
Digital Object Identifier (DOI) https://doi.org/10.1007/s00220-020-03821-1
Commun. Math. Phys. 378, 1451–1500 (2020) Communications in

Mathematical
Physics

Equivariant K -Theory and Refined Vafa–Witten
Invariants

Richard P. Thomas

Department of Mathematics, Imperial College London, London SW7 2AZ, UK.
E-mail: richard.thomas@imperial.ac.uk

Received: 4 December 2019 / Accepted: 7 May 2020
Published online: 20 July 2020 – © The Author(s) 2020

Abstract: In Maulik and Thomas (in preparation) the Vafa–Witten theory of complex
projective surfaces is lifted to oriented C

∗-equivariant cohomology theories. Here we
study the K -theoretic refinement. It gives rational functions in t1/2 invariant under t1/2 ↔
t−1/2 which specialise to numerical Vafa–Witten invariants at t = 1. On the “instanton
branch” the invariants give the virtual χ−t -genus refinement of Göttsche–Kool, extended
to allow for strictly semistable sheaves. Applying modularity to their calculations gives
predictions for the contribution of the “monopole branch”. We calculate some cases and
find perfect agreement. We also do calculations on K3 surfaces, finding Jacobi forms
refining the usual modular forms, proving a conjecture of Göttsche–Kool. We determine
the K -theoretic virtual classes of degeneracy loci using Eagon–Northcott complexes,
and show they calculate refinedVafa–Witten invariants. Using this Laarakker (Monopole
contributions to refined Vafa–Witten invariants. arXiv:1810.00385) proves universality
results for the invariants.
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1. Introduction

Numerical.Vafa–Witten invariants should exist for all Riemannian 4-manifolds S [VW],
but mathematicians have yet to find a general definition. When (S,OS(1) is a smooth
complex projective surface the invariants were defined in [TT1,TT2]. However, physi-
cists are by now less interested in numerical Vafa–Witten invariants, which they mostly
know how to calculate1 in rank 2. They care more about the refined Vafa–Witten invari-
antswhich arise in topologically twistedmaximally supersymmetric 5d superYang-Mills
theory, but which do not have a mathematical definition.

Joyce/Kontsevich-Soibelman.Sowewould like to refine the numerical invariants [TT1,
TT2] on a smooth complex polarised surface (S,OS(1)). Those numerical invariants
are closely related to local DT invariants of the local Calabi-Yau threefold X = KS .
(In fact when H1(OS) = H2(OS) they are precisely local DT invariants, as studied
in [GSY1,GSY2] for instance.) They count certain compactly supported 2-dimensional
torsion sheaves on X via localisation with respect to the obvious T = C

∗ action on X .
If they were defined by Euler characteristic localisation—weighted by the Behrend

function [Be]—they would have an obvious refinement given by the work of Team Joyce
andKontsevich-Soibelman. But Euler characteristic localisation gives thewrong answer,
and in fact the invariants of [TT1,TT2] are defined by virtual localisation.

Nekrasov-Okounkov. For threefolds X with aC
∗ action, Nekrasov andOkounkov [NO]

give a different refinement of DT theory via equivariant virtual K-theoretic invariants.
This means replacing the length of the 0-dimensional virtual cycle (the classical DT
invariant) by the holomorphic Euler characteristic of the virtual structure sheaf. This
gives the same numerical answer, but also allows for a refinement by using the T action
to promote dimensions of cohomology groups to characters of T . The result is rational
functions of t which specialise at t = 1 to the old numerical invariants.

In fact Nekrasov-Okounkov twist by a square root of the virtual canonical bundle of
the moduli space before taking (equivariant) holomorphic Euler characteristic. This is
motivated by physics, relating the ∂ operator to the Dirac operator. From an algebro-
geometric point of view, it makes the refinementmore symmetric: it is a rational function
in t1/2 which, by Serre duality, is invariant under t1/2 ↔ t−1/2. The choice of square
root is equivalent to the choice of orientation data in the Joyce/Kontsevich-Soibelman
theory. Fortunately in our setting there is a canonical choice on the T -fixed locus: see
Proposition 2.6 below.

Vafa–Witten refinement. Under certain circumstances Davesh Maulik [Ma] proved
that the K -theoretic and Joyce/Kontsevich-Soibelman refinement of DT theory coincide.
(The most general refinement is based on the two variable Hodge–Deligne polynomial;
here we are concerned with the Hirzebruch χ−t one variable specialisation.) So he
suggested that it is natural to try to also refine Vafa–Witten theory using T -equivariant

1 Mathematicians should consider their calculations as conjectures we cannot yet prove.



Equivariant K -Theory and Refined Vafa–Witten Invariants 1453

K -theory. That is what we do in this paper. We use the Vafa–Witten perfect obstruction
theory of [TT1,TT2] to produce a virtual structure sheaf, and then twist by the square
root (2.7) of the virtual canonical bundle. We then use a virtual localisation formula to
take equivariant holomorphic Euler characteristic. In Theorem 5.15 we reproveMaulik’s
result that this refinement recovers the refined DT invariant when deg KS < 0.

Further refinements. In fact this is a special case of more general refinements. Recall
[BF] that virtual cycles come from intersecting a cone in a vector bundle C ⊂ E over
moduli spaceM with the zero section ι : 0E ↪→ E of the vector bundle. One can intersect
these two cycles [C] and [0E ] in any oriented cohomology theory. Traditionally we use
Fulton-MacPherson intersection theory to get the virtual cycle in homology [BF],

[M]vir = ι![C] ∈ H∗(M).

In K -theory we instead take the (derived) tensor product of the structure sheaves of the
two cycles [FG,CFK],

Ovir
M = [O0E

L⊗ OC ] = [Lι∗OC ] ∈ K0(M).

The result is slightly different—differing by a Todd class, by virtual Riemann–Roch—
and therefore interesting! (Especially when we work equivariantly with respect to the T
action.)

To get the Nekrasov-Okounkov-twisted version of this used in our paper we instead
take the intersection in KO-theory. This replaces the K -theoretic “fundamental classes"
OZ of submanifolds by their twists by K 1/2

Z (this is the Atiyah–Bott–Shapiro complex
orientation, and is well defined over Z only for spin manifolds).

The universal case is complex cobordism theory; see [Sh,GK2] for instance. From
this one can pass to all other oriented cohomology theories, such as “topological modular
forms”.2 In Vafa–Witten theory, the three T -equivariant cohomology theories

(
homology, KO-theory, tmf

)

give rise to virtual versions of
(∫

M 1, Â(M), Witten genus (M)
)

of the Vafa–Witten moduli space M respectively. On the “instanton locus" these produce
the

(
Euler characteristic, Hirzebruch χy-genus, elliptic genus

)

of the moduli space of instantons (or Gieseker stable sheaves) on the surface S. (This
apparent paradox is because the Vafa–Witten obstruction theory on the instanton moduli
space differs from its usual obstruction theory.)

Calculations give generating series which seem to be

(modular forms, Jacobi forms, Borcherds lifts of Jacobi forms)

respectively; in particular see [GK2] for the instanton locus contributions in rank 2.

2 tmf is a deep theory over the integers [Ho]; we only use its rational version which is trivial to define using
the Witten genus and the Landweber exact functor theorem.
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These refinements of Vafa–Witten theory are defined and studied in the forthcom-
ing paper [MT2]. In this paper we specialise the general definition from [MT2] to T -
equivariant K -theory and explore it in more detail.

Results. In Sect. 2 we give a careful treatment of virtual K -theoretic localisation for
T -equivariant K -theory on quasi-projective T -schemes with a T -equivariant perfect
obstruction theory and compact T -fixed locus. This allows us to define K -theoretic
invariants for such schemes endowedwith a choice of square root of the virtual canonical
bundle. For simplicity, in this Introduction we state our results for symmetric perfect
obstruction theories; then Proposition 2.6 gives a canonical choice (2.7) of this square
root.

Theorem. Let M be a quasi-projective T -scheme with compact T -fixed locus, and a
T -equivariant symmetric perfect obstruction theory. Then the refined invariant

χt

(
M, Ô vir

M

) := χt

(

MT,
Ovir

MT

�•(N vir)∨
⊗ K

1
2
M,vir

∣∣∣
MT

)

ofDefinition2.19 is a rational function of t
1
2 , invariant under t

1
2 ↔ t− 1

2 . It is deformation
invariant and has poles only at roots of unity and the origin, but not at t = 1. Specialising
to t = 1 recovers the numerical invariant defined by T -equivariant localisation,

χt

(
M, Ô vir

M

)∣∣∣
t=1 =

∫

[MT ]vir
1

e(N vir)
.

Stable case. In Sect. 4 we apply this to the Vafa–Witten moduli space for a projective
surface S and a charge α ∈ H∗(S) for which semistability implies stability.3 The moduli
space carries a symmetric perfect obstruction theory and a T action inherited from the
T action on X . The result is invariants which specialise to the numerical Vafa–Witten
invariants [TT1]

VWα(t) ∈ Q(t1/2) such that VWα(1) = VWα ∈ Q. (1.1)

ThisVWα(t) is made up of contributions from the two types of component of the T -fixed
locus:

• the “instanton branch” of sheaves on S pushed forward to X ,
• the “monopole branch” of T -equivariant sheaves supported on a nontrivial scheme
theoretic thickening of S ⊂ X .

Semistable case. We tackle the general case in Sect. 5. We use Joyce–Song pairs to
rigidify semistable sheaves as in [TT2]. The resulting refined pair invariants P⊥α,n(t)
are functions of the twisting parameter n 
 0 of the Joyce–Song pairs. According to
Conjecture 5.2 they should be expressable in terms of certain universal functions in n,

P⊥α (n, t) =
∑

�≥1, (αi=δiα)�i=1:
δi>0,

∑�
i=1 δi=1

(−1)�
�!

�∏

i=1
(−1)χ(αi (n))

[
χ(αi (n))

]
tVWαi (t)

3 Here α is the total Chern class of the sheaves on S underlying the Vafa–Witten Higgs pairs in our moduli
space.
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if H0,1(S) = 0 = H0,2(S); otherwise we take only the first term in the sum:

P⊥α (n, t) = (−1)χ(α(n))−1[χ(α(n))
]
tVWα(t).

The coefficients VWα(t) then define the refined Vafa–Witten invariants. Here [χ ]t is the
quantum integer

[χ ]t :=
tχ/2 − t−χ/2

t1/2 − t−1/2
= t−c + t−c+1 + · · · + tc−1 + tc, c := χ − 1

2
. (1.2)

Since [χ ]t → χ as t → 1, Conjecture 5.2 specialises to Conjecture 6.5 of [TT2],
now proved in many cases [TT2,MT1]. Here we prove the refined conjecture in some
situations.

Theorem. Conjecture 5.2 holds, thus defining refined Vafa–Witten invariants VWα(t),
in the following cases.

• When all semistable sheaves of charge α are stable. In this case VWα(t) recovers
the invariants (1.1).
• KS < 0. When deg KS < 0, for any charge α. Here we recover refined 4 DT
invariants: VWα(t) = Jα(t).
• KS = 0. When S is a K3 surface and the charge α is primitive or a prime multiple
of a primitive class.
• KS > 0. When pg(S) > 0, for any charge α with prime rank, Laarakker [La2]
shows that the conjecture holds for the contribution of the monopole locus. He uses
the vanishingTheorem5.23 to removemany components, and [GT1,GT2] to calculate
with the rest.

K3 surfaces. We are able to do extensive calculations when S is a K3 surface. The
well-known 1/d2 multiple cover formula of DT theory is replaced by a 1/[d]2t multiple
cover formula (5.39) in the refined setting. (This is a surprising contrast to the 1/d[d]t
refined multiple cover formula seen in DT theory—see [DM, Section 6.7] for instance.)
At the level of generating series we are led to the conjecture

∑

k

VWr,k(t) q
n =

∑

d|r

1

[d]2t
d

r
qr

r/d−1∑

j=0

̃
(
e2d jπ i/r q

d2
r , td

)−1
, (1.3)

where 
̃ is the Jacobi form


̃(q, t) := q
∞∏

k=1
(1− qk)20(1− tqk)2(1− t−1qk)2.

When the rank r is prime this reduces to a conjecture of Göttsche–Kool [GK3] which
we prove in Theorem 5.48.

Theorem. Let S be a K3 surface with generic polarisationOS(1). Then (1.3) holds for
prime r.

4 There is a refinement of DT theory based on the two-variable Hodge–Deligne polynomial E(u, v). Here
we use the one-variable specialisation based on the Hirzebruch χ−t := E(t, 1) genus; see Sect. 5.1 for details
and definitions.
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Modularity. On the instanton branch M our refined Vafa–Witten invariants recover
the virtual χ−t -genus refinement studied by Göttsche–Kool on surfaces with KS > 0
[GK1]. This is most easily seen whenM is smooth and unobstructed as a moduli space
of fixed-determinant sheaves on S. Then its Vafa–Witten obstruction bundle is �M ⊗ t
so that

Ovir
M = �• Ob∗ ∼= �•(TMt−1) and Kvir = K 2

Mt dimM.

Therefore

Ô vir
M = Ovir

M ⊗ K
1
2
vir = (−1)dimM t− dimM/2�•(�Mt)

so that χt (Ô vir
M ) = (−1)dimM t− dimM/2χ−t (M).

Applying modularity to Göttsche–Kool’s calculations of these invariants gives pre-
dictions for the contribution of the “monopole branch". We calculate a small number of
cases (which nonetheless take 9 pages of calculation) and find perfect, honest5 agree-
ment.

Nested Hilbert schemes. There are components of the monopole branch which are
nestedHilbert schemes of S. In [GT1,GT2] itwas shownhow to view these as degeneracy
loci in smooth products of Hilbert schemes of S. This induces a virtual cycle which
agrees with the one fromVafa–Witten theory. Its pushforward is described by the Thom–
Porteous formula. This gives a more systematic way to compute numerical Vafa–Witten
invariants as integrals over products of smooth Hilbert schemes.

In Sect. 3 we describe K -theoretic analogues of these results, replacing Chern classes
by Koszul resolutions and the Thom–Porteous formula by Eagon–Northcott complexes.
Themost straightforward result, relevant to nestedHilbert schemes of points on a surface,
is the following.

Theorem. Given a map of vector bundles σ : E0 → E1 over a smooth scheme X,
the locus Z where σ is not injective carries a natural virtual structure sheaf whose
pushforward to X has K -theory class

ι∗Ovir
Z = OX − det(E0 − E1)⊗

∧
r (E1 − E0), (1.4)

where r = rank E1 − rank E0.

When the degeneracy locus Z has the correct codimension, the Eagon–Northcott
complex of σ : E0 → E1—whose K -theory class is the right hand side of (1.4)—is
well known to resolve ι∗OZ . So the above result shows that even when it has the wrong
codimension, its K-class is ι∗Ovir

Z ∈ K0(X).
Carlsson–Okounkov [CO] express the Thom–Porteous class of [GT1] in terms of

Grojnowski–Nakajima operators. There are K -theoretic analogues of this in [CNO,
MO,SV] to which we intend to return.

We also relate Ovir
Z to the Vafa–Witten virtual structure sheaf when Z is a nested

Hilbert scheme. The upshot is that monopole branch contributions to refined Vafa–
Witten invariants can be computed from calculations on smooth products of Hilbert
schemes of S.

5 I did the calculations repeatedly until they converged; only then did I allow Martijn Kool to tell me his
prediction from [GK3]; fortunately the results matched.
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Laarakker. In [La1] (stable case) and [La2] (general case) Laarakker uses this to great
effect on surfaces with pg > 0 (and h0,1 = 0 for now). Things work best in prime
rank, using the vanishing Theorem 5.23 to eliminate many components of the monopole
locus. The rest can be calculated via universal integrals over Hilbert schemes of points
and curves on surfaces using the results of [GT1,GT2].

Moreover, the contributions from points and curves split, in an appropriate sense.
The curves contribute Seiberg-Witten invariants (certain well-understood integrals over
linear systems). Laarakker evaluates the contributions of Hilbert schemes of points via
the method of [EGL]. The result depends only on the curve class β ∈ H2(S, Z) and
the cobordism class of the surface—and thus only on c1(S)2, c2(S) and β2. Therefore
these contributions can be calculated on K3 surfaces and toric surfaces (despite these
not having pg > 0!).

Theorem. [La1]Let S beaminimal general type surfacewith pg(S) > 0and H1(S, Z) =
0 such that KS does not admit a square root. We work with rank 2 Higgs pairs (E, φ)

with det E = KS. Then the monopole branch contributions to the refined Vafa–Witten
generating series

∑
n VW2,KS ,n(t) q

n can be written

A(t, q)χ(OS)B(t, q)c1(S)2 ,

where

A(t, q), B(t, q) ∈ Q(t1/2)((q)),

are universal functions, independent of S.

Furthermore K3 calculations determine A(t, q) completely, while by modularity and
the work of Göttsche–Kool he knows what B(t, q) should be, and he can check this in
low degree by toric computations.

2. K -Theoretic Virtual Cycles

The foundations of cohomological virtual cycles are laid down in [BF,LT]; we use the
notation from [BF]. The foundations for K -theoretic virtual cycles (or “virtual structure
sheaves") are laid down in [CFK,FG]; we use the notation from [FG].

2.1. Virtual cycle and virtual structure sheaf. Let M be a quasi-projective scheme with
a perfect obstruction theory E• → LM supported in degrees [−1, 0]. That is, E• is
a 2-term complex E−1 → E0 of vector bundles on M such that the map E• → LM
induces an isomorphism on h0 and a surjection on h−1. We call L

vir
M := E• the virtual

cotangent bundle of M , of rank vd := rank E0 − rank E−1 and determinant

Kvir := det E• = det E0 ⊗ (det E1)−1.

Dualising, we set Ei := (E−i )∗ to get the virtual tangent bundle

T vir
M := E• = (E•)∨ = (

L
vir
M

)∨
.

By [BF] this data defines a cone C ⊂ E1 from which we may define M’s virtual
cycle

[
M
]vir := ι!0[C] ∈ Avd(M)
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and its virtual structure sheaf [FG]

Ovir
M := [

Lι∗0 OC
] ∈ K0(M), (2.1)

where ι0 : M → E1 is the zero section. (Since ι0 is a regular embedding, Lι∗0 OC
is a bounded complex.) If M is compact the virtual Riemann–Roch theorem of [FG,
Corollary 3.4] then gives

χ(Ovir
M ) =

∫

[M]vir
Td
(
T vir
M

)
. (2.2)

In particular, if M also has virtual dimension zero vd = 0 we can use either the virtual
structure sheaf or the virtual cycle to define the same numerical invariant

χ(Ovir
M ) =

∫

[M]vir
1 ∈ Z when vd = 0. (2.3)

2.2. Twisted virtual structure sheaf. Via themediumofNekrasov andOkounkov, physics
teaches us that we should choose a square root of the virtual canonical bundle and work
instead with the twisted/modified/symmetrised6 virtual structure sheaf,

Ô vir
M := K

1
2
vir ⊗Ovir

M . (2.4)

This paper is mainly concerned with the virtual K -theoretic invariant χ(Ô vir
M ). When M

is compact the virtual Riemann–Roch theorem [FG, Corollary 3.4] gives the following
cohomological expression for it,

χ(Ô vir
M ) =

∫

[M]vir
ch
(
K

1
2
vir

)
Td
(
T vir
M

)
, (2.5)

modifying (2.2). Of course in virtual dimension zero this makes no difference and we
recover (2.3),

χ(Ô vir
M ) = χ(Ovir

M ) =
∫

[M]vir
1 when vd = 0,

but it will make a big difference to its refinement when we work equivariantly. This will
also allow us to fix the ambiguity in the choice of K 1/2

vir , because on the fixed locus there
is a canonical choice.

Proposition 2.6. Let M be a quasi-projective scheme with a T = C
∗ action with pro-

jective fixed locus MT . Suppose M has a T -equivariant symmetric perfect obstruction
theory E• → LM. Then KM,vir

∣∣
MT admits a canonical square root7

K
1
2
M,vir

∣∣∣
MT
:= det

(
E•|MT

)≥0
t
1
2 r≥0 . (2.7)

Here
(
E•|

MT

)≥0
denotes the part of E•|MT with nonnegative T -weights, and r≥0 is its

rank.
6 For instance, this symmetrisationwill lead, via Serre duality, to the t1/2 ↔ t−1/2 symmetry of Proposition

2.27.
7 We are abusing the notation · |MT since we have not shown this line bundle extends to M . The point is

we will only need it on MT . And our square root is only equivariant for the action of the double cover of T ,
since we need to use t1/2.
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Proof. Decompose the virtual cotangent bundle in weight spaces for the T action,

E•
∣∣
MT =

⊕

i∈Z
Fi ti .

Here each Fi is a T -fixed two-term complex of vector bundles on MT of (super)rank
ri := rank(Fi ). The symmetry of the obstruction theory,

(E•)∨ ∼= E•[−1] ⊗ t

implies that

(Fi )∨ ∼= F−i−1[−1].
Therefore

KM,vir = det E• =
⊗

i<0

det(Fi ti ) ⊗
⊗

i≥0
det(Fi ti )

=
⊗

i<0

det
(
(Fi ti )∨[1]) ⊗

⊗

i≥0
det(Fi ti )

=
⊗

i<0

det(F−i−1t−i ) ⊗
⊗

i≥0
det(Fi ti )

=
⊗

i≥0
det(Fi ti+1) ⊗

⊗

i≥0
det(Fi ti )

=
(⊗

i≥0
det(Fi ti )

)⊗2
tr0+r1+···

=
(
det
(
E•|MT

)≥0)⊗2
tr≥0 .

2.3. Localisation. Suppose as above T := C
∗ acts on bothM and its perfect obstruction

theory E• → LM . Then on its fixed locus ι : MT ↪→ M we get a splitting

ι∗E• = (E•)T ⊕ (
N vir)∗

into fixed and moving parts (i.e. weights 0 and nonzero). By [GP] the fixed part (E•)T
defines a perfect obstruction theory onMT (and so a virtual structure sheaf (2.1)).We call
the dual of the moving summand the virtual normal bundle N vir. The virtual localisation
formula of [GP] states that

ι∗
(

1

e(N vir)
∩ [MT ]vir

)
= [M]vir ∈ AT

vd(M)⊗
Z[t] Q[t, t−1]. (2.8)

Here we consider the T -equivariant Chow homology to be a module over H∗(BT ) =
Z[t], which we localise, inverting the equivariant parameter t—the first Chern class
of the weight 1 irreducible representation t of T . This ensures that, writing N vir as a
two-term complex of T -equivariant vector bundles N0 → N1 all of whose weights are
nonzero, the ctop(Ni ) are invertible. Thus we may define e(N vir) := ctop(N0)/ctop(N1).
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To mimic this in K -theory we use the module structure of K 0
T (M) over K 0

T (point) =
Z[t, t−1] to localise to the field of fractions8 Q(t). Adjoining t1/2 (so we can lift our
choice of square root (2.7) to localised T -equivariant K -theory), we work in

K 0
T (M)⊗

Z[t,t−1] Q
(
t
1
2
)
.

Now applying (2.8) to (2.5), and using the notation �•E := ∑
i≥0(−1)i�i E in

K -theory, we find

χ(Ô vir
M ) =

∫
[
MT
]vir

ch
(
K

1
2
vir

∣∣
MT

)
Td
(
T vir
MT

)
Td(N vir)

e(N vir)

=
∫
[
MT
]vir

ch
(
K

1
2
vir

∣∣
MT

)

ch(�•(N vir)∨)
Td
(
T vir
MT

)

= χ

⎛

⎝
Ovir
MT ⊗ K

1
2
vir

∣∣
MT

�•(N vir)∨

⎞

⎠ , (2.9)

the last line from the virtual Riemann–Roch theorem [FG, Corollary 3.4] on MT . This
suggests there should be a K -theoretic localisation formula

ι∗
Ovir

MT

�•(N vir)∨
= Ovir

M ∈ K 0
T (M)⊗

Z[t,t−1] Q
(
t
1
2
)
, (2.10)

from which (2.9) would follow by taking χ
( · ⊗K

1
2
vir

)
.

Such a result is proved in [CFK,Theorem5.3.1] for (M, E•)which canbe enhanced to
a [0, 1]-dg-manifold structure.More recentlyQu has proved (2.10) for any T -equivariant
(M, E•) [Qu].

For the first version of this paper I was unaware ofQu’swork, and did not want to have
to prove that Vafa–Witten moduli spaces M admit a T -equivariant [0, 1]-dg-manifold
structure (though they certainly do). So I proved a weaker statement—a T -equivariant
version of (2.9), which is sufficient for our purposes. I have kept that proof—which
is Proposition 2.13 below—since it demonstrates the compatiblity of K -theoretic and
cohomological localisation under virtual Riemann–Roch. So we turn to this now.

2.4. Refinement. We are interested in situations where M may be noncompact, but
carries a T action with compact fixed locus MT . Then (2.2) and (2.5) make no obvious
sense, but their natural refinements—given by replacing (super)ranks of graded vector
spaces by characters of (virtual) T -modules—are perfectly well-defined. That is, we
define

χt

⎛

⎝
⊕

i

tai −
⊕

j

tb j

⎞

⎠ :=
∑

i

tai −
∑

j

ta j . (2.11)

8 In fact it would be sufficient to invert t i − 1 for all i = 1, 2, 3, . . . .
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Here the left hand side may involve infinite direct sums; then the right hand side will be
a sum of power series in t1/2 and t−1/2 which, in our situation, will be expansions of
rational functions in Q(t1/2). When the sums are finite we may set t = 1 and recover
the usual Euler characteristic or (super)rank.

Applying (2.11) to R�
(
M, Ô vir

M

)
gives our refinement of the integer (2.5).

χt

(
M, Ô vir

M

) := χt

(
R�
(
M, Ô vir

M

)) ∈ Q
(
t
1
2
)
. (2.12)

When M is compact this specialises to (2.5) at t = 1, but (2.12) makes sense more
generally.

Proposition 2.13. Suppose MT is compact and we have chosen a square root K 1/2
vir ∈

KT
0 (M)(t1/2). Then the refined invariant (2.12) can be calculated on MT by localisation

as

χt

(
M, Ô vir

M

) = χt

(

MT,
Ovir

MT

�•(N vir)∨
⊗ K

1
2
M,vir

∣∣
∣
MT

)

∈ Q
(
t
1
2
)
. (2.14)

Proof. This follows directly from the localisation formula (2.10) of [CFK] when M is a
[0, 1]-dg-manifold acted on by T , and from [Qu] more generally. Alternatively, we can
repeat the argument of (2.9) in an equivariant setting, replacing the virtual Riemann–
Roch formula of [FG, Corollary 3.4] by its equivariant analogue.

We use the standard trick of approximating the homotopy quotient M ×T ET over
BT = P

∞ by the M-bundle

pN : M ×T (CN+1\{0}) −→ P
N .

(Here T acts with weight 1 on C
N+1.) Applying the virtual Grothendieck–Riemann–

Roch theorem of [FG, Theorem 3.3] to pN gives

ch
(
RpN∗ Ô vir

M

) = pN∗
(
ch
(
K

1
2
vir

)
Td
(
T vir
M

) ∩ [M]vir
)

. (2.15)

As N increases this is a sequence of compatible cohomology classes over P
N ⊂ P

N+1 ⊂
· · · , defining a class in

lim←− H∗
(
M ×T (CN+1\{0}), R

) = H∗T (M, R)⊗
R[t] R[[t]].

By (2.8) its class in H∗T (M, R)⊗R[t] R((t)) is equal to

ch
(
RpN∗ Ô vir

M

) = pN∗
( ch

(
K

1
2
vir

)
Td
(
T vir
M

)

e(N vir)
∩ [MT ]vir

)
. (2.16)

Again, we spell out what this means in terms of the finite dimensional models. We can
expand 1/e(N vir) as an H∗(M)-valued Laurent series in t−1. Write it as a sum of terms
ai t i , where ai ∈ H−2 rank(Nvir)−2i (M). This therefore vanishes for − rank(N vir)− i >

dim M , i.e. for i sufficiently negative. Therefore 1/e(N vir) is a Laurent polynomial
in t , and we may pick n 
 0 such that tn · 1/e(N vir) ∈ H∗T (M, R) ⊗R[t] R[[t]] ⊂
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H∗T (M, R)⊗R[t] R((t)). Then the statement is that lim←−(2.15) is t−n times by the inverse
limit of the compatible sequence of cohomology classes

pN∗

⎛

⎜
⎝
ch
(
K

1
2
vir

)
Td
(
T vir
M

)

t−ne(N vir)
∩ [MT ]vir

⎞

⎟
⎠ ∈ H∗

(
M ×T (CN+1\{0}), R

)
.

Using e(N vir) = ch(�•(N vir)∨)Td(N vir) and T vir
M

∣∣
MT = T vir

MT +N
vir in K -theory, these

classes are

pN∗

⎛

⎜
⎝

ch
(
K

1
2
vir

)

t−n ch
(
�•(N vir)∨

) Td
(
T vir
MT

) ∩ [MT ]vir

⎞

⎟
⎠ .

Let qN : MT ×T (CN+1\{0}) = MT ×P
N → P

N denote the restriction of pN . Applying
[FG, Theorem 3.3] to qN gives

ch

⎛

⎝RqN∗

⎛

⎝ K
1
2
vir

∣∣
MT

t−n�•(N vir)∨
Td
(
T vir
MT

) ∩ [MT ]vir
⎞

⎠

⎞

⎠ . (2.17)

Since the Chern character of any (virtual) T -representation V is ch(V ) = χet (V ), the
upshot is

χet (Ô vir
M ) = lim←− (2.16) = t−n lim←− (2.17) = χet

( Ovir
MT

�•(N vir)∨
⊗ K

1
2
vir

)

.

Substituting s = et gives the result.

Now we have localised to MT we can use the canonical square root (2.7) of Propo-
sition 2.6 to make an unambiguous definition of our refined invariants.

Assumption 2.18. We will assume

(1) M is a quasi-projective T -variety with projective fixed locus MT ,
(2) M has a T -equivariant symmetric obstruction theory.

By Proposition 2.6, this implies the existence of

• a T -equivariant perfect obstruction theory with vd = 0, and
• a choice of line bundle on MT whose square is KM,vir|MT ,

and this is all we will actually use. So although it is more elegant to assume (1) and (2)
from now on, the reader can replace (2) by the above two conditions instead to get a
slightly more general result. We then call the line bundle K 1/2

M,vir

∣∣
MT .

Definition 2.19. Suppose M satisfies (2.18). Then we define its refined K -theoretic
invariant χt

(
M, Ô vir

M

)
to be

χt

(

MT,
Ovir

MT

�•(N vir)∨
⊗ K

1
2
M,vir

∣∣
∣
MT

)

∈ Q
(
t
1
2
)
, (2.20)

where K
1
2
M,vir

∣∣
MT is the canonical choice (2.7).
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Again, when M is compact, (2.20) specialises to (2.5) at t = 1. When M is non-
compact (but MT is compact) and has virtual dimension vd = 0 we can still define a
cohomological substitute for (2.5) or (2.2) (both of which are

∫
[M]vir 1 in the compact

case) by localisation (2.8) as follows:

∫

[MT ]vir
1

e(N vir)
∈ Q. (2.21)

This lies in Q ⊂ Q[t, t−1] because vd(M) = 0 implies that rank N vir = − vd(MT ).
Then (2.20) refines (2.21) even when M is noncompact:

Proposition 2.22. If M satisfies (2.18) then (2.20) is a rational function of t1/2 with
poles only at roots of unity and the origin, but not at 1. We may therefore specialise to
t = 1, where we recover the rational number (2.21):

χt

(

MT,
Ovir

MT

�•(N vir)∨
⊗ K

1
2
vir

)∣∣∣∣∣
t=1
=
∫

[MT ]vir
1

e(N vir)
∈ Q.

Proof. We compute

χet

(

MT,
Ovir

MT

�•(N vir)∨
⊗ K

1
2
vir

)

=
∫

[MT ]vir
ch
(
K

1
2
vir

)
Td
(
T vir
MT

)

ch
(
�•N vir

)∨

=
∫

[MT ]vir
ch
(
K

1
2
vir

)
Td
(
T vir
M

∣∣
MT

)

e(N vir)
. (2.23)

Wewish to evaluate this at t = 0 (i.e. et = 1).Writing K
1
2
vir = Ltw for somew ∈ Z[1/2],

we expand

1/e(N vir) = c0t
vd(MT ) + c1t

vd(MT )−1 + . . . ,

ch
(
K 1/2
vir

) = ewt (1 + c),

Td
(
T vir
M

∣∣
MT

) = 1 + d1t + d2t
2 + . . . , so that

ch
(
K 1/2
vir

)
Td
(
T vir
M

∣∣
MT

) = 1 + e1t + e2t
2 + . . . ,

where ci ∈ H2i (MT ) and c, di , ei ∈ H>0(MT ). Therefore ci = 0 for i 
 0 and the
first series is a finite sum. Consider multiplying it by the last series.

• The t<0 terms of the first series all have coefficients in H>2 vd(MT )(MT ) (both
before and after multiplication by the last series). These integrate to zero against
[MT ]vir.
• The t>0 terms of the first series go to 0 at t = 0, and the same is true when they are
multiplied by the last series.

So we are left with the cvd(MT )t
0 term of the first series. When multiplied by any ei

we get a class in H>2 vd(MT )(MT ) whose integral over [MT ]vir is zero. So when we



1464 R. P. Thomas

multiply cvd(MT )t
0 by the last series and integrate, we get the same as just (multiplying

by 1 and) integrating; this contributes
∫

[MT ]vir
cvd(MT ) =

∫

[MT ]vir
1

e(N vir)
.

This gives the numerical result claimed. But since it doesn’t give the statement about
rationality, we now go back to the first line of (2.23) and expand everything in sight
carefully.

Write (N vir)∨ = N 0 − N 1 as a global difference of two T -bundles with nonzero
weights. Let the Chern roots of N 0 and N 1 be xi +wi t and y j + v j t respectively, where
wi , v j are all nonzero integers. Letting s := et , we have

1

ch
(
�•N vir

)∨ =
∏

j (1− ey j etv j )
∏

i (1− exi etwi )
=
∏

j (1− sv j )
(
1− E(y j )

sv j

1−sv j
)

∏
i (1− swi )

(
1− E(xi )

swi

1−swi

) ,

where E(u) := eu − 1 is the power series u + u2/2! + u3/3! + · · · .
If we write 1 − qv = (1 − q)[v]′q , where [v]′q := 1 + q + q2 + · · · + qv−1 is the

quantum integer,9 this becomes

(1− s)− rank(Nvir)

∏
j [v j ]′s∏
i [wi ]′s

∏

j

(
1− E(y j )

sv j

(1− s)[v j ]′s

)

×
∏

i

(
1 + E(xi )

swi

(1− s)[wi ]′s
+ E(xi )

2 s2wi

(1− s)2([wi ]′s)2
+ · · ·

)
. (2.24)

Now E(xi ) = xi + x2i /2 + x3i /3! + · · · lies in cohomological degrees ≥ 2, so, when
we multiply out, any (1 − s)− j term comes multiplied by a term a j su j , where a j has
cohomological degree≥ 2 j onMT (and u j is an integer). And− rank(N vir) = vd(MT ),
so on restriction to [MT ]vir we get

(1− s)vd(M
T )

∏
j [v j ]′s∏
i [wi ]′s

(
1 + a1s

u1(1− s)−1 + · · · + avds
uvd (1− s)− vd

)
(2.25)

by ignoring all cohomology classes which have degree ≥ 2 dim[MT ]vir = 2 vd(MT ).
Since T vir

MT is a fixed complexwith trivial T action, ch(K 1/2
vir )Td(T vir

MT ) = sw(1+σ) for

some σ ∈ H≥2(MT )with no t (or s) dependence. Multiplying by (2.25) and integrating,
(2.23) becomes

χs = sw

∏
j [v j ]′s∏
i [wi ]′s

vd(MT )∑

k=0
(1− s)ksuvd−k

∫

[MT ]vir
(1 + σ) ∧ avd−k . (2.26)

Thus χs is a rational function of s
1/2 with poles only at roots of unity and possibly zero,

but not 1, as required.

9 There is another convention [v]q := q−(v−1)/2[v]′q for quantum integers (1.2) that we will use in Sect. 5.



Equivariant K -Theory and Refined Vafa–Witten Invariants 1465

Since we’ve got this far we may as well use (2.26) to give another derivation of the
evaluation at s = 1. This gives

χ1 =
∏

j v j
∏

i wi

∫

[MT ]vir
avd .

This integral sees only the part of avd which has degree precisely 2 vd, so only the degree
2 parts xi , y j of E(xi ), E(y j ) in (2.24) contribute to it. So replacing E(xi ), E(y j ) by
xi , y j in (2.24), it becomes the cohomological degree vd part of

(1− s)vd
∏

j [v j ]′s∏
i [wi ]′s

∏
j

(
1− y j s

v j

(1−s)[v j ]′s
)

∏
i

(
1− xi swi

(1−s)[wi ]′s
) = (1− s)vd

∏
j

(
[v j ]′s − y j s

v j

(1−s)
)

∏
i

(
[wi ]′s − xi swi

(1−s)
) .

To evaluate at s = 1, we now reuse t to denote s − 1 and take the coefficient of t0 in the
Laurent expansion (in t−1!) of

(−t)vd
∏

j

(
v j +

y j s
v j

t

)

∏
i

(
wi +

xi swi

t

) =
∏

j (−v j t − y j )
∏

i (−wi t − xi )
= 1

e(N vir)
.

When we expand 1/e(N vir) as a Laurent series in t−1 the coefficient of t i lies in
H2 vd(MT )−2i (MT ). Therefore integrating over [MT ]vir takes only the t0 term. We con-
clude again that

χ1 =
∫

[MT ]vir
1

e(N vir)
.

Proposition 2.27. The refinement (2.20) is a rational function of t
1
2 (with poles only at

roots of unity and the origin) invariant under t
1
2 ↔ t− 1

2 , and is deformation invariant.

Proof. All that is left to prove is the invariance under t
1
2 ↔ t− 1

2 . This follows from the
“weak virtual Serre duality" of [FG, Proposition 3.13] on MT :

χt−1

(

MT ,
Ovir

MT

�•(N vir)∨
⊗ K

1
2
M,vir

)

= (−1)vd(MT )χt

(

MT,
Ovir

MT

�•N vir ⊗ K
− 1

2
M,vir ⊗ KMT,vir

)

= (−1)rank(Nvir)χt

(

MT,
Ovir

MT

�•N vir ⊗ K
1
2
M,vir ⊗ det N vir

)

= χt

(

MT,
Ovir

MT

�•(N vir)∨
⊗ K

1
2
M,vir

)

,

where the last equality is from the identity

�•(N vir)∨ ∼= (−1)rank(Nvir)�•N vir ⊗ det(N vir)∗. (2.28)
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2.5. Shifted cotangent bundles. WhenM is the (−1)-shifted cotangent bundleT ∗[−1]MT

of a quasi-smooth derived projective scheme MT , with the obvious T = C
∗ action on

the fibres, it has a symmetric perfect obstruction theory and the refined invariant (2.20)
simplifies. Letting p denote the projection M → MT we get the exact triangle

p∗
(
T vir
MT

)∨⊗ t [−1] −→ T vir
M

p∗−−→ p∗T vir
MT , (2.29)

where t denotes the standard weight 1 representation of T . In particular KM,vir =
p∗(KMT ,vir)

2 ⊗ tvd(M
T ) and the canonical choice (2.7) of square root is just

K
1
2
M,vir := KMT, vir t

vd(MT )/2. (2.30)

On the zero section MT ⊂ M the exact triangle (2.29) gives

N vir = (
T vir
MT

)∨⊗ t [−1] = L
vir
MT t [−1].

Therefore, using both (2.30) and the identity (2.28), we have in localised K -theory,

1

�•
(
N vir

)∨ ⊗ K
1
2
M,vir = (−1)rank(Nvir)

det(N vir)⊗ KMT, vir t
vd(MT )/2

�• N vir

= (−1)vd(MT )K−1
MT, vir

t− vd(MT ) ⊗ KMT, vir t
vd(MT )/2 ⊗�•(Lvir

MT t)

= (−1)vd(MT )t− vd(MT )/2�•
(
L
vir
MT t
)
.

Substituted into (2.20), this gives the following result.

Proposition 2.31. If MT is a quasi-smooth derived projective scheme, the K -theoretic
refined invariant (2.20) of M = T ∗[−1]MT is

χt

(
M, Ô vir

M

) = (−1)vd(MT )t−
vd(MT )

2
∑

i

(−1)iχ
(
Ovir

MT ⊗�i
L
vir
MT

)
t i

=:(−1)vd(MT )t−
vd(MT )

2 χvir−t
(
MT ), (2.32)

where χvir
y is the virtual χy-genus of Fantechi–Göttsche [FG]. Specialising to t = 1

gives the signed virtual Euler characteristic studied in [JT]. �

3. K -Theoretic Invariants from Degeneration Loci

Fix a map of bundles

σ : E0 −→ E1

of ranks r0, r1 over a smooth ambient space X . We suppose for simplicity10 that
dim ker(σ |x ) ≤ 1 for all points x ∈ X . Then we let

D(σ ) := {
x ∈ X : σ |x isnotinjective

}

10 More general degeneracy loci were treated in [GT1,GT2].
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denote the degeneracy locus of σ . Its scheme structure is defined by the vanishing ideal
of �r0σ—the ideal generated by the r0 × r0 minors of σ .

Furthermore it is shown in [GT1] that D(σ ) inherits a perfect obstruction theory by
seeing it as the vanishing locus of the composition

OP(E0)(−1) ↪−→ q∗E0
q∗σ−−−→ q∗E1 on P(E0)

q−→ X. (3.1)

This perfect obstruction theory depends only on the complex E0 → E1 up to quasi-
isomorphism, and endows D(σ ) with a virtual cycle of codimension r1 − r0 + 1 whose
pushforward to X is described in [GT1] by the Thom–Porteous formula as

ι∗
[
D(σ )

]vir = cr1−r0+1(E1 − E0) ∩ [X ]. (3.2)

3.1. K -theoretic degeneracy loci. The above perfect obstruction theory induces a virtual
structure sheaf Ovir

D(σ ) on the degeneracy locus by (2.1).
The K -theoretic analogue of the Thom–Porteous formula is the Eagon–Northcott

complex of σ . When D(σ ) has the correct codimension, this complex is well known to
resolveOD(σ ). Herewe show that evenwhen it has thewrong codimension, the K -theory
class of the Eagon–Northcott complex is Ovir

D(σ ) ∈ K0(X).

Theorem 3.3. The pushforward of Ovir
D(σ ) to X has K -theory class

OX − det(E0 − E1)⊗
∧

r (E1 − E0),

where r = rank E1 − rank E0.

Proof. The composition (3.1) defines a section σ̃ ∈ �(q∗E1(1))which cuts out D(σ ) ⊂
P(E0). This defines the virtual structure sheaf

Ovir
D(σ ) = Lι∗0 OCσ̃ ,

where ι0 : D(σ ) ↪→ q∗E1(1)
∣∣
D(σ )

is the zero section and

Cσ̃ ⊂ q∗E1(1)
∣∣
D(σ )

is the cone over D(σ ) defined by σ̃ . This is the flat limit, as t → ∞, of the graphs
�t σ̃ ⊂ q∗E1(1). Therefore, in K -theory,

j∗Ovir
D(σ ) = Lι∗O�σ̃ , (3.4)

where j : D(σ ) ↪→ P(E0) and ι : P(E0) ↪→ q∗E1(1) is the zero section.
Suppressing some obvious pullback maps for clarity, �σ̃ is cut out of the total space

of q∗E1(1) by the section σ̃ − σtaut of the pullback of q∗E1(1). This induces a Koszul
resolution of O�σ̃ on the total space of q∗E1(1). Applying Lι∗ restricts this to the zero
section, where σtaut is zero. Thus the right hand side of (3.4) is the Koszul complex(
�•(q∗E1(1))∗, σ̃

)
(which is not in general exact, since �σ̃ does not generally intersect

the zero section transversally). Thus

j∗Ovir
D(σ ) =

r1∑

i=0
(−1)i�i (q∗E∗1 )(−i), (3.5)
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where ri := rank(Ei ).
Finally we push down to X , using (by Serre duality)

Rq∗OP(E0)(−i) =
⎧
⎨

⎩

OX i = 0,
0 0 < i < r0,

Symi−r0 E0 ⊗ det E0 [1− r0] i ≥ r0.

Thus, applying Rq∗ to (3.5), we find the pushforward of Ovir
D(σ ) to K (X) is

O +

r1∑

i=r0
(−1)i+1−r0�i (E∗1 )⊗ Symi−r0 E0 ⊗ det E0

= O −
( r1∑

i=r0
(−1)i−r0�r1−i E1 ⊗ Symi−r0 E0

)
⊗ det E0 ⊗ det E∗1

= O −
( r∑

j=0
(−1) j�r− j E1 ⊗ Sym j E0

)
⊗ det(E0 − E1)

= O −
∧

r (E1 − E0)⊗ det(E0 − E1),

where r = r1 − r0 = rank(E1 − E0).

There are different formulae for (more general) K -theoretic degeneracy loci in
[HIMN,A], essentially given by the Thom–Porteous formula with cohomological Chern
classes replaced by K -theoretic Chern classes. By some algebraic identities these formu-
lae are surely equivalent to the Eagon–Northcott formula above. Therefore, by Theorem
3.3, those formulae also describe the pushforward of the virtual structure sheaf of a
degeneracy locus.

3.2. Application to Vafa–Witten theory. In [GT1,GT2] it was shown how some of the
monopole components of the Vafa–Witten T -fixed point set can be described as degener-
acy loci, at the level of both their scheme structures and virtual cycles. We briefly review
the simplest examples—2-step nested punctual Hilbert schemes of a smooth projective
surface S,

S[n1,n2] := {
I1 ⊆ I2 ⊆ OS : length (OS/Ii ) = ni

}
.

For more details and more general results see [GT1,GT2].
While S[n1,n2] is in general singular, it lies in the smooth ambient space S[n1] × S[n2]

as the set of points (I1, I2) for which there is a nonzero map HomS(I1, I2) �= 0. To write
this scheme theoretically, let π : S[n1]×S[n2]×S→ S[n1]×S[n2] be the projection down
S, and let I1, I2 denote the (pullbacks of the) universal ideal sheaves on S[n1]×S[n2]×S.
Consider the complex of vector bundles

RHomπ (I1, I2) over S[n1] × S[n2], (3.6)
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which, restricted to a point (I1, I2), computes Ext∗S(I1, I2). When pg(S) = 0 this com-
plex can be made 2-term,11

RHomπ (I1, I2) � E0
σ−→ E1.

Then the degeneracy locus D(σ ) is (scheme-theoretically) S[n1,n2], and the construction
(3.1) endows it with a perfect obstruction theory of dimension n1 +n2 which is indepen-
dent of the choices of E0, E1 (depending only on the K -theory class of their difference
RHomπ (I1, I2).)

By [GT1, Section 10] this perfect obstruction theory and the Vafa–Witten perfect
obstruction theory of [TT1] have virtual tangent bundles which agree in K -theory.12

Therefore the degeneracy locus virtual cycle coincides which the one coming from
Vafa–Witten theory [TT1] or reduced DT theory [GSY1,GSY2] when h1(OS) = 0.
And when h1(OS) > 0, the complex RHomπ (I1, I2) can be modified [GT1, Section
6], or one can work relative to Pic(S) [GT1, Section 9], to get the same result.

The Thom–Porteous formula (3.2) then calculates the pushforward to S[n1] × S[n2] of
the Vafa–Witten virtual cycle on S[n1,n2]. In fact [GT1,GT2] deal with more complicated
nested Hilbert schemes of points and curves on S. For points, the result is the following.

Theorem 3.7. [GT1] The pushforward of
[
S[n1,n2,...,nr ]

]vir
to S[n1] × · · · × S[nr ] equals

the product of Carlsson–Okounkov classes

cn1+n2
(
RHomπ (I1, I2)[1]

) ∪ · · · ∪ cnr−1+nr
(
RHomπ (Ir−1, Ir )[1]

)

in An1+nr

(
S[n1] × · · · × S[nr ]

)
.

For the K -theoretic analogue, we assume for simplicity that H≥1(OS) = 0 so we do
not have tomodify the complex (3.6). Theorem 3.2 of [Th] gives a formula for any virtual
structure sheaf Ovir

M which shows that it depends only on M and the K -theory class of
the virtual tangent bundle T vir

M . Since the degeneracy locus construction induces the
same virtual tangent bundle on S[n1,n2] as Vafa–Witten theory, the two virtual structure
sheaves induced by (2.1) are equal.

Therefore Theorem 3.3 describes the Vafa–Witten K -theoretic virtual cycle as fol-
lows.

Corollary 3.8. When H≥1(OS) = 0 the pushforward of the Vafa–Witten virtual struc-
ture sheaf Ovir

S[n1,n2] to S[n1] × S[n2] is the K -theory class of

OS[n1]×S[n2] − det
(
RHomπ (I1, I2)

)⊗
∧

r (RHomπ (I1, I2)[1]
)
,

where r = n1 + n2 − 1. Letting CO := O − RHomπ (I1, I2), this can be written—in
topological K -theory at least—as

�•(CO∗) =
n1+n2∑

i=0
(−1)i�i (CO∗).

11 When pg(S) > 0 it is shown in [GT1, Section 6] how to remove H2(OS) from the complex to give the
same result.
12 It is shown in [GT1, Section 10] that the two perfect obstruction theories E• → LS[n1,n2] have isomorphic

virtual cotangent bundles E•, but not that their maps to the cotangent complex L are the same (though they
surely are).
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For a general surface S, the techniques of [GT1] can be used to split off H≥1(OS) from
this complex. The upshot is the same result, except with the complex RHomπ (I1, I2)
replaced by RHomπ (I1, I2) + R1π∗O − R2π∗O.

Proof. Theorem 3.3 gives the first result immediately. For the second we use [GT2,
Equation 4.27], which shows the Carlsson–Okounkov K -theory class CO := O −
RHomπ (I1, I2) is represented by an honest rank r +1 = n1 +n2 vector bundle (instead
of a difference of vector bundles) on an affine bundle over S[n1] × S[n2]. Therefore,
writing the pullback of RHomπ (I1, I2)[1] as the difference of bundles CO − O, we
find

O − det
(
RHomπ (I1, I2)

)⊗
∧

r (RHomπ (I1, I2)[1]
)

= O − det(CO∗)⊗
r∑

i=0
(−1)i�r−i (CO)⊗ Symi O

= O −
r∑

i=0
(−1)i�i+1(CO∗) = �•(CO∗)

upstairs on the affine bundle. Since this is homotopic to the base S[n1] × S[n2], the result
follows in topological K -theory (which, by Riemann–Roch, is enough for computing
holomorphic Euler characteristics). Therefore in this situation we get a more familiar
Koszul resolution description of the virtual structure sheaf.

These results can be plugged into the definition (4.3) of refinedVafa–Witten invariants
below to calculate monopole locus contributions in terms of K -theory classes on smooth
ambient spaces like S[n1] × S[n2]. (This requires lifts of the K -theory classes N vir and
K 1/2
vir (2.7) from S[n1,n2] to S[n1] × S[n2]; these exist since they can be written in terms

of the universal sheaves IZ1 , IZ1 and RHomπ s between them, all of which extend.)

4. Refined Vafa–Witten Invariants: Stable Case

Fix a smooth complex poplarised surface (S,OS(1)), a rank r > 0, Chern classes c1, c2
and a line bundle L on S with c1(L) = c1. We use the notation from [TT1]; in particular
N⊥r,L ,c2

denotes the moduli space of Gieseker semistable Higgs pairs (E, φ) on S, where
E is a rank r torsion-free sheaf on S with c2(E) = c2 and

det E ∼= L , φ ∈ Hom(E, E ⊗ KS)0 .

By the spectral construction [TT1,Section2], (E, φ) is equivalent to aGieseker semistable
compactly supported torsion sheaf Eφ on

X := KS
ρ−→ S.

ThismakesN⊥r,L ,c2
themoduli space ofGieseker semistable compactly supported torsion

sheaves E on X with the right Chern classes, such that the “centre of mass” of E on each
KS fibre of ρ : X → S is zero, and ρ∗ E ∼= L .
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When (r, c1, c2) are chosen so that semistability implies stability,13 N⊥r,L ,c2
carries a

natural symmetric perfect obstruction theory [TT1, Theorem 6.1] supported in degrees
[−1, 0]. It is noncompact in general, but has a T = C

∗ action scaling the fibres of KS
(or, equivalently, scaling the Higgs field φ). The fixed locus (N⊥r,L ,c2

)T is compact, so
in [TT1] Vafa–Witten invariants are defined by virtual (cohomological) localisation

VWr,c1,c2 :=
∫
[
(N⊥r,L ,c2

)T
]vir

1

e(N vir)
∈ Q, (4.1)

where L is any line bundle on S with c1(L) = c1. This lies in Q ⊂ Q[t, t−1] because
vd(N⊥r,L ,c2

) = 0.
The perfect obstruction theory gives us a virtual structure sheaf, and its symmetry

gives us a canonical square root of the virtual canonical bundle by Proposition 2.6.

Definition 4.2. For r, c1, c2 such that semistability implies stability, the refined Vafa–
Witten invariants of (S,OS(1)) are defined by (2.20):

VWr,c1,c2(t) := χt

(
N⊥r,L ,c2 , Ôvir

N⊥r,L ,c2

)

= χt

⎛

⎝(N⊥r,L ,c2)
T,

Ovir
(N⊥r,L ,c2

)T

�•(N vir)∨
⊗ K

1
2
vir

⎞

⎠ ∈ Q(t1/2). (4.3)

By Proposition 2.22 this refines (4.1), specialising to VWr,c1,c2 at t = 1.

First fixed locus.The invariant (4.1) and its refinement (4.3) have contributions from the
connected components of the fixed locus (N⊥r,L ,c2

)T . The first of these is the “instanton
branch” where φ = 0.

This is just the moduli space Mr,L ,c2 of stable sheaves of fixed determinant L on
S. By [TT1, Equation 7.3] this locus contributes the Fantechi–Göttsche virtual signed
Euler characteristic

∫

[Mr,L ,c2 ]vir
cvd(Mr,L ,c2 )

(
L
vir
Mr,L ,c2

)

= (−1)vd(Mr,L ,c2 )

∫

[Mr,L ,c2 ]vir
cvd(Mr,L ,c2 )

(
T vir
Mr,L ,c2

)

= (−1)vd(Mr,L ,c2 )evir(Mr,L ,c2) (4.4)

ofMr,L ,c2 to VWr,c1,c2 (4.1). It is an integer, with an obvious refinement given (up to a
sign) by the virtual χt -genus of Fantechi–Göttsche [FG], as studied in [GK1]. We check
now that this is what the refined Vafa–Witten invariant (4.3) indeed gives.

Anopen neighbourhood inN⊥r,L ,c2
of the instanton branchMr,L ,c2 is isomorphic to its

own (−1)-shifted cotangent bundle T ∗[−1]Mr,L ,c2 . (It is the neighbourhood consisting
of those pairs (E, φ) for which E is itself Gieseker stable. At the level of points this says
that the Higgs fields take values in the dual (Ext2(E, E)0)

∗ ∼= Hom(E, E ⊗ KS) of the
obstruction space of E .) By (2.32), then, its contribution to VW(t) (4.3) is

(−1)vd(Mr,L ,c2 )t−
vd(Mr,L ,c2

)

2 χvir−t
(Mr,L ,c2

)
.

13 The general case is handled in [TT2].
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Specialising to t = 1 gives

(−1)vd(Mr,L ,c2 )evir
(Mr,L ,c2

)
,

which is (4.4).

Second fixed locus. The other fixed loci have nilpotent φ �= 0; following [DPS,GK1]
we call their union M2 the “monopole branch”. For KS negative in a suitable sense
the stability condition forces the second fixed locus to be empty (a “vanishing theorem”
holds). So we do some very elementary preliminary calculations onM2 for general type
surfaces, refining the first calculations of [TT1, Section 8].

4.1. Some calculations for KS > 0. Let (S,OS(1)) be a smooth, connected polarised
surface with

• h1(OS) = 0, and
• a smooth nonempty connected canonical divisor C ∈ |KS|, such that
• L = OS is the only line bundle satisfying 0 ≤ deg L ≤ 1

2 deg KS ,

where degree is defined by deg L = c1(L) · c1(OS(1)). Then in [TT1, Lemma 8.3] it is
shown that (N⊥2,KS ,n

)T is the disjoint union ofM2,KS ,n and the nested Hilbert schemes

M2 ∼=
�n/2�⊔

i=0
S[i, n−i] (4.5)

of subschemes Z1 ⊆ Z0 ⊂ S of lengths

|Z1| = i, |Z0| + |Z1| = n.

We call the components with i = 0 horizontal and, at the other extreme, the components
with i = n/2 vertical.
Horizontal loci and n ≤ 1 case. We start with the horizontal loci, so Z1 = ∅ and
M2 ∼= S[n]. Here a point Z0 ∈ S[n] corresponds in N⊥2,KS ,n

to the torsion sheaf IZ0⊂2S
on X = KS , where 2S ⊂ X is the twice-thickened zero section defined by the ideal
I 2S⊂X . In [TT1, Section 8.2] it is shown that the fixed obstruction bundle over this S[n]

is
(
K [n]S

)∗. It follows that

T vir
S[n] = TS[n] −

(
K [n]S

)∗
. (4.6)

It also follows that Ovir
S[n] = �•

(
K [n]S

)
. In K -theory this has the same class as the

sheaf of dgas given by inserting a differential,

OS[n]
s[n]−−→ K [n]S

∧s[n]−−−→ �2K [n]S
∧s[n]−−−→ . . .

∧s[n]−−−→ �nK [n]S , (4.7)

where s ∈ H0(KS) cuts out the smooth connected canonical divisor C ⊂ S and s[n] is
the induced section of K [n]S on S[n]. Since this cuts out C [n] ⊂ S[n] which is smooth of
codimension n, (4.7) is an exact Koszul resolution quasi-isomorphic to its cokernel:

Ovir
S[n] = (−1)n

[
�n(K [n]S

)∣∣∣
C [n]

]
∈ K 0(S[n]

)
. (4.8)
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Moreover the K -theory class of the virtual normal bundle is computed in [TT1, Section
8.3] to be
[
K [n]S

]
t + (t2)⊕P2 − [

(K 2
S)
[n]]t2 − (t−1)⊕P2 +

[(
(K 2

S)
[n])∗]t−1 − [

�S[n]
]
t.

(4.9)

Here

P2 = h0(K 2
S) = pg(S) + g,

where g = c1(KS)
2 + 1 is the genus of C .

Combining (4.9) with (4.6) determines the virtual canonical bundle:

Kvir = K 2
S[n] ⊗ det

(
K [n]S

)−2 ⊗ det
((
K 2

S

)[n])2 ⊗ t4n−3P2 .

The choice (2.7) of square root is

K
1
2
vir := KS[n] ⊗ det

(
K [n]S

)∗ ⊗ det
((
K 2

S

)[n])⊗ t2n−
3
2 P2 . (4.10)

With this, we are ready to calculate in the simplest, n = 0, 1 and 2 cases. Even here the
calculation will be somewhat involved.
n = 0 case. Here M2 ∼= S[0] is a reduced point, corresponding to the torsion sheaf
O2S := OX/I2

S on X = KS . From above,

(N vir)∨ = (t−2)⊕P2 − t⊕P2 , K
1
2
vir = t−

3
2 P2 and Ovir

S[0] = OS[0] .

Therefore we calculate the contribution of S[0] to (4.3) as

χt = t−
3
2 P2

(1− t)P2

(1− t−2)P2
= (−1)P2

(t
1
2 + t− 1

2
)P2 =

(−1)P2
[2]P2t

, (4.11)

where [2]t is the quantum integer (1.2).
n = 1 case. Combining (4.10)

K
1
2
vir = K 2

S ⊗ t2−
3
2 P2

with (4.8) we see the contribution ofM2 = S[1] = S to (4.3) is

− t2−
3
2 P2 χt

(

C,
K 3

S

�•(N vir)∨

∣∣∣∣∣
C

)

, (4.12)

where, by (4.9),

(N vir)∨ = K ∗S t−1 + K 2
St + (t−2)⊕P2 − K−2S t−2 − TSt

−1 − t⊕P2 .

Since TS|C = TC ⊕OC (C) in K -theory we can write

(N vir)∨
∣∣
C =

∑

i

Li t
wi −

∑

i

Mi t
vi ,
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where the (Li , wi ) are
(
K ∗S
∣∣
C ,−1), (K 2

S

∣∣
C , 1

)
andP2 copies of (OC ,−2), (4.13)

and the (Mi , vi ) are
(
K−2S

∣∣
C ,−2), (TC ,−1), (OC (C),−1)andP2 copiesof(OC , 1). (4.14)

Therefore

ch

(
1

�•(N vir)∨|C

)
=
∏

i (1− emi+vi t )
∏

i (1− e�i+wi t )
=
∏

i (1− (1 + mi )evi t )
∏

i (1− (1 + �i )ewi t )

=
∏

i (1− evi t )
∏

i (1− ewi t )
·
∏

i

(
1− mi

evi t

1−evi t

)

∏
i

(
1− �i

ewi t

1−ewi t

)

=
∏

i (1− evi t )
∏

i (1− ewi t )

∏

i

(
1− mi

evi t

1− evi t

)∏

i

(
1 + �i

ewi t

1− ewi t

)
,

(4.15)

wheremi := c1(Mi ), �i := c1(Li ) and we have repeatedly used the fact thatm2
i = 0 =

�2i on the curve C .
Multiplying out expresses ch

(
K 3

S

/
�•(N vir)∨

∣∣
C

)
Td(C) as

(
1 + c1(K

3
S) + Td1(C)

)∏
i (1− evi t )

∏
i (1− ewi t )

(

1 +
∑

i

�i
ewi t

1− ewi t
−
∑

i

mi
evi t

1− evi t

)

.

Integrating over C gives χet . Then replacing et by t gives χt as

∏
i (1− tvi )

∏
i (1− twi )

(

deg K 3
S

∣∣
C + 1− g +

∑

i

∫

C
�i

twi

1− twi
−
∑

i

∫

C
mi

tvi

1− tvi

)

.

Substituting (4.13), (4.14) and using deg KS|C = g − 1 = degOC (C) (by adjunction)
gives

χt =
(1− t−2)(1− t−1)2

(1− t−1)(1− t)
· (1− t)P2

(1− t−2)P2

[
2g − 2 + (1− g)

t−1

1− t−1

+ (2g − 2)
t

1− t
− (2− 2g)

t−2

1− t−2
− (2− 2g)

t−1

1− t−1
− (g − 1)

t−1

1− t−1

]

=
( −t2
1 + t

)P2 2g − 2

t2
.

Plugging this into (4.12) gives the contribution ofM2 to VW2,KS ,1(t) as

− t2−
3
2 P2 χt =

(−1)P2(2− 2g)
(
t
1
2 + t− 1

2
)P2 = (−1)P2(2− 2g)

[2]P2t
. (4.16)
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Horizontal n = 2 case; preliminaries. To calculate on C [2] we fix some notation and
collect some results. Let

Z ⊂ C [2] × C
q��

C [2]

denote the universal length-2 subscheme over C [2], with projection p to C . Then Z ∼=
C×C with p the projection to the first factor, while the above double cover q : C×C →
C [2] is the quotient by the Z/2 action τ swapping the factors.

Given a line bundle L on C , the induced rank 2 bundle L [2] = q∗ p∗L on C [2] is
therefore

L [2] = q∗
(
L � O),

so its pullback by q∗ sits inside an exact sequence

0 −→ τ ∗(L � O)(−
C ) −→ q∗L [2] −→ L � O −→ 0, (4.17)

where 
C ⊂ C ×C is the diagonal—the branch divisor of q. But τ ∗(L �O) = O� L ,
so

q∗ det L [2] ∼= L � L(−
C ). (4.18)

The exact sequence

0 −→ q∗�C [2] −→ �C×C −→ O
C (−
C ) −→ 0,

combined with �C×C ∼= �C � OC ⊕ OC � �C and the exact sequence

0 −→ �C � OC (−
C ) −→ �C � OC −→ O
C (−
C ) −→ 0,

gives an equality in K -theory

q∗�C [2] = �C � OC (−
C ) ⊕ OC � �C . (4.19)

In particular,

q∗KC [2] = KC � KC (−
C ). (4.20)

As noted in (4.8), C [2] ⊂ S[2] is cut out by a transverse section s[2] of K [2]S , so has

normal bundle K [2]S

∣
∣
C [2] = (KS|C )[2] and determinant

q∗ det NC [2]/S[2] = KS
∣∣
C � KS

∣∣
C (−
C ).

Combining this with (4.20) gives

q∗
(
KS[2]

∣∣
C [2]
) ∼= KS

∣∣
C � KS

∣∣
C . (4.21)

Substituting (4.21, 4.18) into (4.10) we find

q∗
(
K

1
2
vir

∣∣
C [2]
)
= KC � KC t4−

3
2 P2 .
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Tensoring this by (4.8) shows

q∗Ô vir
S[2]
∼= K 3

S

∣∣
C � K 3

S

∣∣
C (−
C ) t4−

3
2 P2 , (4.22)

where, by an abuse of notation, we are considering Ô vir
S[2] to be a sheaf on C

[2] (really, by
(4.8), it is the K-class of the pushforward of this to S[2]).
Horizontal n = 2 case; calculation. We wish to calculate

χet

( Ô vir
S[2]

�•(N vir)∨

)

=
∫

C [2]

ch
(Ô vir

S[2]
)

ch
(
�•(N vir)∨

) TdC [2]

= 1

2

∫

C×C
ch
(
q∗Ô vir

S[2]
)

ch
(
q∗�•(N vir)∨

) Td
(
q∗TC [2]

)
. (4.23)

Let k := c1(KC ) = −c1(C) and χ := 2− 2g = − ∫C k = 
2
C . Putting s := et , (4.22)

gives

ch
(
q∗Ô vir

S[2]
) = exp

(3
2
k � 1 +

3

2
� k − [
C ]

)
(et )4−

3
2 P2

=
(
1 +

3

2
k � 1

)(
1 +

3

2
� k
)(

1− [
C ] + 1

2
χ vol

)
s4−

3
2 P2

=
(
1 +

3

2
k � 1 +

3

2
� k − [
C ] + 1

4
χ(9χ + 14) vol

)
s4−

3
2 P2 , (4.24)

where vol is the Poincaré dual of a point on C × C . By (4.19),

ch
(
q∗TC [2]

) = ch
(
TC � OC

)
ch(O(
C )) + ch

(OC � TC
)

= (1− k � 1)
(
1 + [
C ] + 1

2
χ vol

)
+ (1− 1 � k)

= 2− k � 1− 1 � k + [
C ] + 3

2
χ vol,

from which we can deduce

Td
(
q∗TC [2]

) = 1− 1

2
k � 1− 1

2
� k +

1

2
[
C ] + 1

4
χ(2 + χ) vol . (4.25)

Multiplying (4.24) and (4.25) makes ch
(
q∗Ô vir

S[2]
)
Td
(
q∗TC [2]

)
equal to

s4−
3
2 P2

(
1 + k � 1 + 1 � k − 1

2
[
C ] + (χ + χ2) vol

)
. (4.26)

For the K -theory class of q∗
(
N vir|C [2]

)∨ we use (4.9):

q∗
(
K [2]S

)∗
t−1 + q∗(K 2

S)
[2]t + (t−2)⊕P2 − q∗

(
(K 2

S)
[2])∗t−2 − q∗TS[2] t−1 − t⊕P2 .
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By (4.19) and several applications of (4.17) this is

OC � K−1S (
C )t−1 + K−1S � OC t
−1 +OC � K 2

S(−
C )t + K 2
S � OC t

−OC � K−2S (
C )t−2 − K−2S � OC t
−2 − TC � OC (
C )t−1 −OC � TC t

−1

−OC � KS(−
C )t−1 − KS � OC t
−1 + (t−2)⊕P2 − t⊕P2 . (4.27)

Here we have suppressed some restrictions toC , which are easily handled using K 2
S

∣∣
C
∼=

KC . As in the last section we write this as

q∗(N vir)∨ =
∑

i

Li t
wi −

∑

i

Mi t
vi

where Li , Mi are line bundles with first Chern classes �i , mi respectively. Since �2i , m
2
i

needn’t be zero14 on the surface C × C , (4.15) is modified to

1

ch
(
q∗�•(N vir)∨

) =
∏

i (1− evi t )
∏

i (1− ewi t )

∏

i

[

1−
(

mi +
m2

i

2

)
evi t

1− evi t

]

×
∏

i

[

1 +

(

�i +
�2i

2

)
ewi t

1− ewi t
+ �2i

e2wi t

(1− ewi t )2

]

.

Multiplying by 1
2 (4.26) and integrating gives χs (4.23). It is the product of

1

2
s4−

3
2 P2

∏
i (1− svi )

∏
i (1− swi )

(4.28)

and the integral over C × C of
[
1 + k � 1 + 1 � k − 1

2
[
C ] + (χ + χ2) vol

]

×
∏

i

[

1−
(

mi +
m2

i

2

)
svi

1− svi

]
∏

i

[

1 +

(

�i +
�2i

2

)
swi

1− swi
+ �2i

s2wi

(1− swi )2

]

.

This integral is

(χ + χ2)−
∑

i

∫

C×C
m2

i

2

svi

1− svi
+
∑

i

∫

C×C
�2i

2

(
swi

1− swi
+

2s2wi

(1− swi )2

)

+
∑

i< j

∫

C×C
mim j

svi+v j

(1− svi )(1− sv j )
+
∑

i< j

∫

C×C
�i� j

swi+w j

(1− swi )(1− sw j )

−
∑

i, j

∫

C×C
mi� j

svi+w j

(1− svi )(1− sw j )

+
∫

C×C

(
k � 1 + 1 � k − 1

2
[
C ]

)
(
∑

i

�i
swi

1− swi
−
∑

i

mi
svi

1− svi

)

.

14 But we do use that l3i = 0 = m3
i .
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From (4.27) we read off the (�i , wi ),

(
− 1

2
� k + [
C ],−1

)
,
(
− 1

2
k � 1,−1

)
,
(
1 � k − [
C ], 1

)
, (k � 1, 1)

and P2 copies of (0,−2). Similarly the (mi , vi ) are

(−1 � k + [
C ],−2), (−k � 1,−2), (−k � 1 + [
C ],−1), (−1 � k,−1),
(1
2

� k − [
C ],−1
)
,
(1
2
k � 1,−1

)

and P2 copies of (0, 1). Substituting these into the integral gives

1

(1− s2)2

[
s2χ2 + (2s3 + 5s2 + 2s)χ

]
.

The prefactor (4.28) is

1

2
s4−

3
2 P2

∏
i (1− svi )

∏
i (1− swi )

= 1

2
s4−

3
2 P2

(1− s−2)2(1− s−1)4(1− s)P2

(1− s−1)2(1− s)2(1− s−2)P2

= (−1)P2 s−2(1− s2)2

2(s
1
2 + s− 1

2 )P2
.

Therefore, replacing s by t , we find the contribution of S[2] to the refined Vafa–Witten
invariant is

(−1)P2 χ2 + (2t + 5 + 2t−1)χ
2[2]P2t

. (4.29)

At t = 1 this gives (−2)−P2(1− g)(11− 2g), as in [TT1, Equation 8.24].
Vertical n = 2 case. When n = 2 there is another component of the T -fixed locus,
given by taking i = 1 in (4.5). This gives a copy of S, where x ∈ S corresponds to the
sheaf

(
ρ∗ Ix

)⊗O2S onX.

In [TT1, Section 8.7] it is shown that this T -fixedmoduli space has vanishing obstruction
sheaf, so that

Ovir
S = OS,

and virtual normal bundle

N vir = TS⊗K−1S t−1 ⊕ H0(K 2
S) t

2 −
[
�S t ⊕ TS⊗K 2

S t
2 ⊕ H0(K 2

S)
∗ t−1

]
.

In particular

Kvir
∣∣
S = KS ⊗

(
KS ⊗ K 2

S t
2)⊗(t−2P2)⊗(KS t

2)⊗(K−1S ⊗ K 4
S t

4)⊗(t−P2)

whose square root (2.7) is

K
1
2
vir

∣∣
S = K 4

S t
4− 3

2 P2 .
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So the contribution of this component to the refined Vafa–Witten invariant is, by (2.14),

t4−
3
2 P2χt

(

S,
K 4

S

�•(N vir)∨

)

= t4−
3
2 P2

(1− t)P2

(1− t−2)P2
χt

(

S,
�•(TS t−1)⊗�•(�S ⊗ K−2S t−2)⊗ K 4

S

�•(�S ⊗ KS t)

)

= (−1)P2 t−2
(t− 1

2 + t
1
2 )P2

χt

(

S,
�•(TS t−1)⊗ KS t

2 ⊗�•(�S ⊗ K−2S t−2)⊗ K 3
S t

4

�•(�S ⊗ KS t)

)

= (−1)P2 t−2
[2]P2t

χt

(
S,

�•(�S t)⊗�•(�S ⊗ KS t
2)

�•(�S ⊗ KS t)

)
.

Using the canonical section s with zero locus C we see that in K -theory,

�S ⊗ KS t−�S t =
(
�S ⊗ KS

)∣∣
C t = KS ⊗

(
�C ⊕ K−1S

∣∣
C

)
t

= K 3
S

∣∣
C t ⊕ OC t = K 3

S t− K 2
S t +OS t− K−1S t.

Therefore

�•(�S t)

�•(�S ⊗ KS t)
=
(OS − K 2

St
)(OS − K−1S t

)

(OS − K 3
St
)(OS − t

) ,

while

�•(�S ⊗ KS t
2) = �•(�S t

2)�•
(
(�S ⊗ KS)

∣∣
C t2
)

= �•(�S t
2)

(OS − K 3
St

2
)(OS − t2

)

(OS − K 2
St

2
)(OS − K−1S t2

) .

Putting it all together gives

t−2(1 + t)

(−[2]t )P2
χt

((OS − K 2
St
)(OS − K−1S t

)
�•(�S t

2)
(OS − K 3

St
2
)

(OS − K 3
St
)(OS − K 2

St
2
)(OS − K−1S t2

)

)

. (4.30)

By Riemann–Roch χet is

∫

S

ch
[(OS − K 2

St
)(OS − K−1S t

)(OS − K 3
St

2
)]

ch
[(OS − K 3

St
)(OS − K 2

St
2
)(OS − K−1S t2

)] ch
(
�•(�S t

2)
)
TdS .

Let κ := c1(KS) = −c1(S) and c2 := c2(S), this is
∫

S

(
1− e2κet

)(
1− e−κet

)(
1− e3κe2t

)

(
1− e2κe2t

)(
1− e−κe2t

)(
1− e3κet

)
(
1− ch(�S)e

2t + eκe4t
)
TdS .

By (4.30), therefore, the vertical contribution is

t−2(1 + t)

(−[2]t )P2
∫

S

(
1− e2κ t

)(
1− e−κ t

)(
1− e3κ t2

)

(
1− e2κ t2

)(
1− e−κ t2

)(
1− e3κ t

)
(
1− ch(�S)t

2 + eκ t4
)
TdS .

(4.31)
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When α3 = 0 we compute

1− eαt

1− eαt2
=

(1− t)
(
1− t

1−t α − t
2(1−t)α

2
)

(1− t2)
(
1− t2

1−t2 α − t2

2(1−t2)α
2
)

= 1

1 + t

(
1− t

1− t
α − t

2(1− t)
α2
)

×
(
1 +

t2

1− t2
α +

t2

2(1− t2)
α2 +

t4

(1− t2)2
α2
)

= 1

1 + t

(
1− t

1− t2
α − t (1 + t2)

2(1− t2)2
α2
)

.

Similarly

1− eαt2

1− eαt
= (1 + t)

(
1 +

t

1− t2
α +

t

2(1− t)2
α2
)

.

Multiplying these gives
(
1− e2κ t

)(
1− e−κ t

)(
1− e3κ t2

)

(
1− e2κ t2

)(
1− e−κ t2

)(
1− e3κ t

) = 1

1 + t

(
1 +

2t

1− t2
κ +

2t

(1− t)2
κ2
)

.

Now
(
1− ch(�S)t2 + eκ t4

)
TdS is

(
1− 2t2 − t2κ − t2

2
(κ2 − 2c2) + t4

(
1 + κ +

κ2

2

))(
1− κ

2
+

1

12
(κ2 + c2)

)

= (1− t2)2 − 1

2
(1− t4)κ +

1

12
(1− t2)(1 + 11t2)κ2 +

1

12
(1− t2)2c2.

Plugging all this into (4.31) gives t−2(−[2]t )−P2 times by

∫

S

(
1 +

2t

1− t2
κ +

2t

(1− t)2
κ2
)(

(1− t2)− 1 + t2

2
κ +

1 + 11t2

12
κ2 +

1− t2

12
c2

)

= 1 + 12t + 46t2 + 12t3 + t4

12
(g − 1) +

1 + 10t2 + t4

12
c2(S).

So the vertical contribution to the refined Vafa–Witten invariant is

1

12(−[2]t )P2
[(
t−2 + 12t−1 + 46 + 12t + t2

)
(g − 1) + (t−2 + 10 + t2)c2(S)

]
.

Setting t = 1 gives (−2)−P2(6(g − 1) + c2) in agreement with [TT1, Equation 8.28].
Total. Adding this to the horizontal contribution (4.29) at n = 2 gives a total

(−1)P2
12[2]P2t

[
24(g − 1)2 +

(
t−2 − 12t−1 − 14− 12t + t2

)
(g − 1)

+(t−2 + 10 + t2)c2(S)
]
.
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Combining this with (4.11) and (4.16) gives the generating series

(−1)P2
[2]P2t

[
1 + (2− 2g)q

+
(
24(g − 1)2 +

(
t−2 − 12t−1 − 14− 12t + t2

)
(g − 1) + (t−2 + 10 + t2)c2(S)

)q2

12
.

]

Many thanks to Martijn Kool who pointed out this formula perfectly matches the
first few terms of calculations of Göttsche–Kool [GK1] after applying the most naive
modularity transformation. Specialising to t = 1 gives

(−2)−P2
[
1 + (2g − 2)q +

(
(g − 1)(2g − 5) + c2(S)

)
q2
]
+ O(q3)

as in [TT1, Equation 8.39], or indeed the second term of the first line of [VW, Equation
5.38].

For higher c2 we need a more systematic way to compute. Laarakker [La1] combines
the degeneracy locus description ofmonopole branches in [GT1] and Sect. 3 of this paper
with cobordismarguments to proveuniversality results. This also translates computations
to calculations on toric surfaces, which can be done by localisation and computer for c2
not too large.

5. Refined Vafa–Witten Invariants: Semistable Case

As before we fix a polarised surface (S,OS(1)). Pulling back gives a polarisationOX (1)
on the local Calabi-Yau threefold X = KS . We define the charge of a compactly sup-
ported coherent sheaf E on X to be the total Chern class

α = (r, c1, c2) ∈ H ev(S) (5.1)

of the pushdown E = ρ∗ E on S. Given n 
 0 and L ∈ Picc1(S), an SU (r)-Joyce–Song
pair (E, s) consists of

• a compactly supported coherent sheaf E of charge α on X , with centre-of-mass zero
on each fibre of ρ : X → S and det ρ∗ E ∼= L , and
• a nonzero section s ∈ H0(E(n)).

Equivalently, it is a triple (E, φ, s) on S with φ ∈ Hom(E, E ⊗ KS)0, det E ∼= L and
s ∈ H0(E(n)). The Joyce–Song pair (E, s) is stable if and only if

• E is Gieseker semistable with respect to OX (1), and
• if F ⊂ E is a proper subsheaf which destabilises E , then s does not factor through
F(n) ⊂ E(n).

For fixed α we may choose n 
 0 such that H≥1(E(n)) = 0 for all Joyce–Song stable
pairs (E, s). There is no notion of semistability; there is a quasi-projectivemoduli scheme
P⊥α,n of stable Joyce–Song pairs whose T = C

∗-fixed locus is already compact.
Most importantly, P⊥α,n can be shown to be a moduli space of complexes I • :=

{OX (−n)→ E}with a symmetric perfect obstruction theorygovernedby R Hom(I •, I •)⊥.
As a result it inherits a virtual structure sheaf and the virtual canonical bundle admits a
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canonical square root (2.7) on the T -fixed locus. Thus by (2.20) we get a refined pairs
invariant

P⊥α (n, t) := χt

(
P⊥α,n, Ô vir

P⊥α,n

)
∈ Q(t1/2).

Using the quantum integers defined in (1.2),

[n]q := q−(n−1)/2 + q−(n−3)/2 + · · · + q(n−3)/2 + q(n−1)/2 = qn/2 − q−n/2

q1/2 − q−1/2

(which specialise to n at q = 1) we can state the refined version of [TT2, Conjecture
6.5].

Conjecture 5.2. Suppose OS(1) is generic for charge α in the sense of [TT2, Equation
2.4].15 If H0,1(S) = 0 = H0,2(S) there exist VWαi (t) ∈ Q(t1/2) such that

P⊥α (n, t) =
∑

�≥1, (αi=δiα)�i=1:
δi>0,

∑�
i=1 δi=1

(−1)�
�!

�∏

i=1
(−1)χ(αi (n))

[
χ(αi (n))

]
tVWαi (t) (5.3)

for n 
 0. When either of H0,1(S) or H0,2(S) is nonzero we take only the first term in
the sum:

P⊥α (n, t) = (−1)χ(α(n))−1[χ(α(n))
]
tVWα(t). (5.4)

The first justification for this Conjecture is that it specialises at t = 1 to Conjecture
6.5 of [TT2], which is proved inmany cases [MT1,TT2]. Therefore, when theConjecture
holds, the resulting VWα(t) specialise at t = 1 to the numerical Vafa–Witten invariants
of [TT2].

As a second sanity check, we show it is true—and reproduces the earlier Definition
4.2 of refined Vafa–Witten invariants—when there are no strictly semistable sheaves.

Proposition 5.5. If all semistable sheaves in N⊥α are stable then Conjecture 5.2 is true
with the coefficients VWα(t) given by (4.3).

Proof. We adapt the proof of the corresponding result for numerical Vafa–Witten in-
variants in [TT2, Proposition 6.8].

We proceed by induction on the rank r of α = (r, c1, c2). We first claim that if there
are no strictly semistables in class α then only the first term contributes to the sum
(2.24). Indeed, if there was a nonzero contribution indexed by α1, . . . , α� with � > 1
then the nonvanishing of the coefficients VWαi (t) (which equal the refined Vafa–Witten
invariants (4.3) by the induction hypothesis) would imply that the moduli spacesN⊥αi are
nonempty. Picking an element E i of each defines a strictly semistable E := E1⊕· · ·⊕E�

of N⊥α , a contradiction.
We use the smooth P

χ(α(n))−1-bundle

P⊥α,n = P(π∗ E (n))
p−→ N⊥α ,

15 This ensures the charges of the semistable sheaves Ei in the splitting (5.18) are all proportional to α. For
non-genericOS(1) there is a more complicated version of (5.3).
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where E is the (possibly twisted) universal sheaf onN⊥α × X and π : N⊥α × X → Nα .
There is a corresponding relationship between the deformation-obstruction theories of
(N⊥α )T and (P⊥α,n)

T worked out in [TT2, Equations 6.12–6.14]. In particular [TT2,
Equation 6.13] implies that the virtual structure sheaves of their T -fixed loci satisfy

O vir
(P⊥α,n)

T = p∗O vir
(N⊥α )T

⊗�•
(
Tp ⊗ t−1

)fix
,

where Tp is the relative tangent bundle of p. And by [TT2, Equation 6.14] their dual
virtual normal bundles are related by

(
N vir

(P⊥α )T

)∨ = p∗
(
N vir

(N⊥α )T

)∨ + N∗
(P⊥α )T /P⊥α −

(
Tp ⊗ t−1

)mov
.

Taking the determinant of [TT2, Equation 6.12] gives, by (2.7),

K
1
2
P⊥α,n

= p∗K
1
2
N⊥α ⊗ ωp t

1
2 dim p.

Putting it all together we have

Ô vir
(P⊥α,n)

T

�•
(
N vir

(P⊥α,n)
T )∨
= p∗

Ô vir
(N⊥α )T

�•
(
N vir

(N⊥α )T
)∨
⊗ �•

(
Tp ⊗ t−1

)

�•N∗
(P⊥α )T /P⊥α

⊗ ωpt
1
2 dim p

= p∗
Ô vir

(N⊥α )T

�•
(
N vir

(N⊥α )T
)∨
⊗ �•

(
�p ⊗ t

)

�•N∗
(P⊥α )T /P⊥α

t−
1
2 dim p(−1)dim p

by the identity (2.28) applied to Tp ⊗ t−1. To take χt we first push down the restriction
of p to (P⊥α,n)

T → (N⊥α )T . This is a smooth bundle; on each fibre we get

χt

(

P
T ,

�•
(
�P ⊗ t

)

�•N∗
PT /P

)

, (5.6)

where P = P
χ(α(n))−1 is acted on by T with fixed locus P

T . We recognise (5.6) as the
computation of

χt

(
P,�•

(
�P ⊗ t

)) =
χ(α(n))−1∑

i, j=0
(−1)i+ jχt

(
Hi (�

j
P
)) t j

= 1 + t + t2 + · · · + tχ(α(n))−1 = t
1
2 dim p[χ(α(n))]t

by localisation to the fixed locus P
T . (Here we have used the fact that T acts trivially

on Hi (�
j
P
)) since the latter is topological.) Moreover, there is no twisting as we move

over the base—the fibrewise cohomology groups of a P
χ(α(n))−1 bundle are canonically

trivialised by powers of the hyperplane class.16 So the upshot is

Rp∗
Ô vir

(P⊥α,n)
T

�•
(
N vir

(P⊥α,n)
T )∨

=
Ô vir

(N⊥α )T

�•
(
N vir

(N⊥α )T
)∨
· (−1)χ(α(n))−1 [χ(α(n))]t (5.7)

16 If the universal sheaf E is twisted by a nonzero Brauer class then P⊥α,n = P(p∗E (n)) is not the projec-

tivisation of an untwisted bundle, so the hyperplane class does not lift to H2(P⊥α,n). But its fibrewise class in

H0(N⊥α,n , R1 p∗�p) is well-defined and is all we use.
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in K -theory. Taking χt gives

P⊥α (n, t) = (−1)χ(α(n))−1[χ(α(n))
]
t VWα(t).

5.1. deg KS < 0: refined DT invariants. When deg KS < 0 the moduli space P⊥α,n
of Joyce–Song pairs on X is smooth [TT2, Section 6.1] and consists entirely of pairs
pushed forward (scheme theoretically) from S. The obstruction bundle is T ∗P⊥α,n

⊗ t. It

follows from Proposition 2.31 that the refined pairs invariant is

P⊥α,n(t) = (−1)dimP⊥α,n t− dimP⊥α,n/2χ−t (P⊥α,n)

= (−1)χ(α(n))−χS(α,α)t−
1
2χ(α(n))+ 1

2χS(α,α)χ−t (P⊥α,n). (5.8)

The Vafa–Witten obstruction theory on P⊥α,n is the DT obstruction theory of [JS] since
H1(OS) = 0 = H2(OS). So we can expect the refined Vafa–Witten invariants to be
closely related to refined DT invariants,17 and this is what we will find.

We use Joyce’s Ringel-Hall algebra for Coh(S) constructed in [Jo2]. Joyce starts
with the Q-vector space on generators given by (isomorphism classes of) representable
morphisms of stacks from algebraic stacks of finite type over C with affine stabilisers to
the stack of objects of Coh(S). He then quotients out by the scissor relations for closed
substacks, and makes the result into a ring with his Hall algebra product ∗ on stack
functions.

At the level of individual objects, the product 1E ∗ 1F of (the indicator functions of)
E and F is the stack of all extensions between them,

Ext1(F, E)

Aut(E)× Aut(F)× Hom(F, E)
, (5.9)

with e ∈ Ext1(F, E)mapping to the corresponding extension of F by E . More generally
∗ is defined via the stack Ext of all short exact sequences

0 −→ E1 −→ E −→ E2 −→ 0 (5.10)

inCoh(S),with itsmorphismsπ1, π, π2 : Ext→Coh(S) taking the extension to E1, E, E2
respectively. This defines the universal case, which is the Hall algebra product of Coh(S)

with itself:

1Coh(S) ∗ 1Coh(S) =
(
Ext

π−→ Coh(S)
)
.

Other products are defined by fibre product with this: given two stack functionsU, V →
Coh(S) we define U ∗ V → Coh(S) by the Cartesian square

U ∗ V ��

��

Ext
π ��

π1 ×π2

��

Cohc(X)

U × V �� Coh(S)× Coh(S) .

(5.11)

17 Since the existence of orientation data compatible with the Hall algebra product is still an open problem in
general, the development of refinedDT theory has stalled. In our situation all ourmoduli stacks are (−1)-shifted
cotangent bundles of smooth stacks, which makes things much simpler.
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We are interested in the elements

1Mss
α
: Mss

α ↪−→ Coh(S),

where Mss
α is the stack of Gieseker semistable sheaves of class α on (S,OS(1)), and

1Mss
α
is its inclusion into the stack of all sheaves on S. To handle the stabilisers of strictly

semistable sheaves, Joyce replaces these indicator stack functions by their “logarithm":
the following (finite!) sum:

εα :=
∑

�≥1, (αi )�i=1: pαi= pα ∀i
and

∑�
i=1 αi=α

(−1)�
�

1Mss
α1
∗ · · · ∗ 1Mss

α�
. (5.12)

Here pα denotes the reduced Hilbert polynomial of sheaves of class α.
A deep result of Joyce [Jo3, Theorem 8.7] is that the logarithm (5.12) lies in the set

of virtually indecomposable stack functions with algebra stabilisers,

εα ∈ SFindal (Coh(S)).

By [JS, Proposition 3.4] this means it can be written as a Q-linear combination of
morphisms from stacks of the form

(scheme)× (Spec C)/C
∗. (5.13)

Now all moduli stacks of semistable torsion free sheaves on S of class α are smooth of
dimension−χS(α, α), since anyobstruction spaceExt2(E, E) is Serre dual toHom(E, E⊗
KS), which vanishes by the semistability of E and the negativity of deg KS . Therefore
we do not have to worry about vanishing cycles or orientation data; we can make a naive
definition of the Joycian refined DT invariant18 by taking the normalised Hirzebruch
χ−t -genus of the (Q-linear combination of) stacks εα:

Jα(t) := (−1)1−χS(α,α)t
1
2 (χS(α,α)−1)(t − 1)χ−t (εα) ∈ Q

(
t±

1
2
)
. (5.14)

The factor (t − 1) is there to cancel the C
∗ stabilisers in (5.13). Joyce’s result that εα

is a virtual indecomposable therefore means that Jα(t) has a finite limit as t → 1; this
limit is the numerical DT invariant.

We can use this to prove a refined version of the Joyce–Song identity [JS, Theorem
5.27], and hence our Conjecture 5.2, when deg KS < 0.

Theorem 5.15. If deg KS < 0 and OS(1) is generic then

P⊥α (n, t) =
∑

�≥1, (αi=δiα)�i=1:
δi>0,

∑�
i=1 δi=1

(−1)�
�!

�∏

i=1
(−1)χ(αi (n))

[
χ(αi (n))

]
t Jαi (t).

Since H1(OS) = 0 = H2(OS) this shows that Conjecture 5.2 holds, with the refined
Vafa–Witten invariants equalling the refined DT invariants

VWα(t) = Jα(t).

18 There is a further refinement given by taking the two variable Hodge–Deligne polynomial E(u, v) of the
stack εα . Here we take its specialisation χ−t = E(t, 1).
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Here, as before (1.2), [χ(α(n))]t is the symmetrised Poincaré polynomial (or Hirze-
bruch χ−t genus) of P(H0(E(n))) for any sheaf E of charge α. This refines the Euler
characteristic χ(α(n)) of P(H0(E(n))) that appears in [JS, Theorem 5.27].

Because theVafa–Wittenperfect obstruction theory coincideswith theDTobstruction
theory when H1(OS) = 0 = H2(OS), this theorem is an instance of Maulik’s result
[Ma] that, for some local Calabi-Yaus, the refinement of Joyce/Kontsevich-Soibelman
coincides with the refinement of Nekrasov-Okounkov.

Proof. We follow [JS, Chapter 13], fixing n 
 0 and use the same auxiliary categories
Bpα (whose objects are Gieseker semistable sheaves E on S with reduced Hilbert poly-
nomial a multiple of pα , plus a vector space V and a linear map V → H0(E(n)))
with K -theory classes in K (Coh(S))⊕ Z. We use the Euler form χ̄

(
(α, d), (β, e)

) :=
χS(α, β) − dχ(α(n)) − eχ(β(n)) + deχ(OS). Gieseker stability on Coh(S) induces
stability conditions on Bpα . Wall crossing between them gives the following identity of
stack functions [JS, Proposition 13.10]19

ε(α,1) =
∑

�≥1, (αi=δiα)�i=1:
δi>0,

∑�
i=1 δi=1

(−1)�
�!

[[ · · · [[ε(0,1), εα1

]
, εα2

]
, · · · ], εα�

]
. (5.16)

Here the Lie bracket is with respect to the Hall algebra product on stack functions, and
εα is the stack function (5.12) mapping to the stack of semistable sheaves in Coh(S)

thought of as semistable objects in Bpα . Then ε(α,1) is defined in a similar way from
objects in Bpα (with the K -theory class of O(−n) → E , for E of class α) which are
semistable with respect to Joyce–Song’s stability condition τ̃ . As in [JS, 13.5], it is the
stack P⊥α,n/C

∗.
Set α<k := α1 + . . .+αk−1 and α≤k := α1 + . . .+αk . We multiply out the Lie brackets

in (5.16), starting with the innermost one. We claim that by induction, at the k th stage,
we get a bracket

A(α<k ,1) ∗ εαk − εαk ∗ A(α<k ,1), (5.17)

where A(α<k ,1) maps to the stack of semistable objects A of Bpα which have charge
(α<k, 1). Let E be any semistable object of Bpα of charge (αk, 0) (i.e. semistable sheaf
on S of charge αk).

All extensions from E to F or from F to E giving semistable objects of Bpα of
charge (α≤k, 1). Therefore (5.17) maps to the stack of semistable objects of Bpα of
charge (α≤k, 1), and the induction continues. Moreover,

ext1S(E, A)− homS(E, A) = −χS(αk, α<k)

with no other Exts, and

ext1(A, E)− hom(A, E) = χ(αk(n)))− χS(α<k, αk),

also with no further Exts. Therefore by the scissor relations and (5.9) (in constructible
families) we have

[A(α<k ,1), εαk ] =
(
L
−χS(αk ,α<k ) − L

χ(αk (n)))−χS(α<k ,αk )
)
A(α<k ,1) × εαk

19 We have used the genericity of OS(1) to simplify the sum to one over only charges proportional to α.
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as a Q-linear combination of stacks. Since all αi = δiα are proportional to α we see that
χS(α<k, αk) is symmetric in its arguments, and

[A(α<k ,1), εαk ] = L
−χS(αk ,α<k )

(
1− L

χ(αk (n))
)
A(α<k ,1) × εαk .

Therefore the Lie brackets in (5.16) give in total

L
−χS(α2,α<2)−χS(α3,α<3)−...−χS(α�,α<�)

(
�∏

i=1
(1− L

χ(αi (n))) εαi

)
1

L− 1
,

where the final term comes from ε(0,1) ∼= BC
∗. Taking (t − 1)χ−t of this gives, by

(5.14),

t−
∑�

i=2 χS(αi ,α<i )
�∏

i−1
(−1)χS(αi ,αi )t

1
2 (χ(αi (n))−1)[χ(αi (n))]t t

1
2 (1−χS(αi ,αi ))Jαi (t).

By expressing χS(α, α) as

�∑

i=1
χS(αi , αi ) + 2

∑

i> j

χS(αi , α j ) =
�∑

i=1
χS(αi , αi ) + 2

�∑

i=2
χS(αi , α<i )

this can be rewritten

(−1)χS(α,α)t
1
2χ(α(n))− 1

2χS(α,α)
�∏

i−1
[χ(αi (n))]tJαi (t).

Therefore (t − 1)χ−t ( · ) applied to (5.16) gives

(t − 1)χ−t (P⊥α,n/C
∗) = (−1)χS(α,α)t

1
2 dimP⊥α,n

×
∑

�≥1, (αi=δiα)�i=1:
δi>0,

∑�
i=1 δi=1

(−1)�
�!

�∏

i−1
[χ(αi (n))]t Jαi (t).

Multiplying both sides by (−1)dimP⊥α,n t−
1
2 dimP⊥α,n gives, by (5.8),

P⊥α,n = (−1)χ(α(n))
∑

�≥1, (αi=δiα)�i=1:
δi>0,

∑�
i=1 δi=1

(−1)�
�!

�∏

i−1
[χ(αi (n))]t Jαi (t),

which is the result claimed.
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5.2. pg(S) > 0 cosection and vanishing theorem. Fix a surface S with pg(S) > 0. In his
calculations [La1] Ties Laarakker observed a certain vanishing (more-or-less Corollary
5.30 below, in low ranks). Here we explain it by describing a certain cosection of the
fixed obstruction theory, on any connected component P of the monopole branch of
the T -fixed loci (P⊥α,n)

T . If stable= semistable the same construction can be done with
moduli spaces N ⊂ (N⊥α )T of sheaves on X (or Higgs pairs on S) instead.

The construction is basically the same as in [PT, Section 5]; we simply replace stable
pairs by Joyce–Song pairs and impose the centre-of-mass-zero condition20 on each C

fibre of X = S × C (equivalently, the tr φ = 0 condition on the Higgs field).
We find it convenient to describe the cosection using Higgs data on S. For a more

geometric description using sheaves on X instead, see [PT, Section 5]. By the symmetry
of the obstruction theory, what we require is a T -weight one P⊥α,n vector field along (but
not tangent to) P . This is Serre dual to a weight zero (i.e. invariant) cosection of the
obstruction sheaf.

Since Joyce–Song stable pairs have no automorphisms and form a fine moduli space,
there is a universal Higgs pair and Joyce–Song section (E,�, s) over the total space of
pS : S × P → P . Thus

� ∈ Hom(E,E⊗ KSt) and s ∈ H0(E(n)),

where n 
 0 is sufficiently large that E(n) has no higher cohomology on any S fibre.
Furthermore this lack of automorphisms means the universal T -fixed sheaf E admits

a T -linearisation. (For any λ ∈ T we get a unique isomorphism φλ : (E, φ, s) →
λ∗(E, φ, s) = (E, λφ, s). Uniqueness then implies that φλ ◦ φμ = φλμ.) Tensoring by
its highest weight, we may assume that

E =
r−1⊕

i=0
Ei ⊗ t−i (5.18)

with each of E0 and Er−1 nonzero and all Ei flat over P . Since we are on the monopole
branch, r ≥ 2. The weight one � maps each Ei to Ei+1, and s is T -fixed up to automor-
phisms of E.

Fix a nonzero holomorphic 2-form

0 �= σ ∈ H0(KS)

and consider the trace-free endomorphism

ϕ̇ :=
(
idEr−1 −

rank(Er−1)
rank(E)

idE

)
⊗ σ ∈ Hom(E,E⊗ KS

)
0 ⊗ t. (5.19)

It defines a family of Higgs triples21

(E,� + t ϕ̇, s) over P × Ct , (5.20)

20 Hencewe get only one of the two cosections of [PT, Equation 5.8]. This is sufficient since the Vafa–Witten
RHom(I •, I •)⊥[1] obstruction theory of [TT1,TT2] has already had an H2(OS) term removed from the
obstruction sheaf, i.e. it is a reduced obstruction theory in the language of [PT].
21 This flow is most easily understood in terms of sheaves on X [PT, Section 5]; for instance it takes the

sheaf Or S at t = 0 toO(r−1)�−tσ/r ⊕O�tσ at time t �= 0, where �σ ⊂ KS is the graph of σ .
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where t is the parameter on C = Ct . This family is classified by a map

P × Ct −→ P⊥α,n .

Differentiating at t = 0 (equivalently, restricting from Ct to Spec C[t]/(t2)) we get a
P⊥α,n vector field on P ,

ϕ̇ ∈ �
(
P, TP⊥α,n

∣∣P
)
. (5.21)

By construction it has T weight one. The symmetry of the obstruction theory
(
RHom(I •, I •)⊥[1]

)∨ ∼= RHom(I •, I •)⊥ ⊗ t−1[2]
makes �P ∼= ObP ⊗ t−1, so (5.21) is equivalent to a weight zero cosection

ObP −→ OP . (5.22)

Its image is an ideal sheaf

IZ(ϕ̇) ⊆ OP ,

so (5.22) has a well-defined zero scheme Z(ϕ̇).

Theorem 5.23. Pick 0 �= σ ∈ H2,0(S) and consider the cosection (5.22) on a connected
component P ⊂ (P⊥α,n)

T of the monopole branch.
At any closed point of the zero scheme Z(ϕ̇) ⊂ P the maps φ : Ei → Ei+1 are both

injective and generically surjective22 on S for each i = 0, . . . , r − 2. In particular if
Z(ϕ̇) �= ∅ then rank E0 = rank E1 = · · · = rank Er−1.

Proof. First we discuss how basechange works in this setting. If p = (E, φ, s) is
a point of P with ideal m ⊂ OP then �P |p ∼= m/m2 and (5.22) induces a map
m/m2 → Op ∼= C which is zero if and only if p ∈ Z(ϕ̇). Therefore p ∈ Z(ϕ̇) if and
only if the vector field (5.21) restricted to p maps to zero under the natural map (which
need not be an isomorphism!)

TP
∣∣
p −→

(
m/m2)∗. (5.24)

But
(
m/m2

)∗ is described by deformation theory [TT2] as Ext1X (I •, I •)⊥. By forgetting
the section s, this maps (see [TT2, Equation 6.11], for instance)

Ext1X (I •, I •)⊥ −→ Ext1X (Eφ, Eφ)⊥ (5.25)

to the first order deformation space of (E, φ), which sits in the exact sequence

0 −→ HomS(E, E)0
[ · ,φ]−−−−→ HomS(E, E ⊗ KS)0 t −→ Ext1X (Eφ, Eφ)⊥ (5.26)

of [TT1, Equations 2.20 and 5.32]. By (5.19) the image of the vector field (5.21) under
first (5.24) and then (5.25) can be seen in this exact sequence as the image of

(
idEr−1 −

rank(Er−1)
rank(E)

idE

)
⊗ σ ∈ HomS(E, E ⊗ KS

)
0 (5.27)

22 That is, they have torsion cokernel.
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in the second term. So to prove that p �∈ Z(ϕ̇) it is sufficient to show that (5.27) is not
in the image of the first term of the sequence (5.26).

Assume first that at the point p = (E = ⊕r−1
i=0 Ei t

−i , φ, s) ∈ P , one of the φ : Ei →
Ei+1 fails to be injective on S. Letting Ki denote the kernel of

φr−1−i ∣∣
Ei
: Ei −→ Er−1, (5.28)

our assumption is that

K :=
r−2⊕

i=0
Ki �= 0.

Since (E, φ) is semistable it is torsion free, so all of the Ki ⊂ Ei are torsion free.
There is an open subsetU ⊂ S over which they are all locally free, φ has constant rank,
and—we claim—there is a φ-invariant splitting

E |U ∼= K |U ⊕ (E/K )|U . (5.29)

To prove the claim, we may shrink U if necessary and then split K0 ⊂ E0 over it.
Then we proceed inductively. At the i th stage we have split Ei = Ki ⊕ Ei/Ki over U ,
which we use to form φ(Ei/Ki ) ⊂ Ei+1. Since its intersection with Ki+1 ⊂ Ei+1 is
0 we have φ(Ei/Ki ) ⊕ Ki+1 ⊂ Ei+1. Further shrinking U if necessary we can find a
complement Ci to this subbundle. Then Ci ⊕ φ(Ei/Ki ) gives the required complement
to Ki+1 ⊂ Ei+1.

Therefore (5.29) defines a local splitting ofHiggs bundles overU . The endomorphism
ϕ̇|U of (5.27) acts on the first summand as

− rank(Er−1)
rank(E)

idK⊗ σ of trace − rank(Er−1) rank(K )

rank(E)
σ ∈ H0(KS|U ).

Therefore it is not in the image of the map [ · , φ] in the sequence (5.26), since commu-
tators are trace-free. That is, it defines a nonzero deformation of the Higgs pair (K , φ|K )

over U . Therefore the cosection (5.22) is nonzero at p.
So now we turn to the case where K = 0 but at least one of the maps (5.28) has

cokernel of rank > 0. Then there is an open set U ⊂ S over which the cokernels are
locally free, rank(φ) is constant, and—we claim—there is a φ-invariant splitting of
locally free sheaves

E |U ∼=
k−1⊕

i=0
(φi E0|U ⊕ Ci )

with Ck−1 �= 0. We prove the claim inductively, with base case C0 := 0. At the i th
stage, possibly after shrinking U as usual, we pick a complement Di+1 to φi+1(E0) and
then set Ci+1 = Di+1 ⊕ φ(Ci ).

Therefore
⊕k−1

i=0 φi E0|U is a proper sub Higgs bundle of (E, φ)|U . On restriction to
it, the endomorphism (5.27) acts as

(
idφk−1(E0)

− rank(Ek−1)
rank(E)

id

)
⊗ σ
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whose trace is < rank(φk−1(E0)) − rank(Ek−1) = − rank(Ck−1) < 0. Therefore it is
not in the image of the map [ · , φ] in the sequence (5.26). That is, it defines a nonzero
deformation of the sub Higgs bundle over U , and again the cosection (5.22) nonzero at
p = (E, φ, s).

These results can be strengthened, for instance by showing that at points of Z(ϕ̇) the
cokernels of φ : Ei → Ei+1 must have support on the zero divisor of σ—see Theorem
5.34 below for K3 surfaces, for example. But since a nowhere zero cosection onP forces
its contribution to the K -theoretic invariant to vanish (by an easy special case of [KL];
see for instance [KL, Proposition 3.2]) the above result is enough to prove that most
components P do not contribute to the invariants. In particular the most obvious special
case is the following.

Corollary 5.30. If h2,0(S) > 0 and the multi-rank is non-constant,

(rank E0, rank E1, . . . , rank Er−1) �= (a, a, . . . , a) ∀a ∈ N

then P does not contribute to the refined invariants.

Remark 5.31. The cosection does not rule out the contribution of all components. For
instance, when � : Ei → Ei+1 is an isomorphism for i = 0, . . . , r − 2, the cosection
(5.22) vanishes identically. This is because the endomorphism (5.19) can be written

ϕ̇ = [A,�],
where A : E→ E acts as zero on E0 and as �−1 : Ei → Ei−1 on any other summand.
Therefore, in the exact sequence

0 −→HompS (E,E)0
[ · ,�]−−−−→HompS (E,E⊗ KS)0 t −→ E xt1pX(E�,E�)⊥ (5.32)

of [TT1, Equations 2.20 and 5.32], we see that ϕ̇ maps to zero in the deformation space
of E� on pX : X × P → P . That is, the first order deformation of E� (or equivalently
(E,�)) is zero. Since s is constant in the flow (5.20), we see the tangent vector (5.21)
vanishes identically so Z(ϕ̇) = P .

5.3. K3 surfaces. The cosection (5.22) gives the strongest results on (polarised) K3
surfaces (S,OS(1)). Just as for the stable pairs in [PT], it will show that the only Joyce–
Song pairs on S×C which contribute nontrivially to the refined Vafa–Witten invariants
are those which have constant thickening in theC-direction. That is, they are pulled back
from S then tensored by Or S := OX/I rS⊂X for some r > 0:

E = ρ∗E0 ⊗Or S .

In Higgs language these correspond to the following.

Definition 5.33. We call a point (E, φ, s) ∈ (P⊥α,n)
T uniform if the maps (5.28) are all

isomorphisms. Equivalently,

E ∼=
k−1⊕

i=0
φi (E0) t

−i .
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Theorem 5.34. A connected component P ⊂ (P⊥α,n)
T contains a uniform point if and

only if all its points are uniform, if and only if the cosection (5.22) vanishes identically
on P .

Otherwise the cosection is nowhere zero onP . In particular, non-uniform components
P contribute zero to the refined invariants.

Proof. Firstly we claim that for any semistable Higgs pair (E, φ) on S the underlying
sheaf E is also semistable.

Let F ⊂ E be the first term of its Harder-Narasimhan filtration. Therefore F is
semistable with strictly larger reduced Hilbert polynomial (or “Gieseker slope") than
the other graded pieces of the filtration. Since those pieces are also semistable, it follows
that

Hom(F, E/F) = 0.

Therefore the Higgs field φ preserves F , so F either strictly destabilises (E, φ) or is all
of E .

In particular each Ei in the weight space decomposition of E is semistable (and so
torsion-free) of the same reduced Hilbert polynomial. Therefore if φ : Ei → Ei+1 is
injective and generically surjective, it is an isomorphism.

It therefore follows from Theorem 5.23 that any closed point of the zero locus Z(ϕ̇)

of the cosection is uniform in the sense of Definition 5.33. Since being uniform is an
open condition, while the zero locus Z(ϕ̇) is closed, a single uniform point makes the
whole connected component P uniform. In this case the cosection vanishes identically
on P by Remark 5.31.

5.4. Refined multiple cover formula. When OS(1) is generic for charge α this leaves
only the uniform components to calculate on:

P⊥α,n =
∑

r |α

∫
[
P⊥

( α
r )r, n

]vir
1

e(N vir)
. (5.35)

Here P⊥
( α
r )

r
, n

is the moduli space of uniform Joyce–Song pairs of charge α which are

r -times thickened pairs of charge α/r . They are determined by their restriction to S,
giving an isomorphism

P⊥
( α
r )

r
, n
∼= P S

α/r,n ,

(ρ∗E ⊗Or S, ρ
∗s)←−� (E, s).

Here P S
α/r,n denotes the moduli space of Joyce–Song stable pairs (E, s) on (S,OS(1))

with charge α/r : so E is a Gieseker semistable sheaf on S with total Chern class α/r ,
and s ∈ H0(E(n)) does not factor through any destabilising subsheaf of E . We noted in
Theorem 5.34 this gives a bijection of sets. That this makes P S

α/r,n scheme theoretically

isomorphic to a component of (P⊥α,n)
T follows from the the deformation theory analysis

(5.36) below, or by [PT, Lemma 1].
Fix r and let α0 = α/r . Both P S := P S

α0,n and (P⊥rα0,n)T are fine moduli spaces. We
denote the two universal sheaves by

E0 on S × P S and E = ρ∗E0 ⊗Or S×P S on X × P S,



Equivariant K -Theory and Refined Vafa–Witten Invariants 1493

and the universal complexes made from the Joyce–Song pairs by

I •S := {OS(−n) −→ E0} and I •X := {OX (−n) −→ E },

with O(−n) in degree 0. As usual pS : S × P S → P S and pX : X × P S → P S denote
the projections. Now let

E•S := RHompS (I
•
S ,E0)

∨.

Though we will not need to know it, this is the virtual cotangent bundle of the natural
perfect obstruction theory on the moduli space P S of pairs on S; see [KT1] for instance.

When considered instead as a moduli space of sheaves on X (not yet imposing the
centre-of-mass-zero condition), we get a the virtual cotangent bundle

RHompX(I
•
X , I •X )∨0 [−1] ∼= E•S ⊗ (t0 ⊕ · · · ⊕ tr−1) ⊕ (E•S)∨[1] ⊗ (t−1 ⊕ · · · ⊕ t−r )

by [PT, Proposition 4]. (While that paper works with stable pairs, it uses none of their
special properties—the proof goes through verbatim for Joyce–Song pairs.)

To get the Vafa–Witten obstruction theory we remove H0(KS) ⊗ t from the defor-
mations (imposing the centre-of-mass-zero condition) and—dually—H2(OS) from the
obstructions, replacing E•S by the reduced obstruction theory of [KT1] (we do not prove
this compatibility of obstruction theories since we do not need it; we only require the
K -theory class of the virtual (co)tangent bundle). The upshot is that the Vafa–Witten
obstruction theory of [TT2] is, on restriction to P S ⊂ P⊥rα0,n , the K -theory class of

L
vir
P⊥rα,n

∣∣
∣P S
∼= L

red
P S ⊗ (t0 ⊕ · · · ⊕ tr−1)− (t⊕ · · · ⊕ tr−1)

−(Lred
P S )
∨ ⊗ (t−1 ⊕ · · · ⊕ t−r ) + (t−2 ⊕ · · · ⊕ t−r ).

If we write

� := L
red
P S ⊗ (t⊕ · · · ⊕ tr−1)− (t2 ⊕ · · · ⊕ tr−1)

then

L
vir
P⊥rα,n

∣∣∣P S
∼= L

red
S + � − t−�∨ − (Lred

S )∨t−r + t−r .

From this we read off

K
1
2
vir

∣∣P S
∼= det(�)t−(r+1)/2 det(Lred

S )tr vd /2,

where vd := rank(Lred
S ) is the reduced virtual dimension of P S ,

(
L
vir
P⊥rα,n

∣
∣∣P S

)fix ∼= L
red
S , (5.36)

and

(N vir)∨ ∼= � −�∨ − (Lred
S )∨t−r + t−r − t.
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Therefore

Ovir
P S ⊗ K

1
2
vir

∣∣P S

�•(N vir)∨

= det(�)⊗�•(�∨)
�•(�)

�•(Lred
S tr )∨det(Lred

S tr )t−
1
2 (r vd +r+1) 1− t

1− t−r
Ovir
P S

= (−1)rank(�)(−1)vdt− 1
2 r vd�•(Lred

S tr )
(−1)
[r ]t

Ovir
P S

by two applications of the identity det(E)∗ ⊗�•E
/
�•E∨ = (−1)rank(E) of (2.28).

Substituting rank(�) = (r − 1) vd−(r − 2) and vd ≡ χ(α0(n)) − 1 (mod 2) and
taking χt gives the following contribution to the refined pairs invariants,

P⊥(α0)r ,n =
(−1)χ(rα0(n))−1

[r ]t
t−

1
2 r vdχvir−tr (P S

α0,n
), (5.37)

cf. (2.32). This gives a refined multiple cover formula under any of the conditions

(1) α0 = α/r is primitive, or
(2) all semistable sheaves of class α0 on S are stable, or
(3) Conjecture 5.2 holds for α0.

Notice that (1)⇒ (2) while Proposition 5.5 shows (2)⇒ (3).

Theorem 5.38. Suppose any of (1), (2) or (3) holds for the charge α0. Then the contribu-
tion (5.37) of uniform Joyce–Song pairs satisfies Conjecture 5.2 for all r . The resulting
refined Vafa–Witten invariants are given by the multiple cover formula

VW(α0)r (t) =
VW(α0)

1(tr )

[r ]2t
. (5.39)

Furthermore, when α0 is primitive, setting d := 1− 1
2χS(α0, α0) we have

VW(α0)
r (t) = t−rdχ−tr (Hilbd S)

[r ]2t
.

Proof. Since we are assuming Conjecture 5.2 holds for α0, we may apply (5.4) to the
r = 1 instance of (5.37) to deduce

VW(α0)
1(t) = t−

1
2 vd

χvir−t (P S)

[χ(α0(n))]t
. (5.40)

Combining this with the identity [χ ]tr [r ]t = [rχ ]t , we rewrite (5.37) as

(−1)χ(rα0(n))−1[χ(rα0(n))]t
VW(α0)

1(tr )

[r ]2t
. (5.41)

Therefore (5.4) holds for all k > 1 with

VW(α0)
r (t) = VW(α0)

1(tr )

[r ]2t
.
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When α0 is primitive, P S = P S
α0,n

is a P
χ(α0(n))−1-bundle over the moduli space MS

of (semistable= stable) sheaves on S of class α0. In turn, MS is smooth with L
red
S
∼=

�MS and deformation equivalent to Hilbd S, where d = 1− 1
2χS(α0, α0). So pushing

�•(�P S t) down toMS and then taking χt gives, just as in (5.7),

χ−t (P S) = (1 + t + · · · + tχ(α0(n))−1)χ−t (Hilbd S).

Substituting this into (5.40) gives

VW(α0)
1(t) = t−

1
2

(
2d+χ(α0(n))−1

)
t
1
2 (χ(α0(n))−1)[χ(α0(n))]t

χ−t (Hilbd S)

[χ(α0(n))]t
= t−dχ−t (Hilbd S), d = 1− 1

2
χS(α0, α0).

So (5.39) turns out to be the correct refinement of the more familiar multiple cover
formula

VW(α0)
r = 1

r2
VW(α0)

1 .

For these numerical invariants it is known (by a results of [MT1,PT,To] combined in
[TT2, Theorem 6.21]) that

VW(α0)
1 = e(Hilbd S), d = 1− 1

2
χS(α0, α0),

even when α0 is not primitive. That is, the contribution of T -fixed semistable sheaves
scheme theoretically supported on S to the Vafa–Witten invariants is what we get for
primitive α0.

It seems natural to conjecture the same for the refined invariants. Summing over all
uniform multiple covers using (5.35),

P⊥α,n = (−1)χ(α(n))−1∑

r |α

t− 1
2 r vdχvir−tr

(P S
α
r ,n

)

[r ]t
, (5.42)

then substituting in (5.39) gives the following.

Conjecture 5.43. If OS(1) is generic in the sense of [TT2, Equation 2.4] then

VWα(t) =
∑

r |α

tχS(α,α)/2r−rχ−tr (Hilb1−χS(α,α)/2r2 S)

[r ]2t
.

When α = rα0 with r prime and α0 primitive, this was already conjectured by
Göttsche–Kool [GK3]. But by (5.42) and Theorem 5.38, we have proved this to be true.

Theorem 5.44. If OS(1) is generic, α is primitive and r is prime then Conjecture 5.43
is true:

VWrα(t) = tχS(α,α)/2−1χ−t (Hilb1−χS(α,α)/2S)

+
tr(χS(α,α)/2−1)χ−tr (Hilb1−χS(α,α)/2S)

[r ]2t
.
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Taking α = (r, 0, k) in the general case of Conjecture 5.43, in terms of generating
series it says

∑

k

VWr,k(t)q
k =

∑

d|r

1

[d]2t
∑

m∈Z
t−r(m−r/d)−dχ−td

(
Hilb

r
d

(
m− r

d

)
+1 S

)
qmd ,

where on the right we have summed over those second Chern classes k = md divisible
by d. Shifting m by the integer r/d simplifies this to

∑

d|r

1

[d]2t
∑

m∈Z
t−mr−dχ−td

(
Hilb

r
d m+1 S

)
qmd+r . (5.45)

To sum this we write

∞∑

k=−1
t−k−1χ−t (Hilbk+1 S) qk = 
̃(q, t)−1.

By the results of Göttsche–Soergel [GS], it is the unique Jacobi cusp form of index 10
and weight 1,


̃(q, t) := q
∞∏

k=1
(1− qk)20(1− tqk)2(1− t−1qk)2. (5.46)

It specialises at t = 1 to the modular form η(q)24.
Taking only powers k = r

d m of q divisible by the integer r/d on both sides of this
formula, and substituting td for t , gives

∑

m

t−mr−dχ−td (Hilb
r
d m+1 S)q

r
d m = d

r

r/d−1∑

j=0

̃(e2d jπ i/r q, td)−1.

Substituting in (5.45) gives

Conjecture 5.47. If OS(1) is generic then

∑

n

VWr,n(t) q
n =

∑

d|r

1

[d]2t
d

r
qr

r/d−1∑

j=0

̃
(
e2d jπ i/r q

d2
r , td

)−1
,

where 
̃ is given by (5.46).

Again, when r is prime, this was already conjectured by Göttsche–Kool [GK3], and
is proved by Theorem 5.44.

Theorem 5.48. If OS(1) is generic and r is prime then

∑

n

VWr,n(t) q
n = 1

[r ]2t
qr 
̃

(
qr , tr

)−1 + 1

r
qr

r−1∑

j=0

̃
(
e2 jπ i/r q

1
r , t
)−1

.
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5.5. KS > 0. Finally we describe the refinement of a simple calculation on general type
surfaces S from [TT2, Section 6.3]. For more recent and much more general results we
refer to the discussion of Laarakker’s results [La2] in the Introduction.

Take a surface S with h0,1(S) = 0 and h0,2(S) > 0 and charge α = (2, 0, 0) ∈
H∗(S). The C

∗-fixed semistable sheaves on X = KS are

(a) (the pushforward from S of) O⊕2S , and
(b) (the pushforward from 2S ⊂ X of) IC⊂2S ⊗ KS , for any C ⊂ S ⊂ 2S ⊂ X in the

canonical linear system |KS|.
Taking sections twisted byO(n) for n 
 0 (using in (b) the fact that the pushdown to

S of IC⊂2S ⊗ KS isOS ⊕OSt
−1), imposing stability and dividing by the automorphism

group of the sheaf, we find the following. The moduli space of C
∗-fixed stable Joyce–

Song pairs has two components,

(a) Gr(2, �(OS(n))) of pairs with underlying sheaf O⊕2S , and
(b) P(�(OS(n)))× P(�(KS)) of pairs with underlying sheaf IC⊂2SKS .

Thefirst component has a trivialH2(OS)piece in theobstructionbundleE xt2pX (I •, I •)⊥,
so it contributes nothing to the invariants. The second component is shown in [TT2, Sec-
tion 6.3] to have fixed obstruction bundle

Ob ∼= T ∗
P(�(KS))

(5.49)

pulled back from P(�(KS)), and virtual normal bundle

N vir = TP(�(OS(n)))t
−1 ⊕ TP(�(KS))t ⊕ �(KS)⊗OP(�(KS))(1)t

2

− T ∗
P(�(OS(n)))×P(H0(KS))

t − T ∗
P(�(OS(n)))t

2 − �(KS)
∗ ⊗OP(�(KS))(1)t

−1.(5.50)

A generic element of End0 �(KS) ∼= H0(TP(�(KS))) with distinct eigenvalues gives a
vectorfieldonP(�(KS))with pg(S)distinct zeros, and so avectorfieldonP(�(OS(n)))×
P(�(KS)) whose zero locus is pg(S) distinct P(�(OS(n))) fibres. By (5.49) the corre-
sponding Koszul resolution gives an equality in K -theory

Ovir = �• Ob∗ = (−1)pg(S)−1 pg(S)OP(�(OS(n))),

so that the refined pairs invariant is

P⊥α (n, t) = (−1)pg(S)−1 pg(S) · χt

(

P(�(OS(n))),
K 1/2
vir

�•(N vir)∨

)

. (5.51)

On a P(�(OS(n))) fibre the virtual normal bundle (5.50) simplifies to

N vir = � −�∨ ⊕ (t2)⊕pg(S)

− T ∗
P(�(OS(n)))t

2 − (t−1)⊕pg(S),

where � := TP(�(OS(n)))t
−1. Combined with (5.49) this means Kvir is

KP(�(OS(n))) ⊗ (det�)−2t−2pg(S) ⊗ KP(�(OS(n)))t
2χ(OS(n))−2t−pg(S)

with square root

K
1
2
vir = KP(�(OS(n))) ⊗ (det�)−1t−3pg(S)/2tχ(OS(n))−1.
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So we now calculate (5.51) to be

(−1)pg(S)−1 pg(S)tχ(OS(n))−1−3pg(S)/2 (1− t)pg(S)

(1− t−2)pg(S)

×χt

(
�•� ⊗�• (TP(OS(n))t

−2)KP(�(OS(n)))

det� ⊗�•�∨

)

.

By two applications of the identity (2.28) (and recalling that rank� = χ(OS(n))− 1)
this gives

−pg(S)
tχ(OS(n))−1+pg(S)/2

(1 + t)pg(S)
χt (�

• (�P(�(OS(n)))t
2)t−2χ(OS(n))+2

= − pg(S)

[2]pg(S)
t

[
χ(OS(n))

]
t2 .

Since [χ ]
t2
= [2χ ]t/[2]t this gives

P⊥α (n, t) = −pg(S)
[2χ(OS(n)]t
[2]pg(S)+1

t

.

This fits Conjecture (5.2) perfectly and makes the refined Vafa–Witten invariant

VWα(t) = pg(S)

[2]pg(S)+1
t

. (5.52)
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