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Abstract: We study the open refined topological string amplitudes using the refined
topological vertex. We determine the refinement of holonomies necessary to describe
the boundary conditions of open amplitudes (which in particular satisfy the required
integrality properties). We also derive the refined holonomies using the refined Chern–
Simons theory.
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1. Introduction

Gauge theories with N = 2 supersymmetry in 4d have been important playground for
theoretical physics since the celebrated solution of Seiberg andWitten [1,2]. They can be
geometrically engineered in type IIA string theory [3,4]. For theories with SU (N ) gauge
group, compactification manifolds are known to be local toric Calabi–Yau threefolds,
and the closed topological string theory on these threefolds encodes essential infor-
mation about the low energy dynamics of gauge theories. The genus zero topological
string amplitude on them determines the prepotential of gauge theories. Higher genus
amplitudes further encode gravitational couplings and to a large extent are captured by
their holomorphic structure [5]. The topological vertex [6] (see also [7]) and its refine-
ment [8,9] solve the problem of computing all genus string amplitudes on local toric
threefolds.

Topological string theory has been shown to compute contributions coming from
inserting codimension two surface operators with certain singularities of the gauge bun-
dle [10,11]. They are realized bywrappingD4branes onLagrangian submanifolds inside
the internal space, and extending them along R2 ⊂ R

4. For theories with SU (N ) gauge
group, we can place the topological branes either on the external or internal legs of the
associated toric diagram describing the compactification manifold. The branes provide
boundary conditions for holomorphic curves from punctured worldsheet into the target
space, and the open topological strings count such maps. The topological vertex in the
unrefined case also solves the problem of computing all genus amplitudes for external
and internal branes. However, the open amplitude computation turns out to be more
subtle when we consider the refined topological string theory, especially when we want
to focus on internal branes.

A widely adopted approach in formulating refined open topological amplitudes is
based on refining holonomies induced on branes, in addition to the more recent ap-
proaches using geometric transition [12] in the refined context [13–15]. As it is very
common in the refinement, holonomies which are given in terms of Schur functions are
replaced by their refined analog, Macdonald functions. This approach looks very plau-
sible and natural, but once the free energy is studied more thoroughly one encounters
inconsistencies. This can be observed even in the simplest possible brane configuration:
a single internal brane (i.e. one D4 brane) on the resolved conifold. The brane is wrapped
on a Lagrangian submanifold on the resolved conifold, and we need to make a choice
whether the remaning dimensions of the D4 brane extends either on the plane acted by
equivariant parameter q = eiε1 or t = e−iε2 . We call it a q- or t-brane depending which
R
2 it occupies. After our choice, the brane can not lie on both planes at the same time.

Therefore, we expect the amplitude to depend on one of the two equivariant parameters,
in addition to the holonomy induced on the brane. However, the existing approach based
on naive replacement of the holonomies described above results in an amplitude that
depends on both equivariant parameters, a clear indication that the formalism should be
modified.

Another important clue can be obtained by placing a stack of branes along one of the
refined topological vertex Cλμν(t, q), say the first leg λ. If we choose the holonomy to
be expressed in terms of the Schur function, then it is a t-brane. Nevertheless, there is no
reason why we should not be able to wrap D4 branes on this Lagrangian submanifold
and extend them on the other R2 plane, making it a q-brane. We will address these
questions in this short note, and demonstrate that physically consistent results can be
obtained by modifying holonomies from Schur functions not only to Macdonald func-
tions but also to dual Macdonald functions and dual Schur functions with respect to the
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(q, t)-inner product defined by Macdonald [16]. We adopt two different approaches to
derive the correct holonomies1: one, which relies on the integral expansion of the open
topological string free energy, and another based on refined Chern–Simons theory. All
refined holonomies we formulate reduce to Schur functions in the unrefined limit as they
should.

As a byproduct, we apply our formalism to reproduce the explicit form of dual elliptic
Macdonald functions from toric geometries. In [17], partial and full compactifications
of toric webs are introduced, and it is argued that they correspond to elliptic and dual
fibrations respectively. We call them horizontal and vertical compactifications, and asso-
ciate them with position and momentum variables respectively, borrowing terminology
from integrable systems. The variable associated with the compactification is elliptically
deformed. In this paper, we only focus on placing branes along the horizontal legs. We
study both the horizontal compactification in which the brane is an internal brane and the
position variable becomes elliptic. In addition, we focus on the vertical compactifica-
tion when the brane becomes an external brane and the momentum variable has elliptic
dependence.

In Sect. 2, we review the open topological string computation for the unrefined case
when the brane is placed on an internal leg of the toric diagram. Then we propose how
this computation should be refined, and show explicitly that our proposal produces de-
sired form for the free energies. In Sect. 3, we reproduce the refined holonomies using
the annuli amplitudes of the refined Chern–Simons theory. In Sect. 4, we use our formal-
ism to reproduce the dual elliptic Macdonald functions. In Sect. 5, we summarize and
discuss our results. In Appendix, we collect some relevant information about symmetric
functions.

2. Topological Branes

Computing open topological string partition functions on Calabi–Yau threefolds in the
presence of D4 branes is an important problem from several perspectives. Geometri-
cally, these topological string amplitudes encode invariants of holomorphic curves with
boundaries inside the Calabi–Yau threefold. In terms of type IIA string theory/M-theory,
they are counting BPS degeneracies of D2/M2 branes winding holomorphic cycles with
boundaries on D4/M5 branes which wrap Lagrangian cycles of the threefold and ex-
tend in R

2 ⊂ R
4. From the perspective of gauge theory living on R

4, they are partition
functions of codimension two surface operators.

Historically, this problem has been first addressed and solved in the context of un-
refined topological strings. The amplitudes depend on boundary conditions for holo-
morphic maps, which can be expressed either by conjugacy classes of symmetric group
(reflecting how the discs ending on D4-branes are wrapping the S1) or equivalently in
terms of representations of U (∞) labelled by arbitrary Young diagrams of any number
of rows and columns. On D4 branes, the maps induce a holonomy V for the gauge con-
nection supported by branes. The trace of V in a representation μ of the unitary group
is given by the Schur function of eigenvalues (v1, . . . , vn) of V ,

trμV = sμ(V ) = sμ(v1, . . . , vn). (2.1)

1 There is an alternative but equivalent approach to obtain the correct refined open amplitudes. We could
keep the holonomies unrefined, but change instead the refined propagator. In this note, we take the former
approach.
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Two distinct possibilities arise for the location of the D4 branes on a local toric
Calabi–Yau threefold: either, they can be placed either along external or internal legs of
the associated toric diagram. Accordingly, one talks about external or internal branes.
In both cases, a simple prescription is available for the partition function using the
topological vertex. The contribution of an edge with an external brane is given by

(2.2)

where fμ(q) = (−1)|μ|q‖μ‖2/2−‖μt‖2/2 is the framing factor and p is the amount of
framing of the brane. On the other hand, the contribution due to the internal brane is
more involved and given by

(2.3)

where QL and QR denote the Kähler parameters associated to the sizes of the left and
right discs with respect to the internal brane, respectively, and Q = QLQR is Kähler
parameter of the whole P1. trμL V is the holonomy induced on the brane from the disc
left ending on it, and it describes the boundary conditions for the open amplitudes, and
likewise V−1 is due to the disc from the right of the brane.2

Above expressions are useful, as they allow us to study various geometric and gauge-
theoretic properties of interest. For example, in the presence of external branes the open
topological string partition function is conjectured to possess the following integral
structure [18,19],

Z(V ) = exp

⎛
⎝

∞∑
k=1

∑
s,β,μ

1

k
Nμ,β,s

1

qk/2 − q−k/2 Q
k
βq

ks trμV
k

⎞
⎠ , (2.4)

where Nμ,β,s’s are a priori undetermined integers and are the degeneracies of BPS states
due to D2 branes wrapping a relative homology class β ∈ H2(X,L)with the Lagrangian
submanifold L. They have the 2d space-time spin s and SU (M) representation μ. One
can compute these integers up to any desired order once the open topological string
amplitude is computed by any means.

As alluded in the Introduction, the situation is more subtle in the refined case. For
unrefined topological string theory, the partition function is insensitive to the choice
of R2 ⊂ R

4 that the D4 branes occupy. However, if the space-time is subject to �-
deformation, the planes are distinguished by different rotations. �-background intro-
duces a complex structure to R

4 � C
2 and rotates different coordinates by ε1 and ε2:

z1 �→ eiε1 z1:= q z1, z2 �→ eiε2 z2:= t−1 z2. (2.5)

2 The difference of exponents is due to opposite windings of holomorphic maps.
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The refined topological string distinguishes between the two R
2 planes. Depending on

which plane the D4 brane is extending, we talk about q- or t-branes. Such a distinction
is not present in the unrefined topological string. The corresponding open topological
string free energy has an integral expansion in terms of Nμ,β,sL ,sR , which reads as

Z = exp

⎛
⎝

∞∑
k=1

∑
sL ,sR ,β,μ

1

k
Nμ,β,sL ,sR

1

xk/2 − x−k/2 q
ksL t−ksR Qk

β trμV
k

⎞
⎠ , (2.6)

where x is either q or t depending on whether we insert a q- or t-brane. The extra
grading can be best understood when we lift to M-theory, as it is the case for closed
amplitudes [20,21]. The BPS particles are charged under the little group of massive
particles SO(4) � SU (2)L × SU (2)R . We measure left sL and right sR spins by q and
t parameters, respectively.

2.1. External topological branes. We start our discussion with a single stack of external
branes on different legs of the refined topological vertex. It is desirable to have a refined
version of Eqs. 2.2 and 2.3 to compute refined integer invariants. Such a computation, in
addition to the subtlety arising from q versus t-branes, would be also sensitive to whether
the brane is located along the preferred or un-preferred leg of the refined topological
vertex. We will now demonstrate that the choice of holonomy polynomials trμ V should
be “refined” [10,11,22]. The need for such a change can easily be seen along the preferred
direction: assuming that the holonomy is still given by Schur functions, the integrality
of the open free energy is lost:

F = log Z(V ) = log

(∑
ν

	|ν|C∅∅ν(t, q)(−1)|ν|sν(V )

)

= log

(∑
ν

	|ν|(−v)|ν|Pν(t
ρ; q, t)(−1)|ν|sν(V )

)

= 	
q1/2t−1/2

t1/2 − t−1/2 tr V + 	2 qt−1

2(t − t−1)
tr V 2

+ 	2 q(q − t)

2(1 − t)(1 − t2)(1 − qt)
tr V + · · · , (2.7)

where problematic terms deviating from the generic structure clearly vanish when t = q.
	 denotes the size of the disc, which could have been absorbed too by rescaling V ; we
chose not to. This pathology can be cured if we change the holonomy to be given by the
Macdonald polynomial v−|ν|ı Pνt (V ; t, q),

Z(V ) =
∑
ν

	|ν|(−v)|ν|Pν(t
ρ; q, t)v−|ν| ı Pνt (V ; t, q)

=
∏
i, j

(
1 − 	 tρi V j

)−1 = exp

( ∞∑
d=1

1

d

	d

td/2 − t−d/2 tr V k

)
. (2.8)

The denominator in the exponential indicates that the deformed holomony gives rise
toq-branes.However, nothingprevents us equallywrappingD4branes on theLagrangian
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submanifold along the preferred direction and extend them on the t̄-plane. Therefore, the
natural question, as it was mentioned in the introduction, is how to obtain the amplitude
for a stack of t-branes. The refined topological vertex has a given form, hence, the only
freedomwe have at our disposal is to change the holonomy.Macdonald defined so-called
dual Macdonald polynomials Qμ(V ; t, q) where the duality is defined with respect to
the 〈·, ·〉q,t inner product. If we take the holonomy to be proportional to dual Macdonald
function Qμt , we have

Z(V ) =
∑
ν

	|ν|(−v)|ν|Pν(t
ρ; q, t)(−1)|ν|Qν(V ; q, t)

=
∏
i, j

(
1 − 	 qρi V j

)−1 = exp

( ∞∑
d=1

1

d

	d

qd/2 − q−d/2 tr V k

)
. (2.9)

Note that the choice of the holonomy also depends on the way we label the refined
topological vertex, but once a choice ismade then the holonomy is fixed by the integrality
condition.

Similarly, we can place a stack of either q- or t-branes along one of the two un-
preferred directions. So far in the literature the holonomies along these legs are only
taken to be Schur funtions, which are independent of q and t . Up to framing factors, the
refined topological vertex depends on one of equivariant parameters if we wrap branes
on one of the un-preferred directions. Augmenting with Schur functions as holonomies
suggest that along one of un-preferred directions we can only have q-branes and along
the other one only t-branes. Again, this picture does not capture the whole physics
and therefore is too restrictive. Equipped with our new understanding on the choice
of holonomies along the preferred direction, let us determine the holonomies for un-
preferred direction. Imagine we want to compute the open amplitude after placing a
stack of branes along the first leg of the vertex, Cλ∅∅(t, q):

Z(V ) =
∑
λ

	|λ|v|λ|sλt (t−ρ)(−v)−|λ|sλ(V )

=
∏
i, j

(1 − 	 t−ρi V j ) = exp

( ∞∑
d=1

1

d

	d

td/2 − t−d/2 tr V k

)
, (2.10)

which is the partition function for a t-brane. We can get a q-brane if we chose the
holonomy to be proportional to the dual of the Schur function with respect to the (q, t)-
inner product; Sλ(V ; q, t)3:

Z(V ) =
∑
λ

	|λ|v|λ|sλt (t−ρ)(−1)|λ|Sλ(V ; q, t)

=
∏
i, j

(1 − 	 q−ρi V j ) = exp

( ∞∑
d=1

1

d

	d

qd/2 − q−d/2 tr V k

)
, (2.11)

which is clearly a q-brane partition function. As we will elaborate later in Sect. 3.3, there
is a nice relationship between the holonomies v−|ν|ı Pνt (V ; t, q) and (−1)|ν|Qν(V ; q, t)
along the preferred direction, and the same relationship is true for holonomies
(−v)−|λ|sλ(V ) and (−1)|λ|Sλ(V ; q, t) along the un-preferred direction.

3 The definition of the dual Schur function Sλ(V ; q, t) is given in Eq.A.18 in the Appendix.
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2.2. Internal topological branes. Let us turn our attention to internal branes, i.e. topo-
logical branes placed along internal legs of the toric diagram. For the usual topological
string theory, a local prescription is given for the computation of their contributions [6]:
one can isolate the internal leg carrying the brane, and compute the associated disc
amplitudes locally using,

∑
μ,μL ,μR

(−Q)|μ|Q|μL |
L Q|μR |

R Cλσ(μ⊗μL )(q)Cτη(μt⊗μR)(q) trμL V trμR V
−1, (2.12)

where Q = QLQR , and V is the holonomy on the brane from disc ending on it from
left, and likewise V−1 is due to discs from the right of the brane. In the above expression,
for simplicity we ignore possible framing factors due to line bundles over P1 which are
different thanO(−1) ⊕O(−1) �→ P

1, and due to the relative orientation of the interanl
brane in the geometry. The representations λ, σ , τ and η allow us to glue this leg with
the internal brane to the rest of the geometry.

Although the computation of the open refined topological string partition function in-
cludes subtleties related to holonomies, the partition function is expected to algebraically
obey similar gluing rules. However, as we pointed out before, we need to choose what
type of branes we study, and refine holonomies accordingly. We will seperate the study
of q and t-branes in following subsections, and propose refined holonomies based on
the requirement that the open free energy has an integral expansion in the refined case
as well. Later we will reproduce same holonomies using refined Chern–Simons theory
and geometric transition in Sect. 3.

2.2.1. Topological t-branes In this subsection, we refine the internal brane computation
while keeping the algebraic structure the same as in Eq.2.12. First, we demonstrate
that the natural generalization of holonomies from Schur polynomials to Macdonald
polynomials leads to a contradiction. Later, we use the integrality requirement for the
free energy and predict the correct refinement of holonomies.

Let us first keep holonomies unknown and perform the refined computation explicitly
as much as we can. We will assume that the internal brane is placed along the preferred
direction of the refined topological vertex,

Z(V ) =
∑

μ,μL ,μR

(−Q)|μ|Q|μL |
L Q|μR |

R C∅∅(μ⊗μL )(t, q)C∅∅(μt⊗μR)(q, t) trμ1V trμ2V
−1

=
∑

μ,μL ,μR

(−Q)|μ|Q|μL |
L Q|μR |

R (−v)|μ⊗μL |Pμ⊗μL (t
ρ; q, t)(−v)−|μ⊗μR |

× Pμt⊗μR (qρ; t, q)trμL V trμR V
−1

=
∑
μ

(−Q)|μ|
( ∑

μL ,ηL

(−vQL)|μL | N̂ηL
μμL

(q, t)PηL (t
ρ; q, t) trμL V

)

×
( ∑

μR ,ηR

(−v−1QR)|μR | N̂ηR
μtμR

(t, q)PηR (qρ; t, q) trμR V
−1

)
. (2.13)

The refined topological vertex with trivial un-preferred and non-trivial preferred di-
rection is proportional to the Macdonald polynomial. Therefore, we use the refined
Littlewood–Richardson coefficents N̂ for the tensor product, which are rational func-
tions of q and t and reduce to the usual Littlewood–Richardson coefficients when we
take the unrefined limit q = t .
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Just as in the external brane example, the crucial point here is the choice of holonomy
polynomials trμL V and trμR V

−1. Equipped with the previous discussion about the q-
and t-branes, we pick correct holonomies. The sums in parentheses are computing the
disc amplitudes on each side of the internal branes. If we are studying an internal t-brane,
we can pick

trμL V = v−|μL |ı Pμt
L
(V ; t, q), (2.14)

and we can perform the μL -sum first,
∑
μL

(−vQL)|μL | N̂ηL
μμL

(q, t) v−|μL |ı Pμt
L
(V ; t, q) = ı PηtL/μt (−QL V ; t, q), (2.15)

and then we peform the remaining ηL -sum leading to

∑
ηL

PηL (tρ; q, t)ı PηtL/μt (−QL V ; t, q) = Pμ(tρ; q, t) exp

( ∞∑
d=1

1

d

Qd
L

td/2 − t−d/2 tr V d

)
,

(2.16)

which has the correct contribution to the free energy from the left disc, consistent with
the results in [18].

Next we need to determine how trμR V
−1 should be refined for a t̄-brane insertion.

One might expect that the holomony is the same as the one for the left disc, possibly
up to a q ↔ t exchange. However, this choice for the right holonomy fails to produce
the correct free energy. Similar to the computation of the left dics amplitude, we first
perform the μR-sum for the right disc in Eq.2.13,

∑
μR

(−v−1QR)|μR | N̂ηR
μtμR

(t, q)v|μR |ı Pμt
R
(V−1; q, t) = ı PηtR/μ(−QRV

−1; q, t),

(2.17)

and then the ηR-sum. The contribution from the right disc can again be written as a
plethystic exponential,

∑
ηR

PηR (qρ; t, q)ı PηtR/μ(−QRV
−1; q, t)

= Pμt (qρ; t, q) exp

( ∞∑
d=1

1

d

Qd
R

qd/2 − q−d/2 tr V−d

)
. (2.18)

The right disc contribution appears to be due to the insertion of a q-brane. This leads
to a discrepancy between the disc amplitudes coming from different sides of the branes.
c.f. Eq. 2.16. Note that our computation is valid for a stack of arbitrary number of branes,
and we might as well choose a single brane. In this case, the brane extends only on one
R
2 ⊂ R

4 in spacetime, not both. Hence, the free energy should depend only on either q
or t , not both.

We can avoid such inconsistencies if we allow holonomies to be expressed in terms
of other symmetric functions with two parameter deformations. The refined topological
vertex is written in a particular basis of symmetric functions [23], which restricts the set
of possibilities. In addition to Macdonald polynomials, we can use the dual Macdonald
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polynomial Qμ(x; q, t) as the holonomy without spoiling the integrality of the free
energy.4 The correct holonomy turns out to be:

trμR V = (−1)|μR |QμR (V−1; t, q) (2.19)

TheμL -sumcanbe performed explicitly using the definition of the dual skew-Macdonald
polynomial,

∑
μR

(−v−1QR)|μR | N̂ηR
μtμR

(t, q)(−1)|μR | QμR (V−1; t, q) = QηR/μt (v−1QRV
−1; t, q),

(2.20)

and the ηR-sum leads to the correct t-brane contribution from the right disc:

∑
ηR

PηR (qρ; t, q) QηR/μt (v−1QRV
−1; t, q)

= Pμt (qρ; t, q) exp

( ∞∑
d=1

1

d

Qd
R

td/2 − t−d/2 tr V−d

)
. (2.21)

Finally, we can do the remaining sum over μ,

∑
μ

(−Q)|μ|Pμ(tρ; q, t)Pμt (qρ; t, q) =
∞∏

i, j=1

(1 − Q q−ρi t−ρ j ), (2.22)

which gives the closed topological string amplitude of the resolved conifold. Therefore,
the free energy of an internal t-brane, normalized by the closed amplitude, is given by

F(V ) =
∞∑
d=1

1

d

1

td/2 − t−d/2

(
Qd

L tr V d + Qd
R tr V−d

)
. (2.23)

The study of integrality properties of the refined open topological string theory for
even the simplest possible geometry shows that holonomies need to chosen with some
care. The integrality put such severe contraints that we can use it to determine cor-
rect holonomies. We show that for internal branes along the preferred direction, the
holonomies are not the same type of Macdonald polynomials, and need to be dual with
respect to the (q, t)-inner product of Macdonald. We will later discuss this point in more
detail.

4 This argument may look very mathematical without a strong physical principle behind, at least for the
resolved conifold. In the next section, we give a more physical argument based on the refined Chern–Simons
theory.
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2.2.2. Topological q-branes In this subsection, we determine the required refinement of
holonomies for internal q-branes. We will be very brief since the computation does not
differmuch from the one of t-branes in the previous subsection. Equation2.13 is a general
expression assuming the minimal change in the algebraic structure of the internal brane
computation from the unrefined case and is valid for either type of branes. Let us again
first focus on the “left” sums. We can again borrow our earlier result for the refinement
of the external brane and choose the holonomy to be:

trμL V = (−1)|μL | QμL (V ; q, t) (2.24)

After performing all sums for this side of the internal brane, we get

∑
μL ,ηL

(−vQL)|μL | N̂ηL
μμL

(q, t)PηL (t
ρ; q, t) trμL V

= Pμ(tρ; q, t) exp

( ∞∑
d=1

1

d

Qd
L

qd/2 − q−d/2 tr V d

)
. (2.25)

The holomony on the other side can be easily determined to be

trμR V
−1 = v|μR |ı Pμt

R
(V−1; q, t). (2.26)

Similarly, all sums on the right side can be performed with this chosen holonomy to get,

∑
μR ,ηR

(−v−1QR)|μR | N̂ηR
μtμR

(t, q)PηR (qρ; t, q) trμR V
−1

= Pμt (qρ; t, q) exp

( ∞∑
d=1

1

d

Qd
R

qd/2 − q−d/2 tr V−d

)
. (2.27)

The remaining μ-sum gives the closed topological string amplitude on the resolved
conifold.

Let us also note that all these different holonomies become the usual and same
holonomy in the unrefined case!

3. Topological Branes from Refined Chern–Simons Theory

In the previous section, we reviewed that the holonomies of the topological branes
need to be modified for refined topological string theory. Moreover, we argued that the
general assumption of replacing all Schur polynomials for holonomies with Macdonald
polynomials leads to inconsistent free amplitudes for possible brane configurations. In
this section, we adopt a different approach and derive the same conclusions from refined
Chern–Simons theory. The unrefined topological string amplitudes on local toric Calabi–
Yau threefolds were computed using Chern–Simons theory [24,25] which shortly led
to the formulation of the topological vertex [6,7]. More recently, the refined Chern–
Simons theory is constructed [26] and is used to compute the refined topological string
amplitudes [23]. In addition to the refined S and T matrices, the refinement of annuli
amplitudes are proposed.
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The refined Chern–Simons theory is defined as M-theory index in the following
background:

(T ∗M × T N × S1)q,t , (3.1)

where the subscripts denote q and t denote the non-trivial fibration of Taub-NUT space
T N over the M-theory circle S1, c.f. Eq. 2.5. Generically, the supersymmetry is broken,
but the contangent bundle of M is non-compact and there is an additional U (1)R ⊂
SU (2)R that we can use to twist to preserve supersymmetry. If we wrap M5 branes in
this background on

(M × C × S1)q,t , (3.2)

we have a choice to make whether we let theM5 branes extend along the z1 or z2 planes!
Therefore, there two distinct refinement of ordinary Chern–Simons theory.

Wilson loops along knots embedded in M are non-local operators of Chern–Simons
theory.We compute their contributions by considering the open topological string ampli-
tudes. We can pick the co-normal bundle of the knot that is a Lagrangian sub-manifold
LK in cotangent space T ∗M . Additional M5 branes can be wrapped on LK , and the
theory gets a new sector from M2 branes extend from M to LK . According to this
construction, LK has one real dimensional modulus that allows us to lift it off the base
manifold M . Their neighbourhood looks like two Lagrangians each wrapping an S1 in
C

∗. M2 branes wrap the annulus of length 	 connecting these two S1’s on each stack
of M5 branes. Their contribution to the index is captured by the annulus amplitude
O(	;U, V ) where U and V are the holonomies on M and LK [18]. For the unrefined
topological strings, the annuli partition function is given by

O(	;U, V ) = det(1 −U ⊗ V−1)±1. (3.3)

The exponent depends on whether the ground states of strings stretching between the
D-branes are fermionic or bosonic. In topological string theory, we can distinguish
between branes and anti-branes [6,27]. Originally in [18], the annulus stretches between
two stacks of branes that are wrapped on three cycles which may intersect at most on an
S1. This configuration gives rise to bosonic ground states, and the associated amplitude
has a (−1) in the exponent. On the other hand, if one of the stacks consists of anti-branes,
the ground states turn out to be fermionic; reflected in (+1) in the exponent. This happens
when the world volumes of branes are parallel.

In the refined Chern–Simons theory, we can further distinguish between q- and t-
branes. The refinement of O(	;U, V ) distinguishes all four possibilities. The annuli
amplitudes due to two stacks of branes are given by

Oqq(	;U, V ) =
∞∏
n=0

det(1 − qnt	U ⊗ V−1)

det(1 − qn	U ⊗ V−1)
, (3.4)

when q-branes are wrapped on both S3’s, and take the form

Oqt (	;U, V ) = det(1 − v−1	U ⊗ V−1)−1, (3.5)

when the branes wrapping different S3’s are not of the same type. The annuli amplitudes
due to brane and anti-brane configurations are given by

Oqq̄(	;U, V ) =
∞∏
n=0

det(1 − qn	U ⊗ V−1)

det(1 − qnt	U ⊗ V−1)
, (3.6)
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Fig. 1. The geometry before the transtion to compute the open amplitude in the presence of a stack of internal
t-branes

when both branes and anti-branes are of q-type as the labelling suggests, and

Oqt̄ (	;U, V ) = det(1 − v−1	U ⊗ V−1), (3.7)

when one of the stacks has q-branes and the other t-branes.We refer the interested reader
for the detailed derivation of the refined annuli amplitudes to [23,26].

Let us also briefly mention that these amplitudes can be expanded in symmetric
function with two parameters. For example, the annuli amplitude Oqt̄ (	;U, V ) can be
expanded using the Macdonald functions,

Oqt̄ (	;U, V ) =
∑
μ

(−v−1	)|μ|Pμ(U ; q, t)Pμt (V−1; t, q). (3.8)

This expansion is by no means unique, and in the following section, we will make use
of the non-uniqueness of the expansions.

3.1. Topological t-branes from refined Chern–Simons theory. In the previous section,
we used the integrality of the open free energy to determine correct holonomies for
internal topological branes. This approach was rather mathematical and relied on known
identities in the symmetric function theory. As promised, we derive same holonomies
using the refined Chern–Simons theory.

We are studying non-compact branes, and need to specify boundary conditions at
infinity to define the quantum theory.We employ by now the standard trick of considering
branes wrapping on compact Lagrangian cycles. We do so without changing A-model
amplitudes. To get additional S3’s, we allow T 2 fibers degenerate over additional loci.
In addition to probe branes, we have other S3’s in the geometry on which we wrap an
infinite number of branes and let them go through the geometric transition. In the strict
infinite number of branes limit, we take Kähler classes of P1’s after the transition to
infinite as well, leaving only a vertex. We consider the configuration depicted in Fig. 1
to study internal t-branes.

Wewrappedq-branes on the left and right S3’s and t-branes on themiddle 3-cycle.We
will let the number of q-branes go to infinity to get a resolved conifold with an internal
brane insertion. The partition function can be obtained by computing correlators with
respect to refined Chern–Simons theories on the left and right 3-cycles. Schematically,
we have

Z(V ) = 〈Oqq̄(	;UR,UL)Oqt (	L ; V,UL)Oqt (	R;UR, V )〉SU (NL )⊗SU (NR), (3.9)
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wherewe used the notation SU (NL )⊗SU (NR) to emphasize two refinedChern–Simons
theories whose large NL ,R limits we are going to take. We have already reviewed refined
annuli amplitudes from [23,26]. These amplitudes can be expanded in various bases
of symmetric functions, and we list below the ones of particular importance in our
derivation,

Oqq̄(	;U, V ) =
∑
μ

	|μ|ı Qμ(U ; q, t) Pμ(V−1; q, t), (3.10)

Oqt (	;U, V ) =
∑
μ

(−v−1	)|μ|ı Pμt (U ; t, q) Pμ(V−1; q, t)

=
∑
μ

(−v−1	)|μ|ı Qμt (U ; q, t) Qμ(V−1; t, q). (3.11)

Using these expansion, it is very easy to show that the partition function takes the
following form,

Z(V ) =
∑

μ,μL ,μR
ηL ,ηR

	|μ|(−v−1	L)|μL |(−v−1	R)|μR | N̂ηL
μμL

(q, t) 〈PηL (U
−1
L ; q, t)〉SU (NL )

× N̂
ηtR
μtμR

(t, q) 〈ı QηR (UR; q, t)〉SU (NR) ı Pμt
L
(V ; t, q) QμR (V−1; t, q).

(3.12)

To see holonomies we previously found by integrality constraints emerged from refined
Chern–Simons annuli amplitudes, we need to compute expectation values, but they have
been already computed,

〈PηL (U
−1
L ; q, t)〉SU (NL ) = PηL (t

ρ; q, t) = (−v)−|ηL |C∅∅ηL (t, q), (3.13)

〈ı QηR (UR; q, t)〉SU (NR) = (−v)−|ηR |PηtR
(qρ; t, q) = C∅∅ηtR

(q, t). (3.14)

Putting everything together reproduces our results for internal t̄ topological brane,

Z(V ) =
∑

μ,μL ,μR

(−v−1	)|μ|(v−1	L)|μL |(v−1	R)|μR |C∅∅(μ⊗μL )(t, q)C∅∅(μt⊗μR)(q, t)

× v−|μL |ı Pμt
L
(V ; t, q) (−1)|μR |QμR (V−1; t, q), (3.15)

which is the same as we proposed before if we identify

QL = v−1	L , QR = v−1	R, Q = v−1	. (3.16)

Let us also comment on this identification. Assume we do not insert any internal branes.
After the geometric transition, and letting the NL ,R go to infinity, we end up only with
the resolved conifold. For the partition function, we have

〈Oqt̄ (	;U, V )〉SU (NL ,R) =
∑
μ

(−v−1	)|μ|Pμt (q−ρ; t, q)Pμ(t−ρ; q, t)

=
∞∏

i, j=1

(
1 − Q q−ρi t−ρi

)
(3.17)

where the first line is from the refined Chern–Simons computation, and the second from
the vertex. It is clear that we need Q ≡ v−1	!
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3.2. Topological q-branes from refinedChern–Simons theory. Thederivation of holono-
mies for q-branes from the refined Chern–Simons theory is analogous to the one for the
t-branes, hence we will be brief. Open topological string amplitudes can be obtained by
taking the following expectation value:

Z(V ) = 〈Oqq̄(	;UR,UL)Oqq(	L ; V,UL)Oqq(	R;UR, V )〉SU (NL )⊗SU (NR).

(3.18)

Wewill use the following expansions forOqq̄ andOqq in terms ofMacdonald functions,

Oqq̄(	;U, V ) =
∑
μ

	|μ|ı Qμ(U ; q, t)Pμ(V−1; q, t), (3.19)

Oqq(	;U, V ) =
∑
μ

	|μ|Qμ(U ; q, t)Pμ(V−1; q, t) (3.20)

=
∑
μ

	|μ|ı Qμt (U ; q, t)ı Pμt (V−1; q, t). (3.21)

We can again use the expansion in symmetric functions to get,

Z(V ) =
∑

μ,μL ,μR
ηL ,ηR

	|μ|	|μL |
L 	

|μR |
R N̂ηL

μμL
(q, t)〈PηL (U

−1
L ; q, t)〉SU (NL ) N̂

ηtR
μtμR

(t, q)

× 〈ı QηR (UR; q, t)〉SU (NR) QμL (V ; q, t)ı Pμt
R
(V−1; q, t). (3.22)

We can use the expectation value in Eq.3.15, and write the partition function in terms
of the refined topological vertices:

Z(V ) =
∑

μ,μL ,μR

(−v−1	)|μ|(v−1	L)|μL |(v−1	R)|μR |C∅∅(μ⊗μL )(t, q)C∅∅(μt⊗μR)(q, t)

× (−1)|μL |QμL (V ; q, t) v|μR |ı Pμt
R
(V−1; q, t), (3.23)

agreeing with holonomies we proposed by requiring integrality to the free energy ex-
pansion.

3.3. Duality relation and brane changing operator. We would like to point out a nice
relation between holonomies associated to the t- and q-branes. Let us first summarize
holonomies we found for internal branes:

left holonomy right holonomy

t-brane v−|μL |ı Pμt
L
(V ; t, q) (−1)|μR | QμR (V−1; t, q)

q-brane (−1)|μL | QμL (V ; q, t) v|μR |ı Pμt
R
(V−1; q, t)

One obvious relationship is a diagonal one: the left holonomy of the t-brane becomes
the right holonomy of the q-brane after a q ↔ t exchange. The same is true for remaining
holonomies.

There is yet a second relationship between holonomies of the q- and t-branes that can
be understood algebraically. The dual Macdonald function Qμ(V ; q, t) is defined using
the endomorphism ωq,t on the ring of symmetric functions. This is just a two parameter
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generalization of the involution ω on Schur functions; ωsλ = sλt . The action of ωq,t on
the powersums for t �= 1 is given by,

ωq,t pn = (−1)n−1 1 − qn

1 − tn
pn . (3.24)

If we compare two holonomies, it is not hard to find a vertical relationship. Let us define
the brane changing operator �t,q :

�t,q ≡ (−v)L0 ı ωt,q , (3.25)

where L0 counts the number of boxes labeling the symmetric function. The action of
�t,q can be easily computed on t-brane holonomies:

�t,q

(
v−|μL |ı Pμt

L
(V ; t, q)

)
=

(
(−1)|μL | QμL (V ; q, t)

)
,

�t,q

(
(−1)|μR | QμR (V−1; t, q)

)
=

(
v|μR |ı Pμt

R
(V−1; q, t)

)
, (3.26)

which change the holonomies for t-branes into q-branes on each side of the brane.Hence,
we reach

�t,q : t − brane �→ q − brane. (3.27)

The action of �t,q on powersums which are isomorphic to oscillator modes is easy
to determine as well:

�t,q pn = tn/2 − t−n/2

qn/2 − q−n/2 pn . (3.28)

Note that the brane changing operator from q-brane to t-brane is just the inverse of the
former operator,�q,t = �−1

t,q , similar toωq,t . In addition, it become the identity operator
when we take the unrefined limit, q = t .

We can see that �q,t is in fact the brane changing operator from refined Chern–
Simons theory as well. Its action on the anti-brane is the same. The amplitude of annuli
stretching between q and t̄ branes is given by,

Oqt̄ (	;U, V ) = det
(
1 − v−1	U ⊗ V−1

)

=
∑
μ

(−v−1	)|μ| Pμ(U ; q, t) Pμt (V−1; t, q). (3.29)

We should consider the action of �t,q on the stack of probe branes described by
Pμt (V−1; t, q),

�t,q Pμt (V−1; t, q) = (−v)|μ|ı Qμ(V−1; q, t), (3.30)

converting the Oqt̄ (	;U, V ) annulus into Oqq̄(	;U, V ):

�t,q Oqt̄ (	;U, V ) = Oqq̄(	;U, V ) (3.31)

�t,q Oqt (	;U, V ) = Oqq(	;U, V ) (3.32)

Before we finish this section, let us briefly mention that �t,q acts the same way on
the holonomies along the un-preferred direction:

�t,q

(
(−v)−|λ|sλ(V )

)
=

(
(−1)|λ|Sλ(V ; q, t)

)
, (3.33)

changing a t-brane to a q-brane.
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Fig. 2. The toric diagram assosicated with the M-strings. In addition to the vertical compactification, we also
compactified the horizontal direction

4. Application: Double Compactified Toric Calabi–Yau 3-fold

As a principal illustration, we apply our formalism to compute ‘refined open topological
amplitudes on the doubly compactified toric Calabi–Yau threefold with Kähler param-
eters Qρ and Qτ = 	xQ2

m associated with elliptic curves [17]. We study different
limits of the Kähler classes with branes along the horizontal leg of the toric diagram, as
depicted in Fig. 2.

This geometry generalizes the non-compact case Qρ = Qτ = 0, when the partition
function can be straightforwardly computed with the help of standard topological vertex
methods and has a number of nice properties. One can express the partition function
either as a series (in what follows we fix a single brane, n = 1)

Z

Z0

∣∣∣
Qρ=Qτ =0

= 1 +

√
t(1 − T )

T (1 − q)

(
1 + xQm

)
︸ ︷︷ ︸

P1(x)

u

+
t (1 − T )(1 − qT )

T 2(1 − q)(1 − q2)

(
1 +

(1 + q)(1 − T )

(1 − qT )
xQm + x2Q2

m

)
︸ ︷︷ ︸

P2(x)

u2 + · · ·

(4.1)

where T =
√

q
t Q

−1
m , or in closed form

Z

Z0

∣∣∣
Qρ=Qτ =0

= (t
1
2 u; q)∞(t

1
2 uxQm; q)∞

(t
1
2 u/T ; q)∞(t

1
2 uxQm/T ; q)∞

(4.2)

where (x; q)∞ = ∏∞
n=0(1 − qnx). Both representations are interesting. In the series

representation, the coefficients Pk(x) are the celebrated polynomial eigenfunctions of the
trigonometricRuijsenaars–Schneider system—Macdonaldpolynomialswith parameters
q and T . In the closed form representation, each of the 4 factors corresponds to a BPS
state in the geometry.

In this section, we will give elliptic generalizations of both representations. As it
turns out, the first (series) representation generalizes most nicely to the case Qρ �= 0,
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while the second (closed form, BPS) representation admits a nice generalization to the
case Qτ �= 0. This is an illustration of validity of the the holonomy prescription that we
suggest.

In this geometry the edge with the brane has no other parallel edges, hence our local
prescription applies and gives for the partition function of the brane

Z =
∑

{τi },{λi }

∑
ν

∑
μ,μL ,μR

(−x)|ν|(−Qm)|λ1|+|λ2|

(−Qτ Q
−1
m )|τ1|+|τ2|(−	)|μ|	|μR |Cλt1τ

t
1ν

t (q, t)

× Cλ1τ1(μ⊗μL )(t, q)Cλt2τ
t
2(μ

t⊗μR)(q, t)Cλ2τ2ν(t, q) (−1)|μL |

QμL

(
u1, . . . , un; q, t

)
ı Pμt

R

(
u−1
1 , . . . , u−1

n ; q, t
)

=
∑
ν

∑
μ,μL ,μR

∑
ηL ,ηR

(−x)|ν|(−	)|μ|	|μR |(−1)|μL |

N̂ηL
μμL

(q, t)N̂ηR
μtμR

(t, q)DνηL (Qτ , Qm)

× DηtRν(Qτ , Qm) QμL

(
u1, . . . , un; q, t

)
ı Pμt

R

(
u−1
1 , . . . , u−1

n ; q, t
)
. (4.3)

Some of the Kähler classes in the above expression are rescaled for notational purposes
to make the comparison to elliptic Macdonal polynomial easier. The τi and λi sums can
be performed explicitly and we called them Dνμ(Qτ , Qm) following [28] where it was
first computed and regarded as a building block for M-strings. It takes the following
form,

Dνμ(Qτ , Qm)

≡
∑
λ,τ

(−Qm)|λ|(−Qτ Q
−1
m )|τ |Cλt τ tνt (q, t)Cλτμ(t, q)

= q
‖μ‖2
2 − ‖ν‖2

2 t−
‖μt ‖2

2 + ‖νt ‖2
2 Pμ(t−ρ; q, t)Pνt (q

−ρ; t, q)

×
∞∏
k=1

∏
(i, j)∈ν

(1 − Qk
τ Q

−1
m q−νi+ j− 1

2 t−μt
j+i− 1

2 )(1 − Qk−1
τ Qm qνi− j+ 1

2 tμ
t
j−i+ 1

2 )

(1 − Qk
τ q

−νi+ j t−νtj+i−1
)(1 − Qk

τ q
νi− j+1tν

t
j−i

)

×
∏

(i, j)∈μ

(1 − Qk
τ Q

−1
m qμi− j+ 1

2 tν
t
j−i+ 1

2 )(1 − Qk−1
τ Qm q−μi+ j− 1

2 t−νtj+i− 1
2 )

(1 − Qk
τ q

−μi+ j−1t−μt
j+i )(1 − Qk

τ q
μi− j tμ

t
j−i+1

)
.

(4.4)

We now proceed to compute Eq.4.3. When all parameters are generic, we will com-
pute the partition function as a series expansion in the Kahler classes in the Gopakumar–
Vafa form, demonstrating that the result has correct pole structure and integrality prop-
erties. For some special values of parameters, those series expansions can be summed
up in closed form and related to pronounced solutions of elliptic Ruijsenaars–Schneider
integrable models: namely, the elliptic Macdonald series and dual elliptic Macdon-
ald polynomials. The two particular cases that we consider correspond to Qτ = 0
(momentum-elliptic) and Qρ = 0 (coordinate-elliptic).
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4.1. Generic case. As usual for any sufficiently non-trivial Calabi–Yau geometry, if
all parameters are generic it is not possible to give a closed form expression for the
partition function of topological strings in that background. One of the most convenient
forms in which it can be expressed is the Gopakumar–Vafa form also known as the BPS
expansion. We first remind how this works for a closed string partition function5

Z0 =
∑
μ,ν

(−x)|ν| (−	)|μ|Dνμ(Qτ , Qm) Dμν(Qτ , Qm). (4.5)

In this case, the Gopakumar–Vafa expansion has the form

Z0 = exp

( ∞∑
d=0

F0
(
qd , td , xd ,	d , Qd

m, Qd
ρ

)

d(qd/2 − q−d/2)(td/2 − t−d/2)

)
, (4.6)

where the numerator F0(q, t, Qβ) encodes the degeneracies, N ( jL , jR)
β , of the BPS states

with their charges under the little group in 5d coming from wrapping M2 branes on β:

F0(q, t, Qβ) =
∑

β∈H2(X,Z)

∑
jL , jR

(−1)2 jL+2 jR N ( jL , jR)
β tr jR

(q
t

) jR,3
tr jL (q t) jL ,3 Qβ

(4.7)

where we used as a collective Kähler class Qβ that includes x , 	, Qm , Qτ and Qρ . To
the first few orders,

F0 = −x +
(
t
1
2 q− 1

2 + q
1
2 t−

1
2
)
xQm − xQ2

m+

+
(
t
1
2 q− 1

2 + q
1
2 t−

1
2
)
xQρQ

−1
m +

(
t
3
2 q− 3

2 + t
1
2 q− 1

2 + q
1
2 t−

1
2 + q

3
2 t−

3
2
)
x2Qρ+

− 	 +
(
t
1
2 q− 1

2 + q
1
2 t−

1
2
)
	Qm − 2	Qmx + · · · . (4.8)

Note that the result is manifestly symmetric under q, t exchange, as a closed partition
function should be. It is also symmetric under (q, t) → (q−1, t−1).

Similarly, for an open string partition function with a (single, n = 1) brane insertion
computed with Eq.4.3 and normalized over the closed part, we find,

Z

Z0
= exp

( ∞∑
d=0

F
(
qd , td , ud , xd ,	d , Qd

m, Qd
ρ

)

d(qd/2 − q−d/2)

)
, (4.9)

where the numerator F , to the first few orders, is given by,

F = u + uxQm − t
1
2 q− 1

2 uQm − t
1
2 q− 1

2 uxQ2
m

− t−
1
2 q

1
2 uQ−1

m Qρ + uxQ−1
m Qρ +

(
1 + q + t−1)uQρ

− (
2 + 2tq−1 + t + q−1)t− 1

2 q
1
2 uQρx +

(
1 + t−1q + tq−1)uQρx

2

+ t
1
2 q− 1

2 	u−1 − 	u−1Qm + t
1
2 q− 1

2 	xQmu
−1 − x	u−1Q2

m

+ (1 − t)q− 1
2 	Q2

mx + · · · . (4.10)

5 If we set μL and μR to ∅ in Eq.4.3; in other words, turn off the holonomies, we obtain the closed
topological string partition function.
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Note that the result is not symmetric under q, t exchange, as one can expect for an open
partition function: the symmetry is broken by choosing a q-brane vs. a t-brane. This does
not mean the multiplicities of BPS states depend on this choice: rather, by choosing a
q-brane vs. a t-brane one counts the same BPS states with different weights. In other
words, the two partition functions contain identical enumerative information.

4.2. Case Qτ = 0. In this subsection, we decompactify the “vertical” elliptic fiber
with Kähler class Qτ , and have only one elliptic fiber in the “horizontal” direction.6 In
the language of the integrable system literature, this choice constitutes the momentum-

elliptic case. In this case for either of the three values of Qm =
√

q
t ,

√
t
q ,

√
qt , the

following holds for the normalized open amplitude:

Z

Z0
=

∞∑
k=0

(
u
√
q

T

)k

ck Pk(x), (4.11)

where ck are numeric normalization factors,

ck =
k−1∏
i=0

∞∏
m=0

(1 − Qm
ρ q

i T )(1 − Qm+1
ρ q−i T−1)

(1 − Qm
ρ q

i+1)(1 − Qm+1
ρ q−i t−1)

, (4.12)

and Pk(x) are the dual elliptic Macdonald polynomials,

Pk(x) =
k∑

m=0

(Qmx)
m

m−1∏
i=0

θ(qk−i )θ(Tqi )

θ(qk−i T/q)θ(qi+1)
, (4.13)

with Macdonald parameters q and T =
√

q
t Q

−1
m . Here

θ(z) =
∞∏

m=0

(1 − Qm
ρ z)(1 − Qm+1

ρ /z) (4.14)

is the Jacobi theta function. Note that the result only has a singularity at q → 1, but not
at t → 1, since the choice of holonomies in Eq.4.3 corresponds to a (in this example
single, n = 1) q-brane.

Polynomial Pk(x) represents the brane partition function with fixed boundary con-
dition corresponding to the k-th symmetric representation of SU (2), and it satisfies

(
qQmx

T

θ(qx∂x−k)

θ(qx∂x−k+1T−1)
− θ(qx∂x )

θ(qx∂x−1T )

)
Pk(x) = 0, (4.15)

which is the dual elliptic Ruijsenaars–Schneider equation, as given in [29, Eq. 4.85] and
[30, Eq. 4.59].

6 “Vertical” and “horizontal” directions refer to the associated toric diagram.
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4.3. Case Qρ = 0. In this case, the shortest way of giving the answer is through the
BPS expansion,

Z

Z0
= exp

( ∞∑
d=0

F
(
qd , td , ud , xd ,	d , Qd

m, Qd
τ

)

d(qd/2 − q−d/2)

)
, (4.16)

where the numerator F , to all orders, is given by,

F = (1 − t)q− 1
2 	Q2

mx + (1 + xQm)
(
u − t

1
2 q− 1

2 uQm + t
1
2 q− 1

2 	u−1 − Qm	u−1
)

1 − Qτ

,

where, we remind, Qτ = 	xQ2
m is the total Kähler class of the compact 2-cycle. The

geometric progression factor (1 − Qτ )
−1 = 1 + Qτ + Q2

τ + · · · implies that infinitely
many BPS states that wrap this cycle multiple times are organized in a simple tower of
states. This is a characteristic property of the coordinate-elliptic case.

5. Discussion and Outlook

In this paper, we studied the refinement of the holonomies for open topological string
amplitudes. The correct holonomies are determined using the integrality properties of the
refined open free energies, and are also independently derived with the refined Chern–
Simons theory. Our approach demonstrates how one can place q- or t-branes on any leg
of the refined topological vertex.

The local prescription for the computation of open topological string amplitudes in
the presence of internal branes is well known to be valid in the unrefined case for any
toric geometry. However, in the refined case the issue is more subtle. This can be easily
observed by studying surface operators inN = 2 SU (2) theory with four flavors. In 4d,
the contribution due the surface operator can be calculated by inserting an additional
degenerate operator in the Liouville four-point conformal block [31]. If we lift the theory
to 5d, R4 × S1, we can study its q-deformation using the Dotsenko–Fateev Coulomb
gas interpretation of the conformal block. From the geometric engineering view point,
it is nothing but inserting an internal brane along one of the horizontal line in the toric
diagram of the local P1 ×P

1 geometry blown up at four points. We used our refinement
of holonomies to reproduce the surface operator contribution and observed a mismatch.

On the other hand, we used geometric transition to compute the same amplitude and
found an agreement with the q-deformed Liouville theory computation. In this approach,
we need to wrap a single brane on one of the 3-cycles for a surface operator, and none
to the other 3-cycle, depicted in Fig. 3. The failure of the local prescription suggests that
annuli can end on the 3-cycle with “no brane” and give contributions. This may look
strange since the annuli are not expected to end on a 3-cycle if no-branes are wrapped
on it. One possible explanation is that, if the same number branes and anti-branes are
wrapped on it, effectively there may not be any gauge theory associated with it but the
the annuli still have a place to end. This point is still under investigation and will be
reported later [32].

The above observation holds true more generally. Whenever the NS5 brane used in
geometric transition intersects a single P1 in the original geometry, the local prescription
that we proposed reproduces the correct result. Conversely, whenever there is more than
one intersection, we observe a mismatch. This suggests that further modifications may
be necessary in these cases. Because of non-local nature of the “no brane” phenomenon
described above, these modifications may ultimately lead to a non-local prescription.
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Fig. 3. The geometry before the transtion: we place a single brane on the upper S3 and no branes on the lower
S3
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Appenix A: Useful Identities

In this section, we collect some identities and background materials used in this note.
We used the refined topological vertex to compute the open topological string amplitude
which has the following explicit form,

Cλμν(t, q) = t−
‖μt ‖2

2 − ‖νt ‖2
2 q

‖μ‖2
2 + ‖ν‖2

2 Pν(t
−ρ; q, t)∑

η

v|η|+|λ|−|μ|sλt/η(q−ν t−ρ)sμ/η(t
−νt q−ρ), (A.1)

where Pν(t−ρ; q, t) is the Macdonald polynomial at the special point xi = t i−1/2, and
sλ/η is the skewSchur function, defined below.Moreover, we used the shorthand notation

‖λ‖2 ≡
�(λ)∑
i=1

λ2i . (A.2)

v is given by q1/2t−1/2. We have also made use of the following identity:

Pν(t
ρ; q, t) = (−1)|ν|qn(νt )t−n(ν)Pν(t

−ρ; q, t). (A.3)

For completeness, let us remind the reader following identities that are frequently used
in our computations,

n(λ) =
�(λ)∑
i=1

(i − 1)λi =
∑

(i, j)∈λ

(λtj − i) =
∑

(i, j)∈λ

(i − 1) = ‖λt‖2
2

− |λ|
2

(A.4)
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n(λt ) =
�(λt )∑
i=1

(i − 1)λti =
∑

(i, j)∈λt

(λi − j) =
∑

(i, j)∈λt

( j − 1) = ‖λ‖2
2

− |λ|
2

. (A.5)

In this paper, we showed that holonomies which are describing boundary conditions
for open topological strings need to be modified in the refined case to ensure the integral-
ity property. We argued that the naive modification from Schur functions to Macdonald
functions does not capture the full story, and we need to include the dual Macdonald
functions. Let us briefly recall the definition and some properties of them. Macdonald
introduced a two-parameter extension of the usual inner product defined for powersum
symmetric functions pμ, which we call (q, t)-inner product,

〈pλ, pμ〉q,t = δλμzλ

�(λ)∏
i=1

1 − qλi

1 − tλi
, (A.6)

where zμ is a combinatorial factor defined by

zλ =
∏
i≥1

imi mi !, (A.7)

withmi = mi (λ) being the number of rows inλ of length i . q and t parameters introduced
in refined topological strings are same parameters as the ones introduced byMacdonald,
and the unrefined case is when q = t , the limit when the (q, t)-inner product reduces to
the usual inner product.

The dual Macdonald function Qμ(x; q, t) is defined as the dual symmetric function
of the Macdonald function with respect to the (q, t)-inner product:

〈Pλ, Qμ〉q,t = δλμ. (A.8)

There is a very nice relationship between the Macdonald polynomial Pμ(x; q, t) and its
dual Qμ(x; q, t):

Qμ(x; q, t) = bμ(q, t)Pμ(x; q, t), (A.9)

where bμ(q, t) is the inverse of the algebraic norm square of theMacdonald polynomial,

bμ(q, t) = 1

〈Pλ, Pμ〉q,t
. (A.10)

Another useful approach to understand the duality is obtained by generalizing the in-
volution ω on the ring of symmetric functions similarly to depend on two parameters.
Recall the action of ω on powersums pλ,

ω pλ = ελ pλ, (A.11)

where ελ = (−1)|λ|−�(λ). The action of ω on Schur function is particularly interesting,

ω sλ = sλt . (A.12)

The action of the two parameter version is defined compatible with the inner product,

ωq,t pλ ≡ ελ pλ

�(λ)∏
i=1

1 − qλi

1 − tλi
. (A.13)
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The two parameter generalization of the involution ωq,t relates Pμ and Qμ as

ωq,t Pμ(x; q, t) = Qμt (x; t, q),

ωq,t Qμ(x; q, t) = Pμt (x; t, q). (A.14)

The above identities follow from the simple identity ωt,q = ω−1
q,t .

On general grounds, we can easily show that the sum over all Young diagrams takes
the following product form,

∑
λ

Pλ(x; q, t)Qλ(y; q, t) = �(x, y; q, t), (A.15)

where we have,

�(x, y; q, t) = ωt,q

∏
i, j

(1 + xi y j ) = exp

( ∞∑
n=1

1

n

1 − tn

1 − qn
pn(x)pn(y)

)
. (A.16)

In [33], the dual Schur function Sλ(x; q, t) is defined using the (q, t)-inner product

〈sλ, Sμ〉q,t = δλμ. (A.17)

The dual Schur function can also be obtained similar to the case for the Macdonald
function with the help of the refined involution ωt,q ,

Sλ(x; q, t) = ıωt,q sλ(−x), (A.18)

and remember that ı is another involution defined by it action on the powersumsymmetric
function ı pλ = −pλ. The Cauchy identity for the Schur and dual Schur function is (sum
up to the same product as the Macdonald and the dual Macdonal function),

∑
μ

sμ(x)Sμ(y; q, t) = �(x, y; q, t). (A.19)

Using Littlewood–Richardson coefficients determined by sμsν = ∑
λ Nλ

μνsλ, the skew
(dual) Schur function are defined by,

sμ/ν(x) =
∑
λ

Nμ
νλsλ(x), (A.20)

Sμ/ν(x; q, t) =
∑
λ

Nμ
νλSλ(x; q, t). (A.21)

The dual Schur functions satisfy similar to the Schur functions,

Sμ(x, y; q, t) =
∑
λ

Sμ/λ(x; q, t)Sλ(y; q, t). (A.22)

The skew (dual) Macdonald function are defined after refining the Littlewood–
Richardson coefficients which we denote by N̂μ

νη(q, t). There are defined similar to
Schur function using the Macdonald polynomials,

Pν(x; q, t)Pη(x; q, t) =
∑
μ

N̂μ
νη(q, t)Pμ(x; q, t). (A.23)
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We list the identities required for our computations without any proofs,

Qμ/ν(x; q, t) =
∑
η

N̂μ
νη(q, t)Qη(x; q, t), (A.24)

Pμ/ν(x; q, t) =
∑
η

N̂μt

νtηt
(t, q)Pη(x; q, t). (A.25)

The Cauchy identities are deformed a little bit once we include the skew functions,
∑
λ

Pλ(x; q, t)Qλ/μ(y; q, t) = Pμ(x; q, t)�(x, y; q, t), (A.26)

∑
λ

Pλt/μ(x; t, q)Pλ(y; q, t) = Pμt (y; q, t)
∏
i, j

(1 + xi y j ). (A.27)
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