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Abstract: A special case of the geometric Langlands correspondence is given by the
relationship between solutions of the Bethe ansatz equations for the Gaudin model and
opers-connections on the projective line with extra structure. In this paper, we describe
a deformation of this correspondence for SL(N ). We introduce a difference equation
version of opers called q-opers and prove a q-Langlands correspondence between nonde-
generate solutions of the Bethe ansatz equations for the XXZ model and nondegenerate
twisted q-opers with regular singularities on the projective line. We show that the quan-
tum/classical duality between the XXZ spin chain and the trigonometric Ruijsenaars–
Schneider model may be viewed as a special case of the q-Langlands correspondence.
We also describe an application of q-opers to the equivariant quantum K -theory of the
cotangent bundles to partial flag varieties.
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1. Introduction

1.1. Opers and the Gaudin model. One formulation of the geometric Langlands corre-
spondence is the existence of an isomorphism between spaces of conformal blocks for
the classicalW -algebra associated to a simple complex Lie algebra g and the dual affine
Kac-Moody algebra L ĝ at the critical level. Since both these algebras admit deforma-
tions, it is natural to conjecture the existence of deformed versions of the Langlands
correspondence, and indeed, this has been the subject of considerable recent interest
[AFO,GF,P]. In this paper, we describe a q-Langlands correspondence which is a de-
formation of an important example of geometric Langlands, the classical correspondence
between the spectra of the Gaudin model and opers on the projective line with regular
singularities and trivial monodromy.

Let G be a simple complex algebraic group of adjoint type, and let Lg be the Lie
algebra of the Langlands dual group LG. Fix a collection of distinct points z1, . . . , zn in
C. The Gaudin Hamiltonians are certain mutually commuting elements of the algebra
U (Lg)⊗n . They are contained in a commutative subalgebra Z(zi )(

Lg) called the Gaudin
algebra. The simultaneous eigenvalues of the actions of the Gaudin Hamiltonians on N -
fold tensor products of Lg-modules is given by the (maximal) spectrum of this algebra,
namely, the set of algebra homomorphisms Z(zi )(

Lg) −→ C.1

Feigin, Frenkel, and Reshetikhin found a geometric interpretation of this spectrum
in terms of flat G-bundles on P

1 with extra structure [FFR1,F2,F1]. Let B be a Borel
subgroup of G. A G-oper on a smooth curve X is a triple (F,∇,FB), where (F,∇) is a
flatG-bundle on X andFB is a reduction ofF satisfying a certain transversality condition
with respect to∇. As an example, for PGL(2)-opers, this condition is thatFB is nowhere
preserved by∇. The space ofG-opers can be realized more concretely as a certain space
of differential operators. For example, a PGL(2)-oper can be identified with projective
connections: second-order operators ∂2z − f (z) mapping sections of K−1/2 to sections
of K 3/2, where K is the canonical bundle. It turns out that the spectrum of Z(zi )(

Lg)

may be identified with the set of G-opers on P
1 with regular singularities at z1, . . . , zn

and ∞, which therefore has the structure of an algebraic variety.

1 We remark that the Gaudin algebra is a subalgebra of the center of the universal enveloping algebra at
the critical level, and this center was characterized in [FFR1]. Ding and Etingof have found generators of the
center of the quantum affine algebra at the critical level, thereby proving the q-analogue of this statement
[DE].
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We now consider the action of the Gaudin algebra on the tensor product of irreducible
finite-dimensional modules Vλ = Vλ1 ⊗ · · · ⊗ Vλn , where λ is an n-tuple of dominant
integral weights. The Bethe ansatz is a method of constructing such simultaneous eigen-
vectors. One starts with the unique (up to scalar) vector |0〉 ∈ Vλ of highest weight

∑
λi ;

it is a simultaneous eigenvector. Given a set of distinct complex numbers w1, . . . , wm
labeled by simple roots αk j , one applies a certain order m lowering operator with poles
at the w j ’s to |0〉. If this vector is nonzero and

∑
λi − ∑

αk j is dominant, it is an
eigenvector of the Gaudin Hamiltonians if and only if certain equations called the Bethe
ansatz equations are satisfied (see (2.13)). Frenkel has shown that the corresponding
point in the spectrum of the Gaudin algebra is a G-oper with regular singularities at the
zi ’s and ∞ and and with trivial monodromy [F1].

In fact, it is possible to give a geometric description of all solutions of the Bethe
equations (i.e., without assuming

∑
λi − ∑

αk j is dominant) in terms of an enhanced
version of opers. AMiura G-oper onP

1 is aG-oper togetherwith an additional reduction
F′
B which is preserved by ∇. The set of Miura opers with the same underlying oper is

parametrized by the flag manifold G/B. Frenkel has shown that there is a one-to-one
correspondence between the set of solutions to the LgBethe ansatz and “nondegenerate”
Miura G-opers with regular singularities and trivial monodromy [F2]. To see how this
works, let H ⊂ B be a maximal torus. The initial data of the Bethe ansatz gives rise to
the explicit flat H -bundle (a Cartan connection)

∂z +
n∑

i=1

λi

z − zi
−

m∑

j=1

αk j

z − w j
.

There is a map from Cartan connections to Miura opers given by the Miura transforma-
tion; this is just a generalization of the standard Miura transformation in the theory of
KdV integrable models. It turns out that the Bethe equations are precisely the conditions
necessary for the corresponding Miura oper to be regular at the w j ’s.

In the global geometric Langlands correspondence for P
1, the objects on the Galois

side are flat G-bundles (with singularities) on P
1 while on the automorphic side, one

considers D-modules on enhanced versions of the moduli space of LG-bundles over P
1.

The correspondence between opers and spectra of theGaudinmodel provides an example
of geometric Langlands. Indeed, the eigenvector equations for the Gaudin Hamiltonians
for fixed eigenvalues determines a D-module on the moduli space of LG-bundles with
parabolic structures at z1, . . . , zn and ∞ while the oper gives the flat G-bundle.

1.2. q-opers and theq-Langlands correspondence. Recall that the geometricLanglands
correspondence may be viewed as an identification of conformal blocks for the classical
W-algebra associated to g and conformal blocks for the affine Kac-Moody algebra L ĝ
at the critical level. Both these algebras admit deformations. For example, one may
pass from L ĝ to the associated quantum affine algebra while at the same time moving
away from the critical level. This led Aganagic, Frenkel, and Okounkov to formulate
a two-parameter deformation of geometric Langlands called the quantum q-Langlands
correspondence [AFO]. This is an identification of certain conformal blocks of a quantum
affine algebra with those of a deformed W-algebra, working over the infinite cylinder.
They prove this correspondence in the simply-laced case; their proof is based on a study
of the equivariant K -theory of Nakajima quiver varieties whose quiver is the Dynkin
diagram of g.
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In this paper, we take another more geometric approach, involving q-connections,
a difference equation version of flat G-bundles. Our goal is to establish a q-Langlands
correspondence between q-opers with regular singularities and the spectra of the XXZ
spin chain model. Here, we only consider this correspondence in type A, where we
can describe q-opers explicitly as a vector bundle endowed with a difference operator,
together with a complete flag of subbundles that is well-behaved with respect to the
operator.2

Fix a nonzero complex number q which is not a root of unity. We are interested
in (multiplicative) difference equations of the form s(qz) = A(z)s(z); here A(z) is
an N × N invertible matrix whose entries are rational functions. To express this more
geometrically, we start with a trivializable rank n vector bundle E on P

1, and let Eq

denote the pullback of E via the map z 
→ qz. A (GL(N ), q)-connection on P
1 is an

invertible operator A taking sections of E to sections of Eq . If the matrices A(z) have
determinant one in some trivialization, (E, A) is called an (SL(N ), q)-connection. Just
as in the classical setting, an (SL(N ), q)-oper is a triple (E, A, EB), where EB is a
reduction to a Borel subgroup satisfying a certain transversality condition with respect
to A. We also define a Miura q-oper to be a q-oper with an additional reduction E ′

B
preserved by A. We remark that these definitions make sense when P

1 is replaced by the
formal punctured disk. In this setting, a concept equivalent to (GL(N ), q)-connections
was introduced by Baranovsky and Ginzburg [BG] while the notion of a formal q-oper is
inherent in the work of Frenkel, Reshetikhin, Semenov-Tian-Shansky, and Sevostyanov
on Drinfeld-Sokolov reduction for difference operators [FRSTS,SS].

We now explain how q-opers can be viewed as the Galois side of a q-Langlands
correspondence. The XXZ spin chain model is an integrable model whose dynamical
symmetry algebra is the quantum affine algebra Uq(ĝ) [R1]. Under an appropriate lim-
iting process, it degenerates to the Gaudin model. The model depends on certain twist
parameters which can be described by a diagonal matrix Z . We will always assume that
Z has distinct eigenvalues. Eigenvectors of the Hamiltonians in the XXZ model can
again be found using the Bethe ansatz, and the spectra can be expressed in terms of
Bethe equations (see (3.6), (4.10) below).

It turns out that these equations also arise from appropriate q-opers. We consider
q-opers with regular singularities on P

1\{0,∞}. We further assume that the q-oper is
Z-twisted, where Z is the diagonal matrix appearing in the Bethe equations; this simply
means that the underlying q-connection is q-gauge equivalent to the q-connection with
matrix Z . (This may be viewed as the quantum analogue of the opers with a double pole
singularity at∞ considered by Feigin, Frenkel, Rybnikov, and Toledano-Laredo in their
work on an inhomogeneous version of the Gaudin model [FFTL,FFR2].) Given a Z -
twisted q-oper with regular singularities, we examine a certain associated Miura q-oper.
The assumption that this Miura q-oper is “nondegenerate” imposes certain conditions
on the zeros of quantum Wronskians arising from the q-oper, and these conditions
lead to the XXZ Bethe equations. Thus, in type A, we obtain the desired q-Langlands
correspondence. It should be noted that in contrast to the results of [AFO], our results
do not depend on geometric data related to the quantum K -theory of Nakajima quiver
varieties. In particular, there are no restrictions on the dominant weights that can appear
in our correspondence.

Our approach has some similarities with the earlier work of Mukhin and Varchenko
on discrete opers and the spectra of the XXX model [MV2]. Here, they considered

2 The authors and E. Frenkel have subsequently solved this problem in the general case using different
techniques [FKSZ].
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additive difference equations, i.e., equations of the form f (z + h) = A(z) f (z) where A
is aG-valued function and h ∈ C

∗ is a fixed parameter. They defined a discrete oper to be
the linear difference operator f (z) 
→ f (z + h)− A(z) f (z) if A(z) had a suitable form.
They also introduced a notion of discrete Miura oper and showed that they correspond to
solutions of the XXXBethe ansatz equations. Unlike our q-opers, these discrete opers do
not seem to be related to the difference equation version of Drinfeld-Sokolov reduction
considered in [FRSTS].

Since the XXZ model may be viewed as a deformation of the Gaudin model, one
would expect that we should recover the Gaudin Bethe equations under an appropriate
limit. In fact, by taking this limit in two steps, one can say more. First, a suitable limit
takes one to a twisted version of the XXX spin chain, giving rise to a correspondence
between the solutions of the Bethe equations for this model and a twisted analogue of the
discrete opers of [MV2]. A further limit brings one back to the inhomogeneous Gaudin
model and opers with irregular singularity considered in [FFTL,FFR2].

1.3. QQ-systems, XXZ models, and Baxter operators. As we have seen, Bethe ansatz
equations arise from q-opers by considering quantum Wronksians and their properties.
More precisely, the algebraic structure of the set of quantum Wronksians governs both
twisted Z -opers and solutions of the XXZ Bethe equations and leads to the correspon-
dence between the two. This algebraic structure is a special case of a more general
phenomenon, which appears in the representation theory of quantum affine algebras.
Hernandez and Jimbo have introduced a category O of highest weight representations
of a Borel subalgebra Uq(b̂+) of the quantum affine algebra Uq(ĝ) [HJ]. This cate-
gory includes all finite-dimensional representations ofUq(ĝ), but also contains infinite-
dimensional representations on which the Borel action does not extend to the entire
quantum affine algebra. Within this category, they have constructed certain “prefunda-
mental modules” which generate the Grothendieck ring ofO. The relations among these
generators give rise to so-called QQ-systems (or QQ̃-systems), which generalize the
the quantum Wronskian relations for ˆsl2 obtained in [BLZ].

These QQ-systems, in their manifestation as relations in the Grothendieck ring,
have arisen in various circumstances [KLWZ,MV1,KLV,B]. However, they also have
an explicit realization in terms of certain polynomial equations. As this is the form in
which QQ-systems appear in the context of q-opers, we briefly explain how this works.

Upon fixing a finite-dimensional representation H of Uq(ĝ) (known as the physical
space), one obtains a particular XXZ integrable model associated to the given quantum
group. The spectrum of this integrable model is described by the eigenvalues of the
transfer matrices, which are constructed in the following way. The R-matrix, associated
to Uq(ĝ) belongs to Uq(b̂+) ⊗ Uq(b̂−), where b± are opposite Borel subalgebras. For
any V ∈ O, the R-matrix acts on V ⊗ H, and one can now take the weighted trace
of the R-matrix with respect to the first factor. This trace is an operator acting on H.
In the particular cases where V is a finite-dimensional representation of Uq(ĝ) or a
prefundamental module, the resulting operators are called transfer matrices and Baxter
Q-operators respectively. Upon certain canonical rescalings of the transfer matrices and
Q-operators, the eigenvalues of these operators become polynomials, and the relations
in the Grothendieck ring turn into polynomial equations [FH1,FH2], thereby proving
conjectures on transfer matrices found in [FR].

We observe that the QQ-system which describes twisted (SL(N ), q)-opers is the
one associated to ŝln in [FH2].
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1.4. Quantum/classical duality and applications to enumerative geometry. Quantum/
classical duality is a relationship between a quantum and a classical integrable system.
Well-known examples are the relationship in type A between the Gaudin model and
the rational Calogero-Moser system and between the XXX spin-chain and the rational
Ruijsenaars–Schneider model. Both of these can be viewed as limits of the duality
between the XXZ spin-chain and the trigonometric Ruijsenaars–Schneider model [HR1,
HR2,MTV].3 This duality is given by a transformation relating two sets of generators
for the quantum K -theory ring of cotangent bundles of full flag varieties [KPSZ]. One
set of generators is obtained from the XXZBethe equations. One considers certain Bethe
equations where the dominant weights all come from the defining representation and
then takes symmetric functions on the corresponding Bethe roots. The other generators
are functions on a certain Lagrangian subvariety in the phase space for the tRS model.

This correspondence has a direct interpretation in terms of twisted q-opers; indeed,
it may be viewed as a special case of the q-Langlands correspondence. As we discussed
in the previous section, Bethe equations arise from nondegenerate twisted q-opers. The
Bethe roots are precisely those zeros of the quantum Wronskians associated to the q-
oper which are not singularities of the underlying q-connection. On the other hand, there
is an embedding of the tRS model into the space of twisted q-opers. More precisely,
a q-oper structure on a given q-connection (E, A) is determined uniquely by a full
flag L• of vector subbundles which behave in a specified way with respect to A. A
section s generating the line bundle L1 over P

1\∞ may be viewed as an N -tuple of
monic polynomials (s1, . . . , sN ). If these polynomials are all linear, then their constant
terms are precisely the momenta in the phase space of the tRSmodel. Quantum/classical
duality is then equivalent to the statement that the Bethe roots and the constant terms of
these monic linear polynomial both give coordinates for an appropriate spaces of twisted
q-opers.

If the monic polynomials si are no longer linear, it is still the case that the Bethe
roots and the coefficients of these polynomials are equivalent sets of coordinates for a
space of twisted q-opers. It is more complicated to interpret this statement as a duality
between the XXZ spin-chain and a classical multiparticle integrable system. However,
we do get an application to the quantum K -theory of the cotangent bundles of partial flag
varieties. This K -theory ring is again generated by symmetric functions in appropriate
Bethe roots. In [RTV], Rimanyi, Tarasov, and Varchenko gave another conjectural set
of generators for this ring. We show that these generators are precisely those obtained
from the coordinates for the set of twisted q-opers coming from the coefficients of the
polynomials si , thereby proving this conjecture.

We remark that other applications of the XXZ Bethe ansatz equations to geometry
have appeared in the recent physics literature [NS1,NS2,GK,NPS].

1.5. Structure of the paper. In Sect. 2, we recall the relationship between monodromy-
free SL(N )-opers with regular singularities on the projective line and Gaudin models
[F1,F2]. We follow an approach hinted at in [GW], describing opers in terms of vector
bundles instead of principal bundles and obtaining the Bethe equations fromWronskian
relations. We also discuss the correspondence between an inhomogeneous version of
the Gaudin model and opers with an irregular singularity at infinity.

3 We refer the reader to Sect. 4 of [GK] for more information on quantum/classical duality and additional
references.
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Next, in Sect. 3, we consider a q-deformation of opers in the case of SL(2). We adapt
the techniques of the previous section to give a correspondence between twisted q-opers
and the Bethe ansatz equations for the XXZ spin chain for sl2. In Sect. 4, we generalize
these constructions to SL(N ) and again prove a correspondence between q-opers and
the XXZ spin chain model. We then discuss the case of SL(3) in detail in Sect. 5.

In Sect. 6,we consider classical limits of our results.We show that an appropriate limit
leads to a correspondence between a twisted analogue of the discrete opers considered
in [MV2] and the spectra of a version of the XXX spin chain. By taking a further
limit, we recover the relationship between opers with an irregular singularity and the
inhomogeneous Gaudin model [FFTL,FFR2].

Finally, Sect. 7 is devoted to some geometric implications of the results of this paper.
The quantum K -theory ring of the cotangent bundle to the variety of partial flags is
known to be described via the Bethe ansatz equations [KPSZ]. We find a new set of
generators defined in terms of canonical coordinates on an appropriate set of q-opers.
These generators turn out to be the same as the conjectural generators given in [RTV].

2. SL(N)-Opers with Trivial Monodromy and Regular Singularities

2.1. SL(2)-opers and Bethe equations. In this section, we describe a simple reformu-
lation of the results of [F1,F2] due to Gaiotto and Witten [GW].

Definition 2.1. A GL(2)-oper on P
1 is a triple (E,∇,L), where E is a rank 2 vector

bundle on P
1,∇ : E −→ E ⊗K is a connection (here K is the canonical bundle), andL

is a line subbundle such that the induced map ∇̄ : L −→ E/L⊗ K is an isomorphism.
The triple is called an SL(2)-oper if the structure group of the flat GL(2)-bundle may
be reduced to SL(2).

We always assume that the vector bundle E is trivializable.
The oper condition may be checked explicitly in terms of a determinant condition on

local sections. Indeed, ∇̄ is an isomorphism in a neighborhood of a given point z if for
some (or for any) local section s of L with s(z) �= 0,

s(z) ∧ ∇zs(z) �= 0.

Here, ∇z = ι d
dz

◦ ∇, where ι d
dz

is the inner derivation by the vector field d
dz .

In this section, we will be interested in SL(2)-opers with regular singularities. An
SL(2)-oper with regular singularities of weights k1, . . . , kL , k∞ at the points z1, . . . , zL ,

∞ is a triple (E,∇,L) as above where ∇̄ is an isomorphism everywhere except at each
zi (resp. ∞), where it has a zero of order ki (resp. k∞). Concretely, near the point zi , we
have

s(z) ∧ ∇zs(z) ∼ (z − zi )
ki . (2.1)

We will always assume that our opers have trivial monodromy, i.e., that the monodromy
of the connection around each zi is trivial. This means that after an appropriate gauge
change, we can assume that the connection is trivial. (Recall that changing the trivializa-
tion of E by g(z) induces gauge change in the connection; explicitly, the new connection
is g(z)∇g(z)−1 − d(g(z))g(z)−1.) In terms of this trivialization of E over P

1\∞, the
line bundle L is generated over this affine space by the section

s =
(
q+(z)
q−(z)

)

, (2.2)
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where q±(z) are polynomials without common roots. The condition (2.1) leads to the
following equation on the Wronskian:

q+(z)∂zq−(z) − ∂zq+(z)q−(z) = ρ(z), (2.3)

where ρ(z) is a polynomial whose zeros are determined by (2.1). After multiplying
s by a constant, we may take ρ(z) = ∏L

i=1(z − zi )ki . By applying a constant gauge
transformation in SL(2, C), we may further normalize s so that deg(q−) < deg(q+)
and q−(z) = ∏l−

i=1(z − wi ) has leading coefficient 1. (More precisely, transforming
by

(
0 1−1 0

)
if necessary allows us to assume that deg(q−) ≤ deg(q+); if the degrees are

equal, transforming by an elementary matrix brings us to the case deg(q−) < deg(q+).
The final reduction uses a diagonal gauge change.)

We now make the further assumption that our oper is nondegenerate, meaning that
none of the zi ’s are roots of q−. It is now an immediate consequence of (2.3) that each
root of q− has multiplicity 1.

Let k = ∑L
i=1 ki denote deg(ρ). An easy calculation using the fact that deg(q−) <

deg(q+) gives deg(q−) + deg(q+) = k + 1; this implies that deg(q−) = l− ≤ k/2. We
now rewrite (2.3) in the equivalent form

∂z

(
q+(z)

q−(z)

)

= − ρ(z)

q−(z)2
. (2.4)

Since the residue at each wi of the left-hand side of this equation is 0, computing the
residues of the right-hand side leads to the conditions

∑

m

km
zm − wi

=
∑

j �=i

2

w j − wi
, i = 1, . . . , l−. (2.5)

These are the Bethe ansatz equations for the sl2-Gaudin model at level k − 2l− ≥ 0;
they determine the spectrum of this model.

A local section for L at ∞ is given by

(
q̃+(z̃)
q̃−(z̃)

)

= z̃l+
(
q+(1/z̃)
q−(1/z̃)

)

, (2.6)

where l+ = deg(q+). If we set k∞ = k − 2l− = l+ − l− − 1, we obtain

q̃+(z̃)∂z̃ q̃−(z̃) − ∂z̃ q̃+(z̃)q̃−(z̃) ∼ z̃k∞ . (2.7)

Thus, we have proved the following theorem.

Theorem 2.2. There is a one-to-one correspondence between the spectrumof theGaudin
model, described by the Bethe equations for dominant weights, and the space of non-
degenerate SL(2)-opers with trivial monodromy and regular singularities at the points
z1, . . . , zL ,∞ with weights k1, . . . , kL , k∞.
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2.2. Miura opers and theMiura transformation. The previous theorem raises the natural
question of whether one can give a geometric interpretation to solutions of the Bethe
equations without assuming that the level k − 2l− is nonnegative. Miura opers provide
such an description. A Miura oper is an oper (E,∇,L) together with an additional line
bundle L̂ preserved by ∇. There may be a finite set of points where L and L̂ do not span
E . It turns out that one can associate to any oper with regular singularities a family of
Miura opers parameterized by the flag variety [F1].

Given a Miura oper, we may choose a trivialization of E so that the line bundle L̂
is generated by the section ŝ = (1, 0). We retain our notation for the section s = ( q+

q−
)

generating L, but here, we do not impose any restrictions on deg(q−).
Theorem 2.2 can be generalized to give the following theorem, which is proved in a

similar way.

Theorem 2.3. There is a one-to-one correspondence between the set of solutions of
the Bethe Ansatz equations (2.5) and the set of nondegenerate SL(2)-Miura opers with
trivial monodromy and regular singularities at the points z1, . . . , zL ,∞ with weights at
the finite points given by k1, . . . , kL .

Wenowgive a different formulation of SL(2)-operswhich shows how the eigenvalues
of theGaudinHamiltonian can be seen directly from the oper.Wewill do this by applying
several SL(2)-gauge transformations to our trivial connection to reduce it to a canonical

form.We start with a gauge change by g(z) =
(
q−(z) −q+(z)
0 q−1− (z)

)
; note that g(z)s(z) = (

0
1

)
.

The new connection matrix is

−(∂zg)g
−1 = −

(
∂zq−(z) −∂zq+

0 − ∂zq−(z)
q−(z)2

) (
q−1− (z) q+(z)

0 q−(z)

)

=
(−∂zq−(z)

q−(z) −ρ(z)

0 ∂zq−(z)
q−(z)

)

. (2.8)

Next, the diagonal transformation
(

ρ(z)−1/2 0
0 ρ(z)1/2

)
brings us to the Cartan connection

A(z) =
(−u(z) −1

0 u(z)

)

, (2.9)

where

u(z) = −∂zρ(z)

2ρ(z)
+

∂zq−(z)

q−(z)
= −

∑

m

km/2

z − zm
+

∑

i

1

z − wi
.

Finally, we apply theMiura transformation: gauge change by the lower triangular matrix( 1 0
u(z) 1

)
gives the connection matrix

B(z) =
(

0 −1
−t (z) 0

)

, where t (z) = ∂zu(z) + u2(z). (2.10)

An explicit computation using the Bethe equations (2.5) gives

t (z) =
∑

m

km(km + 2)/4

(z − zm)2
+

∑

m

cm
z − zm

,

where

cm = km

( ∑

n �=m

kn/2

zm − zn
−

l−∑

i=1

1

zm − wi

)

.
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This shows that t (z) does not have any singularities at z = wi ; moreover, since the
cm are the eigenvalues of the Gaudin Hamiltonians, it depends only on this spectrum.
In particular, the Gaudin eigenvalues can be read off explicitly as the negative of the
residue of the nonconstant entry of the connection matrices B(z). Note that a horizontal

section f =
(

f1
f2

)
to the connection in this gauge is determined by a solution to the

linear differential equation
(∂2z − t (z)) f1(z) = 0. (2.11)

The differential operator ∂2z − t (z) can be viewed as a projective connection.

2.3. Generalization to SL(N ): a brief summary. We now give a brief description of the
interpretation of the spectrum of the slN -Gaudin model in terms of SL(N )-opers.

Definition 2.4. A GL(N )-oper on P
1 is a triple (E,∇,L•), where E is a rank n vector

bundle onP
1,∇ : E −→ E⊗K is a connection, andL• is a complete flag of subbundles

such that∇ mapsLi intoLi+1⊗K and the inducedmaps ∇̄i : Li/Li−1 −→ Li+1/Li⊗K
are isomorphisms for i = 1, . . . , N−1.The triple is called anSL(N )-oper if the structure
group of the flat GL(N )-bundle may be reduced to SL(N ).

As in the SL(2)-case, one can interpret the fact that the ∇̄i ’s are isomorphisms in terms
of the nonvanishing of certain determinants involving local sections ofL1. Given a local
section s of L1, for i = 1, . . . , N , let

Wi (s)(z) =
(
s(z) ∧ ∇zs(z) ∧ · · · ∧ ∇ i−1

z s(z)
)∣
∣
∣
�iLi

Then (E,∇,L•) is an oper if and only if for each z, there exists a local section of L1
for which Wi (s)(z) �= 0 for all i . Note that W1(s) �= 0 simply means that s locally
generates L1.

We again will need to relax the isomorphism condition in the above definition to
allow the oper to have regular singularities. Recall that the weight lattice for SL(N ) is
the free abelian group on the fundamental weights ω1, . . . , ωN−1. Moreover, a weight
is dominant if it is a nonnegative linear combination of the ωi ’s.

Fix a collection of points z1, . . . , zL and corresponding dominant integral weights
λ1, . . . , λL . Write λm = ∑

limωi . We say that (E,∇,L•) is an SL(N )-oper with regular
singularities of weights λ1, . . . , λL at z1, . . . , zL if (E,∇) is a flat SL(N )-bundle, and
each of the ∇̄i ’s is an isomorphism except possibly at zm , where it has a zero of order lim ,
and ∞. The conditions at the singularities may be expressed equivalently in terms of a

nonvanishing local section. For each j with 1 ≤ j ≤ N − 1, set � j = ∏L
m=1(z − zm)l

j
m

and 	
j
m = ∑ j

k=1 l
k
m . Then, for 2 ≤ i ≤ N ,

Wi (s)(z) ∼ Pi−1 := �1(z)�2(z) · · · �i−1(z) =
L∏

m=1

(z − zm)	
i−1
m . (2.12)

As we saw for SL(2), to get the Bethe equations for nondominant weights, we need
to introduce Miura opers. Again, a Miura oper is a quadruple (E,∇,L•, L̂•) where
(E,∇,L•) is an oper with regular singularities and L̂• is a complete flag of subbundles
preserved by∇. Given aMiura oper, choose a trivialization of E onP

1\∞ such that L̂• is
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the standard flag, i.e., the flag generated by the ordered basis e1, . . . , eN . If s is a section
generating L1 on this affine line, consider the following determinants for i = 1, . . . , N :

Di (s)(z) = e1 ∧ · · · ∧ eN−i ∧ s(z) ∧ ∇zs(z) ∧ · · · ∧ ∇ i−1
z s(z).

Each of these is a polynomial multiple of the volume form. Note that DN (s)(z) =
WN (s)(z); in particular, DN (s)(z) �= 0 away from the zm’s. We will call a Miura oper
nondegenerate if the orders of the zero ofDi (s) andWi (s) at each zm are the same and
moreover, if Di (s) and Dk(s) for i �= k both vanish at a point z, then z = zm for some
m.

These conditions may be expressed in a more Lie-theoretic form. Let B be the upper
triangular Borel subgroup of SL(N ). Under the usual identification of SL(N )/B as the
variety of complete flags, B corresponds to the standard flag E. If F is another flag, we
say that (E,F) have relative position w (with w an element of the Weyl group SN ) if
F = g · E for some g in the double coset BwB. If the relative position is w0, where w0
is the longest element given by the permutation i 
→ N + 1− i for all i , we say that the
flags are in general position.

Given an ordered basis f = ( f1, . . . , fN ) for C
N , let Qk( f ) = e1 ∧ · · · ∧ eN−k ∧

f1 ∧ · · · ∧ fk . It is immediate that the zeros of the function k 
→ Qk( f ) depend only on
the flag determined by f . (Of course, QN ( f ) is always nonzero, since f is a basis.) Let
σk = (k k + 1) ∈ SN .

Lemma 2.5. Let F be a flag determined by the ordered basis f = ( f1, . . . , fN ).

1. The pair (E,F) are in general position if and only if Q j ( f ) �= 0 for all j .
2. The pair (E,F) have relative positionw0σk if and only if Qk( f ) = 0 and Q j ( f ) �= 0

for all j �= k.

Proof. In both cases, the forward implication is an easy direct calculation. For example,
if (E,F) are in general position, then F = bw0E for some b ∈ B, hence is determined
by the ordered basis fi = bw0ei = beN+1−i . Since Q j ( f ) �= 0 is equivalent to the fact
that the projection of span( f1, . . . , f j ) onto span(eN+1− j , . . . , eN ) is an isomorphism,
it is now immediate that for (E,F) in general position, Q j ( f ) �= 0 for all j .

For the converse, first assume that Q j ( f ) �= 0 for all j . One shows inductively that
the basis f can be modified to give a new ordered basis f̂ for F for which the matrix
b = ( f̂N f̂N−1... f̂1 ) ∈ B. Thus, F = bw0E.

Now, assume that Qk( f ) = 0, but the other Q j ( f )’s are nonzero. The same argument
as above shows that without loss of generality, we may assume that for j = 1, . . . , k−1,
f j is a column vector with lowest nonzero component in the N − j place. We may
further assume that all other fi ’s have bottom k−1 components zero. Since Qk( f ) = 0,
( fk)N−k = 0. However, Qk+1( f ) �= 0 now gives ( fk+1)N−k �= 0 and ( fk)N−k−1 �= 0.
It is now clear that the flag F is determined by an ordered basis f̂ for which b =
( f̂N ... f̂k f̂k+1... f̂1 ) ∈ B. This means that F = bw0wkE. ��

Returning to our Miura oper, recall that s(z),∇zs(z), . . . ,∇N−1
z s(z) is an ordered

basis for the flagL(z) as long as z is not a singular point. If we denote this basis by s(z),
we see that Di (s)(z) = Qi (s(z)). The lemma now shows that the fact that the Di (s)’s
have no roots in common outside of regular singularities is equivalent to the statement
that the relative position of (L̂•(z),L•(z)) is eitherw0 orw0σk for some k. Furthermore,
s(z), (z − zm)−l1m∇zs(z), . . . , (z − zm)−l N−1

m ∇N−1
z s(z) is an ordered basis for L• at zm .
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Hence,Di (s)(z) andWi (s)(z) having zeros of the same order at zm is equivalent to the
fact that the flags L̂•(zm) and L•(zm) are in general position.

The determinant conditions for the zeros of Dk(s) lead to Bethe equations in the
same way as before [F1]:

L∑

i=1

〈λi , α̌i j 〉
w j − zi

=
∑

s �= j

〈α̌is , α̌i j 〉
ws − w j

(2.13)

where the w j ’s are distinct points corresponding to zeros of the determinants D(s).
We can now state the SL(N ) analogue of Theorem 2.3. Here, λ∞ is a dominant

weight determined by the λi ’s and the αi j ’s.

Theorem 2.6. There is a one-to-one correspondence between the set of solutions to the
Bethe ansatz equations (2.13) and the set of nondegenerate SL(N )-Miura opers with
trivial monodromy and regular singularities at the points z1, . . . , zL ,∞ with weights
λ1, . . . , λL , λ∞.

2.4. Irregular singularities. In this section, we recall the relationship between opers
with irregular as well as regular singularities and an inhomogeneous version of the
Gaudin model introduced in [FFTL,FFR2]. Here, we will only consider the simplest
case of a double pole irregularity at ∞. We also restrict the discussion to SL(2).

Let (E,∇,L) be an SL(2)-operwith regular singularities onP
1\∞whose underlying

connection is gauge equivalent to d+a dz, where a = diag(a,−a)with a �= 0. Changing
variables to 1/z,we see that this connectionhas a double pole at∞. It is no longer possible
to trivialize the connection algebraically, but it can be trivialized using the exponential

transformation h(z) = eaz . If we let
(

q+(z)
q−(z)

)
be a section generating the line bundle L

(so q+(z) and q−(z) are polynomials with no common zeros), then in the trivial gauge,
this section becomes

s(z) = e−az
(
q+(z)
q−(z)

)

.

Note that we cannot assume that deg(q−) < deg(q+), since the necessary constant
gauge changes do not preserve d + a dz. However, we can assume that q− is monic:
q−(z) = ∏l−

i=1(z − wi ).
The condition s(z) ∧ ∇zs(z) = ρ(z) gives a “twisted” form of the Wronskian:

q+(z)∂zq−(z) − q−(z)∂zq+(z) + 2aq+(z)q−(z) = ρ(z) (2.14)

As before, we assume this oper is nondegenerate, i.e., q−(zm) �= 0 for all m; again, this
implies that the zeros of q− are simple.

To compute the Bethe ansatz equations, we observe that after multiplying (2.14) by
−e−2az/(q−(z))2, we obtain

∂z

(

−e−2az q+(z)

q−(z)

)

= e−2azρ(z)

q−(z)2
. (2.15)

Taking residues at each wi now leads to the inhomogeneous Bethe equations

−2a +
∑

m

kn
zn − wi

=
∑

j �=i

2

w j − wi
, i = 1, . . . , l−. (2.16)

We thus obtain the following theorem:
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Theorem 2.7. There is a one-to-one correspondence between the set of solutions of
the inhomogeneous Bethe equations (2.16) and the set of nondegenerate SL(2)-opers
with regular singularities at the points z1, . . . , zL of weights k1, . . . , kL at the points
z1, . . . , zL and with a double pole with 2-residue −a.

Although we will not state it explicitly, there is a similar result for SL(N ). Applying
the methods of Sect. 2.3, one shows that twisted Wronskians arise from nondegenerate
SL(N )-opers with regular singularities at fixed finite points and a double pole with
regular semisimple 2-residue at infinity.Onenowobtains solutions of theBethe equations
from these twisted Wronskians.

We remark that for the opers considered in this section, there is no longer an entire
flag variety of associated Miura opers. Indeed, the only line bundles L̂ preserved by
d + a dz are those generated by e1 and e2. More generally, consider an SL(N )-oper with
underlying connection d + A dz, where A is a diagonal matrix with distinct eigenvalues.
The flags L̂• preserved by this connection are precisely those generated by ordered
bases obtained by permuting the standard basis. Hence, the associated Miura opers are
parameterized by the Weyl group.

3. (SL(2), q)-Opers

3.1. Definitions. We now consider a q-deformation of the set-up in the previous section.
It involves a difference equation version of connections and opers.

Fix q ∈ C
∗. Given a vector bundle E over P

1, let Eq denote the pullback of E under
the map z 
→ qz. We will always assume that E is trivializable. Consider a map of
vector bundles A : E −→ Eq . Upon picking a trivialization, the map A is determined
by a matrix A(z) ∈ gl(N , C(z)) giving the linear map Ez −→ Eqz in the given bases.
A change in trivialization by g(z) changes the matrix via

A(z) 
→ g(qz)A(z)g−1(z); (3.1)

thus, q-gauge change is twisted conjugation. Let Dq : E −→ Eq be the operator
that takes a section s(z) to s(qz). We associate the map A to the difference equation
Dq(s) = As.

Definition 3.1. Ameromorphic (GL(N ), q)-connection over P
1 is a pair (E, A), where

E is a (trivializable) vector bundle of rank N over P
1 and A is a meromorphic section

of the sheaf HomO
P1

(E, Eq) for which A(z) is invertible, i.e. lies in GL(N , C(z)). The
pair (E, A) is called an (SL(N ), q)-connection if there exists a trivialization for which
A(z) has determinant 1.

For simplicity, we will usually omit the word ‘meromorphic’ when referring to q-
connections.

Remark 3.2. More generally, if G is a complex reductive group, one can define a mero-
morphic (G, q)-connection over P

1 as a pair (G, A) where G is a principal G-bundle
over P

1 and A is a meromorphic section of HomO
P1

(G,Gq).

Next, we define a q-analogue of opers. In this section, we will restrict to type A1.

Definition 3.3. A (GL(2), q)-oper onP
1 is a triple (E, A,L), where (E, A) is a (GL(2),

q)-connection and L is a line subbundle such that the induced map Ā : L −→ (E/L)q

is an isomorphism. The triple is called an (SL(2), q)-oper if (E, A) is an (SL(2), q)-
connection.
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The condition that Ā is an isomorphism can be made explicit in terms of sections.
Indeed, it is equivalent to

s(qz) ∧ A(z)s(z) �= 0

for s(z) any section generating L over either of the standard affine coordinate charts.
From now on, we assume that q is not a root of unity. We want to define a q-analogue

of the opers considered in Sect. 2.4. First, we introduce the notion of a q-operwith regular
singularities. Let z1, . . . , zL �= 0,∞ be a collection of points such that qZzm∩qZzn = ∅

for all m �= n.

Definition 3.4. A (SL(2), q)-oper with regular singularities at the points z1, . . . , zL �=
0,∞ with weights k1, . . . kL is a meromorphic (SL(2), q)-oper (E, A,L) for which Ā
is an isomorphism everywhere on P

1\{0,∞} except at the points zm , q−1zm , q−2zm ,
…, q−km+1zm for m ∈ {1, . . . , L}, where it has simple zeros.

The second condition can be restated in terms of a section s(z) generating L over
P
1\∞: s(qz)∧ A(z)s(z) has simple zeros at zm , q−1zm , q−2zm , …, q−km+1zm for every

m ∈ {1, . . . , L} and has no other finite zeros.
Next, we define twisted q-opers; these are q-analogues of the opers with a double

pole singularity considered in Sect. 2.4. Let Z = diag(ζ, ζ−1) be a diagonal matrix with
ζ �= ±1.

Definition 3.5. A (SL(2), q)-oper (E, A,L) with regular singularities is called a Z-
twisted q-oper if A is gauge-equivalent to Z−1.

Finally, we will need the notion of a Miura q-oper. As in the classical case, this is
a quadruple (E, A,L, L̂) where (E, A,L) is a q-oper and L̂ is a line bundle preserved
by A.

For the rest of Sect. 3, (E, A,L) will be a Z -twisted (SL(2), q)-connection with
regular singularities at z1, . . . , zL �= 0,∞ having (nonnegative) weights k1, . . . kL .

3.2. The quantum Wronskian and the Bethe ansatz. Choose a trivialization for which
the q-connection matrix is Z−1. Since L is trivial on P

1\∞, it is generated by a section

s(z) =
(
Q+(z)
Q−(z)

)

, (3.2)

where Q+(z) and Q−(z) are polynomials without common roots. The regular singularity
condition on the q-oper becomes an explicit equation for the quantum Wronskian:

ζ−1Q+(z)Q−(qz) − ζQ+(qz)Q−(z) = ρ(z) :=
L∏

m=1

km−1∏

j=0

(z − q− j zm). (3.3)

We can assume that ρ is monic, since we can multiply s by a nonzero constant. We
are also free to perform a constant diagonal gauge transformation, since this leaves the
q-connection matrix unchanged. Thus, we may assume that Q− is monic, say Q−(z) =
∏l−

i=1(z − wi ).
We now restrict attention to nondegenerate q-opers. This means the qZ-lattices gen-

erated by the roots of ρ and Q− do not overlap, i.e., qZzm ∩ qZwi = ∅ for all m and
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i . Note that this condition implies that w j �= qwi for all i, j ; if w j = qwi , then (3.3)
shows that wi would be a common zero of ρ and Q−.

Evaluating (3.3) atq−1z givesρ(q−1z) = ζ−1Q+(q−1z)Q−(z)−ζQ+(z)Q−(q−1z).
Ifwedivide (3.3) by this equation and evaluate at the zeros of Q−,we obtain the following
constraints:

ρ(wi )

ρ(q−1wi )
= −ζ−2 Q−(qwi )

Q−(q−1wi )
, (3.4)

or more explicitly, setting k = ∑
km ,

qk
L∏

m=1

wi − q1−km zm
wi − qzm

= −ζ−2
l−∏

j=1

qwi − w j

q−1wi − w j
. (3.5)

Rewriting this equation, we obtain the sl2 XXZ Bethe equations (see e.g. [R1]):

L∏

m=1

wi − q1−km zm
wi − qzm

= −ζ−2ql−−k
l−∏

j=1

qwi − w j

wi − qw j
, i = 1, . . . , l−. (3.6)

We call a solution of the Bethe equations nondegenerate if the qZ lattices generated
by the wi ’s and zm’s are disjoint for all i and m. We have proven the following theorem:

Theorem 3.6. There is a one-to-one correspondence between the set of nondegenerate
solutions of the sl2 XXZ Bethe equations (3.6) and the set of nondegenerate Z-twisted
(SL(2), q)-operswith regular singularities at the points z1, . . . , zL �= 0,∞withweights
k1, . . . kL .

3.3. The q-Miura transformation and the transfer matrix. Wenow consider the q-Miura
transformation which puts the q-connection matrix into a form analogous to (2.10) in
the classical setting. As we will see, the eigenvalue of the transfer matrix for the XXZ
model will appear explicitly in the q-connection matrix.

First, we consider the gauge change by

g(z) =
(
Q−(z) −Q+(z)

0 Q−1− (z)

)

, (3.7)

which takes the section s(z) into g(z)s(z) = (
0
1

)
. In this gauge, the q-connection matrix

has the form

A(z) =
(
Q−(qz)ζ−1 −ζQ+(qz)

0 ζQ−1− (qz)

)(
Q−(z) −Q+(z)

0 Q−1− (z)

)−1

=
(

ζ−1Q−(qz)Q−1− (z) ρ(z)
0 ζQ−1− (qz)Q−(z)

)

,

(3.8)

where ρ is the quantum Wronskian.
Before proceeding, we recall that every eigenvalue of the transfer matrix for the XXZ

model has the form (see [R2], Sect. 4 and references therein)

T (z) = ζ−1ρ(q−1z)
Q−(qz)

Q−(z)
+ ζρ(z)

Q−(q−1z)

Q−(z)
. (3.9)
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For ease of notation, we set a(z) = ζ−1Q−(qz)Q−1− (z), so that A(z) =
(
a(z) ρ(z)
0 a−1(z)

)

and T (z) = a(z)ρ(q−1z)+ a−1(q−1z)ρ(z). We now apply the gauge transformation by
the matrix

( 1 0
a(z)/ρ(z) 1

)
; this brings the q-connection into the form

Â(z) =
(

0 ρ(z)
−ρ−1(z) T (qz)ρ−1(qz)

)

. (3.10)

If
(

f1
f2

)
is a solution of the corresponding difference equation, then we have Dq( f1) =

ρ(z) f2 and Dq( f2) = −ρ−1(z) f1 + T (qz)ρ−1(qz) f2. Simplifying, we see that f1 is a
solution of the second-order scalar difference equation

(

D2
q − T (qz)Dq − ρ(qz)

ρ(z)

)

f1 = 0. (3.11)

Summing up, we have

Theorem 3.7. Nondegenerate Z-twisted (SL(2), q)-opers with regular singularities at
the points z1, . . . , zn �= 0,∞withweights k1, . . . kn may be represented bymeromorphic
q-connections of the form (3.10) or equivalently, by the second-order scalar difference
operators (3.11).

3.4. Embedding of the tRS model into q-opers. We now explain a connection between
nondegenerate twisted (SL(2), q)-opers and the two particle trigonometric Ruijsenaars–
Schneider model. More precisely, we show that the integrals of motion in the tRS model
arise from nondegenerate twisted opers with two regular singularities of weight one and
with Q− linear.

Consider Z -twisted opers with two regular singularities z±, both of weight one, so
ρ = (z − z+)(z − z−). For generic q, the degree of the quantum Wronskian equals
deg(Q+) + deg(Q−). Here, we will only look at q-opers for which deg(Q±) = 1, say
Q− = z− p− and Q+ = c(z− p+). Here, c is a nonzero constant for which the quantum
Wronskian is monic; an easy calculation shows that c = q−1(ζ−1 − ζ )−1.

Setting the quantum Wronskian equal to ρ gives us the equation

z2 − z

q

[
ζ − qζ−1

ζ − ζ−1 p+ +
qζ − ζ−1

ζ − ζ−1 p−
]

+
p+ p−
q

= (z − z+)(z − z−) . (3.12)

Comparing powers of z on both sides, we obtain

ζ − qζ−1

ζ − ζ−1 p+ +
qζ − ζ−1

ζ − ζ−1 p− = q(z+ + z−)

p+ p−
q

= z+z− .

(3.13)

Upon introducing coordinates ζ+, ζ− such that ζ = ζ+/ζ− and viewing ζ±, p± as
the positions and momenta in the two particle tRS model, we see that (3.13) are just
the trigonometric Ruijsenaars–Schneider equations [KPSZ]. In fact, the set of Z -twisted
opers with weight one singularities at z± is just the intersection of two Lagrangian
subspaces of the two particle tRS phase space: the subspace determined by (3.13) and
the subspace with the ζ± fixed constants satisfying ζ = ζ+/ζ−. As we will see in Sect. 7,
this construction can be generalized to higher rank.
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Fig. 1. Weight of the singularity zn as q-monodromy around the cylinder (P1 with 0 and ∞ removed)

4. (SL(N), q)-Opers

4.1. Definitions. We now discuss the generalization of (SL(2), q)-opers to SL(N ).

Definition 4.1. A (GL(N ), q)-oper on P
1 is a triple (E, A,L•), where (E, A) is a

(GL(N ), q)-connection and L• is a complete flag of subbundles such that A maps Li
into L

q
i+1 and the induced maps Āi : Li/Li−1 −→ L

q
i+1/L

q
i are isomorphisms for

i = 1, . . . , N − 1. The triple is called an SL(N )-oper if (E, A) is an (SL(N ), q)-
connection.

To make this definition more explicit, consider the determinants

(
s(qi−1z) ∧ A(qi−2z)s(qi−2z) ∧ · · · ∧

( i−2∏

j=0

(A(qi−2− j z)
)
s(z)

)∣
∣
∣
∣
�iL

qi−1
i

(4.1)

for i = 1, . . . , N , where s is a local section of L1. Then (E, A,L•) is a q-oper if and
only if at every point, there exists local sections for which each Wi (s)(z) is nonzero. It
will be more convenient to consider determinants with the same zeros as those in (4.1),
but with no q-shifts:

Wi (s)(z) =
(
s(z) ∧ A(z)−1s(qz) ∧ · · · ∧

( i−2∏

j=0

(A(q j z)−1
)
s(qi−1z)

)∣
∣
∣
∣
�iLi

. (4.2)

As in the classical setting, we need to relax these conditions to allow for regular
singularities. Fix a collectionof L points z1, . . . , zL �= 0,∞ such that theqZ-lattices they
generate are pairwise disjoint. We associate a dominant integral weight λm = ∑

limωi

to each zm . Set 	im = ∑i
j=1 l

j
m .

Definition 4.2. An (SL(N ), q)-operwith regular singularities at the points z1, . . . , zL �=
0,∞ with weights λ1, . . . λL is a meromorphic (SL(N ), q)-oper such that each Āi is
an isomorphism except at the points q−	i−1

m zm, q−	i−1
m +1zm, . . . , q−	im+1zm for each m,

where it has simple zeros.

In order to express the locations of the roots of the Wi (s)’s, it is convenient to
introduce the polynomials

�i =
L∏

m=1

	im−1∏

j=	i−1
m

(z − q− j zm) (4.3)

with zeros precisely where Āi is not an isomorphism. We also set

Pi = �1�2 · · ·�i =
L∏

m=1

	im−1∏

j=0

(z − q− j zm). (4.4)
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We introduce the notation f ( j)(z) = D j
q ( f )(z) = f (q j z). The zeros ofWk(s) coincide

with those of the polynomial

Wk(s) = �1

(
�

(1)
1 �

(1)
2

)
· · ·

(
�

(k−2)
1 · · ·�(k−2)

k−1

)

= P1 · P(1)
2 · P(2)

3 · · · P(k−2)
k−1 .

(4.5)

We now define twisted q-opers. Let Z = diag(ζ1, . . . , ζN ) ∈ SL(N , C) be a diagonal
matrix with distinct eigenvalues.

Definition 4.3. An (SL(N ), q)-oper (E, A,L•) with regular singularities is called a
Z-twisted q-oper if A is gauge-equivalent to Z−1.

As in the SL(2) case, this is a deformed version of opers with irregular singularities
that arise in the inhomogeneous version of the Gaudin model introduced in [FFTL,
FFR2].

4.2. Miura q-opers and quantumWronskians. Given a q-oper with regular singularities
(E, A,L•), we can define the associated Miura q-opers as quadruples (E, A,L•, L̂•)
where L̂• is a complete flag preserved by the q-connection, i.e., A maps L̂i into L̂

q
i for

all i . Again, we will primarily be interested in nondegenerateMiura q-opers. This means
that the flags (L•(z), L̂•(z)) are in general position at all but a finite number of points
{w j }; moreover, at each w j , the relative position is w0σk for some simple reflection
σk . Finally, we assume that qZwi ∩ qZw j = ∅ if i �= j and also that the qZ lattices
generated by the zm’s and w j ’s do not intersect. (We remark that these last conditions
are stronger than necessary; for example, one may instead specify that w j �= qi zm for
all j andm and for |i | ≤ n, where n is a positive integer that may be computed explicitly
from the weights.)

We now specialize to the case where (E, A,L•) is a Z -twisted q-oper. Here, there
are only a finite number of possible associated Miura q-opers. Indeed, if we consider the
gauge where the matrix of the q-connection is the regular semisimple diagonal matrix
Z−1, we see that the only possibilities for L̂• are the N ! flags given by the permutations
of the standard ordered basis e1, . . . , eN . (This is analogous to the classical situation. The
Miura opers lying above a given oper with regular singularities and trivial monodromy
are parametrized by the flagmanifold.However, there are only N !Miura opers associated
to an oper with regular singularities on P

1\∞ whose underlying connection if d + h dz,
where h ∈ gl(N , C) is regular semisimple.) It suffices to consider Miura q-opers for the
standard flag; indeed, if not, we can gauge change to one where L̂• is the standard flag,
but where Z is replaced by a Weyl group conjugate.

Let s(z) = (s1(z), . . . , sN (z)) be a section generating L1, where the sa’s are poly-
nomials. We now show that the nondegeneracy of the Miura q-oper may be expressed
in terms of quantum Wronskians. Consider the zeros of the determinants

Dk(s) = e1 ∧ · · · ∧ eN−k ∧ s(z) ∧ Zs(qz) ∧ · · · ∧ Zk−1s(qk−1z) (4.6)

for k = 1, . . . , N . The arguments of Sect. 2.3 show that for our q-oper to be nondegener-
ate, we need the zeros ofDk(s) in ∪mqZzm to coincide with those ofWk(s). Moreover,
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we want the other roots of Dk(s) to generate disjoint qZ lattices. To be more explicit,
for k = 1, . . . , N , we have nonzero constants αk and polynomials

Vk(z) =
rk∏

a=1

(z − vk,a) , (4.7)

for which

det

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 . . . 0 s1(z) ζ1s1(qz) · · · ζ k−1
1 s1(qk−1z)

...
. . .

...
...

...
. . .

...

0 . . . 1 sN−k(z) ζN−ksN−k(qz) . . . ζ k−1
N−ksN−k(qk−1z)

0 . . . 0 sN−k+1(z) ζN−k+1sN−k+1(qz) . . . ζ N−k−1
N−k+1 sN−k+1(qk−1z)

...
. . .

...
...

...
. . .

...

0 . . . 0 sN (z) ζN sN (qz) · · · ζ k−1
N sN (qk−1z)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= αkWkVk ;

(4.8)
moreover qZvk,a is disjoint from every other qZvi,b and each qZzm . Since DN (s) =
WN (s), we have VN = 1. We also set V0 = 1; this is consistent with the fact that (4.6)
also makes sense for k = 0, giving D0 = e1 ∧ · · · ∧ eN .

We can also rewrite (4.8) as

det
i, j

[
ζ
j−1
N−k+i s

( j−1)
N−k+i

]
= αkWkVk , (4.9)

where i, j = 1, . . . , k.
We remark that the nonzero constants α1, . . . , αN are normalization constants for the

section s and may be chosen arbitrarily by first multiplying s by a nonzero constant and
then applying constant gauge changes by diagonal matrices in SL(N ).

4.3. (SL(N ), q)-Opers and the XXZ Bethe ansatz. We are now ready to state and prove
our main theoremwhich relates twisted (SL(N ), q)-opers to solutions of the XXZBethe
ansatz equations for slN .

The Bethe equations for the general slN XXZ spin chain depend on an anisotropy
parameter q ∈ C

∗ and twist parameters κ1, . . . , κN satisfying
∏

κi = 1. The equations
can be written in the following form

κk+1

κk

L∏

s=1

q	ks+
k
2− 3

2 uk,a − zs

q	k−1
s + k

2− 3
2 uk,a − zs

·
rk−1∏

c=1

q
1
2 uk,a − uk−1,c

q− 1
2 uk,a − uk−1,c

·
rk∏

b=1

q−1uk,a − uk,b
quk,a − uk,b

·
rk+1∏

d=1

q
1
2 uk,a − uk+1,d

q− 1
2 uk,a − uk+1,d

= 1 (4.10)

for k = 1, . . . N − 1, a = 1, . . . , rk . (See, for example, [R1].) The constants 	im are
determined by the dominant weights λ1, . . . , λL as in Sect. 4.1. We use the convention
that r0 = rN = 0, so one of the products in the first and last equations is empty.

We remark that there exist many different normalizations of the XXZ Bethe equa-
tions in the literature depending on the scaling of the twist parameters. The present
normalization is designed to match the formulas obtained from q-opers.



660 P. Koroteev, D. S. Sage, A. M. Zeitlin

We say that a solution of the Bethe equations is nondegenerate if zs /∈ q
1−k
2 qZuk,a

for all k and a and also that uk,a /∈ q
k−k′
2 qZuk′,a′ unless k = k′ and a = a′.

Theorem 4.1. Suppose that κ1, . . . , κN generate disjoint qZ-lattices. Then, there is a
one-to-one correspondence between nondegenerate solutions of the slN XXZ Bethe
ansatz equations (4.10)with twist parametersκi andnondegenerate Z-twisted (SL(N ), q)-
opers with regular singularities at z1, . . . , zL with dominant weight λ1, . . . , λL provided
that

q
1−k
2 uk,a = vk,a and ζk = κN+1−k (4.11)

for k = 1, . . . , N. Moreover, the q-oper equations (4.8) become identical to the Bethe
equations if one normalizes the section s via

αk = q
k−1
2 rk det V (κk, . . . , κ1). (4.12)

For the computations to follow, it will be convenient to introduce the Baxter polyno-
mials4

k = pk

L∏

s=1

	ks−1∏

j=	k−1
s

(
z − q1−

k
2− j zs

)
, Qk =

rk∏

a=1

(z − uk,a) , k = 1, . . . N − 1 ,

(4.13)

where the normalization constants pk = q( k2−1)
∑L

m=1 lk are chosen so thatk = �
( k2−1)
k .

The Bethe equations (4.10) can then be written as

κk+1

κk


( 12 )

k Q
( 12 )

k−1Q
(−1)
k Q

( 12 )

k+1


(− 1

2 )

k Q
(− 1

2 )

k−1 Q(1)
k Q

(− 1
2 )

k+1

∣
∣
∣
∣
∣
∣
uk,a

= −1 , (4.14)

where we recall that f (p)(z) = f (q pz).
We observe that the Baxter polynomials are remarkably similar to the polynomials

�k and Vk (see (4.3) and (4.7)) which we used to describe the zeros of the quantum
Wronskians arising from twisted q-opers. Our main theorem makes this connection
precise.

In order to prove the theorem, we will need four lemmas.

Lemma 4.2. Suppose that κk /∈ qN0κk+1 for all k. Then, the system of equations (4.14)
is equivalent to the existence of auxiliary polynomials Q̃k(z) satisfying the following
system of equations

κk+1Q
(− 1

2 )

k Q̃
( 12 )

k − κk Q
( 12 )

k Q̃
(− 1

2 )

k = (κk+1 − κk)Qk−1Qk+1k , (4.15)

for k = 1, . . . N − 1. Moreover, these polynomials are unique.

4 The terminology comes from the analogy between these polynomials and the polynomials determining
the eigenvalues of the Baxter operators arising from transfer matrices [R2].
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Proof. Set g(z) = Q̃k(z)/Qk(z) and f (z) = (κk+1 − κk)Q
( 12 )

k−1Q
( 12 )

k+1
( 12 )

k , so that (4.15)
may be rewritten as

κk+1g
(1)
k (z) − κkgk(z) = f (z)

Qk(z)Q
(1)
k (z)

. (4.16)

We then have the partial fraction decompositions

f (z)

Qk(z)Q
(1)
k (z)

= h(z) −
∑

a

ba
z − uk,a

+
∑

a

ca
qz − uk,a

,

gk(z) = g̃k(z) +
∑

a

da
z − uk,a

(4.17)

where h(z) and g̃k(z) are polynomials. In order for the residues at each uk,a to match
on the two sides of (4.16), one needs

da = ba
κk

= ca
κk+1

. (4.18)

The second equality is merely the Bethe equations (4.14) in the alternate form

Resuk,a

[
f (z)

κk Qk(z)Q
(1)
k (z)

]

+ Resuk,a

[
f (−1)(z)

κk+1Q
(−1)
k (z)Qk(z)

]

= 0 (4.19)

or ⎛

⎝
Q

( 12 )

k−1Q
( 12 )

k+1
( 12 )

k

κk Q
(1)
k

+
Q

(− 1
2 )

k−1 Q
(− 1

2 )

k+1 
(− 1

2 )

k

κk+1Q
(−1)
k

⎞

⎠

∣
∣
∣
∣
∣
∣
uk,a

= 0. (4.20)

Next, to solve for the polynomial g̃k(z), set g̃k(z) = ∑
ri zi and h(z) = ∑

si zi . We then
obtain the equations ri (κk+1qi − κk) = si . Our assumptions on the κ j ’s imply that these
equations are always solvable. Thus, there exist polynomials Q̃k(z) satisfying (4.15) if
and only if the Bethe equations hold. The uniqueness statement holds since the solutions
for the residues da and the coefficients of the polynomial g̃k(z) are unique. ��
Lemma 4.3. The system of equations (4.15) is equivalent to the set of equations

κk+1D
(− 1

2 )

k D̃
( 12 )

k − κkD
( 12 )

k D̃
(− 1

2 )

k = (κk+1 − κk)Dk−1Dk+1 , (4.21)

for the polynomials
Dk = QkFk , D̃k = Q̃k Fk , (4.22)

where Fk = W
( 1−k

2 )

k .

Proof. The Fk’s are solutions to the functional equation

Fk−1 · Fk+1
F

( 12 )

k · F (− 1
2 )

k

= k . (4.23)
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Indeed, since Wk = P(k−2)
k−1 Wk−1 and Pk = �k Pk−1, we have

Fk−1 · Fk+1
F

( 12 )

k · F (− 1
2 )

k

= W
( 2−k

2 )

k−1 · W (− k
2 )

k+1

W
( 2−k

2 )

k · W (− k
2 )

k

= P
( k2−1)
k

P
( k2−1)
k−1

= �
( k2−1)
k = k . (4.24)

The equivalence of (4.15) and (4.21) follows easily from this fact. ��
Let V (γ1, . . . , γk) denote the k × k Vandermonde matrix (γ

j
i ). We recall that this

determinant is nonzero if and only if the γi ’s are distinct.

Lemma 4.4. Suppose that γ1, . . . , γk−1 are nonzero complex numbers such that γ j /∈
qN0γk for j < k. Let f1, . . . , fk−1 be polynomials that do not vanish at 0, and let g be
an arbitrary polynomial. Then there exists a unique polynomial fk satisfying

g = det

⎛

⎜
⎝

f1 γ1 f
(1)
1 · · · γ k−1

1 f (k−1)
1

...
...

. . .
...

fk γk f
(1)
k · · · γ k−1

k f (k−1)
k

⎞

⎟
⎠ . (4.25)

Moreover, if g(0) �= 0, then fk(0) �= 0.

Proof. Set f j (z) = ∑
a ji zi and g(z) = ∑

bi zi , and let F denote the matrix in (4.25).
We show that we can solve for the aki ’s recursively. Expanding by minors along the
bottom row, we get g = ∑k

j=1(−1)k+ j det Fk, j f
( j−1)
k . First, we equate the constant

terms. This gives

b0 = ak0

⎛

⎝
k−1∏

j=1

a j0

⎞

⎠
k∑

j=1

(−1)k+ jγ j−1
k det V (γ1, . . . , γk)k, j

= ak0

⎛

⎝
k−1∏

j=1

a j0

⎞

⎠ det V (γ1, . . . , γk).

Since the γ j ’s are distinct, the Vandermonde determinant is nonzero. Moreover, a j0 �= 0
for j = 1, . . . , k − 1. Thus, we can solve uniquely for ak0. In particular, if b0 = 0, then
ak0 = 0.

For the inductive step, assume that we have found unique akr for r < s such that the
polynomial equation (4.25) has equal coefficients up through degree s−1. We now look
at the coefficient of zs . The only way that aks appears in this coefficient is through the
constant terms of the minors Fk, j . To be more explicit, equating the coefficient of zs in
(4.25) expresses caks as a polynomial in known quantities, where

c =
⎛

⎝
k−1∏

j=1

a j0

⎞

⎠
k∑

j=1

(−1)k+ j (qsγk)
j−1 det V (γ1, . . . , γk−1, q

sγk)k, j

=
⎛

⎝
k−1∏

j=1

a j0

⎞

⎠ det V (γ1, . . . , γk−1, q
sγk).

Again, our condition on the γ j ’s implies that the Vandermonde determinant is nonzero,
so there is a unique solution for aks . ��
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In the following lemma, we consider matrices

Mi1,...,i j =

⎛

⎜
⎜
⎜
⎝

q
(
1− j
2 )

i1
κN+1−i1q

(
3− j
2 )

i1
· · · κ

j−1
N+1−i1

q
(
j−1
2 )

i1
...

...
. . .

...

q
(
1− j
2 )

i j
κN+1−i j q

(
3− j
2 )

i j
· · · κ

j−1
N+1−i j

q
(
j−1
2 )

i j

⎞

⎟
⎟
⎟
⎠

(4.26)

where q1, . . . , qN are polynomials. We also set Vi1,...,i j = V (κN+1−i1 , . . . , κN+1−i j ).

Lemma 4.5. Assume that the lattices qZκk are disjoint for distinct k. Given polynomials
Dk, D̃k for k = 1, . . . , N−1 satisfying (4.21), there exist unique polynomials q1, . . . , qN
such that

Dk = det MN−k+1,...,N

det VN−k+1,...,N
and D̃k = det MN−k,N−k+2,...,N

det VN−k,N−k+2,...,N
. (4.27)

For future reference, we note that the first relations from (4.27) can be rewritten as

det

[

κ
j−1
k+1−iq

(
j− k+1

2

)

N−k+i

]

1≤i, j≤k

= det
[
κ
j−1
k+1−i

]

1≤i, j≤k
Dk . (4.28)

Proof. We begin by observing that since Wk and Qk do not vanish at 0, Dk(0) �= 0 for
all k. This implies that D̃k(0) �= 0 for all k as well; otherwise, by (4.21), either Dk−1 or
Dk+1 would vanish at 0.

Now, set qN = D1 and qN−1 = D̃1. It is obvious that these are the unique polynomials
satisfying (4.27) for k = 1 and that qN (0), qN−1(0) �= 0. Also, (4.21) gives

κ2q
(− 1

2 )

N q
( 12 )

N−1 − κ1q
( 12 )

N q
(− 1

2 )

N−1 = (κ2 − κ1)D2 (4.29)

so D2 = MN−1,N/VN−1,N .
Next, suppose that for 2 ≤ k ≤ N − 1, we have shown that there exist unique

polynomials qN , . . . , qN−k+1 such the formulas for D j (resp. D̃ j ) in (4.27) hold for
1 ≤ j ≤ k (resp. 1 ≤ j ≤ k − 1). Furthermore, assume that none of these polynomials
vanish at 0. We will show that there exists a unique qN−k such that the formulas forDk+1
and D̃k hold and that qN−k(0) �= 0. This will prove the lemma.

We use Lemma 4.4 to define qN−k . In the notation of that lemma, set f j = q
( 1−k

2 )

N+1− j

and γ j = κ j for 1 ≤ j ≤ k − 1, and set g = (−1)
k(k−1)

2 (det VN−k,N−k+2,...,N )D̃k . (The
sign factor occurs because we have written the rows in reverse order to apply the lemma.)
By hypothesis, f j (0) �= 0 for 1 ≤ j ≤ k − 1, so there exists a unique fk satisfying

(4.25). Moreover, g(0) �= 0, so fk �= 0. It is now clear that qN−k = f
( k−1

2 )

k−1 is the unique
polynomial satisfying the formula in (4.27) for D̃k . Of course, qN−k �= 0.

To complete the inductive step, it remains to show that the formula for Dk+1 is
satisfied. We make use of the Desnanot-Jacobi/Lewis Carroll identity for determinants.
Given a square matrix M , let Mi

j denote the square submatrix with row i and column j

removed; similarly, let Mi,i ′
j, j ′ be the submatrix with rows i and i ′ and columns j and j ′

removed. We will apply this identity in the form

det M1
1 det M

2
k+1 − det M1

k+1 det M
2
1 = det M1,2

1,k+1 det M . (4.30)
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Set M = MN−k,...,N . All of the matrices appearing in (4.30) are obtained from
matrices of the form (4.26) via q-shifts, multiplication of each row by an appropriate κi ,

or both. In particular, M1
k+1 = M

(− 1
2 )

N−k+1,...,N and M2
k+1 = M

(− 1
2 )

N−k,N−k+2,...,N while the
determinants of the other three are given by

det M1
1 = κk

( k−1∏

j=1

κ j

)

det M
( 12 )

N−k+1,...,N ,

det M2
1 = κk+1

( k−1∏

j=1

κ j

)

det M
( 12 )

N−k,N−k+2,...,N ,

det M1,2
1,k+1 =

( k−1∏

j=1

κ j

)

det MN−k+2,...,N .

(4.31)

Upon substituting into (4.30) and dividing by
∏k−1

j=1 κ j , we obtain

κk det M
( 12 )

N−k+1,...,N det M
(− 1

2 )

N−k,N−k+2,...,N − κk+1 det M
(− 1

2 )

N−k+1,...,N

det M
( 12 )

N−k,N−k+2,...,N

= det MN−k+2,...,N det MN−k,...,N . (4.32)

Finally, dividing both sides by VN−k+1,...,NVN−k,N−k+2,...,N and applying the inductive
hypothesis gives (4.22) multiplied by −1. This is obvious for the left-hand sides. To see
that the other sides match, one need only observe that

VN−k+2,...,NVN−k,...,N = (κk − κk+1)
∏

1≤i< j≤k−1

(κi − κ j )
2
k−1∏

i=1

(κi − κk)(κi − κk+1)

= (κk − κk+1)VN−k+1,...,NVN−k,N−k+2,...,N .
(4.33)

��
We are finally ready to prove Theorem 4.1.

Proof of Theorem 4.1. We have shown that a solution to the Bethe equations is uniquely
determined by polynomials qk satisfying (4.28). We will show that after matching the
parameters as in the statement and normalizing the section s(z) generating the q-oper,
the components sk also satisfy these equations, so sk = qk for all k. Since the twisted
q-oper is uniquely determined by s, we obtain the desired correspondence.

After shifting (4.28) by k−1
2 and using the definition of Dk from (4.22), we obtain

the equivalent form

det
i, j

[
κ
j−1
k+1−iq

( j−1)
N−k+i

]
= det

i, j

[
κ
j−1
k+1−i

]
WkQ

( k−1
2 )

k . (4.34)

On the other hand, rewriting the q-oper relations (4.9) for convenience, we have

det
i, j

[
ζ
j−1
N−k+i s

( j−1)
N−k+i

]
= αkWkVk . (4.35)
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If we set q
1−k
2 uk,a = vk,a , then the roots ofV and Q

( k−1
2 )

k coincide; moreover, the leading

terms of the polynomials on the right are the same if one takesαk = q
k−1
2 rk det V (κk, . . . ,

κ1). Thus, if one sets ζk = κN+1−k , the two equations are identical.
It only remains to observe that the notions of nondegeneracy are preserved by the

transformation (4.11). ��

5. Explicit Equations for (SL(3), q)-Opers

5.1. A canonical form. In this section, we illustrate the general theory in the case of
SL(3). In particular, we show that the underlying q-connection can be expressed entirely
in terms of the Baxter polynomials and the twist parameters.

We start in the gauge where the connection is given by the diagonal matrix diag(ζ−1
1 ,

ζ−1
2 , ζ−1

3 ) and the section generating the line bundle L1 is s = (s1, s2, s3). We now
apply a q-gauge change by a certain matrix g(z) mapping s to the standard basis vector
e3:

g(z) =
⎛

⎝
β(z) −α(z) 0
0 β(z)−1 0
0 0 1

⎞

⎠

⎛

⎝
s2(z) −s1(z) 0
0 s3(z)

s2(z)
−1

0 0 1
s3(z)

⎞

⎠ , (5.1)

where α(z) = ζ−1
1 s(−1)

1 s2 − ζ−1
2 s1s

(−1)
2 and β(z) = 1

s2
(ζ−1

2 s(−1)
2 s3 − ζ−1

3 s2s
(−1)
3 ).

Applying the q-change formula (3.1) leads to amatrix all ofwhose entries are expressible
in terms of minors of the matrix

M (1)
1,2,3 =

⎛

⎜
⎝

s1 ζ1s
(1)
1 ζ 2

1 s
(2)
1

s2 ζ2s
(1)
2 ζ 2

2 s
(2)
2

s3 ζ3s
(1)
3 ζ 2

3 s
(2)
3

⎞

⎟
⎠ . (5.2)

By (4.8), the relations between the Baxter polynomials and these determinants are given
by

det M3 = α1V
(−1)
1 , M2,3 = α2W

(−1)
2 V

(−1)
2 = α2�

(−1)
1 V

(−1)
2 , and

det M1,2,3 = α3W
(−1)
3 = α3�

(−1)
1 �1�2.

(5.3)

A further diagonal q-gauge change by diag(α−2/3
3 (�

(−1)
1 )−1, α

1/3
3 �

(−1)
1 , α

1/3
3 ) brings

us to our desired form:

A(z) =
⎛

⎝
a1(z) �2(z) 0
0 a2(z) �1(z)
0 0 a3(z)

⎞

⎠ , (5.4)

where

a1 = ζ−1
1

�
(−1)
1

�1
· det M2,3

det M (−1)
2,3

= ζ−1
1

V2

V
(−1)
2

,

a2 = ζ−1
2

�1

�
(−1)
1

· s
(1)
3

s3

det M (−1)
2,3

det M2,3
= ζ−1

2
V

(−1)
2

V2
· V

(1)
1

V1
,

a3 = ζ−1
3

s3

s(1)
3

= ζ−1
3

V1

V
(1)
1

.

(5.5)
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Note that the singularities of the oper and the Bethe roots can be determined from the
zeros of the superdiagonal and the diagonal respectively.

5.2. Scalar difference equations and eigenvalues of transfer matrices. The first-order
system of difference equations f (qz) = A(z) f (z) determined by (5.4) can be expressed
as a third-order scalar difference equation. This is accomplished by the q-Miura trans-
formation: a q-gauge change by a lower triangular matrix which reduces A(z) to com-
panion matrix form. (This procedure appears as part of the difference equation version
of Drinfeld-Sokolov reduction introduced in [FRSTS,FR,SS].)

In the XXZ model, the eigenvalues of the SL(3)-transfer matrices for the two funda-
mental weights are [BHK,FH1]

T1 = a(2)
1 �1�

(1)
2 + a(1)

2 �1�
(2)
2 + a3�

(1)
1 �

(2)
2 ,

T2 = a(1)
1 a(1)

2 �1�2 + a(1)
1 a3�

(1)
1 �2 + a2a3�

(1)
1 �

(1)
2 .

(5.6)

Just as for SL(2), these eigenvalues appear in the coefficients of the scalar difference
equation associated to our twisted q-oper. Indeed, a simple calculation shows that the
system

f (1)
1 = a1 f1 + �2 f2

f (1)
2 = a2 f2 + �1 f3

f (1)
3 = a3 f3

(5.7)

is equivalent to

�1�2�
(1)
2 · f (3)

1 − �2 T1 · f (2)
1 + �

(2)
2 T2 · f (1)

1 − �
(1)
1 �

(1)
2 �

(2)
2 · f1 = 0 . (5.8)

6. Scaling Limits: From q-Opers to Opers

In this section, we consider classical limits of our results. We will take the limit from
q-opers to opers in two steps. The first will give rise to a correspondence between the
spectra of a twisted version of the XXX spin chain and a twisted analogue of the discrete
opers of [MV2]. By taking a further limit, we recover the relationship between opers
with an irregular singularity and the inhomogeneous Gaudin model [FFTL,FFR2].

First, we introduce an exponential reparameterization of q, the singularities, and the
Bethe roots: q = eRε, zs = eRσs , and vk,a = eRυk,a . We also set 	̃ks = 	ks +

k
2 − 3

2 . We
now take the limit of the XXZ Bethe equations (4.10) as R goes to 0. This limit brings
us to the XXX Bethe equations

κk+1

κk

L∏

s=1

υk,a + 	ksε − σs

υk,a + 	k−1
s ε − σs

·
rk−1∏

c=1

υk,a − υk−1,c + 1
2ε

υk,a − υk−1,c − 1
2ε

·
rk∏

b=1

υk,a − υk,b − ε

υk,a − υk,b + ε

·
rk+1∏

d=1

υk,a − υk+1,d + 1
2ε

υk,a − υk+1,d − 1
2ε

= 1 . (6.1)

Geometrically, we identify C
∗ with an infinite cylinder of radius R−1 and view this

cylinder as the base space of our twisted q-oper. We then send the radius to infinity,
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Fig. 2. The cotangent bundle to the partial flag variety T ∗
Flμ

thereby arriving at a twisted version of the discrete opers of Mukhin and Varchenko
[MV2].

The second limit takes us from the XXX spin chain to the Gaudin model. In order to
do this, we set κi = eεκi , and let ε go to 0. As expected, we obtain the Bethe equations
for the inhomogeneous Gaudin model, i.e., the higher rank analogues of (2.16):

κk+1−κk+
L∑

s=1

lks
υk,a − σs

+
rk−1∑

c=1

1

υk,a − υk−1,c
−

rk∑

b �=a

2

υk,a − υk,b
+
rk+1∑

d=1

1

υk,a − υk+1,d
= 0 .

(6.2)
Note that the difference of the twists κi can be identified with the monodromy data of
the connection A(z) at infinity.

We have thus established the following hierarchy between integrable spin chain mod-
els and oper structures.

We are currently working on extending this picture to include the XYZ spin chain in
this hierarchy. We expect that the appropiate difference opers to consider are “twisted
elliptic opers” on elliptic curves.

7. Quantum K -Theory of Nakajima Quiver Varieties and q-Opers

7.1. The quantum K-theory ring for partial flag varieties. As we discussed in the intro-
duction, integrablemodels play an important role in enumerative geometry. For example,
consider the XXZ spin chain for slN where the dominant weights at the marked points
zm all correspond to the defining representation, i.e., λm = (1, 0, 0, . . . , 0). Recall that
cotangent bundles to partial flag varieties are particular case of quiver varieties of type
A (see Fig. 2).

It follows from work of Nakajima [N1] that the space of localized equivariant K -
theory of such a cotangent bundle can be identified with an appropriate weight space in
the corresponding XXZ model; moreover, the span of all such weight spaces for partial
flag varieties of SL(N ) is endowed with a natural action of the quantum groupUq(slN ).

In [KPSZ], it was established that the Bethe algebra for this XXZmodel—the algebra
generated by the Q-operators of the XXZ spin chain—can be entirely described in terms
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of enumerative geometry. The equivariant quantum K -theory5 of the cotangent bundle to
a partial flag variety has generators which are quantum versions of tautological bundles.
It is shown in [KPSZ] that the eigenvalues of these quantum tautological bundles are the
symmetric functions in the Bethe roots, so that the quantum K -theory may be identified
with the Bethe algebra. Moreover, the twist parameters κi+1/κi and the inhomogeneity
(or evaluation) parameters zm are identified with the Kähler parameters of the quantum
deformation and the equivariant parameters respectively.

In the case of complete flag varieties, the authors of [KPSZ] found another set of
generators which allows the identification of the quantum K -theory ring with the algebra
of functions on a certain Lagrangian subvariety in the phase space for the trigonometric
Ruijsenaars–Schneider model. The formulas used to establish this (see Proposition 4.4
of [KPSZ]) are strikingly similar to the equations (4.8) describing nondegenerate twisted
q-opers. Let us normalize the section s(z) in the definition of a twisted q-oper so that
all of its components are monic polynomials:

sa(z) =
ρa∏

i=1

(z − wa,i ) , a = 1, . . . , N . (7.1)

If we restrict to the space of q-opers for which all these polynomials have degree one,
then their roots may be viewed as coordinates. These coordinates may be identified with
themomenta of the dual tRSmodel whereas the coordinates of the tRSmodel correspond
bijectively to the twist (Kähler) parameters κi+1/κi [KPSZ].

We remark that that the Bethe algebra of the XXX model has a similar enumerative
description: it is the equivariant quantum cohomology ring of the cotangent bundle of a
partial flag variety [GRTV]. This led Rimanyi, Tarasov and Varchenko to conjecture the
analogous statement for the XXZ Bethe algebra [RTV, Conjecture 13.15]. Moreover,
they found a particular set of generators for the Bethe algebra, involving determinantal
formulas, which for complete flag varieties can be identified with the generators for the
quantum K -theory ring discussed in the previous paragraph.

Their generators can be given a geometric interpretation as coordinates on an ap-
propriate space of q-opers, and this leads to the following description of the quantum
K -theory ring:

Theorem 7.1. Let X be the cotangent bundle of the GL(L) partial flag variety T ∗
Flμ

labeled by the vectorμ = (rN−1−rN−2, . . . , r1−r2, L−r1)where r1, . . . , rN−1 and L
are the dimensions of the vector spaces corresponding to the nodes of the AN−1 quiver
and the framing on the first node in Fig. 2 respectively. Let T be a maximal torus in
GL(L).

Then the T -equivariant quantum K-theory of X is given by the algebra

QKT (X) =
C

[
p±1, κ±1, a±1, q± 1

2

]

(
det M(z) = det V1,...,N · (z)(

1−N
2 )

) , (7.2)

where κ = (κ1, . . . , κN ) are the quantum deformation parameters, a = (a1, . . . , aL)

are the equivariant parameters of the action of T on X,

p = {pa,i } , i = 1, . . . , ρa, a = 1, . . . , N − 1 , (7.3)

5 The quantum K -theory discussed here is the so-calledPSZ quantum K-theory [PSZ], involving quasimaps
to Nakajima varieties, as opposed to the Givental–Lee approach which relies on stable maps. We refer to [SZ]
for some recent progress in comparing the two approaches.
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are the coefficients of the polynomials

sa(z) =
ρa∏

i=1

(z − wa,i ) =
ρa∑

i=0

(−1)i pa,i z
N−i , (7.4)

where ρk = rk − rk−1, (z) =
L∏

s=1
(z − as), and the matrix M is given by

M =

⎛

⎜
⎜
⎝

s
( 1−N

2 )

1 κ1s
( 3−N

2 )

1 · · · κN−1
1 s

( N−1
2 )

1
...

...
. . .

...

s
( 1−N

2 )

N κN s
( 3−N

2 )

N · · · κN−1
N s

( N−1
2 )

N

⎞

⎟
⎟
⎠ . (7.5)

The ideal in (7.2) depends on the auxiliary variable z, and both sides of the equation
are polynomials of degree L in z. Thus, the quantum K -theory ring is determined by L
relations.

The casewhere X is a complete flagvariety, so that L = N andρ1 = · · · = ρN−1 = 1,
was investigated in [KPSZ]. Here, the determinantal relation in (7.2) yields the equations
of motion of the N -body trigonometric Ruijsenaars–Schneider model.

We would like to emphasize that the space of q-opers which is described by the
system of equations (4.8) contains the K -theory of X (7.2) as a subspace. In particular,
one identifies the singularities z1, . . . , zL of the q-oper with the equivariant parameters
a1, . . . , aL of the action of the maximal torus of GL(L) on X , so that  = WN = �1.
(For s > 1, lks = 0, so �s = 1.)

Proof. We prove this by combining two theorems. First, we will use Theorem 3.4 in
[KPSZ], where the quantum K -theory of Nakajima quiver varieties was defined using
quasimaps [CFKM,O] from the base curve of genus zero to the quiver variety. The
second ingredient is Theorem 4.1 from this paper in the special case when the dominant
weights at all oper singularities correspond to the defining representation, so that l1s = 1
for all s and the other lks vanish. Here, the Bethe ansatz equations (4.10) are given by

κ2

κ1

L∏

s=1

u1,a − as
q−1 u1,a − as

·
r1∏

b=1

q−1u1,a − u1,b
qu1,a − u1,b

·
r2∏

d=1

q
1
2 u1,a − u2,d

q− 1
2 u1,a − u2,d

= 1 ,

κk+1

κk

rk−1∏

c=1

q
1
2 uk,a − uk−1,c

q− 1
2 uk,a − uk−1,c

·
rk∏

b=1

q−1uk,a − uk,b
quk,a − uk,b

·
rk+1∏

d=1

q
1
2 uk,a − uk+1,d

q− 1
2 uk,a − uk+1,d

= 1 ,

κN

κN−1

rN−2∏

c=1

q
1
2 uN ,a − uN−1,c

q− 1
2 uN ,a − uN−1,c

·
rN−1∏

b=1

q−1uN−1,a − uN−1,b

quN−1,a − uN−1,b
= 1 , (7.6)

where rk = ρ1 + · · · + ρk and k runs from 2 to N − 2 in the middle equation.
The system (7.6) coincides with the Bethe equations from Theorem 3.4 of [KPSZ] up

to the identification of Bethe roots and twists. This latter set of Bethe equations describes
the relations in the quantum K -theory of X , where the Bethe roots vk,a are the Chern
roots of the k-th tautological bundle over X and the other variables are identified with
the geometry of X as in the statement of the theorem.
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We have proven in Theorem 4.1 that equations (7.6) can be written as (4.28). For
k = N and for the dominant weights above, this gives

det M1,...,N (z) = det V1,...,NWN (z)(
1−N
2 ) = det V1,...,N(z)(

1−N
2 ) . (7.7)

This statement completes the proof. ��

7.2. The trigonometric RS model in the dual frame. The trigonometric Ruijsenaars–
Schneider model enjoys bispectral duality. This may be described in geometric language
as follows. For a given quiver variety X of type A, there are two dual realizations of the
tRS model. The first was explained for SL(2) in Sect. 3.4. Here, the twist variables κ
play the role of particle positions; their conjugate momenta pκ = (pκ1 , . . . , pκN ) are
defined as

pκ = exp

(
∂Y

∂ log κ

)

, (7.8)

where Y is the so-called Yang–Yang function which depends on the Bethe roots vk,a as
well as all other parameters. The Yang–Yang function serves as a potential for equations
(7.6) [NS2,NS1], i.e., the k-th equation is given by

exp

(
∂Y

∂ log vk,a

)

= 1 , a = 1, . . . rk , k = 1, . . . , N − 1 . (7.9)

(See [GK,BKK,KPSZ] for more details.)
Theother realization—the3d-mirror or spectral/symplectic dual description—involves

a mirror quiver variety X∨ and the associated dual Yang–Yang function Y∨. (For a math-
ematical introduction, see [N2]. The construction of the mirror is discussed in [GK].)
Under the mirror map, the Kähler parameters κ are interchanged with the equivariant
parameters a; the same holds for the conjugate momenta pκ and pa. Therefore, the vari-
ables a, pa can be viewed as the canonical degrees of freedom in the dual tRSmodel; this
has been studied in the context of enumerative geometry in [KZ,BLZZ]. In particular,
such a duality was demonstrated between the XXZ spin chain whose Bethe equations
describe the equivariant quantum K -theory of the quiver variety from Fig. 2 and the
L-body tRS model whose coordinates are the equivariant parameters (a1, . . . , aL) of
the maximal torus for GL(L). This result allows us to construct a natural embedding of
the intersection of two Lagrangian cycles inside the tRS phase space into the space of
q-opers with the first fundamental weight at each regular singularity.
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