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Abstract: We study the quantum mechanical many-body problem of N ≥ 1 non-
relativistic electrons with spin interacting with their self-generated classical electro-
magnetic field and K ≥ 0 static nuclei. We model the dynamics of the electrons and
their self-generated electromagnetic field with the so-called many-body Maxwell–Pauli
equations. Herewe construct time global, finite-energy,weak solutions to themany-body
Maxwell–Pauli equations under the assumption that the fine structure constant α and the
nuclear charges are not too large. The particular assumptions on the size of α and the
nuclear charges ensure that we have energetic stability of the many-body Pauli Hamil-
tonian, i.e., the ground state energy is finite and uniformly bounded below with lower
bound independent of themagnetic field and the positions of the nuclei. This work serves
as an initial step towards understanding the connection between the energetic stability
of matter and the well-posedness of the corresponding dynamical equations.

1. The Many-Body Maxwell–Pauli Equations

The three-dimensional many-body Maxwell–Pauli (MBMP) equations are a system of
nonlinear, coupled partial differential equations describing the time evolution of N ≥ 1
non-relativistic electrons interacting with both their classical self-generated electromag-
netic field and K ≥ 0 static (infinitely heavy) nuclei. In the Coulomb gauge the MBMP
equations read

⎧
⎨

⎩

i∂tψ = H(A)ψ,

�A = 4παPJJJ [ψ, A],
divA = 0.

(1)

In (1), ψ(t) ∈∧N [L2(R3)]2 is the Fermionic many-body wave function at time t of the
electrons (

∧N is the N -fold antisymmetric tensor product), A(t) : R
3 → R

3 is the total
magnetic vector potential at time t generated by the electrons, H(A) is the many-body
Pauli Hamiltonian defined by
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H(A)(t) =
N∑

j=1

T j (A)(t) + V (R,Z), (2)

where T j (A)(t) = [σσσ j · (p j + A j (t))]2 is the Pauli operator corresponding to the j th
electron (T j is appearing in the j th factor of the tensor product: T j ≡ I ⊗ · · · ⊗ T j ⊗
· · ·⊗ I ), p j = −i∇x j is the conjugate momentum of the j th electron, A j (t) = A(t, x j )

is the total magnetic vector potential at time t evaluated at the position x j ∈ R
3 of the

j th electron, σσσ = (σ 1, σ 2, σ 3) ∈ R
3 ⊗ M2×2(C) is the vector of Pauli matrices, which

are 2 × 2 Hermitian matrices assumed to satisfy the commutation relations [σ j , σ k] =
2iε jk�σ

� and anticommutation relations
{
σ j , σ k

} = 2δ jk I ,R = (R1, . . . , RK ) denotes
the collection of distinct centers R j ∈ R

3 of the K nuclei, Z = (Z1, . . . , ZK ) ∈
[0,∞)K denotes the collection of nuclear charges of the K nuclei, V (R,Z) : R

3N →
R denotes the sum total of the electron–electron, electron–nuclei, and nuclei–nuclei
Coulomb potential interaction and is given by

V (R,Z)(x) =
∑

1≤i< j≤N

1

|xi − x j | −
N∑

i=1

K∑

j=1

Z j

|xi − R j | +
∑

1≤i< j≤K

Zi Z j

|Ri − R j | , (3)

where x = (x1, . . . , xN ) ∈ R
3N is the collection of position coordinates of the N

electrons, P = curl (−
)−1 curl is the Leray-Helmholtz projection onto divergence-
free vector fields, � = α2∂2t − 
 is the d’Alembert wave operator, and JJJ [ψ, A](t) =
∑N

j=1 J j [ψ, A](t) : R
3 → R

3 is the total probability current density of the electrons,
where J j [ψ, A] is the probability current density of the j th electron and is defined by

J j [ψ, A](t)(x) = −2α Re
∫

〈σσσψz′
j
(t),σσσ · (p + A(t))ψz′

j
(t)〉C2(x)dz′

j . (4)

In (4), for j ∈ {1, . . . , N }, z j = (x j , s j ) ∈ R
3 × {↑,↓} is the j th electron’s position

coordinate and spin state, and ψz′
j
: R

3 → C
2 is the spinor defined by

ψz′
j
(x, s) = ψ(z1; . . . ; x, s; . . . ; zN ),

where s ∈ {↑,↓}, z′
j = (z1, . . . , z j−1, z j+1, . . . , zN ), and dzi ≡∑si∈{↑,↓} dxi . At least

formally, there are two conserved quantities associated with (1): the L2-norm ‖ψ(t)‖2
and the total energy E given by

E[ψ, A, ∂tA](t) = TP[ψ(t), A(t)] + V [ψ(t)] + F[A(t), ∂tA(t)], (5)

where TP[ψ, A] is the total Pauli kinetic energy:

TP[φ, A] =
N∑

j=1

‖σσσ j · (p j + A j )φ‖22, (6)

V [ψ] is the total potential energy:
V [ψ] = 〈ψ, V (R,Z)ψ〉L2 , (7)
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and F[A, ∂tA] is the electromagnetic field energy:

F[A, ∂tA](t) = 1

8πα2

(
‖B(t)‖22 + α2‖∂tA(t)‖22

)
, (8)

where B = curlA is the magnetic field. It will be important for our study of (1) to define
the absolute ground state energy associated with E[ψ, A, ∂tA]. For this we introduce
the function space

CN :=
{

(ψ, A) ∈
∧N

H1(R3; C
2) × Ḣ1(R3; R

3) : ‖ψ‖2 = 1, divA = 0

}

. (9)

The space CN should be thought of as the space of all pairs (ψ, A) for which E[ψ, A, 0]
is finite. The absolute ground state energy EG is then defined as

EG(N , K ,Z, α) = inf
{
E[ψ, A, 0] : (ψ, A) ∈ CN , R

}
. (10)

Units Let e0, m, �, and c be the electron charge, electron mass, the reduced Plank’s
constant, and the speed of light, respectively. The length unit is half the Bohr radius
� = �

2/(2me20), the energy unit is 4 Rydbergs = 2me40/�
2 = 2mα2c2, and the time unit

is τ = �/(4 Rydbergs) = �
3/(2me40), where α = e20/�c is Sommerfeld’s dimensionless

fine structure constant. Note that 1/(cτ) = α/�. The magnetic field B = curlA and
electric fieldE = −∇ϕ−α∂tA are both in units of e0/(α�2). The field energy F[A, ∂tA]
in these units is given by (8). Throughout the paper we will think of α as a parameter
that can take any positive real value.

Our study of (1) is motivated by the results on the energetic stability of matter in
magnetic fields as developed in [1–5]. In particular, J. Fröhlich, E. H. Lieb, and M. Loss
in 1986 [1] introduced the critical charge

Zc := inf

{
F[A, 0]

〈ψ, | · |−1ψ〉L2
: (ψ, A) ∈ C1 and σσσ · (p + A)ψ = 0

}

, (11)

and proved that

inf {E[ψ, A, 0] : (ψ, A) ∈ C1} =
{
finite, Z < Zc
−∞, Z > Zc,

(12)

where E[ψ, A, 0] is defined as the (N = K = 1)-case of (5). In words, the ground state
energy of the single electronPauli–CoulombHamiltonian, [σσσ ·(p+A)]2−Z/|x|+F[A, 0],
is uniformly bounded below independent of themagnetic fieldB = curlAwhen Z < Zc,
and has no such lower bound when Z > Zc. An important observation is that Zc <

∞ as there exist nontrivial finite-energy solutions (ψ, A) to the zero mode equation
σσσ · (p +A)ψ = 0 (see, for example, [3]). We note that the result (12) is false if one does
not include the magnetic field energy F[A, 0] in the definition of E[ψ, A, 0] (see [1] for
a discussion).

More generally, E. H. Lieb, M. Loss, and J. P. Solovej in 1995 [5] proved that, if
α ≤ 0.06 and α2 maxZ ≤ 0.041, then

EG ≥ −C(α,Z)N 1/3K 2/3, (13)

where C(α) > 0 is a constant depending only on α and Z . That is, for small enough
α2 maxZ andα, the total energy E[ψ, A, 0] associatedwith themany-bodyPauliHamil-
tonian H(A) (see (5) and (2)) is bounded below with lower bound independent of the
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magnetic fieldB = curlA and the positions of the nucleiR. Again, the result (13) is false
if we do not include the field energy F[A, 0] in the definition of E[ψ, A, 0]. Moreover,
the antisymmetry condition in the definition ofCN is crucial for (13), as minimizingwith
respect to Bosonic (i.e., completely symmetric) wavefunctions results in collapse. We
note the range of α ∈ (0, 0.06) includes the actual physical value α � 1/137 � 0.007,
and for α � 1/137, the largest nuclear charge allowed is roughly 769. It is important to
emphasize that (13) requires a bound on both α2 maxZ and α. It is known that even for
the one-electronmolecule (single electron, K > 1 nuclei) α > 3π/

√
2 causes instability

[2]. Optimal ranges of α2 maxZ and α to ensure stability is a challenging open problem.
Considering these results on energetic stability it seems natural to ask whether the

existence of the ground state energy has an influence on the well-posedness of the corre-
sponding dynamical equations. Specifically, how does the existence (or non-existence)
of solutions to (1) depend on Zc in the (N = K = 1)-case and, more generally, the size
of α2 maxZ and α in the (max {N , K } > 1)-case? The aim of this paper is to make
progress on these questions by constructing finite-energy weak solutions to (1) which
are time global under the under the assumption that α and α2 maxZ are small enough
to ensure EG > −∞.

Theorem 1 (Global Finite-Energy Weak Solutions). Suppose α and α2 maxZ are suf-
ficiently small to ensure EG > −∞. Then, given

(ψ0, a0, ȧ0) ∈
∧N

H1(R3; C
2) × H1(R3; R

3) × L2(R3; R
3)

with ‖ψ0‖2 = 1 and div a0 = div ȧ0 = 0, there exists at least one finite-energy weak
solution

(ψ, A, ∂tA) ∈ Cw(R+;
∧N

H1(R3; C
2) × H1(R3; R

3) × L2(R3; R
3))

to (1) such that the initial conditions (ψ(0), A(0), ∂tA(0)) = (ψ0, a0, ȧ0) are satisfied.

If we are considering the (N = K = 1)-case of (1), then the hypothesis of Theorem 1
changes to Z < Zc where Zc is the critical charge and is defined by (11). Moreover, if
we are considering the (N = 1, K = 0)-case of (1), then no additional assumptions are
needed since the total energy is always positive (there are no nuclear charges present
and we do not need to assume α is sufficiently small). The reason The solution obtained
in Theorem 1 is a weak solution, but does indeed have finite energy, i.e., (ψ, A) belong
to the class of functions CN and ∂tA ∈ L2(R3; R

3).
As of this writing, there seems to be no existence theory of solutions to (1) for any

initial data (aside from the present paper), even in the single electron case with no nuclei.
To contrast this, we point out that there is an extensive literature studying the closely
related Maxwell–Schrödinger (MS) system (see, e.g., [6–19]). In the Coulomb gauge,
the MS equations read

⎧
⎨

⎩

i∂tψ = (p + A)2ψ,

�A = −8πα2 P Re 〈ψ, (p + A)ψ〉C,

divA = 0.
(14)

whereψ : R
3 → C is the single-particle wave function without spin. Notably, M. Naka-

mura and T. Wada in 2007 proved the global existence of unique smooth solutions to
(14) [13,14]. In order to obtain time global solutions to the MS equations, the authors
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in [13] first establish local well-posedness by linearizing (14) and applying a contrac-
tion mapping argument. Using a Koch-Tzvetkov type estimate on the Schrödinger piece
ei
t , the authors in [14] obtain time local solutions in Sobolev spaces of low regularity
and thereby improve upon the local well-posedness theory developed in [13]. The lower
regularity solutions are sufficiently close to the energy class so that, together with energy
conservation, they may conclude the solutions exist for all time.

We’d like to bring attention to the fact that, to our knowledge, the only result on the
MS equations with Coulomb potential interaction included is the local well-posedness
of a many-bodyMS system [18]. Themethods in this paper are immediately adaptable to
show the existence of a global weak solution a many-body version of the MS equations.
In this case, no assumption on the size of α or maxZ are needed because energetic
stability always holds. However, global well-posedness of strong solutions to the MS
equations with a Coulomb potential included is an open problem.

Consider the one-bodyMP equations, namely the (N = 1, K = 0)-case of (1), which
read

⎧
⎨

⎩

i∂tψ = [σσσ · (p + A)]2ψ,

�A = −8πα2 P Re 〈σσσψ,σσσ · (p + A)ψ〉C2 ,

divA = 0.
(15)

The difference between the magnetic Schrödinger equation (14, first equation) and Pauli
equation (15, first equation) comes from the coupling between the spin of the electron
and the magnetic field B = curlA, as seen through the identity

[σσσ · (p + A)]2 = (p + A)2 + σσσ · B. (16)

Similarly, the only difference between the probability current densities on the right hand
sides of (14, second equation) and (15, second equation) is the inclusion of the spin
current, namely curl 〈ψ,σσσψ〉C2 , appearing in the identity

Re 〈σσσψ,σσσ · (p + A)ψ〉C2 = Re 〈ψ, (p + A)ψ〉C2 +
1

2
curl 〈ψ,σσσψ〉C2 . (17)

Our attempts to apply the methods found in [13] to prove just local existence of
solutions in, for example, H2 × H2 × H1 to the one-body MP equations (15) have
not succeeded. These strategies appear to break down due to inclusion of the spin-
magnetic field coupling σσσ · B and the spin current curl 〈ψ,σσσψ〉C2 . Indeed, it appears to
be necessary to estimate ‖〈ψ, curlσσσϕ〉C2‖L2 by ‖ψ‖H2‖ϕ‖L2 for ψ, ϕ ∈ H2(R3; C

2),
and such an estimate seems impossible in general. In [13], the authors manage to make
such an estimate on the similar term Re 〈ψ, pϕ〉C appearing in (14, second equation)
by utilizing the projection operator P and observing that P (ψ∇ϕ) = −P (ϕ∇ψ).
However, the spin current is a pure curl and is thus already divergence-free. Therefore,
one loses the utility of the projection operator P being applied to the right hand side of
(15, second equation). For these reasons, local well-posedness of (15) in H2 ×H2 ×H1

remains an open problem.
Instead of attempting to prove local well-posedness of (15) and, more generally, (1),

we’ve turned our attention to proving the existence of global, weak solutions to (1).
For this we combine the contraction mapping strategy in [13] with ideas from the 1995
work on the MS equations by Guo et al. [8]. In the latter article the authors consider an
ε-modified version of the MS equations that read
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⎧
⎨

⎩

∂tψ = −(i + ε)(p + A)2ψ,

�A = −8πα2 P Re 〈ψ, (p + A)ψ〉C,

divA = 0.
(18)

By taking advantage of the regularity-improving, dispersive properties of the heat kernel
eεt
 and the dissipative charge and energy associated with the ε-modifiedMS equations,
the authors in [8] are able to prove the existence of low regularity time global solutions
to (18). Then, by using a compactness argument to consider the ε → 0 limit, the authors
prove these low regularity time global solutions to (18) converge to time global finite-
energy weak solutions to (14).

The consideration of [8], therefore, leads us to study our own approximate system to
theMBMP equations. Referred to as the ε-modifiedMBMP equations, this approximate
system reads

⎧
⎪⎨

⎪⎩

∂tφ
ε = −(i + ε)Hε(Aε)φε + ε

(
TP[φε, Ãε] + V [φε]

)
φε

�Aε = 4πα�−1
ε PJJJ [φε, Ãε]

divAε = 0, Ãε = �−1
ε Aε,

(19)

where �ε = √
1 − ε
,Hε(Aε) is the ε-modified Hamiltonian

Hε(Aε) =
N∑

j=1

T j (Ãε) + V (R,Z), (20)

TP[φε, Ãε] is defined by (6) and V [φε] is defined by (7). We define the total energy of
the ε-modified system as

E[φε, Aε, ∂tAε] = TP[φε, Ãε] + V [φε] + F[Aε, ∂tAε]‖φε‖22, (21)

where F[Aε, ∂tAε] is the field energy defined by (8).
For the remainder of this paper we will drop the dependence on ε when it is not

needed. Note that the Pauli operators T j in the definition (20) of H(A) are evaluated at
the regularized vector potential Ã, whereas the field energy F is evaluated at (A, ∂tA).
Similarly, note that the probability current density JJJ in (19) is evaluated at Ã. These
choices are made so that the total energy (21) is dissipative under the time evolution of
(19) (see Theorem 3). Moreover, the choice of the right hand side of the first equation
in (19) is made so that normalized wavefunctions remain normalized under the flow of
(19). This point will be crucial for the application of the results concerning the stability
of matter in magnetic fields to construct global solutions to (19).

The space of initial conditions we will consider for the ε-modified MBMP system is

Xm
0 =

{
(ψ0, a0, ȧ0) ∈ [Hm(R3N )]2N ⊕ Hm(R3; R

3) ⊕ Hm−1(R3; R
3)

s.t. div a0 = div ȧ0 = 0} . (22)

Combining the regularity improving estimates of the heat kernel eεt
 (see Lemma 3)
with a contraction mapping scheme similar to the one in [13], we prove the following
local well-posedness result for (19).
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Theorem 2 (LocalWell-posedness of the ε-ModifiedSystem).Fixm ∈ [1, 2] and ε > 0.
Given initial data (φ0, a0, ȧ0) ∈ Xm

0 , there exists a maximal time interval I = [0, Tmax)

and a unique solution

(φ, A) ∈ CI [Hm(R3N )]2N × [CIHm(R3; R
3) ∩ C1

IH
m−1(R3; R

3)]
to (19) such that the initial conditions (φ(0), A(0), ∂tA(0)) = (φ0, a0, ȧ0) are satisfied
and the blow-up alternative holds: either Tmax = ∞ or Tmax < ∞ and

lim sup
t→Tmax

‖(φ(t), A(t), ∂tA(t))‖Hm⊕Hm⊕Hm−1 = ∞.

Furthermore, we can approximate lower regularity solutions by higher regularity so-
lutions in the following sense: if {(φ j

0 , a j
0 , ȧ j

0)} j≥1 ∈ Xm
0 converges, as j → ∞, to

(φ0, a0, ȧ0) ∈ X 1
0 in H1 ⊕ H1 ⊕ L2, then, for each t ∈ I, the sequence of solutions

{(φ j (t), A j (t), ∂tA j (t))} j≥1 corresponding to the initial datum {(φ j
0 , a j

0 , ȧ j
0)} j≥1 con-

verges in H1 ⊕H1 ⊕ L2 to the solution (φ(t), A(t), ∂tA(t)) corresponding to the initial
datum (φ0, a0, ȧ0).

The limited range of regularity, namely m ∈ [1, 2], in Theorem 2 comes from con-
trolling the Coulomb term V (R,Z)φ in (19) (see Lemma 6). We can, in fact, prove
Theorem 2 for m up to 5

2 − δ, δ > 0. However, doing so seems to be an unnecessary
mathematical generality and has no bearing on the validly of Theorem 1. However, we
do expect this to be the maximum range of regularity for this system. Indeed, already
for the Hydrogen ground state ψ0(x) ∝ e−|x|/2 one has ‖ψ0‖s,2 < ∞ if and only if
s < 5/2.

With Theorem 2 at our disposal, we would then like to consider the limit ε → 0
of the low regularity (m = 1) solutions to (19). However, one potential obstruction
to considering the ε → 0 limit is that the local time interval of existence [0, Tmax) in
Theorem 2 might shrink to zero as ε → 0. It is therefore necessary to prove that the low
regularity H1⊕H1⊕L2-local solutions to (19) are, in fact, global. A key ingredient that
allows us to extend from local to global solutions is to prove apriori ε, t-independent
bounds in H1 ⊕ H1 ⊕ L2 on solutions (φε, Aε) to (19). Our proof of such uniform
bounds uses energy dissipation together with the fact that the Coulomb energy V [φε(t)]
along a solution (φε, Aε) is bounded, with upper bound independent of ε and t . This
latter fact is crucial for our proof strategy and only true when the energy E is uniformly
bounded below. From the results on the stability of matter in magnetic fields we know a
uniform lower bound on E requires sufficiently small α and α2 maxZ . We express the
fact V [ · ] is a bounded functional on CN when α and α2 maxZ are sufficiently small
and that low regularity H1 ⊕ H1 ⊕ L2 local solutions to (19) are global as the following
Lemma and Theorem.

Lemma 1 (Uniform Bound on the Coulomb Energy). Let {(φn, An)}n≥1 ⊂ CN , where
CN is defined by(9), and assume that E[φn, An, 0] ≤ E0 where E0 is a constant de-
pending on N, K , α,Z , R, and (φ0, A0), but independent of n. Assume α and α2 maxZ
are sufficiently small to ensure EG > −∞. Then the sequence of Coulomb energies
{V [φn]}∞n=1 is uniformly bounded, supn |V [φn]| < ∞.

Theorem 3 (Dissipation of Energy and Uniform Bounds). Fix ε > 0 and m ∈ [1, 2]. Let
(φ0, a0, ȧ0) ∈ Xm

0 with φ0 ∈ ∧N Hm(R3; C
2) and ‖φ0‖2 = 1. Let (φ, A) ∈ CIHm ×
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[CIHm ∩C1
IH

m−1] be the corresponding solution to (19) provided by Theorem 2. Then
φ(t) remains completely antisymmetric and normalized for t ∈ I, and, if m = 2,

E[φ, A, ∂tA](t) − E[φ0, a0, ȧ0]
= −2ε

∫ t

0

[
‖H(A(τ ))φ(τ)‖22 − 〈φ(τ),H(A(τ ))φ(τ)〉2L2

]
dτ, (23)

for all t ∈ I. Moreover, if α and α2 maxZ are sufficiently small to ensure EG > −∞,
then

‖∇φ(t)‖2 ≤ C1, F[A, ∂tA](t) ≤ C2, ‖A(t)‖2 ≤ C3(1 + t), (24)

for all t ∈ I, where C1,C2,C3 > 0 are constants depending on N, K , Z , α, and the
initial data, but not ε or t. As a consequence, for m = 1 and for each fixed ε > 0, the
solution (φ, A) exists for all t ∈ R+.

We again emphasize the importance of the bounds (24). As already mentioned in
the paragraph preceding Theorem 3, for each fixed ε > 0, it is necessary to have time-
independent bounds on (φ(t), A(t), ∂tA(t)) in H1 × H1 × L2-norm in order to apply
the blow-up alternative of Theorem 2 and assert the m = 1 solutions of Theorem 2 exist
for all time. Furthermore, in order to apply a compactness argument to take the ε → 0
limit, we need ε-independent bounds on (φ(t), A(t), ∂tA(t)) in H1 × H1 × L2-norm to
apply the Banach-Alaoglu Theorem and extract a weak∗ converging subsequence. This
weak∗ limit will be shown to be a finite-energyweak solution to (1), thus yielding a proof
of Theorem 1. We also emphasize that the complete antisymmetry and normalization
of φ(t) is crucial, as otherwise we cannot make use of the stability result (13) and use
Lemma 1 to control the Coulomb energy.

This paper is organized as follows: In Sect. 2 we clarify our notation, define what
we mean by a weak solution, and recall standard estimates in Sobolev spaces, including
those for the heat kernel and wave equation. Section 3 is divided into two subsections:
Sects. 3.1 and 3.2. In Sect. 3.1 we prove several estimates for the right hand sides of
(19) in various Sobolev spaces. Such estimates are crucial to the proof of Theorem 2. In
Sect. 3.2 we introduce the metric space on which the Banach fixed point theorem will
be applied, and then give a proof of Theorem 2. In Sect. 4 we provide a proof that the
Coulomb energy is uniformly bounded, and use this result to prove Theorem 3. Finally,
Sect. 5 is devoted to completing the proof of Theorem 1.

2. Notation, Definitions, and Mathematical Preliminaries

If a, b ∈ R, a � b means that there exists a universal constant C > 0 such that
a ≤ Cb. For p ∈ [1,∞) and s ≥ 0, we will denote by L p = L p(Rd) the usual
Lebesgue space, Ws,p ≡ Ws,p(Rd) the usual Sobolev space equipped with the norm
‖ f ‖s,p ≡ ‖(1 − 
)

s
2 f ‖L p , and Ẇ s,p ≡ Ẇ s,p(Rd) the homogeneous Sobolev space

equipped with the seminorm ‖ f ‖Ẇ s,p ≡ ‖(−
)
s
2 f ‖p. When s = 0, we simply write

‖ f ‖p and when p = 2 we will use the notation Hs ≡ Ws,2, Ḣ s ≡ Ẇ s,2. The negative
index Sobolev spaces H−s(Rd) ≡ (Hs(Rd))∗, for s > 0, are equipped with the usual
norm ‖ f ‖−s,2 = sup {‖ f η‖1 : ‖η‖s,2 = 1}.

Let I ⊂ R be a (possibly infinite) time interval and (X, ‖ · ‖X ) be a reflexive Banach
space. Then CIX ≡ C(I; X), C1

IX ≡ C1(I; X), and Cw
I X ≡ Cw(I; X) denote the
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space of strongly continuous, strongly continuously differentiable, and weakly contin-
uous mappings from I to X , respectively. For p ∈ [1,∞], L p

IX ≡ L p(I; X) denotes
the space of strongly Lebesgue measurable functions g : I → X with the property that

‖g‖L p
I X =

⎧
⎨

⎩

(∫

I
‖g(s)‖p

Xds

) 1
p

for 1 ≤ p < ∞
ess sups∈I ‖g(s)‖X for p = ∞

is finite. Moreover, W 1,p
I X = W 1,p(I; X) denotes the space of all L p

IX -functions
whose first distributional time derivative is in L p

IX . Often I = [0, T ] for some T > 0
and in this case we will usually write L p

T X and likewise for CT X , etc.
For us D ′(R+; X) denotes the space of distributions from R+ = [0,∞) to X . That

is, D ′(R+; X) is the set of strongly continuous linear maps from C∞
c (R+) to X , where

C∞
c (R+) is equippedwith uniform convergence on compact sets.When g ∈ L1

loc(R+; X)

we denote the corresponding distribution in D ′(R+; X) defined via the formula

C∞
c (R+) � φ �→

∫

R+

g(s)φ(s)ds ∈ X

by the same symbol.
Very often X is either R

n , C
m , a Sobolev space Wm,p, or a direct sum of Sobolev

spacesWm1,p1⊕Wm2,p2 . For this reasonwe introduce some special notationswe employ
in this setting. First of all, when X = R

n or C
m we simply write ‖ ·‖X = | · |where | · | is

the usual Euclidean distance on R
n or C

m . More importantly, we will abbreviate ‖ · ‖p,
‖ · ‖m,p, ‖ · ‖q;m,p, and ‖ · ‖q1;m1,p1⊕q2;m2,p2 for the norms on L p, Wm,p, LqWm,p, and
Lq1Wm1,p1 ⊕ Lq2Wm2,p2 , respectively. This notation comes with the understanding that
‖ · ‖p ≡ ‖ · ‖0,p ≡ ‖ · ‖0;0,p and ‖ · ‖q;p ≡ ‖ · ‖q;0,p.

When considering vector fields A ∈ L p(R3; R
3), A = (A1, A2, A3), we write

‖A‖p
p =

3∑

j=1

‖A j‖p
p =

3∑

j=1

∫

R3
|A j (x)|pdx.

Likewise, the L p-norm of gradients of vector fields is defined by

‖∇A‖p
p =

3∑

j=1

‖∇A j‖p
p =

3∑

i, j=1

∫

R3
|∂xi A j (x)|pdx.

We will frequently use the identity ‖ curlA‖2 = ‖∇A‖2, when divA = 0 and A ∈
Ḣ1(R3; R

3). When discussing many-body wave functions, we always consider
Hs(R3N ; C

2N ) � [Hs(R3N )]2N ≡⊗N [Hs(R3)]2 through the canonical isomorphism,
and we recall that

∧N [Hs(R3)]2 denotes the closed subspace of⊗N [Hs(R3)]2 consist-
ing of completely antisymmetric many-body wave functions. Similar to vector fields,
the L p-norm of a many-body wave function ψ is defined as

‖ψ‖p
p =

∫

|ψ(z)|pdz ≡
2∑

s1=1

· · ·
2∑

sN=1

∫

R3N
|ψ(x1, s1; . . . ; xN , sN )|pdx.
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By a weak solution to (1) we mean a distributional solution (ψ, A) in the space
D ′(R+; [H−1(R3N )]2N )×D ′(R+; H−1(R3; R

3)). In particular, the solution (ψ, A, ∂tA)

in Theorem 1 satisfies

i
∫ ∞

0
〈ξ, ψ(s)∂t f (s)〉L2ds +

∫ ∞

0

N∑

i=1

〈∇xi ξ, f (s)∇xi ψ(s)〉L2ds

= −
∫ ∞

0
〈ξ, f (s)[L (A(s)) − V (R,Z)]ψ(s)〉L2ds,

∫ ∞

0

3∑

k=1

〈∂kη, f (s)∂kA(s)〉L2ds − α2
∫ ∞

0
〈η, ∂t f (s)∂tA(s)〉L2ds

= 4πα

∫ ∞

0
〈η, f (s)PJJJ [ψ(s), A(s)]〉L2ds,

for all f ∈ C∞
c (R+), ξ ∈ [H1(R3N )]2N , and η ∈ H1(R3; R

3), where L (A) =
∑N

j=1 L j (A) and L j (A) = 2A j · p j + |A j |2 + σσσ j · B j . The solutions (φ, A) ∈ CI
[Hm(R3N )]2N ×[CIHm(R3; R

3)∩C1
IH

m−1(R3; R
3)], where I = [0, T ], constructed

in Theorem 2 are considered to satisfy the integrated versions of (19):
{

φ(t) = e(i+ε)t
φ0 +
∫ t
0 e

(i+ε)(t−τ)
 f [φ(τ), Ã(τ )]dτ
A(t) = ṡ(t/α)a0 + α s(t/α)ȧ0 + 4π

∫ t
0 s((t − τ)/α)�−1

ε PJJJ [φ(τ), Ã(τ )]dτ,
where

f [φ, Ã] = −(i + ε)
(
L (Ã) + V (R,Z)

)
φ + ε

(
TP[φ, Ã] + V [φ]

)
φ,

and e(i+ε)t
, s(t) = sin
(√−
t

)
/
√−
, and ṡ(t) = cos

(√−
t
)
are all defined by their

Fourier multipliers (or, equivalently, as convolutions against the respective kernels). In
particular, (φ, A) satisfy (19) pointwise a.e. when m = 2.

Throughout the paper (and, in particular, Sect. 3) we will make repeated use of
Sobolev inequalities, dispersive estimates for the heat kernel, the Strichartz estimate for
the wave equation, and the Kato-Ponce commutator estimate. The Sobolev inequalities
are completely standard, but they are worth recalling here. Let 1 ≤ p ≤ q, s ≥ 0. If
sp < d and f ∈ Ws,p(Rd), then

‖ f ‖q � ‖ f ‖s,p when p ≤ q ≤ dp

d − sp
.

The other valuable estimates mentioned above are listed as a series of lemmas below.

Lemma 2 (Generalized Kato-Ponce inequality). Suppose 1 < p < ∞, s ≥ 0, α ≥ 0,
β ≥ 0 and 1

pi
+ 1

qi
= 1

p with i = 1, 2, 1 < q1 ≤ ∞, 1 < p2 ≤ ∞. If φ ∈
Ws+α,p1 ∩ W−β,p2 and ψ ∈ Ws+β,q2 ∩ W−α,q1 , then

‖(1 − 
)
s
2 (φψ)‖p � ‖(1 − 
)

s+α
2 φ‖p1‖(1 − 
)−

α
2 ψ‖q1

+ ‖(1 − 
)−
β
2 φ‖p2‖(1 − 
)

s+β
2 ψ‖q2 .

The same conclusion holds for (1 − 
)
s
2 replaced with (−
)

s
2 .
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Proof. See [20, Theorem 2]. ��
Lemma 3 (Dispersive Estimates for the Heat Kernel). For any m ≥ 0, 1 < r ≤ p ≤ ∞,
and f ∈ Lr (Rd) we have

‖et
 f ‖m,p � t
− d

2

(
1
r − 1

p

) (
1 + t−

m
2

)
‖ f ‖r

Proof. This is a standard result and aproof canbe found in [21,Chapter 2, Equation2.15].
��

Lemma 4 (Energy Estimate for the Wave Equation). Let k ∈ {0, 1} and I = [0, T ]
for some T > 0. Then for m ∈ R, (a0, ȧ0) ∈ Hm(R3; R

3) × Hm−1(R3; R
3) and

F ∈ L1
IH

m−1(R3; R
3) the function

K(t) = ṡ(t/α)a0 + α s(t/α)ȧ0 +
1

α

∫ t

0
s((t − τ)/α)F(τ )dτ,

where ṡ(t) = cos (
√−
t) : Hm → Hm and s(t) = sin (

√−
t)√−

: Hm−1 → Hm are de-

fined aFouriermultipliers for t ∈ R, is contained inCIHm(R3; R
3)∩C1

IH
m−1(R3; R

3)

and satisfies the energy estimate

max
k∈{0,1} ‖∂

k
t K‖∞;m−k,2 � ‖(a0, ȧ0)‖m,2⊕m−1,2 + ‖F‖1;m−1,2.

Proof. This lemma is stated as a special case of [22, Theorem 2.6]. For original proofs,
see [23,24]. ��

3. Local Well-Posedness of the ε-Modified System: The Contraction Mapping
Argument

3.1. Technical estimates. This section is devoted to the derivation of several estimates,
stated as Lemmas 5–8, for the right hand side of (19) in various Sobolev spaces. To
obtain such estimates we will repeatedly make use of Lemmas 2 and 3. The estimates
will be crucial for our proof of Theorem 2. Some remarks on a particular notation used
in this subsection are in order. We will denote � = √

1 − 
 and �̇ = √−
 and,
for k ∈ {1, . . . , N }, we will use the notation �s

k = (1 − 
xk )
s/2 (likewise for �̇s

k),

where
xk is the Laplacian acting on the kth electron coordinates,
xk =∑3
j=1 ∂2

x j
k

. We

emphasize that if no subscript k is present on �, then the Laplacian in the definition of
� is taken to be the full Laplacian acting on all the coordinates in the given context. The
�k notation should not be confused with the �ε notation introduced for the ε-modified
system (19).

Lemma 5 (Estimates for the Pauli Term). Let m ∈ [1,∞) and N ≥ 1. For all (φ, A) ∈
[Hm(R3N )]2N × Hm(R3; R

3), with divA = 0 and B = curlA, and for each j ∈
{1, . . . , N }, the operator L j (A) given by

L j (A) = 2A j · p j + |A j |2 + σσσ j · B j (25)

satisfies the estimates

‖L j (A)φ‖m−1, 32
� (1 + ‖A‖m,2)‖A‖m,2‖φ‖m,2, (26)
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and

‖et
L j (A)φ‖m,2 � t−
1
4

[
1 + t−

1
2

] (
1 + ‖A‖m,2

) ‖A‖m,2‖φ‖m,2, (27)

for all t > 0. Furthermore, for (φ, A), (φ′, A′) ∈ [H1(R3N )]2N × H1(R3; R
3), with

divA = divA′ = 0, and each j ∈ {1, . . . , N }, we have, for all t > 0,

‖et
 [L j (A)φ − L j (A′)φ′] ‖1,2
� t−

1
4

(
1 + t−

1
2

)
[(1 + ‖A‖1,2 + ‖A′‖1,2)‖φ′‖1,2 + (1 + ‖A‖1,2)‖A‖1,2]

× max {‖φ − φ′‖1,2, ‖A − A′‖1,2}. (28)

Proof. To show (26) it suffices to consider the case N = 1, as the general case follows
in a similar fashion. We use Lemma 2 and the Sobolev inequality H1(R3) ⊂ Lr (R3),
2 ≤ r ≤ 6, to prove (26)

‖L(A) f ‖m−1, 32
� ‖�m−1A‖6‖p f ‖2 + ‖A‖6‖�m−1p f ‖2 + ‖�m−1A‖6‖A f ‖2
+ ‖A‖6‖�m−1(A f )‖2 + ‖�m−1B‖2‖ f ‖6 + ‖B‖2‖�m−1 f ‖6

� ‖A‖m,2
(
2‖ f ‖m,2 + ‖A‖6‖ f ‖3 + ‖ f ‖1,2

)

+ ‖A‖1,2
(
‖ f ‖m,2 + ‖�m−1A‖6‖ f ‖3 + ‖A‖6‖�m−1 f ‖3

)

� (1 + ‖A‖m,2)‖A‖m,2‖ f ‖m,2.

To prove (27), fix j ∈ {1, . . . , N }, and note that

‖et
L j (A)φ‖m,2 �
N∑

k=1

‖�m
k e

t
L j (A)φ‖2. (29)

We separate into two cases: (a) k �= j and (b) k = j . For case (a) we use Lemma 3 and
(26) to find

‖�m
k e

t
L j (A)φ‖2 ≤ ‖�ke
t
xkL j (A)�m−1

k φ‖2
� t−

1
4

[
1 + t−

1
2

]
‖L j (A)�m−1

k φ‖ 3
2

� t−
1
4

[
1 + t−

1
2

]
(1 + ‖A‖1,2)‖A‖1,2‖�m−1

k φ‖1,2
� t−

1
4

[
1 + t−

1
2

]
(1 + ‖A‖1,2)‖A‖1,2‖φ‖m,2. (30)

For case (b) we use Lemmas 2 and 3, and the estimate (26), to find

‖�m
j e

t
L j (A)φ‖2 = ‖� j e
t
x j �m−1

j (L j (A)φ)‖2
� t−

1
4

[
1 + t−

1
2

]
‖�m−1

j (L j (A)φ)‖ 3
2

� t−
1
4

[
1 + t−

1
2

]
(1 + ‖A‖m,2)‖A‖m,2‖φ‖m,2. (31)

Combining (29) through (31) we arrive at (28).
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To prove (29) we write

L j (A)φ − L j (A′)φ′ = L1, j [φ − φ′, A] + L2, j [φ, A − A′]
where

L1, j [φ − φ′, A] = 2A j · p j (φ − φ′) + |A j |2(φ − φ′) + σσσ j · B j (φ − φ′),
L2, j [φ′, A − A′] = 2(A j − A′

j ) · p jφ
′ + (|A|2j − |A′|2j )φ′ + σσσ j · (B j − B′

j )φ
′.

Using Hölder’s inequality and the Sobolev inequality H1(R3) ⊂ Lr (R3), 2 ≤ r ≤ 6, to
find

‖L1, j [φ − φ′, A]‖ 3
2

� ‖A‖6‖φ − φ′‖1,2 + ‖A‖24‖φ − φ′‖6 + ‖B‖2‖(φ − φ′)‖6
�
(
2 + ‖A‖1,2

) ‖A‖1,2‖(φ − φ′)‖1,2. (32)

and

‖L2, j [φ′, A − A′]‖ 3
2

� ‖A − A′‖6‖φ′‖1,2 + ‖A − A′‖3(‖A‖6 + ‖A′‖6)‖φ′‖6 + ‖B − B′‖2‖φ′‖6
�
(
2 + (‖A‖1,2 + ‖A′‖1,2)

) ‖φ′‖1,2‖A − A′‖1,2. (33)

Lemma 3 gives

‖et
 [L j (A)φ − L j (A′)φ′] ‖1,2 � t−
1
4

[
1 + t−

1
2

]
‖L j (A)φ − L j (A′)φ′‖ 3

2
,

which, together with (32) and (33) allows us to conclude (28). ��
Lemma 6 (Estimates for the Coulomb Term). Fix m ∈ [1, 2] and let N , K ≥ 1,
Z ∈ [0,∞)K , and R = (R1, . . . , RK ) ∈ R

3K , with Ri �= R j for all i �= j . Then, for
all φ ∈ Hm(R3N ; C), the operator V (R,Z) given by (3), satisfies the estimate

‖et
V (R,Z)φ‖m,2 �
[
1 +
(
1 + t−

1
2

) (
t−

9
20 + t−

1
4

)]
‖φ‖m,2, (34)

for all t > 0.

Proof. To prove (34) we need to first prove the following inequalities. Let v : R
3 → R

3

be the function v(x) = |x|−1. Then, for all ψ ∈ Hm(R3; C), we have

‖vψ‖ 3
2

� ‖ψ‖1,2 (35)

and

‖vψ‖m−1, 54
� ‖ψ‖m,2. (36)

Moreover, for all ψ ∈ Hm(R6; C), we have

∫

R3

(∫

R3

∣
∣
∣
∣
ψ(x1, x2)
|x1 − x2|

∣
∣
∣
∣

3
2

dx1

) 4
3

dx2 � ‖�1ψ‖22 (37)
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and

∫

R3

(∫

R3

∣
∣
∣
∣�

m−1
1

ψ(x1, x2)
|x1 − x2|

∣
∣
∣
∣

5
4

dx1

) 8
5

dx2 � ‖�m
1 ψ‖22. (38)

Let B1 denote the unit ball in R
3, and Bc

1 = R
3\B1. Using Hölder’s inequality we

find

‖vψ‖
3
2
3
2

=
∫

B1

|ψ(x)| 32
|x| 32

dx +
∫

Bc
1

|ψ(x)| 32
|x| 32

dx

≤
(∫

B1
|x|−2dx

) 3
4 ‖ψ‖

3
2
L6(B1)

+

(∫

Bc
1

|x|−6dx

) 1
4

‖ψ‖
3
2
L2(Bc

1)

� ‖ψ‖
3
2
6 + ‖ψ‖

3
2
2 . (39)

The estimate (39) and the Sobolev inequality ‖ψ‖6 � ‖∇ψ‖2 imply (35).
For estimate (36) we focus on the case m = 2, as the m = 1 case is proved in the

same way as (35) and then general case m ∈ (1, 2) will follow similarly. Below we will

make use of the homogeneous Sobolev space Ẇ 1, 54 (R3) defined through the seminorm
‖ f ‖Ẇ 1,5/4(R3) = ‖�̇ f ‖ 5

4
. As before, we write

‖vψ‖
5
4

Ẇ 1, 54 (R3)
= ‖vψ‖

5
4

Ẇ 1, 54 (B1)
+ ‖vψ‖

5
4

Ẇ 1, 54 (Bc
1)

. (40)

We argue, separately, that both terms on the right hand side of (37) are bounded by
‖ψ‖2,2. For this it will be useful to remind ourselves of the identity �̇|x|−1 = C |x|−2

where C is a nonessential constant. To show

‖vψ‖
Ẇ 1, 54 (Bc

1)
� ‖ψ‖2,2 (41)

we use Lemma 2 to find

‖vψ‖
Ẇ 1, 54 (Bc

1)
� ‖�̇v‖

L
10
3 (Bc

1)
‖ψ‖L2(Bc

1)
+ ‖v‖

L
10
3 (Bc

1)
‖�̇ψ‖L2(Bc

1)

� ‖v2‖
L

10
3 (Bc

1)
‖ψ‖2 + ‖v‖

L
10
3 (Bc

1)
‖ψ‖1,2. (42)

Since ‖| · |−k‖
L

10
3 (Bc

1)
< ∞ for k ∈ {1, 2}, (42) implies (41).

Showing the inequality

‖vψ‖
Ẇ 1, 54 (B1)

� ‖ψ‖2,2. (43)

follows in a similar fashion. Indeed, using Lemma 2 we find

‖vψ‖
Ẇ 1, 54 (B1)

� ‖�̇v‖
L

5
4 (B1)

‖ψ‖L∞(B1) + ‖v‖
L

30
19 (B1)

‖�̇ψ‖L6(B1)

� ‖v2‖
L

5
4 (B1)

‖ψ‖L∞(B1) + ‖v‖
L

30
19 (B1)

‖�2ψ‖2. (44)
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Estimate (44), togetherwith the Sobolev inequality ‖ψ‖∞ � ‖ψ‖2,2 and the observation
that max {‖v2‖

L
5
4 (B1)

, ‖v‖
L

30
19 (B1)

} < ∞, implies (43). With (40), (41), and (43) we are

able to conclude ‖vψ‖
Ẇ 1, 54

� ‖ψ‖2,2.
Proving (37) is similar to showing (35). Indeed, using Hölder’s inequality and the

Sobolev inequality ‖ f ‖6 � ‖∇ f ‖2 we find

∫

R3

(∫

R3

∣
∣
∣
∣
ψ(x1, x2)
|x1 − x2|

∣
∣
∣
∣

3
2

dx1

) 4
3

dx2

=
∫

R3

(∫

B1

∣
∣
∣
∣
ψ(y + x2, x2)

|y|
∣
∣
∣
∣

3
2

dy +
∫

Bc
1

∣
∣
∣
∣
ψ(y + x2, x2)

|y|
∣
∣
∣
∣

3
2

dy

) 4
3

dx2

�
∫

R3

((∫

R3
|p1ψ(x1, x2)|2dx1

) 3
4

+

(∫

R3
|ψ(x1, x2)|2dx1

) 3
4
) 4

3

dx2

� ‖�1ψ‖22.

To show estimate (38) one combines the strategy used to show (36) and (37).
With estimates (35) through (38) at our disposal wemay prove (34).We split V (R,Z)

into three pieces: V (R,Z) =∑3
n=1 Vn(R,Z) where

V1(R,Z) =
∑

1≤i< j≤N

1

|xi − x j | ,

V2(R,Z) = −
N∑

i=1

K∑

j=1

Z j

|xi − R j | ,

V3(R,Z) =
∑

1≤i< j≤K

Zi Z j

|Ri − R j | .

We show (34) with V (R,Z) replaced by Vn(R,Z), n = 1, 2, 3. The estimate is trivial
for V3(R,Z) since R is fixed. Indeed, we find

‖et
V3(R,Z)φ‖m,2 ≤
⎛

⎝
K∑

i, j=1

Zi Z j

|Ri − R j |

⎞

⎠ ‖et
φ‖m,2 � ‖φ‖m,2. (45)

For V2(R,Z), the desired estimate is equivalent to controlling ‖et
|xi |−1φ‖m,2 by
‖φ‖m,2 for each i = 1, . . . , N . For this, fix i ∈ {1, . . . , N } and note that

‖et
|xi |−1φ‖m,2 �
N∑

k=1

‖�m
k e

t
|xi |−1φ‖2. (46)
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To estimate the right hand side of (46) we consider two cases: (a) k �= i and (b) k = i .
For case (a), we use Lemma 3 and the estimate (35) to find

‖�m
k e

t
|xi |−1φ‖2 ≤ ‖et
xi |xi |−1�m
k e

t
xk φ‖2

� t−
1
4

⎛

⎝

∫

R3(N−1)

(∫

R3

∣
∣
∣|xi |−1�m

k e
t
xk φ(x)

∣
∣
∣

3
2
dxi

) 4
3

dx′
i

⎞

⎠

1
2

� t−
1
4 ‖�ke

t
xk �i�
m−1
k φ‖2

� t−
1
4

[
1 + t−

1
2

]
‖�i�

m−1
k φ‖2

� t−
1
4

[
1 + t−

1
2

]
‖φ‖m,2. (47)

For case (b) the estimating is similar to that of (47). Using (36) we find

‖�m
i e

t
|xi |−1φ‖2 � ‖�i e
t
xi �m−1

i |xi |−1φ‖2

� t−
9
20

[
1 + t−

1
2

]

⎛

⎜
⎝

∫

R3(N−1)

(∫

R3

∣
∣
∣
∣�

m−1
i

φ(x)

|xi |
∣
∣
∣
∣

5
4

dxi

) 8
5

dx′
i

⎞

⎟
⎠

1
2

� t−
9
20

[
1 + t−

1
2

]
‖�m

i φ‖2
� t−

9
20

[
1 + t−

1
2

]
‖φ‖m,2. (48)

Combining estimates (47) and (48) we arrive at

‖et
V2(R,Z)φ‖m,2 ≤
N∑

i=1

K∑

j=1

Z j‖et
|xi − R j |−1φ‖m,2

�
(
1 + t−

1
2

) (
t−

9
20 + t−

1
4

)
‖φ‖m,2. (49)

Finally we need to control ‖et
|xi −x j |−1φ‖m,2 by ‖φ‖m,2 for each i, j = 1, . . . , N
with i �= j . The estimates involved are similar to those involved with controlling
‖et
V2(R,Z)φ‖m,2, and thus we choose to be brief with the computations. Fix (i, j) ∈
{1, . . . , N }2 with i �= j . Note that

‖et
|xi − x j |−1φ‖m,2 �
N∑

k=1

‖�m
k e

t
|xi − x j |−1φ‖2. (50)

Estimating the right hand side of (50) is similar to estimating the right hand side of (46).
We again consider two cases: (a) k �= j, i and (b) k = j, i . For case (a) we use Lemma 3
and (37) to find
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‖�m
k e

t
 φ

|xi − x j | ‖2 ≤ ‖et
xi
�m

k e
t
xk φ

|xi − x j | ‖2

� t−
1
4

⎛

⎜
⎝

∫

R3(N−1)

⎛

⎝

∫

R3

∣
∣
∣
∣
∣

�m
k e

t
xk φ(x)

|xi − x j |

∣
∣
∣
∣
∣

3
2

dxi

⎞

⎠

4
3

dx′
i

⎞

⎟
⎠

1
2

� t−
1
4 ‖�i�

m
k e

t
xk φ‖2
� t−

1
4 [1 + t−

1
2 ]‖�i�

m−1
k φ‖2

� t−
1
4 [1 + t−

1
2 ]‖φ‖m,2. (51)

For case (b) the estimating is similar. We choose k = i , and note that the case k = j is
identical by symmetry. Using Lemma 3 and (38) we find

‖�m
i e

t
 φ

|xi − x j | ‖2 ≤ ‖�i e
t
xi �m−1

i |xi − x j |−1φ‖2

� t−
9
20 [1 + t−

1
2 ]
⎛

⎜
⎝

∫

R3(N−1)

(∫

R3

∣
∣
∣
∣�

m−1
i

φ(x)

|xi − x j |
∣
∣
∣
∣

5
4

dx j

) 8
5

dx′
i

⎞

⎟
⎠

1
2

� t−
9
20 [1 + t−

1
2 ]‖�m

i φ‖2
� t−

9
20 [1 + t−

1
2 ]‖φ‖m,2. (52)

Combining estimates (51) and (52) we arrive at

‖et
V3(R,Z)φ‖m,2 ≤
∑

1≤i< j≤N

‖et
|xi − x j |−1φ‖m,2

�
(
1 + t−

1
2

) (
t−

9
20 + t−

1
4

)
‖φ‖m,2. (53)

Collecting estimates (45), (49), and (53) we arrive at (34). ��
Lemma 7 (Estimates for the Energies). Fix ε > 0, N , K ≥ 1, and let and Z ∈
[0,∞)K , R = (R1, . . . , RK ) ∈ R

3K , with Ri �= R j for all i �= j . For all (φ, A) ∈
[H1(R3N )]2N × Ḣ1(R3; R

3), with divA = 0, the kinetic energy TP = TP[φ, A], as
defined in (6), and the potential energy V = V [φ], as defined in (7), satisfy the estimates

TP � (1 + ‖∇A‖2)2‖φ‖21,2 and V � ‖φ‖21,2, (54)

respectively. Moreover, for all (φ, A), (φ′, A′) ∈ [H1(R3N )]2N × Ḣ1(R3; R
3), the

difference of the total kinetic energies and potential energies TP − T ′
P + V − V ′ ≡

TP[φ, A] − TP[φ′, A′] + V [φ] − V [φ′] satisfies the estimate
|TP − T ′

P + V − V ′|
� ω(‖φ‖1,2, ‖φ′‖1,2, ‖∇A‖2, ‖∇A′‖2)max {‖φ − φ′‖1,2, ‖∇(A − A′)‖2}, (55)

where

ω(x1, x2, x3, x4) = (1 + x2 + x3) [(1 + x3)x1 + (1 + x4)x2] + (x1 + x2). (56)
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Proof. To show the first estimate in (54) it suffices to prove the N = 1 case, as for
general N ≥ 1 the estimating goes in a similar fashion. Using Hölder’s inequality and
Sobolev’s inequality H1(R3) ⊂ Lr (R3), 1 ≤ r ≤ 6, we find

‖σσσ · (p + A)φ‖2 ≤ ‖pφ‖2 + ‖Aφ‖2
� ‖φ‖1,2 + ‖A‖6‖φ‖3
� (1 + ‖∇A‖2)‖φ‖1,2.

To show the second estimate in (54), first note that

V [φ] ≤
∑

1≤i< j≤N

〈φ, |xi − x j |−1φ〉L2 +

⎛

⎝
∑

1≤i< j≤K

Zi Z j

|Ri − R j |

⎞

⎠ ‖φ‖22. (57)

Considering (57) we focus on controlling the electron–electron repulsion energy since
the nuclei–nuclei repulsion energy is trivially bounded by ‖φ‖1,2. The desired estimate
on the electron–electron repulsion energy follows from the uncertainty principle for
Hydrogen, namely 〈ψ, |x|−1ψ〉 ≤ ‖ψ‖2‖∇ψ‖2. It suffices to consider the case N = 2.
Using Hölder’s inequality and Sobolev’s inequality we find

〈φ, |x1 − x2|−1φ〉L2

=
∫

R3

∫

R3

|φ(y + x2, x2)|2
|y| dydx2

≤
∫

R3

(∫

R3
|φ(y + x2, x2)|2dy

) 1
2
(∫

R3
|p1φ(y + x2, x2)|2dy

) 1
2

dx2

≤ 1

2

(
‖φ‖22 + ‖p1φ‖22

)
. (58)

Estimates (57) and (58) imply the second estimate in (54).
To estimate TP−T ′

P it suffices to consider the N = 1 case. Write TP−T ′
P =∑6

k=1 Tk
where

T1[φ, φ′, A, A′] = 〈σσσ · p(φ − φ′),σσσ · (p + A)φ〉,
T2[φ, φ′, A, A′] = 〈σσσ · (A − A′)φ′,σσσ · (p + A)φ〉,
T3[φ, φ′, A, A′] = 〈σσσ · A(φ − φ′),σσσ · (p + A)φ〉,
T4[φ, φ′, A, A′] = 〈σσσ · (p + A′)φ′,σσσ · p(φ − φ′)〉,
T5[φ, φ′, A, A′] = 〈σσσ · (p + A′)φ′,σσσ · (A − A′)φ′〉,
T6[φ, φ′, A, A′] = 〈σσσ · (p + A′)φ′,σσσ · A(φ − φ′)〉.

Using Cauchy–Schwartz together with first estimate in (54) we find

T1[φ, φ′, A, A′] � (1 + ‖∇A‖2)‖φ‖1,2‖φ − φ′‖1,2, (59)

T2[φ, φ′, A, A′] � (1 + ‖∇A‖2)‖φ‖1,2‖φ′‖1,2‖∇(A − A′)‖2, (60)

T3[φ, φ′, A, A′] � (1 + ‖∇A‖2)‖φ‖1,2‖∇A‖2‖φ − φ′‖1,2, (61)

T4[φ, φ′, A, A′] � (1 + ‖∇A′‖2)‖φ′‖1,2‖φ − φ′‖1,2, (62)

T5[φ, φ′, A, A′] � (1 + ‖∇A′‖2)‖φ′‖21,2‖∇(A − A′)‖2, (63)

T6[φ, φ′, A, A′] � (1 + ‖∇A′‖2)‖φ′‖1,2‖∇A‖2‖φ − φ′‖1,2. (64)
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Collecting estimates (59) through (64) we conclude

|TP − T ′
P| � ω1(‖φ‖1,2, ‖φ′‖1,2, ‖∇A‖2, ‖∇A′‖2)

× max {‖φ − φ′‖1,2, ‖∇(A − A′)‖2} (65)

where ω1 function

ω1(x, y, z, w) = (1 + y + z) [(1 + z)x + (1 + w)y] .

To estimate V − V ′, write V − V ′ = V1 + V2 where

V1[φ, φ′] = 〈φ − φ′, V (R,Z)φ〉L2 , V2[φ, φ′] = 〈φ′, V (R,Z)(φ − φ′)〉L2 .

We want to control max {V1, V2} by ‖φ‖1,2, ‖φ′‖1,2, and ‖φ − φ′‖1,2. Therefore, we
show the inequality

|〈h, V (R,Z)g〉| � ‖h‖1,2‖g‖1,2, ∀h, g ∈ H1(R3N , C). (66)

Note that

〈h, V (R,Z)g〉L2 =
N∑

i< j

〈h, |xi − x j |−1g〉L2 −
N∑

i=1

K∑

j=1

Z j 〈h, |xi − R j |−1g〉L2

+
K∑

i< j

Zi Z j

|Ri − R j | 〈h, g〉L2 . (67)

The third term on the right hand side of (67) is bounded by ‖g‖2‖h‖2 via Cauchy–
Schwartz. To estimate the second term on the right hand side of (67) it suffices to
consider the case N , K = 1 and R1 = 0. Indeed, in this situation 〈h, |x|−1g〉 �√‖h‖6‖g‖6‖h‖2‖g‖2. This follows by writing 〈h, |x|−1g〉 as the sum of an integral over
the ball of radius R and its complement, using Hölder’s inequality, and then optimizing
over R. The desired estimate (66) then follows from the Sobolev inequality. Estimating
the first term on the right hand side of (67) by ‖h‖1,2‖g‖1,2 follows the same proof as
that of (58). Hence (66) holds, and therefore

|V − V ′| � |V1| + |V2| � (‖φ‖1,2 + ‖φ′‖1,2)‖φ − φ′‖1,2. (68)

Collecting estimates (65) and (68), we arrive at (55). ��
Lemma 8 (Estimates for the Probability Current Density). Fix m ∈ [1,∞) and N ≥
1. For all (φ, A) ∈ [Hm(R3N )]2N × Hm(R3; R

3), with divA = 0, and each j ∈
{1, . . . , N }, the probability current density JJJ [φ, A] = ∑N

j=1 J j [ψ, A] as given by (4)

is in the Sobolev space Hm−2(R3; R
3) and satisfies the estimate

‖JJJ [φ, A]‖m−2,2 � (1 + ‖A‖m,2)‖φ‖2m,2. (69)

Moreover, for (φ, A), (φ′, A′) ∈ [H1(R3N )]2N ×H1(R3; R
3), with divA = divA′ = 0,

and each j ∈ {1, . . . , N }, we have
‖JJJ [φ, A] −JJJ [φ′, A′]‖−1,2

�
{[

(1 + ‖A‖1,2)‖φ‖1,2 + (1 + ‖A′‖1,2)‖φ′‖1,2
]
+ ‖φ‖1,2‖φ′‖1,2

}

× max {‖φ − φ′‖1,2‖A − A′‖1,2}. (70)
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Proof. To prove (69) we split into two cases: (a) 1 ≤ m ≤ 2 and (b) m > 2. For (a),
we specialize to m = 1 and note that the general case 1 ≤ m ≤ 2 follows in a similar
fashion. Since

‖JJJ [φ, A]‖−1,2 � ‖JJJ [φ, A]‖ 6
5

we need to estimate ‖JJJ [φ, A]‖ 6
5
by (1 + ‖A‖1,2)‖φ‖21,2. Using Minkowski’s integral

inequality, Hölder’s inequality, and the Sobolev inequality H1(R3) ⊂ Lr (R3), 2 ≤ r ≤
6, we have

‖J j [φ, A]‖ 6
5

= α

(∫

R3

∣
∣
∣
∣

∫

〈σσσφz′
j
,σσσ · (p + A j )φz′

j
〉C2(x j )dz′

j

∣
∣
∣
∣

6
5

dx j

) 5
6

≤ α

∫ (∫

R3

∣
∣
∣〈σσσφz′

j
,σσσ · (p + A j )φz′

j
〉C2(x j )

∣
∣
∣

6
5
dx j

) 5
6

dz′
j

�
∫ [

‖φz′
j
‖3‖(p + A)φz′

j
‖2
]
dz′

j

� (1 + ‖A‖1,2)‖φ‖21,2. (71)

The estimate (71) thus yields ‖J j [φ, A]‖−1,2 � (1+‖A‖1,2)‖φ‖21,2 For case (b), we use
Minkowski’s integral inequality, Lemma 2, and the Sobolev inequality to find

‖J j [φ, A]‖m−2,2 = α

(∫

R3

∣
∣
∣
∣

∫

�m−2
j 〈σσσφz′

j
,σσσ · (p + A j )φz′

j
〉C2(x j )dz′

j

∣
∣
∣
∣

2

dx j

) 1
2

≤ α

∫ (∫

R3

∣
∣
∣�

m−2
j 〈σσσφz′

j
,σσσ · (p + A j )φz′

j
〉C2(x j )

∣
∣
∣
2
dx j

)1/2

dz′
j

�
∫ [

‖φz′
j
‖m−2,6‖φz′

j
‖1,3 + ‖φz′

j
‖3‖φz′

j
‖m−1,6

+‖A‖m−2,6‖φz′
j
‖26 + ‖A‖6‖φz′

j
‖m−2,6‖φz′

j
‖3
]
dz′

j

� (1 + ‖A‖m,2)

∫

‖φz′
j
‖2m,2dz′

j � (1 + ‖A‖m,2)‖φ‖2m,2. (72)

Combining (71) and (72) we arrive at (69).
Arguing (70) in similar to the case m = 1 in proving (69). Specifically, we need to

estimate J j [φ, A] − J j [φ′, A′] in L
6
5 -norm. We write

J j [φ, A] − J j [φ′, A′] = −α Re
4∑

α=1

Fα
j [φ, φ′, A, A′] (73)
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where

F1
j [φ, φ′, A, A′](x j ) =

∫

〈σσσ
(

φz′
j
− φ′

z′
j

)

,σσσ · (p + A j )φz′
j
〉C2(x j )dz′

j ,

F2
j [φ, φ′, A, A′](x j ) =

∫

〈σσσφ′
z′
j
,σσσ · p

(

φz′
j
− φ′

z′
j

)

〉C2(x j )dz′
j ,

F3
j [φ, φ′, A, A′](x j ) =

∫

〈σσσφ′
z′
j
,σσσ ·

(
A j − A′

j

)
φz′

j
〉C2(x j )dz′

j ,

F4
j [φ, φ′, A, A′](x j ) =

∫

〈σσσφ′
z′
j
,σσσ · A′

j

(

φz′
j
− φ′

z′
j

)

〉C2(x j )dz′
j .

Estimating Fα
j , for α = 1, . . . , 4, in L

6
5 -norm is straightforward and involves the same

strategy used to show (71). We find

‖F1
j [φ, φ′, A, A′]‖ 6

5
� (1 + ‖A‖1,2)‖φ‖1,2‖φ − φ′‖1,2. (74)

‖F2
j [φ, φ′, A, A′]‖ 6

5
� ‖φ′‖1,2‖φ − φ′‖1,2, (75)

‖F3
j [φ, φ′, A, A′]‖ 6

5
� ‖φ‖1,2‖φ′‖1,2‖A − A′‖1,2, (76)

‖F4
j [φ, φ′, A, A′]‖ 6

5
� ‖A′‖1,2‖φ′‖1,2‖φ − φ′‖1,2. (77)

Estimates (74) through (77) imply (70). ��

3.2. Metric space, linearization, and proof of theorem 2. Let N , K ≥ 1, m ∈ [1,∞),
ε > 0, and (φ0, a0, ȧ0) ∈ Xm

0 , where Xm
0 is defined by (22), and let Z and R be defined

as in Sect. 1. Given T, R ∈ (0,∞), consider the (T, R)-dependent space

Xm
T (R) ={(φ, A) ∈ L∞

T [Hm(R3N )]2N × [L∞
T Hm(R3; R

3) ∩ W 1,∞
T Hm−1(R3; R

3)]
s.t. max {‖φ‖∞;m,2, ‖A‖∞;m,2, ‖∂tA‖∞;m−1,2} ≤ R, divA = 0}.

Recall, for (φ, A) ∈ Xm
T , we denote the magnetic field B = curlA and the regularized

vector potential Ã = �−1
ε A. When the radius R > 0 is understood we will simply write

Xm
T for Xm

T (R). Consider the mapping

� : Xm
T � (φ, A) �→ (ξ, K)

where

ξ(t) = e(i+ε)t
φ0 +
∫ t

0
e(i+ε)(t−τ)
 f [φ(τ), Ã(τ )]dτ, (78)

with

f [φ, Ã] =
[
−(i + ε)

(
L (Ã) + V (R,Z)

)
+ ε
(
TP[φ, Ã] + V [φ]

)]
φ, (79)

and

K(t) = ṡ(t/α)a0 + α s(t/α)ȧ0 + 4π
∫ t

0
s((t − τ)/α)�−1

ε PJJJ [φ, Ã](τ )dτ (80)
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In (78)–(80), TP[φ, Ã] is given by (6), V [φ] by (7),L (Ã) =∑N
j=1 L j (Ã)whereL j (Ã)

is given by (25), ṡ and s are defined in Lemma 4, andJJJ [φ, Ã] =∑N
j=1 J j [φ, Ã] given

by (4). In other words, � maps (φ, A) ∈ Xm
T into the solution of the linearized system

⎧
⎨

⎩

∂tξ − (i + ε)
∑N

j=1 
x j ξ = f [φ, Ã],
�K = 4πα�−1

ε PJJJ [φ, Ã],
ξ(0) = φ0, K(0) = a0, ∂tK(0) = ȧ0.

At this point we observe that a fixed point of � would give us a proof of the first part of
Theorem 2. Hence the strategy is to equipXm

T with an appropriate metric, prove that, for
small enough T > 0, � is a contraction on Xm

T with respect to that metric, and thereby
prove that � has a fixed point via the Banach fixed point theorem. We equip Xm

T with
the metric

d((φ, A), (φ′, A′)) = max {‖φ − φ′‖∞;1,2, ‖A − A′‖∞;1,2, ‖∂tA − ∂tA′‖∞;2}. (81)

Standard functional analysis arguments show that (Xm
T , d) is a complete metric space.

Proof of Theorem 2. Fix ε > 0,m ∈ [1, 2], and let (φ0, a0, ȧ0) ∈ Xm
0 . The first task is to

demonstrate that we can make� mapXm
T into itself by choosing R and T appropriately.

Indeed, we claim that there exists R, T∗ > 0 such that for all T ∈ (0, T∗] the function
� maps Xm

T into itself, where the time T∗ > 0 depends on ε, m, N , K , α, Z , R, and
‖(φ0, a0, ȧ0)‖m,2⊕m,2⊕m−1,2. To this end, let (φ0, a0, ȧ0) ∈ Xm

0 and (φ, A) ∈ Xm
T , and

consider �(φ, A) = (ξ, K).
Observe that K is divergence-free using the formula (80). Fix j ∈ {1, . . . , N } and

note that

‖�−1
ε PJJJ [φ, Ã]‖m−1,2 ≤ 1

ε
‖PJJJ [φ, Ã]‖Ḣm−2 � 1

ε
‖JJJ [φ, Ã]‖m−2,2,

where we’ve used the boundedness of P : Hm−2 → Hm−2. Therefore estimate (69) of
Lemma 8 gives us

‖�−1
ε PJJJ [φ, Ã](t)‖m−1,2 � (1 + R)R2, ∀t ∈ [0, T ], (82)

and thus �−1
ε PJJJ [φ, Ã] ∈ L1

T H
m−1. With the previous conclusion we’ve satisfied the

hypotheses in Lemma 4 and, as a consequence, we have K ∈ CT Hm ∩ C1
T H

m−1 and

max
k∈{0,1} ‖∂

k
t K‖∞;m−k,2 � ‖(a0, ȧ0)‖m,2⊕m−1,2 + ‖�−1

ε PJJJ [φ, Ã]‖1;m−1,2 (83)

Combining (82) with (83), we conclude the existence of a constant C1 > 0 depending
on ε,m, N , and α such that

max
k∈{0,1} ‖∂

k
t K‖∞;m−k,2 ≤ C1

[
‖(a0, ȧ0)‖m,2⊕m−1,2 + T (1 + R)R2

]
. (84)
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We turn to estimating ‖ξ(t)‖m,2. To estimate ‖ξ(t)‖m,2, we take the Hm-norm of
the defining formula (78) for ξ(t) and apply (54), (28), (34) of Lemmas 7, 5, and 6
respectively. This yields

‖ξ(t)‖m,2 � ‖φ0‖m,2 +
∫ t

0

(∣
∣
∣TP[φ, Ã] + V [φ]

∣
∣
∣ ‖φ‖m,2 + ‖e(i+ε)(t−τ)
[L (Ã)φ]‖m,2

+‖e(i+ε)(t−τ)
V (R,Z)φ‖m,2

)
dτ

� ‖φ0‖m,2 +
∫ t

0

[
(1 + ‖Ã‖1,2)2 + 1

]
‖φ‖21,2‖φ‖m,2dτ

+
∫ t

0
(t − τ)−

1
4

[
1 + (t − τ)−

1
2

] (
1 + ‖Ã‖m,2

)
‖Ã‖m,2‖φ‖m,2dτ

+
∫ t

0

{
1 +
(
1 + (t − τ)−

1
2

) (
(t − τ)−

9
20 + (t − τ)−

1
4

)}
‖φ‖m,2dτ. (85)

The last estimate (85) allow us to conclude the existence of a constantC2 > 0, depending
on ε, m, N , K , α, R, and Z , such that

‖ξ‖∞;m,2 ≤ C2

[
‖φ0‖m,2 + T

(
2 + 2R + R2

)
R3 +

(
T

3
4 + T

1
4

)
(1 + R)R2

+
(
T + T

3
4 + T

11
20 + T

1
4 + T

1
20

)
R
]
. (86)

Considering estimates (84) and (86) choose R > 0 such that

‖(φ0, a0, ȧ0)‖m,2⊕m,2⊕m−1,2 ≤ R

2max {C1,C2} , (87)

and choose T∗ > 0 such that

T∗(1 + 3R + 2R2 + R3)R + (T
3
4∗ + T

1
4∗ )(1 + R)R

+ (T∗ + T
3
4∗ + T

11
20∗ + T

1
4∗ + T

1
20∗ )] ≤ 1

2max {C1,C2} . (88)

Equations (87) and (88) ensure that � maps Xm
T into itself for each T ∈ (0, T∗].

We claim that one may further choose a 0 < T∗∗ < T∗ so that � becomes a con-
traction on (Xm

T , d) for any T ∈ (0, T∗∗]. Indeed, fix T ∈ (0, T∗] and consider two
(φ, A), (φ′, A′) ∈ Xm

T and write �(φ, A) = (ξ, K) and �(φ′, A′) = (ξ ′, K′). Noting
(78), (80), (ξ(0), K(0), ∂tK(0)) = (φ0, a0, ȧ0), we observe that the difference ξ − ξ ′
satisfies

(ξ − ξ ′)(t) =
∫ t

0
e(i+ε)(t−τ)


(
f [φ(τ), Ã(τ )] − f [φ′(τ ), Ã′(τ )]

)
dτ (89)

and that the difference K − K′ satisfies

(K − K′)(t) = 4π
∫ t

0
s((t − τ)/α)�−1

ε P
(
JJJ [φ, Ã] −JJJ [φ′, Ã′]

)
(τ )dτ. (90)

We need to control d((ξ, K), (ξ ′, K′)) by d((φ, A), (φ′, A′)) to ultimately argue that
� can be turned into a contraction. Estimating ‖K − K′‖∞;1,2 and ‖∂t (K − K′)‖∞;2 is
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a straightforward application of the energy estimate of Lemma 4 and estimate (70) of
Lemma 8. We find

max
k=0,1

‖∂kt
(
K − K′) ‖∞;1−k,2 � ‖JJJ [φ, Ã] −JJJ [φ′, Ã′]‖1;−1,2

� T R [2 + 3R] d((φ, A), (φ′, A′)). (91)

To estimate ‖ξ −ξ ′‖∞;1,2 we start with the formula (89) for ξ −ξ ′ and use the triangle
inequality to find

‖(ξ − ξ ′)(t)‖1,2 �
∫ t

0
‖e(i+ε)(t−τ)


(
f [φ(τ), Ã(τ )] − f [φ′(τ ), Ã′(τ )]

)
‖1,2dτ.

(92)

Using the same strategy that yielded (85) and then (86), we apply (55), (28), (34) of
Lemmas 7, 5, and 6, respectively, to find

‖(ξ − ξ ′)‖∞;1,2 � {T (4 + 8R + 6R2 + R3)R + (T
3
4 + T

1
4 )(2 + 3R)R

+ T + T
3
4 + T

11
20 + T

1
4 + T

1
20 }d((φ, A), (φ′, A′)). (93)

Combining estimates (91) through (93) we find

d((ξ, K), (ξ ′, K′)) ≤ Cg(T, R)d((ψ, A), (ψ ′, A′)), (94)

where C > 0 is a constant depending on ε, N , K , α, R, and Z , and

g(T, R) = T (6 + 11R + 6R2 + R3)R + (T
3
4 + T

1
4 )(2 + 3R)R

+ T + T
3
4 + T

11
20 + T

1
4 + T

1
20 . (95)

Choosing 0 < T∗∗ < T∗ so that g(T∗∗, R) = 1
2C ensures that �, for example, satisfies

d(�(ψ, A),�(ψ ′, A′)) ≤ 1

2
d((ψ, A), (ψ ′, A′)).

Consequently, � is a contraction mapping on (Xm
T , d) for each T ∈ (0, T∗∗].

Then, for R > 0 satisfying (87) and for each T ∈ (0, T∗∗], the Banach fixed point
theorem allows us to conclude the existence a unique (φ, A) ∈ Xm

T (R) that satisfies
�(φ, A) = (φ, A). Using the same estimates at produced the estimate (93), we can
show φ ∈ CT Hm . Moreover, A ∈ CT Hm ∩C1

T H
m−1 by Lemma 4. In other words, the

pair (φ, A) ∈ CT Hm × [CT Hm ∩ C1
T H

m−1] satisfies the equations
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tφ = −(i + ε)H(A)φ + εφ
(
TP[φ, Ã] + V [φ]

)
,

�A = 4πα�−1
ε PJJJ [φ, Ã],

divA = 0,
(φ, A, ∂tA)|t=0 = (φ0, a0, ȧ0).

(96)

A straightforward argument shows the uniqueness of (φ, A) ∈ CT∗∗ H
m × [CT∗∗ H

m ∩
C1
T∗∗ H

m−1] solving the initial value problem (96). Similarly, a straightforward continu-
ation argument proves the blow-up alternative holds. So far we have the existence of a
maximal time interval I = [0, Tmax) for which we have a unique solution

(φ, A) ∈ CI [Hm(R3N )]2N × [CIHm(R3; R
3) ∩ C1

IH
m−1(R3; R

3)]
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to (96), and such that the blow-up alternative holds. This gives us the first portion of
Theorem 2. What is left to show is the approximation portion of Theorem 2.

Let (φ0, a0, ȧ0) ∈ X 1
0 . Choose R, T > 0 so that

d(�(φ, A),�(φ′, A′)) ≤ 1

2
d((φ, A), (φ, A)),

for all (φ, A), (φ′, A′) ∈ X 1
T (R), and let (φ, A) ∈ X 1

T (R) denoted the corresponding

unique fixed point of�. Consider a sequence of initial data {(φ j
0 , a j

0 , a j
1)} j≥1 ⊂ Xm

0 and
let {(φ j , A j )} j≥1 ⊂ CT Hm × [CT Hm ∩C1

T H
m−1] denote the corresponding sequence

of solutions. Suppose that

‖(φ0 − φ
j
0 , a0 − a j

0, ȧ0 − a j
1)‖1,2⊕1,2⊕2

j→∞−−−−−→ 0.

Observe that if j is sufficiently large then (87) holds with (φ0, a0, ȧ0) replaced by
(φ

j
0 , a j

0 , ȧ j
0), and therefore (φ j , A j ) ∈ Xm

T (R) when j is sufficiently large. Using iden-
tical estimates that yielded (91) and (93), we have the estimate

d((φ, A), (φ j , A j )) ≤ C1‖(φ0 − ψ
j
0 , a0 − a j

0, ȧ0 − a j
1)‖1,2⊕1,2⊕2

+ C2g(T, R)d((φ, A), (φ j , A j )),

where the function g is defined by (95) and C2 is the same constant appearing in (94).
Since T was chosen so that g(T, R) = 1/(2C2), we conclude

d((φ, A), (φ j , A j ))
j→∞−−−−−→ 0

on the time interval [0, T ].
Consider as initial data (φ(T ), A(T ), ∂tA(T )) ∈ X 1

0 and

{(φ j (T ), A j (T ), ∂tA j (T ))} j≥1 ⊂ Xm
0 .

By the preceding arguments,

‖((φ − φ j )(T ), (A − A j )(T ), (∂tA − ∂tA j )(T ))‖1,2⊕1,2⊕2
j→∞−−−−−→ 0.

Choose R′, T ′ > 0 so that

d(�(φ, A),�(φ′, A′)) ≤ 1

2
d((φ, A), (φ, A)),

for all (φ, A), (φ′, A′) ∈ X 1
T ′(R′). Using the same notation, let (φ, A) ∈ X 1

T ′(R′)
denoted the corresponding unique fixed point of � and let {(φ j , A j )} j≥1 ⊂ CT ′ Hm ×
[CT ′ Hm ∩ C1

T ′ Hm−1] denote the sequence of solutions corresponding to the initial
data {(φ j (T ), A j (T ), ∂tA j (T ))} j≥1 in Xm

0 . As before, if j is sufficiently large, then
(φ j , A j ) ∈ Xm

T ′(R′). By the same reasoning as before, we can conclude d((φ, A),

(φ j , A j )) −→ 0 as j −→ ∞ on the time interval [0, T ′]with T ′ > T .We can repeat this
argument ad infinitum and conclude the desired convergence at each t ∈ I = [0, Tmax).

��
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4. Bound on the Coulomb Energy and Energy Dissipation

In this section we prove Lemma 1, namely, that the Coulomb energy functional is uni-
formly bounded on CN , and the L2-norm conservation and energy dissipation for the
ε-modified system (19) as stated in Theorem 3. As we emphasized in the introduction,
the crucial result that is needed to derive the uniform bounds in Theorem 3 is the uni-
form bound on the Coulomb energy V [φ] as stated in Lemma 1. Such a bound is a direct
consequence of the energetic stability estimates as given by (12) and (13).

Proof of Lemma 1. Fix (φ, A) ∈ CN . Throughout we abuse notation and abbreviate
E[φ, A] = E[φ, A, 0], where E[φ, A, 0] is given by (5), and F[A, 0] = F[A]. We
claim the uniform lower bound E ≥ EG(α) implies

(V [φ] + F[A])2 ≤ 4|EG(α)|TP[φ, A]. (97)

Indeed, for λ > 0, consider the scaling φλ(z) = λ3N/2φ(λz) and Aλ(y) = λA(λy).
Under this scaling

TP[φλ, Aλ] + V [φλ] + F[Aλ] = λ2TP[φ, A] + λ (V [φ] + F[A]) ≥ EG(α)

Minimizing over λ in the previous expression yields (97).
Let {(φn, An)}n≥1 ⊂ CN be a sequence such that En = Tn + Vn + Fn ≤ E0(α)

where En ≡ E[φn, An], Tn ≡ TP[φn, An], Vn ≡ V [φn], and Fn ≡ F[An]. Suppose,
to the contrary, that |Vn| → ∞ as n → ∞. The condition En ≤ E0(α) implies that
we necessarily have Vn → −∞. Set λn = 1/|Vn| and note λn → 0 as n → ∞.
Consider the scaling �n(z) = λ

3N/2
n φn(λnz) and an(y) = λnAn(λny). Moreover, from

EG(α) ≤ En ≤ E0(α) we have

EG(α)λn ≤ tn
λn

− 1 +
1

α2 fn ≤ E0(α)λn (98)

where tn = T [�n, an] = λ2nTn and fn = ‖an‖22/(8π) = λnα
2Fn .

Pick ν with α > ν and note that we have EG(ν) > −∞. As before,

EG(ν)λn ≤ tn
λn

− 1 +
1

ν2
fn ≤ E0(ν)λn . (99)

Subtracting (99) from (98) we conclude

(EG(α) − E0(ν))λn ≤
(

1

ν2
− 1

α2

)

fn ≤ (E0(α) − EG(ν))λn, (100)

and thus fn → 0 as n → ∞. Feeding this back into (98) we conclude limn→∞(tn/λn) =
1. Moreover, (97) implies

(
fn
α2 − 1

)2

≤ 4EG(α)tn,

and as a consequence

lim inf
n→∞ tn ≥ 1

4EG(α)
. (101)
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However, (101) implies

lim
n→∞

tn
λn

= ∞.

��
For the proof of Theorem 3 it will be useful to recall that if φ is of a definite symmetry

type (e.g., φ is completely antisymmetric, as will be the case), then the kinetic energy
TP[φ, A], as defined in (6), of the state (φ, A) reduces to TP[φ, A] = N‖σσσ 1·(p1+A1)φ‖22.
Likewise, the total probability current densityJJJ [φ, A] =∑N

j=1 J j [φ, A], as defined in
(4), will reduce to

JJJ [φ, A] = −αN Re
∫

〈σσσψz′
1
,σσσ · (p + A)ψz′

1
〉C2dz′

1.

Proof of Theorem 3. Fix ε > 0 and m ∈ [1, 2]. Let (φ0, a0, ȧ0) ∈ Xm
0 with φ0 ∈

∧N Hm(R3; C
2) and ‖φ0‖2 = 1. Let (φ, A) be the corresponding solution on I to

(19) as given by Theorem 2. It is straightforward to verify that ∂tφ(t) ∈ H−m since
H(A(t))ψ(t) ∈ H−m for each t ∈ I. Therefore, it makes sense to compute

d

dt
‖φ‖22 = 2Re 〈∂tφ, φ〉H−m ,Hm = 2ε(‖φ‖22 − 1)〈H(A)φ, φ〉H−m ,Hm . (102)

Since ‖φ0‖2 = 1, (102) implies ‖φ(t)‖2 = 1.
Consider the case m = 2. In this case,H(A(t))φ(t) ∈ L2 for each t ∈ I and, hence,

we may take the time-derivative of the total energy E = E[φ, A, ∂tA], as defined in (21),
to find

dE
dt

= 2Re 〈∂tφ,H(A)φ〉L2 + 2N Re 〈σσσ · (p + Ã)φ, (σσσ · ∂t Ã)φ〉L2 + ∂t F[A, ∂tA]
= −2ε(‖H(A)φ‖22 − 〈φ,H(A)φ〉2L2)

+ 2N Re 〈σσσ · (p + Ã)φ, (σσσ · ∂t Ã)φ〉L2 + ∂t F[A, ∂tA]. (103)

Using that A satisfies the wave equation (19, second equation) we can show that the last
two terms in (103) cancel each other. From (19),

∂t F[A, ∂tA] = 1

4πα2 〈�A, ∂tA〉L2

= 1

α
〈�−1

ε PJJJ [φ, Ã], ∂tA〉L2

= −2N 〈Re
∫

〈σσσφz′
1
,σσσ · (p + Ã)φz′

1
〉C2dz′

1, ∂t Ã〉L2

= −2N Re 〈σσσ · (p + Ã)φ, (σσσ · ∂t Ã)φ〉L2 . (104)

Plugging (104) into (103) we arrive at

dE
dt

= −2ε(‖H(A)φ‖22 − 〈φ,H(A)φ〉2L2),

which upon integrating yields (23).
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Continue assuming m = 2. Suppose α and α2 maxZ are sufficiently small to ensure
EG > −∞. To prove the bounds (24), we first verify that hypothesis of Lemma 1. For
the moment we include the ε and t dependence of φ andA for clarity. By previous results
‖φε(t)‖2 = 1 (this, in fact, holds for any m ∈ [1, 2]). Moreover, we note that

F[Ãε, 0] ≤ F[Aε, 0] ≤ F[Aε, ∂tAε],
and 〈φε,Hε(Aε)φε〉2

L2 ≤ ‖Hε(Aε)φε‖22 by Cauchy–Schwartz. Therefore, from the dis-

sipation of energy (23), we arrive at

EG ≤ TP[φε(t), Ãε(t)] − V [φε(t)] + F[Ãε(t), 0] ≤ E[φ0, a0, ȧ0].
Consequently, Lemma 1 tells us that

|V [φε(t)]| = |〈φε(t), V (R,Z)φε(t)〉L2 | ≤ C (105)

where C is a finite constant depending on α, Z , N , K , and the initial data (φ0, a0, ȧ0),
but independent of ε and t . Proceeding we will drop the ε and t dependence.

The bound (105) immediately gives us the second estimate in (24). Indeed, using the
bound on the Coulomb energy we find

F[A, ∂tA] ≤ |E[φ0, a0, ȧ0]| + |V [φ]| ≤ C2,

where C2 = |E[φ0, a0, ȧ0]| + C . This, in turn, yields the third estimate in (24) by
differentiation:

d

dt
‖A‖22 = 2〈A, ∂tA〉L2 ≤ 2‖A‖2‖∂tA‖2 ≤ 2‖A‖2

√
C2.

Hence,

‖A‖2 ≤ C3(1 + t),

where C3 = max {‖a0‖2,√C2}. Deriving the first estimate in (24) requires a more
careful analysis. Consider δ > 0 to be specified later. First, note that

‖pφ‖2 = √
N‖σσσ 1 · p1φ‖2 ≤ √

N
(
‖σσσ 1 · (p1 + Ã1)φ‖2 + ‖Ã1φ‖2

)
. (106)

The first term on the right hand side of (106) can be bounded in the same way as the field
energy F[A, ∂tA]. Indeed, using the dissipation of energy (23) and the fact that |V [φ]|
is uniformly bounded, we have

√
N‖σσσ 1 · (p1 + Ã1)φ‖2 =

√

TP[φ, Ã] ≤ √|E[φ0, a0, ȧ0]| + |V [φ]| ≤ √C2. (107)

To estimate ‖Ã1φ‖2 we rely on the Gagliardo–Nirenberg inequality

‖ f ‖3 ≤ c‖ f ‖1/22 ‖p f ‖1/22 , ∀ f ∈ H1(R3; C),

where c > 0 is some universal constant. Using this inequality, together with the Young’s
inequality for products: 2ab ≤ (δ−1a)2 + (δb)2, we find

‖Ã1φ‖2 ≤ ‖Ã‖6
[∫ (∫

|φz′
1
(z1)|3dz1

)2/3

dz′
1

]1/2

≤
√

4πα2S−1
3 C2

[
δ−1‖φ‖2 + δ‖p1‖2

]
, (108)
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where S3 is the sharp constant in Sobolev’s inequality onR
3: S3‖ f ‖26 ≤ ‖∇ f ‖22. Choos-

ing δ so that

√

16πα2S−1
3 C2δ = 1

2

we can feed (107) and (108) back into (106) and arrive at a uniform bound on ‖pφ‖2.
Summarizing, we’ve derived the bounds (24) form = 2. That these uniform estimates in
(24) hold for 1 ≤ m < 2 follows immediately from the convergence result in Theorem 2.
The last claim of Theorem 3 follows immediately from the uniform estimates in the
energy class (24) and the blow-up alternative in Theorem 2. ��

5. Proof of Theorem 1

The proof of Theorem 1 below follows the proof of Theorem 4.1 of [8] with minor
modifications.

Proof of Theorem 1. Consider

(ψ0, a0, ȧ0) ∈
∧N

H1(R3; C
2) × H1(R3; R

3) × L2(R3; R
3),

with ‖ψ0‖2 = 1 and div a0 = div ȧ0 = 0. Let {εn}n≥1 ⊂ R+ with εn → 0. Combining
Theorems 2 and 3, there exists a sequence of solutions

{(φn, An)}n≥1 ⊂ C(R+;
∧N

H1(R3; C
2)) × [C(R+; H1(R3; R

3)) ∩ C1(R+; L2(R3; R
3)]

of the modified equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tφ
n − (i + εn)

∑N
j=1 
x j φ

n

= εn(Tn + Vn)φn − (i + εn)
(
L (Ãn) − V (R,Z)

)
φn,

�An = 4πα�−1
εn

PJJJ [φn, Ãn],
divAn = 0, Ãn = �−1

εn
An,

(φn(0), An(0), ∂tAn(0)) = (ψ0, a0, ȧ0)

(109)

where Tn = TP[φn, An], Vn = V [φn], and L (Ãn) = ∑N
j=1 L j (Ãn) is given by (25).

Moreover, the bounds

‖∇φn(t)‖2 ≤ C1, F[An, ∂tAn](t) ≤ C2, ‖An(t)‖2 ≤ C3(1 + t) (110)

are satisfied. The estimates (26) and (35) of Lemmas 5 and 6, respectively, yield

‖[L (Ãn) − V (R,Z)]φn‖ 3
2

� (1 + ‖An‖1,2)‖An‖1,2‖φn‖1,2 + ‖φn‖1,2. (111)

Furthermore, in the same way we estimated (71), we have

‖JJJ [φn, Ãn]‖ 3
2

� (1 + ‖An‖1,2)‖φn‖1,2. (112)
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The bounds (110) allow us to apply the Banach-Alaoglu Theorem, and, thus, we may
extract a subsequence, still denoted by {(φn, An)}n≥1, such that

An w∗−−−→ A in L∞([0, T ]; H1), (113)

∂tAn w∗−−−→ ∂tA in L∞(R+; L2) (114)

φn w∗−−−→ ψ in L∞(R+; H1), (115)

JJJ [φn, Ãn] w∗−−−→ β in L∞([0, T ]; L 3
2 ) (116)

[L (Ãn) − V (R,Z)]φn w∗−−−→ γ in L∞([0, T ]; L 3
2 ), (117)

for all 0 < T < ∞. Passing to the limit in (109), and using (113) through (117), we find
⎧
⎨

⎩

∂tψ − i
∑N

j=1 
x j ψ = −iγ,

�A = 4παP β,

divA = 0
(118)

as equations inD ′(R+;∧N H−1(R3; C
2)×D ′(R+; H−1(R3; R

3)). We note that in pass-
ing to the limit we’ve used Theorem 1 and the dissipation of energy (23) to ensure |Tn +
Vn| � ∞ as εn → 0.Now, ∂tA ∈ L∞(R+; L2(R3; R

3)), ∂2t A ∈ L∞(R+; H−1(R3; R
3)),

and ∂tψ ∈ L∞(R+; H−1(R3N ; C
2N )) by (118). Thus

(ψ, A, ∂tA) ∈ L∞
loc(R+; H1 ⊕ H1 ⊕ L2) ∩ C(R+; H−1 ⊕ L2 ⊕ H−1),

and this implies the weak continuity (ψ, A, ∂tA) ∈ Cw(R+; H1 ⊕ H1 ⊕ L2).
Next we show that γ = [L (A) − V (R,Z)]ψ and β = JJJ [ψ, A]. Let I ⊂ R+ be

a bounded interval and � ⊂ R
3, S ⊂ R

3N be bounded and open, and assume ∂�, ∂S
are both C1. It suffices to show that γ and β coincide with [L (A) − V (R,Z)]ψ and
JJJ [ψ, A] on I × S and I ×�, respectively. Now, by (110), {(An, ∂tAn)}n≥1 is a bounded
sequence in L4(I ; H1(�; R

3) × L2(�; R
3)). From the Rellich-Kondrachov Theorem

we have H1(�; R
3) ↪→ L4(�; R

3) ⊂ L2(�; R
3) and, hence, the Aubin-Lions Lemma

(see [25, Theorem 1.20]) guarantees that there is a subsequence of {An}n≥1, still denoted
by {An}n≥1, such that

An n→∞−−−−−→ A in L4(I × �) (119)

Further, note that {∂tφn}n≥1 is bounded in L∞(I ; H−1(S; C
2N )) using (109). This im-

plies that {(φn, ∂tφ
n)}n≥1 is bounded in

L2(I ; H1(S; C
2N ) × H−1(S; C

2N )).

Again applying the Aubin-Lions Lemma, we conclude

φn n→∞−−−−−→ ψ in L4(I × S) (120)

From (113), (115), (119), and (120) it is straightforward to show that

�−1
εn
JJJ [φn, Ãn] ⇀ JJJ [ψ, A] in L

4
3 (I × �),

[L (Ãn) − V (R,Z)]φn ⇀ [L (A) − V (R,Z)]ψ in L
4
3 (I × S).
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Moreover (116) through (117) imply

�−1
εn

J[φn, Ãn] ⇀ β in L
4
3 (I × �),

[L (Ãn) − V (R,Z)]φn ⇀ γ in L
4
3 (I × S).

Since weak limits are unique we conclude γ = [L (A)−V (R,Z)]ψ and β = JJJ [ψ, A]
on I × � and I × S, respectively.

It remains to show that (ψ, A, ∂tA) satisfies the initial conditions in (109). Since

(An, ∂tAn) ∈ L2([0, T ]; H1(R3; R
3) × L2(R3; R

3)),

we may integrate by parts to find

∫ T

0
〈An(s)∂t f (s) + ∂tAn(s) f (s), φ〉H1,H−1ds = −〈a0, φ〉H1,H−1

for all φ ∈ L2 and f ∈ C∞(R) with f (0) = 1 and f (T ) = 0. Passing to the limit
εn → 0 and using (114) and (115) we find

∫ T

0
{A(s)∂t f (s) + ∂tA(s) f (s)} ds = −a0

in L2(R3), which implies that A(0) = a0. Likewise,

− 〈ȧ0, η〉H−1,H1

=
∫ T

0
〈∂tAn(s)∂t f (s) + (
An(s) + 4πα�−1

εn
PJJJ [φn(s), Ãn(s)]) f (s), η〉H−1,H1ds

for all η ∈ H1 and f ∈ C∞(R) with f (0) = 1 and f (T ) = 0. Again, passing to the
limit as n → ∞ and using (115) and (118), we arrive at

∫ T

0

{
∂tA(s)∂t f (s) + ∂2t A(s) f (s)

}
ds = −ȧ0

in H−1, which implies ∂tA(0) = ȧ0. An identical argument implies that φ(0) = φ0. ��
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