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Abstract: We study an inverse scattering problem associatedwith a Schrödinger system
where both the potential and source terms are random and unknown. Thewell-posedness
of the forward scattering problem is first established in a proper sense. We then derive
two unique recovery results in determining the rough strengths of the random source
and the random potential, by using the corresponding far-field data. The first recovery
result shows that a single realization of the passive scattering measurements uniquely
recovers the rough strength of the random source. The second one shows that, by a
single realization of the backscattering data, the rough strength of the random potential
can be recovered. The ergodicity is used to establish the single realization recovery.
The asymptotic arguments in our study are based on techniques from the theory of
pseudodifferential operators and microlocal analysis.

1. Introduction

1.1. Mathematical formulations. In this paper, we are mainly concerned with the fol-
lowing random Schrödinger system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

( − � − E + q(x, ω)
)
u(x,

√
E, d, ω) = f (x, ω), x ∈ R

3, (1.1a)
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√
E, d, ω) = αei

√
Ex ·d + usc(x,

√
E, d, ω), (1.1b)

lim
r→∞ r

(
∂usc

∂r
− i

√
Eusc

)

= 0, r := |x |, (1.1c)

where i := √−1, and ω in (1.1a) is a random sample belonging to � with (�,F , P)

being a complete probability space, and f (x, ω) and q(x, ω) are independently dis-
tributed generalized Gaussian random fields with zero-mean and are supported in
bounded domains D f and Dq , respectively. E ∈ R+ is the energy level. In the sequel,
we follow the convention to replace E with k2, namely k := √

E ∈ R+, which can be
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understood as the wave number. In (1.1b), d ∈ S
2 := {x ∈ R

3 ; |x | = 1} signifies the
incident direction of the plane wave, and α takes the value of either 0 or 1 to impose or
suppress the incident wave, respectively. usc in (1.1b) is the scattered wave field, which
is also random due to the randomness of the source and potential. The limit (1.1c) is
the Sommerfeld Radiation Condition (SRC) [10] that characterizes the outgoing nature
of the scattered field usc. The random system (1.1) describes the quantum scattering
[13,16] associated with a source f and a potential q at the energy level k2.

f and q in equation (1.1a) are assumed to be generalized Gaussian random fields. It
means that f is a random distribution and the mapping

ω ∈ � �→ 〈 f (·, ω), ϕ〉 ∈ C

is a Gaussian random variable whose probabilistic measure depends on the test function
ϕ. The same notation applies to q. There are different types of generalized Gaussian
random fields [32]. In our setting, we assume that f and q are twomicrolocally isotropic
generalized Gaussian random (m.i.g.r. for short) functions/distributions; see Definition
2.1 in the following. Them.i.g.r. model has been under intensive studies; see, e.g., [8,23–
25]. Two important parameters of a m.i.g.r. distribution are its rough order and rough
strength. Roughly speaking, the rough order, which is a real number, determines the
degree of spatial roughness of the m.i.g.r. distribution, and the rough strength, which is
a real-valued function, indicates its spatial correlation length and intensity. The rough
strength also captures the micro-structure of the object in interest [24]. We shall give a
more detailed introduction to this random model in Sect. 2.2.

In this work, we denote the rough order of f (resp. q) as −m f (resp. −mq ), and
the rough strength as μ f (x) (resp. μq(x)). The main purpose of this work is to recover
the rough strengths of both the source and the potential using either passive or active
far-field measurements associated with (1.1).

1.2. Statement of the main results. In order to study the inverse scattering problem,
i.e., the recovery of μ f and μq , we first need to have a thorough understanding of
the direct scattering problem. For the case where both the source and the potential
are deterministic and L∞ functions with compact supports, the well-posedness of the
direct problem of system (1.1) is known; see, e.g., [10,13,29]. Moreover, there holds
the following asymptotic expansion of the outgoing radiating field usc as |x | → +∞,

usc(x) = eik|x |

|x | u∞(x̂, k, d) +O
(

1

|x |2
)

.

u∞(x̂, k, d) is referred to as the far-field pattern, which encodes information of the
potential and the source. x̂ := x/|x | and d in u∞(x̂, k, d) are unit vectors and they
respectively stand for the observation direction and the impinging direction of the inci-
dent wave. When d = −x̂ , u∞(x̂, k,−x̂) is called the backscattering far-field pattern.

In the random setting, however, due to the randomness inherited in the source and
potential terms, the regularities of the corresponding scattering wave field are much
worse [8,24]. This makes those standard PDE theories invalid for the direct problem of
system (1.1). To tackle this issue, we shall reformulate the direct problem and show that
the direct problem is still well-posed in a proper sense. Therefore, our direct problem
can be formulated as

( f, q) → {usc(x̂, k, d, ω), u∞(x̂, k, d, ω) ; ω ∈ �, x̂ ∈ S
2, k ∈ R+, d ∈ S

2}.



Determining a Random Schrödinger Operator: Both Potential and Source are Random 529

The well-posedness of the direct scattering problem enables us to explore our inverse
problems. Due to the fact that the precise values of a random function provide little
information about its statistical properties, we are interested in the recovery of the rough
strengths of the source and the potential by knowledge of the far-field patterns.

In the recovery procedure, we recover μ f and μq in a sequential way by knowledge
of the associated far-field pattern measurements u∞(x̂, k, d, ω). By sequential, wemean
that μ f and μq are recovered by the corresponding far-field data sets one-by-one. In
addition to this, in the recovery procedure, both the passive and active measurements
are utilized. When α = 0, the incident wave is suppressed and the scattering is solely
generated by the unknown source. The corresponding far-field pattern is referred to as
the passive measurement. In this case, the far-field pattern is independent of the incident
direction d, and we denote it as u∞(x̂, k, ω). When α = 1, the scattering is generated
by both the active source and the incident wave, and the far-field pattern is referred to
as the active measurement, and is denoted as u∞(x̂, k, d, ω).

With the above discussion, our inverse problems can be formulated as
{
M f (ω) := {u∞(x̂, k, ω) ; ∀x̂ ∈ S

2, ∀k ∈ R+} → μ f ,

Mq(ω) := {u∞(x̂, k,−x̂, ω) ; ∀x̂ ∈ S
2, ∀k ∈ R+} → μq .

The data set M f (ω) (abbr. M f ) corresponds to the passive measurement (α = 0),
while the data set Mq(ω) (abbr. Mq ) corresponds to the active measurement (α = 1).
Different random samples ω generate different data sets. Our study shows that in certain
general scenarios the data setsM f (ω),Mq(ω)with a fixedω ∈ � can uniquely recover
μ f and μq , respectively.

With the potential term being unknown, the inverse source problem, i.e., the recovery
of μ f , becomes highly nonlinear and thus more challenging. One possibility to tackle
this situation is to put some geometrical assumption on the locations of the source and
the potential. In what follows, we assume that there is a positive distance between the
convex hulls of the supports of f and q, i.e.,

dist(CH(D f ), CH(Dq)) := inf{ |x − y| ; x ∈ CH(D f ), y ∈ CH(Dq) } > 0, (1.2)

where CH means taking the convex hull of a domain. Therefore, one can find a plane
which separates D f and Dq . In what follows, in order to simplify the exposition, we
assume that D f and Dq are convex domains and hence CH(D f ) = D f and CH(Dq) =
Dq . Moreover, we let n denote the unit normal vector of the aforementioned plane that
separates D f and Dq , pointing from the half-space containing D f into the half-space
containing Dq .

In system (1.1), both the source and the potential are assumed to be unknown. More-
over, the source and the potential are generalized random functions of the same type.
These issues make the decoupling of μ f and μq far more difficult. However, some a-
priori information about the rough orders of f and q can help us to achieve the recoveries.
Now we are ready to state our main recovery results of the inverse problems.

Theorem 1.1. Suppose that f and q in system (1.1) are m.i.g.r. distributions of order
−m f and −mq, respectively, satisfying

2 < m f < 4, m f < 5mq − 11. (1.3)

Assume that (1.2) is satisfied and n is defined as above. Then, independent of μq , the
data set M f (ω) for a fixed ω ∈ � can uniquely recover μ f almost surely. Moreover,
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the recovering formula is given by

μ̂ f (τ x̂) =

⎧
⎪⎨

⎪⎩

lim
K→+∞

4
√
2π

K

∫ 2K

K
km f u∞(x̂, k, ω)u∞(x̂, k + τ, ω) dk, x̂ · n ≥ 0,

μ̂ f (−τ x̂), x̂ · n < 0,
(1.4)

where τ ≥ 0 and u∞(x̂, k, ω) ∈ M f (ω).

Remark 1.1. In Theorem 1.1, μ f can be uniquely recovered without a-priori knowledge
of q. Moreover, since α = 0 inM f (ω), Theorem 1.1 indicates that μ f can be uniquely
recovered by a single realization of the passive scattering measurement. Due to the
requirement x̂ · n ≥ 0, only half of all the observation directions are needed. Besides,
for the sake of simplicity, we set the wave number k in the definition of M f to be
running over all the positive real numbers. But, according to (1.4), it is sufficient to let
k be greater than any fixed positive number. These remarks also apply to Theorem 1.2
in what follows. Moreover, it is noted that in the definition of m.i.g.r. distribution (cf.
Definition 2.1),μ is defined as a real-valued function. Therefore, μ̂ f in Theorem1.1 (and
μ̂q in Theorem 1.2 below) is a conjugate-symmetric function. It is worth mentioning
that the a-priori requirement 2 < m f < 4 comes from (3.22)–(3.23) and (4.6), while
the a-priori requirement m f < 5mq − 11 comes from (4.8) in our subsequent analysis.

To recover μq , the active scattering measurement shall be needed in our recovery
procedure.

Theorem 1.2. Under the same condition as that in Theorem 1.1 with an additional
assumption that mq < m f , and independent of μ f , the data set Mq(ω) for a fixed
ω ∈ � can uniquely recover μq almost surely. Moreover, the recovering formula is
given by

μ̂q(τ x̂) =

⎧
⎪⎨

⎪⎩

lim
K→+∞

4
√
2π

K

∫ 2K

K
kmq u∞(x̂, k,−x̂, ω)u∞(x̂, k+ τ

2 ,−x̂, ω) dk, x̂ · n ≥ 0,

μ̂ f (−τ x̂), x̂ · n < 0,
(1.5)

where τ ≥ 0 and u∞(x̂, k,−x̂, ω) ∈ Mq(ω).

Remark 1.2. It is emphasized that the recovery result in Theorem 1.2 is independent of
μ f . Moreover, we only make use of a single realization of the active backscattering
measurement. We would also like to point out that the additional a-priori requirement
mq < m f comes from (5.9) in our subsequent analysis.

1.3. Discussion and connection to the existing results. There is abundant literature for
inverse scattering problems associatedwith either passive or activemeasurements. Given
a known potential, the recovery of an unknown source term by the corresponding passive
measurement is referred to as the inverse source problem. We refer to [2–4,9,15,18–
20,22,33,36] and references therein for both theoretical uniqueness/stability results
and computational methods for the inverse source problem in the deterministic set-
ting. The simultaneous recovery of an unknown source and its surrounding potential
was also investigated in the literature. In [21,27], motivated by applications in thermo-
and photo-acoustic tomography, the simultaneous recovery of an unknown source and
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its surrounding medium parameter was considered. This type of inverse problems also
arise in the magnetic anomaly detections using geomagnetic monitoring [11,12]. The
studies in [11,12,21,27] were confined to the deterministic setting and associatedmainly
with the passive measurement. For the random/stochastic case, the determination of a
random source by the corresponding passive measurement was also recently studied
in [1,25,28,35]. In [25], the homogeneous Helmholtz system with a random source
is studied. Compared with [25], system (1.1) in this paper comprises of both unknown
source and unknown potential, making the corresponding study radically more challeng-
ing. The determination of a random potential by the corresponding active measurement,
with the source term being zero, was established in [8]. We also refer to [5–7,23,24] and
references therein for more relevant studies on random inverse medium problems.

We are particularly interested in the case with a single realization of the random
sample, namely theω is fixed in the recovery of the source and potential; see the recovery
formulae (1.4)–(1.5). In our approach, we assume that the backscattering far-field data
u∞(x̂, k,−x̂, ω) for different observation directions are generated by a single realization
of the random sample [8]. Intuitively, a particular realization of f or q provides us
little information about their statistical properties. However, our study indicates that
a single realization of the far-field measurement can be used to uniquely recover the
rough strength in certain scenarios. A crucial assumption to make the single realization
recovery possible is that the randomness is independent of the wave number k. Indeed,
there are variant applications in which the randomness changes slowly or is independent
of time [8,24], and by temporal Fourier transforming into the frequency domain, they
actually correspond to the aforementioned situation. The single realization recovery has
been studied in the literature; see, e.g., [8,23,24,26]. The idea of this article is mainly
motivated by [8,26].

Compared with our previous work [26], the result of this paper has two major dif-
ferences. First, the random models are different. In [26], the random part of the source
is assumed to be a Gaussian white noise, while in system (1.1), the potential and the
source are assumed to be m.i.g.r. distributions. The m.i.g.r. distribution can fit larger
range of randomness by tuning its rough order. Second, in system (1.1), both the source
and potential are random, while in [26], the potential is assumed to be deterministic.
These two facts make this work muchmore challenging than that in [26]. The techniques
used in the estimates of higher order terms (see Sect. 3) are pseudodifferential operators
and microlocal analysis, which are more technically involved compared to that in [26].

The rest of this paper is organized as follows. In Sect. 2, we first give an introduction
to the random model and present some preliminary and auxiliary results. Then we show
thewell-posedness of the direct scattering problem. Section 3 establishes the asymptotics
of different terms appeared in the recovery formula. In Sect. 4, we recover the rough
strength of the source. Section 5 is devoted to the recovery of the rough strength of the
potential.

2. Mathematical Analysis of the Direct Problem

In this section, we show that the direct problem is well-posed in a proper sense. Before
that, we first present some preliminaries for the subsequent use and give the introduction
to our random model.

2.1. Preliminary andauxiliary results. For convenient reference and self-containedness,
we first present some preliminary and auxiliary results in what follows. In this paper, we
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mainly focus on the three-dimensional case. Nevertheless, some of the results derived
also hold for higher dimensions and in those cases, we choose to present the results in
the general dimension n ≥ 3 since they might be useful in other studies.

The Fourier transform and inverse Fourier transform of a function ϕ are respectively
defined as

Fϕ(ξ) = ϕ̂(ξ) := (2π)−n/2
∫

e−ix ·ξ ϕ(x) dx,

F−1ϕ(ξ) := (2π)−n/2
∫

eix ·ξ ϕ(x) dx .

Set

�(x, y) = �k(x, y) := eik|x−y|

4π |x − y| , x ∈ R
3\{y}.

�k is the outgoing fundamental solution, centered at y, to the differential operator
−� − k2. Define the resolvent operator Rk ,

(Rkϕ)(x) :=
∫

R3
�k(x, y)ϕ(y) dy, x ∈ R

3, (2.1)

where ϕ can be anymeasurable function onR
3 as long as (2.1) is well-defined for almost

all x in R
3.

Write 〈x〉 := (1 + |x |2)1/2 for x ∈ R
n , n ≥ 1. We introduce the following weighted

L p-norm and the corresponding function space over R
n for any δ ∈ R,

‖ϕ‖L p
δ (Rn) := ‖〈·〉δϕ(·)‖L p(Rn) = (

∫

Rn
〈x〉pδ|ϕ|p dx) 1

p ,

L p
δ (Rn) := { ϕ ∈ L1

loc(R
n) ; ‖ϕ‖L p

δ (Rn) < +∞}.
(2.2)

We also define L p
δ (S) for any subset S in R

n by replacing R
n in (2.2) with S. In what

follows, we may write L2
δ (R

3) as L2
δ for short without ambiguities. Let I be the identity

operator and define

‖ f ‖Hs,p
δ (Rn) := ‖(I − �)s/2 f ‖L p

δ (Rn),

Hs,p
δ (Rn) = { f ∈ S ′(Rn); ‖ f ‖Hs,p

δ (Rn) < +∞},
where S ′(Rn) stands for the dual space of the Schwartz space S (Rn). The space
Hs,2

δ (Rn) is abbreviated as Hs
δ (Rn), and Hs,p

0 (Rn) is abbreviated as Hs,p(Rn). It can
be verified that

‖ f ‖Hs
δ (Rn) = ‖〈·〉s f̂ (·)‖H δ(Rn). (2.3)

Let m ∈ (−∞,+∞). We define Sm to be the set of all functions σ(x, ξ) ∈ C∞(Rn,

R
n; C) such that for any two multi-indices α and β, there is a positive constant Cα,β ,

depending on α and β only, for which
∣
∣(Dα

x D
β
ξ σ )(x, ξ)

∣
∣ ≤ Cα,β(1 + |ξ |)m−|β|, ∀x, ξ ∈ R

n .

We call any function σ in
⋃

m∈R Sm a symbol. A principal symbol of σ is an equivalent
class [σ ] = {σ̃ ∈ Sm ; σ − σ̃ ∈ Sm−1}. In what follows, we may use one representative
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σ̃ in [σ ] to represent the equivalent class [σ ]. Let σ be a symbol. Then the pseudo-
differential operator T , defined onS (Rn) and associated with σ , is defined by

(Tσ ϕ)(x) := (2π)−n/2
∫

Rn
eix ·ξ σ (x, ξ)ϕ̂(ξ) dξ

= (2π)−n
∫∫

Rn×Rn
ei(x−y)·ξ σ (x, ξ)ϕ(y) dy dξ, ∀ϕ ∈ S (Rn).

In the sequel, we write L(A,B) to denote the set of all the bounded linear mappings
from a normed vector space A to a normed vector space B. For any mapping K ∈
L(A,B), we denote its operator norm as ‖K‖L(A,B). We also use C and its variants,
such asCD ,CD, f , to denote some generic constants whose particular valuesmay change
line by line. For two quantities, we write P � Q to signify P ≤ CQ and P � Q to
signify C̃Q ≤ P ≤ CQ, for some generic positive constantsC and C̃ . Wewrite “almost
everywhere” as “a.e.” and “almost surely” as “a.s.” for short. We use |S| to denote the
Lebesgue measure of any Lebesgue-measurable set S.

2.2. The random model. As already mentioned in Sect. 1.1, a generalized Gaussian
random field maps test functions to random variables. Assume h is a generalized Gaus-
sian random field. Then both 〈h(·, ω), ϕ〉 and 〈h(·, ω), ψ〉 are random variables for ϕ,
ψ ∈ S (Rn). From a statistical point of view, the covariance between these two random
variables,

Eω(〈h(·, ω), ϕ〉〈h(·, ω), ψ〉), (2.4)

can be understood as the covariance of h, where the Eω means to take expectation on
the argument ω. Formula (2.4) induces an operator Ch ,

Ch : ϕ ∈ S (Rn) �→ Chϕ ∈ S ′(Rn),

in a way that

Chϕ : ψ ∈ S (Rn) �→ (Chϕ)(ψ) = Eω(〈h(·, ω), ϕ〉〈h(·, ω), ψ〉) ∈ C.

The operator Ch is called the covariance operator of h. See also [8,24] for reference.
We adopt the definition of the m.i.g.r. distribution from [8] with some modifications

to fit our mathematical setting.

Definition 2.1. A generalized Gaussian random function h on R
n is called microlocally

isotropic (m.i.g.r.) with rough order −m and rough strength μ(x) in D, if the following
conditions hold:

(1) the expectation Eh is in C∞
c (Rn) with suppEh ⊂ D;

(2) h is supported in D a.s.;
(3) the covariance operator Ch is a pseudodifferential operator of order −m;
(4) Ch , regarded as a pseudo-differential operator, has a principal symbol of the form

μ(x)|ξ |−m with μ ∈ C∞
c (Rn; R), suppμ ⊂ D and μ(x) ≥ 0 for all x ∈ R

n .

Here, μ(x)|ξ |−m is a representative of the principal symbol of Ch . Throughout this
work, the principal symbol of the covariance operator of the f (·, ω) in (1.1) is assumed
to be μ f (x)|ξ |−m f and that of the q(·, ω) in (1.1) is denoted as μq(x)|ξ |−mq .

Lemma 2.1. Let h be a m.i.g.r. distribution of rough order −m in D. Then, h ∈
H−s,p(Rn) almost surely for any 1 < p < +∞ and s > (n − m)/2.
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Proof of Lemma 2.1. See Proposition 2.4 in [8]. ��
Lemma 2.1 shows the regularity of h according to its rough order.
By the Schwartz kernel theorem (see Theorem 5.2.1 in [17]), there exists a kernel

Kh(x, y) with supp Kh ⊂ D × D such that

(Chϕ)(ψ) = Eω(〈h(·, ω), ϕ〉〈h(·, ω), ψ〉) =
∫∫

Kh(x, y)ϕ(x)ψ(y) dx dy, (2.5)

for all ϕ, ψ ∈ S (Rn). It is easy to verify that Kh(x, y) = Kh(y, x). Denote the symbol
of Ch as ch , then it can be verified [8] that the equalities

⎧
⎪⎪⎨

⎪⎪⎩

Kh(x, y) = (2π)−n
∫

ei(x−y)·ξ ch(x, ξ) dξ, (2.6a)

ch(x, ξ) =
∫

e−iξ ·(x−y)Kh(x, y) dx, (2.6b)

hold in the distributional sense, and the integrals in (2.6) shall be understood as oscil-
latory integrals. Despite the fact that h usually is not a function, intuitively speaking,
however, it is helpful to keep in mind the following correspondence,

Kh(x, y) ∼ Eω

(
h(x, ω)h(y, ω)

)
.

2.3. Thewell-posedness of the direct problem. Wefirst derive two important quantitative
estimates.

Theorem 2.1. For any 0 < s < 1/2 and ε > 0, when k > 2,

‖Rkϕ‖Hs−1/2−ε (R
3) ≤ Cε,sk

−(1−2s)‖ϕ‖H−s
1/2+ε (R

3), ϕ ∈ H−s
1/2+ε(R

3).

Theorem 2.2. Assume that q(·, ω) is microlocally isotropic of order −m. Then in
any dimension n ≥ 3 and for every s > (n − m)/2 and every ε ∈ (0, 3/2],
q : Hs−1/2−ε(R

n) → H−s
1/2+ε(R

n) is bounded almost surely,

‖q(·, ω)ϕ(·)‖H−s
1/2+ε (R

3) ≤ Cε,s(ω)‖ϕ‖Hs−1/2−ε (R
n), ϕ ∈ H−s

1/2+ε(R
n), a.e. ω ∈ �.

The random variable Cε,s(ω) is finite almost surely.

The arguments in proving Theorems 2.1 and 2.2 are inspired by [8] and [Sect. 29,
[13]].

Proof of Theorem 2.1. Define an operator

Rk,τ ϕ(x) := (2π)−3/2
∫

R3
eix ·ξ ϕ̂(ξ)

|ξ |2 − k2 − iτ
dξ, (2.7)

where τ ∈ R+. Fix a function χ satisfying
⎧
⎨

⎩

χ ∈ C∞
c (Rn), 0 ≤ χ ≤ 1,

χ(x) = 1 when |x | ≤ 1,

χ(x) = 0 when |x | ≥ 2.

(2.8)
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Write Rψ(x) := ψ(−x). Fix p ∈ (1,+∞), we have

(Rk,τ ϕ, ψ)L2(R3)

=
∫

R3
Rk,τ ϕ(x)ψ(x) dx =

∫

R3
F{Rk,τ ϕ}(ξ) · F{Rψ}(ξ) dξ

=
∫ ∞

0

(1 − χ2(r − k))

r2 − k2 − iτ
dr ·

∫

|ξ |=r
ϕ̂(ξ) ·̂Rψ(ξ) dS(ξ)

+
∫ ∞

0

〈r〉1/p r2χ2(r − k)

r2 − k2 − iτ
dr ·

∫

S2
[〈k〉−1

2p ϕ̂(kω)][〈k〉−1
2p̂Rψ(kω)] dS(ω)

+
∫ ∞

0

〈r〉1/p r2χ2(r − k)

r2 − k2 − iτ
dr ·

∫

S2
{[〈r〉−1

2p ϕ̂(rω)][〈r〉−1
2p̂Rψ(rω)]

− [〈k〉−1
2p ϕ̂(kω)][〈k〉−1

2p̂Rψ(kω)]} dS(ω)

=: I1(τ ) + I2(τ ) + I3(τ ). (2.9)

Now we estimate I1(τ ). By Young’s inequality we have

ab ≤ a p/p + bq/q ⇒ (p1/pq1/q)a1/pb1/q ≤ a + b (2.10)

for a, b > 0, p, q > 1, 1/p + 1/q = 1. Note that |r − k| > 1 in the support of the

function 1 − χ2(r − k) and |̂Rψ(ξ)| = |ψ̂(ξ)|, one can compute

|I1(τ )| ≤
∫ ∞

0

1 − χ2(r − k)

1 · |(r + 1) + (k − 1)| dr ·
∫

|ξ |=r
|ϕ̂(ξ)| · |̂Rψ(ξ)| dS(ξ)

≤
∫ ∞

0

1 − χ2(r − k)

1 · p1/pq1/q(r + 1)1/p(k − 1)1/q
dr

·
∫

|ξ |=r
|ϕ̂(ξ)| · |ψ̂(ξ)| dS(ξ) (by (2.10))

≤ Cpk
−1/q

∫ ∞

0
〈r〉−1/p dr ·

∫

|ξ |=r
|ϕ̂(ξ)| · |ψ̂(ξ)| dS(ξ)

≤ Cpk
1/p−1‖ϕ‖

H−1/(2p)
δ (R3)

‖ψ‖
H−1/(2p)

δ (R3)
, (2.11)

where 1 < p < +∞ and δ > 0 and the Cp is independent of τ .
We next estimate I2(τ ). One has

I2(τ ) =
∫

S2
[〈k〉−1

2p ϕ̂(kω)][〈k〉−1
2p̂Rψ(kω)]

∫ ∞

0

〈r〉 1
p r2χ2(r − k) dr

r2 − k2 − iτ
dS(ω). (2.12)

Let τ0 ∈ (0, 1) be a fixed number whose value shall be specified later. Write pτ (r) :=
p(r) = r2−k2− iτ . Recall that χ(r−k) = 0 when |r−k| > 2.When τ0 ≤ |r−k| ≤ 2,
we have

|p(r)| ≥ |�p(r)| = |r − k||r + k| ≥ τ0(2k − 2) ≥ τ0k. (2.13)

Write �k,τ0 := {r ∈ C; |r − k| = τ0,�r ≤ 0}. When r ∈ �k,τ0 , we have

∀τ ∈ (0, τ0), |pτ (r)| ≥ |r−k| |2k+(r−k)|−τ0 = τ0(2k−τ0)−τ0 ≥ τ0k. (2.14)
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Combining (2.13) and (2.14), we conclude that ∀τ ∈ (0, τ0),∀k > 2,

|pτ (r)| ≥ τ0k, ∀ r ∈ {r ∈ R+; 2 ≥ |r − k| ≥ τ0} ∪ �k,τ0 , ∀τ ∈ (0, τ0). (2.15)

By using Cauchy’s integral theorem, we change the integral domain w.r.t. r in (2.12)
from R+ to {r ∈ R+; 2 ≥ |r − k| ≥ τ0} ∪ �k,τ0 . Combining this with the estimate (2.15)
and noting that χ(r − k) = 1 when r ∈ {r ∈ R; |r − k| ≤ 1}, we have

|I2(τ )| ≤
∫

|ξ |=k
〈ξ 〉−1

2p |ϕ̂(ξ)| · 〈ξ 〉−1
2p |ψ̂(ξ)|(

∫

{r∈R+ ; 2≥|r−k|≥τ0}
〈r〉 1

p (r/k)2

τ0k
dr

)
dS(ξ)

+
∫

|ξ |=k
〈ξ 〉−1

2p |ϕ̂(ξ)| · 〈ξ 〉−1
2p |ψ̂(ξ)|(

∫

�k,τ0

(1 + |r |2) 1
2p (|r |/k)2

τ0k
dr

)
dS(ξ)

(2.16)

for all τ ∈ (0, τ0) and for all k > 2.
Note that in {r ∈ R+; 2 ≥ |r − k| ≥ τ0} we have

〈r〉2s ≤ 5s〈k〉2s, 1 ≤ (r/k)2 ≤ 4. (2.17)

For r ∈ �k,τ0 the complex number (1+r2) can be expressed as R(r)eiθ(r) for real valued
functions R(r) and θ(r). Nowwe choose τ0 small enough such that |θ(r)| < π

10 in�2,τ0 ,
then |θ(r)| < π

10 in �k,τ0 for all k ≥ 2. This can be easily seen from the geometric view.
Thus (1 + r2)s is well-defined for all |s| ≤ 2, and

∀r ∈ �k,τ0 , |(1 + r2)s | = |1 + r2|s ≤ (1 + |r |2)s ≤ 〈k + τ0〉2s ≤ Cτ0〈k〉2s (2.18)

for some constant Cτ0 independent of τ when 0 < τ < τ0. Similarly, we have

∀r ∈ �k,τ0 , |r/k|2 ≤ (k + τ0)
2/k2 ≤ Cτ0 (2.19)

for some constant Cτ0 independent of τ . Hence by (2.17), (2.19) and Remark 13.1 in
[13], we can continue (2.16) as

|I2(τ )| ≤ Cτ0

∫

|ξ |=k
〈ξ 〉−1

2p |ϕ̂(ξ)|〈ξ 〉−1
2p |ψ̂(ξ)|

(
∫

�k,τ0∪{r∈R+;2≥|r−k|≥τ0}
〈k〉1/p
τ0k

dr
)
dS(ξ)

≤ Cτ0k
1/p−1‖〈·〉−1/(2p)ϕ̂(·)‖H1/2+ε (R3)‖〈·〉−1/(2p)ψ̂(·)‖H1/2+ε (R3)

≤ Cτ0,εk
1/p−1‖ϕ‖

H−1/(2p)
1/2+ε (R3)

‖ψ‖
H−1/(2p)
1/2+ε (R3)

, (2.20)

where the constant Cτ0,ε is independent of τ . It should be pointed out that the presence
of the infinitesimal number ε in ‖·‖H1/2+ε in (2.20) comes from the requirement that the
order of the Sobolev space should be strictly greater than 1/2; see Remark 13.1 in [13]
for more relevant discussion. Here, in deriving the last inequality in (2.20), we have
made use of (2.3).

Finally,we estimate I3(τ ). DenoteF(rω) = Fr (ω) := 〈r〉−1/(2p)ϕ̂(rω) andG(rω) =
Gr (ω) := 〈r〉−1/(2p)̂Rψ̄(rω). One can compute

|I3(τ )| = ∣
∣
∫ ∞

0

〈r〉1/p r2χ2(r − k)

r2 − k2 − iτ
dr ·

∫

S2
(FrGr − FkGk) dS(ω)

∣
∣
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≤
∫ ∞

0

〈r〉1/pχ2(r − k)

|r2 − k2| · ‖Fr‖L2(S2r )
· (
r2

∫

S2
|Gr − Gk |2 dS(ω)

) 1
2 dr

+
∫ ∞

0

〈r〉1/pχ2(r − k)

|r2 − k2| · (
r2

∫

S2
|Fr − Fk |2 dS(ω)

) 1
2

· (r

k

)2‖Gk‖L2(S2k )
dr, (2.21)

where S
2
r signifies the central sphere of radius r . Combining both Remark 13.1 and

(13.28) in [13] and (2.3) and (2.10), we can continue (2.21) as

|I3(τ )| ≤ Cα,ε

∫ ∞

0

〈r〉1/pχ2(r − k)

|r − k|(r + k)
· ‖F‖H1/2+ε (R3) · |r − k|α · ‖G‖H1/2+ε (R3) dr

≤ Cα,ε,p

∫ ∞

0

〈r〉1/pχ2(r − k)

|r − k|1−α(r + 1)1/p(k − 1)1−1/p dr

· ‖F‖H1/2+ε (R3)‖G‖H1/2+ε (R3)

≤ Cα,ε,pk
1/p−1

∫ ∞

0

χ2(r − k)

|r − k|1−α
dr · ‖ϕ‖

H−1/(2p)
1/2+ε (R3)

· ‖ψ‖
H−1/(2p)
1/2+ε (R3)

≤ Cα,ε,pk
1/p−1‖ϕ‖

H−1/(2p)
1/2+ε (R3)

· ‖ψ‖
H−1/(2p)
1/2+ε (R3)

, (2.22)

where the ε can be any positive real number and the α satisfies 0 < α < ε, and the
constant Cα,ε,p is independent of τ .

Combining (2.9), (2.11), (2.20) and (2.22), we arrive at

|(Rk,τ ϕ, ψ)L2(R3)| ≤ |I1(τ )| + |I2(τ )| + |I3(τ )|
≤ Ck1/p−1‖ϕ‖

H−1/(2p)
1/2+ε (R3)

‖ψ‖
H−1/(2p)
1/2+ε (R3)

,

which implies that

‖Rk,τ ϕ‖
H1/(2p)

−1/2−ε (R
3)

≤ Ck1/p−1‖ϕ‖
H−1/(2p)
1/2+ε (R3)

(2.23)

for some constant C independent of τ .
Next we study the limiting case lim

τ→0+
Rk,τ ϕ. For any two positive real numbers

τ1, τ2 < τ̃ , we study |I j (τ1) − I j (τ2)| for j = 1, 2, 3.
Similar to our previous derivation, we have

|I1(τ1) − I1(τ2)|
≤

∫ ∞

0

|τ1 − τ2|(1 − χ2(r − k))

|r2 − k2| · p 1
p q

1
q (r + 1)

1
p (k − 1)

1
q

dr ·
∫

|ξ |=r
|ϕ̂(ξ)| · |ψ̂(ξ)| dS(ξ)

≤ τ̃ Cpk
1/p−1‖ϕ‖

H−1/(2p)
δ (R3)

‖ψ‖
H−1/(2p)

δ (R3)
, (2.24)

and

|I2(τ1) − I2(τ2)|

≤ C
∫

|ξ |=k
〈ξ 〉−1

2p |ϕ̂(ξ)|〈ξ 〉−1
2p |ψ̂(ξ)|(

∫

{r∈R+;2≥|r−k|≥τ0}
|τ1 − τ2|〈k〉

1
p

(τ0k)2
dr

)
dS(ξ)
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+ C
∫

|ξ |=k
〈ξ 〉−1

2p |ϕ̂(ξ)|〈ξ 〉−1
2p |ψ̂(ξ)|(

∫

�k,τ0

|τ1 − τ2|〈k〉
1
p

(τ0k)2
dr

)
dS(ξ)

≤ τ̃ Ck1/p−1‖ϕ‖
H−1/(2p)
1/2+ε (R3)

‖ψ‖
H−1/(2p)
1/2+ε (R3)

. (2.25)

To analyze I3(τ ) as τ goes to zero, we note that by (2.10) one has

Cβ(�z)β(�z)1−β ≤ |z|, ∀z ∈ C,

which holds for all β ∈ (0, 1) and some constant Cβ . Without loss of generality, we
assume τ1 ≤ τ2. Hence we can compute

∣
∣ 1

r2 − k2 − iτ1
− 1

r2 − k2 − iτ2

∣
∣ ≤ 1

|r2 − k2| · Cτ2

|r2 − k2|β · τ
1−β
2

≤ Cτ
β
2

|r2 − k2|1+β
.

Thus

|I3(τ1) − I3(τ2)|

� τ
β
2

∫ ∞

0

〈r〉 1
p χ2(r − k)

|r − k|1+β(r + 1)
1
p (k − 1)1−

1
p

· |r − k|α · ‖F‖
H

1
2 +ε

(R3)
· ‖G‖

H
1
2 +ε

(R3)
dr

� τ̃ βk1/p−1‖ϕ‖
H−1/(2p)
1/2+ε (R3)

‖ψ‖
H−1/(2p)
1/2+ε (R3)

, (2.26)

where the last inequality holds when 0 < β < α.
From (2.24), (2.25) and (2.26) we arrive at

‖Rk,τ1ϕ − Rk,τ2ϕ‖
H−1/(2p)

−1/2−ε (R3)
� τ̃‖ϕ‖

H−1/(2p)
1/2+ε (R3)

, ∀τ1, τ2 ∈ (0, τ̃ ), (2.27)

and thus Rk,τ̃ ϕ converges and

lim
τ̃→0+

Rk,τ̃ ϕ = Rkϕ in H1/(2p)
−1/2−ε(R

3). (2.28)

The relationships (2.27) and (2.28) sometimes refer to as the limiting absorption prin-
ciple. Hence from (2.23) and (2.28) we conclude that

‖Rkϕ‖
H1/(2p)

−1/2−ε (R
3)

≤ Cε,pk
−(1−1/p)‖ϕ‖

H−1/(2p)
1/2+ε (R3)

holds for any 1 < p < +∞ and any ε > 0.
The proof is complete. ��

Proof of Theorem 2.2. Let ϕ,ψ ∈ S (Rn) and define 〈qϕ,ψ〉 := 〈q, ϕψ〉. Choose a
function χ such that χ ∈ C∞

c (Rn) and χ(x) = 1 when x ∈ supp q. Choose s′ satisfying
−s′ < (m − n)/2 and p, p′ satisfying 1 < p < +∞, 1/p′ + 1/p = 1. Then according
to [Proposition 2.4, [8]], ‖q‖H−s′,p′ (Rn)

< +∞ almost surely. Denote ‖q‖H−s′,p′ (Rn)
as

Cs(ω). One can compute

|〈qϕ,ψ〉| = |〈q, (χϕ)(χψ)〉| = |〈(I − �)−s′q, (I − �)s
′(
(χϕ)(χψ)

)〉|
≤ ‖q‖H−s′,p′ (Rn)

· ‖(I − �)s
′(
(χϕ)(χψ)

)‖L p(Rn)
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= Cs(ω)‖(I − �)s
′(
(χϕ)(χψ)

)‖L p(Rn). (2.29)

According to the fractional Leibniz rule [14], when 1/p = 1/2 + 1/q, one has

‖(I − �)s
′(
(χϕ)(χψ)

)‖L p(Rn) ≤ Cs(ω)
(‖χϕ‖L2(Rn)‖χψ‖Hs′,q (Rn)

+ ‖χψ‖L2(Rn)‖χϕ‖Hs′,q (Rn)

)
. (2.30)

By (2.29)–(2.30) and noting the Sobolev embedding Hs(Rn) ↪→ Hs′,q(Rn) when s −
n/2 ≥ s′ − n/q, s > s′, we can continue (2.29) as

|〈qϕ,ψ〉| � Cs(ω)
(‖χϕ‖L2(Rn) · ‖χψ‖Hs′,q (Rn)

+ ‖χψ‖L2(Rn) · ‖χϕ‖Hs′,q (Rn)

)

� Cs(ω)‖χϕ‖Hs (Rn) · ‖χψ‖Hs (Rn). (2.31)

Because 1 < p′ < +∞ and s′ > −m−n
2 , the real number s should satisfy

s ≥ s′ + n

2
− n

q
= s′ + n

2
− n(

1

p
− 1

2
) = s′ + n − n

p
= s′ + n

p′ ≥ s′ >
n − m

2
.

Next we adapt the proof of Lemma 3.7 in [8] to show that

‖χϕ‖Hs (Rn) ≤ C‖ϕ‖Hs−2(R
n), ϕ ∈ S (Rn). (2.32)

Rewriting the right-hand side of (2.32) in terms of the L2-norm form, we obtain

‖χϕ‖Hs (Rn) ≤ C‖〈·〉−2(I − �)s/2ϕ‖L2(Rn).

Write ψ(x) := 〈x〉−2(I − �)s/2ϕ(x). Obviously, ϕ ∈ S (Rn) is equivalent to ψ ∈
S (Rn). Define Taψ := χ ·(I−�)−s/2(〈·〉2ψ). Thenχϕ = Taψ and (2.32) is equivalent
to

‖Taψ‖Hs (Rn) ≤ C‖ψ‖L2(Rn). (2.33)

Ta is a pseudo-differential operator with

a(x, ξ) := χ(x)
(〈x〉2〈ξ 〉−s − 2ix · ∇ξ 〈ξ 〉−s − �ξ 〈ξ 〉−s)

as its symbol. It is easy to see that a ∈ S−s , and thus according to the properties of
pseudo-differential operators [13], (2.33) holds, and so does (2.32).

We can continue the estimates in (2.31) as

|〈qϕ,ψ〉| � Cs(ω)‖χϕ‖Hs (Rn) · ‖χψ‖Hs (Rn) � Cs(ω)‖ϕ‖Hs−2(R
n) · ‖ψ‖Hs−2(R

n)

≤ Cs(ω)‖ϕ‖Hs−1/2−ε (R
n) · ‖ψ‖Hs−1/2−ε (R

n), ∀ϕ,ψ ∈ S (Rn),

where 0 < ε ≤ 3/2, which implies that

‖qϕ‖H−s
1/2+ε (R

n) ≤ Cε,s(ω)‖ϕ‖Hs−1/2−ε (R
n), ∀ϕ ∈ S (Rn). (2.34)

We proceed to show thatS (Rn) is dense in Hs−1/2−ε(R
n). Fix a function χ satisfying

(2.8).Nowweassume thatϕ ∈ Hs−1/2−ε(R
n), andhencewehave 〈·〉−1/2−ε(I−�)s/2ϕ ∈

L2(Rn). Then for any δ > 0 there exists a constant M , depending on ϕ, such that
‖〈·〉−1/2−ε(I − �)s/2ϕ − ϕ(1)‖L2(Rn) < δ

2 ,whereϕ(1) = χ(·/M)〈·〉−1/2−ε(I−�)s/2ϕ.
Note that ϕ(1) ∈ L2(Rn)with a compact support. Furthermore, there exists a sufficiently
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small constant ζ ∈ R+ such that ‖ϕ(1) − ϕ(2)‖L2(Rn) < δ
2 , whereϕ(2) = ( 1

ζ n
χ( ·

ζ
))∗ϕ(1).

The function ϕ(2) is in C∞(Rn)with a compact support, thus is inS (Rn). Write ϕ(3) =
(I − �)−s/2

(〈·〉1/2+εϕ(2)
)
. Hence ϕ(3) ∈ S (Rn) and

‖ϕ − ϕ(3)‖Hs−1/2−ε (R
n) = ‖〈·〉−1/2−ε(I − �)s/2ϕ − 〈·〉−1/2−ε(I − �)s/2ϕ(3)‖L2(Rn)

≤ ‖〈·〉−1/2−ε(I − �)s/2ϕ − ϕ(1)‖L2(Rn) + ‖ϕ(1) − ϕ(2)‖L2(Rn)

< δ/2 + δ/2 = δ.

Therefore S (Rn) is dense in Hs−1/2−ε(R
n). Since Hs−1/2−ε(R

n) is a Banach space,
and hence by a density argument, the inequality (2.34) can be extended to all ϕ ∈
Hs−1/2−ε(R

n).
The proof is complete. ��
We are now in a position to study the well-posedness of the direct scattering problem.

To that end, we reformulate (1.1) into the Lippmann-Schwinger equation formally (cf.
[10]) to obtain

(I − Rkq)usc = αRkqu
i − Rk f. (2.35)

Theorem 2.3. When k is large enough such that ‖Rkq‖L(H−s
1/2+ε (R

3),H−s
1/2+ε (R

3)) < 1, there

exists a unique stochastic process usc(·, ω) : R
3 → C such that usc(x) satisfies (2.35)

almost surely. Moreover,

‖usc(·, ω)‖H−s
1/2+ε (R

3) � ‖αRkqu
i − Rk f ‖H−s

1/2+ε (R
3) a.s. (2.36)

for any ε ∈ R+.

Proof. The condition (1.3) impliesmq > 2, and hence there exists s ∈ (max{(3 − mq)/

2, 0}, 1/2) such that Theorem 2.1 can apply. By Theorems 2.1 and 2.2, we know

F := αRkqu
i − Rk f ∈ H−s

1/2+ε(R
3).

From Theorems 2.1 and 2.2, we also know that the operator I −Rkq is invertible from
H−s
1/2+ε(R

3) to itself, and the right-hand side of (2.35) belongs to H−s
1/2+ε(R

3).

Let usc := (I − Rkq)−1F ∈ H−s
1/2+ε(R

3), then usc fulfills the requirements of the
theorem. The existence of the solution is proved. (2.36) can be verified easily from
Theorems 2.1, 2.2 and (2.35). The uniqueness follows readily from (2.36).

The proof is complete. ��

3. Asymptotic Analysis of High-order Terms

We intend to recover μ f , μq from the data via the correlation formula of the following
form

1

K

∫ 2K

K
kmu∞(k, ω)u∞(k + τ, ω) dk, (3.1)

where u∞(k, ω) stands for the far-field pattern u∞(x̂, k, ω) ∈ M f in the case of α = 0
and stands for u∞(x̂, k,−x̂, ω) ∈ Mq in the case of α = 1. The Lippmann-Schwinger
equation corresponding to (1.1) is

(I − Rkq)usc(k, ω) = αRkqu
i−Rk f. (3.2)



Determining a Random Schrödinger Operator: Both Potential and Source are Random 541

When k is large enough such that ‖Rkq‖L(Hs−1/2−ε ,H
s−1/2−ε )

< 1, from (3.2) we obtain

usc(k, ω) = −
∑

j≥0

Rk
(
(qRk)

j f
)
+ α

∑

j≥0

Rk
(
(qRk)

j qui
)
, (3.3)

u∞(k, ω) = (4π)−1
∑

j=0,1,2

Fj (x̂, k, ω) + α(4π)−1
∑

j=0,1,2

G j (x̂, k, ω), (3.4)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fj (x̂, k, ω) := −
∫

R3
e−ikx̂ ·z[(qRk)

j f
]
(z) dz, j = 0, 1

F2(x̂, k, ω) := −
∑

j≥2

∫

R3
e−ikx̂ ·z[(qRk)

j f
]
(z) dz,

G j (x̂, k, d, ω) :=
∫

R3
e−ikx̂ ·z[(qRk)

j qui
]
(z) dz, j = 0, 1

G2(x̂, k, d, ω) :=
∑

j≥2

∫

R3
e−ikx̂ ·z[(qRk)

j qui
]
(z) dz.

(3.5)

Substituting (3.4) into (3.1), we obtain several crossover terms comprised by Fj andG j .
To recover μ f and μq , it is necessary to establish the asymptotics of Fj and G j in terms
of k. The asymptotic analyses of G j ( j = 0, 1, 2) are established in [8].

This section is devoted to the asymptotic analysis of F1 and F2, which are given in
Lemmas 3.3 and 3.5, respectively. These two lemmas shall play key roles in the proofs
to Theorems 1.1 and 1.2.

3.1. Asymptotics of F1. In order to establish the asymptotics of F1, we need to derive
two auxiliary lemmas. First, let us recall the notion of the fractional Laplacian [30] of
order s ∈ (0, 1) in R

n (n ≥ 3),

(−�)s/2ϕ(x) := (2π)−n
∫∫

ei(x−y)·ξ |ξ |sϕ(y) dy dξ, (3.6)

where the integration is defined as an oscillatory integral. When ϕ ∈ S (Rn), (3.6)
can be understood as a usual Lebesgue integral if one integrates w.r.t. y first and then
integrates w.r.t. ξ . By duality arguments, the fractional Laplacian can be generalized to
act on wider range of functions and distributions (cf. [34]). It can be verified that the
fractional Laplacian is self-adjoint.

In the following two lemmas, we present the results in a more general form where
the space dimension n can be arbitrary but greater than 2, though only the case n = 3
shall be used subsequently.

Lemma 3.1. For any s ∈ (0, 1), we have

(−�ξ)
s/2(eix ·ξ ) = |x |seix ·ξ

in the distributional sense.
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Proof. For any ϕ ∈ S (Rn), because (−�ξ)
s/2 is self-adjoint, we have

(
(−�ξ)

s/2(eix ·ξ ), ϕ(ξ)
) = (

eix ·ξ , (−�ξ)
s/2ϕ(ξ)

)

=
∫

eix ·ξ · [
(2π)−n

∫∫

ei(ξ−y)·η|η|sϕ(y) dy dη
]
dξ

=
∫

eix ·ξ · {
(2π)−n/2

∫
[
(2π)−n/2

∫

ei(ξ−y)·η|η|s dη]
ϕ(y) dy

}
dξ

= (2π)−n/2
∫

eix ·ξ ·
∫

F−1{| · |s}(ξ − y) · ϕ(y) dy dξ

= (2π)−n/2
∫∫

eix ·ξF−1{| · |s}(ξ − y) · ϕ(y) dy dξ

=
∫

[
(2π)−n/2

∫

eix ·ξF−1{| · |s}(ξ − y) dξ
] · ϕ(y) dy

=
∫

eix ·y
[
(2π)−n/2

∫

e−i(−x)·ξF−1{| · |s}(ξ) dξ
] · ϕ(y) dy

=
∫

eix ·yFF−1{| · |s}(−x) · ϕ(y) dy

=
∫

|x |seix ·y · ϕ(y) dy

= (|x |seix ·ξ , ϕ(ξ)
)
.

It is noted that in the derivation above, some integrals should be understood as oscillatory
integrals. ��
Lemma 3.2. For any m < 0, s ∈ (0, 1) and c(x, ξ) ∈ Sm, we have

|((−�ξ)
s/2c

)
(x, ξ)| ≤ C〈ξ 〉m−s,

where the constant C is independent of x, ξ .

Proof. The proof is divided into two steps.
Step 1: The case |ξ | ≥ 1.

In this step, we set |ξ | to be greater than 1. By the definition (3.6), we have

(
(−�ξ)

s/2c
)
(x, ξ) �

∫∫

ei(ξ−η)·γ |γ |s c(x, η) dη dγ

=
∫∫

e−iη·γ |γ |s c(x, η + ξ) dη dγ

=
∫∫

e−iη·γ ∣
∣ γ

|ξ |
∣
∣s c(x, |ξ |η + ξ) d(|ξ |η) d(γ /|ξ |)

� |ξ |−s
∫∫

e−iη·γ |γ |s c(x, |ξ |(η + ξ̂ )) dη dγ, (3.7)

where ξ̂ = ξ/|ξ |. Fix a function χ0 ∈ C∞
c (R) with χ0(|x |) ≡ 1 when 1/2 ≤ |x | ≤

3/2 and χ0(|x |) ≡ 1 when |x | ≤ 0 or |x | ≥ 2. We can continue (3.7) as

(
(−�ξ)

s/2c
)
(x, ξ) � |ξ |m−s

∫∫

e−iη·γ χ0(|η|)|γ |s c(x, |ξ |(η + ξ̂ )) |ξ |−m dη dγ
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+ |ξ |m−s
∫∫

e−iη·γ (
1 − χ0(|η|)) |γ |s c(x, |ξ |(η + ξ̂ )) |ξ |−m dη dγ

:= |ξ |m−s(B1 + B2). (3.8)

We estimate B1, B2 seperately. For B1, one can compute

B1 =
∫∫

e−i(η−ξ̂ )·γ χ0(|η − ξ̂ |)|γ |s c(x, |ξ |η) |ξ |−m dη dγ

=
∫

eiξ̂ ·γ |γ |s(
∫

e−iη·γ χ0(|η − ξ̂ |) c(x, |ξ |η) |ξ |−m dη
)
dγ

=:
∫

eiξ̂ ·γ |γ |s J (γ ; |ξ |, x) dγ, (3.9)

where J (γ ; |ξ |, x) = ∫
e−iη·γ χ0(|η − ξ̂ |) c(x, |ξ |η) |ξ |−m dη. We claim that the

J (γ ; |ξ |, x) is rapidly decaying w.r.t. |γ |, that is
∀N ∈ N, |γ |2N |J (γ ; |ξ |, x)| ≤ CN < +∞, (3.10)

for some constant CN independent of γ , ξ and x . This can be seen from

|γ |2N |J (γ ; |ξ |, x)| � ∣
∣
∫

�N
η (e−iη·γ ) · χ0(|η − ξ̂ |) c(x, |ξ |η) |ξ |−m dη

∣
∣

= ∣
∣
∫

e−iη·γ · �N
η

(
χ0(|η − ξ̂ |) c(x, |ξ |η)

) |ξ |−m dη
∣
∣

≤
∫

1
2≤|η−ξ̂ |≤2

|�N
η

(
χ0(|η − ξ̂ |) c(x, |ξ |η)| · |ξ |−m dη

�
∫

1
2≤|η−ξ̂ |≤2

∑

|α|≤2N

|(∂α
ξ c)(x, |ξ |η)| · |ξ ||α|−m dη

�
∑

|α|≤2N

∫

1
2≤|η−ξ̂ |≤2

(1 + |ξ | |η|)m−|α| · |ξ ||α|−m dη

=
∑

|α|≤2N

∫

1
2≤|η−ξ̂ |≤2

(|ξ |−1 + |η|)m−|α| dη, (3.11)

where N is an arbitrary non-negative integer. The condition |ξ | ≥ 1 gives

(|ξ |−1 + |η|)m−|α| ≤
{

(1 + |η|)m−|α|, when |α| ≤ m,

|η|m−|α|, when |α| > m.
(3.12)

By (3.11) and (3.12), we obtain (3.10).
Therefore, J (γ ; |ξ |, x) is indeed rapidly decaying. Now, combining (3.9) and (3.10),

we arrive at

|B1| �
∫

|γ |≥1
|γ |s dγ +

∫

|γ |>1
|γ |s |γ |−4 dγ ≤ C < +∞, (3.13)

for some constant C independent of x , ξ .
To estimate B2,
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we split B2 into two terms, say, B21 and B22, in the following way,

B2 =
∫∫

γ≤1
e−iη·γ (

1 − χ0(|η|)) |γ |s c(x, |ξ |(η + ξ̂ )) |ξ |−m dη dγ

+
∫∫

γ>1
e−iη·γ (

1 − χ0(|η|)) |γ |s c(x, |ξ |(η + ξ̂ )) |ξ |−m dη dγ

=: B21 + B22. (3.14)

Define the differential operator L := (γ /|γ |2) · ∇η.
The term B21 can be estimated as follows,

|B21| ≤
∫

|γ |≤1
|γ |s · ∣

∣
∫

e−iη·γ (
1 − χ0(|η|)) c(x, |ξ |(η + ξ̂ )) |ξ |−m dη

∣
∣ dγ

�
∫

|γ |≤1
|γ |s · ∣

∣
∫

Ln(e−iη·γ )
(
1 − χ0(|η|)) c(x, |ξ |(η + ξ̂ )) |ξ |−m dη

∣
∣ dγ

�
∫

|γ |≤1
|γ |s |γ |−n · ∣

∣
∫

e−iη·γ ∇n
η

((
1 − χ0(|η|)) c(x, |ξ |(η + ξ̂ ))

)
|ξ |−m dη

∣
∣ dγ

≤
∫

|γ |≤1
|γ |s−n

∫ ∣
∣
∣∇n

η

((
1 − χ0(|η|)) c(x, |ξ |(η + ξ̂ ))

)∣
∣
∣ · |ξ |−m dη dγ

�
∫

|γ |≤1
|γ |s−n

∫

|η|�∈( 12 , 32 )

(1 + |ξ | · |η + ξ̂ |)m−n · |ξ |n−m dη dγ

=
∫

|γ |≤1
|γ |s−n

∫

|η|�∈( 12 , 32 )

(|ξ |−1 + |η + ξ̂ |)m−n dη dγ

≤
∫

|γ |≤1
|γ |s−n

∫

|η|�∈( 12 , 32 )

|η + ξ̂ |m−n dη dγ

≤ C < +∞, (3.15)

for some constant C independent of x , ξ . Here, it is noted that in (3.15) n is the space
dimension. The last two inequalities in (3.15) make use of the following three facts:
s−n > −n,m−n < −n, and the restriction |η| �∈ (1/2, 3/2) that makes |η+ ξ̂ | ≥ 1/2.

To estimate B22, we proceed in a way similar to (3.15), but replacing Ln with Ln+1,

|B22| �
∫

|γ |>1
|γ |s−1−n

∫ ∣
∣
∣∇n+1

η

((
1 − χ0(|η|)) c(x, |ξ |(η + ξ̂ ))

)∣
∣
∣ · |ξ |−m dη dγ

�
∫

|γ |>1
|γ |s−1−n

∫

|η|�∈( 12 , 32 )

(|ξ |−1 + |η + ξ̂ |)m−1−n dη dγ

≤
∫

|γ |>1
|γ |s−1−n

∫

|η|�∈( 12 , 32 )

|η + ξ̂ |m−1−n dη dγ

≤ C < +∞, (3.16)

for some constant C independent of x , ξ . Also, the last two inequality in (3.16) take
advantage of the following three facts: s − 1 − n < −n, m − 1 − n < −n, and the
restriction |η| �∈ (1/2, 3/2) that makes |η + ξ̂ | ≥ 1/2.
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Finally, by (3.8), (3.13), (3.14), (3.15) and (3.16), we arrive at

|((−�ξ)
s/2c

)
(x, ξ)| ≤ C |ξ |m−s, for all |ξ | ≥ 1. (3.17)

Step 2: The case |ξ | < 1.
In this step, |ξ | is set to be smaller than 1.Wedifferentiate

(
(−�ξ)

s/2c
)
(x, ξ) formally

w.r.t. ξ , and follow the arguments similar to (3.15)–(3.16),

|∂ξ j

(
(−�ξ)

s/2c
)
(x, ξ)| � |∂ξ j

∫∫

ei(ξ−η)·γ |γ |s c(x, η) dη dγ |

� |
∫∫

|γ |≤1
L1+n(ei(ξ−η)·γ )|γ |sγ j c(x, η) dη dγ |

+ |
∫∫

|γ |>1
L2+n(ei(ξ−η)·γ )|γ |sγ j c(x, η) dη dγ |

�
∫

|γ |≤1
|γ |s−n

∫

〈η〉m−1−n dη dγ

+
∫

|γ |>1
|γ |s−1−n

∫

〈η〉m−2−n dη dγ

≤ C < +∞, (3.18)

where the constant C is independent of x and ξ .
Therefore,

(
(−�ξ)

s/2c
)
(x, ξ) is continuous w.r.t. ξ in R

n . Moreover, the gradient
w.r.t. x and ξ is bounded. Therefore,

(
(−�ξ)

s/2c
)
(x, ξ) is uniformly bounded for all

x ∈ R
n and all |ξ | ≤ 1. Combining this with (3.17), we arrive at the conclusion.

The proof is complete. ��
By the commutability between (−�ξ)

s/2 and differential operators, we can readily
obtain the following corollary.

Corollary 3.1. For any m < 0 and s ∈ (0, 1), we have
(
(−�ξ)

s/2c
)
(x, ξ) ∈ Sm−s for any c(x, ξ) ∈ Sm .

Proof. Write c̃(x, ξ) = (−�ξ)
s/2c(x, ξ). Then

∂α
x ∂

β
ξ c̃(x, ξ) � ∂α

x ∂
β
ξ

∫∫

ei(ξ−η)·γ |γ |s c(x, η) dη dγ

� ∂α
x ∂

β
ξ

∫

eiξ ·γ |γ |s Fξ→γ {c}(x, γ ) dγ

� ∂α
x

∫

eiξ ·γ |γ |s γ βFξ→γ {c}(x, γ ) dγ

� ∂α
x

∫

eiξ ·γ |γ |s Fξ→γ {∂β
ξ (c)}(x, γ ) dγ

� ∂α
x

∫∫

ei(ξ−η)·γ |γ |s (∂
β
ξ c)(x, η) dη dγ

=
∫∫

ei(ξ−η)·γ |γ |s (∂α
x ∂

β
ξ c)(x, η) dη dγ

= (
(−�ξ)

s/2(∂α
x ∂

β
ξ c)

)
(x, ξ).
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Applying Lemma 3.2, we obtain

|∂α
x ∂

β
ξ c̃(x, ξ)| ≤ Cα,β〈ξ 〉β.

The proof is complete. ��
Recall the definition of the unit normal vector n after (1.2). The asymptotic estimate

associated with the term F1 is established in the following lemma.

Lemma 3.3. We have

E(|F1(x̂, k, ·)|2) ≤ Ck−4, ∀ k > 1, (3.19)

for all x̂ with x̂ · n ≥ 0, and the constant C in (3.19) is independent of x̂ , k.

In what follows, we shall use C(·) and its variants, such as �C(·), Ca,b(·) etc., to
represent some generic smooth scalar/vector functions, within C∞

c (R3) or C∞
c (R3×4),

whose particular definition may change line by line.

Proof of Lemma 3.3. Using (2.5) and (2.6), one can show that

E(|F1(x̂, k, ·)|2)
= E

(
∫

R3
e−ikx̂ ·yq(y, ·)

∫

R3

eik|y−s|

4π |y − s| f (s, ·) ds dy

·
∫

R3
eikx̂ ·zq(z, ·)

∫

R3

e−ik|z−t |

4π |z − t | f (t, ·) dt dz
)

�
∫

e−ikx̂ ·(y−z) e
ik(|y−s|−|z−t |)

|y − s| · |z − t | · E
(
q(y, ·)q(z, ·)) · E

(
f (s, ·) f (t, ·)) d(s, y, t, z)

�
∫

eikϕ(y,s,z,t)(
∫

ei(z−y)·ξ cq(z, ξ) dξ
)(

∫

ei(t−s)·ηc f (t, ξ) dη
) · C · d(s, y, t, z),

(3.20)

where ϕ(y, s, z, t) := −x̂ · (y − z) − |y − s| + |z − t |, and the d(s, y, t, z) is a short
notation for ds dy dt dz. We omit the repeated integral symbols and the integral domain
in the calculation for simplicity. The term C(y, z, s, t) in (3.20) belongs to C∞

c (R3×4)

due to the fact that q and f are compactly supported and dist(CH(D f ), CH(Dq)) > 0.
Next we are about to differentiate the term eikϕ(y,s,z,t) by two differential operators,

in order to obtain the decay w.r.t. the argument k. To that end, we introduce the aforesaid
two differential operators with C∞-smooth coefficients as follows,

L1 := (y − s) · ∇s

ik|y − s| , L2 = L2,x̂ := ∇yϕ · ∇y

ik|∇yϕ| ,

where ∇yϕ = s−y
|s−y| − x̂ . The operator L2,x̂ depends on x̂ because ∇yϕ does. Due to the

fact that y ∈ Dq while s ∈ D f , the operator L1 is well-defined. It can be verified there
is a positive lower bound of |∇yϕ| for all x̂ ∈ {x̂ ∈ S

2 : x̂ · n ≥ 0}. It can also be verified
that

L1(e
ikϕ(y,s,z,t)) = L2(e

ikϕ(y,s,z,t)) = eikϕ(y,s,z,t).
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By using integration by parts, one can compute

E(|F1(x̂, k, ·)|2)
=

∫
(
L2
1L

2
2

)
(eikϕ(y,s,z,t)) · (

∫

ei(z−y)·ξ cq(z, ξ) dξ
)

· (
∫

ei(t−s)·ηc f (t, η) dη
) · C(y, z, s, t) d(s, y, t, z)

� k−4
∫

D
eikϕ(y,s,z,t)[J1 (K1 C + �K2 · �C +

∑

a,b=1,2,3

K3;a,b Ca,b)

+
∑

c=1,2,3

J2;c (K1 Cc + �K2 · �Cc +
∑

a,b=1,2,3

K3;a,b Ca,b,c)

+
∑

a′,b′=1,2,3

J3;a′,b′(K1 Ca′,b′ + �K2 · �Ca′,b′

+
∑

a,b=1,2,3

K3;a,b Ca,b,a′,b′)
]
d(s, y, t, z), (3.21)

where the integral domain D ⊂ R
3×4 is bounded and

J1 :=
∫

ei(t−s)·η c f (t, η) dη, K1 :=
∫

ei(z−y)·ξ cq(z, ξ) dξ,

�J2 := ∇s

∫

ei(t−s)·η c f (t, η) dη, �K2 := ∇y

∫

ei(z−y)·ξ cq(z, ξ) dξ,

J3;a,b := ∂2sa ,sb

∫

ei(t−s)·η c f (t, η) dη, K3;a,b := ∂2ya ,yb

∫

ei(z−y)·ξ cq(z, ξ) dξ,

and J2;c (resp. K2;c) is the c-th component of the vector �J2 (resp. �K2).
For the case with s �= t , these three quantities, J1, �J2 and J3;a,b, can be estimated

as follows,

|J1| = |
∫

ei(t−s)·η c f (t, η) dη| = |s − t |−2 · |
∫

�η(e
i(s−t)·η) c f (t, η) dη|

= |s − t |−2 · |
∫

ei(t−s)·η(�ηc f )(t, η) dη| ≤ |s − t |−2
∫

|(�ηc f )(t, η)| dη

� |s − t |−2
∫

〈η〉−m f −2 dη � |s − t |−2, (3.22)

and

| �J2;c| = |∂sc
∫

ei(t−s)·η c f (t, η) dη| = |
∫

ei(t−s)·η · c f (t, η)ηc dη|

= |s − t |−2 · |
∫

�η(e
i(t−s)·η) c f (t, η)ηc dη| = |s − t |−2

· |
∫

ei(t−s)·η�η(c f (t, η)ηc) dη|

� |s − t |−2
∫

〈η〉−m f +1−2 dη � |s − t |−2, (3.23)
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and similarly

J3;a,b �
∫

ei(t−s)·η · c f (t, η)ηaηb dη � |s − t |−2
∫

�η(e
i(t−s)·η) · c f (t, η)ηaηb dη

= |s − t |−2
∫

ei(t−s)·η · �η(c f (t, η)ηaηb) dη. (3.24)

Here, in deriving the last two inequalities respectively in (3.22) and (3.23), we have
made use of the a-priori requirement m f > 2 in (1.3); see also the discussion at the end
of Remark 1.1.

Now, if we further differentiate the term ei(t−s)·η in (3.24) by i(s−t)·
|s−t |2 ∇η and then

transfer the operator ∇η onto �η(c f (t, η)ηaηb) by using integration by parts, we would
arrive at

|J3;a,b| � |s − t |−3
∫

|∇η�η(c f (t, η)ηaηb)| dη ≤ |s − t |−3
∫

〈η〉−m f −1 dη.

The term
∫ 〈η〉−m f −1 dη is absolutely integrable now, but the term |s − t |−3 is not

integrable at the hyperplane s = t in R
3. To circumvent this dilemma, the fractional

Laplacian can be applied as follows. By using Lemmas 3.1 and 3.2, we can continue
(3.24) as

|J3;a,b| � |s − t |−2 · ∣
∣|s − t |−s

∫

(−�η)
s/2(ei(t−s)·η) · �η(c f (t, η)η jη�) dη

∣
∣

= |s − t |−2−s · |
∫

ei(t−s)·η · (−�η)
s/2(�η(c f (t, η)η jη�)

)
dη|

� |s − t |−2−s
∫

〈η〉−m f +2−2−s dη = |s − t |−2−s
∫

〈η〉−m f −s dη, (3.25)

where the number s is chosen to satisfy max{0, 3 − m f } < s < 1, and the existence of
such a number s is guaranteed by noting that m f > 2. Therefore, we have

{ −m f − s < −3, (3.26a)

−2 − s > −3. (3.26b)

Thanks to the condition (3.26a), we can continue (3.25) as

|J3;a,b| � |s − t |−2−s
∫

〈η〉−m f −s dη � |s − t |−2−s . (3.27)

Using similar arguments, we can also conclude that
{

|K1|, | �K2| � |y − z|−2,

|K3;a,b| � |y − z|−2−s .
(3.28)

Combining (3.21), (3.22), (3.23), (3.27) and (3.28), we arrive at

E(|F1(x̂, k, ·)|2)
� k−4

∫

D
(|J1| + | �J2| +

∑

a′,b′=1,2,3

|J3;a′,b′ |) · (|K1| + | �K2|
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+
∑

a,b=1,2,3

|K3;a,b|) d(s, y, t, z)

� k−4
∫

D
|s − t |−2−s · |y − z|−2−s d(s, y, t, z)

� k−4
∫

D̃
|s − t |−2−s ds dt ·

∫

D̃
|y − z|−2−s dy dz (3.29)

for some sufficiently large but bounded domain D̃ ⊂ R
3×2 satisfying D ⊂ D̃ × D̃.

Note that the integral (3.29) should be understood as a singular integral because of the
presence of the singularities occuring when s = t and y = z. By (3.29) and (3.26b), we
can finally conclude (3.19).

The proof is complete. ��

3.2. Asymptotics of F2. The following lemma is necessary for the estimates of
F2(x̂, k, ω).

Lemma 3.4. Assume that ε > 0. For ∀s ∈ R, ∀k ∈ R and ∀x̂ ∈ S
n−1, we have

‖e−ikx̂ ·(·)ϕ‖Hs−1/2−ε
≤ Cs,ϕ〈k〉s, ∀ϕ ∈ C∞

c (Rn),

where the constant Cs,ϕ depends on s and ϕ, but is independent of x̂ , k.

Proof. By the Plancherel theorem and Peetre’s inequality, one has

‖e−ikx̂ ·(·)ϕ‖2Hs−1/2−ε
=

∫

〈x〉−1−2ε |(I − �)s/2
(
e−ikx̂ ·(·)ϕ

)
(x)|2 dx

≤
∫

|(I − �)s/2
(
e−ikx̂ ·(·)ϕ

)
(x)|2 dx

�
∫

〈ξ 〉2s |F{
e−ikx̂ ·(·)ϕ

}
(ξ)|2 dξ =

∫

〈ξ 〉2s |ϕ̂(ξ + kx̂)|2 dξ

=
∫

〈ξ − kx̂〉2s |ϕ̂(ξ)|2 dξ ≤ 〈k〉2s
∫

〈ξ 〉2|s||ϕ̂(ξ)|2 dξ.

ϕ̂ is rapidly decaying because ϕ ∈ C∞
c (Rn). Thus, the integral

∫ 〈ξ 〉2|s||ϕ̂(ξ)|2 dξ is a
finite number depending on s, ϕ. The proof is done. ��
Lemma 3.5. For every s ∈ (

3−mq
2 , 1

2 ), there exists a subset �s ⊂ � with P(�s) = 0
such that for ∀ω ∈ �\�s , the inequality

|F2(x̂, k, ω)| ≤ Cs(ω)k5s−2 (3.30)

holds uniformly for ∀x̂ ∈ S
2 and ∀k > 1, where Cs(ω) is finite almost surely.

Proof. First, we note that the condition (1.3) implies (3 − mq)/2 < 1/2, and hence

(
3−mq

2 , 1
2 ) is a non-empty open interval.We defineχq (resp.χ f ) as a function inC∞

c (R3)

with χq(x) = 1 (resp. χ f (x) = 1) for ∀x ∈ supp q (resp. ∀x ∈ supp f ). From (3.5),
Theorems 2.1, 2.2 and Lemma 3.4, one can compute

|F2(x̂, k, ω)| ≤
∑

j≥2

∣
∣
∫

R3
e−ikx̂ ·zχq(z)

[
(qRk)

j f
]
(z) dz

∣
∣
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≤ ‖e−ikx̂ ·(·)χq‖Hs−1/2−ε

∑

j≥2

‖(qRk)
j ( f · χq)‖H−s

1/2+ε

≤ Cs · 〈k〉s · Cε,s(ω)
∑

j≥2

k− j (1−2s)‖ f · χq‖H−s
1/2+ε

≤ Cε,s(ω) · 〈k〉s · k−2(1−2s)‖ f · χq‖H−s
1/2+ε

≤ Cε,s(ω)k5s−2‖χq‖Hs−1/2−ε
, (3.31)

with a random variable Cε,s(ω) that is finite almost surely. The last inequality in (3.31)
utilizes the fact that f (·, ω) is microlocally isotropic of order m f so that Theorem 2.2
holds for f (·, ω). Let ε = 1/2 in (3.31), we arrive at (3.30).

The proof is complete. ��

4. Recovery of the Source

In this section, we focus on the recovery of μ f (x) associated with the random source
term. In the recovering procedure, only a single realization of the passive scattering
measurement is used. Thus, α in (1.1) is set to be 0, and the random sample ω is fixed.
The data setM f (ω) is used to achieve the unique recovery.

We first present the following auxiliary lemma.

Lemma 4.1. For any stochastic process {g(k, ω)}k∈R+ satisfying
∫ +∞

1
km−1

E(|g(k, ·)|) dk < +∞,

it holds that

lim
K→+∞

1

K

∫ 2K

K
kmg(k, ω) dk = 0, a.s. ω ∈ �.

Proof. By
∫ +∞
1 km−1

E(|g(k, ·)|) dk < +∞ and Fubini’s Theorem, we know

∫ +∞

1
km−1|g(k, ω)| dk < +∞, a.s. ω ∈ �, (4.1)

which implies that g(k, ω) is almost everywhere finite in terms of k. Now we define a
function gK (k, w) := χ(K ,2K )(k)

2K kmg(k, ω), where χ(K ,2K )(k) is the characteristic func-
tion of the interval (K , 2K ). For almost surely every fixed ω, we have

lim
K→+∞ gK (k, ω) = 0 a.e. k ∈ [1,+∞).

Moreover, the function series {gK (k, ω)}K is dominated, in the argument k, by the
function km−1g(k, ω). Thus, from (4.1) and the dominated convergence theorem, we
can conclude

lim
K→+∞

∫ +∞

1
gK (k, ω) dk = 0 a.s. ω ∈ �.

The proof is complete. ��
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We are ready to establish the recovery of μ f (x).

Proof of Theorem 1.1. This proof depends on Lemma 3.3, which requires x̂ · n ≥ 0.
Hence, we assume that x̂ · n ≥ 0 unless otherwise stated.

Recall the definition of Fp (p = 0, 1, 2) in (3.5). As already mentioned at the
beginning of Sect. 3, we correlate the data in the following form

1

K

∫ 2K

K
km f 16π2u∞(x̂, k, ω)u∞(x̂, k + τ, ω) dk

=
2∑

p,q=0

1

K

∫ 2K

K
km f Fp(x̂, k, ω)Fq(x̂, k + τ, ω) dk

=:
2∑

p,q=0

Ip,q(x̂, K , τ, ω). (4.2)

According to Corollary 4.4 in [8], for ∀τ ≥ 0 and ∀x̂ ∈ S
2, there exists �

0,0
τ,x̂ ⊂ �, with

P(�
0,0
τ,x̂ ) = 0, such that

∀ω ∈ �\�0,0
τ,x̂ , lim

K→+∞ I0,0(x̂, K , τ, ω) = (2π)3/2μ̂ f (τ x̂), (4.3)

which also implies that

∀ω ∈ �\�0,0
τ,x̂ , lim

K→+∞
1

K

∫ 2K

K
km f |F0(x̂, k, ω)|2 dk = (2π)3/2μ̂ f (0). (4.4)

We next estimate the higher order terms. The Cauchy-Schwarz inequality yields

|Ip,q | ≤ ( 1

K

∫ 2K

K
km f |Fp(x̂, k, ω)|2 dk) 1

2 · ( 1

K

∫ 2K

K
km f |Fq(x̂, k + τ, ω)|2 dk) 1

2 .

(4.5)
Recall that m f < 3. From the condition (1.3) and Lemma 3.3 we have

∫ +∞

1
km f −1

E(|F1(x̂, k, ·)|2) dk �
∫ +∞

1
km f −1k−4 dk < +∞. (4.6)

By (4.6) and Lemma 4.1, we conclude that

lim
K→+∞

1

K

∫ 2K

K
km f |F1(x̂, k, ω)|2 dk = 0 a.s. ω ∈ �. (4.7)

For every s ∈ ((3 − mq)/2, 1/2), Lemma 3.5 gives

1

K

∫ 2K

K
km f |F2(x̂, k, ω)|2 dk ≤ Cs(ω)

K

∫ 2K

K
km f k2(5s−2) dk ≤ Cs(ω)

K 4−m f −10s . (4.8)

Recalling the condition (1.3), we know (3 − mq)/2 < (4 − m f )/10.
Choosing any s ∈ (

(3 − mq)/2, (4 − m f )/10
)
, we have 4 − m f − 10s > 0. Com-

bining this with (4.8), we conclude that

lim
K→+∞

1

K

∫ 2K

K
km f |F2(x̂, k, ω)|2 dk = 0 a.s. ω ∈ �. (4.9)
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Formula (4.9) easily implies that

lim
K→+∞

1

K

∫ 2K

K
km f |F2(x̂, k + τ, ω)|2 dk = 0 a.s. ω ∈ �, (4.10)

for every fixed τ ∈ R.
Write A := {(p, q) ; 0 ≤ p, q ≤ 2}\{(0, 0)}. By (4.5), (4.4), (4.7) and (4.10) we

have that, for ∀τ ≥ 0 and ∀x̂ ∈ S
2 there exists �

p,q
τ,x̂ ⊂ � : P(�

p,q
τ,x̂ ) = 0, �

p,q
τ,x̂

depending on τ and x̂ , such that

∀(p, q) ∈ A, ∀ω ∈ �\�p,q
τ,x̂ , lim

K→+∞ Ip,q(x̂, K , τ, ω) = 0. (4.11)

Write �τ x̂ := ∪(p,q)∈A∪{(0,0)}�p,q
τ,x̂ , thus P(�τ x̂ ) = 0. Then (4.11) gives

∀ω ∈ �\�τ x̂ , ∀(p, q) ∈ A, lim
K→+∞ Ip,q(x̂, K , τ, ω) = 0. (4.12)

Combining (4.2), (4.3) and (4.12), we arrive at the following statement:

∀ y ∈ R
3, ∃ �y ⊂ � : P(�y) = 0, s.t. ∀ω ∈ �\�y, we have

lim
K→+∞

1

K

∫ 2K

K
km f 16π2u∞(x̂, k, ω)u∞(x̂, k + τ, ω) dk = (2π)3/2μ̂ f (τ x̂).

(4.13)

To prove Theorem 1.1, the logical order between y and ω should be exchanged.
Denote the usual Lebesgue measure on R

3 as L and the product measure L × P as μ,
and construct the product measure space M := (R3 × �,G, μ) in the canonical way,
where G is the corresponding complete σ -algebra. Define

Z(y, ω) := lim
K→+∞

1

K

∫ 2K

K
km f 16π2u∞(ŷ, k, ω)u∞(ŷ, k+ |y|, ω) dk−(2π)3/2μ̂ f (y).

Write A := {(y, ω) ∈ R
3 × � ; Z(y, ω) �= 0}. Then A is a subset of M. Set χA as the

characteristic function of A in M. By (4.13) we obtain
∫

R3

(
∫

�

χA(y, ω) dP(ω)
)
dL(y) = 0. (4.14)

By (4.14) and Corollary 7 in Sect. 20.1 in [31], we obtain
∫

M

χA(y, ω) dμ =
∫

�

(
∫

R3
χA(y, ω) dL(y)

)
dP(ω) = 0. (4.15)

Since χA(y, ω) is nonnegative, (4.15) implies

∃ �0 : P(�0) = 0, s.t. ∀ω ∈ �\�0,

∫

R3
χA(y, ω) dL(y) = 0. (4.16)

Formula (4.16) further implies for every ω ∈ �\�0,

∃ Sω ⊂ R
3 : L(Sω) = 0, s.t. ∀ y ∈ R

3\Sω, Z(y, ω) = 0. (4.17)

Now Theorem 1.1 is proved by (4.17) for the case where x̂ · n ≥ 0.
Note that μ f is real-valued, and hence μ̂ f (τ x̂) = μ̂ f (−τ x̂) when x̂ · n < 0.
The proof is complete. ��
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5. Recovery of the Potential

This section is devoted to the recovery ofμq(x) associatedwith the the random potential.
The data set Mq(ω) is utilized to achieve the recovery. Throughout this section, α in
(1.1) is set to be 1.

Proof of Theorem 1.2. Similar to the proof of Theorem 1.1, the case where x̂ · n < 0
can be proved by utilizing the fact that μq is real-valued. In what follows, we assume
that x̂ · n ≥ 0 unless otherwise stated.

From (3.4) we have

1

K

∫ 2K

K
kmq16π2u∞(x̂, k,−x̂, ω)u∞(x̂, k + τ,−x̂, ω) dk

=
2∑

p,q=0

1

K

∫ 2K

K
kmq

2∑

p=0

[Fp(x̂, k, ω) + Gp(x̂, k, ω)]

·
2∑

q=0

[Fq(x̂, k + τ, ω) + Gq(x̂, k + τ, ω)] dk

=:
∑

p,q=0,1,2

[
I ′
p,q(x̂, K , τ, ω) + Jp,q(x̂, K , τ, ω)

+ L1
p,q(x̂, K , τ, ω) + L2

p,q(x̂, K , τ, ω)
]
, (5.1)

where
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

I ′
p,q(x̂, K , τ, ω) := 1

K

∫ 2K

K
kmq Fp(x̂, k, ω)Fq(x̂, k + τ, ω) dk,

Jp,q(x̂, K , τ, ω) := 1

K

∫ 2K

K
kmqG p(x̂, k, ω)Gq(x̂, k + τ, ω) dk,

L1
p,q(x̂, K , τ, ω) := 1

K

∫ 2K

K
kmq Fp(x̂, k, ω)Gq(x̂, k + τ, ω) dk,

L2
p,q(x̂, K , τ, ω) := 1

K

∫ 2K

K
kmqG p(x̂, k, ω)Fq(x̂, k + τ, ω) dk.

(5.2)

Note that I ′
p,q differs from Ip,q , defined in (4.2), in that the power of k in the definition

of I ′
p,q is mq while that of Ip,q is m f .
It is shown in [8] that there exists �J ⊂ � : P(�J ) = 0 such that

∀ω ∈ �\�J , lim
K→+∞ J0,0(x̂, K , τ, ω) = (2π)3/2μ̂q(2τ x̂), (5.3)

∀ω ∈ �\�J , lim
K→+∞ Jp,q(x̂, K , τ, ω) = 0, (p, q) ∈ A. (5.4)

We conclude that there exists �I ′ ⊂ � : P(�I ′) = 0 such that

∀ω ∈ �\�I ′ , lim
K→+∞

2∑

p,q=0

I ′
p,q(x̂, K , τ, ω) = 0. (5.5)
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The reason for (5.5) to hold is that

∣
∣

2∑

p,q=0

I ′
p,q(x̂, K , τ, ω)

∣
∣ ≤ 1

Km f −mq

2∑

p,q=0

[( 1

K

∫ 2K

K
km f |Fp(x̂, k, ω)|2 dk) 1

2

· ( 1

K

∫ 2K

K
km f |Fp(x̂, k + τ, ω)|2 dk) 1

2
]
. (5.6)

By (4.4), (4.7) and (4.9)-(4.10), as well as a similar argument that exchanges the logical
order between ω and y, we can prove that there exists �0 : P(�0) = 0 such that for
every ω ∈ �\�0, one can find Sω ⊂ R

3 : L(Sω) = 0 fulfilling that for ∀y ∈ R
3\Sω,

there holds

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

lim
K→+∞

1

K

∫ 2K

K
km f |F0(ŷ, k, ω)|2 dk = (2π)3/2μ̂ f (0), (5.7a)

lim
K→+∞

1

K

∫ 2K

K
km f |Fj (ŷ, k, ω)|2 dk = 0, ( j = 1, 2), (5.7b)

lim
K→+∞

1

K

∫ 2K

K
km f |F2(ŷ, k + |y|, ω)|2 dk = 0. (5.7c)

Combining (5.6)–(5.7), we arrive at (5.5).
We next analyze

∑2
p,q=0 L

1
p,q(x̂, K , τ, ω),

∣
∣

2∑

p,q=0

L1
p,q(x̂, K , τ, ω)

∣
∣ ≤ 1

Km f −mq

2∑

p,q=0

[( 1

K

∫ 2K

K
km f |Fp(x̂, k, ω)|2 dk) 1

2

· ( 1

K

∫ 2K

K
km f |Gp(x̂, k + τ, ω)|2 dk) 1

2
]
. (5.8)

By (5.2)–(5.4), (5.7) and (5.8) and the a-priori requirement mq < m f , we conclude that

lim
K→+∞

∣
∣

2∑

p,q=0

L1
p,q(x̂, K , τ, ω)

∣
∣ � lim

K→+∞
|μ̂ f (0)|
Km f −mq

= 0, a.s. (5.9)

Similarly, we can show

lim
K→+∞

∣
∣

2∑

p,q=0

L2
p,q(x̂, K , τ, ω)

∣
∣ = 0, a.s. (5.10)

Combining (5.1), (5.3)–(5.5) and (5.9)–(5.10), we arrive at

lim
K→+∞

1

K

∫ 2K

K
kmq16π2u∞(x̂, k,−x̂, ω)u∞(x̂, k + τ,−x̂, ω) dk = (2π)3/2μ̂q(2τ x̂).

The proof is complete. ��
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