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Abstract: Pure quantum spin-𝑠 states can be represented by 2𝑠 points on the sphere,

as shown by Majorana (Nuovo Cimento 9:43–50, 1932)—the description has proven

particularly useful in the study of rotational symmetries of the states, and a host of

other properties, as the points rotate rigidly on the sphere when the state undergoes an

𝑆𝑈 (2) transformation in Hilbert space. We present here an extension of this represen-

tation to multipartite, totally antisymmetric (under exchange of any two qudits) states,

widely known in the form of Slater determinants, and linear combinations thereof. Such

states generally involve a superposition of various spin values, giving rise to a family

of Majorana-like constellations, that captures their rotational transformation properties.

We also point out that our results apply equally well to the characterization of degen-

erate linear subspaces of the Hilbert space of a single spin, of the type that appear in

the Wilczek–Zee effect, and comment on potential applications to holonomic quantum

computing.
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1. Introduction

A quantum spin-𝑠 state |𝜓⟩ is represented by a ray, i.e., a 1-dimensional linear subspace,

in a �̃�-dimensional Hilbert space  (�̃� ≡ 2𝑠 + 1), i.e., a point in the corresponding

projective space ℙ = ℂ𝑃𝑁
(𝑁 ≡ 2𝑠). In a relatively little known 1932 paper [1],

Majorana showed how to uniquely characterize |𝜓⟩ by an unordered set of (possibly

coincident) 2𝑠 directions in space, i.e., 2𝑠 points (stars) on the unit sphere, known as the

Majorana constellation of |𝜓⟩ (see, e.g., [2]). The construction is such that when |𝜓⟩ is

transformed in  by the spin-𝑠 irreducible representation of an 𝑆𝑈 (2) transformation,

the associated constellation rotates by the corresponding rotation in physical space. It

can be shown that the directions of the Majorana stars characterize, in the standard way,

the states of 2𝑠 spin-1/2 particles, which, upon complete symmetrization, yield |𝜓⟩.

Even when the spin-𝑠 system is not really made up of spin-1/2 particles, the associated

directions can be detected experimentally: aligning a Stern-Gerlach apparatus along any

of them, the probability of measuring the minimal spin projection, −𝑠, is equal to zero

[3,4].

When considering a multipartite system made of, say, 𝑘 spin-𝑠 particles, its state

space is 
𝑠
⊗ … ⊗ 

𝑠
≡ 

⊗𝑘

𝑠
, which is no longer characterized by a single spin,

but, rather, separates in various irreducible (under the action of 𝑆𝑈 (2)) subspaces, each

characterized by its own spin value—e.g., when 𝑘 = 2, all spin values from 𝑗 = 0 to

𝑗 = 2𝑠 appear exactly once. It is often convenient to restrict attention to a subspace of


⊗𝑘

𝑠
, like the totally symmetric or antisymmetric one, e.g., when dealing with bosons

or fermions [5]. The problem we address in this paper is the extension of Majorana’s

construction to the case of totally antisymmetric 𝑘-partite spin-𝑠 states. These are rather

familiar to many physicists as they abound in a wide range of problems, for example,

in atomic and molecular physics, or in the study of nuclear structure (note though that

we only consider the spin part, while the instances of antisymmetric states mentioned

above usually involve a spatial part as well, as in, e.g., the Slater determinants used in the

Hartree-Fock method). They have also proved useful in quantum information processing

[6,7], in which context they can be generated iteratively by a sequence of generalized

XOR-gates and discrete Fourier transforms, as well as in other applications, e.g., in quan-

tum cryptography [8]. Given a general such state, the question of its possible rotational

symmetries is of paramount importance in many applications, and the usefulness, in that

respect, of a representation à la Majorana is self-evident.

Another, conceptually distinct, area where a stellar representation like the one men-

tioned above might be of use relates to quantum computing. As is well known, cyclic

evolution of quantum states gives rise to geometric phases, so that, to each closed curve 𝛾

inℙ, one may associate a phase factor 𝑒
𝑖𝜑

𝛾 , which is independent of the time parametriza-

tion of 𝛾 [9,10]. This concept has been generalized to the cyclic evolution of degenerate

𝑘-dimensional subspaces of  (which we call (𝑠, 𝑘)-planes), so that to each closed curve

𝛾 in the Grassmannian Gr
𝑘,�̃�

(which is the set of 𝑘-planes through the origin in ), one

may associate a 𝑘 × 𝑘 unitary matrix 𝑈
𝛾
, which, like its abelian analogue above, does

not depend on the time parametrization of 𝛾 [11–13]. Both the abelian and non-abelian

versions of the effect have been invoked in the realization of quantum gates, their im-

munity to reparametrizations contributing to the robustness of the resulting quantum

computation [14–18]. These developments have put emphasis on the geometric con-

cept of a 𝑘-plane in , as a natural generalization of that of a ray, which corresponds

to 𝑘 = 1. It is easily seen though that a 𝑘-plane in , defined, e.g., as a degenerate

subspace of a particular single particle hamiltonian, is (projectively) characterized by

the antisymmetric tensor product of any set of state vectors that span it, i.e., its math-
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ematical description is identical to that of a ∧-factorizable 𝑘-partite state, like those

furnished, e.g., by a Slater determinant ( ∧-factorizable 𝑘-partite states are those that

can be obtained by the antisymmetrization of the tensor product of 𝑘 factor states, e.g.,

|𝜓1⟩ ∧ |𝜓2⟩ ≡ |𝜓1⟩ ⊗ |𝜓2⟩ − |𝜓2⟩ ⊗ |𝜓1⟩ is a 2-partite ∧-factorizable state). This

means that the constellations we look for would also describe such 𝑘-planes, codifying

their rotational symmetries in simple visual terms. It should be kept in mind though

that ∧-factorizable states are particular cases of antisymmetric ones—the latter can be

expressed as general linear combinations of the former. It should also be clear that 𝑘-

partite ∧-factorizable states correspond to projection operators (density matrices) with

trace equal to 𝑘. A final point worth stressing is that a loop 𝛾 in the Grassmannian, may

also be interpreted as cyclic evolution of a multipartite state, to which one may associate

the standard (abelian) Berry phase—in short, we are dealing with a rich mathematical

structure admitting various alternative physical interpretations.

The structure of the paper is as follows: in Sect. 2 we give some background infor-

mation regarding the Majorana constellation, and Grassmannians. Our solution to the

problem stated above comes in two steps: in the first one, taken in Sect. 3, we define, in

close analogy to Majorana’s construction, the principal constellation of an (𝑠, 𝑘)-plane,

which, however, is shown to be shared, for 𝑘 > 1, by many different planes. Section 4 de-

livers the second step, by introducing the concept of a multiconstellation, which uniquely

identifies an (𝑠, 𝑘)-plane, for almost all such planes—several examples illustrate the gen-

eral theory, as well as its limitations. Finally, Sect. 5 summarizes the findings, mentions

possible extensions, and outlines a number of applications.

2. Majorana and Plücker

2.1. Majorana constellations. The reader is no doubt familiar with the fact that a spin-

1/2 pure state may be characterized, up to an overall phase, by a point on the Bloch

sphere, which gives the spin expectation value (SEV) of the state. The natural question

of whether this visually appealing construction may be generalized to a spin-𝑠 state

was settled by Majorana in a 1932 paper, dealing with the behavior of spins in variable

magnetic fields [1]. What Majorana pointed out was the fact that points in the projective

Hilbert space ℙ = ℂ𝑃𝑁
of a spin-𝑠 system are in one-to-one correspondence with

unordered sets of (possibly coincident) 2𝑠 points on the unit sphere. Details about this

construction may be found in the literature (see, e.g., [2], [3]), we only present here the

bare minimum.

According to [1], to a spin-𝑠 state

|Ψ⟩ =
𝑠∑

𝑚=−𝑠
𝑐
𝑚
|𝑠, 𝑚⟩, (1)

where 𝑆
𝑧
|𝑠, 𝑚⟩ = 𝑚|𝑠, 𝑚⟩, one may associate its Majorana polynomial 𝑃|Ψ⟩(𝜁 ),

𝑃|Ψ⟩(𝜁 ) =
𝑠∑

𝑚=−𝑠
(−1)𝑠−𝑚

√(
2𝑠

𝑠 − 𝑚

)

𝑐
𝑚
𝜁
𝑠+𝑚

, (2)

where 𝜁 is an auxiliary complex variable. The 2𝑠 roots of 𝑃|Ψ⟩(𝜁 ), counted with mul-

tiplicity, in case some of them coincide, may be mapped to the Bloch sphere by stere-

ographic projection from the south pole, giving rise to the Majorana constellation of

|Ψ⟩. Note that if the polynomial turns out of a lower degree, i.e., if 𝑐
𝑚

= 0 for 𝑚 =
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𝑠, 𝑠− 1,… , 𝑠− 𝑘+ 1, then 𝜁 = ∞ should be considered a root of multiplicity 𝑘, result-

ing in the appearance of 𝑘 stars at the south pole of the Bloch sphere. The remarkable

property of this construction is that when |Ψ⟩ is transformed in Hilbert space by the

matrix 𝐷
(𝑠)(𝑔), representing the abstract element 𝑔 of 𝑆𝑈 (2), its constellation rotates

rigidly by (the rotation in ℝ3
associated to) 𝑔 on the Bloch sphere. Thus, if |Ψ⟩ has a

particular rotational symmetry, in the sense that there exists an element 𝑔0 ∈ 𝑆𝑈 (2)
such that 𝐷

(𝑠)(𝑔0)|Ψ⟩ = 𝑒
𝑖𝛼0 |Ψ⟩, its constellation is invariant under 𝑔0. The recipe given

in (2) becomes more transparent by noting that

|𝑛⟩ = 1
(1 + 𝜁𝜁)𝑠

𝑠∑

𝑚=−𝑠

√(
2𝑠

𝑠 − 𝑚

)

𝜁
𝑠−𝑚 |𝑠, 𝑚⟩, (3)

where |𝑛⟩ denotes the spin coherent state in the direction 𝑛, the latter being related to

𝜁 via stereographic projection, i.e., if the polar coordinates of 𝑛 are (𝜃, 𝜙), then 𝜁 =
tan 𝜃

2 𝑒
𝑖𝜙

. Given the fact that if 𝜁 is the stereographic projection of 𝑛, then −1∕𝜁 is that

of −𝑛, one gets

⟨−𝑛| = (𝜁𝜁)𝑠

(1 + 𝜁𝜁)𝑠

𝑠∑

𝑚=−𝑠

√(
2𝑠

𝑠 − 𝑚

)

(−1)𝑠−𝑚 𝜁−𝑠+𝑚 ⟨𝑠, 𝑚| (4)

=
(𝜁∕𝜁 )𝑠

(1 + 𝜁𝜁)𝑠

𝑠∑

𝑚=−𝑠

√(
2𝑠

𝑠 − 𝑚

)

(−1)𝑠−𝑚 𝜁𝑠+𝑚 ⟨𝑠, 𝑚| (5)

resulting, finally, in

⟨−𝑛|Ψ⟩ =
(𝜁∕𝜁 )𝑠

(1 + 𝜁𝜁)𝑠
𝑃|Ψ⟩(𝜁 ). (6)

Thus, the stars in the constellation of |Ψ⟩ are antipodal to the directions of all coherent

states orthogonal to |Ψ⟩. This, in turn, may be traced to the fact that any spin-𝑠 state

may be obtained by symmetrization of a factorizable 2𝑠-qubit state—see, e.g., [3] for

the details.

Example 1. A spin-2 constellation

Consider the spin-2 state |𝜓
tetra
⟩ = (1, 0, 0,

√
2, 0)∕

√
3. The corresponding Majo-

rana polynomial is𝑃|𝜓tetra⟩
(𝜁 ) = 𝜁

4−2
√
2𝜁 , with roots (𝑧1, 𝑧2, 𝑧3, 𝑧4) = (0,

√
2, 𝑒𝑖2𝜋∕3

√
2,

𝑒
𝑖4𝜋∕3
√
2), which project to the stars

(𝑛1, 𝑛2, 𝑛3, 𝑛4) =

(

(0, 0, 1) ,

(

−
√
2
3
,−
√

2
3
,−1

3

)

,

(

−
√
2
3
,

√
2
3
,−1

3

)

,

(
2
√
2

3
, 0,−1

3

))

, (7)

that define the vertices of a regular tetrahedron. We conclude that |𝜓
tetra
⟩ is invariant,

up to a phase, under any rotation in the tetrahedral group, e.g., around any of the above

𝑛
𝑖

by an angle of 2𝜋∕3.⊓⊔
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2.2. Some tools for Grassmannians. In what follows we deal with (𝑠, 𝑘)-planes, our

results extending to general antisymmetric states by linearity. The Grassmannian Gr
𝑘,𝑛

is the set of 𝑘-dimensional linear subspaces (i.e., 𝑘-planes through the origin) in ℂ𝑛
(see,

e.g., Ch. 10 of [19], Ch. XIV of [20], or Ch. 4.1 of [21]). Given a 𝑘-plane Π ⊂ ℂ𝑛
, and

a basis (i.e., a non-degenerate 𝑘-frame) {𝑣1,… , 𝑣
𝑘
} in Π, one may write down the 𝑘×𝑛

matrix 𝑉 of components of the 𝑣’s,

𝑉 =
⎛
⎜
⎜
⎝

𝑣
1
1 … 𝑣

𝑛

1
⋮ ⋮ ⋮
𝑣
1
𝑘

… 𝑣
𝑛

𝑘

⎞
⎟
⎟
⎠

, (8)

which represents the 𝑘-frame. Switching to a different basis in Π, 𝑣 → 𝑤, 𝑤
𝑖
= 𝑀

𝑗

𝑖
𝑣
𝑗
,

with 𝑀 ∈ 𝐺𝐿(𝑘,ℂ), leads to 𝑉 → 𝑊 = 𝑀𝑉 —both 𝑊 and 𝑉 characterize the same

𝑘-plane. A standard form 𝑉 for 𝑉 may be chosen by taking 𝑀 above to be the inverse

of the matrix defined by the first 𝑘 columns of 𝑉 , then 𝑉 has a unit 𝑘 × 𝑘 matrix in that

same position, and the rest of its entries, call them 𝑚
𝑖𝑗

, 1 ≤ 𝑖 ≤ 𝑘, 1 ≤ 𝑗 ≤ �̃�, where

�̃� ≡ 2𝑠 + 1 − 𝑘 is the codimension of Π, may be used as local coordinates on Gr
𝑘,𝑛

,

𝑉 =

( 1 0 … 0 𝑚11 … 𝑚1�̃�
⋮ ⋮ ⋮ ⋮ ⋮
0 0 … 1 𝑚

𝑘1 … 𝑚
𝑘�̃�

)

, (9)

in accordance with the (complex) dimension of Gr
𝑘,𝑛

being 𝑘�̃�. Denote by 𝑉
𝐼

the minor

Δ
𝐼

of 𝑉 , formed by the columns 𝐼 = (𝑖1,… , 𝑖
𝑘
) of 𝑉 , with 1 ≤ 𝑖1 < … < 𝑖

𝑘
≤ 𝑛.

Extend, for later convenience, this definition to arbitrary 𝑘-indices 𝐼 by total antisym-

metry, e.g., 𝑉
(21) = −𝑉 (12)

, 𝑉
(11) = 0, etc.. The set of all

(
𝑛

𝑘

)
numbers 𝑉

𝐼
constitutes

the Plücker coordinates of the frame 𝑉 in ℂ(
𝑛

𝑘
)
. These are also projective coordinates

for the 𝑘-plane Π, given that a change of basis 𝑣 → 𝑤 in Π, as above, leads to 𝑉
𝐼 →

𝑊
𝐼 = det(𝑀)𝑉 𝐼

. Thus, the plane Π is mapped to a complex line in ℂ(
𝑛

𝑘
)
, i.e., a point in

the projective space ℙ(
𝑛

𝑘
)−1

—this is the Plücker embedding of Gr(𝑘, 𝑛) in ℙ(
𝑛

𝑘
)−1

. Note

that a 𝑘-plane may be thought of as an equivalence class of 𝑘-frames, two frames being

equivalent when their corresponding matrices are related by an invertible matrix, like 𝑉

and 𝑊 above. Accordingly, we write Π = [𝑣1,… , 𝑣
𝑘
] = [𝑤1,… , 𝑤

𝑘
] = [𝑉 ] = [𝑊 ].

The above may be recast in a tighter language by considering the 𝑘-th exterior power

of ℂ𝑛
, ∧𝑘ℂ𝑛

, which, given a basis {𝑒1,… , 𝑒
𝑛
} of ℂ𝑛

, inherits naturally the basis {𝑒
𝐴
=

𝑒
𝑎1

∧ … ∧ 𝑒
𝑎
𝑘

}, with 1 ≤ 𝑎1 < … < 𝑎
𝑘
≤ 𝑛. One may then associate to the 𝑘-frame

𝑉 = {𝑣
𝑖
} in Π the 𝑘-vector 𝐕 = 𝑣1 ∧…∧ 𝑣

𝑘
∈ ∧𝑘ℂ𝑛

. The Plücker coordinates defined

above are just the components of this vector in the natural basis,

𝐕 = 𝑣1 ∧… ∧ 𝑣
𝑘
=
∑

𝐼

𝑉
𝐼
𝑒
𝐼
. (10)

In terms of these vectors, a change of basis, as above, gives 𝐖 ≡ 𝑤1 ∧ … ∧ 𝑤
𝑘
=

det(𝑀)𝐕, so that Π may be identified with the ray [𝐕] generated by 𝐕 in ∧𝑘ℂ𝑛
. In the

case of oriented planes, one must restrict det(𝑀) > 0, and then Π is only identified with

half of the ray.
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Note that a general element 𝐏=∑
𝐼
𝑃
𝐼
𝑒
𝐼
∈ ∧𝑘ℂ𝑛

is not factorizable (or decompos-
able), i.e., it cannot be written as a single 𝑘-fold wedge product—the necessary and suffi-

cient condition for factorizability is that the 𝑃
𝐼

satisfy the following quadratic (Plücker)

relations (see, e.g., Ch. 1.5 of [22], Ch. 10.2 of [19], Ch. 3.4 of [23]),

𝑘+1∑

𝑚=1
(−1)𝑚 𝑃 (𝑖1…𝑖

𝑘−1𝑗𝑚) 𝑃 (𝑗1…𝑗
𝑚
…𝑗

𝑘+1) = 0, (11)

for all ordered multiindices 𝐼 = (𝑖1,… , 𝑖
𝑘−1), 𝐽 = (𝑗1,… , 𝑗

𝑘+1), where a hat above

an index denotes omision of that index—this is the analytical form of the Plücker em-

bedding. Note that in writing out explicitly the above relations, one encounters, in gen-

eral, coordinates 𝑃
𝐿

, with the multiindex 𝐿 not necessarily ordered, or with repeated

indices—in that case, one uses the antisymmetry mentioned above to achieve the proper

ordering, or put the term equal to zero, respectively.

Given a hermitian inner product ⟨⋅, ⋅⟩ in ℂ𝑛
, one may extend it to 𝑘-frames by

⟨𝑉 ,𝑊 ⟩ = det

(
⟨𝑣1, 𝑤1⟩ … ⟨𝑣1, 𝑤𝑘

⟩

⋮ … ⋮
⟨𝑣

𝑘
,𝑤1⟩ … ⟨𝑣

𝑘
,𝑤

𝑘
⟩

)

, (12)

which gives rise to the following inner product between two 𝑘-planes Π = [𝑉 ], Σ =
[𝑊 ],

⟨Π,Σ⟩ =
|⟨𝑉 ,𝑊 ⟩|

√
⟨𝑉 , 𝑉 ⟩

√
⟨𝑊 ,𝑊 ⟩

. (13)

It might seem, at this point, that our choice of inner product in (12) is a bit arbitrary—its

full justification relies on Lemma 1 below, on page 14.

3. The Principal Constellation of a Spin-𝒔 𝒌-Plane

Our first attempt at a stellar representation of a spin-𝑠 𝑘-plane (henceforth an (𝑠, 𝑘)-
plane), generalizes the view of the Majorana polynomial 𝑃|Ψ⟩(𝜁 ) of a state |Ψ⟩ as the

polynomial part of the inner product ⟨−𝑛|Ψ⟩, where 𝑛 = (𝜃, 𝜙) and 𝜁 = tan 𝜃

2𝑒
𝑖𝜙

, which

results in the stars of |𝜓⟩ being antipodal to the zeros of its Husimi function 𝐻|𝜓⟩(𝑛) =
|⟨𝑛|𝜓⟩|2. To this end, we need to generalize the concept of a spin-𝑠 coherent state to

that of a coherent (𝑠, 𝑘)-plane.

Definition 1. For a general (𝑠, 𝑘)-plane Π = [|𝜓1⟩,… , |𝜓
𝑘
⟩], with ⟨𝜓

𝜇
|𝜓

𝜈
⟩ = 𝛿

𝜇𝜈
,

𝜇, 𝜈 = 1,… , 𝑘, we define its spin expectation value (SEV) ⟨𝐒⟩Π to be a vector in physical

ℝ3
, with components ⟨𝑆

𝑖
⟩Π, 𝑖 = 1, 2, 3, given by

⟨𝑆
𝑖
⟩Π = Tr

(
⟨𝜓1|𝑆𝑖|𝜓1⟩ … ⟨𝜓1|𝑆𝑖|𝜓𝑘⟩

⋮ ⋮ ⋮
⟨𝜓

𝑘
|𝑆

𝑖
|𝜓1⟩ … ⟨𝜓

𝑘
|𝑆

𝑖
|𝜓

𝑘
⟩

)

. (14)

Definition 2. An (𝑠, 𝑘)-plane Π is coherent if the modulus of its SEV is maximal among

all (𝑠, 𝑘)-planes.

As the following theorem shows, the space of coherent (𝑠, 𝑘)-planes is not different

from that of the spin coherent states.
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Theorem 1. Coherent (𝑠, 𝑘)-planes are in 1-1 correspondence with unit vectors in 𝑆2
⊂

ℝ3. For a given such vector 𝑛, the coherent (𝑠, 𝑘)-plane along 𝑛, denoted by Π
𝑛
, is given

by Π
𝑛
= [|𝑛, 𝑠⟩, |𝑛, 𝑠 − 1⟩,… , |𝑛, 𝑠 − 𝑘 + 1⟩] with maximal SEV modulus |⟨𝐒⟩Π

𝑛

| =
𝑘

2 (2𝑠 + 1 − 𝑘).

Proof. It is easily shown that rotating the kets |𝜓
𝜇
⟩, that define Π, by 𝐷

(𝑠)(𝑅) results in

a rotation of ⟨𝐒⟩Π by 𝑅 ∈ 𝑆𝑂(3). We may then assume, without loss of generality, that

⟨𝐒⟩Π is along �̂�, so that |⟨𝐒⟩Π| = |⟨𝑆𝑧⟩Π| = |⟨𝜓1|𝑆𝑧|𝜓1⟩+…+⟨𝜓
𝑘
|𝑆

𝑧
|𝜓

𝑘
⟩|. 𝑆

𝑧
acts on

wedge products as a derivation, so, for Π = [|𝜓1⟩,… , |𝜓
𝑘
⟩], with the |𝜓

𝜇
⟩ orthonormal,

⟨𝑆
𝑧
⟩Π = ⟨𝜓1| ∧… ∧ ⟨𝜓

𝑘
|𝑆

𝑧
|𝜓1⟩ ∧… ∧ |𝜓

𝑘
⟩, (15)

where the inner product of 𝑘-fold wedge products is 𝑘! times that of the corresponding

𝑘-frames (see (12)). It is clear that the r.h.s. of (15) is maximized when |𝜓1⟩∧…∧ |𝜓
𝑘
⟩

is the eigenvector of 𝑆
𝑧

with the maximal eigenvalue, i.e., |𝑠, 𝑠⟩ ∧ … ∧ |𝑠, 𝑠 − 𝑘 + 1⟩,
with eigenvalue 𝑠 + (𝑠 − 1) +… + (𝑠 − 𝑘 + 1) = 1

2𝑘�̃�. ⊓⊔

Theorem 2. Every state |𝜓⟩ ∈ Π
𝑛

has at least �̃� stars along 𝑛.

Proof. Every |𝜓⟩ in Π
𝑛

is a linear combination of the states Π
𝑛

factorizes into, there-

fore, the Majorana polynomial of |𝜓⟩ is the same linear combination of the Majorana

polynomials of those states. But the latter all have at least �̃� stars along 𝑛, property that

is easily seen to be inherited by 𝑃|𝜓⟩. ⊓⊔

We may now define the principal constellation of an (𝑠, 𝑘)-plane Π = [𝑊 ] as the set

of those stars 𝑛 (counted with multiplicity) for which ⟨Π−𝑛,Π⟩ = 0—the corresponding

polynomial, i.e., the one whose roots are the stereographic projections of those stars,

will be the principal polynomial 𝑃Π(𝜁 ) of Π; formally, it is defined by

𝑃Π(𝜁 ) = 𝜁
𝑘�̃�⟨𝑉−𝑛,𝑊 ⟩, (16)

where Π
𝑛
= [𝑉

𝑛
], 𝑉−𝑛 is the standard representative of its class (see (9)), and 𝜁 is related

to 𝑛 in the standard way.

Theorem 3. A star 𝑛 ∈ 𝑆
2 belongs to the constellation of an (𝑠, 𝑘)-plane Π if and only

if there exists a state |𝜓⟩ ∈ Π with at least 𝑘 stars along 𝑛 in its constellation.

Proof. A star 𝑛 belongs to the constellation 𝐶Π of an(𝑠, 𝑘)-plane Π iff ⟨Π−𝑛,Π⟩ = 0.

When two 𝑘-planes are orthogonal, there exists in each of them a vector that is orthog-

onal to all the vectors of the other. Thus, there is a state |𝜓⟩ ∈ Π that is orthogonal to

all the states in Π−𝑛, and belongs, therefore, to the orthogonal complement Π⟂
−𝑛 of Π−𝑛.

The latter is easily seen to be a coherent (𝑠, �̃�)-plane along 𝑛, so that, due to Theorem 2,

|𝜓⟩ has at least
̃̃
𝑘 = 𝑘 stars along 𝑛. ⊓⊔

We state at this point that the degree of 𝑃Π(𝜁 ), for an (𝑠, 𝑘)-plane Π, is 𝑘�̃�. There are

various ways to see this—a simple one is given in Corollary 1 below. Thus, (𝑠, 𝑘)-planes

have Majorana constellations of 𝑘�̃� stars, some of which may coincide. Just like in the

original Majorana polynomial, if 𝑃Π(𝜁 ) turns out to be of a lower degree, the missing

roots are taken to be at infinity, so that the missing stars of the constellation are put at

the south pole.
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Example 2. A tetrahedral ( 32 , 2)-plane

Denote by {𝑒
𝑖
, 𝑖 = 1,… , 4} the orthonormal 𝑆

𝑧
-eigenbasis in the spin-3/2 Hilbert

space ℂ4
,

{𝑒1, 𝑒2, 𝑒3, 𝑒4} =
{

|
3
2
,

3
2
⟩, |

3
2
,

1
2
⟩, |

3
2
,−1

2
⟩, |

3
2
,−3

2
⟩

}

. (17)

The induced basis in ∧2ℂ4
is {𝑒12, 𝑒13, 𝑒14, 𝑒23, 𝑒24, 𝑒34}, with 𝑒

𝑖𝑗
≡ 𝑒

𝑖
∧𝑒

𝑗
. The coherent

( 32 , 2)-plane along 𝑧 is Π
𝑧
= 𝑒12, with corresponding matrix

𝑉
𝑧
=
(
1 0 0 0
0 1 0 0

)

, (18)

which is already in the standard form, so that, in this chart of Gr2,4,Π
𝑧

is at the origin (the

four rightmost entries of 𝑉
𝑧

are zero). We may rotate Π
𝑧

to a general direction 𝑛 = (𝜃, 𝜙)
to obtain Π

𝑛
(using, e.g., the “geodesic” rotation 𝑅(− sin𝜙,cos𝜙,0),𝜃)—the corresponding

matrix is

𝑉
𝑛
=
⎛
⎜
⎜
⎝

cos3
(
𝜃

2

)

− 1
4

√
3𝑒𝑖𝜙 csc

(
𝜃

2

)

sin2(𝜃) 1
2

√
3𝑒2𝑖𝜙 sin

(
𝜃

2

)

sin(𝜃) −𝑒3𝑖𝜙 sin3
(
𝜃

2

)

1
4

√
3𝑒−𝑖𝜙 csc

(
𝜃

2

)

sin2(𝜃) 1
4

(

cos
(
𝜃

2

)

+ 3 cos
(

3𝜃
2

))
1
4 𝑒

𝑖𝜙

(

sin
(
𝜃

2

)

− 3 sin
(

3𝜃
2

))
1
2

√
3𝑒2𝑖𝜙 sin

(
𝜃

2

)

sin(𝜃)

⎞
⎟
⎟
⎠

,

(19)

which, brought to the standard form, becomes

𝑉
𝑛
=

(

1 0 −
√
3𝜁2 2𝜁3

0 1 −2𝜁
√
3𝜁2

)

, (20)

where 𝜁 = tan 𝜃

2𝑒
𝑖𝜙

is the stereographic image of 𝑛.

Consider now, as an example, the ( 32 , 2)-plane Π
tetra

, with standard representative

�̃�
tetra

=
(
1 0 0

√
2

0 1 0 0

)

, (21)

and compute, using (12), (16),

𝑃Πtetra
(𝜁 ) = 𝜁

4⟨𝑉−𝑛|�̃�tetra
⟩ = 𝜁

4 − 2
√
2𝜁, (22)

where we used the fact that the stereographic image of −𝑛 is −1∕𝜁 , 𝜁 denoting the

complex conjugate of 𝜁 . Note that this coincides with the Majorana polynomial of the

tetrahedral state, in Example 1—we conclude that the principal constellation of Π
tetra

is

the same regular tetrahedron found there. ⊓⊔

The above definition of 𝑃Π(𝜁 ), while quite analogous to that of the standard Majorana

polynomial, turns out to be rather awkward to work with, as it typically involves the

computation of large rotation matrices, which take Π
𝑧

toΠ
𝑛
. It also fails to shed any light

to the natural question of the relation between the principal polynomial of a plane,𝑃Π(𝜁 ),
and those of the states it factorizes into, {𝑃|𝜓

𝜇
⟩(𝜁 ), 𝜇 = 1,… , 𝑘}. Both shortcomings

are bypassed by the following
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Theorem 4. The principal polynomial 𝑃Π(𝜁 ) of an (𝑠, 𝑘)-plane Π = |𝜓1⟩ ∧ … ∧ |𝜓
𝑘
⟩

is given by the Wroskian of the Majorana polynomials 𝑃|𝜓
𝜇
⟩(𝜁 ) of the states |𝜓

𝜇
⟩, 𝜇 =

1,… , 𝑘, i.e.,

𝑃Π(𝜁 ) = det
⎛
⎜
⎜
⎜
⎝

𝑃|𝜓1⟩
(𝜁 ) 𝑃

′
|𝜓1⟩

(𝜁 ) … 𝑃
(𝑘−1)
|𝜓1⟩

(𝜁 )
⋮ ⋮ ⋮ ⋮

𝑃|𝜓
𝑘
⟩(𝜁 ) 𝑃

′
|𝜓

𝑘
⟩
(𝜁 ) … 𝑃

(𝑘−1)
|𝜓

𝑘
⟩
(𝜁 )

⎞
⎟
⎟
⎟
⎠

, (23)

where 𝑃 ′(𝜁 ) ≡ 𝜕𝑃∕𝜕𝜁 and 𝑃 (𝑟)(𝜁 ) ≡ 𝜕
𝑟
𝑃∕𝜕𝜁𝑟.

Proof. Consider a star 𝑛 in the constellation of Π and call 𝜁0 its stereographic image. By

Theorem 3 this only happens iff there exists a state |𝜓⟩ ∈ Π the constellation of which

has at least 𝑘 stars along 𝑛, so that 𝑃|𝜓⟩ has 𝜁0 as a 𝑘-fold root. But |𝜓⟩ ∈ Π implies that

𝑃|𝜓⟩ can be written as a linear combination of 𝑃|𝜓
𝜇
⟩, 𝜇 = 1,… , 𝑘,

𝑃|𝜓⟩ =
𝑘∑

𝜇=1
𝑐
𝜇
𝑃|𝜓

𝜇
⟩. (24)

𝜁0 being a 𝑘-fold root of 𝑃|𝜓⟩ is equivalent to it being a root of 𝑃|𝜓⟩ and of all its first

𝑘 − 1 derivatives,

𝑘∑

𝜇=1
𝑐
𝜇
𝑃|𝜓

𝜇
⟩(𝜁0) = 0,

𝑘∑

𝜇=1
𝑐
𝜇

𝜕𝑃|𝜓
𝜇
⟩

𝜕𝜁

(𝜁0) = 0, … ,

𝑘∑

𝜇=1
𝑐
𝜇
𝑃
(𝑘−1)
|𝜓

𝜇
⟩
(𝜁0) = 0, (25)

where 𝑃
(𝑟)
|𝜓⟩

(𝜁 ) ≡ 𝜕
𝑟
𝑃|𝜓⟩(𝜁 )∕𝜕𝜁𝑟. The above equations define a linear system in the

unknowns 𝑐
𝜇

, which has a nontrivial solution iff the determinant of its coefficients is

zero. ⊓⊔

The map from the Majorana polynomials of the states to the principal polynomial

of the plane given in (23) is known as a Wronski map and plays an important role in

algebraic geometry, combinatorics, and control theory (see, e.g., [24]).

Since an (𝑠, 𝑘)-planeΣ and its orthogonal complementΣ⟂
carry the same geometrical

information, one expects their constellations to be related.

Theorem 5. The principal constellations of an (𝑠, 𝑘)-plane and its orthogonal comple-
ment are antipodal to each other.

Proof. We denote here explicitly the dimension of the planes by superindices in paren-

theses. A star 𝑛 is in the constellation of Σ(𝑘)
iff ⟨Π(𝑘)

−𝑛,Σ(𝑘)⟩ = 0. If two 𝑘-planes

are orthogonal, their orthogonal complements also are, and (Π(𝑘)
−𝑛)⟂ = Π(�̃�)

𝑛
, so that

⟨Π(�̃�)
𝑛
, (Σ(𝑘))⟂⟩ = 0, and the assertion follows. ⊓⊔

So far we have specified how to assign to an (𝑠, 𝑘)-plane a unique constellation of 𝑘�̃�

stars. The natural question that arises is whether this map is 1-to-1. Note that the number

of stars in the constellation coincides with the complex dimension of Gr
𝑘,𝑛

, which sounds

encouraging. However, some experimentation quickly leads to the conclusion that this

is not the case.
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Example 3. Two ( 32 , 2)-planes with the same principal constellation

Define a generic ( 32 , 2)-plane Σ = [�̃� ] by its standard representative,

�̃� =
(
1 0 𝑚11 𝑚12
0 1 𝑚21 𝑚22

)

, (26)

and compute its principal polynomial (using (16), (20)),

𝑃Σ(𝜁 ) = 𝜁
4 + 2𝑚21𝜁

3 +
√
3(𝑚22 − 𝑚11)𝜁2 − 2𝑚12𝜁 + 𝑚11𝑚22 − 𝑚12𝑚21. (27)

Take now a particular fourth degree polynomial, say, 𝜁
4 − 1, the roots of which define a

square on the equator of the Riemann sphere, and set it equal to 𝑃Σ to find two solutions

�̃�1 =
(
1 0 𝑖 0
0 1 0 𝑖

)

, �̃�2 =
(
1 0 −𝑖 0
0 1 0 −𝑖

)

, (28)

which are actually orthogonal to each other, ⟨�̃�1, �̃�2⟩ = 0. This is as expected from

Theorem 5, as the constellation considered is self-antipodal. ⊓⊔

Further similar computations reveal that, generically, there are 2 ( 32 , 2)-planes that

share the same 4-star constellation, while, for example, there are 5 (2, 3)-planes shar-

ing the same 6-star constellation. Initial attempts to discern a pattern in these numbers

were quickly shown hopeless: as we are about to prove, there are, generically, exactly

1,662,804 (4, 4)-planes sharing the same 20-star constellation, and, for larger 𝑠, the num-

bers simply explode. A sense of order is restored by the following

Theorem 6. The number 𝑄(𝑠, 𝑘) of (𝑠, 𝑘)-planes that, generically, share the same prin-
cipal constellation, is given by

𝑄(𝑠, 𝑘) = 1! 2! 3! … (𝑘 − 1)!
�̃�! (�̃� + 1)!… (2𝑠)!

(𝑘�̃�)!. (29)

Proof. As shown in the Proof of Theorem 3, if a star 𝑛 is in the constellation of Π(𝑘)
,

then there exists a state |𝜓⟩ ∈ Π(𝑘)
that also belongs to (Π(𝑘)

−𝑛)⟂ = Π(�̃�)
𝑛

, i.e., Π intersects

(nontrivially) Π(�̃�)
𝑛

. Then, given the 𝑘�̃� stars 𝑛
𝑖

of the constellation of Π, the number

of 𝑘-planes that share that same constellation is the number of 𝑘-planes that intersect

(nontrivially) the 𝑘�̃� �̃�-planes Π(�̃�)
𝑛
𝑖

. This number has been shown by Schubert [25] to

be equal, generically, to 𝑄(𝑠, 𝑘) above (see also [22] or Ch. XIV of [20] for a modern

treatment). ⊓⊔

Note that the result applies to the generic case—particular constellations might have

fewer corresponding 𝑘-planes, for instance, the tetrahedral constellation in Example 3

has only one corresponding 2-plane, rather than two (= 𝑄(3∕2, 2)). What transpires in

these cases is that as one approaches the constellation in question, two or more corre-

sponding planes approach each other, and become identical right on the constellation.

Thus, if the planes are counted with multiplicities, their number is always𝑄(𝑠, 𝑘) above.

In any case, Theorem 6 makes it clear that the principal constellation of an (𝑠, 𝑘)-plane,

as defined above, does not uniquely characterize that plane— it turns out that what is

missing is more constellations (see Sect. 4 below).
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Fig. 1. Schematic representation of the 𝑘�̃�-star constellation space 𝐶
𝑘,𝑛

(plane surface at the bottom) and the

Grassmannian Gr
𝑘,𝑛

(folded surface at the top). A generic constellation 𝐶 (blue point on 𝐶
𝑘,𝑛

in the figure)

has several (𝑠, 𝑘)-planes above it (Π1, Π2, Π3 in the figure) all of which share it as principal constellation.

There are, in general, special constellations (𝐶0 in the figure) for which some or all of the preimages on Gr
𝑘,𝑛

coincide—their locus is a subset 𝑀 ∈ 𝐶
𝑘,𝑛

, part of which is represented as a black curve in the figure.

Given that the number of (𝑠, 𝑘)-planes that share the same principal constellation is

finite, we may conclude that the space 𝐶
𝑘,𝑛

of 𝑘�̃�-star constellations and the Grassman-

nian Gr
𝑘,𝑛

have the same dimension, with multiple sheets of Gr
𝑘,𝑛

lying above𝐶
𝑘,𝑛

—see

Fig. 1 for an artist’s rendition of the situation.

While a generic constellation 𝐶 ∈ 𝐶
𝑘,𝑛

has 𝑄(𝑠, 𝑘) preimages on Gr(𝑘, 𝑛) (see (29)),

there are special constellations, for which two or more of those preimages coincide. For

𝑄(𝑠, 𝑘) sufficiently large, the coincidence pattern can be quite complicated, e.g., already

four preimages can, in principle, coincide all together, or three together with the fourth

being distinct, or in pairs of two, or in just one pair—the corresponding constellations

form subsets of 𝐶
𝑘,𝑛

, the structure of which we explore, in a particular case, in the fol-

lowing example.

Example 4. Four-star principal constellations corresponding to a single ( 32 , 2)-plane. I

For a ( 32 , 2)-plane we have 𝑄( 32 , 2) = 2, i.e., we obtain the simplest non-trivial case

where four-star constellations in 𝐶2,4 either have two 2-planes associated with them (the

generic case), or just one, the latter forming a subset 𝑀 , which we set out to determine

here. For a general 2-plane Σ in its standard form, as given in (26), the Majorana poly-

nomial 𝑃Σ(𝜁 ) of its principal constellation is as in (27). Note that the coefficient of the

maximal power 𝜁
4

is different from zero, and we can therefore normalize so that it is

equal to 1—this is related to working in the chart 12 of Gr2,4, where the minor defined

by the first two columns of the matrix defining the 2-plane is invertible. We equate now

𝑃Σ(𝜁 ) to an arbitrary quartic Majorana polynomial 𝜁
4 +𝑐3𝜁3 +𝑐2𝜁2 +𝑐1𝜁 +𝑐0, and solve

for the components 𝑚
𝑖𝑗

to find two solutions

𝑚11± = 1
2
√
3

(

−𝑐2 ±
√

𝑐
2
2 − 3𝑐1𝑐3 + 12𝑐0

)

,
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𝑚12 = −
𝑐1
2
, 𝑚21 =

𝑐3
2
,

𝑚22± = 1
2
√
3

(

𝑐2 ±
√

𝑐
2
2 − 3𝑐1𝑐3 + 12𝑐0

)

. (30)

The two solutions coincide when 𝑐
2
2 − 3𝑐1𝑐3 + 12𝑐0 = 0, which is the equation defining

𝑀 in this chart. For real values of 𝑐
𝑖
, 𝑀 is a two-sheeted hyperboloid, which degen-

erates to a double cone when 𝑐0 is zero. Note that this description is only valid in the

particular chart we work in—for a complete description of 𝑀 one should carry out a

similar analysis in all charts, and glue together the loci found in each according to the

transition functions among them. Interestingly, 𝑀 includes both the 2-anticoherent [26]

tetrahedral constellation, for (𝑐0, 𝑐1, 𝑐2, 𝑐3) = (0,−2
√
2, 0, 0), as well as the coherent

state pointing along −�̂�, for 𝑐2 tending to infinity, with 𝑐1, 𝑐3 finite. An alternative way

to characterize 𝑀 is presented in Example 8 below. ⊓⊔

Example 5. Symmetry rotations of the fourteen ( 52 , 2)-planes with doubly tetrahedral

constellation. I

For a ( 52 , 2)-plane we have 𝑄( 52 , 2) = 14, and 𝑘�̃� = 8 stars in the principal constel-

lation, which, here, we take to form a doubly degenerate tetrahedron (i.e., a tetrahedron

with two stars at each vertex). The question we would like to explore is the effect of a

symmetry rotation of the constellation on these fourteen planes. Take for example the

rotation around the 𝑧-axis by 2𝜋∕3, and ask what is its effect on the planes. Proceeding

as in the previous example, we compute the planes numerically, using Mathematica, and

then rotate them by the above symmetry rotation—we find that it effects the permuta-

tion ((1), (2), (3, 14, 11), (4, 13, 10), (5, 9, 12), (6, 7, 8)), i.e., the first two planes (in the

ordering produced by Mathematica) are left invariant, the third is mapped to the four-

teenth, which is mapped to the eleventh, which is mapped to the third, etc., i.e., there are

two invariant planes, and four cycles of three each, with the above symmetry rotation

effecting a cyclic permutation within each cycle. Similar behavior is observed for the

other symmetry rotations of the principal constellation—clarifying the origin of these

findings will have to wait the concept of a multiconstellation that we develop in Sect. 4

(see Example 9 below). ⊓⊔

4. (𝒔, 𝒌)-Plane Multiconstellations via the Plücker Embedding

4.1. The 𝑆𝑈 (2) action on ∧𝑘. A spin-𝑠 quantum state |𝜓⟩ lives in the Hilbert space

 = ℂ�̃�
—its image in the projective space ℙ𝑁

will be denoted by [𝜓]. We transcribe

the general notation we have used so far to the case at hand: vectors are denoted by kets,

like |𝜓⟩, and 𝑘-planes in  can be described as collections of vectors, {|𝜓1⟩,… , |𝜓
𝑘
⟩},

the 𝑘 × 𝑛 matrix Ψ of their components, or their wedge product |𝚿⟩, itself a vector in

∧𝑘, |𝚿⟩ = ∑
𝐼
Ψ𝐼

𝑒
𝐼
.

Rotations in physical space are represented by the action of 𝑆𝑈 (2) on  via 𝑔 ↦
𝐷

(𝑠)(𝑔), where 𝐷
(𝑠)

is the �̃�-dimensional irreducible representation of 𝑆𝑈 (2), i.e., un-

der a rotation 𝑔, the column vector |𝜓⟩ transforms by left multiplication by 𝐷
(𝑠)(𝑔),

|𝜓⟩↦ 𝐷
(𝑠)(𝑔)|𝜓⟩. This representation extends naturally to ∧𝑘 by tensoring up,

|𝚿⟩ = |𝜓1⟩ ∧… ∧ |𝜓
𝑘
⟩↦ 𝐷

(𝑠)(𝑔)|𝜓1⟩ ∧… ∧𝐷(𝑠)(𝑔)|𝜓
𝑘
⟩ ≡ 𝐷

(𝑠,𝑘)(𝑔)|𝚿⟩, (31)
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where 𝐷
(𝑠,𝑘)(𝑔), i.e., the totally antisymmetric part of the 𝑘-th tensor power of 𝐷

(𝑠)(𝑔),
provides a

(
�̃�

𝑘

)
-dimensional representation of 𝑆𝑈 (2) on ∧𝑘 and, with a slight abuse

of notation, |𝚿⟩ on the right hand side stands for the column vector of the components

of |𝜓1⟩∧…∧ |𝜓
𝑛
⟩ in the Plücker basis of the 𝑒

𝐼
’s. This representation is not, in general,

irreducible: when brought in block-diagonal form, by a suitable change of basis in ∧𝑘,

from the Plücker to the Block Diagonal (BD) one, 𝐷
(𝑠,𝑘)

contains 𝑚
(𝑠,𝑘)
𝑗

copies of 𝐷
(𝑗)

,

𝑗 = 0,… , 𝑠
max

. We turn now to the determination of the BD basis, as well as of 𝑠
max

and the multiplicities 𝑚
(𝑠,𝑘)
𝑗

.

As mentioned above, 𝑆𝑈 (2) acts on wedge products by its tensor powers, giving

rise to the representation 𝐷
(𝑠,𝑘)

. At the Lie algebra level, this implies that the generators

𝑆
𝑎
, 𝑎 = 1, 2, 3, act as derivations, i.e., by following Leibniz’ rule, which results in

representation matrices 𝑆
(𝑠,𝑘)
𝑎

, satisfying the 𝔰𝔲(2) algebra, and generating 𝐷
(𝑠,𝑘)

by

exponentiation,

𝑆
(𝑠,𝑘)
𝑎

= 𝑖

𝜕

𝜕𝑡

𝐷
(𝑠,𝑘)(𝑒−𝑖𝑡𝑆𝑎)|

𝑡=0. (32)

As a result, a wedge product of, say,𝑆
(𝑠)
𝑧

eigenvectors, is a𝑆
(𝑠,𝑘)
𝑧

eigenvector, with eigen-

value equal to the sum of the eigenvalues of the factors. Thus, the “top” (𝑠, 𝑘)-plane

|𝑠, 𝑠⟩ ∧ |𝑠, 𝑠 − 1⟩ ∧… ∧ |𝑠, 𝑠 − (𝑘 − 1)⟩ attains the maximal 𝑆
(𝑠,𝑘)
𝑧

eigenvalue, which is

also the maximal value of the spin 𝑗 in the decomposition of 𝐷
(𝑠,𝑘)

, equal to

𝑠
max

= 𝑠 + (𝑠 − 1) +… + (𝑠 − (𝑘 − 1)) = 1
2
𝑘�̃�. (33)

We denote the above (𝑠, 𝑘)-plane by |𝑠
max

, 𝑠
max
⟩. Looking for (𝑠, 𝑘)-planes with 𝑆

(𝑠,𝑘)
𝑧

-

eigenvalue equal to 𝑠
max

−1, we find only one, |𝑠
max

, 𝑠
max

−1⟩ = |𝑠, 𝑠⟩∧…∧ |𝑠, 𝑠−(𝑘−
2)⟩ ∧ |𝑠, 𝑠 − 𝑘⟩, which is obtained from |𝑠

max
, 𝑠

max
⟩ by applying the lowering operator

𝑆
(𝑠,𝑘)
− , i.e., it belongs to the same irreducible representation. Going one step down, one

finds two new eigenvectors with eigenvalue 𝑠
max

− 2. A linear combination of them

is obtained as 𝑆
(𝑠,𝑘)
− |𝑠

max
, 𝑠

max
− 1⟩, while the othogonal combination serves as the

heighest weight vector of a 𝑗 = 𝑠
max

− 2 irreducible multiplet. We conclude that for

all 𝑠, 𝑘, the representations with 𝑗 = 𝑠
max

and 𝑗 = 𝑠
max

− 2 appear with multiplicity

1, while 𝑗 = 𝑠
max

− 1∕2, 𝑠
max

− 1, 𝑠
max

− 3∕2 never appear. Continuing in the same

way, one may construct the ∧𝑘-basis that block diagonalizes 𝐷
(𝑠,𝑘)

. If, however, only

the multiplicities 𝑚
(𝑠,𝑘)
𝑗

are desired, one may employ the standard character machinery

[27,28]. Thus, one first computes the character

𝜒
(𝑠,𝑘)(𝛼) ≡ Tr𝐷

(𝑠,𝑘)(𝑅
�̂�,𝛼

) =
𝑠max∑

𝑗=0
𝑚
(𝑠,𝑘)
𝑗

𝜒
(𝑗)(𝛼), (34)

where �̂� denotes the rotation axis, and 𝛼 the rotation angle, and 𝜒
(𝑗)

are the irreducible

characters,

𝜒
(𝑗)(𝛼) ≡ Tr𝐷

(𝑗)(𝑅
�̂�,𝛼

) =
sin((𝑗 + 1

2 )𝛼)

sin 𝛼

2
. (35)

Then the orthonormality of the irreducible characters is invoked,
(
𝜒
(𝑚)
, 𝜒

(𝑛)) = 𝛿
𝑚𝑛

,

where

(𝑓, ℎ) ≡ 1
𝜋 ∫

2𝜋

0
d𝛼 sin2 𝛼

2
𝑓 (𝛼)ℎ(𝛼), (36)
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to get for the multiplicities

𝑚
(𝑠,𝑘)
𝑗

= 1
𝜋 ∫

2𝜋

0
d𝛼 sin2 𝛼

2
𝜒
(𝑠,𝑘)(𝛼)𝜒 (𝑗)(𝛼). (37)

The characters 𝜒
(𝑠,𝑘)

satisfy the recursion formula

𝜒
(𝑠,𝑘)(𝛼) = 1

𝑘

𝑘∑

𝑚=1
(−1)𝑚−1𝜒 (𝑠)(𝑚𝛼)𝜒 (𝑠,𝑘−𝑚)(𝛼), (38)

with 𝜒
(𝑠,0)(𝛼) ≡ 1, giving, for example,

𝜒
(𝑠,2)(𝛼) = 1

2
(
𝜒
(𝑠)(𝛼)2 − 𝜒

(𝑠)(2𝛼)
)

(39)

𝜒
(𝑠,3)(𝛼) = 1

6
(
𝜒
(𝑠)(𝛼)3 − 3𝜒 (𝑠)(𝛼)𝜒 (𝑠)(2𝛼) + 2𝜒 (𝑠)(3𝛼)

)
(40)

𝜒
(𝑠,4)(𝛼) = 1

24
(
𝜒
(𝑠)(𝛼)4 − 6𝜒 (𝑠)(𝛼)2𝜒 (𝑠)(2𝛼)

+ 3𝜒 (𝑠)(2𝛼)2 + 8𝜒 (𝑠)(𝛼)𝜒 (𝑠)(3𝛼) − 6𝜒 (𝑠)(4𝛼)
)
. (41)

A general solution for the recursion (38) can be found, using standard representation

theory machinery. Call 𝜆
𝑚
≡ 𝑒

𝑖𝑚𝛼
, −𝑠 ≤ 𝑚 ≤ 𝑠, the eigenvalues of 𝐷

(𝑠)(𝑅
𝑛,𝛼

). Then

the eigenvalues of 𝐷
(𝑠,𝑘)(𝑅

𝑛,𝛼
) are the products 𝜆

𝑚1
… 𝜆

𝑚
𝑘

, with 𝑚1 < … < 𝑚
𝑘
, so

that 𝜒
(𝑠,𝑘)(𝛼) =

∑
𝑚1<…<𝑚

𝑘

𝜆
𝑚1

… 𝜆
𝑚
𝑘

≡ 𝐸
𝑘
(𝝀), where 𝐸

𝑘
(𝝀) is the 𝑘-th elementary

symmetric polynomial in the 2𝑠 + 1 variables 𝝀 = {𝜆
𝑚
}. The latter can be expressed in

terms of the Newton (or power sum) polynomials 𝑃
𝑟
(𝝀) =

∑
𝑠

𝑚=−𝑠 𝜆
𝑟

𝑚
= 𝜒

(𝑠)(𝑟𝛼). To this

end, given a 𝑘-tuple of non-negative integers 𝑀 = (𝑚1,… , 𝑚
𝑘
), satisfying

∑
𝑘

𝑟=1 𝑟𝑚𝑟
=

𝑘, define the homogeneous, degree-𝑘 polynomial𝑃
(𝑀)

≡ 𝑃
𝑚1
1 …𝑃

𝑚
𝑘

𝑘
, in terms of which

(see, e.g., appendix A of [28])

𝐸
𝑘
=
∑

𝑀

(−1)𝑘−�̄�

𝑧(𝑀)
𝑃
(𝑀)

, (42)

where

�̄� =
𝑘∑

𝑟=1
𝑚
𝑟
, 𝑧(𝑀) = 𝑚1! 1𝑚1𝑚2! 2𝑚2 …𝑚

𝑘
! 𝑘𝑚𝑘, (43)

so that

𝜒
(𝑠,𝑘)(𝛼) =

∑

𝑀

(−1)𝑘−�̄�

𝑧(𝑀)
(
𝜒
(𝑠)(𝛼)
)𝑚1 (

𝜒
(𝑠)(2𝛼)

)𝑚2 …
(
𝜒
(𝑠)(𝑘𝛼)

)𝑚
𝑘

. (44)

For example, when 𝑘 = 4, the possible values of 𝑀 in (42) are (4, 0, 0, 0), (2, 1, 0, 0),
(0, 2, 0, 0), (1, 0, 1, 0), and (0, 0, 0, 1), each of which gives rise to one of the five terms in

the r.h.s. of (41).

Using these expressions, and (35), in (37) one may compute any desired multiplicity

𝑚
(𝑠,𝑘)
𝑗

. Note that only integer (half-integer) values of 𝑗 need be considered in (37) when

𝑠
max

is integer (half-integer). It is also clear that 𝑠
max

is half-integer only when 𝑠 is, and

𝑘 is odd.
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Table 1. Multiplicities 𝑚
(𝑠,𝑘)
𝑗

of irreducible components of 𝐷
(𝑠,𝑘)

, as given by (37), and (39)–(41), (42), or,

alternatively, by (45). Only values of 𝑗 such that 2𝑗 is of the same parity as 2𝑠max are considered, since for the

others the multiplicities are trivially zero—hence the empty boxes. As an example, a 𝑘 = 2 plane of spin 𝑠 = 3
decomposes into states of spin 1, 3, and 5. Note that the rightmost three entries in each row, except for the

first one (𝑠 = 1, 𝑘 = 2), are 1, 0, 1, in accordance with what was derived in the text. We have included entries

up to 𝑠 = 7∕2, 𝑘 = 4, because this is the lowest spin case where a multiplicity of 2 appears, necessitating a

special treatment. On the other hand, the lowest 𝑘 value where this happens is 𝑘 = 3, for 𝑠 = 4 (not shown in

the table)

𝐣 𝟎 𝟏
𝟐 𝟏 𝟑

𝟐 𝟐 𝟓
𝟐 𝟑 𝟕

𝟐 𝟒 𝟗
𝟐 𝟓 𝟏𝟏

𝟐 𝟔 𝟏𝟑
𝟐 𝟕 𝟏𝟓

𝟐 𝟖
𝐬 𝐤
𝟏 𝟐 0 1

𝟑
𝟐 𝟐 1 0 1

𝟐 𝟐 0 1 0 1

𝟓
𝟐 𝟐 1 0 1 0 1

𝟑 0 1 1 0 1

𝟑 𝟐 0 1 0 1 0 1

𝟑 1 0 1 1 1 0 1

𝟕
𝟐 𝟐 1 0 1 0 1 0 1

𝟑 0 1 1 1 1 1 0 1

𝟒 1 0 2 0 2 1 1 0 1

The above method for obtaining the multiplicities is the standard one, but quickly

becomes inefficient due to the integration in (37). A much more efficient way to produce

the 𝑚
(𝑠,𝑘)
𝑗

, based on a combinatorial formula, is given by the following theorem [29].

Theorem 7. The multiplicity 𝑚(𝑠,𝑘)
𝑗

in the r.h.s. of (34) is given by the coefficient of 𝑥𝑗 ,
0 ≤ 𝑗 ≤ 𝑠max, in the Laurent expansion, around 𝑥 = 0, of the function

𝜁
𝑠,𝑘
(𝑥) = (1 − 𝑥

−1)
𝑘∏

𝑟=1

𝑥
𝑠+1 − 𝑥

𝑟−𝑠−1

𝑥
𝑟 − 1

. (45)

Proof. A nice proof, based on partition function methods, can be consulted in [29]. ⊓⊔

We note in passing that the simple pattern that can be discerned from Table 1 for

𝑘 = 2, i.e., that the series starts at 𝑠
max

and descends in steps of two, all multiplicities

being one, can be shown to hold indeed true for all 𝑠 —see, e.g., exercise 6.16 in [28].

Already for 𝑘 = 3, the relatively tame sample in Table 1 does little justice to the subtle

follie unravelled, e.g., in Figs. 2, 3, where 𝑠 = 40 (left) and 𝑠 = 100 (right).

Material related to the one presented above, concerning the multiplicities of the irre-

ducible components of the 𝑛-fold tensor product of the spin-𝑠 representation of 𝑆𝑈 (2),
can be found in [30,31], while an enumerative combinatoric approach that rederives the

above result, among many others, is undertaken in [32]. Note that the above problem of

determining the irreducible components of the 𝑘-fold wedge product of a spin-𝑠 repre-

sentation is a special case of the general plethysm problem (see p. 289 of [27]), which

remains open to this day.

4.2. The multiconstellation of an (𝑠, 𝑘)-plane. We sketched above the way to bring

𝐷
(𝑠,𝑘)

in block diagonal form by a change of basis in∧𝑘—we denote the unitary matrix
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implementing that change by 𝑈 , while 
(𝑠,𝑘)

will denote the block-diagonalized repre-

sentation matrix (i.e., in the BD basis), with 
(𝑠,𝑘) = 𝑈𝐷

(𝑠,𝑘)
𝑈

†
. The column vector

|𝚿⟩ gets transformed, accordingly, to |𝚿⟩
𝐷
= 𝑈 |𝚿⟩, with

|𝚿⟩𝑇
𝐷
= (|𝜓 (𝑠max)⟩𝑇 , |𝜓 (𝑠max−2)⟩𝑇 , …), (46)

where each |𝜓 (𝑗)⟩𝑇 is a row vector of 2𝑗 +1 components — these irreducible multiplets

are ordered in decreasing spin value. Each |𝜓 (𝑗)⟩, defines a spin-𝑗 state, and, when 𝑗 > 0,

a Majorana constellation 𝐶
𝑗
. The full list of these constellations,  ≡ {𝐶1, 𝐶2,… , },

misses the information about the overall normalization and phase of each |𝜓 (𝑗)⟩, so, to

completely specify |𝚿⟩
𝐷

, we need to define a standard, normalized state |𝜓
𝐶
⟩, corre-

sponding to each possible constellation 𝐶 , by choosing arbitrarily a phase for it, and

then write |𝜓 (𝑗)⟩ = 𝑧
𝑗
|𝜓

𝐶
𝑗

⟩, with the complex number 𝑧
𝑗

carrying now the information

about the norm and overall phase of |𝜓 (𝑗)⟩. Then the set {𝑍, }, where𝑍 = (𝑧1, 𝑧2,…),
completely specifies |𝚿⟩

𝐷
. If the length of𝑍 is 2𝑚+1, one can view it as a spin-𝑚 spec-

tator “state”, and associate to it, á la Majorana, a spectator constellation �̃�—then the

constellations {�̃�, }, which miss only the overall phase and normalization of |𝚿⟩
𝐷

,

completely specify the 𝑘-plane Π = [|𝚿⟩
𝐷
]. Note that, under the 𝑆𝑈 (2) action on ,

the constellations in  rotate the way Majorana constellations do, but �̃� may transform in

a complicated way, as the phases of the various 𝑧
𝑗

(but not their moduli) may change—

we show now that, for almost all (𝑠, 𝑘)-planes, things may be arranged so that �̃� remains

invariant under rotations.

Our treatment, at this point, will be limited by the following assumption: none of

the irreducible components |𝜓 (𝑗)⟩ in the r.h.s. of (46), with 𝑗 > 1, have rotational sym-

metries. Regarding this, note that spin-1 states always have at least one rotational sym-

metry, given by a rotation by 𝜋 around the line bisecting the two stars in the Majorana

constellation—as this rotation interchanges two fermions, it imparts a phase of 𝜋 to the

ket in the Hilbert space. Denote by ℙ̃ the corresponding projective space, with the rota-

tionally symmetric states, excluded. Then the orbit of |𝜓 (𝑗)⟩, under the action of 𝑆𝑂(3)
is, itself, diffeomorphic to 𝑆𝑂(3)—we call the space ̃ of those orbits shape space, i.e.,

each point in ̃ represents an entire orbit in ℙ̃. Another way to describe this construction

is to define an equivalence relation ∼ between constellations, by declaring 𝐶
′

and 𝐶 to

be equivalent, 𝐶
′ ∼ 𝐶 , iff there exists a rotation 𝑅 ∈ 𝑆𝑂(3) such that 𝐶

′ = 𝑅(𝐶). That

same relation can be defined in ℙ̃, since (non-symmetric) constellations are in 1 to 1

correspondence with states in ℙ̃. Then ̃ = ℙ̃∕ ∼, i.e., each point in shape space is an

equivalence class of states in the corresponding projective space.

Points in ̃ correspond to shapes of Majorana constellations, defined, e.g., by the

angles between any two stars in the constellation. Denote by 𝜋 the projection from ̃

to ̃ , that sends each constellation 𝐶 to its shape 𝜋(𝐶). Then 𝜋
−1(𝑆) is the fiber above

the shape 𝑆, consisting of all those constellations that share the shape 𝑆, and differ

among themselves by a rotation. A gauge choice 𝜎 is a map from ̃ to ̃ , such that

𝜋(𝜎(𝑆)) = 𝑆, and consists in defining a reference orientation for each shape. Given

such a gauge choice, an arbitrary constellation 𝐶 may be defined by giving its shape

𝜋(𝐶), and the rotation 𝑅
𝜎,𝐶

, that, applied to the reference constellation (of the same

shape) 𝜎(𝜋(𝐶)), produces 𝐶 , i.e., we may write

𝐶 = (𝜋(𝐶), 𝑅
𝜎,𝐶

), with 𝑅
𝜎,𝐶

(𝜎(𝜋(𝐶)) = 𝐶. (47)

Note that, by restricting our discussion to ℙ̃, we guarantee that 𝑅
𝜎,𝐶

is unique. The

algorithm for assigning a phase to a constellation 𝐶 , thus obtaining a state |𝜓
𝐶
⟩ in , is
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then as follows: assign first, arbitrarily, a phase to the reference constellation 𝜎(𝜋(𝐶)),
obtaining the state |𝜓

𝜎,𝜋(𝐶)⟩. Then rotate this state by 𝑅
𝜎,𝐶

to get |𝜓
𝐶
⟩, i.e., |𝜓

𝐶
⟩ =

𝐷
(𝑗)(𝑅

𝜎,𝐶
)|𝜓

𝜎,𝜋(𝐶)⟩.

Consider now a rotation 𝑅0 acting on |𝚿⟩
𝐷

, i.e., |𝚿⟩
𝐷
→ |𝚿′⟩

𝐷
= 

(𝑠,𝑘)(𝑅0)|𝚿⟩𝐷,

inducing a transformation |𝜓 (𝑗)⟩ → |𝜓 ′(𝑗)⟩ = 𝐷
(𝑗)(𝑅0)|𝜓 (𝑗)⟩—at the level of constel-

lations 𝐶
′
𝑗
= 𝑅0(𝐶𝑗). We have, by definition, |𝜓 ′(𝑗)⟩ = 𝑧

′
𝑗
|𝜓

𝐶
′
𝑗

⟩. On the other hand,

𝑅
𝜎,𝐶

′
𝑗

= 𝑅0◦𝑅𝜎,𝐶
𝑗

, so that

𝜓
′(𝑗) = 𝐷

(𝑗)(𝑅0)|𝜓 (𝑗)⟩

= 𝑧
𝑗
𝐷

(𝑗)(𝑅0)|𝜓𝐶
𝑗

⟩

= 𝑧
𝑗
𝐷

(𝑗)(𝑅0)𝐷(𝑗)(𝑅
𝜎,𝐶

𝑗

)|𝜓
𝜎,𝜋(𝐶

𝑗
)⟩

= 𝑧
𝑗
𝐷

(𝑗)(𝑅0◦𝑅𝜎,𝐶
𝑗

)|𝜓
𝜎,𝜋(𝐶′

𝑗
)⟩

= 𝑧
𝑗
𝐷

(𝑗)(𝑅
𝜎,𝐶

′
𝑗

)|𝜓
𝜎,𝜋(𝐶′

𝑗
)⟩

= 𝑧
𝑗
|𝜓

𝐶
′
𝑗

⟩,

implying that 𝑧
′
𝑗
= 𝑧

𝑗
, i.e., with the phase conventions assumed above, the spectator

constellation is invariant under rotations.

Reference orientations for constellations are usually defined by a set of rules that,

e.g., puts one star at the north pole, a second one in the 𝑥-𝑧 plane, with positive 𝑥,

etc.(see, e.g., [33]). Apart from the appearance of occasional ambiguities, the rules get

increasingly complicated as the number of stars increases. We propose a more economic

set of rules, which work, as is typical of such rules, for almost all (but not all) constel-

lations. Given the constellation 𝐶 (we drop the index 𝑗 for notational simplicity), with

corresponding density matrix 𝜌
𝐶

, compute the spin expectation value 𝑆 = Tr(𝜌
𝐶
𝐒),

which, generically, is nonzero. Rotate 𝐶 to 𝐶1 = 𝑅1(𝐶) so that 𝑅1(𝑆) is along the pos-

itive 𝑧-axis, call 𝜌1 = 𝐷
(𝑠)(𝑅1)𝜌𝐶𝐷(𝑠)(𝑅1)−1 the rotated density matrix. Expand 𝜌1 in

polarization tensors [34], and identify the first non-zero component for 𝑚 ≠ 0. That

component is, in general, a complex number 𝑟𝑒
𝑖𝛼

, rotate then 𝐶1 around 𝑧 clockwise, by

the minimal angle possible, to make it real and positive, and call the rotated constellation

𝐶2 = 𝑅2(𝐶1) = (𝑅2◦𝑅1)(𝐶)—this is the reference orientation for the shape of 𝐶 , i.e.,

𝐶2 = 𝜎(𝜋(𝐶)). A corresponding state may be defined by an arbitrary choice of phase,

e.g., by taking its first nonzero component, in the 𝑆
𝑧
-eigenbasis, to be real and positive.

Applying to this state the unique rotation that sends 𝐶2 to 𝐶 one gets the reference state

|𝜓
𝐶
⟩.

A natural question that arises at this point is that of the relation between the con-

stellations 𝐶
𝑗

defined here and the principal constellation of the previous section. To

elucidate this connection we need the following two results.

Lemma 1. Given 𝑘 × 𝑛 matrices 𝑉 , 𝑊 , as in (8), and the corresponding vectors 𝐕, 𝐖,
as in (10), we have

⟨𝑉 ,𝑊 ⟩ = ⟨𝐕|𝐖⟩, (48)

where ⟨𝑉 ,𝑊 ⟩ is defined in (12), and ⟨𝐕|𝐖⟩ = ∑
𝐼
𝑉
𝐼
𝑊

𝐼 is the standard Hilbert space
inner product.
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Proof. The statement is an immediate consequence of the Cauchy-Binet formula for the

expansion of a determinant (see, e.g., Sect. 2.9 of [19]). ⊓⊔

Lemma 2. The irreducible components of the coherent plane Π
𝑛

are

|𝚷
𝑛
⟩ =
(
|𝑛𝑠max⟩ 0 … 0

)
, (49)

where |𝑛(𝑠max)⟩ is the spin-𝑠max coherent state in the direction 𝑛.

Proof. Π
𝑛

is obtained by Π
𝑧

by, say, the geodesic rotation 𝑅(− sin𝜙,cos𝜙,0),𝜃 that sends 𝑧

to 𝑛. The irreducible components of Π
𝑧

are

|𝚷
𝑧
⟩ =
(
(1, 0,… , 0) 0 … 0

)
, (50)

where the first ket entry is the spin-𝑠
max

coherent state along 𝑧, which is mapped to

|𝑛(𝑠max)⟩ by the above rotation. ⊓⊔

Theorem 8. The principal constellation of an (𝑠, 𝑘)-plane Π coincides with the Majo-
rana constellation of its spin-𝑠max irreducible component.

Proof. Using Lemma 1 the principal polynomial of Π can be expressed in terms of

⟨Π−𝑛|Π⟩, which, due to Theorem 2, reduces to ⟨−𝑛(𝑠max)|𝜓 (𝑠max)⟩. ⊓⊔

Corollary 1. For a generic (𝑠, 𝑘)-plane Π, the degree of 𝑃Π(𝜁 ) is 𝑘�̃�.

Proof. The assertion follows immediately from the previous theorem and the fact that

𝑠
max

= 𝑘�̃�∕2. ⊓⊔

A final remark is due regarding the case of “degeneracy”, i.e., when the multiplicities

𝑚
(𝑠,𝑘)
𝑗

are greater than 1. One then needs to choose a basis in the degenerate subspace,

and let each basis element generate a spin multiplet by successive application of 𝑆−.

The projections of the (𝑠, 𝑘)-plane |Ψ⟩ onto the subspaces spanned by each of these

multiplets give rise to spin-𝑗 constellations, as in the non degenerate case. The salient

feature here though is that the constellations thus obtained depend on the above choice

of basis. The situation calls for the adoption of a particular algorithm that will single

out a “canonical” choice of basis, much like our algorithm above for defining a standard

phase for a given constellation. As the smallest example where this shows up is for a

( 72 , 4)-plane (last line in Table 1), involving 70 stars in all, we feel that, from a practical

point of view, it is not necessary to spell out all the relevant details at this point. A

suggestion on how to choose a canonical basis in the degenerate subspace is outlined in

Example 11 below [35,36].

4.3. Examples. Before presenting a series of examples, we summarize, in a streamlined

form, the procedure we follow in order to derive the multiconstellation of a spin-𝑠 𝑘-

plane |𝚿⟩.

1. Construct the BD basis and expand |𝚿⟩ in it to obtain |𝚿⟩
𝐷
=
(
|𝜓 (𝑠max)⟩… |𝜓 (𝑗)⟩…

)
𝑇

.

2. For each irreducible component |𝜓 (𝑗)⟩ in |𝚿⟩
𝐷

, with 𝑗 ≠ 0, determine a complex

number 𝑧
(𝑗)

as follows:

(a) Compute the SEV 𝑆
(𝑗) = ⟨𝜓 (𝑗)|𝐒|𝜓 (𝑗)⟩—call (𝜃(𝑗), 𝜙(𝑗)) its spherical polar coor-

dinates (if the SEV vanishes, for any 𝑗 > 0, the procedure is not applicable).
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(b) Compute the rotation matrix 𝑅
(𝑗)= exp

[

−𝑖𝜃(𝑗)
(

− sin(𝜙(𝑗))𝑆(𝑗)
𝑥
+cos(𝜙(𝑗))𝑆(𝑗)

𝑦

)]

=exp
[
𝜃
(𝑗)

2

(

𝑒
−𝑖𝜙(𝑗)

𝑆+ − 𝑒
𝑖𝜙

(𝑗)
𝑆−

)]

.

(c) Compute |𝜓
(𝑗)
1 ⟩ = 𝑅

(𝑗)|𝜓 (𝑗)⟩, the SEV of which points along 𝑧.

(d) Compute 𝜌
(𝑗)
1 = |𝜓 (𝑗)

1 ⟩⟨𝜓
(𝑗)
1 | and expand it in polarization tensors,

𝜌
(𝑗)
1 →

(
(𝜌0,0), (𝜌1,1, 𝜌1,0, 𝜌1,−1),… , (𝜌2𝑗,2𝑗 ,… , 𝜌2𝑗,−2𝑗)

)
. (51)

Identify the first nonzero component 𝜌𝓁𝑚 ≡ 𝑟𝑒
𝑖𝛼

, with 𝑚 ≠ 0.

(e) Compute |𝜓
(𝑗)
2 ⟩ = 𝑒

−𝑖𝛼𝑆
𝑧
∕𝑚|𝜓 (𝑗)

1 ⟩ and identify its first nonzero component in the

𝑆
𝑧
-eigenbasis, denote the latter by 𝑝𝑒

𝑖𝛽
.

(f) Compute 𝑧
(𝑗) =
√
⟨𝜓 (𝑗)|𝜓 (𝑗)⟩𝑒𝑖𝛽 .

(g) If there is a spin-0 component |𝜓 (0)⟩ = (𝜓 (0)
0 ) in |𝚿⟩

𝐷
, put 𝑧

(0) = 𝜓
(0)
0 .

3. Determine the constellations 𝐶
𝑗

for each |𝜓 (𝑗)⟩, 𝑗 ≠ 0, as well as the spectator con-

stellation �̃� , corresponding to the “state” 𝑍 = (𝑧(𝑠max),… , 𝑧
(𝑗)
,…).

Example 6. Irreducible component for (1, 2)-planes

An orthonormal basis in the Hilbert space 1 is given by the eigenvectors of 𝑆
𝑧
,

{𝑒1, 𝑒2, 𝑒3} = {|1, 1⟩, |1, 0⟩, |1,−1⟩}. The associated orthonormal basis in 
∧2

is

{𝑒12, 𝑒13, 𝑒23}, where 𝑒
𝑖𝑗
≡ 𝑒

𝑖
∧ 𝑒

𝑗
. The highest 𝑆

𝑧
-eigenvalue eigenvector is 𝑒12, with

eigenvalue 1 + 0 = 1. Applying 𝑆− twice, one generates the entire spin-1 multiplet,

{𝑒(1,1), 𝑒(1,0), 𝑒(1,−1)} = {𝑒12, 𝑒13, 𝑒23}, (52)

so that there is only one (spin-1) multiplet in this case, and the matrix 𝑈 connecting

the Plücker basis to the BD one is the identity matrix. Accordingly, (1, 2)-planes are

characterized by a single constellation of two stars, and no spectator constellation can

be defined, which is as expected, as (1, 2)-planes are the orthogonal complement of spin-

1 states.

Consider the (1, 2)-plane |Σ⟩ = [�̃� ], with

�̃� =
(
|𝜓1⟩

𝑇

|𝜓2⟩
𝑇

)

=
(
1 0 𝑖

0 1 1 − 𝑖

)

. (53)

The Majorana constellations of the two kets |𝜓1⟩, |𝜓2⟩, spanning |Σ⟩, are

{
𝑛11, 𝑛12

}
=

{
( 1
√
2
,− 1
√
2
, 0
)
,

(
− 1
√
2
,

1
√
2
, 0
)
}

,

{
𝑛21, 𝑛22

}
=

{
( 1
√
2
,− 1
√
2
, 0
)
,

(
0, 0,−1

)
}

, (54)

respectively. The (unnormalized) Plücker (and BD) components of |Σ⟩ are |Σ⟩ = |Σ⟩
𝐷
=

(1, 1 − 𝑖,−𝑖), with constellation

{
𝑛
𝐴
, 𝑛

𝐵

}
=

{
( 1
√
2
,− 1
√
2
, 0
)
,

( 1
√
2
,− 1
√
2
, 0
)
}

, (55)

i.e., |Σ⟩ is a (1, 2)-coherent plane. We note that the functional relationship 𝑛
𝐴,𝐵

(𝑛
𝑖𝑗
),

even in this, simplest of cases, is surprisingly complicated. ⊓⊔
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Example 7. Irreducible components for ( 32 , 2)-planes

An orthonormal basis in the Hilbert space  3
2

is given by the eigenvectors of 𝑆
𝑧
,

{𝑒1, 𝑒2, 𝑒3, 𝑒4} = {| 32 ,
3
2 ⟩, |

3
2 ,

1
2 ⟩, |

3
2 ,−

1
2 ⟩, |

3
2 ,−

3
2 ⟩. The associated orthonormal basis in


∧2

is {𝑒12, 𝑒13, 𝑒14, 𝑒23, 𝑒24, 𝑒34}, where 𝑒
𝑖𝑗
≡ 𝑒

𝑖
∧𝑒

𝑗
. The highest 𝑆

𝑧
-eigenvalue eigen-

vector is 𝑒12, with eigenvalue
3
2+

1
2 = 2. Applying𝑆− four times, one generates the entire

spin-2 multiplet,

{𝑒(2,2), 𝑒(2,1), 𝑒(2,0), 𝑒(2,−1), 𝑒(2,−2)} = {𝑒12, 𝑒13,
1
√
2
(𝑒14 + 𝑒23), 𝑒24, 𝑒34}. (56)

The 𝑆
𝑧
-eigenvalue 0 is doubly degenerate, the state orthogonal to 𝑒(2,0) is the spin-0

state

𝑒(0,0) = (𝑒14 − 𝑒23)∕
√
2. (57)

The matrix 𝑈 effecting the change between the two bases, |𝚿⟩
𝐷
= 𝑈 |𝚿⟩, is

𝑈 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1

√
2

1
√
2

0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 1

√
2

− 1
√
2

0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (58)

Consider now the two 2-planes �̃�1, �̃�2, encountered in Example 3 (see equation (28)),

which shared the same principal polynomial, 𝜁
4 − 1, and, hence, principal constella-

tion (a square on the equator). The rows of �̃�1, after normalization, are (𝑒1 + 𝑖𝑒3)∕
√
2,

(𝑒2 + 𝑖𝑒4)∕
√
2, so that the 2-plane �̃�1 represents is

|Σ1⟩ = [�̃�1] =
1
2
(𝑒1 + 𝑖𝑒3) ∧ (𝑒2 + 𝑖𝑒4)

= 1
2
(𝑒12 + 𝑖𝑒14 − 𝑖𝑒23 − 𝑒34)

→
1
2
(
1 0 𝑖 −𝑖 0 −1

)
𝑇

,

and, similarly, |Σ2⟩ =
(
1 −𝑖 𝑖 0 −1

)
𝑇 ∕2. Left-multiplying by 𝑈 we find their

irreducible components,

|Σ1⟩𝐷 = 1
2

( (
1 0 0 0 −1

) (
𝑖

√
2
) )𝑇

, |Σ2⟩𝐷 = 1
2

( (
1 0 0 0 −1

) (
− 𝑖

√
2
) )𝑇

,

(59)

where we used extra parentheses to visually define the spin-2 quintet and the spin-0 sin-

glet. Note that the spin-2 component, which gives rise to the principal constellation, is

identical in the two planes, which, however, are distinguished by their differing spin-

0 components. There are two reasons why our procedure for determining the spectator

constellation is not applicable in this case: the principal constellation has nontrivial rota-

tion symmetries (e.g., a rotation around 𝑧 by 𝜋∕2) and the SEV of the spin-2 component

vanishes. This is a good example of why our requirement of non-symmetric constella-

tions is necessary for the definition of the spectator constellation: under the above men-
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tioned symmetry rotation, the principal constellation of both planes goes back to itself,

but the corresponding spin-2 state picks up a sign, resulting in the rotation exchang-

ing the two planes—this would contradict our result that the spectator constellation is

invariant under rotations. ⊓⊔

Example 8. Four-star principal constellations corresponding to a single ( 32 , 2)-plane. II

We revisit here the problem of characterizing the locus 𝑀 ⊂ 𝐶2,4 of those principal

constellations that correspond to a single ( 32 , 2)-plane (see Example 4). The Plücker

relations (11) for the standard-basis components of a general antisymmetric state |Ψ⟩ in

this case reduce to the single equation

𝑃
12
𝑃
34 − 𝑃

13
𝑃
24 + 𝑃

14
𝑃
23 = 0, (60)

where we number the 𝑆
𝑧
-eigenbasis from 1 to 4, 1 corresponding to projection

3
2 . Using

equations (56), (57), we may express this in terms of the BD-basis components of |Ψ⟩,

2𝜓(2,2)𝜓(2,−2) − 2𝜓(2,1)𝜓(2,−1) + 𝜓
2
(2,0) − 𝜓

2
(0,0) = 0, (61)

where

|Ψ⟩𝑇
BD

=
(
|𝜓 (2)⟩𝑇 |𝜓 (0)⟩𝑇

)
=
(
(𝜓(2,2), 𝜓(2,1), 𝜓(2,0), 𝜓(2,−1), 𝜓(2,−2)) (𝜓(0,0))

)
. (62)

For a spin-𝑠 state |𝜓⟩ =
∑

𝑠

𝑚=−𝑠 𝜓𝑚|𝑠, 𝑚⟩, denote by |�̃�⟩ its antipodal state,

|�̃�⟩ =
𝑠∑

𝑚=−𝑠
(−1)𝑠−𝑚�̄�

𝑚
|𝑠,−𝑚⟩, (63)

the constellation of which is, as its name suggests, antipodal to that of |𝜓⟩ (|�̃�⟩ is the

result of the time-reversal operator applied to |𝜓⟩—see, e.g., [2]). Then (61) may be cast

in the form

⟨�̃� (2)|𝜓 (2)⟩ − ⟨�̃� (0)|𝜓 (0)⟩ = 0, (64)

implying that

𝜓(0,0) = ±
√

⟨�̃� (0)|𝜓 (0)⟩ = ±
√

⟨�̃� (2)|𝜓 (2)⟩, (65)

which explains the twofold solution for a ( 32 , 2)-plane, given the principal constellation

(i.e., |𝜓 (2)⟩). We conclude that𝑀 is the locus of constellations such that the correspond-

ing states in the Hilbert space are orthogonal to their antipodal states, a condition clearly

satisfied by the coherent states, and which can also be easily verified for the tetrahedral

state. ⊓⊔

Note that (64) expresses the single Plücker relation for the space 𝐻
∧2
3∕2 in terms of

irreducible blocks. It is worth noting that the concurrence of a state |Ψ⟩ ∈ 𝐻
∧2
3∕2, defined

as [5,37,38],

𝐶(|Ψ⟩) = 8|⟨�̃� (2)|𝜓 (2)⟩ − ⟨�̃� (0)|𝜓 (0)⟩|, (66)

is a measure of entanglement [5]. When 𝐶(|Ψ⟩) = 0, the state is an (𝑠, 𝑘)-plane, i.e., it

is a Slater state. On the other hand, a state with maximum concurrence, 𝐶(|Ψ⟩) = 1, is a

maximally entangled state. An important conclusion that can be inferred from (64) is that

the principal constellation of a maximally entangled ∧-factorizable state can have any
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shape. Indeed, given any principal constellation, one may choose the relative weights of

the irreducible blocks so that 𝐶(|Ψ⟩) = 1. Under SLOCC transformations [39], which

are related to general linear transformations in 𝐻3∕2 by a matrix 𝐺, 𝐶 rescales by the

determinant of 𝐺, 𝐶 → | det(𝐺)|𝐶 , and the states in 𝐻
∧2
3∕2 are partitioned in just two

SLOCC classes, the ∧-factorizable states and the states with 𝐶(|Ψ⟩) ≠ 0. Here again,

one can define a state in any SLOCC class with any principal constellation.

Example 9. Symmetry rotations of the fourteen ( 52 , 2)-planes with doubly tetrahedral

constellation. II

We revisit here the problem set forth in Example 5. Referring to Table 1, we note that

the spin content in this case is 𝑗 = 4, 2, 0, so that, as far as rotational symmetries are

concerned, it is enough to calculate the secondary spin-2 constellations of the fourteen

( 52 , 2)-planes encountered there. In Fig. 4 we give the results for one of the invariant

planes mentioned in Example 5, as well as three planes forming a permutation cycle. As

we explain in more detail in the Epilogue, in order for a rotation to leave invariant, up

to a phase, an antisymmetric state, not only must it leave invariant each of its constella-

tions, but it must also not introduce any relative phase (modulo 2𝜋) among them—we

encounter here a nice instance of this requirement being fulfilled. Referring to Fig. 4, the

double tetrahedron on the left is the principal constellation of all fourteen ( 52 , 2)-planes

considered. The inverted tetrahedron in the middle is the secondary, 𝑠 = 2, constellation

of one of those planes. Under a rotation around the 𝑧-axis by 2𝜋∕3, the tetrahedral state

acquires a phase of 2𝜋∕3 (see, e.g., Table I in [40]). It follows easily that, under the same

rotation, the double tetrahedron acquires twice that phase, i.e., 4𝜋∕3, while the inverted

one acquires minus that phase, i.e., −2𝜋∕3, so that the relative phase acquired between

the two constellations is zero (modulo 2𝜋)—this explains why the plane in question is

invariant under this rotation. On the right, in Fig. 4, appear the secondary constella-

tions of three other of the above fourteen planes, with the symmetry rotation considered

permuting them among themselves. A analysis similar to the one presented above, re-

garding the acquired phases, explains why these three planes form a permutation cycle.

⊓⊔

Example 10. Multiconstellation for a (2, 2)-plane

Proceeding as in the previous example, we find for the matrix 𝑈 transforming from

the Plücker to the BD basis,

𝑈 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0

√
3
5 0

√
2
5 0 0 0 0 0

0 0 0 1
√
5

0 2
√
5

0 0 0 0

0 0 0 0 0 0
√

3
5

√
2
5 0 0

0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0

√
2
5 0 −

√
3
5 0 0 0 0 0

0 0 0 2
√
5

0 − 1
√
5

0 0 0 0

0 0 0 0 0 0
√

2
5 −

√
3
5 0 0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (67)
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Take, as example, the 2-plane |𝚿⟩ = 𝑣 ∧𝑤, where

𝑣 =
(
1 0 1 0 0

)
𝑇

, 𝑤 =
(
1 0 0 0 1

)
𝑇

. (68)

Its normalized Plücker components are

| ̂𝚿⟩ = 1
2
(
1 0 0 1 −1 0 0 0 1 0

)
𝑇

. (69)

Left multiplication by the above 𝑈 gives

| ̂𝚿⟩
𝐷
=
(
|𝜓 (3)⟩𝑇 |𝜓 (1)⟩𝑇

)
𝑇 = 1
√
20

( (√
5 0 −

√
2 1 0

√
5 0
) (√

3 2 0
) )𝑇

,

(70)

where the extra parentheses define visually the spin-3 and spin-1 multiplets. Each of

|𝜓 (3)⟩, |𝜓 (1)⟩ has its own Majorana constellation. But the two states are not normalized

to unity, and their constellations also miss the information about their phase. Both pieces

of information are captured in the spectator spin-1/2 state 𝑍 = (𝑧3, 𝑧1), which we now

determine.

The SEV for |𝜓 (3)⟩ is 𝑆
(3) = (−

√
3
50 , 0,

7
20 ), with polar coordinates (𝜃(3), 𝜙(3)) =

(arctan 20
√
3

7
√
50
, 𝜋). We compute the rotated state |𝜓

(3)
1 ⟩, and expand the corresponding

density matrix in polarization tensors to find

𝜌
(3)
1 →

⎛
⎜
⎜
⎜
⎝

(

13
20
√
7

)

,

⎛
⎜
⎜
⎜
⎝

0,

√
73
7

40
, 0
⎞
⎟
⎟
⎟
⎠

,

⎛
⎜
⎜
⎜
⎝

31
730
√
14
,− 29

146
√
21
,

241
√

3
7

2920
,

29
146
√
21
,

31
730
√
14

⎞
⎟
⎟
⎟
⎠

,…
⎞
⎟
⎟
⎟
⎠

. (71)

Note that the spin-1 component in this expansion is of the form {0, 𝜆, 0}, with 𝜆 > 0, as

a result of the SEV of 𝜌
(3)
1 being along 𝑧. The first nonzero component, with 𝑚 ≠ 0, is

the 22-component, which is already real and positive, so the second rotation, around the

𝑧-axis, is the identity, and |𝜓
(3)
2 ⟩ = |𝜓

(3)
1 ⟩ = (0.258, 0.581,…), the last equality giving

the components of |𝜓
(3)
2 ⟩ in the 𝑆

𝑧
eigenbasis. Because the first nonzero component is

real and positive, we get 𝑧
(3) =

√
⟨𝜓 (3)|𝜓 (3)⟩ =

√
13∕20.

Proceeding analogously we find 𝑧
(1) = 𝑖

√
7∕20, so that the spectator “state” is 𝑍 =

(√
13∕20, 𝑖

√
7∕20
)

. A plot of the corresponding constellations appears in figure 5.

⊓⊔

Example 11. Choice of canonical basis in the ( 72 , 4) case

We start with the top plane |
7
2 ⟩ ∧ |

5
2 ⟩ ∧ |

3
2 ⟩ ∧ |

1
2 ⟩, with 𝑆

𝑧
= 8, and generate the

entire 𝑠 = 8 multiplet by repeated application of 𝑆−. At 𝑆
𝑧
= 6, a second state appears

(apart from the one belonging to the above multiplet), that generates, similarly, an 𝑠 = 6
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multiplet. Then, at 𝑆
𝑧
= 4, two new states appear (apart from the ones belonging to the

previous two multiplets),

|𝚿1⟩ ∼ 7
√
3|7
2
⟩ ∧ |5

2
⟩ ∧ | − 1

2
⟩ ∧ | − 3

2
⟩ − 14|7

2
⟩ ∧ |3

2
⟩ ∧ |1

2
⟩ ∧ | − 3

2
⟩

+2
√
105|5

2
⟩ ∧ |3

2
⟩ ∧ |1

2
⟩ ∧ | − 1

2
⟩, (72)

|𝚿2⟩ ∼ 2
√
105|7

2
⟩ ∧ |5

2
⟩ ∧ |3

2
⟩ ∧ | − 7

2
⟩ − 14|7

2
⟩ ∧ |5

2
⟩ ∧ |1

2
⟩ ∧ | − 5

2
⟩

+7
√
3|7
2
⟩ ∧ |5

2
⟩ ∧ | − 1

2
⟩ ∧ | − 3

2
⟩, (73)

which are degenerate in their expectation value of 𝑆
𝑧

=
∑4

𝑟=1 𝑆
[𝑟]
𝑧

≡ 𝑄
(1)

, where

𝑆
[𝑟]
𝑧

is the 𝑆
𝑧

operator in the 𝑟-th wedge factor. One may similarly define the operator

𝑄
(2) =

∑4
𝑟=1(𝑆

[𝑟]
𝑧
)2, and distinguish the two states above according to their 𝑄

(2)
expec-

tation value. To this end, we consider the linear combination |𝚿⟩ = 𝛼|𝚿1⟩ + 𝛽|𝚿2⟩,

normalized to 1, and maximize ⟨𝚿|𝑄(2)|𝚿⟩ to find 𝛽 = (−109 + 4
√
715)∕21𝛼, which

defines the first vector in the canonical basis we are after, while the second one is de-

fined by orthogonality. When the degeneracy is greater than 2, additional, higher order,

operators 𝑄
(𝑛)

may be used to lift it. ⊓⊔

5. Epilogue

We have presented a generalization of Majorana’s stellar representation of spin quan-

tum states to the case of 𝑘-partite antisymmetric spin-𝑠 states, and, in particular, ∧-

factorizable ones, the latter labeling (𝑠, 𝑘)-planes through the origin in Hilbert space.

Given such a state, we first constructed an associated Majorana-like principal constel-

lation, that rotates in physical space as the state is rotated in Hilbert space. We then

showed how to augment this construction to a family of constellations, which, unlike

the principal constellation, uniquely characterizes the state.

We mention here briefly possible applications of the above results. As alluded to

already in the introduction, being able to visualize an antisymmetric state via its multi-

constellation simplifies the task of identifying its rotational symmetries. It is self-evident

that the rotational symmetry group of any such state is a subgroup of the intersection

of the symmetry groups of each of its constellations, since the invariance of the latter

under a rotation is a necessary condition for the invariance of the state. The condition,

however, is not sufficient, because a constellation 𝐶
𝑖

coming back to itself after a rota-

tion implies that the corresponding state |𝜓 (𝑖)⟩ might acquire a phase, and if the phases

of the various |𝜓⟩’s that appear in (46) are not equal, the multipartite state will not be

invariant under the rotation—we saw this happening in Example 7. On the other hand,

if the above intersection of symmetry groups is trivial, the state has no rotational sym-

metries, as is the case, in particular, if any of the 𝐶
𝑖

has no such symmetries—it is hard

to see how to reach such a conclusion without the aid of our construction. Note that the

converse problem is not trivial: our discussion above does not clarify how to construct a

multipartite state with given rotational symmetries. It is true that one may choose freely

the principal constellation, in particular endowing it with any desired symmetry, but the

secondary constellations that complete the multiconstellation cannot be fixed at will—

rather, they can only take a discrete set of values, the determination of which, given the
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principal constellation, is rather non-trivial. We defer the elucidation of these matters to

a future publication, currently in progress.

There are various directions along which the above ideas may be further developed.

A question we consider most pressing is the clarification of the physical meaning of the

principal constellation. The analogous question for the Majorana constellation of a spin-

𝑠 state |𝜓⟩ has a concise, and conceptually appealing answer involving the 2𝑠 spin-1/2

particles whose symmetrization gives rise to |𝜓⟩. We feel that a similarly simple and

appealing answer ought to exist for the principal constellation. Another direction worth

exploring is the significance of coincident stars in a constellation. Such degenerate con-

stellations clearly represent singular points in the Grassmannian, already in the original

case of Majorana, and their mathematical description involves secant and tangent vari-

eties (see, e.g., [3,41–43])—we hope we will soon be able to report our progress on these

matters. On the applications front, our first priority would be to develop possible ram-

ifications for the program of holonomic quantum computation [14]. The Wilzcek-Zee

effect, upon which this entire endeavor is based, considers a 𝑘-dimensional degenerate

subspace of the Hilbert space that undergoes cyclic evolution, tracing a closed curve

in the corresponding Grassmannian. The practical problem one faces at the outset with

this requirement is identifying the closure of the curve, as a particular basis in the plane

may not return to itself, even when the plane it spans does. Clearly, representing the

plane by its multiconstellation solves this problem, and further simplifies it in the case

the time evolution of the plane in question corresponds to a sequence of rotations, as the

latter may be applied directly to the multiconstellation. Finally, we point out the (per-

haps obvious) fact that the multiconstellations introduced here should be experimentally

observable, the same way standard Majorana constellations are (see, e.g., the beautiful

plots in [4]).
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