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Abstract: In this paper we develop the theory of quantum reverse hypercontractivity
inequalities and show how they can be derived from log-Sobolev inequalities. Next we
prove a generalization of the Stroock–Varopoulos inequality in the non-commutative
setting which allows us to derive quantum hypercontractivity and reverse hypercontrac-
tivity inequalities solely from2-log-Sobolev and 1-log-Sobolev inequalities respectively.
We then prove some tensorization-type results providing us with tools to prove hyper-
contractivity and reverse hypercontractivity not only for certain quantum superoperators
but also for their tensor powers. Finally as an application of these results, we generalize
a recent technique for proving strong converse bounds in information theory via reverse
hypercontractivity inequalities to the quantum setting.We prove strong converse bounds
for the problems of quantum hypothesis testing and classical-quantum channel coding
based on the quantum reverse hypercontractivity inequalities that we derive.

1. Introduction

Let {Tt : t ≥ 0} be a continuous semigroup of stochastic maps (a Markov semigroup)
with a unique stationary distribution π . Defining the p-norm, for p ≥ 1, of a function f
by ‖ f ‖p := (E| f |p)1/p, where the expectation is with respect to π , a simple convexity-
type argument verifies that ‖Tt f ‖p ≤ ‖ f ‖p. That is, Tt , for all t ≥ 0, is a contraction
under p-norms. Since p �→ ‖ f ‖p is non-decreasing, a stronger contractivity inequality
is the following:

‖Tt f ‖p ≤ ‖ f ‖q , (1)

for 1 ≤ q ≤ p and t = t (p) an increasing function of p satisfying t (q) = 0. Thus
an inequality of this form is called a hypercontractivity inequality. Since T0 equals the
identity map, the inequality (1) for p = q reduces to an equality. Thus its infinitesimal
version around t = 0 must also hold. This infinitesimal version is derived from the
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derivative of the left hand side of (1) and is called a q-log-Sobolev inequality.1 Such
an inequality involves two quantities: the entropy function and the Dirichlet form. A
log-Sobolev inequality guarantees the existence of a positive constant, called a log-
Sobolev constant, up to which the entropy function is dominated by the Dirichlet form.
Not only can one derive log-Sobolev inequalities from hypercontractivity ones, but
a collection of the former inequalities can also be used to prove hypercontractivity
inequalities through integration. Thus log-Sobolev inequalities and hypercontractivity
inequalities are essentially equivalent.

A fundamental tool in the theory of log-Sobolev inequalities is the Stroock–
Varopoulos inequality. This inequality enables us to compare the Dirichlet forms asso-
ciated to different values of q, using which a log-Sobolev inequality for q = 2 can
be used to derive a log-Sobolev inequality for any q. Indeed, the Stroock–Varopoulos
inequality allows us to derive a collection of log-Sobolev inequalities from a single one,
from which hypercontractivity inequalities can be proven by integration.

Hypercontractivity inequalities were first studied in the context of quantum field the-
ory [22,40,48], but later found several important applications in different areas ofmathe-
matics, e.g., concentration ofmeasure inequalities [8,45], transportation cost inequalities
[21], estimating the mixing times [18], analysis of Boolean functions [15] and informa-
tion theory [1,25]. One of the main ingredients of most of these applications is the so
called tensorization property. It states that the hypercontractivity inequality

‖T ⊗n
t f ‖p ≤ ‖ f ‖q ,

is satisfied for every n ≥ 1 if and only if it holds for n = 1. That is, the hypercontractivity
of Tt is equivalent to the hypercontractivity of its tensor powers. Proof of the tensorization
property is not hard, and can be obtained using the multiplicativity of the operator (q →
p)-norm.Another proof, based on the equivalence of log-Sobolev and hypercontractivity
inequalities, uses chain rule and the subadditivity of the entropy function.

Hypercontractivity inequalities can also be studied for p, q < 1. Although ‖ · ‖p for
p < 1 is not a norm, it satisfies the reverse Minkowski inequality from which one can
show that ‖Tt f ‖p ≥ ‖ f ‖p when p < 1. Thus it is natural to consider inequalities of
the form (1) for p, q < 1 in the reverse direction. Such inequalities are called reverse
hypercontractivity inequalities. The theory of log-Sobolev inequalities for the range of
q < 1 is developed similarly and can be used for proving reverse hypercontractivity
inequalities as well [36].

Quantum hypercontractivity inequalities The theory of hypercontractivity and log-
Sobolev inequalities in the quantum (non-commutative) case has been developed by
Olkiewicz and Zegarlinski [43]. Here the semigroup of stochastic maps is replaced by
a semigroup of quantum superoperators (QMS) representing the time evolution of an
open quantum system under the Markovian approximation in the Heisenberg picture.
Kastoryano and Temme in [26] used log-Sobolev inequalities to estimate the mixing
time of quantum Markov semigroups. The study of quantum reverse hypercontractiv-
ity was initiated in [14], where following [36] some applications were discussed. For
other applications of hypercontractivity inequalities in quantum information theory see
[16,32,39].

Due to the non-commutative features of quantumphysics, hypercontractivity and log-
Sobolev inequalities in the quantum case aremuchmore complicated. Therefore, despite

1 For sake of brevity, we refrain from defining the phrases shown in italics throughout this introduction.
Please refer to the main text and references therein for details.



Quantum Reverse Hypercontractivity 755

the apparent analogy with the classical (i.e. commutative) case, several complications
arise. In particular, one of the main drawbacks of the theory in the non-commutative case
is the lack of a general quantum Stroock–Varopoulos inequality. As mentioned above,
such an inequalitywould allowone to derive hypercontractivity inequalities solely froma
2-log-Sobolev inequality. Special cases of the quantum Stroock–Varopoulos inequality,
called regularity and strong regularity properties, were considered in the literature and
proved for certain examples [26,43]. Themost general result in this direction is a proof of
the strong regularity property for a wide class of quantum Markov semigroups obtained
in [3].

Even more problematic is the issue of tensorization. As mentioned before, the proof
of the tensorization property in the commutative case is quite easy and can be done
with at least two methods, yet none of them generalize to the non-commutative case;
(i) The superoperator norm is not multiplicative in general, and (ii) one cannot interpret
the quantum conditional entropy as an average of an entropic quantity over a smaller
system, which is a crucial aspect of the proof in the classical setting. Thus far, the
tensorization property has been proven only for a few special examples of quantum
Markov semigroups. In particular, it was proven for the qubit depolarizing semigroup
in [26,33] and is generalized for all unital qubit semigroups in [28]. Moreover, in [49]
some techniques were developed for bounding the log-Sobolev constants associated
to the tensor powers of quantum Markov semigroups, which can be considered as an
intermediate resolution of the tensorization problem.We also refer to [4,6] for the theory
of hypercontractivity and log-Sobolev inequalities for completely bounded norms.

1.1. Our Results. In this paper we first develop the theory of quantum reverse hypercon-
tractivity inequalities beyond the unital case. This is done almost in a manner analogous
to the (forward) hypercontractivity inequalities. Here, in contrast to [26,43], we need
to use different normalizations for the entropy function as well as the Dirichlet form
to make them non-negative even for parameters p < 1. Our results in this part are
summarized in Theorem 11.

Our next result is a quantum Stroock–Varopoulos inequality for both the forward and
reverse cases.We prove this inequality under the assumption of strong reversibility of the
QMS. We provide two proofs for the quantum Stroock–Varopoulos inequality. The first
proof is based on ideas in [11,43]. The second proof is based on ideas in [3] in which the
strong regularity is proven under the same assumption. Indeed, our quantum Stroock–
Varopoulos inequality is a generalization of the strong regularity property established in
[3]. Theorem 14 states our result in this part.

We then prove some tensorization-type results. The first one, Theorem 19, provides
a uniform bound on the 1-log-Sobolev constant of generalized depolarizing semigroups
and their tensor powers. The proof of this result is a generalization of the proof of
a similar result in the classical case [36]. This tensorization result together with our
Stroock–Varopoulos inequality gives a reverse hypercontractivity inequality which is
used in the subsequent section. The second tensorization result, Theorem 21, shows that
the 2-log-Sobolev constant of the n-fold tensor power of a qubit generalized depolarizing
semigroup is independent of n. Next, in Theorem 25 we explicitly compute this 2-log-
Sobolev constant. Finally, in Corollary 26 we use these results to establish a uniform
bound on the 2-log-Sobolev constant of any qubit quantum Markov semigroup and its
tensor powers. We note that the latter bound improves over the bounds provided in [49].

Let us briefly explain the ideas behind the latter tensorization results. Previously,
Theorem 21 was known in the unital case (the usual depolarizing semigroup), the proof
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of which was based on an inequality on the norms of a 2 × 2 block matrix and its
submatrices from [27]. Our proof of Theorem 21 is based on the same inequality. First
in Lemma22wederive an infinitesimal version of that inequality in terms of the entropies
of a 2×2 blockmatrix and its submatrices, and then use it to prove Theorem 21. To prove
Theorem25we need to show that a certain function of qubit densitymatrices is optimized
over diagonal ones. Once we show this, the explicit expression for the 2-log-Sobolev
constant is obtained from the associated classical log-Sobolev constant derived in [18].
Finally, Corollary 26 is a quantum generalization of a classical result from [18] with an
essentially similar proof except that we should take care of tensorization separately.

Finally, we apply the quantum reverse hypercontractivity in proving strong converse
bounds for the tasks of quantum hypothesis testing and classical-quantum channel cod-
ing. In the next section, we briefly explain the key idea behind the application of reverse
hypercontractivity to the problem of classical hypothesis testing.

1.2. Application to Hypothesis Testing Problem. Recently, the authors of [31] intro-
duced a new technique to prove strong converse results in information theory using
reverse hypercontractivity inequalities. In the following we briefly explain the ideas via
the problem of hypothesis testing.

Suppose that n samples independently drawn from a probability distribution on some
sample space� are provided, and the task is to distinguish between twopossible hypothe-
ses which are given by the distributions P and Q on �. In this setting, we apply a test
function2 f : �n → {0, 1} to make the decision; Letting (x1, . . . , xn) ∈ �n be the
observed samples, if f (x1, . . . , xn) equals 1, we infer the hypothesis to be P , and other-
wise infer it to be Q. The following two types of error may occur: the error of Type I of
wrongly inferring the distribution to be Q given by αn( f ) := P⊗n( f = 0), and the error
of Type II of wrongly inferring the distribution to be P given by βn( f ) := Q⊗n( f = 1).
In the asymmetric regime, we further assume that αn( f ) is uniformly bounded by some
fixed error ε ∈ (0, 1), and we are interested in the smallest possible achievable error
βn( f ).

The idea in [31] is to use the following variational formula for the relative entropy
between P and Q (see, e.g., [45]):

nD(P‖Q) = D(P⊗n‖Q⊗n) = sup
g>0

EP⊗n [log g] − logEQ⊗n [g], (2)

where EP⊗n stands for the expectation with respect to the distribution P⊗n , and the
maximum is over functions g on �n . This formula is indeed used for g being a noisy
version of f . To get this noisy version a Markov semigroup is employed.

For any function h : � → R define

Tt (h) := e−t h + (1 − e−t )EP [h]. (3)

Thesemaps define a classical version of the generalized quantumdepolarizing semigroup
(see Equation (17)). That is, for every x ∈ �, we have Tt (h)(x) = e−t h(x) + (1 −
e−t )EP [h]. Then {Tt : t ≥ 0} forms a semigroup that satisfies the following reverse
hypercontractivity inequality [36]:

‖Tt (h)‖q ≥ ‖h‖p, ∀p, q, t, 0 ≤ q < p < 1, t ≥ log

(
1 − q

1 − p

)
, (4)

2 The test could be probabilistic, but for simplicity of presentation we restrict to deterministic tests.
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where the norms are defined with respect to the distribution P , i.e., ‖h‖p =(
EP [|h|p])1/p. Now the idea is to use (2) for g = T ⊗n

t f as follows:

nD(P‖Q) ≥ EP⊗n [log T ⊗n
t f ] − logEQ⊗n [T ⊗n

t f ]. (5)

Bounding the second term on the right hand side is easy. Letting γ =
∥∥∥ d P

d Q

∥∥∥∞ we have

EQ⊗n [T ⊗n
t ( f )] = EQ⊗n

[(
e−t + (1 − e−t )EP

)⊗n
f
]

≤ EQ⊗n
[(
e−t + γ (1 − e−t )EQ

)⊗n
f
]

= (
e−t + γ (1 − e−t )

)n
EQ⊗n [ f ]

= (
e−t + γ (1 − e−t )

)n
βn( f )

≤ e(γ−1)ntβn( f ), (6)

where the last inequality follows from eγ t − 1 ≥ γ (et − 1) for γ ≥ 1.
Now we need to bound the first term in terms of αn( f ). The crucial observation here

is that

‖h‖0 = lim
r→0

‖h‖r = eEP [log |h|]. (7)

It is then natural to use the reverse hypercontractivity inequality (4) for q = 0. In fact,
using the tensorization property, that (4) also holds for T ⊗n

t , we have

EP⊗n [log Tt f ] = log ‖T ⊗n
t ( f )‖0

≥ log ‖ f ‖1−e−t

≥ 1

1 − e−t
logEP⊗n [ f ]

≥
(
1

t
+ 1

)
log(1 − αn( f )), (8)

where the second line follows from the reverse hypercontractivity inequality, the third
line follows from the fact that T ⊗n

t ( f ) takes values in [0, 1], and the last line follows
from e−t ≥ 1 − t . Now using (6) and (8) in (5), using αn( f ) ≤ ε and optimizing over
the choice of t > 0 we arrive at

βn( f ) ≥ (1 − ε)e
−nD(P‖Q)−2

√
n
∥∥∥ d P

d Q

∥∥∥∞ log 1
1−ε

. (9)

In the present work, we show that the above analysis can be carried over to the quan-
tum setting. Let us explain the similarities with the classical case as well as difficulties
we face in doing this. Firstly, a variational expression for the quantum relative entropy
similar to (2) is already known [44]. Secondly, the semigroup (3) is easily general-
ized to the generalized depolarizing semigroup in the quantum case. Thirdly, the reverse
hypercontractivity inequality (4) is derived in the quantum case from our theory of quan-
tum reverse hypercontractivity as well as our quantum Stroock–Varopoulos inequality.
However we need this inequality in its n-fold tensor product form, for which we use
our tensorization-type result. Also, generalizing the computations in (6) to the quantum
case is straightforward. Nevertheless, we face a problem in the next step; The crucial
identity (7) no longer holds in the non-commutative case. Indeed, as far as we know,
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non-commutative L p-norms do not possess a closed expression in the limit p → 0.
To get around this problem, instead of a variational formula similar to (2), we use our
quantum reverse hypercontractivity inequality together with a variational formula for
p-norms (obtained from the reverse Hölder inequality). Then we derive an inequality
of the form (9) by taking an appropriate limit.

Section5 contains our results on applications of reverse hypercontractivity inequali-
ties to strong converse of the quantum hypothesis testing aswell as the classical-quantum
channel coding problems.

2. Notations

For a Hilbert spaceH, the algebra of (bounded) linear operators acting onH is denoted
by B(H). The adjoint of X ∈ B(H) is denoted by X† and

|X | :=
√

X†X .

The subspace of self-adjoint operators is denoted by Bsa(H) ⊂ B(H). When X ∈
Bsa(H) is positive semi-definite (positive definite) we represent it by X ≥ 0 (X > 0).
We let P(H) be the cone of positive semi-definite operators on H and P+(H) ⊂ P(H)

the set of (strictly) positive operators. Further, let D(H) := {ρ ∈ P(H) | trρ = 1}
denote the set of density operators (or states) on H, and D+(H) := D(H) ∩ P+(H)

denote the subset of faithful states. We denote the support of an operator A by supp(A).
We let I ∈ B(H) be the identity operator on H, and I : B(H) �→ B(H) be the identity
superoperator acting on B(H).

We sometimes deal with tensor products of Hilbert spaces. In this case, in order
to keep track of subsystems, it is appropriate to label the Hilbert spaces as HA,HB
etc. We also denote HA ⊗ HB by HAB . Then the subscript in X AB indicates that it
belongs to B(HAB). We also use H⊗n = HA1 ⊗ · · · ⊗ HAn where HAi ’s are isomor-
phic Hilbert spaces. Moreover, for any S ⊆ {1, . . . , n} we use the shorthand notations
AS= AS = {A j : j ∈ S}, and HAS for

⊗
j∈S HA j . We also identify A{1,...,n} with An .

A superoperator 	 : B(H) → B(H) is called positive if 	(X) ≥ 0 whenever
X ≥ 0. It is called completely positive if I ⊗ 	 is positive where I : B(H′) → B(H′)
is the identity superoperator associated to an arbitrary Hilbert space H′. Observe that
a positive superoperator 	 is hermitian-preserving meaning that 	(X†) = 	(X)†. A
superoperator is called unital if	(I) = I, and is called trace-preserving if tr	(X) = trX
for all X . The adjoint of	, denoted by	∗ is defined with respect to the Hilbert–Schmidt
inner product:

tr
(

X†	(Y )
)

= tr
(
	∗(X)†Y

)
. (10)

Note that the adjoint of a unital map is trace-preserving and vice versa.

2.1. Non-commutative Weighted L p-Spaces. Throughout the paper we fix σ ∈ D+(H)

to be a positive definite density matrix. We define

�σ (X) := σ
1
2 Xσ

1
2 .

Then B(H) is equipped with the inner product

〈X, Y 〉σ := tr
(

X†�σ (Y )
)

= tr
(
�σ (X†)Y

)
.
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Note that if X, Y ≥ 0 then 〈X, Y 〉σ ≥ 0. This inner product induces a norm on B(H):

‖X‖2,σ := √〈X, X〉σ . (11)

This 2-norm can be generalized for other values of p. For every p ∈ R \ {0} we define

‖X‖p,σ := tr

[∣∣� 1
p
σ (X)

∣∣p
] 1

p = tr
[∣∣σ 1

2p Xσ
1
2p
∣∣p
] 1

p ≡ ∥∥� 1
p
σ (X)

∥∥
p, (12)

where

‖X‖p := (
tr |X |p)1/p

,

denotes the (generalized) Schatten norm of order p. In particular, if X > 0 then
‖X‖p

p,σ = tr
[
�
1/p
σ (X)p

]
. Note that this definition reduces to (11) when p = 2. The val-

ues of ‖X‖p,σ for p ∈ {0,±∞} are defined in the limits. Since the function p �→ ‖X‖p,σ

is increasing and bounded below by 0, by the monotone convergence theorem, the limit
p → 0 exists but does not have a closed expression, as opposed to the classical setting
(cf Equation (7)). Observe also that ‖X‖p,σ = ‖X†‖p,σ for all X . Moreover, ‖ · ‖p,σ for
1 ≤ p ≤ ∞ satisfies the triangle inequality (the Minkowski inequality) and is a norm.
The dual of this norm is ‖ · ‖ p̂,σ where p̂ is the Hölder conjugate of p given by

1

p
+
1

p̂
= 1, (13)

where p > 1, and p̂ = +∞ for p = 1. We indeed for 1 ≤ p ≤ ∞ and arbitrary X have
[43]

‖X‖p,σ = sup
Y

|〈X, Y 〉σ |
‖Y‖ p̂,σ

. (14)

Moreover, for −∞ < p < 1, p �= 0 and positive definite X we have

‖X‖p,σ = inf
Y>0

〈X, Y 〉σ
‖Y‖ p̂,σ

, (15)

where again p̂ is defined via (13).3 This identity is a consequence of the reverse Hölder
inequality:

Lemma 1 (Reverse Hölder inequality). Let X ≥ 0 and Y > 0. Then, for any p < 1 with
Hölder conjugate p̂ we have

〈X, Y 〉σ ≥ ‖X‖p,σ ‖Y‖ p̂,σ .

Proof. The proof is a direct generalization of equation (32) of [50] (see also Lemma 5
of [14]): for any A ≥ 0 and B > 0,

tr(AB) ≥ ‖A‖p‖B‖ p̂.

From there, choosing A := �
1
p
σ (X) and B := �

1
p̂
σ (Y ),

〈X, Y 〉σ = tr
(
σ 1/p Xσ 1/pσ 1/ p̂Yσ 1/ p̂) = tr(AB) ≥ ‖A‖p‖B‖ p̂ = ‖X‖p,σ ‖Y‖ p̂,σ .

��
3 In the case p = 0, we define p̂ = 0 (see e.g., Definition 1.2 of [36]).
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Another property of ‖·‖p,σ for−∞ ≤ p < 1 is the reverse Minkowski inequality. As
mentioned above, when p ≥ 1, the triangle inequality is satisfied due to the Minkowski
inequality. When p < 1 we have the inequality in the reverse direction:

‖X‖p,σ + ‖Y‖p,σ ≤ ‖X + Y‖p,σ .

Again this inequality in the special case of σ being the completely mixed state is proven
in [14] but the generalization to arbitrary σ is immediate.

For arbitrary p, q define the power operator by

Iq,p(X) := �
− 1

q
σ

(∣∣� 1
p
σ (X)

∣∣ p
q

)
.

Here are some immediate properties of the power operator.

Proposition 2. [26,43] F or all q, r, p ∈ (−∞,∞)\{0} and X ∈ B(H):

(i) ‖Iq,p(X)‖q
q,σ = ‖X‖p

p,σ . In particular we have ‖Ip,p(X)‖p,σ = ‖X‖p,σ .
(ii) Iq,r ◦ Ir,p = Iq,p.
(iii) For X ≥ 0 we have Ip,p(X) = X.

2.2. Entropy. For a given σ ∈ D+(H) and arbitrary p �= 0 we define the entropy
function4 for X > 0 by

Entp,σ (X) := tr
[(

�
1
p
σ (X)

)p · log (� 1
p
σ (X)

)p
]

−tr
[(

�
1
p
σ (X)

)p · log σ
]

− ‖X‖p
p,σ · log ‖X‖p

p,σ .

As usual, the entropy function for p ∈ {0,±∞} is defined in the limit.

Remark 1. When p > 0, in the definition of the entropy we can take X to be positive
semi-definite. However, when p < 0, we need to consider X to be positive definite in
order to avoid difficulties. For this reason, in the rest of the paper we state our definitions
and results for positive definite X , keeping in mind that when p, q > 0 they can easily
be generalized to positive semi-definite X (say, by taking an appropriate limit).

The significance of the entropy function comes from its relation to the derivative of
the p-norm.

Proposition 3. [26,43] For a differentiable operator valued function p �→ X p we have,
for any p ∈ R\{0}:

d

dp
‖X p‖p,σ = 1

p2
‖X p‖1−p

p,σ ·
(
1

2
Entp,σ

(
Ip,p(X p)

)

+
1

2
Entp,σ

(
Ip,p(X†

p)
)
+ γ

)
.

4 Our entropy function here is different from the one in [26] by a factor of p. This modification ensures us
that if X and σ commute, we get the usual entropy function in the classical case. Moreover, this extra factor
makes the entropy function non-negative even for p < 0.
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Here γ is given by

γ = p2

2

(
tr
[
�

1
p
σ (Z†

p) · �
1
p
σ (X p) · ∣∣� 1

p
σ (X p)

∣∣p−2
]
+ tr

[
�

1
p
σ (X†

p) · �
1
p
σ (Z p) · ∣∣� 1

p
σ (X p)

∣∣p−2
])

,

where Z p := d
dp X p.

We will be using two special cases of this proposition. First, if X p > 0 for all p, we
have

d

dp
‖X p‖p,σ = 1

p2
‖X p‖1−p

p,σ ·
(
Entp,σ (X p) + p2tr

[
�

1
p
σ (Z p) · �

1
p
σ (X p)

p−1
])

.

Second, if X p = X is independent of p we have

d

dp
‖X‖p,σ = 1

p2
‖X‖1−p

p,σ ·
(
1

2
Entp,σ

(
Ip,p(X)

)
+
1

2
Entp,σ

(
Ip,p(X†)

))
. (16)

We will also use the following properties of the entropy function that are easy to
verify.

Proposition 4. [26]

(i) Entp,σ (Ip,2(X)) = Entq,σ (Iq,2(X)) for all p, q ∈ R\{0} and X ∈ B(H).
(ii) Entp,σ (cX) = cpEntp,σ (X) for all X > 0 and constants c > 0.
(iii) For any density matrix ρ we have

Ent2,σ
(
�

− 1
2

σ (
√

ρ)
) = D(ρ‖σ),

where D(ρ‖σ) = tr(ρ log ρ) − tr(ρ log σ) is Umegaki’s relative entropy.
(iv) For any density matrix ρ we have

Ent1,σ
(
�−1

σ (ρ)
) = D(ρ‖σ).

Corollary 5. (a) For all X > 0 and arbitrary p ∈ R\{0} we have Entp,σ (X) ≥ 0.
(b) For all X > 0, the map p �→ ‖X‖p,σ is non-decreasing on R.
(c) X �→ Ent1,σ (X) is a convex function on positive semi-definite matrices.

Proof. (a) By part (i) of the previous proposition it suffices to prove the corollary for
p = 1. Moreover, by part (ii) we may assume that X is of the form X = �−1

σ (ρ) for
some density matrix ρ. Then by part (iv) we have Ent1,σ (X) = D(ρ‖σ) ≥ 0.
(b) By (a) both Entp,σ (Ip,p(X)) andEntp,σ (Ip,p(X†)) are non-negative. Thus using (16)
the derivative of p �→ ‖X‖p,σ is non-negative, and this function is non-decreasing.
(c) This is a direct consequence of the joint convexity of (ρ, σ ) �→ D(ρ‖σ) (see e.g.,
[54]). ��
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2.3. Quantum Markov Semigroups. A quantum Markov semigroup (QMS) is the basic
model for the evolution of an open quantum system in theMarkovian regime. Such quan-
tum Markov semigroup (in the Heisenberg picture) is a set {	t : t ≥ 0} of completely
positive unital superoperators 	t : B(H) → B(H) of the form

	t = e−tL,

where L : B(H) → B(H) is a superoperator called the Lindblad generator of the QMS.
The general form of such a Lindblad generator is characterized in [20,30]. We note that
	0 = I and 	t+s = 	s ◦ 	t . Moreover, for any X ∈ B(H) we have

d

dt
	t (X) = −L ◦ 	t (X) = −	t ◦ L(X).

In particular, since 	t is assumed to be unital, we have

L(I) = 0.

The dual of L generates the associated QMS in the Schrödinger picture: 	∗
t = e−tL∗

where L∗ is the adjoint of L with respect to the Hilbert–Schmidt inner product defined
in (10). SinceL is not full-rank, there exists some non-zero σ in the kernel ofL∗ as well.
Then σ is an invariant of the semigroup {	∗

t : t ≥ 0}, i.e., 	∗
t (σ ) = σ for all t ≥ 0.

Throughout the paper we assume that such a σ is unique (up to scaling) and full-rank.
Then it can be proven that σ is a density matrix.5 Thus by the above uniqueness and
full-rankness assumptions, {	∗

t : t ≥ 0} admits a unique invariant state σ in D+(H).
We call such a QMS primitive. Observe that for a primitive QMS the identity operator
I is the unique (up to scaling) element in the kernel of L.

We say that the QMS is σ -reversible or satisfies the detailed balanced condition with
respect to some σ ∈ D+(H) if

�σ ◦ L ◦ �−1
σ = L∗.

From this equation and L(I) = 0 it is clear that

L∗(σ ) = 0,

and that σ is a fixed point of 	∗
t . Therefore, if the QMS is primitive and σ -reversible,

then σ would be the unique invariant state of {	∗
t : t ≥ 0}.

We will frequently use the following immediate consequence of reversibility.

Lemma 6. L is σ -reversible if and only if both L and 	t are self-adjoint with respect
to the inner product 〈·, ·〉σ , which means that for all X, Y ∈ B(H) we have

〈X,L(Y )〉σ = 〈L(X), Y 〉σ , 〈X,	t (Y )〉σ = 〈	t (X), Y 〉σ .

A primitive QMS with the unique invariant state σ ∈ D+(H) is called p-contractive
if it is a contraction under the p-norm, that is, for all t ≥ 0 and X > 0 we have

‖	t (X)‖p,σ ≤ ‖X‖p,σ , if p ≥ 1.

5 ByBrouwer’s fixed-point theorem,	∗
1, has a fixed point inD(H) because it maps this compact convex set

to itself. On the other hand, since 	∗
t = (	∗

1)
t , any fixed point of 	∗

1 is an invariant of the whole semigroup.
Thus {	∗

t : t ≥ 0} always has an invariant state in D(H).
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It is called reverse p-contractive if for all t ≥ 0 and X > 0

‖	t (X)‖p,σ ≥ ‖X‖p,σ , if p < 1.

We say that the QMS is contractive if it is p-contractive for all p ≥ 1 and reverse
p-contractive for p < 1.

Two remarks are in line. Firstly, as mentioned before, when p > 0 in the above
definition we may safely take X ≥ 0 (instead of X > 0). For uniformity of presentation
we prefer to take X > 0 in order to jointly consider the cases p > 0 and p ≤ 0 in the
definitions. Of course in the former case by taking an appropriate limit, a contractivity
inequality for X ≥ 0 can be derived once we have one for X > 0. Secondly, in the above
definition we restrict to positive definite (or positive semidefinite) X since here 	t is a
completely positive map, and the superoperator norm of completely positive maps (at
least for p ≥ 1) is optimized over positive semidefinite operators (see e.g. [17] and
reference therein). The proof of the following proposition is postponed to Appendix A.

Proposition 7. (i) Any primitive QMS is (reverse) p-contractive for p ∈ (−∞,−1] ∪
[1/2,+∞).

(ii) Any primitive QMS whose unique invariant state is σ = I/d, the completely mixed
state, is (reverse) p-contractive for all p.

The reader familiar with the notion of sandwiched p-Rényi divergence [37,52] would
notice that p-contractivity is related to [5] the data processing inequality of sandwiched
p-Rényi divergences, which is known to hold [5,19,37] for p ≥ 1/2. In Appendix A
we give a proof of part (i) for the range p ∈ (−∞,−1] ∪ [1/2, 1) based on new ideas
which may be of independent interest. Moreover, later in Corollary 15, under a stronger
assumption than primitivity we will prove (reverse) p-contractivity for all p.

An important example of classical semigroups is generated by the map f �→ f −
E f , where the expectation is with respect to some fixed distribution. This generator is
sometimes called the simple generator [36]. The quantum analog of simple generators
is

L(X) := X − tr(σ X)I,

for some positive definite density matrix σ . Observe that L is primitive, and L∗(X) =
X − tr(X)σ satisfies the detailed balanced condition with respect to σ . The quantum
Markov semigroup associated to this Lindblad generator is

	t (X) = e−t X + (1 − e−t )tr(σ X)I. (17)

In the special case where σ is the completely mixed state, 	t and 	∗
t coincide and

become depolarizing channels. Indeed, (17) is a generalized depolarizing channel in the
Heisenberg picture.

Having two Lindblad generators L andK associated to two semigroups {	t : t ≥ 0}
and {�t : t ≥ 0}, respectively, wemay consider a newLindblad generatorL⊗I+I⊗K.
This Lindblad generator generates the semigroup {	t ⊗ �t : t ≥ 0}. Moreover, letting

L̂i := I⊗(i−1) ⊗ L ⊗ I⊗(n−i), (18)

we have

	⊗n
t = e−t

∑n
i=1 L̂i .

Note that, ifL is primitive and reversiblewith respect to σ , then
∑n

i=1 L̂i is also primitive
and reversible with respect to σ⊗n .
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2.4. Dirichlet Form. We now define the Dirichlet form6 associated to a QMS with
generator L by

Ep,L(X) = p p̂

4
〈I p̂,p(X),L(X)〉σ ,

where p̂ is the Hölder conjugate of p. Verification of the following properties of the
Dirichlet form is easy.

Proposition 8. (i) E p̂,L(I p̂,2(X)) = Ep,L(Ip,2(X)) for all p ∈ R\{0} and X ∈ B(H).
(ii) Ep,L(cX) = cpEp,L(X) for X ≥ 0 and constant c ≥ 0.
(iii) E2,L(X) = 〈X,L(X)〉σ for all X > 0.
(iv) E1,L(X) = 1

4 tr
[
�σ

(L(X)
) · ( log�σ (X) − log σ

)]
.

The non-negativity of the Dirichlet form is not clear from its definition. Here we
prove the non-negativity assuming that the QMS is p-contractive. By Proposition 7 we
then conclude the non-negativity of Ep,L(X) for p /∈ (−1, 1/2). Later on, based on an
stronger assumption than σ -reversibility, we will prove Ep,L(X) ≥ 0 for all values of p
and X > 0.

Proposition 9. Suppose that L generates a QMS that is primitive and σ ∈ D+(H) is its
unique invariant state. Let p ∈ R �= {0}. If the QMS is (reverse) p-contractive, then
Ep,L(X) ≥ 0 for all X > 0.

Proof. Define

g(t) := p̂
∥∥	t (X)

∥∥p
p,σ

− p̂‖X‖p
p,σ .

By assumption of (reverse) p-contractivity, for all t ≥ 0 we have g(t) ≤ 0. We note that
g(0) = 0. Therefore, g′(0) ≤ 0. We compute

g′(0) = d

dt
p̂
∥∥	t (X)

∥∥p
p,σ

∣∣∣
t=0

= d

dt
p̂ tr
(
�

1
p
σ ◦ 	t (X)p

)∣∣∣
t=0

= −p p̂ tr
(
�

1
p
σ ◦ L(X) · �

1
p
σ (X)p−1

)

= −p p̂ tr
(
L(X) · �

1
p
σ

(
�

1
p
σ (X)p−1))

= −p p̂〈I p̂,p(X),L(X)〉σ .

This gives Ep,L(X) ≥ 0. ��

2.5. Hypercontractivity and Logarithmic-Sobolev Inequalities. We showed in Proposi-
tion 7 that	t belonging to a σ -reversibleQMS is contractive, at least for certain values of
p. That is, ‖	t (X)‖p,σ is bounded (from above or below depending onwhether p ≥ 1 or
p < 1) by ‖X‖p,σ . On the other hand, By part (b) of Corollary 5 bounding ‖	t (X)‖p,σ

by ‖X‖q,σ when 1 ≤ q < p or p < q < 1 is a stronger inequality than contractivity.

6 Again, our definition of the Dirichlet form is different from that of [26] by a factor of p/2 and a negative
sign.
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Such inequalities are called hypercontractivity inequalities or reverse hypercontractiv-
ity inequalities depending on whether 1 ≤ q < p or p < q < 1 respectively. These
inequalities have found a wide range of applications in the literature.

It is well-known that quantum hypercontractivity inequalities stem from quantum
logarithmic-Sobolev (log-Sobolev) inequalities. They are essentially equivalent objects,
so proving log-Sobolev inequalities gives hypercontractivity ones. The theory of reverse
hypercontractivity inequalities have been generalized to the non-commutative case for
unital semigroups in [14]. Here we generalize the theory for general QMS.

Given a primitive Lindblad generator L that is reversible with respect to a positive
definite density matrix σ and p ∈ R\{0}, a p-log-Sobolev inequality is an inequality of
the form

β Entp,σ (X) ≤ Ep,L(X), ∀X > 0.

The best constant β satisfying the above inequality is called the p-log-Sobolev constant
and is denoted by αp(L). That is,

αp(L) := inf
Ep,L(X)

Entp,σ (X)
,

where the infimum is taken over X > 0 with Entp,σ (X) �= 0.
By the following proposition we can restrict ourselves to log-Sobolev constants for

values of p ∈ [0, 2].
Proposition 10. αp(L) = α p̂(L) for all Lindblad generators L.

Proof. Identifying X with Ip,2(Y ), for some arbitrary Y > 0, this is an immediate
consequence of part (i) of Proposition 4 and part (i) of Proposition 8. ��

We can now state how log-Sobolev inequalities are related to hypercontractivity and
reverse hypercontractivity inequalities. The first part of the following theorem is already
known [26,43].

Theorem 11. Let L be a primitive Lindblad generator that is reversible with respect to
a positive definite density matrix σ . Then the following holds:

• (Hypercontractivity) Suppose that β2 = inf p∈[1,2] αp(L) > 0. Then for 1 ≤ q ≤ p
and

t ≥ 1

4β2
log

p − 1

q − 1
, (19)

we have ‖	t (X)‖p,σ ≤ ‖X‖q,σ for all X > 0
• (Reverse hypercontractivity) Suppose that β1 = inf p∈(0,1] αp(L) > 0. Then for
p ≤ q < 1 and

t ≥ 1

4β1
log

p − 1

q − 1
, (20)

we have ‖	t (X)‖p,σ ≥ ‖X‖q,σ for all X > 0, where Eq.20 is understood in the
limit whenever p = 0 or q = 0.

The proof strategy of this theorem is quite standard. Here we present a proof for the
sake of completeness.
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Proof. It suffices to prove the theorem when t = 1
4β log p−1

q−1 for β being either β2 or β1

depending on whether we prove the hypercontractivity part or the reverse hypercontrac-
tivity part. Thus, fix q and define

t (p) := 1

4β
log

p − 1

q − 1
.

Define

f (p) := ‖	t (p)(X)‖p,σ − ‖X‖q,σ = ‖X p‖p,σ − ‖X‖q,σ ,

where X p := 	t (p)(X) > 0. To continue the proof we compute the derivative of f (p)

using Proposition 3.

f ′(p) = d

dp
‖X p‖p,σ = 1

p2
‖X p‖1−p

p,σ ·
(
Entp,σ (X p) + p2tr

[
�

1
p
σ (Z p) · �

1
p
σ (X p)

p−1
])

,

where

Z p = d

dp
X p = −t ′(p)L(X p) = − 1

4β(p − 1)
L(X p).

Therefore,

f ′(p) = 1

p2
‖X p‖1−p

p,σ ·
(
Entp,σ (X p) − 1

β
Ep,L(X p)

)
.

Now suppose that q ≥ 1 and β ≤ αp(L) for all p ∈ [1, 2]. Then for p ≥ q we have

Entp,σ (X p) ≤ 1

αp(L)
Ep,L(X p) ≤ 1

β
Ep,L(X p).

As a result, f ′(p) ≤ 0 for all p ≥ q. Since f (q) = 0 we conclude that f (p) ≤ 0 for all
p ≥ q. This gives the hypercontractivity part of the theorem.

For the reverse hypercontractivity part, assume that q < 1 and β ≤ αp(L) for all
p ∈ [0, 1]. Then for p ≤ q we have

Entp,σ (X p) ≤ 1

αp(L)
Ep,L(X p) ≤ 1

β
Ep,L(X p),

where the second inequality holds since p < 1, so either p or its Hölder conjugate
belongs to [0, 1]. Therefore, f ′(p) ≤ 0 for all p ≤ q < 1, and since f (q) = 0,
f (p) ≥ 0 for all p < q. ��
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3. Quantum Stroock–Varopoulos Inequality

In the previous section we developed the basic tools required to understand quantum
hypercontractivity and reverse hypercontractivity inequalities and log-Sobolev inequali-
ties. By Theorem 11 to obtain hypercontractivity and reverse hypercontractivity inequal-
ities we need to find bounds on log-Sobolev constants in ranges p ∈ [1, 2] or p ∈ [0, 1].
Now the question is how such bounds can be found.

In the classical (commutative) case, the most relevant p-log-Sobolev constants are
α2(L) and α1(L). Indeed, p �→ αp(L) is a non-increasing function on p ∈ [0, 2],
so in Theorem 11 the parameters β1 and β2 can be replaced with α1(L) and α2(L)

respectively. This result is proven via comparison of the Dirichlet forms, an inequality
that is sometimes called the Stroock–Varopoulos inequality.

In this sectionwe prove a quantumgeneralization of the Stroock–Varopoulos inequal-
ity, and conclude in Theorem 11 that, for strongly reversible semigroups, we can take
βp = αp(L) for p = 1, 2. We should point out that a quantum Stroock–Varopoulos
inequality in the special case of σ being the completely mixed state is proven in [14].
Also, a special case of the Stroock–Varopoulos inequality (called strong L p-regularity)
for certain Lindblad generators is proven in [26,43]. A strong L p-regularity is also
proven in [3] which we generalize to a quantum Stroock–Varopoulos inequality.

The assumption of σ -reversibility is not enough for us for proving the quantum
Stroock–Varopoulos inequality. We indeed need L to be self-adjoint with respect to an
inner product different from 〈·, ·〉σ defined above (see Lemma 6). In the following we
first define this new inner product, state some of its properties and then go to our quantum
Stroock–Varopoulos inequality.

3.1. The GNS Inner Product. In what follows we use the GNS inner product 〈·, ·〉1,σ on
B(H) that is defined by [11]:

〈X, Y 〉1,σ := tr(σ X†Y ). (21)

We note that this inner product coincides with 〈X, Y 〉σ = tr(σ 1/2X†σ 1/2Y ) when, e.g.,
X and σ commute. But in general 〈·, ·〉1,σ is different from 〈·, ·〉σ .

The following lemma was first proven in [11]. We will give a proof here for the sake
of completeness.

Lemma 12. Let L be a Lindblad generator that is self-adjoint with respect to the inner
product 〈·, ·〉1,σ defined above. Then the followings hold.

(i) L commutes with the superoperator σ : X �→ σ Xσ−1.

(ii) L is self-adjoint with respect to the inner product 〈·, ·〉σ .

Based on part (ii) of this lemma (see also Lemma 6) we say that a Lindblad generator
L is strongly σ -reversible if it is self-adjoint with respect to the inner product 〈·, ·〉1,σ .
Proof. (i) Using the fact the L(Y )† = L(Y †), for all X, Y we have

〈X,σ ◦ L(Y )〉1,σ = tr(σ X†σL(Y )σ−1)

= tr(X†σL(Y ))

= 〈L(Y )†, X†〉1,σ
= 〈L(Y †), X†〉1,σ
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= 〈Y †,L(X†)〉1,σ
= tr(σYL(X)†)

= tr(σ (Y )σL(X)†)

= 〈L(X),σ (Y )〉1,σ
= 〈X,L ◦ σ (Y )〉1,σ .

This gives σ ◦ L = L ◦ σ .
(ii) Follows easily from (i) and the fact that

〈X, Y 〉σ = 〈Y †,1/2
σ (X†)〉1,σ .

��
The following lemma is indeed a consequence of Theorem 3.1 of [11]. Here we prefer

to present a direct proof.

Lemma 13. Let L be a strongly σ -reversible Lindblad generator. Then for every t ≥ 0
there are operators Rk ∈ B(H) and ωk > 0 such that σ (Rk) = ωk Rk,

	t (X) =
∑

k

Rk X R†
k , (22)

and
∑

k Rk R†
k = I .

Proof. By Lemma 12 the Lindblad generator L and then 	t = e−tL commute with σ ,
i.e.,

	t ◦ σ = σ ◦ 	t . (23)

Fix an orthonormal basis {|i〉}d
i=1 for the underlying Hilbert spaceH = HA and define

|ϒ〉 :=
d∑

i=1

|i〉A|i〉B ∈ HAB,

where HB is isomorphic toHA. It is not hard to verify that for any matrix M we have

(MA ⊗ IB)|ϒ〉 = IA ⊗ MT
B |ϒ〉, (24)

where the transpose is with respect to the basis {|i〉}d
i=1.

The Choi–Jamiolkowski representation of 	t is

JAB := (	t ⊗ IB)(|ϒ〉〈ϒ |).
Then using (24) it is not hard to verify that (23) translates to

(σ−1
A ⊗ σ T

B )JAB = JAB(σ−1
A ⊗ σ T

B ).

That is, JAB and σ−1
A ⊗ σ T

B commute. On the other hand, JAB is positive semidefinite
since it is theChoi–Jamiolkowski representationof a completely positivemap.Therefore,
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JAB and σ−1
A ⊗ σ T

B can be simultaneously diagonalized in an orthonormal basis, i.e.,

there exists an orthonormal basis {|vk〉}d2

k=1 of HAB such that

JAB |vk〉 = λk |vk〉 (25)

σ−1
A ⊗ σ T

B |vk〉 = ω−1
k |vk〉, (26)

where λk ≥ 0, ωk > 0. Define the operator Vk by

(Vk ⊗ IB)|ϒ〉 = |vk〉.
Then again using (24), equation (26) translates to

σ−1Vkσ = ω−1
k Vk .

Moreover, equation (25) means that

(	t ⊗ IB)(|ϒ〉〈ϒ |) = JAB =
∑

k

λk |vk〉〈vk | =
∑

k

λk(Vk ⊗ IB)|ϒ〉〈ϒ |(V †
k ⊗ IB),

which gives

	t (X) :=
∑

k

λk Vk X V †
k .

Then letting Rk := √
λk Vk we have σ Rk = ωk Rkσ and (22) holds. The other equation

comes from 	t (I) = I. ��

3.2. Comparison of the Dirichlet Forms. Wecan now state themain result of this section.

Theorem 14 (Quantum Stroock–Varopoulos inequality). Let L be a strongly σ -
reversible Lindblad generator, which means that it is self-adjoint with respect to the
inner product 〈·, ·〉1,σ defined in (21). Then for all X > 0 we have

Ep,L
(
Ip,2(X)

) ≥ Eq,L
(
Iq,2(X)

)
, 0<p ≤ q ≤ 2.

Remark 2. As mentioned above, special cases of Theorem 14 were already investigated
in the literature. In the case that σ is the maximally mixed state, this was done in [14].
The inequality was also recently extended to the GNS-symmetric setting for the range
of parameters p ≥ 1 and q = 2 in [3].

We have two proofs for this theorem. The first one, that we present here, is based on
ideas in [26,43]. The second one, that is moved to Appendix B, is based on ideas in [3].
We present both the proofs in this paper since they are different in nature and whose
ideas can be useful elsewhere.

First proof of Theorem 14. For any t ≥ 0 define the function ht : [0,∞) → R by

ht (s) := 〈
I2/(2−s),2(X),	t ◦ I2/s,2(X)

〉
σ

for s ∈ (0,∞)\{2}, and ht (0) = ht (2) = tr(�1/2
σ (X)2). Since by part (ii) of Lemma 12,

	t = e−tL is self-adjoint with respect to the inner product 〈·, ·〉σ , we have ht (2 − s) =
ht (s) and ht is symmetric about s = 1. Moreover, exploring the definition of ht (s) we
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find that s �→ ht (s) is analytic with a convergent Taylor series at s = 1. Then, by the
symmetry around s = 1, all the the odd-order derivatives of ht at s = 1 vanish, and we
have

ht (s) = ht (1) +
∞∑
j=1

c j

(2 j)! (s − 1)2 j , (27)

where

c j = d2 j

ds2 j
ht (s)

∣∣∣
s=1

. (28)

Note that the above series expansion is convergence by analyticity of s �→ ht (s).We
claim that all the even-order derivatives of ht at s = 1 are non-negative, i.e., c j ≥ 0. We
use Lemma 13 to verify this. Let Rk’s be operators such that

σ Rkσ
−1 = ωk Rk, (29)

with ωk > 0 and (22) holds. Then letting Y := �
1/2
σ (X) and using (29) we compute

ht (s) = tr
[
�

s
2
σ (Y 2−s) · 	t

(
�

− s
2

σ (Y s)
)]

=
∑

k

tr
[
Y 2−sσ

s
4 Rkσ

− s
4 Y sσ− s

4 R†
k σ

s
4

]

=
∑

k

ω
s
2
k tr
[
Y 2−s RkY s R†

k

]
.

Now diagonalizing Y in its eigenbasis: Y = ∑
� μ�|�〉〈�|, we find that

ht (s) =
∑

k,�,�′
μ2

�

∣∣〈�|Rk |�′〉∣∣2(
√

ωk μ�′

μ�

)s
.

Therefore, ht (s) is a sum of exponential functions with positive coefficients. From this
expression it is clear that c j ’s as defined in Eq.28 are all non-negative.

For s ∈ (0,∞)\{2}, let us define

gt (s) := ht (s) − ht (0)

(s − 1)2 − 1
=

∞∑
j=1

c j

(2 j)!

⎛
⎝ j−1∑

i=0

(s − 1)2i

⎞
⎠ ,

and extend the function gt by continuity on [0,∞), since ht is differentiable at 0 and at
2. From this expression it is clear that gt (s) is non-decreasing on [1,+∞). Therefore,
limt→0+ gt (s)/t is non-decreasing on [1,+∞). On the other hand, we have ht (0) =
tr(Y 2) = h0(s). We thus can compute

lim
t→0+

gt (s)

t
= 1

(s − 1)2 − 1
lim

t→0+

ht (s) − ht (0)

t

= 1

(s − 1)2 − 1
lim

t→0+

ht (s) − h0(s)

t



Quantum Reverse Hypercontractivity 771

= 1

(s − 1)2 − 1

∂

∂t
ht (s)

∣∣∣
t=0

= − 1

(s − 1)2 − 1

〈
I2/(2−s),2(X),L ◦ I2/s,2(X)

〉
σ
.

Therefore

s �→ − 1

(s − 1)2 − 1

〈
I2/(2−s),2(X),L ◦ I2/s,2(X)

〉
σ
,

is non-decreasing on [1,+∞). Now the desired result follows once we identify 2/s with
p (and 2/(2 − s) with p̂, its Hölder conjugate). ��

Here are some important consequences of the above theorem.

Corollary 15. Let L be a strongly σ -reversible Lindblad generator. Then the followings
hold:

(i) For all p ∈ R\{0} and X > 0 we have

Ep,L(X) ≥ 0.

(ii) The associated QMS is p-contractive for all p.

Remark 3. As mentioned before, the fact that p-Dirichlet forms are positive for p ∈
(−∞,−1] ∪ [+1/2,∞) is a simple consequence of contraction of non-commutative
weighted L p-norms (or equivalently of the data processing inequality for sandwiched
p-Rényi divergences), which follows by invariance of the state σ and interpolation of
these spaces (see [43]). The case p ∈ (−1,+1/2) is much more subtle, since it is known
that the data processing inequality does not hold in general in this parameter range,
as opposed to the classical case. More precisely, p-contractivity of 	t implies that the
sandwiched p-Rényi divergence is monotone under 	t [5,19,37]. Therefore, when 	t
comes from a QMS satisfying the above strong reversibility condition, sandwiched p-
Rényi divergences are monotone under 	t not only for p ≥ 1/2 but for all values of
p.

Proof. (i) By Theorem 14 (and part (i) of Proposition 8) for every p �= 0 we have

Ep,L(Ip,2(X)) ≥ E2,L(X).

Indeed, for p ∈ (0, 2], the inequality holds by Theorem 14, and for p /∈ [0, 2], further
use Proposition 8(i) to conclude. On the other hand, since we have self-adjointness of
the semigroup with respect to 〈., .〉σ , its generator has positive spectrum, so that we have
E2,L(X) ≥ 0. Therefore, Ep,L(Ip,2(X)) ≥ 0.
(ii) Define g(t) as in the proof of Proposition 9. By part (i) we have g′(t) ≤ 0 for all
t ≥ 0 and g(0) = 0. Therefore, g(t) ≥ 0 for all t ≥ 0. This gives p-contractivity. ��

The following corollary is an immediate consequence of the quantum Stroock–
Varopoulos inequality as well as part (i) of Proposition 4.

Corollary 16. Let L be a strongly σ -reversible Lindblad generator. Then p �→ αp(L)

is non-increasing on [0, 2], where α0(L) is defined as the limit p → 0.

Now we can state an improvement over Theorem 11.
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Corollary 17. Let L be a strongly σ -reversible Lindblad generator. Then the following
holds:

• (Hypercontractivity) For 1 ≤ q ≤ p and

t ≥ 1

4α2(L)
log

p − 1

q − 1
, (30)

we have ‖	t (X)‖p,σ ≤ ‖X‖q,σ for all X ≥ 0
• (Reverse hypercontractivity) For p ≤ q < 1 and

t ≥ 1

4α1(L)
log

p − 1

q − 1
, (31)

we have ‖	t (X)‖p,σ ≥ ‖X‖q,σ for all X > 0.

Remark 4. Equation30 was already known to be implied by the strong L p-regularity
defined by [43]. This condition, which is a special case of the Stroock–Varopoulos
inequality, was recently shown in [3].

Before ending this section, we state a result that will play an important role in Sect. 5.

Lemma 18. Let {	t : t ≥ 0} be a a primitive QMS that is strongly σ -reversible. Let
X, Y > 0 and −∞ ≤ q, p < 1. Then, for any t ≥ 0 such that (1− p)(1−q) ≥ e−4α1(L)t

we have

〈X,	t (Y )〉σ ≥ ‖X‖p,σ ‖Y‖q,σ .

Proof. The result follows by a direct application of Lemma 1 together with the reverse
hypercontractivity inequality in Corollary 17. ��

4. Tensorization

Our goal in this section is to prove hypercontractivity (or reverse hypercontractivity)
inequalities of the form ‖	⊗n

t (X)‖p,σ⊗n ≤ ‖X‖q,σ⊗n (or ‖	⊗n
t (X)‖p,σ⊗n ≥ ‖X‖q,σ⊗n )

for certain ranges of t, p, q that are independent of n. Indeed, so far we have a theory
of using log-Sobolev inequalities to prove such inequalities when n = 1, but in some
applications, e.g., those we present later in this paper, we need such inequalities for
arbitrary n. We need some notations to state the problem more precisely.

For a Lindblad generator L we define

L̂i := I⊗(i−1) ⊗ L ⊗ I⊗(n−i), (32)

as an operator acting on B(H⊗n). We also let

Kn :=
n∑

i=1

L̂i . (33)

Observe that if L is (strongly) σ -reversible, thenKn is (strongly) reversible with respect
to σ⊗n . Moreover, L̂i ’s commute with each other and

e−tKn = 	⊗n
t .
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That is,Kn is a (strongly) σ⊗n-reversible Lindblad generator which generates the quan-
tum Markov semigroup

{
	⊗n

t : t ≥ 0
}
. Now we can ask how the (reverse) hypercon-

tractivity inequalities associated to 	t are related to those for 	⊗n
t . Equivalently, what

is the relation between the log-Sobolev constants αp(L) to αp(Kn)? In the commutative
(classical) case the answer is easy; αp(Kn) equals αp(L) for all n, and having a (reverse)
hypercontractivity inequality for 	t immediately gives one for 	⊗n

t . This is because in
the classical case operator norms are multiplicative, or because the entropy function
satisfies a certain subadditivity property (see e.g., [36]). The aforementioned property
that, in the classical case, αp(Kn) is independent of n, is usually called the tensorization
property.

Tensorization property of log-Sobolev constants of quantum Lindblad generators,
unlike its classical counterpart, is highly non-trivial. Thus proving (reverse) hyper-
contractivity inequalities that are independent of n is a difficult problem in the non-
commutative case. There are some attempts in this direction. Montanaro and Osborne in
[33] proved such hypercontractivity inequalities for the qubit depolarizing channel (see
also [26]). King [28] generalized this result for all unital qubit QMS. Cubitt et al. devel-
oped the theory of quantum reverse hypercontractivity inequalities in the unital case in
[14] and proved some tensorization-type results. Also, Cubitt et al. [49] developed some
techniques for proving bounds on log-Sobolev constants αp(Kn) that are independent of
n. Beigi and King [6] took the path of developing the theory of log-Sobolev inequalities
not for the usual q → p norm, but for the completely bounded norm. The point is that
completely bounded norms are automatically multiplicative [17], so there is no problem
of tensorization for the associated log-Sobolev constants. However, the existence of a
complete version of the LSI constant was disproved in [4].

In this section we prove two tensorization-type results, one for 1-log-Sobolev con-
stants which will be used for reverse hypercontractivity inequalities, and the other for
2-log-Sobolev constants which would be useful for hypercontractivity inequalities.

Theorem 19. Let σ1, . . . , σn be arbitrary positive definite density matrices. LetLi (X) =
X − tr(σi X)I be the simple generator associated to the state σi . Let

L̂i := I⊗(i−1) ⊗ Li ⊗ I⊗(n−i),

and define Kn by (33). Then we have α1(Kn) ≥ 1
4 , independently of n.

Remark 5. Observe that Theorem 19 does not show the tensorization of α1 for the depo-
larizing semigroup, but only proves a positive lower bound independent of n. Hence, the
tensorization of α1 is still an open problem.

Letting σi ’s to be equal in the above theorem, we obtain the promised tensorization-
type result for the 1-log-Sobolev constant.7

Proof. We need to show that for all X An ∈ P+(HAn ) we have

1

4
Ent1,σAn (X An ) ≤ E1,Kn (X An ),

where σAi = σi and

σAn = σ1 ⊗ · · · ⊗ σn .

7 Note that this result was independently obtained recently in [9] by introducing the notion of a conditional
log-Sobolev constant and finding a uniform lower bound on the latter. Moreover, a special case of the above
theorem corresponding to σ being the completely mixed state was proved in [38].
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Using parts (ii) of Proposition 4 and Proposition 8, without loss of generality we can
assume that X An = �−1

σAn (ρAn ) where ρAn ∈ D+(HAn ) is a density matrix. Then, using
parts (iv) of Proposition 4 and Proposition 8, we need to show that

D(ρAn ‖σAn ) ≤
n∑

i=1

tr
[
�σAn ◦ L̂i ◦ �−1

σAn (ρAn ) · ( log ρAn − log(σAn )
)]

. (34)

Observe that

�σAn ◦ L̂i ◦ �−1
σAn = I⊗(i−1) ⊗ (

�σi ◦ L ◦ �−1
σi

)⊗ I⊗(n−i) = I⊗(i−1) ⊗ L∗
i ⊗ I⊗(n−i),

with L∗
i (Y ) = Y − tr(Y )σi . Therefore,

�σAn ◦ L̂i ◦ �−1
σAn (ρAn ) = ρAn − ρA∼i ⊗ σAi ,

where A∼i = (A1, . . . , Ai−1, Ai+1, . . . , An) and ρA∼i = trAi (ρAn ) is the partial trace
of ρAn with respect to the i-th subsystem. Therefore, (34) is equivalent to

D(ρAn ‖σAn ) ≤
n∑

i=1

tr
[(

ρAn − ρA∼i ⊗ σAi

) · ( log ρAn − log(σAn )
)]

=
n∑

i=1

[
D(ρAn ‖σAn ) + D(ρA∼i ⊗ σAi ‖ρAn ) − D(ρA∼i ⊗ σAi ‖σAn )

]
.

Now since D(ρA∼i ⊗ σAi ‖ρAn ) ≥ 0, it suffices to show that

D(ρAn ‖σAn ) ≤
n∑

i=1

[
D(ρAn ‖σAn ) − D(ρA∼i ⊗ σAi ‖σAn )

]
. (35)

We note that D(ξB‖τB) = −H(B)ξ − tr(ξ log τ) where H(B)ξ = −tr(ξ log ξ) is the
von Neumann entropy. Moreover, log(ξ ⊗ τ) = log ξ ⊗ I + I ⊗ log τ . Therefore, (35)
is equivalent to

−H(An)ρ −
n∑

i=1

tr(ρAi log σi ) ≤
n∑

i=1

[
− H(An)ρ −

n∑
j=1

tr(ρA j log σ j )

+ H(A∼i )ρ +
∑
j �=i

tr(ρA j log σ j )
]

=
n∑

i=1

[− H(An)ρ − tr(ρAi log σi ) + H(A∼i )ρ
]

=
n∑

i=1

[− H(Ai |A∼i )ρ − tr(ρAi log σi )
]
.

This is equivalent to

H(An)ρ ≥
n∑

i=1

H(Ai |A∼i )ρ,
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which is an immediate consequence of the data processing inequality (i.e., H(B|C)ξ ≥
H(B|C D)ξ ) once we use the chain rule

H(An)ρ = H(A1)ρ +
n∑

i=2

H(Ai |A1, . . . , Ai−1)ρ.

This conclude the proof. ��
Remark 6. A similar proof was recently and independently obtained in [9]. Moreover,
the proof uses similar ideas to the proof of the tensorization property of the variant of
α2 for the completely bounded norm in [6].

We can now use Corollary 17 and the fact that the simple generator is strongly
reversible to conclude the following.

Corollary 20. Let σ1, . . . , σn be arbitrary positive definite density matrices. Let
Li (X) = X − tr(σi X)I be the simple generator associated to the generalized depo-
larizing channel 	t,i (X) = e−t X + (1− e−t )tr(σi X)I. Define σ (n) = σ1 ⊗· · ·⊗σn and

	
(n)
t = 	t,1 ⊗ · · · ⊗ 	t,n. Then for p ≤ q < 1 and t ≥ log p−1

q−1 we have
∥∥	(n)

t (X)
∥∥

p,σ (n) ≥ ‖X‖q,σ (n) , ∀n ≥ 1,

where X ∈ P+(H⊗n) is arbitrary.

We now state the second tensorization result which is about the 2-log-Sobolev con-
stant.

Theorem 21. Let dimH = 2 and L(X) = X − tr(σ X)I for some positive definite
density matrix σ ∈ D+(H). Then we have

α2(Kn) = α2(L), ∀n,

where Kn is defined in (33).

Our main tool to prove this theorem is the following entropic inequality that is of inde-
pendent interest and can be useful elsewhere.

Lemma 22. Let H and H′ be Hilbert spaces with dimH = 2. Let X ∈ P(H ⊗ H′) be
a positive semidefinite matrix with the block form

X =
(

A C
C† B

)
, (36)

where A, B, C ∈ B(H′). For a density matrix ρ ∈ D+(H′), the matrix M defined as

M =
( ‖A‖2,ρ ‖C‖2,ρ

‖C†‖2,ρ ‖B‖2,ρ
)

(37)

is positive semidefinite. Moreover, let σ ∈ D+(H) be a density matrix of the form

σ =
(

θ 0
0 1 − θ

)
, (38)

where θ ∈ (0, 1). Then we have

Ent2,σ⊗ρ(X) ≤ Ent2,σ (M) + θEnt2,ρ(A) + (1 − θ)Ent2,ρ(B)

+
√

θ(1 − θ) Ent2,ρ(I2,2(C)) +
√

θ(1 − θ) Ent2,ρ(I2,2(C
†)), (39)

where the map I2,2 is defined with respect to the state ρ.
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Proof. For any p ≥ 2 define

Mp :=
( ‖A‖p,ρ ‖C‖p,ρ

‖C†‖p,ρ ‖B‖p,ρ

)
,

so that M2 = M . Since X ≥ 0, both A and B are positive semidefinite. Moreover, we
have

�
1
p

I⊗ρ
(X) =

⎛
⎝ �

1
p
ρ (A) �

1
p
ρ (C)

�
1
p
ρ (C†) �

1
p
ρ (B)

⎞
⎠ ≥ 0.

As a result, according to Theorem IX.5.9 of [7] there exists a contraction R ∈ B(H′)

such that �
1
p
ρ (C) = (

�
1
p
ρ (A)

) 1
2 R
(
�

1
p
ρ (B)

) 1
2 . Therefore, by Hölder’s inequality we have

∥∥� 1
p
ρ (C)

∥∥
p = ∥∥(� 1

p
ρ (A)

) 1
2 R
(
�

1
p
ρ (B)

) 1
2
∥∥

p

≤ ∥∥(� 1
p
ρ (A)

) 1
2
∥∥
2p · ‖R‖∞ · ∥∥(� 1

p
ρ (B)

) 1
2
∥∥
2p

≤ ∥∥(� 1
p
ρ (A)

) 1
2
∥∥
2p · ∥∥(� 1

p
ρ (B)

) 1
2
∥∥
2p

= ∥∥� 1
p
ρ (A)

∥∥ 1
2
p · ∥∥� 1

p
ρ (B)

∥∥ 1
2
p .

Then using ‖Y‖p,ρ = ‖�1/p
ρ (Y )‖p, we find that

‖C‖p,ρ ≤ ‖A‖
1
2
p,ρ · ‖B‖

1
2
p,ρ,

and hence Mp ≥ 0. In particular, M2 = M ≥ 0 and Ent2,ρ(M) is well-defined.
Define ψ(p) := ‖Mp‖p,σ − ‖X‖p,σ⊗ρ . It is shown by King [27] that ψ(p) ≥ 0 for

all p ≥ 2. Indeed, this inequality is proven in [27] in the special case where σ and ρ are
the identity operators on the relevant spaces. Nevertheless, we have

‖X‖p,σ⊗ρ =
∥∥∥∥∥∥
⎛
⎝ θ

1
p �

1
p
ρ (A)

(
θ(1 − θ)

) 1
2p �

1
p
ρ (C)(

θ(1 − θ)
) 1
2p �

1
p
ρ (C†) (1 − θ)

1
p �

1
p
ρ (B)

⎞
⎠
∥∥∥∥∥∥

p

,

and

‖Mp‖p,σ =

∥∥∥∥∥∥∥

⎛
⎜⎝ θ

1
p ‖∥∥� 1

p
ρ (A)

∥∥
p

(
θ(1 − θ)

) 1
2p
∥∥� 1

p
ρ (C)

∥∥
p(

θ(1 − θ)
) 1
2p
∥∥� 1

p
ρ (C†)

∥∥
p (1 − θ)

1
p
∥∥� 1

p
ρ (B)

∥∥
p

⎞
⎟⎠
∥∥∥∥∥∥∥

p

.

Thus, King’s result holds for arbitrary ρ and diagonal σ as well, and we have ψ(p) ≥ 0
for all p ≥ 2. On the other hand, a straightforward computation verifies that ψ(2) = 0.
This means that ψ ′(2) ≥ 0, i.e.,

d

dp

(‖Mp‖p,σ − ‖X‖p,σ⊗ρ

)∣∣∣∣
p=2

≥ 0.



Quantum Reverse Hypercontractivity 777

The derivatives can be computed using Proposition 3. We have

d

dp
‖X‖p,σ⊗ρ

∣∣∣∣
p=2

= 1

4
‖X‖−1

2,σ⊗ρ · Ent2,σ⊗ρ(X), (40)

and

d

dp
‖Mp‖p,σ

∣∣∣∣
p=2

= 1

4
‖M‖−1

2,σ ·
(
Ent2,σ (M) + 4tr

[
�

1
2
σ (M ′

2) · �
1
2
σ (M)

])
,

where

M ′
2 = d

dp
Mp

∣∣∣∣
p=2

= 1

4

(
‖A‖−1

2,ρ · Ent2,ρ(A) w

w ‖B‖−1
2,ρ · Ent2,ρ(B)

)
,

and w = ‖C‖−1
2,ρ · ( 12Ent2,ρ(I2,2(C)

)
+ 1

2Ent2,ρ
(
I2,2(C†)

))
. We conclude that

d

dp
‖Mp‖p,σ

∣∣∣∣
p=2

= 1

4
‖M‖−1

2,σ ·
(
Ent2,σ (M) + θEnt2,ρ(A) + (1 − θ)Ent2,ρ(B)

+
√

θ(1 − θ)Ent2,ρ
(
I2,2(C)

)
+
√

θ(1 − θ)Ent2,ρ
(
I2,2(C

†)
))

.

Comparing to (40) and using ‖M‖2,σ = ‖X‖2,σ⊗ρ the desired inequality follows. ��
We need yet another lemma to prove Theorem 21.

Lemma 23. For any Lindblad generator K that is ρ-reversible for some positive definite
density matrix ρ we have

E2,K
(
I2,2(C)

)
+ E2,K

(
I2,2(C

†)
) ≤ 〈C,K(C)〉ρ + 〈C†,K(C†)〉ρ

for any C.

Proof. Define D := �
1
2
ρ (C). Then for j ∈ {0, 1}

Y j :=
( |D| (−1) j D†

(−1) j D |D†|
)

≥ 0,

is positive semidefinite [7]. Since �
−1/2
ρ is completely positive we have

Z j := I ⊗ �−1/2
ρ (Y j ) =

(
I2,2(C) (−1) j C†

(−1) j C I2,2(C†)

)
≥ 0.

On the other hand, �t = e−tK is completely positive. Therefore,

I ⊗ �t (Z0) =
(

�t (I2,2(C)) �t (C†)

�t (C) �t (I2,2(C†))

)
≥ 0,

is positive semidefinite. Putting these together we find that

g(t) := 〈Z1, I ⊗ �t (Z0)〉I⊗ρ ≥ 0, ∀t ≥ 0.
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We note that

g(t) = 〈
I2,2(C),�t (I2,2(C))

〉
ρ
+
〈
I2,2(C

†),�t (I2,2(C
†))
〉
ρ

− 〈
C, �t (C)

〉
ρ

− 〈
C†, �t (C

†)
〉
ρ
.

From this expression it is clear that

g(0) = ‖I2,2(C)‖22,ρ + ‖I2,2(C
†)‖22,ρ − ‖C‖22,ρ − ‖C†‖22,ρ = 0.

Therefore, we must have g′(0) ≥ 0 which is equivalent to the desired inequality. ��
Now we have all the required tools for proving Theorem 21. Indeed, we can prove a

stronger statement out of which Theorem 21 is implied by a simple induction.

Theorem 24. Let dimH = 2 and L(X) = X − tr(σ X)I for some positive definite
density matrix σ ∈ D+(H). Also let K be a Lindblad generator associated to a primitive
QMS that is reversible with respect to some positive definite state ρ ∈ D+(H′). Then we
have

α2(L ⊗ I ′ + I ⊗ K) = min{α2(L), α2(K)},
where I and I ′ denote the identity superoperators acting on B(H) and B(H′) respec-
tively.

Proof. Let α = min{α2(L), α2(K)}. By restricting X in the 2-log-Sobolev inequality
to be of the tensor product form and using

Ent2,σ⊗ρ(Y ⊗ Y ′) = Ent2,σ (Y ) + Ent2,ρ(Y ′),

we conclude that α2(L⊗ I + I ⊗K) ≤ α. To prove the inequality in the other direction
we need to show that for any X ∈ P(H ⊗ H′) we have

α Ent2,σ⊗ρ(X) ≤ E2,L⊗I ′+I⊗K(X). (41)

Assume, without loss of generality, that σ is diagonal of the form (38), and that X ∈
P(H ⊗ H′) has the block form (36). Define M by (37). Then by Lemma 22 we have

Ent2,σ⊗ρ(X) ≤ Ent2,σ (M) + θEnt2,ρ(A) + (1 − θ)Ent2,ρ(B)

+
√

θ(1 − θ)Ent2,ρ(I2,2(C)) +
√

θ(1 − θ)Ent2,ρ(I2,2(C
†)).

On the other hand by the definition of α we have

α Ent2,σ (M) ≤ E2,L(M),

and

α Ent2,ρ(Y ) ≤ E2,K(Y ),

for all Y ∈ {A, B, I2,2(C), I2,2(C†)
}
. Therefore, we have

α Ent2,σ⊗ρ(X) ≤ E2,L(M) + θE2,K(A) + (1 − θ)E2,K(B)

+
√

θ(1 − θ) E2,K(I2,2(C)) +
√

θ(1 − θ) E2,K(I2,2(C
†))

≤ E2,L(M) + θE2,K(A) + (1 − θ)E2,K(B)



Quantum Reverse Hypercontractivity 779

+
√

θ(1 − θ) 〈C,K(C)〉 +√θ(1 − θ) 〈C†,K(C†)〉, (42)

where in the second inequality we use Lemma 23. We now have

E2,L⊗I ′+I⊗K(X) = 〈X, (L ⊗ I ′ + I ⊗ K)(X)〉σ⊗ρ

= 〈X,L ⊗ I ′(X)〉σ⊗ρ +

〈 (
A C

C† B

)
,

(K(A) K(C)

K(C†) K(B)

) 〉
σ⊗ρ

.

We compute each term in the above sum separately.
〈
X, L⊗ I ′(X)

〉
2,σ⊗ρ

=
〈 (

A C
C† B

)
,

(
(1 − θ)(A − B) C

C† θ(B − A)

) 〉
2,σ⊗ρ

= θ(1 − θ)〈A, A − B〉ρ + θ(1 − θ)〈B, B − A〉ρ
+ 2
√

θ(1 − θ)〈C, C〉ρ
= θ(1 − θ)‖A‖22,ρ + θ(1 − θ)‖B‖22,ρ − 2θ(1 − θ)〈A, B〉ρ
+ 2
√

θ(1 − θ)‖C‖2,ρ
≥ θ(1 − θ)‖A‖22,ρ + θ(1 − θ)‖B‖22,ρ − 2θ(1 − θ)‖A‖2,ρ · ‖B‖2,ρ
+ 2
√

θ(1 − θ)‖C‖2,ρ
= 〈M,L(M)〉σ
= E2,L(M).

For the second term we compute

〈 (
A C

C† B

)
,

(K(A) K(C)

K(C†) K(B)

) 〉
σ⊗ρ

= θ〈A, K(A)〉ρ + (1 − θ)〈B,K(B)〉ρ
+
√

θ(1 − θ)〈C,K(C)〉ρ +
√

θ(1 − θ)〈C†,K(C†)〉ρ
= θE2,K(A) + (1 − θ)E2,K(B)

+
√

θ(1 − θ)〈C,K(C)〉 +√θ(1 − θ)〈C†,K(C†)〉.
Therefore, we have

E2,L⊗I ′+I⊗K(X) ≥ E2,L(M) + θE2,K(A) + (1 − θ)E2,K(B)

+
√

θ(1 − θ)〈C,K(C)〉 +√θ(1 − θ)〈C†,K(C†)〉.
Comparing this to (42) we arrive at the desired inequality (41). ��

We now give the exact expression of the 2-log-Sobolev constant of the simple Lind-
blad generator (in any dimension). We recall that the case of the 1-log-Sobolev constant
was found in [38] (see also [26] when σ = I/d). The proof in our general setting
is similar to the one of [38]. We however provide it in Appendix C for the sake of
completeness.
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Theorem 25. Let σ ∈ D+(H) be arbitrary and let L(X) = X − tr(σ X)I be the simple
Lindblad generator. Then we have

α2(L) = 1 − 2smin(σ )

log
(
1/smin(σ ) − 1

) , (43)

where smin(σ ) is the minimum eigenvalue of σ .

We can now derive a tensorization-type result for a wide class of Lindblad generators.
Let L be a σ -reversible and primitive Lindblad generator. Recall that the spectral gap
of L is defined by

λ(L) = inf
X

E2,L(X)

Varσ (X)
,

where Varσ (X) = 〈X, X〉σ − 〈X, I〉2σ = ‖X‖22,σ − 〈X, I〉2σ , see e.g. [26]. Observe that
Varσ (X) is the squared length of the projection of X onto the subspace orthogonal to
I ∈ B(H) with respect to the inner product 〈·, ·〉σ . On the other hand, I is the sole8

0-eigenvector of L up to a phase which is self-adjoint with respect to this inner product.
Therefore,λ(L) is theminimumnon-zero eigenvalue ofL. Note that, sinceL has positive
spectral gap, the Dirichlet form E2,L is non-negative, so λ(L) > 0. Indeed, λ(L) is really
the spectral gap of L above the zero eigenvalue.

The spectral gap satisfies the tensorization property, as shown below. Observe that

Kn =
n∑

i=1

L̂i ,

is a sum of mutually commuting operators. Then the eigenvalues of Kn are summations
of eigenvalues of individual L̂i ’s. Since each L̂i is a tensor product of L with some
identity superoperator, the set of its eigenvalues is the same as that of L. Using these we
conclude that

λ(Kn) = λ(L), ∀n. (44)

It is well-known that λ(L) ≥ α2(L) [10,26]. The following corollary gives a lower
bound on α2(L) in terms of λ(L).

Corollary 26. Let dimH = 2 and σ ∈ D+(H). For any σ -reversible primitive Lindblad
generator L we have

α2(Kn) ≥ 1 − 2smin(σ )

log
(
1/smin(σ ) − 1

)λ(L),

where smin(σ ) denotes the minimal eigenvalue of σ .

This corollary is a non-commutative version of CorollaryA.4 of [18] and gives a stronger
bound compared to Corollary 6 of [49]. It would be interesting to compare this corollary
with the result of King [28] who generalized the hypercontractivity inequalities of [33]
for the unital qubit depolarizing channel to all unital qubit quantumMarkov semigroups.
Here, having a bound on the 2-log-Sobolev constant of the σ -reversible generalized qubit
depolarizing channel (and its tensorization property), we derive a bound on the 2-log-
Sobolev constant of all qubit σ -reversible QMS.

8 This 0-eigenvector is unique since L is assumed to be primitive.
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Proof of Corollary 26. LetL′ be the simple Lindblad generator that is σ -reversible, and
let X ∈ P(H⊗n) be arbitrary. Then by Theorems 21 and 25 we have

1 − 2smin(σ )

log
(
1/smin(σ ) − 1

) Ent2,σ⊗n ≤
n∑

i=1

〈
X, L̂′

i (X)
〉
σ⊗n . (45)

LetWi ⊂ B(H⊗n) be the subspace spanned by operators of the form A1 ⊗ · · · ⊗ An ∈
B(H⊗n) with Ai = I ∈ B(H). In other words, Wi = ker(L̂′

i ). Then
〈
X, L̂′

i (X)
〉
σ⊗n

equals the squared length of the projection of X onto W⊥
i . On the other hand, since L

is primitive and σ -reversible, we also haveWi = ker L̂i andW⊥
i is invariant under L̂i .

Moreover, by definition λ(L̂i ) is the minimum eigenvalue of L̂i restricted to W⊥
i (i.e.,

the minimum non-zero eigenvalue). We conclude that

λ(L̂i )
〈
X, L̂′

i (X)
〉
σ⊗n ≤ 〈

X, L̂i (X)
〉
σ⊗n .

On the other hand since L̂i equals the tensor product of L with some identity superop-
erators, λ(L̂i ) = λ(L). Therefore,

λ(L)
〈
X, L̂′

i (X)
〉
σ⊗n ≤ 〈

X, L̂i (X)
〉
σ⊗n .

Using this in (45) we arrive at

λ(L)
1 − 2smin(σ )

log
(
1/smin(σ ) − 1

) Ent2,σ⊗n ≤
n∑

i=1

〈
X, L̂i (X)

〉
σ⊗n = 〈X,Kn(X)〉σ⊗n .

This gives the desired bound on α2(Kn). ��
Corollary 27. Let dimH = 2 and σ ∈ D+(H). Let L be a σ -reversible primitive
Lindblad generator. Then for any 1 ≤ q ≤ p and t ≥ 0 satisfying

t ≥ log
(
1/smin(σ ) − 1

)
4λ(L)

(
1 − 2smin(σ )

) log p − 1

q − 1
,

we have ‖	⊗n
t (X)‖p,σ ≤ ‖X‖q,σ for all X > 0.

5. Application: Second-Order Converses

One of the primary goals of information theory is to find optimal rates of information-
theoretic tasks. For instance, for the task of information transmission over a noisy chan-
nel, this optimal rate is the capacity. The latter is said to satisfy the strong converse
property if any attempt to transmit information at a rate higher than it fails with cer-
tainty in the limit of infinitely many uses of the channel. In this section, we show how
reverse hypercontractivity inequalities can be used to derive finite sample size strong
converse bounds in the tasks of asymmetric quantum hypothesis testing and classical
communication through a classical-quantum channel.
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5.1. Quantum Hypothesis Testing. Binary quantum hypothesis testing concerns the
problem of discriminating between two different quantum states, and is essential for
various quantum information-processing protocols. Suppose that a party, Bob, receives
a quantum system, with the knowledge that it is prepared either in the state ρ (the null
hypothesis) or in the state σ (the alternative hypothesis) over a finite-dimensional Hilbert
spaceH. His aim is to infer which hypothesis is true, i.e., which state the system is in. To
do so he performs a measurement on the system that he receives. This is most generally
described by a POVM {T, I − T } where 0 ≤ T ≤ I; When the measurement outcome
is T he infers that the state is ρ, and otherwise it is σ . Adopting the nomenclature from
classical hypothesis testing, we refer to T as a test. The probability that Bob correctly
guesses the state to be ρ is then equal to tr(Tρ), whereas his probability of correctly
guessing the state to be σ is tr((I − T )σ ). Bob can erroneously infer the state to be σ

when it is actually ρ or vice versa. The corresponding error probabilities are referred to
as the Type I error and Type II error, respectively, and are given as follows:

α(T ) := tr((I − T )ρ), β(T ) := tr(T σ).

Correspondingly, if multiple (say, n) identical copies of the system are available, and a
test Tn ∈ B(H⊗n) is performed on the n copies, then the Type I and Type II errors are
given by

αn(Tn) := tr((In − Tn)ρ
⊗n), βn(Tn) := tr(Tnσ⊗n),

where In denotes the identity operator in B(H⊗n). There is a trade-off between the two
error probabilities and there are various ways to optimize them. In the setting of asym-
metric quantum hypothesis testing, one minimizes the Type II error under the constraint
that the Type I error stays below a threshold value ε ∈ (0, 1). In this case one is interested
in the following quantity

βn,ε := min{βn(Tn) : αn(Tn) ≤ ε, 0 ≤ Tn ≤ In}, (46)

where the infimum is taken over all possible tests Tn ∈ B(H⊗n). The quantum Stein
lemma [23,42] states that

lim
n→∞

(
−1

n
logβn,ε

)
= D(ρ||σ) ∀ε ∈ (0, 1).

The asymptotic strong converse rate Rsc of the above quantum hypothesis testing
problem is defined to be the smallest number R such that if

lim sup
n→∞

1

n
logβn(Tn) ≤ −R,

for some sequence of tests {Tn}n∈N, then

lim
n→∞ αn(Tn) = 1.

This quantity has been shown to be equal to Stein’s exponent D(ρ||σ). In this section we
are interested in obtaining a bound on the rate of convergence ofαn(Tn)as a function of n,
that is when Bob receives a finite number of identical copies of the quantum system. We
use reverse hypercontractivity in order to obtain our bound. Before stating and proving
the main theorem of this section, we recall the following important inequality that will
be used in the proof.
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Lemma 28 (Araki–Lieb–Thirring inequality [2,29]) For any A, B ∈ P(H), and r ∈
[0, 1],

tr(Br/2Ar Br/2) ≤ tr(B1/2AB1/2)r .

Our main result, from which a bound for the finite blocklength strong converse rate
follows directly as a corollary, is given by Theorem 29.

Theorem 29. Let ρ, σ ∈ D+(H) being faithful density matrices.9 Then for any test
0 ≤ Tn ≤ In, where Tn ∈ B(H⊗n)

log tr(σ⊗nTn) ≥ −nD(ρ‖σ) − 2

√
n‖σ−1/2ρσ−1/2‖∞ log

1

tr(ρ⊗nTn)
+ log tr(ρ⊗nTn).

(47)

Proof. The result follows by combining Theorem 19 and Lemma 1. For simplicity of
notation we will use σn := σ⊗n and ρn := ρ⊗n . Let 0 ≤ p, q ≤ 1 and let t ≥ 0 be such
that

(1 − p)(1 − q) = e−t . (48)

Let L denote the generator of a generalized depolarizing semigroup {	t : t ≥ 0} with
invariant state ρ, i.e., 	t (X) = e−t X + (1 − e−t )tr(ρX)I. By Theorem 19 the 1-log-
Sobolev constants of this QMS and its tensor powers are lower bounded by 1/4. Then
using Lemma 18 for Y = Tn and X = �−1

ρn
(σn) we obtain

tr
(
σn	⊗n

t (Tn)
) ≥ ∥∥�−1

ρn
(σn)

∥∥
p,ρn

‖Tn‖q,ρn . (49)

An application of the Araki–Lieb–Thirring inequality, Lemma 28, with A = σn , B =
ρ

(1−p)/p
n and r = p ∈ [0, 1] leads to

∥∥�−1
ρn

(σn)
∥∥

p,ρn
=
[
tr
(
ρ

(1−p)/2p
n σnρ

(1−p)/2p
n

)p]1/p ≥
[
tr
(
ρ
1−p
n σ

p
n
)]1/p

= exp
(−D1−p(ρn‖σn)

)
,

where

D1−p(ρ‖σ) := −1

p
log tr

(
σ p ρ1−p

)
,

denotes the sandwiched p-Rényi divergence between ρ and σ . A very similar application
of Lemma 28 for A = Tn and B = ρ

1/q
n and r = q ∈ [0, 1] yields

‖Tn‖q,ρn =
[
tr
(
ρ
1/2q
n Tnρ

1/2q
n

)q]1/q ≥ [
tr
(
ρnT q

n
)]1/q ≥ [

tr
(
ρnTn

)]1/q
,

where in the last inequality, we used that 0 ≤ Tn ≤ I, so that T q
n ≥ Tn . Using the last

two bounds in (49), we get

tr(σn	⊗n
t (Tn)) ≥ [tr(ρnTn)]

1/q exp
(−D1−p(ρn‖σn)

)
.

9 What we really need is that the supports of ρ and σ being the same (and not being the wholeH) since in
this case we may restrict everything to this support.
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Taking the limit p → 0 (and q → 1− e−t ) on both sides of the above inequality yields

tr(σn	⊗n
t (Tn)) ≥ [tr(ρnTn)]1/(1−e−t ) exp (−D(ρn‖σn)) . (50)

Let γ := ‖σ−1/2ρσ−1/2‖∞ and define the superoperator �t by

�t (X) = e−t X + γ (1 − e−t )tr(σ X) I.

Then by induction on n it can be shown that �⊗n
t − 	⊗n

t is a completely positive
superoperator. This is clear from definitions for n = 1, and for every Y ∈ P(H⊗n ⊗H′),
where H′ is an arbitrary Hilbert space, we have

�⊗n
t ⊗ I(Y ) = (

�⊗(n−1) ⊗ I ⊗ I)(I⊗(n−1) ⊗ �t ⊗ I(Y )
)

≥ (
	⊗(n−1) ⊗ I ⊗ I)(I⊗(n−1) ⊗ �t ⊗ I(Y )

)
= (I⊗(n−1) ⊗ �t ⊗ I)(	⊗(n−1) ⊗ I ⊗ I(Y )

)
≥ (I⊗(n−1) ⊗ 	t ⊗ I)(	⊗(n−1) ⊗ I ⊗ I(Y )

)
= 	⊗n

t ⊗ I(Y ),

where in the inequalities come from the induction hypothesis and the base of induction.
Therefore,�⊗n

t −	⊗n
t is a completely positive.On the other hand, for everyY ∈ B(H⊗n)

we have

tr
(
σn�⊗n

t (Y )
) = (

e−t + γ (1 − e−t )
)n tr(σnY ).

This equation is immediate for n = 1, and for arbitrary n can be proven by first observing
that it holds forY = Y1⊗· · ·⊗Yn being of a tensor product form, and then using linearity.
Putting these together we arrive at

tr
(
σn	⊗n

t (Tn)
) ≤ tr

(
σn�⊗n

t (Tn)
)

= (
e−t + γ (1 − e−t )

)n tr(σnTn).

Next using the fact that γ ≥ 1 (which follows simply by taking the trace of the operator
inequality ρ ≤ γ σ ), the convexity of h(x) = xγ implies (h(x)− h(1))/(x −1) ≥ h′(1)
for every x ≥ 1. Therefore, eγ t −1 ≥ γ (et −1) for every t ≥ 0, and e−t +γ (1− e−t ) ≤
e(γ−1)t . As a result

tr
(
σn	⊗n

t (Tn)
) ≤ e(γ−1)nt tr(σnTn). (51)

Then from (50) and (51) we get

[tr(ρnTn)]1/(1−e−t ) exp (−D(ρn‖σn)) ≤ e(γ−1)nt tr(σnTn).

Taking the logarithm of both sides yields

log tr(σnTn) ≥ −D(ρn‖σn) − (γ − 1)nt +
1

1 − e−t
log tr(ρnTn)

≥ −D(ρn‖σn) − γ nt +

(
1 +

1

t

)
log tr(ρnTn), (52)
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where the second inequality follows from et ≥ 1 + t and

1

1 − e−t
= 1 +

1

et − 1
≤ 1 +

1

t
.

Optimizing (52) over the choice of t yields

t =
(− log tr(ρnTn)

γ n

)1/2

,

and we obtain the desired inequality

log tr(σnTn) ≥ −nD(ρ‖σ) − 2
√−γ n log tr(ρnTn) + log tr(ρnTn).

��
Remark 7. The bound found by the present reverse hypercontractivity technique is
weaker than the one found in Equation (75) of [34], which is in particular tight as
n → ∞. However, as opposed to [34], the techniques developed in this paper have the
particular advantage that they can be generalized to obtain strong converses in various
problems of quantum network information theory (see [12,13]).

Corollary 30 (Finite-blocklength strong converse bound for quantum hypothesis test-
ing). Let ρ, σ ∈ D+(H) and γ = ‖ρσ−1‖∞. Then for any test 0 ≤ Tn ≤ In,
where Tn ∈ B(H⊗n), if the Type II error satisfies the inequality βn(Tn) ≤ e−nr for
r > D(ρ||σ), then the Type I error satisfies

αn(Tn) ≥ 1 − e−n f , (53)

where

f =
(√

γ + (r − D(ρ||σ)) − √
γ
)2

,

and hence tends to zero in the limit of r → D(ρ||σ).

Proof. Fix r > D(ρ‖σ) and consider a sequence of tests Tn such that βn(Tn) ≤ e−nr .
Then, from Theorem 29 we have

−nr ≥ −nD(ρ||σ) − 2

√
nγ log

1

1 − αn(Tn)
− log

1

1 − αn(Tn)
.

Defining x2n := log 1
1−αn(Tn)

this is equivalent to

x2n + 2
√

nγ xn − n (r − D(ρ||σ)) ≥ 0,

solving which directly leads to the statement of the corollary. ��
Theorem 29 also leads to the following finite blocklength second order lower bound

on the Type II error when the Type I error is less than a threshold value.

Corollary 31. Let ρ, σ ∈ D+(H) . Then for any n ∈ N and ε > 0 the minimal Type II
error satisfies

βn,ε ≥ (1 − ε) exp

(
−nD(ρ||σ) − 2

√
nγ log

(
1

1 − ε

))
,

where γ = ‖ρσ−1‖∞.
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m E(n) W⊗n
xn ∈ Xn

Πn := {Πn
m }m ∈M

ρxn = ρx1 ⊗ ... ⊗ ρxn

m̂ ∈ M

Fig. 1. Encoding and decoding of a classical message sent over a c-q channel. E(n) is the encoding map, and
�n is the POVM constituting the decoding map

5.2. Classical-Quantum Channels. The strong converse property of the capacity of a
classical-quantum (c-q) channel was proved independently in [41,53]. In this section,
we use the quantum reverse hypercontractivity inequality to obtain a finite blocklength
strong converse bound for transmission of information through classical-quantum (c-q)
channels. Suppose Alice wants to send classical messages belonging to a finite set M
to Bob, using a memoryless c-q channel:

W : X → D(HB),

where X denotes a finite alphabet, and HB is a finite-dimensional Hilbert space with
dimension d. Thus the output of the channel under input x ∈ X is some quantum state
ρx = W(x) ∈ D(HB). To send a message m ∈ M, Alice encodes it in a codeword

E (n)(m) = xn(m) ≡ xn := (x1, x2, . . . xn) ∈ X n,

where E (n) denotes the encoding map. She then sends it to Bob through n successive
uses of the channel W⊗n , whose action on the codeword xn is given by

W⊗n(xn) = ρx1 ⊗ · · · ⊗ ρxn ≡ ρxn .

In order to infer Alice’s message, Bob applies a measurement, described by a POVM
�n := {�n

m′ }m′∈M on the state W⊗n(xn) = ρxn that he receives. The outcome of the
measurement would be Bob’s guess of Alice’s message. See Fig. 1.

The triple (|M|, E (n),�n) defines a code which we denote as Cn (see [51]). The rate
of the code is given by log |M|/n, and its maximum probability of error is given by

pmax(Cn;W) := max
m∈M

[
1 − tr

(
�n

m W⊗n ◦ E (n)(m)
)]

.

We let Cn,ε(W) be the maximum rate log |M|/n over all codes Cn = (|M|, E (n),�n)

with pmax(Cn;W) ≤ ε. Then the (asymptotic) capacity of the channel is defined by

C(W) := lim
ε→0

lim inf
n→∞ Cn,ε(W).

For c-q channels, this is known to be given by [24,46]

C(W) = max
PX

I (X; B)ρ.

Here the maximum is taken over all probability distributions PX onX , the bipartite state
ρX B is given by

ρX B =
∑
x∈X

PX (x)|x〉〈x | ⊗ ρx ,

and I (X; B)ρ = D(ρX B‖ρX ⊗ ρB) is the mutual information function. The fact that
the capacity is given by maximummutual information is indeed implied by its additivity
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[47]. That is, the maximum mutual information associated to the channel W⊗n equals
n times the maximum mutual information ofW:

max
PXn

I (Xn; Bn) = n max
PX

I (X; B) = nC(W). (54)

Theorem 32. Let W : X → D(HB) be a c-q channel with W(x) = ρx being faithful
for all x ∈ X . Then, for any code Cn := (|M|, E (n),�n) with pmax(Cn;W) ≤ ε we
have

I (Xn; Bn) ≥ log |M| − 2

√
dn log

1

1 − ε
− log

1

1 − ε
,

where d = dimHB and the mutual information is computed with respect to the state

ρXn Bn = 1

|M|
∑

m

|xn(m)〉〈xn(m)| ⊗ ρxn(m).

This theorem together with the additivity result (54) directly imply that for any code
of rate larger than C(W), the maximum probability of error goes to one, as n → ∞.

Proof. For every xn = (x1, . . . , xn) ∈ X n let 	t,xn = 	t,x1 ⊗ · · · ⊗ 	t,xn with

	t,x (X) = e−t X + (1 − e−t )tr(ρx X)I.

Then following similar steps as in the proof of Theorem 29, using Theorem 19, Lemma
18 and the Araki–Lieb–Thirring inequality, for every �n

m we have

tr
(
ρBn 	t,xn (�n

m)
) ≥ [

tr
(
ρxn �n

m

)]1/(1−e−t )e−D(ρxn ‖ρBn ).

Letting xn = xn(m), using tr
(
ρxn(m)�

n
m

) ≥ 1 − ε, taking logarithm of both sides and
averaging over the choice of m ∈ M we obtain

1

|M|
∑

m∈M
log tr

(
ρBn 	t,xn(m)(�

n
m)
) ≥ − 1

|M|
∑

m∈M
D(ρxn(m)‖ρBn ) +

1

1 − e−t
log(1 − ε)

= −I (Xn; Bn) +
1

1 − e−t
log(1 − ε)

≥ −I (Xn; Bn) +
(
1 +

1

t

)
log(1 − ε).

Now define �t (X) = e−t X + (1− e−t )tr(X)I. Following similar steps as in the proof of
Theorem 29, using ρx ≤ I it can be shown that �⊗n

t − 	t,xn(m) is completely positive.
Therefore, 	t,xn(m)(�

n
m) ≤ �⊗n

t (�n
m) and we have

−I (Xn; Bn) +
(
1 +

1

t

)
log(1 − ε) ≤ 1

|M|
∑

m

log tr
(
ρBn �⊗n

t (�n
m)
)

≤ log
( 1

|M|
∑

m

tr
(
ρBn �⊗n

t (�n
m)
)

= log
( 1

|M| tr
(
ρBn �⊗n

t (I⊗n
B )

))
,
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where the second line follows from the concavity of the logarithm function and in the
third line we use the fact that {�n

m : m ∈ M} is a POVM. On the other hand,

�⊗n
t (I⊗n

B ) = (
e−t + (1 − e−t )d

)n
I
⊗n
B ≤ e(d−1)nt

I
⊗n
B .

Therefore,

−I (Xn; Bn) +
(
1 +

1

t

)
log(1 − ε) ≤ − log |M| + dnt.

Optimizing over the choice of t > 0, the desired result follows. ��
The above theorem leads to the following finite blocklength second order strong

converse bound for the classical capacity of a c-q channel.

Corollary 33. For any sequence of codes Cn := (|M|, E (n),�n) of rates r := |M|
n >

C(W),

pmax(Cn;W) ≥ 1 − e−n f ,

where f := (√
d + (r − C(W)) − √

d
)2

.

Proof. We apply the bound found in Theorem 32, so that

nC(W) ≥ log |M| − 2

√
dn log

1

1 − ε
− log

1

1 − ε
.

The result follows by an analysis similar to the one of Corollary 30. ��
Remark 8. As pointed out in Remark 7, the strong converse bound that we find here is
weaker than the one of [35]. However, and as opposed to [35], our technique has recently
been successfully applied to network information theoretical scenarios (see [12,13]).
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Appendix

A. Proof of Proposition 7

(i) Asmentioned in [16] (and explicitly worked out in [5]) for p ≥ 1, contractivity can be
proven using the Riesz–Thorin interpolation theorem. So we focus on p ∈ (−∞,−1] ∪
[1/2, 1). First let p = −q ∈ (−∞,−1], and X > 0. We note that

‖	t (X)‖p,σ = ‖	t (X)−1‖−1
q,σ .

On the other hand, 	t is completely positive and unital, and z �→ z−1 is operator
convex. Therefore, by operator Jensen’s inequality 	t (X−1) ≥ 	t (X)−1 and by the
monotonicity of the norm we have ‖	t (X)−1‖q,σ ≤ ‖	t (X−1)‖q,σ . We conclude that

‖	t (X)‖p,σ ≥ ‖	t (X−1)‖−1
q,σ ≥ ‖X−1‖−1

q,σ = ‖X‖p,σ ,
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where for the second inequality we use q-contractivity of 	t for q ≥ 1.
Now suppose that p ∈ [1/2, 1). We note that its Hölder conjugate p̂ ∈ (−∞,−1], and
that 	t is reverse p̂-contractive. Then using Hölder’s duality, for X > 0 we have

‖	t (X)‖p = inf
Y>0:‖Y‖ p̂,σ ≥1

〈Y,	t (X)〉σ
= inf

Y>0:‖Y‖ p̂,σ ≥1
〈	̂t (Y ), X〉σ

≥ inf
Z>0:‖Z‖ p̂,σ ≥1

〈Z , X〉σ
= ‖X‖p,σ ,

where 	̂t is the adjoint of	t with respect to 〈., .〉σ , for each t ≥ 0. Here the first equality
follows from Lemma 6, and the inequality follows from the p̂-contractivity of 	t , i.e,
‖	t (Y )‖ p̂,σ ≥ ‖Y‖ p̂,σ ≥ 1.

(ii) As worked out in [14] this is an immediate consequence of the operator Jensen
inequality.

B. Second Proof of Theorem 14

The proof is very similar to the one used in [3] to prove the strong L p-regularity of the
Dirichlet forms. Before stating the proof we need some definitions.

For a compact set I we let C(I ) to be the Banach space of continuous, complex
valued functions on I (equipped with the supremum norm). Then the Banach space
C(I × I ) becomes a ∗-algebra when endowed with the natural involution f �→ f ∗ with
f ∗(x, y) = f (x, y). Thus C(I × I ) is a C∗-algebra.
We endow B(H) with a Hilbert space structure by equipping it with the Hilbert–

Schmidt inner product:

〈X, Y 〉HS := tr(X†Y ).

Fix X, Y ∈ Bsa(H), and let I be a compact interval containing the spectrum of both
X and Y . We define a ∗-representation πX,Y : C(I × I ) → B(B(H)

)
that is uniquely

determined by its action on tensor products of functions as follows. For f, g ∈ C(I ) we
define πX,Y ( f ⊗ g) ∈ B(B(H)

)
by

πX,Y ( f ⊗ g)(Z) = f (X)Zg(Y ), Z ∈ B(H).

The following lemma can be found in [3] (see Lemma 4.2):

Lemma 34. πXY is a ∗-representation between C∗-algebras. That is,

(i) πXY (1) = I, where 1 is the constant function on I × I equal to 1.
(ii) πXY ( f ∗g) = πXY ( f )∗πXY (g) for all f, g ∈ C(I × I ).
(iii) If f ∈ C(I × I ), is a non-negative function, then πXY ( f ) is a positive semi-definite

operator onB(H) for the Hilbert–Schmidt inner product, i.e., πX,Y ( f ) ∈ P(B(H)
)
.

Now, for any function f ∈ C(I ), define f̃ to be the function in C(I × I ) defined by

f̃ (s, t) =
⎧⎨
⎩

f (s) − f (t)

s − t
s �= t

f ′(s) s = t.
(55)

The following lemma, proved in [3] (see Lemma 4.2), gives a generalization of the chain
rule formula to a derivation.
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Lemma 35. Let X, Y ∈ Bsa(H) and let I be a compact interval containing the spectrums
of X, Y . Let f ∈ C(I ) be a continuously differentiable function such that f (0) = 0.
Then for all V ∈ B(H) we have

V f (Y ) − f (X)V = πXY ( f̃ )(V Y − X V ),

where f̃ is defined by (55).

We can now prove the theorem. By the result of [11] (an extension of Lemma 13),
there are superoperators ∂ j : B(H) → B(H) of the form

∂ j (X) = [Vj , X ] = Vj X − X Vj ,

where Vj ∈ B(H), such that

〈X,L(Y )〉σ =
∑

j

〈∂ j X, ∂ j Y 〉σ . (56)

Moreover, Vj ’s are such that there are ω j ≥ 0 with

σ Vj = ω j V jσ.

Using the above equation one can show [3] that

∂ j
(
Iq,p(X)

) = �
− 1

q
σ

(
Vj

(
�

1
p
σ

(
ω

− 1
2p

j X
)) p

q −
(
�

1
p
σ

(
ω

1
2p
j X

)) p
q

Vj

)
. (57)

For arbitrary X > 0 define Y j := ω
−1/4
j �

1
2
σ (X) and Z j := ω

1/4
j �

1
2
σ (X). Using (57) we

compute

Eq,L
(
Iq,2(X)

) = qq̂

4

〈
Iq̂,q

(
Iq,2(X)

)
,L(Iq,2(X)

)〉
σ

= qq̂

4

〈
Iq̂,2(X),L(Iq,2(X)

)〉
σ

= qq̂

4

∑
j

〈∂ j Iq̂,2(X), ∂ j Iq,2(X)〉σ (58)

= qq̂

4

∑
j

〈
�

− 1
q̂

σ

(
Vj Y j

2/q̂ − Z2/q̂
j V j

)
, �

− 1
q

(
Vj Y

2/q
j − Z2/q

j Vj

)〉
σ

(59)

= qq̂

4

∑
j

〈
Vj Y j

2/q̂ − Z2/q̂
j V j , Vj Y

2/q
j − Z2/q

j Vj

〉
HS

= qq̂

4

∑
j

〈
πZ j ,Y j

(
f̃2/q̂

)
(Vj Y j − Z j Vj ), πZ j ,Y j

(
f̃2/q

)
(Vj Y j − Z j Vj )

〉
HS

(60)

= qq̂

4

∑
j

〈
Vj Y j − Z j Vj , πZ j ,Y j

(
f̃2/q̂

)∗
πZ j ,Y j

(
f̃2/q

)
(Vj Y j − Z j Vj )

〉
HS

= qq̂

4

∑
j

〈
Vj Y j − Z j Vj , πZ j ,Y j

(
f̃ ∗
2/q̂ f̃2/q

)
(Vj Y j − Z j Vj )

〉
HS

, (61)
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where in (58) we used (56), in (59) we used (57), and in (60) we used the chain rule
formula of Lemma 35 for the functions fα with fα(x) = xα . Finally, in (61) we used
part (ii) of Lemma 34.

Now, using the proofs of Theorem 2.1 and Lemma 2.4 of [36], for any x, y ≥ 0 and
0 ≤ p ≤ q ≤ 2 we have

qq̂(x1/q̂ − y1/q̂)(x1/q − y1/q) ≤ p p̂(x1/ p̂ − y1/ p̂)(x1/p − y1/p). (62)

This means that for all x, y we have

qq̂
(

f̃ ∗
2/q̂ f̃2/q

)
(x, y) ≤ p p̂

(
f̃ ∗
2/ p̂ f̃2/p

)
(x, y).

Hence, by part (iii) of Lemma 34 we have

Eq,L(Iq,2(X)) ≤ p p̂

4

∑
j

〈
Vj Y j − Z j Vj , πZ j ,Y j ( f̃ ∗

2/ p̂ f̃2/p)(Vj Y j − Z j Vj )
〉
HS

= Ep,L(Ip,2(X)).

Remark 9. The difference with the proof of L p-regularity of [3] lies in the choice of the
inequality (62) used at the end of the proof.

C. Proof of Theorem 25

Since both Ent2,σ (X) and E2,L(X) are homogenous of degree two in X , to prove a
log-Sobolev inequality, without loss of generality we can assume that X is of the form
X = �

−1/2
σ (

√
ρ) where ρ is a density matrix. In this case

Ent2,σ (X) = D(ρ‖σ), 〈X,LX〉σ = 1 − [
tr
(√

σ
√

ρ
)]2

.

Let σ = ∑d
i=1 si |i〉〈i | and ρ = ∑d

k=1 rk |k̃〉〈k̃| be the eigen-decompositions of σ and ρ.
Then

Ent2,σ (X) =
d∑

k=1

rk log rk −
d∑

i,k=1

|〈i |k̃〉|2rk log si ,

and

〈X,LX〉σ = 1 −
( d∑

i,k=1

|〈i |k̃〉|2√sirk

)2
.

Let A = (aik)d×d be a d × d matrix whose entries are given by

aik = |〈i |k̃〉|2.
Observe that, fixing the eigenvalues si ’s and rk’s, the entropy Ent2,σ (X) is a linear
function of A and E2,L(X) is concave function of A. On the other hand, since both
{|1〉, . . . , |d〉} and {|1̃〉, . . . , |d̃〉} formorthonormal bases, A is a doubly stochasticmatrix.
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Then by Birkhoff’s theorem, A can be written as a convex combination of permutations
matrices. We conclude that if an inequality of the form

β
( d∑

k=1

rk log rk −
d∑

i,k=1

aikrk log si

)
≤ 1 −

( d∑
i,k=1

aik
√

sirk

)2
,

holds for all permutation matrices A, then it holds for all doubly stochastic A, and then
for all σ, ρ with the given eigenvalues. We note that A is a permutation matrix when
{|1〉, . . . , |d〉} and {|1̃〉, . . . , |d̃〉} are the same bases (up to some permutation) which
means that σ and ρ commute. Therefore, a log-Sobolev inequality of the form

βEnt2,σ
(
�−1/2

σ (ρ)
) ≤ E2,L

(
�−1/2

σ (ρ)
)
,

holds for all ρ if and only if it holds for all ρ that commute with σ . That is, to find the
log-Sobolev constant

α2(L) = inf
ρ

E2,L
(
�

−1/2
σ (ρ)

)
Ent2,σ

(
�

−1/2
σ (ρ)

) ,
we may restrict to those ρ that commute with σ . This optimization problem over such ρ

is equivalent to computing the 2-log-Sobolev constant of the classical simple Lindblad
generator, and has been solved in Theorem A.1 of [18]. ��
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