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Abstract: In this paper we solve a long standing open problem for RandomSchrödinger
operators on L2(Rd) with i.i.d single site random potentials. We allow a large class of
free operators, includingmagnetic potential, however ourmethod of proofworks only for
the case when the random potentials satisfy a complete covering condition. We require
that the supports of the random potentials cover Rd and the bump functions that appear
in the random potentials form a partition of unity. For such models, we show that the
Density of States (DOS) is m times differentiable in the part of the spectrum where
exponential localization is valid, if the single site distribution has compact support and
has Hölder continuous m + 1 st derivative. The required Hölder continuity depends on
the fractional moment bounds satisfied by appropriate operator kernels. Our proof of
the Random Schrödinger operator case is an extensions of our proof for Anderson type
models on �2(G), G a countable set, with the property that the cardinality of the set
of points at distance N from any fixed point grows at some rate in Nα, α > 0. This
condition rules out the Bethe lattice, where our method of proof works but the degree of
smoothness also depends on the localization length, a result we do not present here. Even
for these models the random potentials need to satisfy a complete covering condition.
The Anderson model on the lattice for which regularity results were known earlier also
satisfies the complete covering condition.

1. Introduction

In the study of the Anderson Model and Random Schrödinger operators, modulus of
continuity of the Integrated Density of States (IDS) is well understood, (see Kirsch and
Metzger [35] for a comprehensive review). In dimension bigger than one, there are very
few results on further smoothness of the IDS, even when the single site distribution is
assumed to have more smoothness, except for the case of the Anderson model itself at
high disorder, (see for example Campanino and Klein [9], Bovier et al. [8], Klein and
Speis [39], Simon and Taylor [51]).
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In this paperwewill show, inTheorems3.4 and 4.4, that the IDS is almost as smooth as
the single site distribution for a large class of continuous and discrete random operators.
These are

Hω = H0 +
∑

n∈Zd

ωnun, (1.1)

on L2(Rd) and
hω = h0 +

∑

n∈G
ωn Pn, (1.2)

on the separable Hilbert space H and a countable set G. The operator h0 is a bounded
self-adjoint operator and the {Pn} are finite rank projection. We specify the conditions
on H0, h0, un, Pn and ωn in the following sections.

The IDS, denoted N (E), is the distribution function of a non-random measure
obtained as the weak limit of a sequence of random atomic measures. The proof of
the existence of such limits for various models of random operators has a long history.
These results are well documented in the books of Carmona and Lacroix [10], Figotin
and Pastur [46], Cycon et al. [18], Kirsch [33] and the reviews of Kirsch and Metzger
[35], Veselić [57] and in a review for stochastic Jacobi matrices by Simon [49]. In terms
of the projection valued spectral measures EHω , Ehω associated with the self-adjoint
operators Hω, hω, the functionN (E) has an explicit expression, for the cases when hω,
Hω are ergodic. For the model (1.1) it is given as

1∫
u0(x)dx

E

[
tr
(
u0EHω((−∞, E])

)]

and for the model (1.2) it turns out to be

1

tr(P0)
E

[
tr

(
P0Ehω((−∞, E])

)]
.

We note that by using the same symbol N for two different models, we are abusing
notation but this abuse will not cause any confusion as the contexts are clearly separated
to different sections. The first of these expressions for the IDS is often called the Pastur-
Shubin trace formula.

In the case of themodel (1.1) in dimensions d ≥ 2, there are no results in the literature
on the smoothness ofN (E), our results are the first to show even continuity of the density
of states (DOS), which is the derivative of N almost every E . The results of Bovier et
al. in [8] are quite strong for the Anderson model at large disorder and it is not clear that
their proof using supersymmetry extends to other discrete random operators.

In the one dimensional Anderson model, Simon and Taylor [51] showed that N (E)

is C∞ when the single site distribution (SSD) is compactly supported and is Hölder
continuous. Subsequently, Campanino and Klein [9] proved that N (E) has the same
degree of smoothness as the SSD. In the one dimensional strip, smoothness results were
shown by Speis [53,54], Klein and Speis [38,39], Klein et al. [37], Glaffig [30]. For
some non-stationary random potentials on the lattice, Krishna [41] proved smoothness
for an averaged total spectral measure.

There are several results showingN (E) is analytic for theAndersonmodel on �2(Zd).
Constantinescu et al. [16] showed analyticity ofN (E) when SSD is analytic. The result
of Carmona [10, Corollary VI.3.2] improved the condition on SSD to requiring fast
exponential decay to get analyticity. In the case of the Anderson model over �2(Zd)



Regularity of the Density of States of Random Schrödinger Operators 301

at large disorder the results of Bovier et al. [8] give smoothness of N (E) when the
Fourier transform h(t) of the SSD is C∞ and the derivatives decay like 1/tα for some
α > 1 at infinity. They also give variants of these, in particular if the SSD is Cn+d then
N (E) is Cn under mild conditions on its decay at ∞. They also obtain some analyticity
results. Acosta and Klein [1] show that N (E) is analytic on the Bethe lattice for SSD
close to the Cauchy distribution. While all these results are valid in the entire spectrum,
Kaminaga et al. [32] showed local analyticity of N (E) when the SSD has an analytic
component in an interval allowing for singular parts elsewhere, in particular for the
uniform distribution. Analyticity results obtained by March and Sznitman [44] were
similar to those of Campanino and Klein [9].

In all the above models, only when E varies in the pure point spectrum that regularity
ofN (E) beyond Lipshitz continuity is shown. This condition that E has to be in the pure
point spectrummay not have been explicitly stated, but it turns out to be a consequence of
the assumptions on disorder or assumptions on the dimension in which the models were
considered. For the Cauchy distribution in the Anderson model on �2(Zd), Carmona
and Lacroix [10] have a theorem showing analyticity in the entire spectrum. However,
absence of pure point spectrum is only a conjecture in these models as of now. At the
time of revision of this paper one of us Kirsch and Krishna [36] could show that in the
Anderson model on the Bethe lattice analyticity of the density of states with Cauchy
distribution is valid at all disorders as part of amore general result. This result in particular
exhibits regularity of the density of states through the mobility edge in the Bethe lattice
case.

In the case of random band matrices, with the random variables following a Gaus-
sian distribution, Disertori and Lager [25], Disertori [22,23], Disertori et al. [24] have
smoothness results for an appropriately defined density of states. Recently Chulaevsky
[11] proved infinite smoothness for non-local random interactions.

For the one dimensional ergodic random operators IDS was shown to be log Hölder
continuous by Craig and Simon [17]. Wegner proved Lipshitz continuity of the IDS for
the Anderson model independent of disorder in the pioneering paper [58]. Subsequently
there are numerous results giving the modulus of continuity of N (E), for independent
random potential, showing its Lipschitz continuity. Combes et al. in [14] showed that
for Random Scrödinger operators with independent random potentials, the modulus of
continuity of N (E) is the same as that of the SSD. For non i.i.d potentials in higher
dimensions there are some results on modulus of continuity for example that of Schlag
[48] showing and by Bourgain and Klein [7] who show log Hölder continuity for the
distribution functions of outer measures for a large class of random and non-random
Schrödinger operators. We refer to these papers for more recent results on the continuity
of N (E) not given in the books cited earlier.

The idea of proof of our Theorems is the following. Suppose we have a self-adjoint
matrix Aω of size N with i.i.d real valued randomvariables {ω1, . . . , ωN } on the diagonal
with eachω j following the distribution ρ(x)dx . Then the average of the matrix elements
of the resolvent of Aω are given by

f (z) =
∫

(Aω − z I )−1(i, i)
N∏

k=1

ρ(ωk)dωk,

for any z ∈ C
+. We take z = E + iε, ε > 0, then we see that from the definitions, the

function (Aω − z I )−1(i, i) can be written as a function of �ω − E�1 and ε, namely,
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F( �ω − E�1, ε) = (Aω − z I )−1(i, i), �( �ω) = ∏N
i=1 ρ(ωi )

�ω = (ω1, ω2, . . . , ωN ), �1 = (1, 1, . . . , 1).

Then it is clear that with ∗ denoting convolution of functions onRN and setting F̃ε(x) =
F(−x, ε),

E

(
(Aω − z I )−1(i, i)

)
= (F̃ε ∗ �)(E�1).

Since convolutions are smoothing, we get the required smoothness as a function of E if
one of the components F̃ε or� is smooth onRN . Since we are assuming that each ρ has
a degree of smoothness, which passes on to �, we get a smoothness result for operators
with finitely many random variables having the above form.

Let us remark here that it is in this step, which is crucial for further analysis, that
we need a complete covering condition, even for finite dimensional compressions of our
random operators be they continuous or discrete.

If we were to replace Aω by an operator with infinitely many random variables ωi ,
we would encounter the problem of concluding smoothing properties of “convolutions
of” functions of infinitely many variables. This is an important difficulty that needs to
be solved.

One of the interesting aspects of the operator Hω (or hω) we are dealing with is
that there is a sequence of operators (denoted by Aω

k ), containing finitely many random
variables ωi , which converges to Hω (or hω) in strong resolvent sense. Hence we can
write the limit as a telescoping sum, namely,

(Aω − z)−1(i, i) = (Aω
1 − z)−1(i, i) +

∞∑

k=1

[
(Aω

k+1 − z)−1(i, i) − (Aω
k − z)−1(i, i)

]
.

Since the operators appearing in the summands all contain finitelymanyωi their averages
over the random variables can be written as convolutions of functions of finitely many
variables ωi . Then, most of the work in the proof is to show that quantities of the form

∣∣∣∣∣∣∣

∫ [
(Aω

k+1 − z)−1(i, i) − (Aω
k − z)−1(i, i)

]
⎛

⎝
Nk+1∑

j=1

∂

∂ω j

⎞

⎠
l
Nk+1∏

n=1

ρ(ωn)dωn

∣∣∣∣∣∣∣

with Nk growing at most as a fixed polynomial in k, are summable in k. This is the part
where we use the fact that we are working in the localized regime, where it is possible
to show that they are exponentially small in k.

For the discrete case the procedure is relatively straight forward and there are no
major technical difficulties to overcome, but in the continuous case, the infinite rank
perturbations pose a problem, since the trace of the Borel–Stieltjes transform of the
average spectral measures do not converge.We overcome this problem by renormalizing
this transform appropriately. For our estimates towork,we have to use fractionalmoment
bounds and also uniform bounds on the integrals of resolvents. Both of these are achieved
because we have dissipative operators (up to a constant) whose resolvents can be written
in terms of integrals of contraction semigroups.

As stated above, our proof is in the localized regime. The Anderson model was
formulated by Anderson [5] who argued that there is no diffusion in these models for
high disorder or at low energies. The corresponding spectral statement is that there is
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only pure point spectrum or only localization for these cases. In the one dimensional
systems, where the results are disorder independent, localization was shown rigorously
by Goldsheid et al. [31] for random Schrödinger operators and by Kunz and Souillard
[43] for the Anderson model. For higher dimensional Anderson model the localization
was proved simultaneously by Fröhlich et al. [26], Simon and Wolff [52], Delyon et al.
[20] based on exponential decay shown by Fröhlich and Spencer [27] who introduced a
tool called multiscale analysis in the discrete case. A simpler proof based on exponential
decay of fractional moments was later given by Aizenman and Molchanov [4]. There
are numerous improvements and extensions of localization results beyond these papers.

In the case of continuous models, Combes and Hislop [12,14], Klopp [40], Germinet
and Klein [28], Combes et al. [15], Bourgain and Kenig [6] and Germinet and De Bievre
[29] provided proof of localization for different types of models. The fractional moment
method was first extended to the continuous case in Aizenman et al. in [3] and later
improved by Boutet de Monvel et al. [19].

We refer to Stollmann [55] for the numerous advances that followed on localization.
The rest of the article is divided into three parts. Section 2 has all the preliminary

results, which will be used significantly for both the discrete and the continuous case.
Section 3 will deal with the discrete case, where we use a method of proof which will be
reused for the continuous case. The main result of Sect. 3 is Theorem 3.4 which in the
case of Anderson tight binding model would prove the regularity of density of states.
Finally in Sect. 4 we will deal with the random Schrödinger operators and the main
result there is Theorem 4.4.

2. Some Preliminary Results

In this section we present some general results that are at the heart of the proofs of our
theorems. These are Theorems 2.1 and 2.2. The latter theorem, stated for functions, gives
a bound of the form

∣∣∣∣
∫ (

1

x − w
− 1

x − z

)
f (x)dx

∣∣∣∣ ≤ C f,s |z − w|s

for certain family of f . For operators, we need more work and need more uniformity
for f .

The first theorem is quite general and is about random perturbations of self-adjoint
operators and their smoothing properties of complex valued functions of the operators.

Theorem 2.1. Consider a self-adjoint operator A on a separable Hilbert spaceH and
let {Tn}Nn=1, N < ∞ be bounded positive operators such that

∑N
n=1 Tn = I , where I

denotes the identity operator onH . Suppose {ωn, n = 1, . . . , N } are independent real
valued random variables distributed according to ρn(x)dx and consider the random
operators Aω = A +

∑N
n=1 ωnTn. If f is a complex valued function on the set of

linear operators on H , such that f (Aω − E I ) is a bounded measurable function of
(ω1, . . . , ωn, E), then h(E) = E

[
f (Aω − E I )

]
satisfies h ∈ Cm(R), if ρn ∈ Cm(R)

and ρ
(k)
n ∈ L1(R), n = 1, 2, . . . , N and 0 ≤ k ≤ m.

Proof. Using the conditions on {Tn} we see that Aω − E I = A +
∑N

n=1(ωn − E)Tn .
Thus f (Aω − E I ) is a bounded measurable function of the variables (ω1 − E, ω2 −
E, . . . , ωn − E), which is a point �ω − E�1 in R

N , where �1 = (1, . . . , 1), we write
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F( �ω − E�1) = f (Aω − E I ). Then the expectation can be written as

E[ f (Aω − E I )] =
∫

RN
F( �ω − E�1)�( �ω)d �ω =

∫

RN
F(−(E�1 − �ω))�( �ω)d �ω,

where we set �( �ω) = ∏N
n=1 ρn(ωn). Writing now g(�x) = F(−�x) we see that

E[ f (Aω − E I )] = (g ∗ �)(E�1),
where ∗ denotes convolution in R

N . The result now follows easily from the properties
of convolution of functions on R

N . �	
For later usewe note that if∇ denotes the gradient operator on differentiable functions

on RN and D denotes D� = ∇� · �1 = ∑N
j=1

∂
∂xi

�, then an integration by parts yields

d�

dE�
h(E) = d�

dE�
(g ∗ �)(E�1) = (g ∗ (D��))(E�1). (2.1)

Remark 2.1. This theorem clarifies why the complete covering condition is needed in
main our results for the discrete and the continuous models. The covering property is
needed even for obtaining smoothness of finitely many random perturbations of a self-
adjoint operator, while such a property is not needed for modulus of continuity results.
We are unsure at the moment if this condition can be relaxed.

Let A, B be self-adjoint operators and let F1, F2 be bounded non-negative operators
on a separable Hilbert space H . For X ∈ {A, B}, z ∈ C

+, set,

R(X, x, y, z) = (X + xF1 + yF2 − z)−1

and

R(X, x, z) = (X + xF − z)−1, F = F1 + F2

for the following Theorem. For the rest of the paper by a smooth indicator function on
an interval (a, b) we mean a smooth function which is one in [c, d] ⊂ (a, b) which
vanishes on R\(a, b) with a − c + b − d as small as one wishes.

Theorem 2.2. Suppose A, B, F1, F2, F, z andH be as above. Suppose ρ1, ρ2 are com-
pactly supported functions on R

+ such that their derivatives are τ -Hölder continuous
and their supports are contained in (0,R). Let χR denote a smooth indicator function
of the set (0, 2R + 1) and let φR(x) = χR(x + 5

2R + 1). Then for any 0 < s < τ and
some constant � (depending upon ρ1, ρ2, s, τ but independent of z, A, F1, F2),

1. ∥∥∥∥
∫

F
1
2

(
R(A, x1, x2, z) − R(B, x1, x2, z)

)
F

1
2 ρ1(x1)ρ2(x2)dx1dx2

∥∥∥∥

≤ �

∫ ∥∥∥∥F
1
2

(
R(A, x1, x2, z) − R(B, x1, x2, z)

)
F

1
2

∥∥∥∥
s

,

× φR(x1)φR(x2)dx1dx2. (2.2)
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2. Specializing to the case when F1 = F2, x1 = x2 = x/2 we have
∥∥∥∥
∫

F
1
2

(
R(A, x, z) − R(B, x, z)

)
F

1
2 ρ1(x)dx

∥∥∥∥

≤ �

∫ ∥∥∥∥F
1
2

(
R(A, x, z) − R(B, x, z)

)
F

1
2

∥∥∥∥
s

φR (x) dx . (2.3)

Remark 2.3. The integrals appearing in (2.2) and (2.3) are viewed as operators in the
sense of direct integrals (see [47, TheoremXIII.85]). This is the case because X + x1F1 +
x2F2 is decomposable on

L2(
R
2,
∏

i

ρ(xi )dxi ,H
)
.

Hence all the integrals of this operator valued function, that appear in the proof, are
well-defined in the sense of direct integral representation [42].

Proof. We define

At = A + t F, Bt = B + t F, ∀ − 2R − 1 < t < −2R.

Then, we have the equality,

A + x1F1 + x2F2 = At +

(
x1 − x2

2

)
(F1 − F2) +

( x1 + x2
2

− t
)
F. (2.4)

Using the resolvent equation, we have, with F− = F1 − F2,

R(A, x1, x2, z) =
(
At +

(
x1 − x2

2

)
F− − z

)−1

−
( x1 + x2

2
− t

)
R(A, x1, x2, z)F

(
At +

(
x1 − x2

2

)
F− − z

)−1

(2.5)

which can be re-written (using the notation Ãt = At +
( x1−x2

2

)
F−) as

√
FR(A, x1, x2, z)

√
F = 1

x1+x2
2 − t

I

− 1
( x1+x2

2 − t
)2

(
1

x1+x2
2 − t

I +
√
F
(
Ãt − z

)−1 √
F

)−1

. (2.6)

(I is the identity operator on the range of
√
F) Similar relations hold for B, where Bt , B̃t

are defined by replacing A with B in the Eqs. (2.4–2.6). We set

R̃t
A,z = √

F( Ãt − z)−1
√
F, R̃t

B,z = √
F(B̃t − z)−1

√
F .
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Then using Eq. (2.6) we get the relation,
∫ √

F(R(A, x1, x2, z) − R(B, x1, x2, z))
√
F ρ1(x1)ρ2(x2)dx1dx2

=
∫ ⎡

⎣
(

1
x1+x2
2 − t

I + R̃t
A,z

)−1

−
(

1
x1+x2
2 − t

I + R̃t
B,z

)−1
⎤

⎦

1
( x2+x2

2 − t
)2 ρ1(x1)ρ2(x2)dx1dx2

= 2
∫ [(

γ I + R̃t
A,z

)−1 −
(
γ I + R̃t

B,z

)−1
]

ρ1

(
t +

1

γ
+ η

)
ρ2

(
t +

1

γ
− η

)
dγ dη (2.7)

where γ = ( x1+x2
2 − t

)−1 and η = x1−x2
2 . For X self-adjoint, R̃t

X,z is an operator valued
Herglotz function and its imaginary part is a positive operator for �(z) > 0. Hence the

operators
(
γ I + R̃t

X,z

)
generate a strongly continuous one parameter semi-group, and

we can apply the Lemma A.3 for the γ integral, and then do the η integral to get
∫ [(

γ I + R̃t
A,z

)−1 −
(
γ I + R̃t

B,z

)−1
]

ρ1

(
t +

1

γ
+ η

)
ρ2

(
t +

1

γ
− η

)
dγ dη

= −
∫ [∫ ∞

0

(
e
iw
(
γ I+R̃t

A,z

)

− e
iw
(
γ I+R̃t

B,z

))
dw

]

ρ1

(
t +

1

γ
+ η

)
ρ2

(
t +

1

γ
− η

)
dγ dη

= −
∫ ∫ ∞

0

(
eiw R̃t

A,z − eiw R̃t
B,z

)
eiγwρ1

(
t +

1

γ
+ η

)
ρ2

(
t +

1

γ
− η

)
dγ dwdη,

(2.8)

which can be bounded as∥∥∥∥
∫ ∫ ∞

0

[
eiw R̃t

A,z − eiw R̃t
B,z

]

eiγwρ1

(
t +

1

γ
+ η

)
ρ2

(
t +

1

γ
− η

)
dγ dwdη

∥∥∥∥

≤
∫ ∥∥∥

(
eiw R̃t

A,z − eiw R̃t
B,z

)∥∥∥
∣∣∣∣
∫

eiγwρ1

(
t +

1

γ
+ η

)
ρ2

(
t +

1

γ
− η

)
dγ

∣∣∣∣ dwdη. (2.9)

The assumption we made on the supports of ρ1, ρ2 implies that −R
2 < η < R

2 , and the
choice −2R − 1 < t < −2R implies − 5

2R − 1 < t ± η < − 3R
2 . This implies that

{
γ : ψt,η(γ ) �= 0,−5

2
R − 1 < t ± η < −3R

2

}
⊂
(

2

2 + 7R
,
2

3R

)
,
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whereψt,η(γ ) = ρ1

(
t + 1

γ
+ η

)
ρ2

(
t + 1

γ
− η

)
. Thus forfixed t, η, the functionψt,η(γ )

is of compact support and has a τ -Hölder continuous derivative as a function of γ , for the
τ stated as in the Theorem. Also, the derivative ofψt,η is uniformly τ -Hölder continuous
and the constant in the corresponding bound is uniform in t, η, which follows from the
support properties of ψt,η and the bounds on t, η. Therefore, if we denote the Fourier
transform of ψt,η(−γ ) by ψ̂t,η, then standard Fourier analysis gives the bound,

∣∣∣∣
∫

eiγwρ1

(
t +

1

γ
+ η

)
ρ2

(
t +

1

γ
− η

)
dγ

∣∣∣∣

≤ C

|w|1+τ

(∥∥∥|w|1+τ ψ̂t,η(w)

∥∥∥∞

)
≤ C̃

|w|1+τ
f or |w| � 1

for some C̃ depends on ρ1, ρ2 but not on t, η.
Again using the bounds on t, η and γ , we see that for small |w|, the w integral

is bounded uniformly in t, η, by the L∞ norm of ρ1 and ρ2 and hence C̃ is (t, η)-
independent for all w.

On other hand using the Lemma A.2, we have
∥∥∥eiw R̃t

A,z − eiw R̃t
B,z

∥∥∥ ≤ 21−s |w|s
∥∥∥R̃t

A,z − R̃t
B,z

∥∥∥
s

for 0 < s < 1. By choosing s < τ/2 and using above bounds in (2.9) we have
∥∥∥∥
∫ ∫ ∞

0

(
eiw R̃t

A,z − eiw R̃t
B,z

)

eiγwρ1

(
t +

1

γ
+ η

)
ρ2

(
t +

1

γ
− η

)
dγ dwdη

∥∥∥∥ (2.10)

≤ Ĉ

(
1 +

∫ ∞

1

1

w1+τ−s
dw

)∫ ∥∥∥R̃t
A,z − R̃t

B,z

∥∥∥
s
dη. (2.11)

The integral we started with is independent of t so we can integrate it with respect to the
Lebesgue measure on an interval of length one. Therefore, combining the inequalities
(2.7, 2.8, 2.9, 2.10) and integrating t over an interval of length 1, yields
∥∥∥∥
∫ √

F(R(A, x1, x2, z) − R(B, x1, x2, z)
√
F ρ1(x1)ρ2(x2)dx1dx2

∥∥∥∥

=
∫ −2R

−2R−1

∥∥∥∥
∫ √

F(R(A, x1, x2, z) − R(B, x1, x2, z)
√
F ρ1(x1)ρ2(x2)dx1dx2

∥∥∥∥ dt

≤ C
∫ −2R

−2R−1

∫ R
2

− R
2

∥∥∥R̃t
A,z − R̃t

B,z

∥∥∥
s
dηdt

≤ C
∫ ∫ ∥∥∥∥

√
F
(
A + x̂1F1 + x̂2F2 − z

)−1 √
F

− √
F
(
B + x̂1F1 + x̂2F2 − z

)−1 √
F

∥∥∥∥
s

φR(x̂1)φR(x̂2) dx̂1dx̂2.

For the last inequality we used the definition of R̃t
X,z changed variables x̂1 = t +η, x̂2 =

t − η along with a slight increase in the range of integration to accommodate the bump
φR to have their supports in (− 5

2R − 1,−R
2 ). �	
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3. The Discrete Case

Let G denote a un-directed connected graph with a graph-metric d. Let {xn}n denote an
enumeration of G satisfying d(�N , xN+1) = 1 for any N ∈ N, where

�N = {xn : n ≤ N }, �∞ = G, (3.1)

and

lim inf
N→∞

d(x0,G\�N )

g(N )
= rG > 0, (3.2)

for some increasing function g onR+. Typically, we will have g(N ) = N 1/d forG = Z
d

and g(N ) = logK (N ) for the Bethe lattice with connectivity K > 2. Henceforth for
indexing G we will say n ∈ G to mean xn ∈ G.

Let H be a complex separable Hilbert space equipped with a countable family
{Pn}n∈G of finite rank orthogonal projections such that

∑
n∈G Pn = I d, with the maxi-

mum rank of Pn being finite, thus

H =
⊕

n∈G
Ran(Pn).

Let h0 denote a bounded self-adjoint operator onH and consider the random operator,
we stated in Eq. (1.2),

hω = h0 +
∑

n∈�∞
ωn Pn, (3.3)

where the random variables ωn satisfies Hypothesis 3.1 below. Given a finite subset
� ⊂ G, we will denote P� = ∑

n∈� Pn , H� = P�H and

hω
� = P�h

ωP� (3.4)

denotes the restriction of hω toH�.
We abused notation to denote P for two different objects, Pn denoting projections

onto sites xn ∈ G and P� to denote the sum of Pn when xn varies in �, but we are sure
the reader will not be confused and the meaning would be clear from the context.

We have the following assumptions on the quantities involved in the model.

Hypothesis 3.1. We assume that the random variables ωn are independent and dis-
tributed according to a density ρn which are compactly supported in (0, 1)and satisfy
ρn ∈ Cm((0, 1)) for some m ∈ N and

D = sup
n

max
�≤m

‖ρ(�)
n ‖∞ < ∞. (3.5)

We note that as long as ρn ∈ Cm((a, b)) for some −∞ < a < b < ∞, a scaling
and translation will move its support to (0, 1). So our support condition is no loss of
generality.

Hypothesis 3.2. A compact interval J ⊂⊂ R is said to be in region of localization for
hω with exponent 0 < s < 1 and rate of decay ξs > 0, if there exist C > 0 such that

sup
�(z)∈J,�(z)>0

E
ω

[∥∥∥Pn(hω − z)−1Pk
∥∥∥
s] ≤ Ce−ξsd(n,k) (3.6)
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for any n, k ∈ G. For the operators hω
�K

exponential localization is defined with
�, hω

�K
, ξs,�K replacing G, hω, ξs respectively in the above bound.

We assume that for our models, for all �K , with K ≥ N the inequality (3.6) holds
for some ξs > 0 and ξs,�K ≥ ξs , for all �K with K ≥ N. We also assume that the
constants C, ξs do not change if we replace the distribution ρn with one of its derivatives
at finitely many sites n.

Remark 3.3. For large disorder models one can get explicit values for ξs from the papers
of Aizenman and Molchanov [4] or Aizenman [2]. For example the Anderson model
on �2(Zd) with disorder parameter λ >> 1, typically ξs = −s ln Cs,ρ2d

λ
, for some

constant Cs,ρ < ∞ that depends on the single-site density ρ and is independent of �.
So ξs,� = ξs > 0 for large enough λ. Similarly for the Bethe lattice with connectivity

K + 1 > 1, ξs,� = ξs = −s ln Cs,ρ (K+1)
λ

. Going through Lemma 2.1 of their paper, and
tracing through the constants, we see that our assumption about changing the distribution
at finitely many sites is valid.

Henceforth let EA(·) denote the projection valued spectral measure of a self-adjoint
operator A. Our main goal in this section is to show that

N (E) = E
ω
[tr(P0Ehω(−∞, E))]

is m times differentiable in the region of localization, if ρ has a bit more than m deriva-
tives, which means that the density of states DOS is m − 1 times differentiable. Our
theorem is the following, where we tacitly assume that the spectrum σ(hω) is a constant
set a.s., a fact proved by Pastur [45] for a large class of random self-adjoint operators.
While it may not be widely known, it is also possible to show the constancy of spectrum
for operators that do not have ergodicity but when there is independent randomness
involved see for example Kirsch et al. [34]. In such non-ergodic cases when there is
no limiting eigenvalue distribution, our results are still valid for the spectral measures
considered.

Theorem 3.4. Consider the random self-adjoint operators hω given in Eq. (3.3) on the
Hilbert space H and a graph G satisfying the condition (3.2) with g(N ) = Nα , for
some α > 0. We assume that ωn is distributed with density ρn satisfying the Hypothesis
3.1 and, with m as in the Hypothesis, ρ(m)

n is τ -Hölder continuous for some 0 < τ < 1.
Assume that J is an interval in the region of localization for which the Hypothesis 3.2
holds for some 0 < s < τ . Then the function

N (E) = E
ω
[tr(P0Ehω(−∞, E))] ∈ Cm−1(J ) (3.7)

and N (m)(E) exists a.e. E ∈ J .

Remark 3.5. 1. We stated the Theorem in this generality so that it applies to multiple
models, such as the Andersonmodels onZd , other lattice or graphs, having the prop-
erty that the number of points at a distance N fromanyfixed point growpolynomially
in N . The models for which this Theorem is valid also include higher rank Ander-
son models, long range hopping with some restrictions, models with off-diagonal
disorder to state a few. In all of these models, by including sufficiently high diagonal
disorder, through a coupling constant λ on the diagonal part, we will have expo-
nential localization for the corresponding operators via the Aizenman-Molchanov
method. So this Theorem gives the Regularity of DOS in all such models. For the
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Bethe lattice and other countable sets for which g(N ) is like ln(N ), our results hold
but the order of smoothness m that can be obtained is restricted by the localization
length by a condition such as ξs > m ln K . So in this work we do not consider such
type of setting.

2. This Theorem also gives smoothness of DOS in the region of localization for the
intermediate disorder cases considered for example by Aizenman [2] who exhibited
exponential localization for such models in part of the spectrum.

3. In the case hω is not the Anderson model, all these results are new and it is not clear
that the method of proof using super symmetry, as done for the Anderson model at
high disorder, will even work for these models.

4. We note that in the proof we will take at mostm − 1 derivatives of resolvent kernels
in the upper half-plane and show their boundedness, but we have a condition that
the function ρ has a τ -Hölder continuous derivative. The extra 1 + τ ‘derivatives’
are needed for applying the Theorem 2.2 to obtain the inequality (3.19) from the
equality (3.18).

Proof. Since theorthogonal projection P0 is finite rank,wecanwrite P0 = ∑r
i=1 |φi 〉〈φi |

using a set {φi } of finitely many orthonormal vectors. Then we have,

N (E) =
r∑

i=1

E
ω

(〈φi , Ehω((−∞, E))φi 〉) .

The densities of the measures 〈φi , Ehω(·)φi 〉 are bounded by Lemma A.4 for each
i = 1, . . . , r . Hence N is differentiable almost everywhere and its derivative, almost
everywhere, is given by the boundary values,

1

π
E
ω

(
tr
(
P0�(hω − E − i0)−1

))

is bounded. The Theorem follows from Lemma A.1 once we show

sup
�(z)∈J,�(z)>0

d�

dz�
E
ω

[
tr(P0(h

ω − z)−1)
]

< ∞, (3.8)

for all � ≤ m − 1, since such a bound implies that m − 1 derivatives of η are continuous
and its mth derivative exists almost everywhere, since hω are bounded operators. The
projection P0 is finite rank which implies that the bounded operator valued analytic
functions P0(hω − z)−1, P0(hω

� − z)−1 are trace class for z ∈ C
+. Therefore the linearity

of the trace and the dominated convergence theorem together imply that

E
ω

[
tr(P0(h

ω − z)−1 − P0(h
ω
� − z)−1)

]
�→G−−−→ 0, (3.9)

compact uniformly inC+. For the rest of the proof we set hω
K = hω

�K
for ease of writing.

The convergence given in Eq. (3.9) implies that the telescoping sum,

E
ω

[
tr(P0(h

ω
M − z)−1)

]
=

M∑

K=N

(
E
ω

[
tr(P0(h

ω
K+1 − z)−1)

]
− E

ω

[
tr(P0(h

ω
K − z)−1)

])

+E
ω

[
tr(P0(h

ω
N − z)−1)

]
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also converges compact uniformly, in C+ to

E
ω

[
tr(P0(h

ω − z)−1)
]
,

which implies that their derivatives of all orders also converge compact uniformly inC+.
Therefore the inequality (3.8) follows if we prove the following uniform bound, for

all 0 ≤ � ≤ m − 1 and N large,

∞∑

K=N

sup
�(z)∈J

∣∣∣∣
d�

dz�

(
E
ω

[
tr(P0(h

ω
K+1 − z)−1) − E

ω

[
tr(P0(h

ω
K − z)−1)

])]∣∣∣∣ < ∞.

(3.10)
To this end we only need to estimate

∣∣∣∣
dl

dzl
E
ω

[
tr(P0(h

ω
K+1 − z)−1P0) − tr(P0(h

ω
K − z)−1P0)

] ∣∣∣∣ (3.11)

for �(z) ∈ J where we used the trace property to get an extra P0 on the right and set
Gω

M (z) = P0(hω
M − z)−1P0, M ∈ N for further calculations.

The function

fε( �ω − E�1) = tr(Gω
K (E + iε))

is a complex valued bounded measurable function on R
K+1 for each fixed ε > 0.

Therefore we compute the derivatives in E of its expectation

hε(E) = E
ω

(
fε( �ω − E�1)) = E

(
tr(Gω

K (E + iε)−1)
)

using Theorem 2.1. This calculation gives in the notation of that Theorem,

d�

dE� E
ω

(
tr(Gω

K (E + iε))
) =

∫
tr(Gω

K (E + iε))D��K ( �ω)d �ω, (3.12)

where we set �K ( �ω) =
∏

n∈�K

ρn(ωn), d �ω =
∏

n∈�K

dωn .

It is not hard to see that for each 0 ≤ � ≤ m − 1,
∫

tr(Gω
K (E + iε))D��K ( �ω)d �ω,=

∫
tr(Gω

K (E + iε))D��K+1( �ω)d �ω, (3.13)

since the integrand tr(Gω
K (E +iε)) is independent ofωn, n ∈ �K+1\�K and ρn satisfies∫

ρ
( j)
n (x)dx = δ j0. We set

R(ω, K , E, ε) = tr
(
Gω

K+1(E + iε) − Gω
K (E + iε)

)
(3.14)

to simplify writing. We may write the argument ω of R(ω, K , E, ε) below in terms of
the vector notation �ω for uniformity as it is a function of the variables {ωn, n ∈ �K+1}.

Then combining the Eqs. (3.12, 3.13) inside the absolute value of the expression in
Eq. (3.11) to be estimated we have to consider the quantity, for K ≥ N ,
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TK ,�(E, ε) = d�

dE� E
ω

[
tr
(
Gω

K+1(E + iε) − Gω
K (E + iε)

)]

=
∫

RK+1
R( �ω, K , E, ε)(D��K+1)( �ω)d �ω. (3.15)

To prove the theorem we need to show that

∞∑

K=N

sup
E∈J,ε>0

|TK ,�(E, ε)| < ∞. (3.16)

Multinomial expansion of D� =
( ∑

n∈�K+1

∂

∂ωn

)�

gives the relation

TK ,�(E, ε) =
∑

k0+···+kK=�
kn≥0

(
�

k0,...,kK

) ∫

RK+1
R( �ω, K , E, ε)

( K+1∏

n=0

∂kn

∂knωn
ρn(ωn)dωn

)
.

(3.17)

We use Fubini to interchange the trace and an integral over ω0 to get

TK ,�(E, ε)

=
∑

k0+···+kK=�
kn≥0

(
�

k0,...,kK

) ∫

RK
tr

(∫ (
Gω

K+1(E + iε) − Gω
K (E + iε)

)
ρ

(k0)
0 (ω0)dω0

)

×
( ∏

n∈�K+1,n �=0

ρ(kn)
n (ωn)dωn

)
. (3.18)

We take the absolute value of T and estimate the ω0 integrals using the Theorem 2.2,
displaying explicitly the dependence on the ρ or its derivatives in the constant� appear-
ing in that theorem, to get, for 0 < s < 1/2 (the choice for s will become clear in
Lemma 3.1),

TK ,�(E, ε) ≤
∑

k0+···+kK=�
kn≥0

(
�

k0,...,kK

)
�(ρ

(k0)
0 )tr(P0)

×
∫

RK

(∫
‖(Gω

K+1(E + iε) − Gω
K (E + iε)

)‖sφR(ω0)dω0

)

×(
∏

n∈�K+1,n �=0

|ρ(kn)
n (ωn)|dωn

)
. (3.19)

We set

ρ̃n = ρ
(kn)
n

‖ρ(kn)
n ‖1

, n �= 0, ρ̃0 = φR

‖φR‖1 (3.20)
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and set, using the inequality (3.5),C0 = max{D, ‖φR‖1},whereD is such that‖ρ(kn)
n ‖1 ≤

D ∀ n �= 0. We note here that at most � of ρ̃n differ from ρn itself and that ‖ρn‖1 = 1.
We then get the bound

|TK ,�(E, ε)| ≤ C�
0 sup

j≤�

�(ρ( j))tr(P0)
∑

k0+···+kK=�
kn≥0

(
�

k0,...,kK

)

×
∫

RK+1
‖(Gω

K+1(E + iε) − Gω
K (E + iε)

)‖s
∏

n∈�K+1

ρ̃n(ωn)dωn .

(3.21)

We denote the probability measure

dPK ( �ω) =
∏

n∈�K

ρ̃n(ωn)dωn,

and expectation as EK . We also set,

C1,m = sup
0≤�≤m

{C�
0}, C2,m = sup

n∈G, j≤m
{�(ρ

( j)
n )}.

Then the inequality (3.21) becomes

|TK ,�(E, ε)| ≤ C1,mC2,mtr(P0)
∑

k0+···+kK=�

(
�

k0,...,kK

)

× EK+1

[
‖(Gω

K+1(E + iε) − Gω
K (E + iε)

)‖s
]
. (3.22)

We use the estimate for the expectation EK+1(·) from Lemma 3.1 to get the following
bound, for some constant C6 independent of K ,

sup
E∈J,ε>0

|TK ,�(E, ε)| ≤ C6C5

∑

k0+···+kK=�

(
�

k0,...,kK

)
(1 + 2K )e−ξ2s K α

≤ C6C5(K + 1)�(1 + 2K )e−ξ2s |K |α . (3.23)

From this bound the summability stated in the inequality (3.16) follows sincewe assumed
that ξ2s > 0, completing the proof of the Theorem. �	
We needed the exponential bound on the resolvent estimate, which is the focus of the
following lemma.

Lemma 3.1. We take the interval J stated in Theorem 3.4, then we have the bound

sup
�(z)∈J,�(z)>0

EK+1

[∥∥(Gω
K+1(z) − Gω

K (z)
)∥∥s

]

≤ C5(m, Rank(P0),D, h0, R, s)(2K + 1)e−ξ2s K α

.



314 D. R. Dolai, M. Krishna, A. Mallick

Proof. We start with the resolvent identity

Gω
K (z) − Gω

K+1(z) = P0

(
(hω

K − z)−1 − (hω
K+1 − z)−1

)
P0

= P0(h
ω
K − z)−1[hω

K+1 − hω
K ](hω

K+1 − z)−1P0

= P0(h
ω
K+1 − z)−1P�K h0PK+1(h

ω
K+1 − z)−1P0. (3.24)

In the above equation, the terms corresponding to the random part ωK+1PK+1 and the
part PK+1h0P�K (appearing in the difference [hω

K+1 − hω
K ]) are zero, since they are

multiplied by P0(hω
K − z)−1 on the left and P0(hω

K − z)−1PK+1 being the operator
P0(P�K h

ωP�K − z)−1PK+1 is obviously zero since P0PK+1 = 0 if K > 1. It is
to be noted that this fact is independent of how h0 looks! We estimate the last line
in the Eq. (3.24), by first by expanding P�K = ∑

n∈�K
Pn and estimate the norms

of the operators (using ‖B∑N
i=1 Ai‖s ≤ ‖B‖s ∑N

i=1 ‖Ai‖s for any finite collection
{B, Ai , i = 1, . . . , N } of bounded operators and 0 < s < 1) to get

‖(Gω
K+1(z) − Gω

K (z)
)‖s ≤ ‖h0‖s‖PK+1(h

ω
K+1 − z)−1P0‖s‖P0(hω

K+1 − z)−1P�K ‖s
≤ ‖h0‖s‖PK+1(h

ω
K+1 − z)−1P0‖s

×
∑

n∈�K

‖P0(hω
K+1 − z)−1Pn‖s . (3.25)

We take expectation of both the sides of the above equation, then interchange the sum
and the expectation on the right hand side and use Cauchy–Schwartz inequality to get
the bound

EK+1
(‖(Gω

K+1(z) − Gω
K (z)

)‖s)

≤ ‖h0‖s
∑

n∈�K

(
EK+1

(‖PK+1(h
ω
K+1 − z)−1P0‖2s

)) 1
2

(
EK+1

(‖P0(hω
K+1 − z)−1Pn‖2s

)) 1
2 . (3.26)

We now estimate the above terms by getting an exponential decay bound for the term
with operators kernels of the form PK+1[·]P0 while the remaining factors are uniformly
bounded with the bound independent of K , by using the Hypothesis 3.2.

Applying the bound on the fractional moments given in the Hypothesis 3.2, inequal-
ity 3.6 we get

EK+1
(‖Pn(hω

K − z)−1P0‖2s
) ≤ C, n ∈ �K ,

EK+1
(‖P0(hω

K+1 − z)−1Pn‖2s
) ≤ C, n ∈ �K

EK+1
(‖P0(hω

K+1 − z)−1PK+1‖2s
) ≤ Ce−ξs K α

,

EK+1
(‖PK+1(h

ω
K+1 − z)−1P0‖2s

) ≤ Ce−ξs K α

.

Using these bounds in the inequality (3.26), we get the bound (after noting that the sum
has 2K terms, so we get (1 + 2K ) as the only K dependence other than the exponential
decay factor),

≤ C5(m, Rank(P0),D, h0, R, s)(1 + 2K )e−ξ2s K α

,

which is the required estimate to complete the proof of the Lemma. �	
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4. The Continuous Case

In this section we show that the density of states of some Random Schrödinger operators
are almost as smooth as the single site distribution. On the Hilbert space L2(Rd) we
consider the operator

H0 =
d∑

i=1

(
−i

∂

∂xi
+ Ai (x)

)2

,

with the vector potential �A(x) = (A1(x), · · · , Ad(x)) assumed to have sufficient regu-
larity so that H0 is essentially self-adjoint on C∞

0 (Rd).
The random operators considered here are given by

Hω = H0 + λ
∑

n∈Zd

ωnun, (4.1)

where {ωn}n∈Zd are independent real random variables satisfying Hypothesis 3.1, un are
operators of multiplication by the functions u(x − n), for n ∈ Z

d and λ > 0 a coupling
constant.

We have the following hypotheses on the operators considered above to ensure Hω

continue to be essentially self-adjoint on C∞
0 (Rd) for all ω. By now it is well known in

the literature (see for example the book of Carmona and Lacroix [10]) that the spectral
and other functions of these operators we consider below will have the measurability
properties, as functions of ω, required for the computations we perform on them and we
will not comment further on measurability.

Hypothesis 4.1. 1. The random variables {ωn}n satisfy the Hypothesis 3.1.
2. The function 0 ≤ u ≤ 1 is a non-negative smooth function onRd such that for some

0 < ε2 < 1
2 , 0 < ε1 < 1, it satisfies

u(x) =
{
0, x /∈ (− 1

2 − ε1,
1
2 + ε1)

d

1, x ∈ (− 1
2 + ε2,

1
2 − ε2)

d

∑

n∈Zd

u(x − n) = 1 x ∈ R
d .

We need some notation before we state our results. Given a subset � ⊂ Z
d , we set

[�] =
{
x ∈ R

d :
∑

n∈�

u(x − n) = 1

}
(4.2)

and denote the restrictions of H0, Hω to [�] respectively by H0,�, Hω
� . As an abuse of

notation, whenever we talk about restricting the operator on �, we will mean restriction
onto [�]. We need this distinction because

∑
n∈� u(x−n) = 1 only on [�] and we need

the complete covering condition. While the boundary conditions are not that important,
we will work with Dirichlet boundary conditions in this section. We will also denote
un,� to be the restriction of un to [�] when the need arises. We denote by EA(·) the
projection valued spectral measure of a self-adjoint operator A and from the context it
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will be clear that this symbol will not be confused with points in the spectrum denoted
by E . We denote the Integrated Density of States (IDS) by

N�(E) = E
ω

[
tr(u0EHω

�
(−∞, E])

]
f or E ∈ R, (4.3)

and the subscript � on the IDS is dropped in the case of the operator Hω.
We start with our Hypothesis on the localization. wherewe set Pn to be the orthogonal

projection onto L2(supp(un)).

Hypothesis 4.2. A compact interval J ⊂ R is said to be in the region of localization for
Hω with rate of decay ξs and exponent 0 < s < 1, if there exists C, ξs > 0 such that

sup
�(z)∈J,�(z)>0

E
ω

[∥∥∥Pn(Hω − z)−1Pk
∥∥∥
s] ≤ Ce−ξs‖n−k‖ (4.4)

for any n, k ∈ Z
d . For the operators Hω

� exponential localization is similarly defined
with �, Hω

�, ξs,� replacing Z
d , Hω, ξs respectively in the bound for the same J .

We assume that for all� large enough ξs,� ≥ ξs for J in the region of localization and
the constants C, ξs do not change if we change the density ρn with one of its derivatives
at finitely many n.

Remark 4.3. We note that the above Hypothesis holds with ξs > 0, for the models of the
type we consider under a large disorder condition, introduced via a coupling constant.
The condition ξs > 0 is sufficient for our Theorem and there is no need to specify
how large it should be. Similarly the multiscale analysis which is the starting point of
the fractional moment bounds, uses apriori bounds that depend on the Wegner estimate
which depends on only the constant D. So changing the distribution ρn with one of its
derivatives at finitely many points n does not affect the constants C, ξs .

Our main Theorem given next, is the analogue of the Theorem 3.4. We already know
from Lemma A.5, that u0EHω(−∞, E) is trace class for any E ∈ R, hence we will be
working with

N (E) = E
ω
[tr(u0EHω(−∞, E))] f or E ∈ R. (4.5)

The functionN is well defined by Lemma A.5 and is known to be continuous (see [14,
Theorem 1.1] for example) whenever ρ is continuous.

By the Pastur-Shubin trace formula for the IDS, the functionN is at most a constant
multiple of IDS, since

∫
u0(x)dx may not be equal to 1, but this discrepancy does not

affect the smoothness properties, so we will refer to N as the IDS below.
Our main Theorem given below implies that the density of states DOS ism−1 times

differentiable in J when ρ satisfies the conditions of the Theorem.

Theorem 4.4. On the Hilbert space L2(Rd) consider the self-adjoint operators Hω

given by (4.1), satisfying the Hypothesis 4.1. Let J be an interval in the region of
localization satisfying the Hypothesis 4.2 with ξs > 0 for some 0 < s < 1/6. Suppose
the density ρ ∈ Cm

c ((0,∞)), and ρ(m) is τ -Hölder continuous for some s < τ/2. Then
N ∈ C (m−1)(J ) and N (m) exists almost everywhere in J .

Remark 4.5. ATheorem of Aizenman et al. [3, Theorem 5.2] shows that there are opera-
tors Hω of the type we consider for which the Hypothesis 4.2 is valid for large coupling
λ, where it was required that 0 < s < 1/3. We take 0 < s < 1/6 as we need to controls
2s-th moment of averages of norms of resolvent kernels in our proof.
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Proof. We consider the boxes �L = {−L , · · · , L}d , and set Hω
L = Hω

�L
, NL = Nω

�L
.

The strong resolvent convergence of Hω
�L

to Hω, which is easy to verify, implies that
N�L converges to N point wise since N is known to be a continuous function for the
operators we consider. Since tr(u0EHω

L
((−∞, E])) is a bounded measurable complex

valued function, NL ∈ Cm(J ), by Theorem 2.1. Therefore it is enough to show that
N (·) −N�N (·) (which is a difference of distribution functions of the σ -finite measures
tr(u0EHω(·)) and tr(u0EHω

N
(·)) appropriately normalized) is in Cm(J ) for some N .

We will need to use the Borel–Stieltjes transforms of these measures for the rest of the
proof, but these transforms are not defined because u0(Hω

N − z)−1 fails to be in trace
class. Therefore we have to approximate u0 using finite rank operators first.

To this end let Qk be a sequence of finite rank orthogonal projections, in the range
of u0 such that they converge to the identity on this range. We then define,

NL ,Qk (E) = E
ω

(
tr(Qku0EHω

L
(−∞, E])

)
. (4.6)

Since the projections Qk strongly converge to the identity on the range of u0, the pro-
jections Qku0EHω

L
((−∞, E)) also converge strongly to u0EHω

L
((−∞, E)) point wise

in E . This convergence implies that NL ,Qk (E) converge point wise to NL(E) for any
fixed L . Henceforth we drop the subscript on Qk but remember that the rank of Q is
finite.

Since Q is finite rank, the measures tr(Qu0EHω
L
(·)) are finite measures. Therefore

we can define the Borel–Stieltjes transform of the finite signed measure

E
ω

[
tr(Qu0EHω

L+1
(·)) − tr(Qu0EHω

L
(·))

]
,

namely

E
ω

[
tr(Qu0(H

ω
L+1 − z)−1 − tr(Qu0(H

ω
L − z)−1)

]

=
∫

1

x − z
d E

ω

[
tr(Qu0EHω

L+1
(x)) − tr(Qu0EHω

L
(x))

]
, (4.7)

where the signed measure has finite total variation for each Q and each L . Then the
derivatives of NL+1,Q(E) − NL ,Q(E) are given by

lim
ε↓0

1

π
E
ω

[
tr(Qu0�(Hω

L+1 − E − iε)−1) − tr(Qu0�(Hω
L − E − iε)−1)

]

= lim
ε↓0

1

π
E
ω

[
tr

[
Qu0

(
�(Hω

L+1 − E − iε)−1 − �(Hω
L − E − iε)−1

)]]
. (4.8)

Then, using the idea of a telescoping sum, as done in the previous section, we need to
prove that

∞∑

L=N

sup
�(z)∈J

∣∣∣∣
d�

dz�

(
E
ω

[
tr(Qu0(H

ω
L+1 − z)−1) − E

ω

[
tr(u0(H

ω
L − z)−1)

])]∣∣∣∣ < ∞.

(4.9)



318 D. R. Dolai, M. Krishna, A. Mallick

We set (taking κ(L) as the volume of �L\{0}),
Gω

L(z) = Qu0(H
ω
L − z)−1u0, S( �ω, Q, L , z) = Gω

L+1(z) − Gω
L(z),

�L+1( �ω) =
∏

n∈�L+1

ρ(ωn), κ(L) = |�L | − 1. (4.10)

Then, following the sequence of steps leading from Eqs. (3.11) to (3.16), we need only
to consider

T (L , �, Q, z) = d�

dE� E
ω

[
tr(Gω

L+1(E + iε) − Gω
L(E + iε))

]

=
∫

Rκ(L+1)+1
tr(S( �ω, Q, L , E, ε))(D��L+1)( �ω)d �ω, (4.11)

to estimate and show that

∞∑

L=N

sup
�(z)∈J,�(z)>0,

�≤m,
Q

|T (L , �, Q, z)| < ∞, (4.12)

to prove the theorem. Using the steps followed from getting Eq. (3.18) from the equality
(3.17), which is an identical calculation here, to get

T (L , �, Q, z) =
∑

∑�L+1
n=1 kn=�

kn≥0

(
�

k0,...,kκ(L+1)+1

) ∫

Rκ(L+1)
tr

(∫ (
Gω

L+1(z) − Gω
L (z)

)
ρ

(k0)
0 (ω0)dω0

)

·
( ∏

n∈�L+1\{0}
ρ(kn)
n (ωn)dωn

)
. (4.13)

To proceed further, we need to get a uniform bound in the projection Q. We will
show that the expression

G(L , z, ω) = u0(H
ω
L+1 − z)−1 − u0(H

ω
L − z)−1, (4.14)

automatically comes with a trace class operator. This fact helps us drop the Q occurring
in the expression

(
Gω

L+1(z) − Gω
L(z)

) = QG(L , z, ω)u0, (4.15)

making estimates on the trace.
We need a collection of d +2 smooth functions 0 ≤ � j ≤ 1, j = 0, . . . , d +1, where

d is the dimension we are working with. Setting

α j = 2 j+2, j ∈ {0, 1, 2, . . . , 2d + 2}, (4.16)

we choose the functions � j from C∞(Rd) satisfying

� j (x) =
{
1, |x | ≤ α2 j ,

0, |x | > α2 j+1,
j = 0, . . . d + 1 (4.17)
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and note that all the derivatives of � j are bounded for all j , because they are all contin-
uous and supported in a compact set. These functions satisfy the property

� j+1φ = φ, i f supp(φ) ⊂ supp(� j ), j = 0, . . . , d, (4.18)

in particular
� j+1� j = � j , f or all j = 0, . . . , d. (4.19)

We then take a free resolvent operator R0
L ,a = (H0,�L + a)−1, with a >> 1. Since, H0

is bounded below, R0
L ,a is a bounded positive operator for any L . It is a fact that, for any

smooth bump function φ,

[φ, H0]R0
L ,a, R

0
L ,au j ∈ Ip, p > d. (4.20)

See Combes et al. [14, Lemma A.1] and Simon [50, Chapter 4] for further details. Using
the definition of G given in Eq. (4.15), the relation (4.19) and the resolvent equation we
get

G(L , z, ω)�0 = u0

[
(Hω

L+1 − z)−1 − (Hω
L − z)−1

]
�0

= u0

[
(Hω

L+1 − z)−1 − (Hω
L − z)−1

]
�1�0

= u0

[
(Hω

L+1 − z)−1�1 − �1R
0
L ,a + �1R

0
L ,a − (Hω

L − z)−1�1

]
�0

= u0

[(
(Hω

L+1 − z)−1�1 − �1R
0
L ,a

)− (
(Hω

L − z)−1�1 − �1R
0
L ,a

)]
�0

= u0

[(
(Hω

L+1 − z)−1
(

�1(H0,L + a) − (Hω
L+1 − z)�1

)
R0
L ,a

)

− (
(Hω

L − z)−1
(

(H0,L + a)�1 − (Hω
L − z)�1

)
R0
L ,a

)]
�0

= u0

[(
(Hω

L+1 − z)−1
(

�1H0,L − H0,L+1�1 + (z + a − V ω
L+1)�1

)
R0
L ,a

)

− (
(Hω

L − z)−1
(
H0,L�1 − H0,L�1 + (z + a − V ω

L )�1

)
R0
L ,a

)]
�0

= u0
[
(Hω

L+1 − z)−1 − (Hω
L − z)−1]

·
[
[�1, H0] +

(
z + a −

∑

|n|≤α1

ωnun

)
�1

]
R0
L ,a�0

= G(L , z, ω)

[
[�1, H0] +

(
z + a −

∑

|n|≤α1

ωnun

)
�1

]
R0
L ,a�0

= G(L , z, ω)

(
A0(z, a, α1, H0) +

∑

|n|≤α1

ωn B0,n(a, α1)

)
(4.21)
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where we used the definition

A0(z, a, α1, H0) = ([�1, H0] + (z + a)�1
)
R0
L ,a�0

B0,n(a, α1) = −un�1R
0
L ,a�0 (4.22)

and in passing from equality 6 to equality 7 of the above equation, used the fact that the
support of �1 is far away from the boundary of �L ,�L+1, so V ω

L , V ω
L+1 agree on the

support of�1 and also the commutators of�1 with H0,L , H0,L+1 are the same and agree
with that of H0. In the above A0, B0,n are operators independent of ω, each of which is
in Ip, by Eq. (4.19). Using the definitions and properties of � j , we see that

�2A0(z, a, α1, H0) = A0(z, a, α1, H0), and �2B0,n(a, α1) = B0,n(a, α1).

Therefore we can repeat this argument by defining for j = 0, . . . d,

A j (z, a, α2 j+1, H0) = ([�2 j+1, H0] + (z + a)�2 j+1)R
0
L ,a�2 j

B j,n(a, α2 j+1) = −un�2 j+1R
0
L ,a�2 j , |n| ≤ α2 j+1, (4.23)

by using the fact that

�2 j A j−1(z, a, α2 j+1, H0) = A j−1(z, a, α2 j+1, H0), and

�2 j B j−1,n(a, α2 j+1) = Bj−1,n(a, α2 j+1), (4.24)

for each j = 1, 2, . . . d. We can then re-write the Eq. (4.21) as

G(L , z, ω) = G(L , z, ω)

d←∏

j=0

(
A j (z, a, α2 j+1, H0) +

∑

|n|≤α2 j+1

ωn B j,n(a, α2 j+1)

)
,

(4.25)

where the arrow on the product indicates an ordered product with the operator sum with
a lower index j coming to the right of the one with a higher index j .

Now, counting the number of terms there are in the product, we see that each sum∑
|n|≤α2 j+1

has a maximum of (2α2 j+1)
d = 2d(2 j+4) terms. A simple computation shows

that there are a maximum of 2d
2(d+4) terms, if we completely expand out the product. In

other words the number of terms are dependent on d but not on L .
We will now write the expression in Eq. (4.25) as

G(L , z, ω) =
∑

|n|≤α2d+2

G(L , z, ω)un

( d+1∑

r1,r2=0

ωr1
n ω

r2
0 Pn,0(k, r, ω)

)
, (4.26)

where Pn,0(k, r), r = (r1, r2) is a trace class operator valued function of ω, but inde-
pendent of ω0, ωn for each k, r . Note that even though Ad and Bd are supported in
supp(�d),

∑
|n|≤α2d+1

un is not one on the support of �d , so we have to take a larger
sum in the above expression. We can see from the structure of the product that the trace
norms satsify a bound

sup
�(z)∈J,0<�(z)≤1

‖Pn,0(k, r)‖1 ≤ C7(d, a, J ),
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since an inspection of the product in Eq. (4.25), shows that in any product, z and {ωñ, ñ �=
0, n} occurs at most to a power of d + 1. The uniform boundedness of the trace norm
as a function of z, ωñ is clear since these variables are in compact sets. As for the
finiteness of the trace norm itself, we note that any product has d +1 factors from the set
{A j , Bj , j = 0, . . . , d}, hence by the claim in Eq. (4.20), such a product is trace class.

Using Eqs. (4.10, 4.13, 4.14, 4.15) and Eq. (4.26) in Eq. (4.13), we get, using the fact
that Pn,0() are independent of ω0, ωn ,

T (L , �, Q, z)

=
∑

∑k(L+1)+1
n=1 kn=l

kn≥0

(
�

k0,...,kκ(L+1)+1

) ∫

Rκ(L+1)−1

∑

|n|≤α2d+2

d+1∑

r1,r2=0

tr

(
Q

[ ∫
u0
(
(Hω

L+1 − z)−1

−(Hω
L − z)−1)unωr2

n ω
r1
0 ρ(kn)

n (ωn)ρ
(k0)
0 (ω0)dωndω0

]
Pn,0(k, r, ω)

)

×
∏

m∈�L+1\{0,n}
ρ(km )
m (ωm)dωm . (4.27)

Wenowestimate the absolute value of the trace inEq. (4.27) using theTheorem2.2(1),
taking the φR that appears there, for bounding the norm of the integral with respect to
ωn, ω0, since 2s < τ .

|T (L , �, Q, z)|

≤
∑

∑k(L+1)+1
n=1 kn=l

kn≥0

( �
k0,...,kκ(L+1)+1

) ∫

Rκ(L+1)−2

∑

|n|≤α2d+2

d+1∑

r1,r2=0

‖Q‖‖Pn,0(k, r, ω)‖1

[ ∫ ∥∥(u0 + un)
1
2
(
(Hω

L+1 − z)−1 − (Hω
L − z)−1)(un + u0)

1
2
∥∥sφR(ω0)φR(ωn)dωndω0

]

∏

m∈�L+1\{0,n}
|ρ(km )
m (ωm)|dωm . (4.28)

In the above inequality we also used the fact that u0(u0 + un)−
1
2 , un(u0 + un)−

1
2 are

both bounded uniformly in n and replaced u0, un by (u0 + un)
1
2 on either side of the

resolvents.
We would prefer to work with probability measures in above equation, so we normal-

ize |ρ(km )
m (x)|dx by their L1 norm. We also do the same for φR. We then follow the steps

involved in obtaining the inequality (3.21). We set η(m, ρ) = (supn∈Zd ,kn≤m ‖ρkn
n ‖1 +

‖ρkn
n ‖∞) + ‖φR‖1 to get,
|T (L , �, Q, z)|

≤
∑

∑k(L+1)+1
n=1 kn=l

kn≥0

(
�

k0,...,kκ(L+1)+1

) ∑

|n|≤α2d+2

C9(a, d, J, η(ρ,m))

× EL+1

[
‖(u0 + un)

1
2
(
(Hω

L+1 − z)−1 − (Hω
L − z)−1)(un + u0)

1
2 ‖s

]
, (4.29)
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where EL+1 is the expectation with respect to the probability density

φR(ω0)dω0

‖φR‖1
φR(ωn)dωn

‖φR‖1
∏

m∈�L+1\{0,n}

|ρ(km )
m (ωm)|
‖ρ(km )

m ‖1
dωm .

We define a smooth radial function 0 ≤ � ≤ 1 such that

�(x) =
{
1, |x | ≤ L/2,
0, |x | > L/2 + 4

.

Then �L
√
u0 + un = √

u0 + un, |n| ≤ α2d+2. Following the steps similar to obtaining
the inequality (4.21), using the relation (H0,L + a)R0

L ,a = I d, we have

(u0 + un)
1
2
(
(Hω

L+1 − z)−1 − (Hω
L − z)−1)(un + u0)

1
2

= (u0 + un)
1
2
(
(Hω

L+1 − z)−1[�L , H0](Hω
L − z)−1)(un + u0)

1
2

= (u0 + un)
1
2 (Hω

L+1 − z)−1[�L , H0]
[
R0
L ,a + (Hω

L − z)−1 − R0
L ,a

]
(un + u0)

1
2

= (u0 + un)
1
2 (Hω

L+1 − z)−1[�L , H0]R0
L ,a

(
I + (z + a − V ω

L )(Hω
L − z)−1)(un + u0)

1
2

= (u0 + un)
1
2 (Hω

L+1 − z)−1
[

−
d∑

i=1

∂2

∂x2i
�L + 2

d∑

i=1

(
∂

∂xi
�L

)(
− i

∂

∂xi
+ Ai

)]

× R0
L ,a

(
I + (z + a − V ω

L )(Hω
L − z)−1)(un + u0)

1
2 . (4.30)

We take a smooth bounded radial function 0 ≤ ϒL ≤ 1 which is 1 in a neighbourhood
of L/2 ≤ r ≤ L/2 + 4 and zero outside a neighbourhood of radial width 10. Then using
the fact that

ϒL

( d∑

i=1

∂2

∂x2i
�L

)
=
( d∑

i=1

∂2

∂x2i
�L

)

ϒL

(
∂

∂xi
�L

)
=
(

∂

∂xi
�L

)
, f or all i = 1, . . . , d (4.31)

and (4.30), we can now bound the expectation in the inequality (4.29),by

EL+1

[
‖(u0 + un)

1
2
(
(Hω

L+1 − z)−1 − (Hω
L − z)−1)(un + u0)

1
2 ‖s

]

≤ EL+1

[
‖(un + u0)

1
2 (Hω

L+1 − z)−1ϒL‖s
∥∥∥∥

[(
−

d∑

i=1

∂2

∂x2i
�L

)
+ 2

d∑

i=1

(
∂

∂xi
�L

)(
− i

∂

∂xi
+ Ai

)]
R0
L ,a

∥∥∥∥
s

(
1 + |z| + a + ‖V ω

L ‖∞)‖χ�L (H
ω
L − z)−1√u0 + un‖s

]
. (4.32)
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Then using Cauchy–Schwartz inequality and Hypothesis 4.2 we get an exponential
bound for the first factor, a uniform bound for the second factor after noting that
dist (supp(ϒL , {n : |n| ≤ α2d + 1}) ≥ L/4, ‖�L‖ ≤ (2L)d , we get the estimate

sup
z:�(z)∈J,�(z)≤1

E
ω

[
‖(u0 + un)

1
2
(
(Hω

L+1 − z)−1 − (Hω
L − z)−1)(un + u0)

1
2 ‖s

]

≤ C10(a, J, d)Lde−ξ2s L . (4.33)

Using this inequality in (4.29) we get the bound

sup
z:�(z)∈J,�(z)≤1,

Q
�≤m

|T (L , �, Q, z)|

≤ C11(a, d, J, η(ρ,m))(L + 1)d(m+1e−ξ2s L , (4.34)

as the combinatorial sum
∑

∑k(L+1)+1
n=1 kn=l

kn≥0

(
�

k0,...,kκ(L+1)

)

is easily seen to add up to (L + 1)d�, which is still polynomial in L . This bounds shows
the summability in Eq. (4.9) completing the proof. �	
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A. Appendix

We collect a few Lemmas in this appendix that are used in the main part of the paper.
All these Theorems are well known and proved elsewhere in the literature, but we state
them in the form we need and also give their proofs for the convenience of the reader.

Lemma A.1. Consider a positive function ρ ∈ L1(R, dx) and J ⊂ R an interval. Let
F(z) = ∫ 1

x−z ρ(x)dx. Then, for any m ∈ N,

ess sup
x∈J

∣∣∣∣
dm

dxm
ρ

∣∣∣∣ (x) < ∞

whenever

sup
z∈C+, �(z)∈J

∣∣∣∣
dm

dxm
�F

∣∣∣∣ (z) < ∞.
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Proof. Since ρ(x)dx is a finite positive measure, F is analytic inC+, and the assumption

on F implies that functions d�

dz�
�F are bounded harmonic functions in the strip {z ∈

C
+ : �(z) ∈ J }, 0 ≤ � ≤ m. Therefore the boundary values

h�(E) = lim
ε→0

d�

dz�
�F(E + iε)

exist for Lebesgue almost every E ∈ J and h� are essentially bounded in J , 0 ≤ � ≤ m.
For any E0 ∈ J for which h�(E0) is defined for all 0 ≤ � ≤ m and we have for
0 ≤ � ≤ m − 1,

∂�

∂x�
(�F)(E + iε)− ∂�

∂x�
(�F)(E0 + iε) =

∫ E

E0

∂�+1

∂x�+1 (�F)(x + iε) dx, E ∈ J. (A.1)

Since the integrands above are Harmonic functions in the strip, their boundary values
exist, they are uniformly bounded in the strip, so by the dominated convergence theorem
the integral converges to

∫ E

E0

h�+1(x) dx, E ∈ J.

On the other hand the left hand side of Eq. (A.1) converges to h�(E)− h�(E0), showing
that h�(E) is differentiable in J . Since, ρ(x) = 1

π
h0(x), x ∈ J , a simple induction

argument now gives the Lemma. �	
Lemma A.2. On a separable Hilbert spaceH , let A and B be two bounded operators
generating strongly differentiable contraction semi-groups et A, et B respectively, then
for any 0 < s < 1,

∥∥∥et A − et B
∥∥∥ ≤ 21−s |t |s ‖A − B‖s .

Proof. Since et A, et B are strongly differentiable, the fundamental Theorem of calculus
gives the bound,

∥∥∥et A − et B
∥∥∥ =

∥∥∥∥
∫ t

0
e(t−s)A(A − B)esB ds

∥∥∥∥ ≤ |t | ‖A − B‖ .

Since et A, et B are contractions we have the trivial bound
∥∥∥et A − et B

∥∥∥ ≤ 2,

so the Lemma follows by interpolation. �	
Lemma A.3. Let g be a probability density with a τ -Hölder continuous derivative.
Suppose A is a bounded operator on a separable Hilbert space H with �A > 0 and
satisfies

∥∥∥(A + λI )−1
∥∥∥ < C < ∞, λ ∈ supp(g).

Then ∫
g(λ)(A + λI )−1dλ = −

∫ ∞

0
eit A

(∫
g(λ)eitλdλ

)
dt. (A.2)
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Proof. Since (A + λI )−1 is bounded we have, in the strong sense,

(A + λI )−1 = lim
ε↓0(A + ε + λI )−1.

Since�A > 0, the bounded operator (A+iε) is the generator of a contraction semi-group,
so using [59, Corollary 1, Section IX.4] we have

∫
g(λ)(A + iε + λI )−1dλ =

∫
g(λ)

∫
eit (A+iε+λI )dtdλ

=
∫ ∫

g(λ)e(−ε+λ)t ei t Adtdλ. (A.3)

Since g has a τ -Hölder continuous derivative, its Fourier transform is a bounded inte-
grable function. Therefore by Fubini we can interchange the λ and t integrals on the
right hand side of the above equation to get the right hand side of Eq. (A.2). On the other
hand using the fact that

∥∥(A + ε + λI )−1
∥∥ < 2C for 0 < ε < 1

2C and g is a probability
density, we have

lim
ε↓0

∫
g(λ)(A + iε + λI )−1dλ =

∫
g(λ)

[
lim
ε↓0(A + iε + λI )−1

]
dλ

=
∫

g(λ)(A + λI )−1dλ.

This set of equalities when applied to the left hand side of the Eq. (A.2) gives the Lemma
after letting ε go to zero. �	
We give the Lemma below which is a consequence of proofs of results in Stollmann [56]
and Combes et al. [13]. These papers essentially prove the result, but we write it here
since it does not occur in the form we need to use.

Lemma A.4. Suppose A is a self-adjoint operator on a separable Hilbert space H
and suppose B is a non-negative bounded operator. Consider the operators A(t) =
A + t B, t ∈ R, φ ∈ Range(B) and ν

φ

A(t) the spectral measure of A(t) associated with
the vector φ. Suppose μ is a finite absolutely continuous measure with bounded density,
then

sup
z∈C+

∫
�(〈φ, (A(t) − z)−1φ〉)dμ(t) < ∞. (A.4)

In particular the measure
∫

ν
φ

A(t) dt has bounded density.

Proof. We set ν̃ = ∫
ν

φ

A(t) dt , then ν̃ is a positive finite measure. We recall that the
modulus of continuity of a measure ν is defined as

s(ν, ε) = sup{ν([a, a + ε]) : a ∈ R}.
This definition immediately implies that an absolutely continuous measure μ with
bounded density ρ, satisfies s(μ, ε) ≤ ‖ρ‖∞ε. Therefore the Theorem 3.3 of Stoll-
man [56], implies that

s(ν̃, ε) ≤ 6‖B‖‖φ‖s(μ, ε) ≤ C‖ρ‖∞ε.
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This inequality implies that the density of ν̃ is bounded. Since the function

F(z) =
∫

�(〈φ, (A(t) − z)−1φ〉) dμ(t) =
∫

�(
1

x − z
) d ν̃

is positive Harmonic in C
+, by the maximum principle its supremum is attained on R.

The boundary values of F onR exist and equal the density of the measure ν̃ = ∫
ν

φ

A(t) dt
Lebesgue almost everywhere , by Theorem 1.4.16 of Demuth and Krishna [21], giving
the result. �	
Lemma A.5. Consider the operators Hω, Hω

� given in Eq. (4.1) and the discussion fol-
lowing it. Then for anyfinite E ∈ R, the operators u0EHω

�
((−∞, E)), u0EHω((−∞, E))

are trace class for all ω. The traces of these operators are uniformly bounded in ω for
fixed E.

Proof. Wewill give the proof for Hω, the proof for the others is similar. The hypotheses
on Hω imply that it is bounded below and the pair H0, Hω are relatively bounded
with respect to each other, being bounded perturbations of each other, the operators
(H0+a)d EHω((−∞, E)) are bounded for anyfixed (E, a, ω). So takinga in the resolvent
set of H0 and using the fact that u0(H0 + a)−d is trace class we see that

u0EHω(−∞, E) = u0(H0 + a)−d(H0 + a)d EHω(−∞, E),

is a product of a trace class operator and a bounded operator for each fixed (ω, a, E)

with a positive and large. Therefore u0EHω(−∞, E) is also trace class for each E, ω.
The uniform boundedness statement is obvious from the assumptions on the random
potential. �	
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