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Abstract: Based on the matrix-resolvent approach, for an arbitrary solution to the dis-
crete KdV hierarchy, we define the tau-function of the solution, and compare it with
another tau-function of the solution defined via reduction of the Toda lattice hierarchy.
Explicit formulae for generating series of logarithmic derivatives of the tau-functions
are obtained, and applications to enumeration of ribbon graphs with even valencies and
to certain special cubic Hodge integrals are considered.
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1. Introduction

The discrete KdV equation (aka the Volterra lattice equation) is an integrable Hamilto-
nian equation in (1+1) dimensions, i.e. one discrete space variable and one continuous
time variable, which extends to a commuting systemofHamiltonian equations, called the
discrete KdV integrable hierarchy. This integrable hierarchy has important applications
in algebraic geometry and symplectic geometry (in particular in the theory of Riemann
surfaces) (see e.g. [22]). Significance of the discrete KdV hierarchy was further pointed
out by E.Witten [39] in the study of theGUEpartition functionwith even couplings—the
matrix gravity, and was recently addressed also in the study of the special cubic Hodge
partition function [15,19,20]—the topological gravity in the sense of [15,20]. The ex-
plicit relationship between the two gravities, called the Hodge–GUE correspondence,
has been established in [15,20]. In this paper, by using the matrix-resolvent (MR) ap-
proach recently introduced and developed in [1–3,14,18] we study the tau-structure for
the discrete KdV hierarchy, and apply it to studying the above mentioned enumerative
problems.

1.1. The discrete KdV hierarchy. Let P(n) be the following difference operator

P(n) := � + wn �−1, (1)

where � denotes the shift operator � : fn �→ fn+1. Introduce

A� := (
P�+1)

+, � ≥ 0. (2)

Here, for an operator Q of the form Q = ∑
k∈Z Qk �k , the positive part Q+ :=∑

k≥0 Qk �k . The discrete KdV hierarchy is defined as the following system of com-
muting flows:

∂P

∂s j
= [

A2 j−1, P
]
, j ≥ 1. (3)

For example, the s1-flow reads

∂wn

∂s1
= wn (wn+1 − wn−1), (4)

which is the discrete KdV equation. The commutativity implies that Eq. (3) for all j ≥ 1
can be solved together, yielding solutions of the form wn = wn(s), s := (s1, s2, s3, . . .).

Let us introduce

L := P2 = �2 + wn+1 + wn + wn wn−1 �−2. (5)

Then A2 j−1 = (
P2 j

)
+ = (

L j
)
+.
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Lemma 1. The discrete KdV hierarchy (3) can be equivalently written as

∂L

∂s j
= [

A2 j−1, L
]
, j ≥ 1. (6)

The proof will be given in Sect. 2. For the particular case j = 1, we have

∂(wn+1 + wn)

∂s1
= wn+2 wn+1 − wn wn−1, (7)

∂(wn wn−1)

∂s1
= (wn+1 + wn − wn−1 − wn−2) wn wn−1. (8)

It can be shown that Eqs. (7)–(8) are equivalent to Eq. (4); the details for this equivalence
are in Sect. 2.2.

Observe that Eq. (6) are the compatibility conditions of the following scalar Lax
pairs:

Lψn = λ ψn, i.e. ψn+2 + (wn+1 + wn − λ)ψn + wn wn−1 ψn−2 = 0, (9)

∂ψn

∂s j
= A2 j−1 ψ. (10)

We want to write the spectral problem (9) into a matrix form. The scalar Lax operator
L , defined in (5), could be viewed as a reduction of

L̃ = �2 + a1(n)� + a2(n) + a3(n)�−1 + a4(n)�−2,

which is the Lax operator of a bigraded Toda hierarchy. However, observe that L contains
�even only (with even = −2, 0, 2). So, instead of considering a 4×4 matrix-valued Lax
operator, a 2 × 2 matrix-valued operator will be sufficient. Indeed, introduce

L :=
(

�2 0
0 �2

)
+ Un, Un :=

(
wn+1 + wn − λ wn wn−1

−1 0

)
. (11)

Then the spectral problem (9) reads

L
(

ψn
ψn−2

)
= 0. (12)

1.2. The MR approach to tau-functions. In this subsection, we apply the MR approach
to studying further some basics in the theory of the discrete KdV hierarchy (in particular
about tau-function), and will arrive at a formula for computing logarithm of the tau-
function.Denote byZ[w] the ringof polynomialswith integer coefficients in the variables
w := (wn+i )|i∈Z.
Definition 1. An element Rn ∈ Mat

(
2,Z[w]((λ−1))

)
is called amatrix resolvent (MR)

of L, if
Rn+2Un − Un Rn = 0. (13)
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Definition 2. The basic (matrix) resolvent Rn is defined as the MR of L satisfying

Rn =
(
1 0
0 0

)
+O(

λ−1), (14)

tr Rn = 1, det Rn = 0. (15)

The basic resolvent Rn exists and is unique. See in Sect. 3 for the proof. Write

Rn(λ) =
(
1 + αn(λ) βn(λ)

γn(λ) −αn(λ)

)
. (16)

Then Definition 2 for Rn(λ) is equivalent to the following set of equations

βn = −wn wn−1 γn+2 (17)

αn+2 + αn + 1 = (λ − wn+1 − wn) γn+2 (18)

(λ − wn+1 − wn)(αn − αn+2) = wn wn−1 γn − wn+2 wn+1 γn+4 (19)

αn + α2
n + βn γn = 0 (20)

together with Eq. (14). These equations give recursive relations and initial values for the
coefficients of αn, βn, γn (see (60)–(62) below), which will be called theMR recursive
relations.

Lemma 2. For an arbitrary solution wn(s) to the discrete KdV hierarchy, let Rn(λ)

denote the basic matrix resolvent of L evaluated at wn = wn(s). There exists a function
τ dKdVn (s) satisfying

∑

i, j≥1

∂2 log τ dKdVn (s)
∂si∂s j

λ−i−1μ− j−1 = tr
(
Rn(λ)Rn(μ)

) − 1

(λ − μ)2
, (21)

1

λ
+

∑

i≥1

1

λi+1

∂

∂si
log

τ dKdVn+2

τ dKdVn
= [

Rn+2(λ)
]
21, (22)

τ dKdVn+2 τ dKdVn−1

τ dKdVn+1 τ dKdVn

= wn . (23)

Moreover, the function τ dKdVn (s) is uniquely determined by wn(s) up to a factor of the
form

eαn+β0+
∑

k≥1 βk sk ,

where α, β0, β1, β2, . . . are arbitrary constants that are independent of n, s.

We call τ dKdVn (s) the tau-function of the solution wn = wn(s) to the discrete KdV
hierarchy.

The matrix-resolvent method then allows to compute logarithmic derivatives of
τ dKdVn (s), which is achieved via the following proposition.

Proposition 1. For any k ≥ 3, the generating series of the kth-order logarithmic deriva-
tives of τ dKdVn (s) has the following expression:

∞∑

j1,..., jk=1

1

λ
j1+1
1 · · · λ jk+1

k

∂k log τ dKdVn (s)
∂s j1 . . . ∂s jk

= −1

k

∑

σ∈Sk

tr
(
Rn(λσ1) · · · Rn(λσk )

)

∏k
i=1(λσi − λσi+1)

, (24)

where it is understood that σk+1 = σ1.

The proof of this proposition is in Sect. 3.5.
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1.3. The factorization formula. In [14] we gave the definition of tau-function for the
Toda lattice using the MR approach. Observe that the discrete KdV hierarchy (3) is a
reduction of the Toda lattice hierarchy. Therefore, for the arbitrary solution wn(s) to
the discrete KdV, we can also associate another tau-function τn(s) of the solution wn(s)
obtained via the reduction (see Sect. 4.2 for the precise definition). In particular, this
tau-function satisfies that

wn(s) = τn+1(s) τn−1(s)
τ 2n (s)

.

It turns out that the τn(s) factorizes into a product of two as given by the following
theorem.

Theorem 1. There exist constants α, β0, β1, β2, . . . such that

τn(s) = eαn+β0+
∑

k≥1 βk sk τ dKdVn (s) τ dKdVn+1 (s). (25)

The proof of this theorem is in Sect. 4.

Remark. Identity (25) echoes an identity between Hankel determinants. Indeed, let
dμ(λ) be a measure with even moments on R. Denote μ j = ∫

λ j dμ(λ), j ≥ 0.
(μodd = 0.) We know that

det
(
μi+ j−2

)n
i, j=1 = det

(
μ2i+2 j−2

)[n/2]
i, j=1 det

(
μ2i+2 j−4

)[(n+1)/2]
i, j=1 . (26)

If we deform the measure dμ(λ) to be dμ(λ; t) = e−∑
j≥1 t j−1λ

j
dμ(λ), then the

LHS·(2π)−n becomes a Toda tau-function (cf. the formula (3.9) of [10] and the ref-
erences therein; cf. also [10,14,34]; the (2π)−n is a normalization factor for conve-
nience that does not affect the fact that the LHS is already a Toda tau-function). If all
the even Toda times are zero, then the t-deformed measure remains even and the fac-
torization (26) holds identically in t = (0, s1, 0, s2, . . .). Moreover, note that the RHS
of (26) with deformation consists of two determinants which can be identified with
the Hankel determinants associated with certain s-deformed measures on R+, where
s = (s1, s2, . . .). Then to see (25) from (26), at least for special cases, one needs to
further show that each of the two determinants is a tau-function for the discrete KdV hi-
erarchy. The more precise statements for a special case may be deduced from the recent
arXiv preprint by Massimo Gisonni, Giulio Ruzza and Tamara Grava [26] regarding
Laguerre Unitary Ensemble (LUE) with the consideration of the parameters α = −1/2
and α = 1/2, respectively in the notations of [26] (cf. also [8,9]).

The next corollary follows from Proposition 1 and Theorem 1.

Corollary 1. Fix k ≥ 2. Let wn = wn(s) be an arbitrary solution to the discrete KdV
hierarchy, and τn the tau-function reduced from the Toda lattice hierarchy of wn(s). The
following formula holds true:

∞∑

j1,..., jk=1

∂k log τn(s)
∂s j1 ...∂s jk

λ
j1+1
1 · · · λ jk+1

k

= − 1

k

∑

σ∈Sk

(1 + �) tr
[
Rn(λσ1) · · · Rn(λσk )

]

∏k
i=1(λσi − λσi+1)

− 2 δk,2

(λ1 − λ2)2
.

(27)



1828 B. Dubrovin, D. Yang

In practice, the two tau-functions τn and τ dKdVn of some solution for the discrete
KdV hierarchy may both have geometric/enumerative meanings; this is the case for the
Hodge–GUE (see below).

Remark. As we shall see from Sect. 4.2 that the above mentioned reduction does not
mean that vTodan , wToda

n (see Sect. 4.2) are independent of the even Toda times t0, t2, . . ..
The reduction means the vTodan (0, t1, 0, t3, . . .) ≡ 0; but the usage of the MR of Toda in
the way of [14] would compute also the correlators containing the correspondence to
t0, t2, . . .. The introductions of theMR of the discrete KdV hierarchy and of the operator
1 + � are essential that surprisingly solve the problem in a simple form.

1.4. Application. Wewill first apply Corollary 1 to some counting problem. Then by us-
ing the Hodge–GUE correspondence [15,20] we compute some combinations of Hodge
integrals.

I. Enumeration of ribbon graphs with even valencies. Enumeration of ribbon graphs
is closely related to the random matrix theory [4,7,11,27,30,34]: e.g. to the Gaussian
Unitary Ensembles (GUE) correlators; the partition function with coupling constants in
a random matrix theory is often a tau-function of some integrable system. Given k ≥ 1
and j1, . . . , jk ≥ 1, denote

〈
tr M2 j1 · · · tr M2 jk

〉
c := k!

∑

0≤g≤ | j |
2 − k

2 +
1
2

n2−2g−k+| j | ag(2 j1, . . . , 2 jk), (28)

ag(2 j1, . . . , 2 jk) :=
∑

�

1

# Sym �
. (29)

Here, | j | = j1 + · · · + jk , and
∑

� denotes summation over connected ribbon graphs
� with labelled half edges and unlabelled vertices of genus g with k vertices of valen-
cies 2 j1, . . . , 2 jk , and # Sym � is the order of the symmetry group of � generated by
permuting the vertices.1 The notation

〈
tr M2 j1 · · · tr M2 jk

〉
c is borrowed from the litera-

ture of randommatrices, where it is often called a connected Gaussian Unitary Ensemble
(GUE) correlator. For every k ≥ 1, denote

Ek(n; λ1, . . . , λk) :=
∞∑

j1,..., jk=1

〈
tr M2 j1 · · · tr M2 jk

〉
c

λ
j1+1
1 · · · λ jk+1

k

. (30)

Definition 3. Define a 2 × 2 matrix-valued series Rn(λ) ∈ Mat
(
2,Z[n][[λ−1]]) by

Rn(λ) :=
(
1 0
0 0

)
+

∞∑

j=0

(2 j − 1)!!
λ j+1

(
(2 j + 1)An, j − (n − 1)Bn, j (n − n2) Bn+2, j

Bn, j (n − 1)Bn, j − (2 j + 1)An, j

)
(31)

with

An, j := (n − 1) 2F1(− j, 2 − n; 2; 2), (32)

Bn, j := (n − 1) 2F1(1 − j, 2 − n; 2; 2) + (n − 2) 2F1(1 − j, 3 − n; 2; 2). (33)

1 The number ag(2 j1, . . . , 2 jk ) has the alternative expression ag(2 j1, . . . , 2 jk ) = ∑
G

∏k
�=1(2 j�)
# SymG , where

∑
G denotes summation over connected ribbon graphs G with unlabelled half-edges and unlabelled vertices

of genus g with k vertices of valencies 2 j1, . . . , 2 jk .
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Theorem 2. The following formulae hold true:

E1(n; λ) = n
∑

j≥1

(2 j − 1)!!
λ2 j+1

(
2F1(− j,−n; 2; 2) − j 2F1(1 − j, 1 − n; 3; 2)

)
,

(34)

E2(n; λ1, λ2) = (1 + �)
[
tr

(
Rn(λ1)Rn(λ2)

)]

(λ1 − λ2)2
− 2

(λ1 − λ2)2
, (35)

Ek(n; λ1, . . . , λk) = −1

k

∑

σ∈Sk

(1 + �)
[
tr

(
Rn(λσ1) · · · Rn(λσk )

)]

∏k
�=1(λσ�

− λσ�+1)
(k ≥ 3), (36)

where Rn(λ) is defined in Definition 3, and it is understood that σk+1 = σ1.

In the above formulae

2F1(a, b; c; z) =
∞∑

j=0

(a) j (b) j
(c) j

z j

j ! = 1 +
a b

c

z

1! +
a(a + 1) b(b + 1)

c(c + 1)

z2

2! + · · ·

is the Gauss hypergeometric function. Recall that it truncates to a polynomial if a or b
are non-positive integers. In particular,

n 2F1(− j, 1 − n; 2; 2) =
j∑

i=0

2i
(
j
i

)(
n

i + 1

)
.

The proof of Theorem 2 is in Sect. 5.

II. Combinations of certain special cubic Hodge integrals. The particular solution to
the discrete KdV hierarchy considered here will be actually the same as in I. Denote by
Mg,k the Deligne–Mumford moduli space of stable algebraic curves of genus g with
k distinct marked points, by Li the ith tautological line bundle on Mg,k , and Eg,k the
Hodge bundle. Denote

ψi := c1(Li ), i = 1, . . . , k,

λ j := c j (Eg,k), j = 0, . . . , g.

The Hodge integrals are some rational numbers defined by
∫

Mg,k

ψ
i1
1 · · · ψ ik

k λ
j1
1 · · · λ jg

g =: 〈
λ
j1
1 · · · λ jg

g τi1 · · · τik
〉
g,k,

i1, . . . , ik, j1, . . . , jg ≥ 0.

These numbers are zero unless the degree-dimension matching is satisfied

3g − 3 + k =
k∑

�=1

i� +
g∑

�=1

� j�. (37)

We are particularly interested in the following special cubic Hodge integrals:

〈
�g τi1 · · · τik

〉
g,k, with �g := �g(−1)�g(−1)�g

(1
2

)
,
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where �g(z) := ∑g
j=0 λ j z j denotes the Chern polynomial of the Hodge bundle Eg,k .

Significance of these Hodge integrals is manifested by the Gopakumar–Mariño–Vafa
conjecture [25,33] regarding the Chern–Simons/string duality; see e.g. [37] and the
references therein.
Notations. Y denotes the set of partitions. For a partition λ, denote by �(λ) the length
of λ and by |λ| the weight of λ. Denote m(λ) := ∏∞

i=1 mi (λ) with mi (λ) being the
multiplicity of i in λ.

Definition 4. For given g, k ≥ 0 and an arbitrary set of integers i1, . . . , ik ≥ 0, define

Hg,i1,...,ik = 2g−1
∑

λ∈Y

(−1)�(λ)

m(λ)!
〈
�g τλ+1 τI

〉
g, �(λ)+k, (38)

where |i | := i1 + · · · + ik , τI := τi1 · · · τik , and τλ+1 := τλ1+1 · · · τλ�(λ)+1.

It should be noted that according to (37), “
∑

λ∈Y” in (38) is a finite sum.
The following lemma will be proved in Sect. 5.2.

Lemma 3. The number Hg,i1,...,ik vanishes unless |i | ≤ 3g − 3 + k.

Corollary 2. The numbers Hg,i1,...,ik satisfy
(i) For k = 0,

Hg,∅ =
{

0, g = 0, 1,
1

4g(2g−1)(2g−2)

∑g
g1=0(2g1 − 1)

( 2g
2g1

) E2g−2g1 B2g1
22g−2g1

, g ≥ 2.

(ii) For k = 1, ∀ j ≥ 1,
(
2 j

j

) ∑

g≥0

ε2g−1
∑

0≤i≤3g−3+k

j i+1Hg,i +
1

2ε

1

1 + j

(
2 j

j

)

= ε j
[
(2 j + 1)!!

2 j
A 1

2 +
1
ε
, j +

(2 j − 1)!!
2 j

(1
2

− 1

ε

)
B 1

2 +
1
ε
, j

]
, (39)

where An, j and Bn, j are defined in (32)–(33).
(iii) For k ≥ 2,

εk
∑

j1,..., jk≥1

∏k
r=1

(
2 jr
jr

)

λ
j1+1
1 · · · λ jk+1

k

∑

g≥0

ε2g−2
∑

i1,...,ik≥0
|i |≤3g−3+k

k∏

r=1

j ir+1� Hg,i1,...,ik

= −1

k

∑

σ∈Sk

tr
[
R 1

2 +
1
ε

(λσ1
ε

) · · · R 1
2 +

1
ε

(λσk
ε

)]

∏k
�=1(λσ�

− λσ�+1)
− δk,2

(λ1 − λ2)2

− δk,2
∑

j1, j2≥1

j1 j2
j1 + j2

(
2 j1
j1

) (
2 j2
j2

)

λ
j1+1
1 λ

j2+1
2

, (40)

where Rn(λ) is defined as in (31).
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The proof, using the Hodge–GUE correspondence and Theorem 2, will be given in
Sect. 5.2. We note that the sum

∑
i1,...,ik≥0

|i |≤3g−3+k
appearing in the LHS of (39), (40) has the

following alternative expression, which can be deduced from “Appendix A”:

∑

i1,...,ik≥0
|i |≤3g−3+k

k∏

r=1

j ir+1r Hg,i1,...,ik

=
∑

q≥k

1

(q − k)!
∫

Mg,q

�g,q

q∏

m=k+1

(
− ψ2

m

1 − ψm

) k∏

m=1

jm
1 − jmψm

.

Organization of the paper. In Sect. 2, we derive several useful formulae. In Sect. 3, we
study MR, and use it to describe the discrete KdV flows and the tau-structure. Section 4
is devoted to the proof of Theorem 1. Proofs of Theorem 2 and Corollary 2 are in Sect. 5.

2. Basic Formulation

In this section we will do some preparations for the later sections by reviewing the basics
of the theory of the discrete KdV hierarchy.

2.1. Some useful identities. Recall that P(n) := � + wn �−1, L = P2. Denote

P(n)�+1 =:
∑

k∈Z
A�,k(n)�k, � ≥ −1, (41)

L(n) j =:
∑

k∈Z
m j,k(n)�k, j ≥ 0, (42)

where the coefficients A�,k(n) and m j,k(n), k ∈ Z belong to Z[w]. It is easy to see that
if k is odd, or if |k| > 2 j , then m j,k ≡ 0. It is also easy to see that

m j,k = A2 j−1,k . (43)

Lemma 4. The following identities hold true

m j,−2(n) = wn wn−1m j,2(n − 2), (44)

m j,0(n) = m j−1,−2(n) + m j−1,−2(n + 2) + (wn+1 + wn)m j−1,0(n), (45)

m j,−2(n) − m j,−2(n − 2) − (wn−1 + wn−2)
(
m j−1,−2(n) − m j−1,−2(n − 2)

)

+ wn−2 wn−3m j−1,0(n − 4) − wn wn−1m j−1,0(n) = 0. (46)

Proof. Comparing the constant terms of the identity

L j = L j−1 L = L L j−1 (47)

we obtain that

m j,0(n) = m j−1,−2(n) + (wn+1 + wn)m j−1,0(n) + wn+2 wn+1m j−1,2(n)

= m j−1,−2(n + 2) + (wn+1 + wn)m j−1,0(n) + wn wn−1m j−1,2(n − 2).
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This proves (44)–(45). Similarly, comparing the coefficients of �−2 of (47) we obtain

m j,−2(n) = m j−1,−4(n) + (wn−1 + wn−2)m j−1,−2(n) + wn wn−1m j−1,0(n)

= m j−1,−4(n + 2) + (wn+1 + wn)m j−1,−2(n) + wn wn−1m j−1,0(n − 2),

which implies identity (46). The lemma is proved. ��
Lemma 5. The following identities hold true

A�,−1(n) = wn A�,1(n − 1), (48)

A�,0(n) = wn+1 A�−1,1(n) + wn A�−1,1(n − 1), (49)

wn A�,1(n − 1) − wn+1 A�,1(n) + wn+1 A�−1,0(n − 1) − wn A�−1,0(n − 1) = 0,
(50)

A�,0(n + 1) − A�,0(n) = wn+2 A�,2(n) − wn A�,2(n − 1). (51)

Proof. Identities (48)–(50) are contained in the Lemma 2.2.1 of [14] (see the proof
therein). Identity (51) follows from comparing coefficients of � on the both sides of the
following identity:

P�+1P = PP�+1.

The lemma is proved. ��
Taking � = 2 j − 1 in identity (51) and using (43) we obtain

m j,0(n + 1) − m j,0(n) = wn+2 m j,2(n) − wn m j,2(n − 1). (52)

We call this identity the key identity. It should be noted that the above identities (43)–
(46), (48)–(51) hold in Z[w] absolutely (namely, the validity does not require that wn
is a solution of the discrete KdV hierarchy), because they are nothing but properties of
the operators P and L .

2.2. Proof of Lemma 1. Note that this lemma means the following: if wn = wn(s)
satisfies (3), then it satisfies (6); vice versa. Firstly, let wn = wn(s) be an arbitrary
solution to (3), i.e.,

∂P

∂s j
= [

A2 j−1, P
]

for all j ≥ 1. Since L = P2 we have

∂L

∂s j
= P

∂P

∂s j
+

∂P

∂s j
P = P

[
A2 j−1, P

]
+

[
A2 j−1, P

]
P = [A2 j−1, L].

Secondly, let wn = wn(s) be an arbitrary solution to (6), namely, it satisfies that

∂(wn+1 + wn)

∂s j
= wn+2 wn+1m j,2(n) − wn wn−1m j,2(n − 2), (53)

∂(wnwn−1)

∂s j
= wn wn−1

(
m j,0(n) − m j,0(n − 2)

)
. (54)
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Identity (53) implies that

(� + 1)
∂wn

∂s j
= wn+2 wn+1m j,2(n) − wn+1 wn m j,2(n − 1)

+ wn+1 wn m j,2(n − 1) − wn wn−1m j,2(n − 2)

= wn+1
(
m j,0(n + 1) − m j,0(n)

)
+ wn

(
m j,0(n) − m j,0(n − 1)

)
,

where we have used identity (52). Identity (54) implies that

wn
∂wn+1

∂s j
+ wn+1

∂wn

∂s j
= wn+1 wn

(
m j,0(n + 1) − m j,0(n)

)
+ wn+1 wn

(
m j,0(n) − m j,0(n − 1)

)
.

Combining the above two identities and assuming that wn ≡ wn+1 yields

∂wn

∂s j
= wn

(
m j,0(n) − m j,0(n − 1)

) = Coef�−1
[
A2 j−1, P

]
. (55)

(One can see from (53) that solutions satisfying wn ≡ wn+1 are independent of s.
Therefore these trivial solutions also satisfy (3).) The proposition is proved. ��

2.3. Lax pairs in matrix form. In this subsection we write the scalar Lax pairs (9)–(10)
into matrix form. The following lemma plays an important role.

Lemma 6. The wave function ψn satisfies that

∂ψn

∂s j
= λ j ψn +

j∑

i=1

λ j−i (mi−1,−2 ψn − wn wn−1mi−1,0 ψn−2
)
, j ≥ 1. (56)

Proof. We have for any j ≥ 1

(
L j )

+ = (
L j−1L

)
+ = (

L j−1)
+ L+ +

((
L j−1)

− L
)

+
+

((
L j−1)

+ L−
)

+

= (
L j−1)

+ L −
((

L j−1)
+ L−

)

− +
((

L j−1)
− L

)

+

= (
L j−1)

+ L + m j−1,−2 − wn wn−1m j−1,0 �−2.

In the above derivations it is understood that L = L(n) andm j,k = m j,k(n). Therefore,

A2 j−1 = (
L j )

+ = L j +
j∑

i=1

(
mi−1,−2 − wn wn−1mi−1,0 �−2) L j−i , ∀ j ≥ 0.

The lemma is proved. ��
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Lemma 7. The vector-valued wave function �n = (
ψn, ψn−2

)T
satisfies that

∂�n

∂s j
= Vj (n)�n, j ≥ 1, (57)

where Vj (n) are the following 2 × 2 matrices

Vj (n) :=
(

λ j +
∑ j

i=1 λ j−i mi−1,−2(n) −wn wn−1
∑ j

i=1 λ j−i mi−1,0(n)
∑ j

i=1 λ j−imi−1,0(n − 2) m j,0(n − 2) − ∑ j
i=1 λ j−imi−1,−2(n)

)
.

(58)

Proof. Equation (57) follows straightforwardly from (56) and (9). ��
We therefore arrive at

Proposition 2. The discrete KdV hierarchy are the compatibility conditions of (12)
and (57):

∂Un

∂s j
= Vj (n + 2)Un − Un Vj (n), j = 1, 2, 3, . . . .

3. Tau-Structure for the Discrete KdV Hierarchy

In this section, we use the MR method to study the tau-structure of the discrete KdV
hierarchy; in particular, we will prove Proposition 1. The notations about the matrix-
resolvents are the same as in the Introduction.

3.1. The MR recursive relations. Write

αn =
∑

j≥0

an, j

λ j+1 , γn =
∑

j≥0

cn, j

λ j+1 . (59)

Then we find that an, j , cn, j satisfy

cn, j+1 = (wn−1 + wn−2) cn, j + an, j + an−2, j , (60)

an, j+1 − an+1, j+1 + (wn+1 + wn)(an+2 − an, j ) + wn+1 wn cn+4, j
− wn wn−1 cn, j = 0, (61)

an, j =
j−1∑

i=0

(
wn wn−1 cn,i cn, j−1−i − an,i an, j−1−i

)
(62)

as well as
an,0 = 0, cn,0 = 1. (63)

Lemma 8. The basic resolvent of L exists and is unique.

Proof. Observe that multiplying (18) and (19) gives (20). This proves existence of Rn .
Uniqueness follows directly from the MR recursive relations (60)–(62), as we can solve
an, j , cn, j uniquely in an algebraic way for all j ≥ 1. The lemma is proved. ��

For the reader’s conveniencewe give in below the first few terms of the basic resolvent
of L:

Rn(λ) =
⎛

⎝
1 + wn−1wn

λ2
+ · · · −wn−1wn

λ
− wn−1(wn+wn+1)wn

λ2
+ · · ·

1
λ
+ wn−2+wn−1

λ2
+ · · · −wn−1wn

λ2
+ · · ·

⎞

⎠ .



Matrix Resolvent and the Discrete KdV Hierarchy 1835

3.2. MR and the discrete KdV flows. In this subsection we use the basic MR to express
the discrete KdV flows. (We would like to mention that the materials that we give in this
subsection are rather standard.) Let Rn be the basic matrix resolvent of L.
Lemma 9. The following formulae hold true:

cn, j = m j,0(n − 2), (64)

an, j = m j,−2(n). (65)

Proof. By identifying their recursive relations as well as the initial values of the recur-
sions. ��

It follows from the above Lemma 9 that the matrices Vj (n) defined in (58) have the
following expressions:

Vj (n) = (
λ j Rn

)
+ +

(
0 0
0 cn, j

)
, (66)

where “+” means taking the polynomial part in λ (including the constant term).

3.3. Loop operator. Introduce a linear operator ∇(λ) by

∇(λ) :=
∑

j≥1

1

λ j+1

∂

∂s j
. (67)

It readily follows from Eq. (66) that

∇(μ)�n(λ) =
[
Rn(μ)

μ − λ
+ Qn(μ)

]
�n(λ),

where

Qn(μ) := − I

μ
+

(
0 0
0 γn(μ)

)
.

Lemma 10. The following formula holds true:

∇(μ) Rn(λ) = 1

μ − λ

[
Rn(μ), Rn(λ)

]
+

[
Qn(μ), Rn(λ)

]
. (68)

3.4. From MR to tau-function. The MR allows us to define tau-function of an arbitrary
solution of the discrete KdV hierarchy. Recall that a family of elements�p;q(n) ∈ Z[w],
p, q ≥ 1 are called a tau-structure of the discrete KdV hierarchy if

�p;q(n) = �q;p(n), ∀ p, q ≥ 1 (69)

and for an arbitrary solution wn = wn(s) of the discrete KdV hierarchy

∂�p;q(n)

∂sr
= ∂�p;r (n)

∂sq
, ∀ p, q, r ≥ 1. (70)
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Definition 5. Define �i; j (n), i, j ≥ 1 via the generating series

∑

i, j≥1

�i; j (n) λ−i−1μ− j−1 = tr
(
Rn(λ)Rn(μ)

) − 1

(λ − μ)2
. (71)

Lemma 11. The �i; j (n), i, j ≥ 1 (71) are well-defined, and live in Z[w]. Moreover,
they form a tau-structure of the discrete KdV hierarchy.

Proof. The proof is almost identical with the one for the Toda lattice hierarchy [14] (or
the one for the Drinfeld–Sokolov hierarchies [3]); details are omitted here. ��
Proof of Lemma 2. By Lemma 11, it suffices to prove the compatibility between (21)–
(23).

Firstly, on one hand,

∑

i, j≥1

λ−i−1μ− j−1
[
�i; j (n + 2) − �i; j (n)

]

= tr
(
Rn+2(λ)Rn+2(μ)

) − tr
(
Rn(λ)Rn(μ)

)

(λ − μ)2

= (1 + 2αn(λ)) γn+2(μ) − (1 + 2αn(μ)) γn+2(λ)

λ − μ
− γn+2(λ)γn+2(μ).

On the other hand,

∇(μ)
[
Rn+2(λ)

]
21 =

(
1 + 2αn+2(μ)

)
γn+2(λ) − (

1 + 2αn+2(λ)
)
γn+2(μ)

λ − μ
+ γn+2(λ)γn+2(μ).

Hence by using (18) we find that

∑

i, j≥1

λ−i−1μ− j−1
[
�i; j (n + 2) − �i; j (n)

]
= ∇(μ)

[
Rn+2(λ)

]
21. (72)

This proves the compatibility between (21) and (22).
Secondly, on one hand,

∑

i, j≥1

λ−i−1μ− j−1
[
�i; j (n + 2) + �i; j (n − 1) − �i; j (n + 1) − �i; j (n)

]

=
∑

i, j≥1

λ−i−1μ− j−1
[
�i; j (n + 2) − �i; j (n)

]

−
∑

i, j≥1

λ−i−1μ− j−1
[
�i; j (n + 1) − �i; j (n − 1)

]
.

On the other hand,

∇(μ)∇(λ) logwn = ∇(μ)
[
γn+2(λ) − γn+1(λ)

]
= ∇(μ)γn+2(λ) − ∇(μ)γn+1(λ).

(73)
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Using (72) we find

∑

i, j≥1

λ−i−1μ− j−1
[
�i; j (n + 2) + �i; j (n − 1) − �i; j (n + 1) − �i; j (n)

]

= ∇(μ)∇(λ) logwn . (74)

This proves compatibility between (21) and (23). Thirdly, the following identity

∇(λ) logwn = γn+2(λ) − γn+1(λ)

shows the compatibility between (22) and (23). The proposition is proved. ��

3.5. Generating series of multi-point correlations functions. For an arbitrary solution
wn = wn(s) to the discreteKdVhierarchy, let τ dKdVn = τ dKdVn (s) denote the tau-function
of this solution. The logarithmic derivatives

∂k log τ dKdVn (s)
∂s j1 . . . ∂s jk

, j1, . . . , jk ≥ 1, k ≥ 1

can be called the k-point correlation functions2 of the solution wn = wn(s).

Proof of Proposition 1. The proof can be achieved by the mathematical induction, as in
[1]; we hence omit the details. ��

We see from Proposition 1 that the logarithmic derivatives ∂k log τ dKdVn (s)
∂s j1 ...∂s jk

with k ≥ 2

all live in Z[w], as their generating series are expressed by MR via algebraic manipula-
tions; this simple fact agrees with footnote 2 (and can be of course deduced from other
techniques).

4. Proof of Theorem 1

The goal of this section is to prove Theorem 1.

4.1. Review of the MR approach to the Toda lattice hierarchy. Denote

P := � + vTodan + wToda
n �−1, A� := (P�+1)

+, � ≥ 0.

The Toda lattice hierarchy is defined as the following system of commuting flows

∂P
∂t�

=
[
A�, P

]
, � ≥ 0. (75)

2 We can say in a more accurate sense that the logarithmic derivatives are identified with the correlation
functions, where the latter are defined as abstract differential polynomials; see for example [18] for the details.
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Let us briefly reviewpart of the results of [14]. IntroduceUn =
(

vTodan − λ wToda
n−1 0

)
.

The basic resolventRn associated to PM := � +Un is defined as the unique solution in
Mat

(
2,Z

[
vToda,wToda

][[λ−1]]) to the problem:

Rn+1 Un − Un Rn = 0, (76)

Rn =
(
1 0
0 0

)
+O(

λ−1), (77)

trRn = 1, detRn = 0. (78)

Write

Rn(λ) =
(
1 +An(λ) Bn(λ)

Gn(λ) −An(λ)

)
, An,Bn,Gn ∈ Z[vToda,wToda][[λ−1]]. (79)

Then An,Bn,Gn satisfy that
Bn = −wToda

n Gn+1 (80)

An+1 +An + 1 = Gn+1 (λ − vTodan ) (81)

(λ − vTodan )(An − An+1) = wToda
n Gn − wToda

n+1 Gn+2 (82)

An +A2
n = −Bn Gn . (83)

The following lemma was proven in [14].

Lemma 12. ([14]) For an arbitrary solution vTodan = vTodan (t), wToda
n = wToda

n (t) to the
Toda lattice hierarchy there exists a function τTodan (t) such that

∑

i, j≥0

1

λi+2μ j+2

∂2 log τTodan (t)
∂ti ∂t j

= trRn(t, λ)Rn(t, μ) − 1

(λ − μ)2
(84)

1

λ
+

∑

i≥0

1

λi+2

∂

∂ti
log

τTodan+1 (t)

τTodan (t)
= [Rn+1(t, λ)]21 (85)

τTodan+1 (t)τTodan−1 (t)

τTodan (t)2
= wn . (86)

The function τTodan (t) is uniquely determined by the solution vTodan (t), wToda
n (t) up to

τTodan (t) �→ ea0+a1n+
∑

j≥0 b j t j τTodan (t)

for some constants a0, a1, b0, b1, b2, . . ..

In [14] the τTodan (t) is called the tau-function of the solution vTodan (t), wToda
n (t) to the

Toda lattice hierarchy. The logarithmic derivatives of τTodan (t)

∂k log τTodan (t)
∂ti1 . . . ∂tik

, i1, . . . , ik ≥ 0, k ≥ 1

can be called k-point correlations functions (cf. footnote 2) of the Toda lattice hierarchy.
Define

Ck(λ1, . . . , λk; n; t) :=
∑

i1,...,ik≥0

1

λ
i1+2
1 · · · λik+2k

∂k log τTodan (t)
∂ti1 . . . ∂tik

.
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4.2. Reduction to the discrete KdV hierarchy. Now consider solutions to the Toda lattice
hierarchy in the ring C[[t0, t1, . . . ]] ⊗ V , where V is any ring of functions of n, closed
under � and �−1. These solutions can be specified by (i.e. are in 1–1 correspondence
to) the initial value:

f (n) = vTodan (t = 0), g(n) = wToda
n (t = 0).

Let us explain how a subset of solutions to the Toda lattice hierarchy be reduced to
solutions of the discrete KdV hierarchy. On one hand, let vTodan = vTodan (t), wToda

n =
wToda
n (t) be an arbitrary solution in C[[t0, t1, . . . ]] ⊗ V of the Toda lattice hierarchy

satisfying the following type of initial conditions

f (n) ≡ 0.

It follows that

vTodan

∣∣
t0=t2=t4=···=0 ≡ 0 (∀ n, t1, t3, t5, · · · ). (87)

This further implies that the commuting flows ∂wToda
n (t)

∂t2 j−1

∣∣
t0=t2=t4=···=0 ( j ≥ 1) are decou-

pled, namely, there are no vTodan -dependence in these flows (of course when restricting
to t0 = t2 = t4 = · · · = 0). Moreover, these flows coincide with the discrete KdV
hierarchy (3). Therefore if we define

wn(s) := wToda
n (t)

∣∣
t2i−1=si , t2i−2=0, i≥1, (88)

thenwn = wn(s) is a solution to the discrete KdV hierarchy. On the other hand, letwn =
wn(s) be an arbitrary solution to the discreteKdVhierarchy in the ringC[s1, s2, . . . ]⊗V .
Let g(n) denote its initial value, i.e. g(n) := wn(s = 0). Define vTodan (t), wToda

n (t) as the
unique solution inC[[t0, t1, . . . ]]⊗V to the Toda lattice hierarchywith ( f (n) ≡ 0, g(n))

as the initial value. Then wToda
n (t)|t2i−1=si , t2i−2=0, i≥1 = wn(s).

Hence the correspondence between solutions of the discrete KdV hierarchy and a
suitable subset of solutions of the Toda lattice hierarchy has been established.

For a solution
(
vTodan (t), wToda

n (t)
)
to the Toda lattice hierarchy satisfying vTodan (0) ≡

0 (∀ n), let τTodan (t) denote the tau-function of this solution. Define wn(s) as in (88), and

τn(s) := τTodan (t0 = 0, t1 = s1, t2 = 0, t3 = s2, · · · ).

Then we know that the function wn = wn(s) satisfies the discrete KdV hierarchy (3),
and that

wn(s) = τn+1(s) τn−1(s)
τ 2n (s)

. (89)

As indicated above, all solutions of the discrete KdV hierarchy can be obtained from
this way.

Definition 6. We call τn(s) the tau-function reduced from the Toda lattice hierarchy of
the solution wn = wn(s) to the discrete KdV hierarchy.
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Introduce the notations:

An(λ) := An(λ)|vTodan ≡0, wToda
n ≡wn

,

Bn(λ) := Bn(λ)|vTodan ≡0, wToda
n ≡wn

,

Gn(λ) := Gn(λ)|vTodan ≡0, wToda
n ≡wn

.

Clearly, An, Bn, Gn belong to Z[w][[λ−1]]. Note that definitions of An(λ), Bn(λ),

Gn(λ) are in the absolute sense, namely, they do not depend on whether wn is a solution
or not.

Lemma 13. The An(λ) satisfies

wn+1
(
An+2(λ) + An+1(λ) + 1

) − wn
(
An(λ) + An−1(λ) + 1

) = λ2
(
An+1(λ) − An(λ)

)
.

(90)

Proof. Following from (81) and (82) with vTodan ≡ 0. ��

4.3. Proof of Theorem 1. Firstly, on one hand, it follows from the Lemma 1.2.3 of [14]
that

m j,0(n; s) = ∂

∂s j
log

τn+1(s)
τn(s)

, j ≥ 1. (91)

On the other hand, from (22) and (64) we find

m j,0(n; s) = ∂

∂s j
log

τ dKdVn+2 (s)

τ dKdVn (s)
, j ≥ 1. (92)

Comparing the above two expressions we find

log
τn+1(s)
τn(s)

− log
τ dKdVn+2 (s)

τ dKdVn (s)
= S(n), (93)

where S(n) is some function depending only on n. Equation (93) implies that

log τn(s) − (� + 1) log τ dKdVn (s) = S̃(n) + f (s), (94)

where S̃(n) is some function depending only on n, and f (s) is some function depending
only on s.

Secondly, it follows from (23) and (89) that

τn+1(s) τn−1(s)
τ 2n (s)

= τ dKdVn+2 (s) τ dKdVn−1 (s)

τ dKdVn+1 (s) τ dKdVn (s)
. (95)

Substituting (94) in (95) we find that S̃(n) can only be an affine function of n, namely,

log τn(s) − (� + 1) log τ dKdVn (s) = α n + α′ + f (s), (96)

where α, α′ are some constants independent of n, s.
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Thirdly, on one hand, using (21) we find

∑

i, j≥1

∂2 log τ dKdVn (s)
∂si∂s j

1

λi+1μ j+1

= αn(λ) + αn(μ) + 2αn(λ)αn(μ) − wn wn−1
(
γn(λ)γn+2(μ) + γn(μ)γn+2(λ)

)

(λ − μ)2
.

Therefore,
∑

i, j≥1

∂2 log τdKdVn (s)
∂si∂s j

1

λ2i+1μ2 j+1

= λμ
αn(λ

2) + αn(μ
2) + 2αn(λ2)αn(μ2) − wn wn−1

(
γn(λ

2)γn+2(μ
2) + γn(μ

2)γn+2(λ
2)

)

(λ2 − μ2)2

=: W2(λ, μ; n, s).

So
∑

i, j≥1

(
∂2 log τ dKdVn (s)

∂si∂s j
+

∂2 log τ dKdVn+1 (s)

∂si∂s j

)
1

λ2i+1μ2 j+1

= W2(λ, μ; n, s) +W2(λ, μ; n + 1, s).

On the other hand, for P(n) = � + wn�
−1, recall the notation

P(n)�+1 =
∑

k∈Z
A�,k(n)�k, � = −1, 0, 1, 2, . . . .

Using Lemma 12 we have

C2(λ, μ; n; t)

= An(λ) + An(μ) + 2An(λ)An(μ) − wn
(
Gn+1(λ)Gn(μ) + Gn+1(μ)Gn(λ)

)

(λ − μ)2
,

where

An(λ) =
∑

�≥0

A�−1,−1(n)

λ�+1 , Gn(λ) =
∑

�≥0

A�−1,0(n − 1)

λ�+1 .

Taking

t2i−2 = 0, t2i−1 = si (i ≥ 1)

we have

Gn(λ) =
∑

j≥0

A2 j−1,0(n − 1)

λ2 j+1
=

∑

j≥0

m j,0(n − 1)

λ2 j+1
=

∑

j≥0

cn+1, j
λ2 j+1

= λ γn+1(λ
2).

(97)
It follows from (81), (97), and respectively (18), that

An(λ) = (� + 1)−1
(
λ2γn+2(λ

2) − 1
)

= λ2 (� + 1)−1 γn+2(λ
2) − 1

2
, (98)

αn(λ) = (�2 + 1)−1
(
(λ − wn+1 − wn) γn+2(λ)

)
− 1

2
. (99)
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Lemma 14. The following identities hold true:

γn(λ
2) = An−1(λ) + An−2(λ) + 1

λ2
, (100)

Gn(λ) = An(λ) + An−1(λ) + 1

λ
, (101)

αn(λ
2) = An−1(λ) − wn−1

λ2

(
An−1(λ) + An−2(λ) + 1

)
. (102)

Proof. Identities (100), (101) are easy consequences of (98), (97).
Note that identity (52) implies that

αn(λ
2) = 1

2

(
wn−1 γn+1(λ

2) − wn−2 γn−1(λ
2) + (λ2 − 2wn−1) γn(λ

2) − 1
)

= 1

2

(
wn−1

An(λ) + An−1(λ) + 1

λ2
− wn−2

An−2(λ) + An−3(λ) + 1

λ2

+ (λ2 − 2wn−1)
An−1(λ) + An−2(λ) + 1

λ2
− 1

)
.

Applying Lemma 13 in this identity yields

αn(λ
2) = 1

2λ2

(
λ2(An−1(λ) − An−2(λ)) + (λ2 − 2wn−1) (An−1(λ) + An−2(λ) + 1) − λ2

)

= 1

λ2

(
λ2An−1(λ) − wn−1 (An−1(λ) + An−2(λ) + 1)

)
.

The lemma is proved. ��
Observe that C2(λ, μ; n, s) satisfies the parity symmetries

C2(λ, μ) = C2(−λ,−μ), C2(λ,−μ) = C2(−λ,μ).

So

∑

i, j≥1

∂2 log τn(t)
∂t2i−1∂t2 j−1

1

λ2i+1μ2 j+1 = C2(λ, μ) − C2(−λ,μ)

2
. (103)

Lemma 15. The following identity hold true:

λμ
αn(λ2) + αn(μ2) + 2αn(λ2)αn(μ2) − wn wn−1

(
γn(λ2)γn+2(μ

2) + γn(μ2)γn+2(λ
2)

)

(λ2 − μ2)2

+ λμ
αn+1(λ

2) + αn+1(μ
2) + 2αn+1(λ2)αn+1(μ2) − wn+1 wn

(
γn+1(λ

2)γn+3(μ
2) + γn+1(μ

2)γn+3(λ
2)

)

(λ2 − μ2)2

= An(λ) + An(μ) + 2An(λ)An(μ) − wn
(
Gn+1(λ)Gn(μ) + Gn+1(μ)Gn(λ)

)

2(λ − μ)2

− An(−λ) + An(μ) + 2An(−λ)An(μ) − wn
(
Gn+1(−λ)Gn(μ) + Gn+1(μ)Gn(−λ)

)

2(λ + μ)2
. (104)
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Proof. Applying (100)–(102) and the parity symmetry

An(−λ) = An(λ)

we find that it suffices to prove the following equality

− λμ + 2 λμ
[
An−1(λ) − wn−1

λ2

(
An−1(λ) + An−2(λ) + 1

)
+
1

2

]

[
An−1(μ) − wn−1

μ2

(
An−1(μ) + An−2(μ) + 1

)
+
1

2

]

− wn wn−1

λμ

[
(An−1

(
λ) + An−2(λ) + 1

)(
An+1(μ) + An(μ) + 1

)

+
(
An−1(μ) + An−2(μ) + 1

)(
An+1(λ) + An(λ) + 1

)]

− wn+1 wn

λμ

[(
An(λ) + An−1(λ) + 1

)(
An+2(μ) + An+1(μ) + 1

)

+
(
An(μ) + An−1(μ) + 1

)(
An+2(λ) + An+1(λ) + 1

)]

+ 2 λμ
[
An(λ) − wn

λ2

(
An(λ) + An−1(λ) + 1

)
+
1

2

]

[
An(μ) − wn

μ2

(
An(μ) + An−1(μ) + 1

)
+
1

2

]

= (λ + μ)2

2

[
An(λ) + An(μ) + 2An(λ)An(μ)

− wn

λμ

((
An+1(λ) + An(λ) + 1

)(
An(μ) + An−1(μ) + 1

)

+
(
An+1(μ) + An(μ) + 1

)(
An(λ) + An−1(λ) + 1

))]

− (λ − μ)2

2

[
An(λ) + An(μ) + 2An(λ)An(μ)

+
wn

λμ

((
An+1(λ) + An(λ) + 1

)(
An(μ) + An−1(μ) + 1

)

+
(
An+1(μ) + An(μ) + 1

)(
An(λ) + An−1(λ) + 1

))]
.

Noting that

λμ · lhs =

− λ2μ2 + 2
[
λ2An−1(λ) − wn−1

(
An−1(λ) + An−2(λ) + 1

)
+

λ2

2

]

[
μ2An−1(μ) − wn−1

(
An−1(μ) + An−2(μ) + 1

)
+

μ2

2

]

− wn−1

[
(An−1

(
λ) + An−2(λ) + 1

)(
μ2(An(μ) − An−1(μ)

)
+ wn−1

(
An−1(μ) + An−2(μ) + 1

))

+
(
An−1(μ) + An−2(μ) + 1

)(
λ2

(
An(λ) − An−1(λ)

)
+ wn−1

(
An−1(λ) + An−2(λ) + 1

))]

− wn

[(
An(λ) + An−1(λ) + 1

)(
μ2(An+1(μ) − An(μ)

)
+ wn

(
An(μ) + An−1(μ) + 1

))

+
(
An(μ) + An−1(μ) + 1

)(
λ2

(
An+1(λ) − An(λ)

)
+ wn

(
An(λ) + An−1(λ) + 1

))]
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+ 2
[
λ2An(λ) − wn

(
An(λ) + An−1(λ) + 1

)
+

λ2

2

][
μ2An(μ) − wn

(
An(μ) + An−1(μ) + 1

)
+

μ2

2

]

and that

λμ · rhs = 2 λ2μ2
(
An(λ) + An(μ) + 2An(λ)An(μ)

)

+ wn (λ2 + μ2)
((

An+1(λ) + An(λ) + 1
)(
An(μ) + An−1(μ) + 1

)

+
(
An+1(μ) + An(μ) + 1

)(
An(λ) + An−1(λ) + 1

))
,

we find

λμ · (lhs − rhs)

= λ2μ2(2An−1(λ)An−1(μ) − 2An(λ)An(μ) + An−1(λ) + An−1(μ) − An(λ) − An(μ)
)

− μ2(An−1(μ) + An(μ) + 1)
(
wn−1(An−2(λ) + An−1(λ) + 1) − wn(An(λ) + An+1(λ) + 1)

)

− λ2
(
An−1(λ) + An(λ) + 1)

(
wn−1(An−2(μ) + An−1(μ) + 1) − wn(An(μ) + An+1(μ) + 1)

)

= λ2μ2(2An−1(λ)An−1(μ) − 2An(λ)An(μ) + An−1(λ) + An−1(μ) − An(λ) − An(μ)
)

+ λ2μ2(An−1(μ) + An(μ) + 1)(An(λ) − An−1(λ))

+ λ2μ2(An−1(λ) + An(λ) + 1)(An(μ) − An−1(μ)) = 0,

where Lemma 13 is used. The lemma is proved. ��
End of proof of Theorem 1. It follows from Lemma 15 that

∂2 log τn(s)
∂si∂s j

= ∂2

∂si∂s j
(� + 1) log τ dKdVn (s).

Combining with (96) we find that

f (s) = β0 +
∑

k≥1

βksk,

where β0, β1, β2, · · · are constants (independent of n). The theorem is proved. ��

5. Proofs of Theorem 2 and Corollary 2

In this section, using Proposition 1, Corollary 1 and Theorem 1, we are going to prove
Theorem 2 and Corollary 2.

5.1. Ribbon graphs with even valencies. In this subsection, we first prove Theorem 2,
then we give a further study to the modified GUE partition function with even couplings.

Proof of Theorem 2. Define Fn(s) and Zn(s) by

Fn(s) := n2

2

(
log n − 3

2

)
− 1

12
log n +

∑

g≥2

B2g

4g(g − 1) n2g−2

+
∑

k≥0

1

k!
∑

j1,..., jk≥1

〈
tr M2 j1 · · · tr M2 jk

〉
c s j1 · · · s jk ,

Zn(s) := eFn(s). (105)
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Here Bm denotes the mth Bernoulli number. Then Zn(s) is a particular tau-function (of
the discrete KdV hierarchy) reduced from the Toda lattice hierarchy [14]. The initial
value of wn(s) := Zn+1(s) Zn−1(s)

Zn(s)2
is given by wn(s = 0) = n. The theorem then follows

from Lemma 14, Corollary 1, as well as the Theorem 1.1.1 of [14]. ��
Define a formal series Z(x, s; ε) by

log Z(x, s; ε) := x2

2ε2

(
log x − 3

2

)
− 1

12
log x +

∑

g≥2

ε2g−2 B2g

4g(g − 1)x2g−2

+
∑

g≥0

ε2g−2
∑

k≥1

∑

j1,..., jk≥1
| j |≥2g−2+k

ag(2 j1, . . . , 2 jk) s j1 · · · s jk x2−2g−k+| j |. (106)

Here, x is the t’Hooft coupling constant [28,29]. Recall that we could view Z(x, s; ε)

as a tau-function reduced from the Toda lattice of the discrete KdV hierarchy under the
identification n = x/ε as well as the flow rescalings ∂s j �→ ε ∂s j . More precisely, define

w(x, s; ε) := Z(x + ε, s; ε) Z(x − ε, s; ε)

Z(x, s; ε)2
,

then w(x, s; ε) is a particular solution to the discrete KdV hierarchy:

ε
∂L

∂s j
= [

A2 j−1, L
]

with L := �2 + w(x + ε) + w(x) + w(x) w(x − ε)�−2, A2 j−1 := L j , � := eε∂x .
Validity of these statements can be found in the Appendix of [14]. The initial data of
this solution is given by

w(x, 0; ε) ≡ x = n ε. (107)

Let ZdKdV(x, s; ε) be the tau-function of the solutionw(x, s; ε). The following corollary
follows from Theorem 1.

Corollary 3. There exist constants α, β0, β1, β2, · · · such that

Z(x, s; ε) = eα x+β0+
∑

k≥1 β j s j ZdKdV(x, s; ε) ZdKdV(x + ε, s; ε). (108)

Note that the constants α, β0, β1, β2, · · · right above now can depend on ε. In what
follows, we fix the ambiguities simply by requiring ZdKdV(x, s; ε) to be the unique
function satisfying

Z(x, s; ε) = ZdKdV(x, s; ε) ZdKdV(x + ε, s; ε). (109)

Remark. The following formal series of s

ZdKdV
(
x +

ε

2
, s; ε

)
=: Z̃(x, s; ε) (110)

was introduced in [20] by Si-Qi Liu, Youjin Zhang and the authors of the present paper,
called the modified GUE partition function with even couplings, which plays an impor-
tant role in a proof of the Hodge–GUE correspondence [20]. Moreover, Liu, Zhang and
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the authors derived theDubrovin–Zhang loop equation for log Z̃ from the corresponding
Virasoro constraints, which also provides an algorithm for computing the modified GUE
correlators of an arbitrary genus [20]. Very recently, Jian Zhou [42] derived the topo-
logical recursion of Chekhov–Eynard–Orantin type for the modified GUE correlators
from the Virasoro constraints constructed in [20]; moreover, as a consequence of the
topological recursion, an interesting formula between intersection numbers and k-point
functions of modified GUE correlators was obtained by Zhou [42] (see the Theorem 3
in [42] for the details); it remains an open question to match the formula of Zhou with
another interesting formula obtained by Gaëtan Borot and Elba Garcia-Failde [5] (see
the Corollary 12.3 of [5]) as a consequence of the Hodge–GUE correspondence (or with
a slightly different but equivalent consequence like (121) in below), which may lead to
a new proof of the Hodge–GUE correspondence. Last but not least, as a corollary of
Theorem 2, let us give a third algorithm of computing the modified GUE correlators
based on the following full genera formulae:

ε2
∑

j1, j2≥0

〈φ j1φ j2〉(x; ε)

λ
j1+1
1 λ

j2+1
2

=
tr

[
R x

ε
+ 1
2
( λ1

ε
)R x

ε
+ 1
2
( λ2

ε
)
]

(λ1 − λ2)2
− 1

(λ1 − λ2)2
, (111)

εk
∑

j1,..., jk≥0

〈φ j1 · · · φ jk 〉(x; ε)

λ
j1+1
1 · · · λ jk+1

k

= −1

k

∑

σ∈Sk

tr
[
R x

ε
+ 1
2
(
λσ1
ε

) · · · R x
ε
+ 1
2
(
λσk
ε

)
]

∏k
�=1(λσ�

− λσ�+1)
(k ≥ 3),

(112)

where 〈φ j1 · · ·φ jk 〉(x; ε) denote the modified GUE correlators with even couplings,
defined by

〈φ j1 · · ·φ jk 〉(x; ε) := ∂k log Z̃

∂s j1 . . . ∂s jk
(x, s = 0; ε), (113)

and Rn(λ) is defined in Definition 3. We notice that the reason that one can talk about
“genus” for log Z̃ is because log Z̃ is even in ε and so are 〈φ j1 · · · φ jk 〉(x; ε). A concrete
algorithm using the formulae of the form (111)–(112) for calculating the corresponding
correlators including certain large genus asymptotics is given in [16].

Remark. Very recently itwas shown in [26] that ZdKdV(x, s; ε) and ZdKdV(x+ε, s; ε) are
identified with the LUE partition functions with α = −1/2 and α = 1/2, respectively.
One can obtain their k-point series by putting x → x ∓ ε

2 in (111)–(112). An interesting
genus expansion for ZdKdV(x, s; ε)was discovered in [9]. The interplay between ZdKdV

and Z̃ suggests a Hurwitz/Hodge correspondence that deserves a further study.

Using the definitions of Z(x, s; ε) and Z̃(x, s; ε) and using the expansion

2

ez + e−z
=:

∑

k≥0

Ek

k! z
k,
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with Ek , k ≥ 0 being the Euler numbers, we have the following formula:

log Z̃(x, s; ε)

=
( 1
4
log x − 3

8

) x2

ε2
− 5

48
log x

+
∑

g≥2

ε2g−2

4g(2g − 1)(2g − 2)x2g−2

g∑

g′=0

(2g′ − 1)

(
2g
2g′

)
E2g−2g′ B2g′

22g−2g′

+
∑

h≥0

ε2h−2
∑

g, r ≥ 0
g + r = h

∑

k≥1
j1,..., jk≥1

(
2 − 2g − k + | j |

2r

)
E2r

22r
ag(2 j1, . . . , 2 jk) s j1 · · · s jk x2−2h−k+| j |.

In other words, the modified GUE correlators with even couplings (113) have the ex-
pressions:

〈φ j1 · · · φ jk 〉(x; ε)

= k!
∑

h≥0

ε2h−2x2−2h−k+| j | ∑

g,r≥0
g+r=h

(
2 − 2g − k + | j |

2r

) E2r

22r
ag(2 j1, . . . , 2 jk), (114)

where k ≥ 1 and j1, . . . , jk ≥ 1. It should be noted that the 〈φ j1 · · · φ jk 〉(x; ε) with
k ≥ 1, j1, . . . , jk ≥ 1 is a polynomial of x .

5.2. Combinations of certain special cubic Hodge integrals. Based on the Hodge–GUE
correspondence and using Theorem 2, we compute in this subsection combinations of
certain special cubic Hodge integrals. More precisely, we will prove Corollary 2.

The cubic Hodge free energy associated with �g(−1)�g(−1)�g
( 1
2

)
is defined by

H(t; ε) =
∑

g≥0

ε2g−2
∑

k≥0

1

k!
∑

i1,...,ik≥0

ti1 · · · tik
∫

Mg,k

�g(−1)�g(−1)�g
(1
2

)
ψ

i1
1 · · ·ψ ik

k .

Here, t = (t0, t1, . . . ). (Warning: Avoid from confusing with the variables t�, � ≥ 0 of
the Toda lattice hierarchy used in Sect. 4.) The Hodge–GUE correspondence connects
H(t; ε) with the GUE partition function with even couplings, which is given by the
following theorem.

Theorem A. ( [15,20]) The following identity holds true:

log Z(x, s; ε) + ε−2
(

−1

2

∑

j1, j2≥1

j1 j2
j1 + j2

s̄ j1 s̄ j2 +
∑

j≥1

j

1 + j
s̄ j − x

∑

j≥1

s̄ j − 1

4
+ x

)

= H
(
t
(
x − ε

2
, s

);√
2ε

)
+ H

(
t
(
x +

ε

2
, s

);√
2ε

)
, (115)

where s̄ j := (2 j
j

)
s j and

ti (x, s) :=
∑

j≥1

j i+1s̄ j − 1 + δi,1 + x δi,0, i ≥ 0. (116)
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Recall from (110) that the modified GUE partition function with even couplings Z̃
is defined as the unique series of x − 1 and s satisfying

Z(x, s; ε) = Z̃
(
x − ε

2
, s; ε

)
Z̃
(
x +

ε

2
, s; ε

)
. (117)

Combining (117) with (115) we obtain the following corollary.

Corollary 4. The following formula holds true:

log Z̃
(
x, s; ε

) = H(
t
(
x, s

);√
2ε

)
+

1

4ε2
∑

j1, j2≥1

j1 j2
j1 + j2

s̄ j1 s̄ j2 +
x

2ε2

(∑

j≥1

s̄ j − 1
)

− 1

2ε2
∑

j≥1

j

1 + j
s̄ j +

1

8ε2
. (118)

Denote �g := �g(−1)�g(−1)�g
( 1
2

)
as in the introduction, and write

�g =:
∑

d≥0

�[d]
g , �[d]

g ∈ H2d(Mg,k).

It might be helpful to notice that for g = 1, deg �1 ≤ 1; for g ≥ 2, deg �g ≤ 3g − 3.
Motivated by Theorem A, let us consider the following combination of Hodge integrals.
For any given k ≥ 0, i1, . . . , ik ≥ 0, define Hi1,...,ik (x; ε) ∈ ε−2

Q[[x − 1, ε2]] by

Hi1,...,ik (x; ε) := 2g−1
∞∑

g=0

ε2g−2
3g∑

d=0

∑

λ∈Y

(−1)�(λ)

m(λ)!
〈
�[d]

g e(x−1)τ0 τλ+1 τi1 · · · τik
〉
g.

(119)
Note that in the notation 〈 . . . 〉g , we omit the indexm from 〈 . . . 〉g,m . For such an abbrevi-
ation,m should be recovered fromcounting the number of τ ’s in “…”.Therefore, for each
fixed g, d and for each monomial in the Taylor expansion e(x−1)τ0 = ∑∞

r=0
1
r ! (x − 1)r ,

the above summation over partitions
∑

λ∈Y is a finite sum, i.e., the degree-dimension
matching |λ| = 3g − 3 + k + r − d − |i | has to be hold. Lemma 3 also easily follows
from this constrain with r = 0 taken. The numbers Hg,i1,...,ik defined by (38) and the
formal series Hi1,...,ik (x; ε) are clearly related by

Hi1,...,ik (x = 1; ε) =
∞∑

g=0

ε2g−2Hg,i1,...,ik . (120)

Proposition 3. For any k ≥ 0 and j1, . . . , jk ≥ 1, the following formula holds true:

φ j1,..., jk (x; ε) =
k∏

�=1

(
2 j�
j�

) ∑

i1,...,ik≥0

k∏

�=1

j i�+1� Hi1,...,ik

(
x; ε

)

+
δk,2

2ε2
j1 j2
j1 + j2

(
2 j1
j1

)(
2 j2
j2

)
− δk,1

2ε2

(
2 j1
j1

)(
j1

1 + j1
− x

)
. (121)
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Proof. Note that theH(
t;√

2ε
)
has the expression

H(
t;√

2ε
) =

∑

g

2g−1ε2g−2
∑

m0,m1,m2,···

∫

Mg,
∑

i mi

�g

·
m0∏

s=1

ψ0
s

m0+m1∏

s=m0+1

ψ1
s

m0+m1+m2∏

s=m0+m1+1

ψ2
s · · · ·

∞∏

i=0

tmi
i

mi ! .

Formula (121) is then proved by substituting (116) and by using Corollary 4. ��
Proof of Corollary 2. Note that the k = 0 case is already given in [20]. By taking x = 1
in (121) and using Theorem 2 we find (40). Formula (39) is then implied in a standard
way by using the following linear equation (proven in [20])

∑

k≥1

ksk
∂ Z̃

∂sk
+

( x2

4ε2
− 1

16

)
Z̃ = 1

2

∂ Z̃

∂s1
(122)

and the fact that

an, j = ∂2 log τ dKdVn

∂s1∂s j
, j ≥ 1. (123)

Here Z̃ = Z̃(x, s; ε) denotes the modified GUE partition function with even couplings.
Note that the fact (123) can be obtained by taking the coefficients of λ−1 on the both
sides of (21). The corollary is proved.
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Appendix A. On Consequence of the Hodge–GUE Correspondence

In this appendix, we derive a consequence of the Hodge–GUE correspondence that has
a similar flavour to formula (121). Note that

H(
t(x, s);√

2ε
)

=
∑

g≥0

2g−1ε2g−2
∑

k≥0

1

k!
∫

Mg,k

�g,k

k∏

m=1

(∑

im≥0

tim (x, s)ψ im
m

)

=
∑

g≥0

2g−1ε2g−2
∑

k≥0

1

k!
∫

Mg,k

�g,k

k∑

l=0

(
k
l

) k∏

m=l+1

(
(x − 1) − ψ2

m

1 − ψm

)

·
∑

p1,...,pl

l∏

m=1

pms̄pm
1 − pmψm

.
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Then by comparing the coefficients of sp1 . . . spl of the both sides of (118) we get

〈σp1 . . . σpl 〉g(x)

=
∑

k≥l

1

(k − l)!
∫

Mg,k

�g,k

k∏

m=l+1

(
(x − 1) − ψ2

m

1 − ψm

) l∏

m=1

pm

(
2pm
pm

)

1 − pmψm

+ δg,0δl,2
p1 p2
p1 + p2

(
2p1
p1

) (
2p2
p2

)
+

1

2
δg,0δl,1

(
2p1
p2

) (
p1

1 + p1
− x

)
. (124)

Here 〈σp1 . . . σpl 〉(x; ε) =: ∑
g≥0 ε2g−2〈σp1 . . . σpl 〉g(x), and 〈σp1 . . . σpl 〉(x; ε) are the

modified GUE correlators with even couplings defined in (113). Taking x = 1 we find

〈σp1 . . . σpl 〉g|x=1 =
∑

k≥l

1

(k − l)!
∫

Mg,k

�g,k

k∏

m=l+1

(
− ψ2

m

1 − ψm

) l∏

m=1

pm
(2pm
pm

)

1 − pmψm
.

(125)

A further consideration to (125) was given in [5].
Combining (124) with (115) we find for any fixed l ≥ 1, p1, . . . , pl ≥ 1 the following
identities:

l! x2−2g−l+| j | ∑

g1,r≥0
g1+r=g

(
2 − 2g1 − l + | j |

2r

)
E2r

22r
ag1(2p1, . . . , 2pl)

=
∑

k≥l

1

(k − l)!
∫

Mg,k

�g,k

k∏

m=l+1

(
(x − 1) − ψ2

m

1 − ψm

) l∏

m=1

pm
(2pm
pm

)

1 − pmψm

+ δg,0δl,2
p1 p2
p1 + p2

(
2p1
p1

)(
2p2
p2

)
+

1

2
δg,0δl,1

(
2p1
p2

)(
p1

1 + p1
− x

)
, g ≥ 0.

(126)

Note that for any g ≥ 0, the RHS is a priori a power series of x − 1, but the LHS shows
that it is actually a monomial of x and so is also a polynomial of x − 1. This subset
of the identities deserve a further investigation. Moreover, the LHS vanishes when g is
sufficiently large, an so is the RHS; this provides another subset of the identities for the
cubic Hodge integrals.
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