in spacetimes with this linear rate of expansion. Thus it
may seem reasonable to believe that more general (i.e. non-dust and non-radiation) fluid
regularization also fails at this linear rate.

However, in the context of these considerations, the result in our present paper shows
that fluid regularization does occur for zero-accelerated power law expansion (ä = 0
or q = 1) as long as the relation 0 < K < 1/3 holds. This implies that the localization
property in spacetimes with accelerated expansion (or the integrability of the inverse
scale factor) is not the necessary feature of the spacetime that regularizes the fluid for
0 < K < 1/3, (in contrast to the case of K = 1/3 as shown by Speck).

We conclude, that the present result establishes relativistic fluid regularization for the
slowest expansion rate in comparison to previous results for the regime 0 < K < 1/3.
The upper bound on K is sharp by Speck’s result. We do not claim that the lower bound
on the expansion rate is sharp. A trivial lower bound on scale factors that provide fluid
regularization for 0 < K < 1/3 is given by Christodoulou’s result with a(t̄) = 1. From
the physical perspective, we conclude from our result that structure formation from small
perturbations requires deccelerated expansion for it to occur in the class ofmassive fluids.
This is in contrast to massless fluids (radiation) where non-accelerated expansion was
sufficient for shocks to form. Thus our results indicate a substantial difference between
the ability for structure formation to occur between massive and massless fluids. For
cosmological evolution this implies that the era of structure formation from massive
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matter and small inhomogeneities must have occurred during a phase of deccelerated
expansion of the universe.

1.4. Conformal rescaling of the metric and homogeneous fluid solutions. We consider
Milne-like spacetimes of the form (M, ḡ) where1

M = (0, T0] × T
3, T0 > 0, (1.5)

and

ḡ = 1

t2

(
− 1

t2
dt2 + δi j dx

i dx j
)

. (1.6)

Here, t = x0 is a time coordinate on the interval (0, T0], (xi ), i = 1, 2, 3, denotes
standard period coordinates on the 3-torus T

3. In the following, we will use ∂μ to
denote the partial derivatives with respect to the coordinates (xμ) = (t, xi ) and define
∂ i = δi j∂ j . It is important to note that, due to our conventions, the future is located in the
direction of decreasing t and future timelike infinity is located at t = 0. Consequently,
we require that

v̄0 < 0

in order to ensure that the four-velocity is future directed.
Throughout this article, unless otherwise specified, we will assume that the constant

K in the linear equation of state (1.3) satisfies

0 < K < 1/3. (1.7)

A straightforward calculation then shows that, for every positive constant cH > 0, the
pair

(v̄
μ
H , ρ̄H ) =

(
− ḡμν∂νφ̄H

ζ̄ H
, ζ̄

1+K
K

H

)
, (1.8)

where

φ̄H = cH t
−λ, λ = 1 − 3K , (1.9)

and

ζ̄ H =
√

−ḡ(dφ̄H , dφ̄H ), (1.10)

defines a homogeneous, irrotational solution to the relativistic Euler equations (1.1)–
(1.2) such that the four-velocity is future pointing. Explicitly, this solution reads

(v̄
μ
H , ρ̄H ) =

(
−t2δμ

0 , ((1 − 3K )cH )
1+K
K t3(1+K )

)
.

Themain aimof this article is to establish the future stability of non-linear, irrotational
perturbations of this homogeneous solution on the parameter range (1.7).

1 By introducing a change of time coordinate according to the formula t̄ = 1/t , the metric (1.6) can be
brought into the more recognizable form

ḡ = −dt̄2 + t̄2δi j dx
i dx j ,

where now (t̄, xi ) ∈ [1/T0, ∞) ×T
3. We refer to such metrics as ‘Milne-like’ since the scale factor t̄2 is the

same as in Milne, even though the spatial geometry (T3, δ) is different from (H3, g
H3 ) or quotients thereof,

appearing in the standard Milne spacetime.
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1.5. Fuchsian approach. To establish the global existence to the future of solutions
to (1.1)–(1.2) that represent irrotational, non-linear perturbations of the homogeneous
solution (1.8), we employ the Fuchsian method that was introduced in [16] and further
developed in [4]. This method involves transforming the relativistic Euler equations into
a Fuchsian symmetric hyperbolic equation of the form

B0(U )∂tU +
1

t
(Ci + Bi (U ))∂iU = 1

t
B(U )PU +

1

t
F(U ) in (0, T0] × T

3, (1.11)

see Sect. 3.4 for details. Equations of this type were studied in [4,16] and the existence of
solutions with uniform decay as t ↘ 0 was established under certain assumptions on the
system’s coefficients and a small initial data assumption. The Fuchsian system that we
obtain for the relativistic Euler equations in this article does not satisfy the assumptions
needed to apply the existence theory from [4,16], as we show in Sect. 4. In order to
establish global existence for (1.11) we therefore generalize [4] to this extended class
in Theorem 4.5. The precise statement of the global existence result can be found in
Theorem 3.2. Interestingly, while we do obtain global existence, we do not get uniform
decay as t ↘ 0 as was the case in [4,16]. The obstruction to decay is the singular terms
1
t C

k , where the Ck , k = 1, 2, 3, are constant, symmetric matrices that are not present in
the Fuchsian equations considered in [4,16].

1.6. Outlook. Since it is known that arbitrarily small perturbations of the homogeneous
solution must form shocks in finite time [21] when K = 1/3, our results, in this sense,
are sharp. It is open, whether the present result holds for spacetimes that expand slower
than the Milne rate a(t) = t for 0 < K < 1/3. Moreover, we expect that the present
result can be generalized to the rotational case.Another potential generalization concerns
the inclusion of gravity by coupling the Euler equations to the Einstein equations in the
framework similar to [2,7].

1.7. Organization of the paper. In the following section we introduce notations and
setup. In Sect. 3 we bring the irrotational Euler equations into the required Fuchsian
form and apply the Fuchsian global existence theorem to obtain the main theorem,
Theorem 3.2. In Sect. 4 the global existence theorem for Fuchsian systems of type
(1.11) is proven. The appendix contains fundamental lemmas on standard functional
inequalities that are used in the paper and provided here for convenience.

2. Preliminaries

Before proceeding, we first fix our notation and introduce a few definitions that will be
used throughout the article.

2.1. Coordinates, indexing and derivatives. Except for Sect. 4, we will use lower case
Greek letters, e.g. α, β, γ , to label spacetime coordinates indices that run from 0 to 3,
while we will reserve lower case Latin letters, e.g. i, j, k, to label spatial coordinate
indices that run from 1 to 3. In the appendices, we will consider general spatial dimen-
sions, and so there, lower case Latin indices, e.g. i, j, k, will run from 1 to n and will
be used to index spatial coordinate indices. Furthermore, x = (xi ) will again denote
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the standard periodic coordinates, this time on the n-torus Tn , and t will denote a time
coordinate on intervals of R. Partial derivatives with respect to these coordinates will
be denoted by ∂i and ∂t , respectively. Additionally, in Sect. 4, we use lower case Greek
letters to denote multi-indices, e.g. α = (α1, α2, . . . , αn) ∈ Z

n≥0, and wewill employ the
standard notation Dα = ∂

α1
1 ∂

α2
2 · · · ∂αn

n for spatial partial derivatives and Du = (∂ j u)

for the spatial gradient. It will be clear from context whether a Greek index is meant to
be interpreted as a spacetime index or a multi-index.

2.2. Inner-products and matrix inequalities. Throughout this article, we use

(ξ |ζ ) = ξ T ζ, ξ, ζ ∈ R
N ,

to denote the Euclidean inner-product and

|ξ | = √
(ξ |ξ)

to denote the Euclidean norm. Moreover, given matrices A, B ∈ MN×N , we define

A ≤ B ⇐⇒ (ξ |Aξ) ≤ (ξ |Bξ), ∀ ξ ∈ R
N ,

and we use

|A|op = sup
|ξ |=1

|Aξ |

to denote the operator norm of A.

2.3. Sobolev spaces. The Wk,p, k ∈ Z≥0, norm of a map u ∈ C∞(TN ,RN ) is defined
by

‖u‖Wk,p =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

( ∑
0≤|α|≤k

∫
Tn

|Dαu|p dnx
) 1

p

if 1 ≤ p < ∞

max
0≤
≤k

sup
x∈Tn

|D
u(x)| if p = ∞
.

The Sobolev space Wk,p(Tn,RN ) is then defined as the completion of C∞(TN ,RN )

with respect to the norm ‖ · ‖Wk,p . When N = 1, we will write Wk,p(Tn) instead, and
we will employ the standard notation L p(Tn) = W 0,p(Tn). Furthermore, when p = 2,
we set Hk(Tn,RN ) = Wk,2(Tn,RN ), and we use 〈·|·〉 to denote that L2 inner-product
on Tn , that is,

〈u|v〉 =
∫
Tn

(u|v) dnx .
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2.4. Constants and inequalities. We use the standard notation

a � b

for inequalities of the form
a ≤ Cb

in situations where the precise value or dependence on other quantities of the constant
C is not required. On the other hand, when the dependence of the constant on other
inequalities needs to be specified, for example if the constant depends on the norm
‖u‖L∞ , we use the notation

C = C(‖u‖L∞).

Constants of this typewill always be non-negative, non-decreasing, continuous functions
of their arguments.

3. Irrotational Euler Equations

It is well known, see [20, §3.1] for example, that the irrotational relativistic Euler equa-
tions (1.1)–(1.2) can be formulated as a non-linear wave equation. In particular, for the
linear equation of state (1.3), the irrotational relativistic Euler equations are given by

āαβ∇̄α∇̄βφ̄ = 0 (3.1)

where

āαβ = ḡαβ − σ v̄αv̄β, σ = 1 − K

K
, (3.2)

is the acoustic metric. The four-velocity is determined by

v̄α = − ḡαβ∂βφ̄

ζ̄
(3.3)

where

ζ̄ =
√

−ḡ(dφ̄, dφ̄) (3.4)

is the fluid enthalpy. In this formulation, the proper energy density of the fluid can be
recovered from the enthalpy via the formula

ρ̄ = ζ̄
1+K
K . (3.5)

3.1. Rescaled fluid potential. The first step in transforming the irrotational relativistic
Euler equations, given by (3.1), into Fuchsian form involves introducing a rescaled fluid
potential via

φ = tλφ̄. (3.6)

We then see after a straightforward calculation involving (1.6) and (3.2)–(3.4) that the
acoustic wave equation (3.1), when expressed in terms of φ, becomes

α00t∂t (t∂tφ) + 2α0i t∂t∂iφ + αi j∂i∂ jφ + β0t∂tφ + β i∂iφ + γφ = 0 (3.7)
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where

α00 = −1 − σ
μ
(t∂tφ − λφ)2, (3.8)

α0i = σ
μ
(t∂tφ − λφ)∂ iφ, (3.9)

αi j = δi j − σ
μ
∂ iφ∂ jφ, (3.10)

β0 = (σ+1)λ(t∂tφ−λφ)2+λ(σ−1)|Dφ|2
μ

, (|Dφ|2 = δi j∂iφ∂ jφ), (3.11)

β i = − 2λσ
μ

(t∂tφ − λφ)∂ iφ, (3.12)

γ = −λσ
μ

|Dφ|2 (3.13)

and

μ = (t∂tφ − λφ)2 − |Dφ|2. (3.14)

For use below, we note that α00 can be written as

α00 = −(1 + σ) +
σ

μ
|Dφ|2 (3.15)

and that, under the rescaling (3.6), the homogeneous solution (1.9) is transformed into
the constant solution

φH = cH , cH ∈ R>0, (3.16)

of (3.7).

3.2. First order formulation. The next step in the transformation of the irrotational
relativistic Euler equations into Fuchsian form involves expressing the wave equation
(3.7) in first order form by introducing the variables

φ

0 = t∂tφ − 
δφ, 
 ∈ R, (3.17)

φi = ∂iφ (3.18)

and

δφ = φ − cH . (3.19)

A short calculation show that in terms of these variables, the wave equation (3.7) is given
by

−α00∂tφ


0 − 2

t
α0i∂iφ



0 − 1

t
αi j∂iφ j = 1

t

(
(β0 + 
α00)(φ


0 + 
δφ)

+ (β i + 2
α0i )φi + γ (δφ + cH )
)
,

αi j∂tφ j − 1

t
αi j∂ jφ



0 = 


t
αi jφ j .
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We now collect together two versions of this system obtained from setting 
 = 0 and

 = λ. This, with the help of the identity ∂ jφ

λ
0 = ∂ jφ

0
0 −λφ j , gives rise to the following

system

−α00∂tφ
0
0 − 2

t
α0i∂iφ

λ
0 − 1

t
αi j∂iφ j = 1

t

(
β0φ0

0 + (β i + 2λα0i )φi + γ (δφ + cH )
)
,

(3.20)

αi j∂tφ j − 1

t
αi j∂ jφ

0
0 = 0, (3.21)

−α00∂tφ
λ
0 − 2

t
α0i∂iφ

0
0 − 1

t
αi j∂iφ j = 1

t

(
(β0 + λα00)(φλ

0 + λδφ) + β iφi + γ (δφ + cH )
)
,

(3.22)

αi j∂tφ j − 1

t
αi j∂ jφ

λ
0 = λ

t
αi jφ j , (3.23)

where δφ can be recovered from φ0
0 and φλ

0 via the formula

δφ = φ0
0 − φλ

0

λ
. (3.24)

Recalling that λ = 1 − 3K and σ = 1−K
K , a short calculation using (3.8), (3.11),

(3.14) and (3.18) shows that

β0 + λα00 = −λσ

μ
|φ|2, |φ|2 = δi jφiφ j . (3.25)

Setting

u = (
φ0
0 φ j φλ

0 φ j
)tr

, (3.26)

we can then write the system (3.20)–(3.23) in matrix form as

A0(u)∂t u +
1

t
(Ck + Ak(u))∂ku = 1

t
A(u)�u +

1

t
F(u) (3.27)

where

A0(u) =

⎛
⎜⎜⎝

−α00 0 0 0
0 αi j 0 0
0 0 −α00 0
0 0 0 αi j

⎞
⎟⎟⎠ , (3.28)

Ck =

⎛
⎜⎜⎝

0 −δk j 0 0
−δik 0 0 0
0 0 0 −δk j

0 0 −δik 0

⎞
⎟⎟⎠ , (3.29)

Ak(u) =

⎛
⎜⎜⎝

0 δk j − αk j −2α0k 0
δik − αik 0 0 0
−2α0k 0 0 δk j − αk j

0 0 δik − αik 0

⎞
⎟⎟⎠ , (3.30)
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A(u) =

⎛
⎜⎜⎝

β0 0 0 0
0 λδi j 0 0
0 0 (1 + σ)λ 0
0 0 0 λαi j

⎞
⎟⎟⎠ , (3.31)

� =

⎛
⎜⎜⎝
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 δij

⎞
⎟⎟⎠ (3.32)

and

F =

⎛
⎜⎜⎝

(β i + 2λα0 j )φ j + γ (δφ + cH )

0
(β0 + λα00)(φλ

0 + λδφ) + β iφi + γ (δφ + cH )

0

⎞
⎟⎟⎠ . (3.33)

3.3. Coefficient properties. It is not difficult to verify, with the help of the formulas
(3.8)–(3.15), (3.17)–(3.19), (3.24) and (3.25), that the coefficients of (3.27) satisfy the
following:

(i) There exists a R0 > 0 such that the matrices A0(u), Ak(u) andA(u), and the source
term F(u) are smooth in u for u ∈ BR0(R

8). Moreover, the matrices A0(u), Ak(u),
Ck and � are all symmetric and � defines a projection operator, that is,

�2 = �. (3.34)

Remark 3.1. In the following, wewill always be able to assume that (u, Du) ∈ BR(R8×
R
3×8) for any R ∈ (0, R0] since ultimately we will establish L∞ bounds on both u and

Du. Moreover, any of the implied constants in the � signs will depend on R0, which we
take to be fixed, but will be independent of R ∈ (0, R0].
(ii) The matrices A0(0) and A(xu) satisfy

[�, A0(u)] = [�,A(u)] = 0 (3.35)

and
∂k(�

⊥A(u)) = 0 (3.36)

where
�⊥ = 1I − �. (3.37)

Furthermore,
|A0(u) − A0(0)|op + |A(u) − A(0)|op � |φ|2 (3.38)

where

A0(0) =

⎛
⎜⎜⎝
1 + σ 0 0 0
0 δi j 0 0
0 0 1 + σ 0
0 0 0 δi j

⎞
⎟⎟⎠ and A(0) = λA0(0). (3.39)

We also note by (3.35) that

�A0(u)�⊥ = �⊥A0(u)� = 0.



Stabilizing Relativistic Fluids on Spacetimes 411

(iii) The matrices Ck , Ak(u) and the source term F(u) satisfy

�⊥Ck�⊥ = 0, (3.40)

�⊥Ak(u)�⊥ = 0, (3.41)

|�⊥Ak(u)�|op � |φ|, (3.42)

|�Ak(u)�|op � |φ| (3.43)

and

|F(u)| � |φ|2. (3.44)

Next, using

∂tφ j = 1

t
∂ jφ

0
0

and noting the time derivatives of φλ
0 and φ0

0 can be computed from (3.27), it is not
difficult to verify, with the help of (3.35)–(3.38) and (3.40)–(3.44), that∣∣∣∣�⊥(∂t (A

0(u)) +
1

t
∂k(A

k(u))�⊥
∣∣∣∣
op

� 1

t

(|φ0
0 |2 + |φ|2 + |Dφ0

0 |2 + |Dφ|2), (3.45)

∣∣∣∣�⊥(∂t (A
0(u)) +

1

t
∂k(A

k(u))�

∣∣∣∣
op

+

∣∣∣∣�(∂t (A
0(u)) +

1

t
∂k(A

k(u))�⊥
∣∣∣∣
op

� 1

t

(|φ0
0 | + |φ| + |Dφ0

0 | + |Dφ|) (3.46)

and ∣∣∣∣�(∂t (A
0(u)) +

1

t
∂k(A

k(u))�

∣∣∣∣
op

� 1

t

(|φ0
0 | + |φ| + |Dφ0

0 | + |Dφ|). (3.47)

Additionally, it is also clear from (3.38) and (3.41)–(3.43) that

|∂ j (A
0(u))|op + |∂ j (A(u))|op + |∂ j (F(u))| � |φ|2 + |Dφ|2 (3.48)

and

|�⊥∂ j (A
k(u))�|op + |�∂ j (A

k(u))�⊥|op + |�∂ j (A
k(u))�|op � |φ| + |Dφ|. (3.49)

3.4. The extended system. As it stands, the system (3.27) is almost, but not quite, in
the Fuchsian form that we require in order to apply the existence theory developed in
Sect. 4. To bring it into the required form, we apply the differential operator A0∂l(A0)−1

to get

A0(u)∂t∂lu +
1

t
(Ck + Ak(u))∂k∂lu = 1

t
A�∂lu +

1

t
Gl(u, Du) (3.50)

where

Gl(u, Du) = A0(u)
[
−
(
−∂l(A

0(u))−1(Ck + Ak(u)) + (A0(u))−1∂l(A
k(u))

)
∂ku

+ ∂l
(
(A0(u))−1A(u)

)
�u + ∂l

(
(A0(u))−1F(u)

)]
.

(3.51)
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Since all the coefficients A0(u), Ak(u),A(u) and F(u) are smooth in u for u ∈ BR0(R
8),

it is clear that Gl(u, v) is smooth in (u, v) for (u, v) ∈ BR0(R
8) × R

3×8.
Multiplying (3.51) by �⊥, we obtain

�⊥Gl = A0
[
−
(
−∂l(A

0)−1(�⊥Ck + �⊥Ak) + (A0)−1∂l (�
⊥Ak)

)
∂ku

+ ∂l
(
(A0)−1A)�⊥�u + �⊥∂l

(
(A0)−1F

)]
(by((3.35))&((3.37)))

= A0
[
−
(
−∂l (A

0)−1(�⊥Ck + �⊥Ak) + (A0)−1∂l (�
⊥Ak�⊥)

+ (A0)−1∂l (�
⊥Ak�)

)
∂ku + �⊥∂l

(
(A0)−1F

)]
(by((3.37))and�⊥� = 0)

= A0
[
−
(
−∂l (A

0)−1(�⊥Ck + �⊥Ak)∂ku + (A0)−1∂l (�
⊥Ak�)∂k�u

)

+ �⊥∂l
(
(A0)−1F

)]
. (by((3.34))and((3.41)))

(3.52)

Since we are assuming that (u, Du) ∈ BR(R8×R
3×8), R ∈ (0, R0], we see from (3.26),

(3.32), (3.48), (3.49), (3.51) and (3.52) that

|�⊥Gl(u, Du)| � |φ|2 + |Dφ|2 + |Dφ0
0 |2 (3.53)

and

|�Gl(u, Du)| � |Du|(|φ| + |Dφ|). (3.54)

The extended system is then defined by combining (3.27) and (3.50) into the following
system

B0(U )∂tU +
1

t
(Ck + Bk(U ))∂kU = 1

t
BPU +

1

t
H(U ) (3.55)

where

U =
(

u
Du

)
, (3.56)

B0(U ) =
(
A0(u) 0
0 A0(u)

)
, (3.57)

Ck =
(Ck 0
0 Ck

)
, (3.58)

Bk(U ) =
(
Ak(u) 0
0 Ak(u)

)
, (3.59)

B(U ) =
(A(u) 0

0 A(u)

)
, (3.60)

P =
(

� 0
0 �

)
, (3.61)

H(U ) =
(

F(u)

G(u, Du)

)
(3.62)

and we have set
G(u, Du) = (

Gl(u, Du)
)
.
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The point of the extended system is that it is now in Fuchsian form and its coefficients
satisfy the assumptions needed apply the existence theory developed in Sect. 4. To see
that the coefficients do in fact satisfy the required assumptions, we observe, with the
help of (3.26), (3.32), (3.39) and (3.57)–(3.62), that (3.38), (3.41)–(3.44), (3.45)–(3.47),
and (3.53)–(3.54) imply that

∣∣∣∣P⊥
(
∂t (B0(U )) + 1

t ∂k(B
k(U ))

)
P

⊥
∣∣∣∣
op

� 1
t |PU |2, (3.63)

∣∣∣∣P⊥
(
∂t (B0(U )) + 1

t ∂k(B
k(U ))

)
P

∣∣∣∣
op
+

∣∣∣∣P
(
∂t (B0(U ))+1

t ∂k(B
k(U ))

)
P

⊥
∣∣∣∣
op

� 1
t |PU |,
(3.64)∣∣∣∣P

(
∂t (B0(U )) + 1

t ∂k(B
k(U ))

)
P

∣∣∣∣
op

� 1
t |PU |, (3.65)

P
⊥Bk(U )P⊥ = 0, (3.66)

|P⊥Bk(U )P|op + |PBk(U )P⊥|op � |PU |, (3.67)

|PBk(U )P|op � |PU |, (3.68)

|P⊥H(U )| � |PU |2, (3.69)

|PH(U )| � |U ||PU |, (3.70)

|B0(u) − B0(0)|op + |B(u) − B(0)|op � |PU |2 (3.71)

and

PB0(u)P⊥ = P
⊥B0(u)P = 0, (3.72)

where

B0(0) =
(
A0(0) 0
0 A0(0)

)
and B(0) = λB0(0). (3.73)

and

P
⊥ = 1I − P. (3.74)

We see also from (3.34)–(3.36) and (3.60)-(3.61) that

[P,B(U )] = 0, (3.75)

∂k(P
⊥B(U )) = 0 (3.76)

and

P
2 = P. (3.77)

3.5. Global existence. We are now ready to state and prove the main result of this
article that guarantees the future stability of irrotational, non-linear perturbations of the
homogeneous solutions (1.8) to the relativistic Euler equations (1.1)–(1.2) onMilne-like
spacetimes of the form (1.5)–(1.6).
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Theorem 3.2. Suppose T0 > 0, k ∈ Z>3/2+2, 0 < K < 1/3, cH > 0 and

(φ̃0, φ̃1) ∈ Hk+2(T3) × Hk+1(T3).

Then there exists a δ > 0 such that if

‖φ̃0 − cH‖Hk+2 + T0‖φ̃1‖Hk+1 ≤ δ,

then there exists a

φ ∈
k+2⋂

=0

C

(
(0, T0], Hk+2−
(T3)

)

such that φ̄ = t3K−1φ defines a unique classical solution of the wave equation (3.1) on
(0, T0] × T

3 satisfying the initial conditions

(φ̄|t=T0 , ∂t φ̄|t=T0) = (
T 3K−1
0 φ̃0, T

3K−2
0 (T0φ̃1 + (3K − 1)φ̃0)

)
,

which by (3.3) and (3.5), determines a (unique) irrotational solution of the relativistic
Euler equations (1.1)–(1.2) on (0, T0] × T

3. Moreover, φ is bounded by

‖φ(t) − cH‖2Hk+2 + ‖t∂tφ(t)‖2Hk+1 +
∫ T0

t

1

τ

(
‖τ∂τφ(τ)‖2Hk+1 + ‖Dφ(τ)‖2Hk+1

)
dτ

�
(‖φ̃0 − cH‖2Hk+2 + ‖φ̃1‖2Hk+1

)

for all t ∈ (0, T0].
Proof. First, we fix T0 > 0, k ∈ Z>3/2+2, cH > 0, 0 < K < 1/3, δ > 0 and choose
(φ̃0, φ̃1) ∈ Hk+2(T3) × Hk+1(T3) so that

‖φ̃0 − cH‖Hk+2 + T0‖φ̃1‖Hk+1 ≤ δ.

We then know from standard existence and uniqueness theory for wave equations that
there exists a unique solution

φ ∈
k+2⋂

=0

C

(
(T ∗, T0], Hk+2−
(T3)

)

to the wave equation (3.7) for some maximal time T ∗ ∈ (0, T0) that satisfies the the
initial conditions

(φ̄|t=T0 , ∂t φ̄|t=T0) = (
T 3K−1
0 φ̃0, T

3K−2
0 (T0φ̃1 + (3K − 1)φ̃0)

)
.

Furthermore, we know, from the calculations carried out in Sect. 3, that

U = (
u Du

)tr
,

where
u = (

t∂tφ ∂ jφ t∂tφ − λ(φ − cH ) ∂ jφ
)tr

, λ = 1 − 3K ,

defines a solution of (3.55) on the time interval (T ∗, T0]. It is also clear from (3.63)–
(3.77), and the symmetry of the matrices B0(U ) and Bk(U ) that, after the simple time
transformation t �→ −t and for U satisfying |U | ≤ R with R chosen sufficiently small,
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all of the assumptions from Sect. 4.1 will be satisfied for any choice of κ ∈ (0, λ), and
λa > 0, a = 1, 2, and βa > 0, a = 1, 2, 3, 4, chosen as small as we like. Since

‖U (0)‖Hk � ‖φ̃0 − cH‖Hk+2 + T0‖φ̃1‖Hk+1 ≤ δ,

it then follows from Theorem 4.5 that, for δ > 0 chosen sufficiently small, the maximal
time of existence is T ∗ = 0 and U will satisfy an energy estimate of the form

‖U (t)‖2Hk +
∫ T0

t

1

τ
‖PU (τ )‖2Hk dτ ≤ C

(
δ, δ−1)‖U (T0)‖2Hk (3.78)

for all t ∈ (0, T0]. In particular this shows that the solution φ exists on the time interval
(0, T0]. Additionally, since
‖PU‖2Hk ≈ ‖t∂tφ‖2Hk+1 + ‖Dφ‖2Hk+1 and ‖U‖2Hk ≈ ‖φ − cH‖2Hk+2 + ‖t∂tφ‖2Hk+1 ,

the stated bound satisfied by φ is a direct consequence of the energy estimate (3.78).
This complete the proof of the theorem. ��

4. Fuchsian Initial Value Problems

In this section, we develop an existence theory for the initial value problem (IVP) for
Fuchsian equations of the form

B0(u)∂t u +
1

t
(Ci + Bi (u))∂i u = 1

t
B(u)Pu +

1

t
F(u) in [T0, T1) × T

n, (4.1)

u = u0 in {T0} × T
n, (4.2)

where now T0 < T1 ≤ 0 and the coefficients satisfy the assumptions set out in the fol-
lowing section. Since these assumptions imply, in particular, that (4.1) is symmetric hy-
perbolic, this evolution equation enjoys the Cauchy stability property. As a consequence,
the existence of solutions to (4.1)-(4.2) when T1 < 0 is guaranteed for sufficiently small
initial data. Thus the main aim of this section will be to establish the existence and
uniqueness of solutions for T1 = 0 under a suitable smallness assumption on the initial
data.

The study of the IVP for Fuchsian equations was initiated in [16], and, there, the
existence and uniqueness of solutions to (4.1)-(4.2) on intervals of the form [T0, 0)
was established under a small initial data assumption. Furthermore, decay estimates as
t ↗ 0 were also obtained. This existence theory was then generalized in [4] to allow for
certain coefficients to have a singular dependence on t , which significantly widened the
applicability of this theory to establish global existence and decay results for systems of
hyperbolic equations. For examples of global existence results for a range of different
hyperbolic systems that have been established using the Fuchsian method see [4,11–
14,16,24].

The existence theory from [4] does not apply to the IVP (4.1)–(4.2) due to the ap-
pearance of the term 1

t C
k∂ku, which does not satisfy the assumptions needed for the

existence theory. In the present paper we therefore establish a complementary theorem to
[4] which provides existence and uniqueness of solutions to (4.1)–(4.2) on time intervals
[T0, 0). Interestingly, due to the term 1

t C
k∂ku, these solutions do not decay uniformly

as t ↗ 0, which is a key difference compared to the Fuchsian equations considered in
[4] whose solutions do decay uniformly. The precise statement of our existence result
that is applicable to the IVP (4.1)–(4.2) is given below in Theorem 4.5.
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4.1. Coefficient assumptions. We specify in the following the assumptions on the coef-
ficients in (4.1)–(4.2).

(i) The solution u(t, x) is a RN -valued map.
(ii) The matrix P ∈ MN×N is a constant, symmetric projection operator, that is,

P
2 = P, P

tr = P, ∂tP = 0 and ∂ jP = 0. (4.3)

For use below, we define the complementary projection operator by

P
⊥ = 1I − P.

(iii) The matrices Ck ∈ MN×N are constant and symmetric, that is

(Ck)tr = Ck, ∂tC
k = 0 and ∂ jC

k = 0. (4.4)

(iv) There exist constantsκ, γ1, γ2 > 0 such that themaps B0,B ∈ C∞(BR(RN ),MN×N )
)

satisfy
1

γ1
1I ≤ B0(v) ≤ 1

κ
B(v) ≤ γ21I (4.5)

for all v ∈ BR(RN ), and the following additional properties:

(B0(v))tr = B0(v), (4.6)

[P,B(v)] = 0, (4.7)

∂k
(
P

⊥B(v)
) = 0, (4.8)

|P(B0(v) − B0(0))P|op + |PB(v) − PB(0)|op � |Pv|, (4.9)

and

∣∣P⊥(B0(v) − B0(0)
)
P

⊥∣∣
op +

∣∣P⊥B0(v)P
∣∣
op +

∣∣PB0(v)P⊥∣∣
op � |Pv|2 (4.10)

for all v ∈ BR(RN ).

It is then not difficult to see that (4.7)–(4.10) imply that

[P⊥,B(v)] = [P,B(v)−1] = [P⊥,B(v)−1] = 0, (4.11)

∂k(P
⊥B(v)−1) = 0, (4.12)

|P((B0(v))−1 − (B0(0))−1)P|op +
∣∣PB(v)−1 − PB(0)−1

∣∣
op � |Pv| (4.13)

and

∣∣P⊥((B0(v))−1 − (B0(0))−1)
P

⊥∣∣
op +

∣∣P⊥(B0(v))−1
P
∣∣
op +

∣∣P(B0(v))−1
P

⊥∣∣
op � |Pv|2

(4.14)

for all v ∈ BR(RN ).
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(v) There exist constantsλa ,a = 1, 2, such that themap F ∈ C∞(BR(RN ),RN ) satisfies

|PF(v)| ≤ λ1|Pv| (4.15)

and

|P⊥F(v)| ≤ λ2

R
|Pv|2 (4.16)

for all v ∈ BR(RN ).
(vi) The maps Bk ∈ C∞(BR(RN ),MN×N ) satisfy

(Bk(v))tr = Bk(v), (4.17)∣∣P⊥Bk(v)P
∣∣
op +

∣∣PBk(v)P⊥∣∣
op � |Pv|, (4.18)∣∣P⊥Bk(v)P⊥∣∣

op � |Pv|2 (4.19)

and
∣∣PBk(v)P

∣∣
op � |v| (4.20)

for all v ∈ BR(RN ).
(vii) There exist constants βa ≥ 0, a = 1, 2, 3, 4, such that the map

divB : BR
(
R

N × R
n×N ) −→ MN×N

defined by

divB(t, v, w) = DvB
0(v) · (B0(v))−1

(
−1

t
(Ck + Bk(v))wk +

1

t
B(v)Pv +

1

t
F(v)

)

+
1

t
DvB

k(v)wk (4.21)

satisfies
∣∣P div B(t, v, w)P

∣∣
op ≤ |t |−1β1, (4.22)

∣∣P div B(t, v, w)P⊥∣∣
op ≤ |t |−1β2

R
|Pv|, (4.23)

∣∣P⊥ div B(t, v, w)P
∣∣
op ≤ |t |−1β3

R
|Pv| (4.24)

and

∣∣P⊥ div B(t, v, w)P⊥∣∣
op ≤ |t |−1β4

R2 |Pv|2. (4.25)

Remark 4.1. (i) For a symmetric matrix A ∈ MN×N , we have the equality |P⊥AP| =
|PAP⊥|. From this property, it is clear that some of the assumptions above are
redundant and we can always take β2 = β3.
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(ii) For solutions u(t, x) of (4.1), we have

div B(t, u(t, x), Du(t, x)) = ∂t
(
B0(u(t, x)

)
+ ∂k

(
1

t

(
Ck + Bk(u(t, x)

))

= ∂t
(
B0(u(t, x)

)
+
1

t
∂k
(
Bk(u(t, x)

)
.

Furthermore, for the proof of Theorem 4.5, it will be clear that we only require that
the estimates (4.22)–(4.25) hold for solutions where wi = ∂i u. This is important
when we want to consider the spatially differentiated version of (4.1) together with
(4.1), which will yield an equation of the same form as (4.1) for the variables
(u, w = Du). By considering this extended system, we will be able to relax the
assumptions (4.22)–(4.25) to

∣∣P div B(t, v, w)P
∣∣
op ≤ |t |−1β1,

∣∣P div B(t, v, w)P⊥∣∣
op ≤ |t |−1β2

R
(|Pv| + |Pw|),

∣∣P⊥ div B(t, v, w)P
∣∣
op ≤ |t |−1β3

R
(|Pv| + |Pw|)

and

∣∣P⊥ div B(t, v, w)P⊥∣∣
op ≤ |t |−1β4

R2 (|Pv|2 + |Pw|2).

4.2. Preliminary estimates. Before proceedingwith the statement and proof of Theorem
4.5, we first establish some estimates that will be used in the proof. For a given k ∈
Z>n/2+1, we let CSob > 0 be the constant from Sobolev’s inequality, that is,

max
{‖Du(t)‖L∞ , ‖u(t)‖L∞

} ≤ CSob‖u(t)‖Hk . (4.26)

Proposition 4.2. Suppose k ∈ Z>n/2+1, u ∈ BC−1
SobR

(
Hk(Tn,RN )

)
, v ∈ L2(Tn,RN ),

F = F(t, u(x)) and div B = div B(t, u(x), Du(x)). Then

|〈u|F〉| ≤ (λ1 + λ2)‖Pu‖2L2

and

|〈v| div Bv〉| ≤ |t |−1
(

β1‖Pv‖2L2 +
β2 + β3

R
‖|v||Pv||Pu|‖L1 +

β4

R2 ‖|v|2|Pu|2‖L1

)
.

Proof. The estimates
|〈u|P⊥F〉| ≤ λ2‖Pu‖2L2 (4.27)

and

|〈v| div Bv〉| ≤ |t |−1
(

β1‖Pv‖2L2 +
β2 + β3

R
‖|v||Pv||Pu|‖L1 +

β4

R2 ‖|v|2|Pu|2‖L1

)

are a direct consequence of Proposition 3.4 of [4] and the assumptions (4.15)–(4.16) and
(4.22)–(4.25). We see also from (4.3) and (4.15) that

|〈u|PF〉| = |〈Pu|PF〉| ≤ λ1‖Pu‖2L2 .



Stabilizing Relativistic Fluids on Spacetimes 419

So from this and (4.27), we find, with the help of the triangle inequality, that

|〈u|F〉| = |〈u|PF + P
⊥F〉| = |〈u|PF〉 + 〈u|P⊥F〉| ≤ |〈u|PF〉| + |〈u|P⊥F〉|

≤ (λ1 + λ2)‖Pu‖2L2 ,

which completes the proof. ��
Proposition 4.3. Suppose k ∈ Z>n/2+2, 1 ≤ |α| ≤ k, v ∈ L2(Tn,RN ), u ∈ BC−1

SobR(
Hk(Tn,RN )

)
, B = B(u(x)), B0 = B0(u(x)) and Bk = Bk(u(x)). Then

|〈v|BDα(B−1F)〉| + |〈v|B[Dα,B−1B0](B0)−1F〉| ≤ �,

|〈v|B[Dα,B−1B0](B0)−1BPu〉| ≤ �,

|〈v|B[Dα,B−1Bk]∂ku〉| + |〈v|B[Dα,B−1B0](B0)−1Bk∂ku〉| ≤ �

and

|〈v|B[Dα,B−1Ck]∂ku〉| + |〈v|B[Dα,B−1B0](B0)−1Ck∂ku〉| ≤ �

where

� = C
(‖u‖Hk

)(‖Pv‖L2‖Pu‖Hk−1 + ‖v‖L2‖Pu‖2Hk + ‖Pv‖L2‖u‖Hk‖Pu‖Hk

)
.

Proof. Since the first three estimates follow directly from Proposition 3.6 of [4] and the
coefficient assumptions from Sect. 4.1, in particular, (ii),(iv), (v) and (vi), we only need
to establish the last estimate. To do so, we assume that 1 ≤ |α| ≤ k, and we observe
from (4.3), (4.4), (4.7) and (4.11)–(4.12) that

〈v|B[Dα,B−1Ck]∂ku〉 = 〈Pv|B[Dα,B−1Ck]∂ku〉 + 〈P⊥v|B[Dα,B−1Ck]∂ku〉
= 〈Pv|B[Dα,PB−1Ck]∂ku〉 + 〈P⊥v|B[Dα,P⊥B−1Ck]∂ku〉
= 〈Pv|B[Dα,PB−1Ck]∂ku〉.

Applying the Cauchy-Schwartz inequality gives

|〈v|B[Dα,B−1Ck]∂ku〉| ≤ ‖Pv‖L2‖B[Dα,PB−1Ck]∂ku‖L2 .

With the help of the Hölder’s inequality, see Theorem A.1, the commutator estimates
from Theorem A.3, and Sobolev’s inequality, see Theorem A.2, we then get

|〈v|B[Dα,B−1Ck]∂ku〉| ≤ ‖Pv‖L2‖B‖Hk‖DPB−1‖Hk−1‖u‖Hk . (4.28)

But from (4.13), Sobolev’s inequality and the Moser estimates from Theorem A.4, we
know that ‖DPB−1‖Hk−1 ≤ C(‖u‖Hk )‖Pu‖Hk , and hence, we conclude from (4.28)
that

|〈v|B[Dα,B−1Ck]∂ku〉| ≤ C(‖u‖Hk )‖Pv‖L2‖Pu‖Hk‖u‖Hk . (4.29)

Next, by (4.3), (4.7) and (4.11), we have

〈v|B[Dα,B−1B0](B0)−1Ck∂ku〉
= 〈Pv|B[Dα,B−1B0](B0)−1Ck∂ku〉 + 〈P⊥v|B[Dα,B−1B0](B0)−1Ck∂ku〉
= 〈Pv|B[Dα,B−1B0](B0)−1Ck∂ku〉 + 〈P⊥v|B[Dα,P⊥B−1B0](B0)−1Ck∂ku〉.
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Estimating this expression as above yields

|〈v|B[Dα,B−1B0](B0)−1Ck∂ku〉|
≤ C(‖u‖Hk )

(
‖Pv‖L2‖D(B−1B0)‖Hk−1‖u‖Hk + ‖v‖L2‖D(P⊥B−1B0)‖Hk−1

)
.

(4.30)

But

|B−1B0 − (B−1B0)|u=0| � |Pu| and |P⊥B−1B0 − (P⊥B−1B0)|u=0| � |Pu|2

by (4.7)–(4.10) and (4.13), and consequently, by Sobolev’s inequality and the Moser
estimates from Theorem A.4, we see that

‖D(B−1B0)‖Hk−1 ≤ C(‖u‖Hk )‖Pu‖Hk and ‖D(P⊥B−1B0)‖Hk−1 ≤ C(‖u‖Hk )‖Pu‖2Hk .

Substituting these into (4.30) gives

|〈v|B[Dα,B−1B0](B0)−1Ck∂ku〉| ≤ C(‖u‖Hk )
(
‖Pv‖L2‖Pu‖Hk‖u‖Hk + ‖v‖L2‖Pu‖2Hk

)
.

(4.31)
Combining the inequalities (4.29) and (4.31), we see that the final estimate in the state-
ment of the proposition holds, which completes the proof. ��
Remark 4.4. The structure of the term� in the above proposition plays an important role
in the following proof of global existence. Schematically, the second bracketed term of
� involves a quadratic term ‖Pu‖2

Hk which will be bounded by the energy times a small
coefficient coming from ‖v‖L2 . A similar argument holds for the third term of �. By
contrast, the first term of � will require a more subtle analysis using Ehrling’s lemma.
This lemmawill allowus to obtain a small coefficient at the expense of gaining derivatives
and additional terms. Note that commutators involving the matrices Ck , which are the
key new terms compared to [4], also lead to these more problematic terms in �.

4.3. Global existence. The following theorem guarantees, under a suitable small initial
data hypothesis, the existence of solutions to the the IVP (4.1)–(4.2) on the time interval
[T0, 0). The proof is similar to the first part of the proof of Theorem 3.8 from [4] where
existence is established.However, unlikeTheorem3.8 from [4], there is no corresponding
uniform decay estimate as t ↗ 0 for solutions. This is due to the singular term 1

t C
k∂ku

that prevents solutions to (4.1)–(4.2) from satisfying an estimate analogous to the one
fromProposition 3.2 of [4] unless additional assumptions on the coefficients are imposed.

Theorem 4.5. Suppose k ∈ Z>n/2+2, u0 ∈ Hk(Tn), assumptions (i)-(vii) from Sect. 4.1
are fulfilled, and the constants κ , γ1, λ1, λ2, β1, β2, β3, and β4 from Sect. 4.1 satisfy

κ >
1

2
γ1

( 4∑
a=1

β2a + 2(λ1 + λ2)

)
.

Then there exists a δ > 0 such that if ‖u0‖Hk < δ, then there exists a unique solution

u ∈ C0([T0, 0), Hk(Tn,RN )
) ∩ C1([T0, 0), Hk−1(Tn,RN )

)
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of the IVP (4.1)–(4.2) that satisfies the energy estimate

‖u(t)‖2Hk −
∫ t

T0

1

τ
‖Pu(τ )‖2Hk dτ ≤ C

(
δ, δ−1)‖u0‖2Hk .

Proof. Fixing k ∈ Z>n/2+2, we obtain from standard local-in-time existence and unique-
ness results for symmetric hyperbolic equations, e.g. [22, Ch.16 §1], the existence of a
unique solution u ∈ C0([T0, T ∗), Hk) ∩ C1([T0, T ∗), Hk−1) to the IVP (4.1)-(4.2) for
some maximal time T ∗ ∈ (T0, 0]. Then taking R > 0 to be as in Sect. 4.1, we choose
initial data such that

‖u(T0)‖Hk < δ

where
δ ∈ (0, 1

4R) and R = min
{ 3R
4CSob

, 3R
4

}
.

Then either ‖u(t)‖Hk < R for all t ∈ [T0, T ∗) or there exists a first time T∗ ∈ [T0, T ∗)
such that

‖u(T∗)‖Hk = R ≤ 3

4
R.

If the first case holds, we set T∗ = T ∗, and in either case, we observe by (4.26) that

max
{‖Du(t)‖L∞ , ‖u(t)‖L∞ , ‖u(t)‖Hk

} ≤ 3

4
R, T0 ≤ t < T∗. (4.32)

Next, applying the differential operator BDαB−1, where |α| ≤ k, to (4.1) on the left
yields

B0∂t D
αu +

1

t
(Ci + Bi )∂i D

αu = 1

t
BDα

Pu − B[Dα,B−1B0]∂t u

−1

t
B[Dα,B−1(Ci + Bi )]∂i u +

1

t
BDα(B−1F).

Using (4.1) to replace ∂t u, we see that the above equation is equivalent to

B0∂t D
αu +

1

t
(Ci + Bi )∂i D

αu

= 1

t

[
BPDαu − B[Dα,B−1B0](B0)−1BPu

]
+
1

t
B[Dα,B−1B0](B0)−1(Ci + Bi )∂i u

− 1

t
B[Dα,B−1(Ci + Bi )]∂i u − 1

t
B[Dα,B−1B0](B0)−1F +

1

t
BDα(B−1F).

(4.33)

In the followingwewill use (4.33) to derive energy estimates that are well-behaved in
the limit t ↗ 0. These energy estimates will be expressed in terms of the energy norms
defined by

|||u|||2s =
s∑


=0

〈D
u|B0D
u〉.

By (4.5), we note that the energy ||| · |||2s and Sobolev ‖ · ‖Hk norms are equivalent since
they satisfy

1√
γ1

‖ · ‖Hs ≤ ||| · |||s ≤ √
γ2‖ · ‖Hs .
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We will employ this equivalence below without comment.
L2-energy estimate: To obtain a L2-energy estimate for u, we set α = 0 in (4.33) and
then employ the usual energy identity that holds for symmetric hyperbolic equations to
get

1

2
∂t 〈u|B0u〉 = 1

t
〈u|BPu〉 + 1

2
〈u| div Bu〉 + 1

t
〈u|F〉, (4.34)

where

div B = ∂t (B
0(u)) +

1

t
∂k(B

k(u)).

Since t < 0, we have that

2

t
〈v|BPv〉 = 2

t
〈Pv|BPv〉 ≤ 2κ

t
|||Pv|||20 (4.35)

for any v ∈ L2(RN ) by (4.3), (4.5) and (4.7). From this inequality and (4.32), Proposi-
tion 4.2, and the energy identity (4.34), we deduce, with the help of Hölder’s inequality,
the L2-energy estimate

∂t |||u|||20 ≤ ρ0

t
|||Pu|||20, T0 ≤ t < T∗, (4.36)

where

ρ0 = 2κ − γ1

[ 4∑
a=1

βa + 2(λ1 + λ2)

]
> 0. (4.37)

Hk-energy estimate: Applying the L2-energy identity, i.e. (4.34), to (4.33) gives

1

2
∂t 〈Dαu|B0Dαu〉 = 1

t
〈Dαu|BPDαu〉 + 1

2
〈Dαu| div BDαu〉 + 〈Dαu|Gα〉, 0 ≤ |α| ≤ k,

(4.38)
where

Gα =1

t

(
−B[Dα,B−1B0](B0)−1BPu + B[Dα,B−1B0](B0)−1(Ci + Bi )∂i u

− B[Dα,B−1(Ci + Bi )]∂i u − B[Dα,B−1B0](B0)−1F + BDα(B−1F)
)
.

From (4.38), we obtain, with the help of (4.32), (4.35), Proposition 4.2 and Hölder’s
inequality, the estimate

∂t |||Dαu|||20 ≤2κ − γ1β1

t
|||Dα

Pu|||20
− γ1(β2 + β3 + β4)

t
|||Pu|||k |||Pu|||k−1 + 2〈Dαu|Gα〉, T0 ≤ t < T∗.

Using Proposition 4.3, we bound the last term in the above inequality by

〈Dαu|Gα〉 ≤ − 1

t
C(‖u‖Hk )

(‖Pu‖Hk‖Pu‖Hk−1 + ‖u‖Hk‖Pu‖2Hk

)
,
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and so, we have2

∂t |||Dαu|||20 ≤2κ − γ1β1

t
|||Dα

Pu|||20
− 1

t
C(|||u|||k)

(|||Pu|||k |||Pu|||k−1 + |||u|||k |||Pu|||2k
)
, T0 ≤ t < T∗.

Summing this over α for 0 ≤ |α| ≤ k, we obtain, after an application of Young’s
inequality and Ehrling’s lemma (Lemma A.5), the Hk energy estimate

∂t |||u|||2k ≤ 2κ − γ1β1 − C(|||u|||k)(ε + ‖u‖k)
t

|||Pu|||2k − 1

t
c(|||u|||k, ε−1)|||Pu|||20,

(4.39)

which holds for any ε > 0 and t ∈ [T0, T∗).
Global existence on [T0, 0) × T

n : Initially, we have |||u(T0)|||k ≤ √
γ2‖u(T0)‖Hk <

δ
√

γ2, and so, we can, for δ satisfying

0 < δ ≤ min

{ R
2
√

γ1γ2
,
R
4

}
, (4.40)

define Tδ ∈ (T0, T∗) to be the first time such that |||u(Tδ)|||k = 2δ
√

γ2, or if such a time
does not exist, set Tδ = T ∗. In either case, the inequality

|||u(t)|||k ≤ 2δ
√

γ2, T0 ≤ t < Tδ,

holds, which in turn, implies that

‖u(t)‖Hk ≤ √
γ1|||u(t)|||k ≤ 2δ

√
γ1γ2 ≤ R, T0 ≤ t < Tδ ≤ T∗ ≤ T ∗.

To proceed, we fix ε by setting ε = δ
√

γ2. Substituting this into (4.39) gives

∂t |||u|||2k ≤ ρk

t
|||Pu|||2k − 1

t
c(δ, δ−1)|||Pu|||20, T0 ≤ t < Tδ, (4.41)

where
ρk = 2κ − γ1β1 − C(δ)δ.

But limδ↘0 C(δ)δ = 0 and 2κ − γ1β1 > 0 by assumption, and consequently, we have

ρk > 0 (4.42)

provided δ > 0 is chosen small enough. Furthermore, since ρ0 > 0 by (4.37), we can
add ρ−1

0 c(δ, δ−1) times (4.36) to (4.41) to obtain the energy estimate

∂t
(|||u|||2k + ρ−1

0 c(δ, δ−1)|||u|||20
) ≤ ρk

t
|||Pu|||2k, T0 ≤ t < Tδ.

Setting

Ek(t) = |||u(t)|||2k + ρ−1
0 c(δ, δ−1)|||u(t)|||20 −

∫ t

T0

ρk

τ
|||Pu(τ )|||2k dτ, (4.43)

2 The constant C(|||u|||k ) implicitly depends on the various constants, e.g. γ1, γ2, β1, etc., that were
introduced in the assumption in Sect. 4.1.
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we can write this energy estimate as

∂t Ek ≤ 0, T0 ≤ t < Tδ.

Integrating in time gives

Ek(t) ≤ Ek(0), T0 ≤ t < Tδ. (4.44)

With δ fixed so that (4.40) and (4.42) hold, we choose δ0 ∈ (0, δ) and assume that
the initial data is chosen so that ‖u(T0)‖Hk ≤ δ0. Then (4.44) implies that

|||u(t)|||k ≤
√
1 + ρ−1

0 c(δ, δ−1)δ0, T0 ≤ t < Tδ. (4.45)

By further shrinking δ0 > 0, if necessary, so that 0 <

√
1 + ρ−1

0 c(δ, δ−1)δ0 < δ
√

γ2

also holds, we deduce from (4.45) that ‖u(t)‖k < δ
√

γ2 for T0 ≤ t < Tδ . From the
definition of Tδ and the maximality of T ∗, we conclude that Tδ = T∗ = T ∗ = 0. Thus,
we have established the global existence of solutions on [T0, 0) × T

n . Moreover, from
(4.43), (4.44) and the equivalence of the norms ‖ · ‖Hk and ||| · |||k , we see immediately
that the energy estimate

‖u(t)‖2Hk −
∫ t

T0

1

τ
‖Pu(τ )‖2Hk dτ ≤ C(δ, δ−1)‖u(T0)‖2Hk

holds for T0 ≤ t < 0. ��
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A. Calculus Inequalities

In this appendix, we collect, for the convenience of the reader, a number of calculus
inequalities that we employ. The proof of the following inequalities are well known and
may be found, for example, in the books [1], [8] and [22].

Theorem A.1. (Hölder’s inequality) If 0 < p, q, r ≤ ∞ satisfy 1/p + 1/q = 1/r , then

‖uv‖Lr ≤ ‖u‖L p‖v‖Lq

for all u ∈ L p(Tn) and v ∈ Lq(Tn).
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Theorem A.2. (Sobolev’s inequality) Suppose 1 ≤ p < ∞ and s ∈ Z>n/p. Then

‖u‖L∞ � ‖u‖Ws,p

for all u ∈ Ws,p(Tn).

Theorem A.3. (Product and commutator estimates)

(i) Suppose 1 ≤ p1, p2, q1, q2 ≤ ∞, s ∈ Z≥1, |α| = s and

1

p1
+

1

p2
= 1

q1
+

1

q2
= 1

r
.

Then

‖Dα(uv)‖Lr � ‖u‖Ws,p1 ‖v‖Lq1 + ‖u‖L p2 ‖v‖Ws,q2

and

‖[Dα, u]v‖Lr � ‖Du‖L p1 ‖v‖Ws−1,q1 + ‖Du‖Ws−1,p2 ‖v‖Lq2

for all u, v ∈ C∞(Tn).
(ii) Suppose s1, s2, s3 ∈ Z≥0, s1, s2 ≥ s3, 1 ≤ p ≤ ∞, and s1 + s2 − s3 > n/p. Then

‖uv‖Ws3,p � ‖u‖Ws1,p‖v‖Ws2,p

for all u ∈ Ws1,p(Tn) and v ∈ Ws2,p(Tn).

Theorem A.4. (Moser’s estimates) Suppose 1 ≤ p ≤ ∞, s ∈ Z≥1, 0 ≤ k ≤ s, |α| = k
and f ∈ Cs(U ), where U is open and bounded in R and contains 0, and f (0) = 0.
Then

‖Dα f (u)‖L p ≤ C
(‖ f ‖Cs (U )

)
(1 + ‖u‖s−1

L∞ )‖u‖Ws,p

for all u ∈ C0(Tn) ∩ L∞(Tn) ∩ Ws,p(Tn) with u(x) ∈ U for all x ∈ T
n.

Lemma A.5. (Ehrling’s lemma) Suppose1 ≤ p < ∞, s0, s, s1 ∈ Z≥0, and s0 < s < s1.
Then for any ε > 0 there exists a constant C = C(ε−1) such that

‖u‖Ws,p ≤ ε‖u‖Ws1,p + C‖u‖Ws0,p

for all u ∈ Ws1,p(Tn).
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