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Abstract: We reexamine the notions of generalized Ricci tensor and scalar curvature on
a general Courant algebroid, reformulate them using objects natural w.r.t. pull-backs and
reductions, and obtain them from the variation of a natural action functional. This allows
us to prove, in a very general setup, the compatibility of the Poisson–Lie T-duality with
the renormalization group flow and with string background equations. We thus extend
the known results to a much wider class of dualities, including the cases with gauging
(so called dressing cosets, or equivariant Poisson–Lie T-duality). As an illustration, we
use the formalism to provide new classes of solutions of modified supergravity equations
on symmetric spaces.
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by the GAČR Grant EXPRO 19-28628X.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-020-03736-x&domain=pdf


308 P. Ševera, F. Valach

5.3 Equivariant CAs and reduction . . . . . . . . . . . . . . . . . . . . . 323
5.4 Dressing cosets, or equivariant Poisson–Lie T-duality . . . . . . . . . 325

6. Differential Graded Symplectic Manifolds, Spinor Bundles and Dirac Gener-
ating Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
6.1 CAs as dg symplectic manifolds . . . . . . . . . . . . . . . . . . . . 327
6.2 Differential operators with Clifford coefficients . . . . . . . . . . . . 328
6.3 Generating Dirac operator . . . . . . . . . . . . . . . . . . . . . . . . 329
6.4 Spinors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
6.5 Spinors and reduction of CAs . . . . . . . . . . . . . . . . . . . . . . 332

7. Poisson–Lie T-Duality and Type II SUGRAs . . . . . . . . . . . . . . . . 332
7.1 Type II SUGRAs and exact CAs . . . . . . . . . . . . . . . . . . . . 332
7.2 Poisson–Lie T-duality of type II SUGRAs . . . . . . . . . . . . . . . 333
7.3 Equivariant PL T-duality of type II SUGRAs . . . . . . . . . . . . . . 334

8. Examples: Symmetric Spaces . . . . . . . . . . . . . . . . . . . . . . . . 334
8.1 Building blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
8.2 Putting the blocks together . . . . . . . . . . . . . . . . . . . . . . . 336
8.3 The generalized SUGRA equations . . . . . . . . . . . . . . . . . . . 337
8.4 Constructing exact Courant algebroids . . . . . . . . . . . . . . . . . 339
8.5 First ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
8.6 Second ansatz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
8.7 Second ansatz: examples . . . . . . . . . . . . . . . . . . . . . . . . 341

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

1. Introduction

Given a Riemannian metric g and a closed 3-form H on a manifold M one can define
a 2-dimensional σ -model with the target M . If f : � → M is a smooth map from a
surface � with a (pseudo)conformal structure, its action is

S( f ) =
∫

�

g(∂ f, ∂̄ f ) +
∫

Y
f ∗ H (1)

where Y is a 3-fold with boundary � and f is extended to Y .
The pair (g, H) is equivalent to a generalized metric in an exact Courant algebroid

(CA). If in place of an exact CA we use an arbitrary CA E , a generalized metric in E
can still be used to define a 2-dim σ -model [27]. These more exotic 2-dim σ -models
are the basis of Poisson–Lie T-duality: if a suitable pull-back of the CA E turns it to an
exact CA, the exotic σ -model turns to a σ -model of the type (1) for a certain (M, g, H),
and if there are several different suitable pullbacks of E then all these σ -models are
isomorphic as Hamiltonian systems (up to finitely many degrees of freedom).

If one adds the possibility of gauging, corresponding to reductions of equivariantCAs,
the above phenomenon generalizes to equivariant Poisson–Lie T-duality (introduced as
“dressing cosets” in [21]), significantly increasing the number of examples.

Not only g and H , but also other massless fields appearing in string theory, such as
the dilaton and the Ramond–Ramond fields, can be conveniently described in terms of
exact CAs [5] (a similar description works for the gauge field in the type I and heterotic
case [8] where one needs certain transitive CAs). The string background equations and
the corresponding action functionals look cleaner when seen through this perspective.

A natural question is whether one can define a string effective action functional,
dilaton, Ramond–Ramond fields, etc., for arbitrary (non-exact) CAs, in a way that would
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prove that Poisson–Lie T-duality is compatible with string background equations, with
Ricci flow (renormalization group flow), etc.

We solve this problem as follows. For any CA E and any generalized metric V+ ⊂ E
we define a Laplacian �V+ acting on half-densities, and consider the “generalized string
effective action functional” SE (V+, σ ) = − 1

2

∫
σ�V+σ (where σ is a half-density). The

gradient flow of this functional (for a fixed σ ) on the space of generalized metrics is
the generalized Ricci flow, and the Euler-Lagrange equations of SE are the generalized
string background equations, with σ playing the role of the dilaton. Ramond–Ramond
fields enter the picture as spinors and de Rham’s d is replaced with the generating Dirac
operator from [1].

For many purposes one can replace the half-density/dilaton by a divergence operator
[9]. Divergence operators, just as generalized metrics and spinors, are well behaved
under pull-backs and reductions of CAs, i.e. operations involved in Poisson–Lie T-
duality. Therefore, once we reformulate the string background equations or the Ricci
flow in these terms, it is trivial to prove the above compatibility.

Such results were only known in special cases [17,28,33] and required extensive
calculations. The advantage of our approach is that it holds in the general case (including
the equivariant Poisson–Lie T-duality) and at the same time gives simple proofs.

More precisely, we prove the following:
The bosonic part of the equations of motion, for both type I/heterotic and type II

modified supergravities, are compatible with the equivariant Poisson–Lie T-duality.
Here the attribute ’modified’ corresponds to the generalization of the usual super-

gravity equations, introduced in [2]. Supposing the relevant divergence operator is given
by a half-density, we recover the usual supergravity setup.

This result is formulated and proved in 5.20 for the type I/heterotic case (in addition
to the case of the bosonic string), and in 7.2 for the type II case (see also definition 4.9 and
the subsequent discussion). Asmentioned above, it follows from themore general results
about the compatibility of the equivariant Poisson–Lie T-duality with the generalized
Ricci tensor and generalized scalar curvature and/or the Laplacian operator �V+ .

A part of the motivation for this work was to understand from the perspective of
equivariant Poisson–Lie T-duality the η-deformed Ad S5 × S5, found in [7], which is a
solution of modified type IIB SUGRA equations [2]. As an example of application of
our formalism, we work out several new families of similar solutions, with one or more
parameters.

An interesting open problem is to reconcile our approach via CAs (having prede-
cessors e.g. in [4,5,16,17,25–28]) with the Double Field Theory (DFT) approach of
[11,12,15]. This might follow the work [31], whose connection to DFT was later eluci-
dated in [13,14].

The article as structured as follows. We start in Sect. 2 by reviewing the notion of
Courant algebroids, generalized metrics and divergences. Then, in Sect. 3 we present the
generalized Ricci tensor and flow and in Sect. 4 the Laplacian�V+ , the generalized string
effective action, and the generalized scalar curvature. Section 5 reviews the concept of
Poisson–Lie T-duality, including also the cases of spectators and dressing cosets. It also
contains proofs of the compatibility of the Poisson–Lie T-duality with string background
equations in the cases of bosonic, type I, and heterotic string theory. Section 6 is devoted
to the formalism needed to deal with the Ramond–Ramond fields. This allows us to
extend the results of Sect. 5 to the type II string theory, which is done in Sect. 7. Finally,
in Sect. 8,we construct the aforementioned families of solutions ofmodified supergravity
equations of motion.
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2. Courant Algebroids

In this section we summarize some basic definitions and facts concerning Courant alge-
broids.

2.1. General and exact Courant algebroids. Courant algebroids, introduced in [23], are
a generalization of Lie algebras with an invariant inner product. By definition, a Courant
algebroid (CA) is a vector bundle E → M endowed with an non-degenerate symmetric
bilinear form 〈 , 〉 on its fibres, with a vector bundlemap ρ : E → T M called the anchor,
and with aR-bilinear map [ , ] : �(E)×�(E) → �(E) such that for all u, v, w ∈ �(E)

and f ∈ C∞(M)

[u, [v,w]] = [[u, v], w] + [v, [u, w]]
[u, f v] = f [u, v] + (u · f )v

u · 〈v,w〉 = 〈[u, v], w〉 + 〈v, [u, w]〉
[u, v] + [v, u] = dE 〈u, v〉,

where u · f := ρ(u) f and dE f ∈ �(E) is given by 〈u, dE f 〉 = u · f .
A CA is exact if the sequence

0 → T ∗M
ρt

−→ E
ρ−→ T M → 0 (2)

is exact. Exact CAs are classified by H3(M,R): if we split the exact sequence (2) so
that T M ⊂ T M ⊕ T ∗M ∼= E is 〈 , 〉-isotropic then the 3-form H ∈ 	3(M) given by

H(u, v, w) := 〈[u, v], w〉 ∀u, v, w ∈ �(T M) ⊂ �(E)

is closed and its cohomology class is independent of the splitting. The Courant bracket
[, ] on E ∼= T M ⊕ T ∗M is

[(u, α), (v, β)]=([u, v],Luβ − ιvdα + H(u, v, ·)) ∀u, v ∈ �(T M), α, β ∈ �(T ∗M),

where L is the Lie derivative, and 〈·, ·〉 is given by the natural pairing on T M ⊕ T ∗M .

Example 2.1. Let g be a Lie algebra with a non-degenerate invariant symmetric pairing
〈, 〉 (i.e. g is a CA over a point),G a connected Lie group integrating g, andH ⊂ G a Lie
subgroup such that h⊥ = h (i.e. h ⊂ g is a Lagrangian Lie subalgebra). Then the trivial
vector bundle g×G/H → G/H is naturally an exact CA: the pairing and the bracket of
constant sections are the same as in g, and the anchor map ρ is the action of g on G/H.

Exact CAs of this type play an important role in Poisson–Lie T-duality.

2.2. Generalized (pseudo)metrics and divergences. Let E be a CA. We say that a sub-
bundle V+ ⊂ E is a generalized pseudometric if 〈·, ·〉|V+ is non-degenerate. We define
V− := V ⊥

+ . In the special case when 〈·, ·〉|V+ is positive-definite and 〈·, ·〉|V− is negative
definite, we shall say V+ is a generalized metric.

Throughout the text we will identify V+, V− (and also E) with their duals using 〈·, ·〉.
Furthemore, we will denote the orthogonal projections to V± by the subscripts ± and
will also frequently write a+ and b−, instead of just a and b, for sections (or elements)
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in V+ and V−, respectively. For example, [a+, b−]+ denotes the projection of [a+, b−] to
V+.

If E is exact and V+ ⊂ E is a generalized metric then rank V+ = 1
2 rank E and there

exists a unique splitting E ∼= T M ⊕ T ∗M such that V+ is the graph of a Riemannian
metric g, i.e.

V+ = {v + g(v, ·) | v ∈ �(T M)}.
Thus, a generalized metric in an exact CA is the same as a pair (g, H), where H is
the closed 3-form given by the splitting. The data (g, H) is what is needed to define a
2-dimensional σ -model with the target M .

Example 2.2. Continuing Example 2.1, if V+ ⊂ g is a generalized metric then the con-
stant subbundle V+ × G/H of the exact CA g × G/H is a generalized metric, and thus
gives rise to a pair (g, H) on G/H and can be used to define a 2-dim σ -model with the
target G/H.

Poisson–Lie T-duality (in its simplest form) is the statement that this σ -model, as a
Hamiltonian system, is (basically) independent of H and can be formulated in terms of
V+ ⊂ g only.

More generally, an exact CA E together with a generalized pseudometric V+ trans-
verse to T ∗M and satisfying rank V+ = 1

2 rank E is equivalent to a pair (g, H) of a
pseudo-Riemannian metric and a closed 3-form.

Following [1,9], a divergence on E is a R-linear map div : �(E) → C∞(M) such
that

div( f a) = f div a + a · f (∀a ∈ �(E), f ∈ C∞(M)).

Divergences form an affine space over �(E): if div and div′ are divergences then
div− div′ = 〈e, ·〉 for a section e of E .

If μ is an everywhere non-zero density on M then divμ a := μ−1Lρ(a)μ is a diver-
gence.

Proposition 2.3. If div is a divergence on a CA E → M and μ a density on M, and if
e ∈ �(E) is given by div− divμ = 〈e, ·〉 then the derivation [e, ·] of �(E) is independent
of μ. For a, b ∈ �(E) and f ∈ C∞(M) we have

〈[e, a], b〉 = div[a, b] − a · div b + b · div a, e · f = div dE f.

In particular, the expression

div[a+, b−] − a+ · div b− + b− · div a+, (3)

a+ ∈ �(V+) and b− ∈ �(V−), is C∞(M)-linear in both a+ and b−.

Proof. Since

divμ[a, b] − a · divμ b + b · divμ a = 0 ∀a, b ∈ �(E),

we have

div[a, b] − a · div b + b · div a = 〈e, [a, b]〉 − a · 〈e, b〉 + b · 〈e, a〉
= −〈[a, e], b〉 + b · 〈e, a〉 = 〈[e, a], b〉.

As 〈[e, a], b〉 is independent of μ for every a, b ∈ �(E), so is [e, ·]. The C∞-bilinearity
of 〈[e, a+], b−〉 is easily checked. As ρ(dE f ) = 0, we have divμ dE f = 0 and thus
e · f = 〈e, dE f 〉 = div dE f − divμ dE f = div dE f .
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We shall say that div is compatible with V+ if V+ is invariant under the derivation
[e, ·] (i.e. if [e, a+] ∈ �(V+) ∀a+ ∈ �(V+)), i.e. if

div[a+, b−] − a+ · div b− + b− · div a+ = 0. (4)

This is always true if div = divμ for a density μ (as then [e, ·] = 0).

Example 2.4. Suppose that E → M is exact and V+ ⊂ E a generalized metric, corre-
sponding to a pair (g, H). As noticed above, V+ gives us a splitting E ∼= T M ⊕ T ∗M .
Let μg be the density on M given by g. Any divergence on E is of the form div =
divμg +〈(X, α), · 〉 for some (X, α) ∈ �(T M ⊕ T ∗M), and div is compatible with V+
iff

LX g = 0 and dα = iX H.

Such pairs (X, α) serve as a replacement of dilaton in modified SUGRA [2,32]. An
actual dilaton φ exists if div = dive−2φμg

. In this case X = 0 and α = −2 dφ is exact.

For the existence of a dilaton it is thus enough to know that X = 0 and H1(M,R) = 0.
(The idea of seeing divergencies on exact CAs as a generalization of dilaton was put
forward in [9]).

Example 2.5. Continuing Examples 2.1 and 2.2, there is a natural divergence div on the
exact CA g×G/H, given by div u = 0 for every u ∈ g (constant section of the CA). This
divergence is compatible with the generalized metrics of the form V+ × G/H (V+ ⊂ g)
as (4) is trivially satisfied for constant sections a+, b−.

The divergence div is of the form divμ iff μ is a g-invariant density on G/H (as
div u = 0 ∀u ∈ g) and such aμ exists iff h is a unimodular Lie algebra (g is automatically
unimodular due to its invariant pairing 〈, 〉). (This explains why in Poisson–Lie T-duality,
the dilaton exists only in the case of unimodular h’s, and is otherwise replaced by a
generalized dilaton of Example 2.4).

The derivation [e, ·], see Proposition 2.3, satisfies [e, a] = 0 for every constant
section a ∈ g, i.e. it is completely determined by the vector field X := ρ(e), and the
formula e · f = div dE f gives us

X = ρ(eα)ρ(eα)

where eα is a basis of g and eα is the dual basis of g (X is written as a 2nd order differential
operator, but is in fact a g-invariant vector field on G/H).

3. Generalized Ricci Tensor and Generalized Ricci Flow

Any generalized (pseudo)metric V+ ⊂ E comes with a natural infinitesimal deformation
of V+ in E , defined up to inner derivations of E [9,28]. In this section we give a new
definition of this deformation and prove its basic properties.

Definition 3.1. Thegeneralized Ricci tensor GRicV+,div, corresponding to apair (V+, div),
is the map GRicV+,div : �(V+) × �(V−) → C∞(M) given by

GRicV+,div(a+, b−) := div[b−, a+]+ − b− · div a+ − TrV+[[ · , b−]−, a+]+ (5)
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See [5,8–10,16,28] for equivalent definitions using auxiliary connections; the fact
that GRic really depends on a pair (V+, div)was observed in [9]. If the CA E is not clear
from the context, we shall use the notation GRicE

V+,div
. In the definition we use the fact

that [ · , b−]− : �(V+) → �(V−) and [ · , a+]+ : �(V−) → �(V+) are C∞(M)-linear,
so TrV+[[ · , b−]−, a+]+ is well-defined. A motivation for this definition can be found
below, in Equation (7).

Proposition 3.2. GRicV+,div is C∞(M)-bilinear, i.e. it is a section of V ∗
+ ⊗ V ∗−.

Proof. We have

TrV+[[ · , f b−]−, a+]+ = f TrV+ [[ · , b−]−, a+]+ + [b−, a+]+ · f.

On the other hand,

div[ f b−, a+]+ = f div[b−, a+]+ + [b−, a+]+ · f

and thus GRic is C∞(M)-linear in b−. The C∞(M)-linearity in a+ then follows from

GRicV−,div(b−, a+) = GRicV+,div(a+, b−)

+ div[a+, b−] − a+ · div b− + b− · div a+ (6)

and from the C∞(M)-bilinearity of (3).

Importantly, in the case of an exact CA, we recover the usual Ricci tensor:

Proposition 3.3. Suppose E, V+ is an exact CA with a generalized (pseudo)metric corre-
sponding to a pair (g, H). Let Ricg,H be the Ricci tensor of ∇ = ∇g,H , the g-preserving
connection with the torsion given by H, and let div = divμg = Tr∇ ◦ρ where μg is the
density given by g. Then

GRicV+,div(a+, b−) = Ricg,H (ρ(a+), ρ(b−)).

Proof. The key point is the following observation:

ρ([b−, a+]+) = ∇ρ(b−)ρ(a+), ρ([a+, b−]−) = ∇̃ρ(a+)ρ(b−),

where ∇̃ is the connection with the opposite torsion, i.e. ∇̃X Y = ∇Y X + [X, Y ]. For this
fact, see [10]. The proposition then follows from the identity

Ric∇(X, Y ) = div∇ ∇Y X − Y div∇ X − Tr(∇ X ∇̃Y ), (7)

valid for the Ricci tensor of any connection ∇ on T M , where div∇ X := Tr∇ X .

Let us now show how GRic transforms when we change the divergence.

Proposition 3.4. If div′ = div + 〈e, ·〉 then

GRicV+,div′(a+, b−) − GRicV+,div(a+, b−) = −〈[e+, a+], b−〉
Proof. We have

〈e, [b−, a+]+〉 − b− · 〈e, a+〉 = −〈[b−, e+]+, a+〉 = 〈[e+, b−], a+〉 = −〈[e+, a+], b−〉.
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Any linear map V+ → V−, in particular GRicV+,div (understood as a section of
V ∗
+ ⊗ V−), can be seen as an infinitesimal deformation of V+ in E . The flow of V+ given

by GRicV+,div is the generalized Ricci flow (we do not attempt to give conditions for
short-time existence of this flow). The previous proposition says that, up to infinitesimal
automorphisms of E , this flow is independent of the choice of div: the difference of the
flows given by div′ and by div is the inner derivation −[e+, · ] of E .

In the case of an exact CA the generalized Ricci flow is, by Proposition 3.3, the 1-loop
renormalization group flow of the 2-dimensional σ -model given by the pair (g, H); for
H = 0 it is the usual Ricci flow of g.

Example 3.5. Continuing Example 2.5, we have

GRicg×G/H
V+×G/H,div(a+, b−) = GRicgV+,0

(a+, b−)

= −TrV+[[ · , b−]−, a+]+ (∀a+ ∈ V+, b− ∈ V−)

In particular, the generalized Ricci flow of V+×G/H in the exact CA g×G/H is simply
equal (pointwise in G/H) to the generalized Ricci flow of V+ ⊂ g (which implies a
short-time existence of the flow, as the latter is an ODE). In other words, Poisson–Lie
T-duality (in the case of no spectators) is compatible with the 1-loop renormalization
group flow.

Remark 3.6. If div = divμ +〈e, ·〉 for a density μ and a section e ∈ �(E), we have, by
(6) and Proposition 2.3,

GRicV−,div(b−, a+) = GRicV+,div(a+, b−) + 〈[e, a+], b−〉
In particular, if div is compatible with V+ (i.e. if [e, ·] preserves V+ ⊂ E) then GRicV−,div
(b−, a+) = GRicV+,div(a+, b−).

A natural question is, if div is compatible with V+, whether it stays compatible during
the generalized Ricci flow. This is equivalent to [e, ·]-invariance of GRicV+,div, i.e. to

e · GRicV+,div(a+, b−) = GRicV+,div([e, a+], b−) + GRicV+,div(a+, [e, b−]).
As V+ is assumed to be [e, ·]-invariant, this equation is satisfied provided div is [e, ·]-
invariant. As

e · div a − div[e, a] = a · (
divμ e + 1

2 〈e, e〉),
a sufficient condition is that the function divμ e + 1

2 〈e, e〉 (which depends only on div
and not on the choice of its splitting div = divμ +〈e, ·〉) is constant along the integral
leaves of E .

4. Laplacian, String Effective Action, and Generalized Scalar Curvature

Given a generalized (pseudo)metric V+ ⊂ E we define in this section a natural 2nd-
order differential operator (Laplacian) �V+ acting on half-densities. The functional
SE (V+, σ ) := − 1

2

∫
M σ�V+σ , where σ is a half-density, is a generalization of the low

energy string effective action; its gradient flow (for a fixed σ ) is the generalized Ricci
flow.
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4.1. Computing with a local frame. Suppose that E → M is a CA and that eα is a
local basis of E such that 〈eα, eβ〉 are constant functions. It is easy to see that the
expression cαβγ := 〈eα, [eβ, eγ ]〉 is totally antisymmetric. If we change the frame eα

by an infinitesimal orthogonal transformation δeα = Aβ
αeβ , for Aαβ skew-symmetric

(indices are lowered and raised using 〈, 〉), we obtain (see [24], formulas 3.3 and 4.7)

δcαβγ = 3Aδ[αcβγ ]δ − 3e[α · Aβγ ]. (8)

If V+ ⊂ E is a generalized (pseudo)metric, we shall furthermore suppose that the
(local) basis eα is the union of a basis ea of V+ and of a basis eā of V− (in general,
α, β, . . . will correspond to the basis of E and a, b, . . . and ā, b̄, . . . to the bases of V+
and of V− respectively).

4.2. Laplacian. Given a generalized (pseudo)metric V+ ⊂ E there is a natural 2nd-order
formally self-adjoint operator �V+ acting on half-densities on M . To define it we use
local bases ea and eā of V+ and V− as above.

Definition 4.1. The Laplacian given by a generalized (pseudo)metric V+ ⊂ E is the
differential operator acting on half-densities on M

�V+ := 4Lρ(ea)Lρ(ea) − 1

6
cabc cabc − 1

2
cabc̄ cabc̄.

Proposition 4.2. �V+ is well defined, i.e. it does not depend on the choice of the local
trivialization of E.

Proof. Suppose we make an infinitesimal change of the local basis ea of V+ given by
δea = Ab

aeb for Aab skew-symmetric. (The operator �V+ is clearly independent of the
choice of the basis eā). Let us examine the transformation properties of the respective
terms in the definition of �V+ .

A straightforward calculation (using the fact that when acting on half-densities, one
has L f u = f Lu + 1

2Lu f ) gives

δ(4Lρ(ea)Lρ(ea)σ ) = 2(Lρ(ea)Lρ(eb) Aba)σ = ([ea, eb] · Aba)σ.

For the rest, let us extend A from
∧2 V+ to

∧2 E by setting Aāb = Aab̄ = Aāb̄ = 0.
Using (8) we have

−1

6
δ(cabccabc) = −(ec · Aab)c

abc = −[ea, eb]+ · Aab,

−1

2
δ(cabc̄cabc̄) = −(ec̄ · Aab)c

abc̄ = −[ea, eb]− · Aab,

which combines with δ(Lρ(ea)Lρ(ea)σ ) to give 0.

Remark 4.3. When V+ = E , the operator �V+ is actually a function, namely 8 times the
square of the canonical generating Dirac operator. See Remark 6.3.

Consider a pseudo-Riemannian manifold (M, g) with a closed 3-form H . Let E ,
V+ be the corresponding exact CA with generalized pseudometric. Let R be the scalar
curvature of g and μg the density on M given by g. In this case we can express �V+ in
terms of familiar quantities:
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Proposition 4.4. For any f ∈ C∞(M) we have

�V+( f μ
1/2
g ) = μ

1/2
g (2�g − 1

2 R + 1
4 H2) f,

where H2 = 1
3! Habc Habc and �g is the usual Laplace operator acting on functions on

M.

Proof. For a fixed point p ∈ M choose a local normal basis of vector fields Ea such that
g(Ea, Eb) are constant functions (normalitymeans�a

bc = 0 at p,where theChristoffel’s
symbols �a

bc are defined by ∇Ec Eb = �a
bc Ea and ∇ is the Levi-Civita connection; in

particular [Ea, Eb] = 0 at p). Then ea = Ea + g(Ea, ·) ∈ �(E) form a basis of V+
and 〈ea, eb〉 = 2g(Ea, Eb). If we denote by Ea the dual basis (of T M) to Ea , then
ea = 1

2 (Ea + g(Ea, ·)).
Observe that

Lρ(ea)μ
1/2
g = LEa μ

1/2
g = 1

2μ
1/2
g tr∇Ea = 1

2�
b
abμ

1/2
g

hence at p (using ρ(ea) = 1
2 Ea and �a

bc|p = 0)

4Lρ(ea)Lρ(ea)μ
1/2
g = 2LEaLEa μ

1/2
g = �b a

ab, μ
1/2
g .

A quick glance reveals that at the point p one has [ea, eb] ∈ T ∗M ⊂ E as well as
〈[ea, eb], ec〉 = Habc and thus 〈[ea, eb], ec〉 = 1

8 Habc, which implies

cabγ cabγ = 〈[ea, eb], [ea, eb]〉 = 0,

cabccabc = 〈[ea, eb], ec〉〈[ea, eb], ec〉 = 1
8 Habc Habc.

and since

− 1
6cabc cabc − 1

2cabc̄ cabc̄ = 1
3cabc cabc − 1

2cabγ cabγ ,

we get

μ
−1/2
g �V+μ

1/2
g = �b a

ab, + 1
24 Habc Habc = − 1

2 R + 1
4 H2.

To finish the proof we simply notice that

Lρ(ea)Lρ(ea)( f σ) = f Lρ(ea)Lρ(ea)σ + 2L(ea · f ) ρ(ea)σ

= f Lρ(ea)Lρ(ea)σ + divσ 2(d+ f ) σ

where d+ f = (ea · f ) ea ∈ �(V+). In our case ρ(d+ f ) = 1
2 gradg f , so

Lρ(ea)Lρ(ea)( f μ
1/2
g ) = f Lρ(ea)Lρ(ea)μ

1/2
g + 1

2 (�g f )μ
1/2
g

which concludes the proof.
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4.3. String effective action. If σ denotes a half-density on M and V+ a generalizedmetric
in a CA E → M , let us define the action functional

SE (V+, σ ) = −1

2

∫
M

σ�V+σ.

Example 4.5. If M is compact and E is exact, so that V+ ⊂ E is equivalent to a pair
(g, H), and if σ = e−φμ

1/2
g for a suitable function φ ∈ C∞(M) (i.e. if σ is everywhere

positive), then (see Proposition 4.4)

SE (V+, σ ) =
∫

M

( 1
4 R − 1

8 H2 + ‖dφ‖2g
)

e−2φμg

is the low energy string effective action of the metric g, closed 3-form H , and dilaton φ.

We now examine (for a general CA) the Euler-Lagrange equations coming from the
functional SE (V+, σ ). If σ is a nowhere-vanishing half-density, we shall use the notation

GRicV+,σ := GRicV+,divσ2
.

Theorem 4.6. Under an infinitesimal change of V+ given by ϕ ∈ �(V+ ⊗ V−), for σ

fixed and nowhere vanishing,

δϕ SE (V+, σ ) =
∫

M
GRicV+,σ (ϕ) σ 2.

Proof. We can suppose that the support of ϕ is contained in a region where we chose
bases ea , eā of V+ and V−. If ϕ = ϕāb eb ⊗ eā , let us extend ϕāb to a skew-symmetric
matrix via ϕab = ϕāb̄ = 0, ϕab̄ = −ϕb̄a . Then δϕea = ϕb̄

aeb̄ and δϕeā = ϕb
āeb give us

bases of the deformed V+ and V− and using (8) we get

1

12
δϕ(cabccabc) = 1

2
ϕd̄

acbcd̄cabc,

1

4
δϕ(cabc̄cabc̄) = −1

2
ϕd̄

acbcd̄cabc + ϕd̄
acbc̄d̄ cabc̄ − (ea · ϕbc̄)c

abc̄.

Their sum is

ϕd̄
acbc̄d̄ cabc̄ − (ea · ϕbc̄)c

abc̄ = −TrV+

([[ · , ed̄ ]−, ea]+
)
ϕd̄a − [ed̄ , ea]+ · ϕd̄a

= −TrV+[[ · , ϕd̄aed̄ ]−, ea]+,
corresponding to the last term of (5).

Integration by parts gives us

δϕ(−2
∫

M
σLρ(ea)Lρ(ea)σ ) = 2δϕ

∫
M

(Lρ(ea)σ )(Lρ(ea)σ ) = 4
∫

M
(L

ρ(ϕb̄
aeb̄)

σ )(Lρ(ea)σ )

=
∫

M
σ 2 divσ 2(ϕb̄

aeb̄) divσ 2 ea = −
∫

M
σ 2 ϕb̄

aeb̄ · divσ ea,

corresponding to the second term in (5).
Finally, note that

∫
M (divσ 2 s) σ 2 = ∫

M Lρ(s)σ
2 = 0 for any (compactly supported)

s ∈ �(E), so the first term of (5) does not contribute to the integral.
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Remark 4.7. If M is compact and σ nowhere-vanishing then there is a natural Rieman-
nian metric on the (infinite-dimensional) space GE of generalized metrics in E , given
by (for ϕ1, ϕ2 ∈ �(V+ ⊗ V−) two tangent vectors at a generalized metric V+ ⊂ E)

gσ (ϕ1, ϕ2) = −
∫

M
〈ϕ1, ϕ2〉 σ 2.

Theorem 4.6 now says that GRicV+,σ , seen as a vector field on GE , satisfies

GRicσ = − gradgσ
SE

i.e. that the generalized Ricci flow is a gradient flow.

It is much easier to see how the action transforms under a variation of the half-density,
δσ = ς :

δς SE = −
∫

M
ς�V+σ.

The Euler-Lagrange equations given by the action functional SE are thus (in the case of
nowhere-vanishing σ )

GRicV+,σ = 0 (9a)

�V+σ = 0. (9b)

In the case of an exact CA (see Example 4.5) these are the string background equations.

4.4. Generalized scalar curvature and generalized string background equations. Given
a generalized metric V+ ⊂ E and a non-vanishing half-density, we can define the “gen-
eralized scalar curvature” by

RV+,σ := σ−1�V+σ ∈ C∞(M).

It is useful to extend this definition to cases when in place of σ we have just a divergence
div on E .

Definition 4.8. Let V+ ⊂ E be a generalized (pseudo)metric in an arbitrary CA E , and
let div be a divergence on E . Then the generalized scalar curvature RV+,div is defined
by

RV+,div = σ−1�V+σ + 〈e+, e+〉 + 2 divσ 2 e+

where σ is an arbitrary non-vanishing half-density on M and e ∈ �(E) is given by

div− divσ 2 = 〈e, ·〉.
An easy calculation gives

RV+,div = (div ea)(div ea) + 2ea · (div ea) − 1

6
cabc cabc − 1

2
cabc̄ cabc̄ (10)

which also implies thatRV+,div doesn’t depend on the choice ofσ .RV+,div was previously
introduced (using different means) in [16] and RV+,σ (in the case of exact CAs) in [5].
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Definition 4.9. The generalized string background equations for V+ and div are

GRicV+,div = 0

RV+,div = 0.

In special cases these equations appear in string theory:

• If E is exact and div is given by a half-density σ then they are the string background
equations for the corresponding triple (g, H, φ), see Example 4.5

• As discovered in [8], if E is transitive, ρ|V+ is bijective, and div is given by a half-
density σ , then they are the string background equations for the type I or heterotic
superstring, i.e. the type I SUGRA equations.

• If div is not given by a half-density, but is compatible with V+, then they are the
modified SUGRA equations of [2,32].

Example 4.10. In the setup of Example 2.5 we have

GRicg×G/H
V+×G/H,div = GRicgV+,0

(Example 3.5)

Rg×G/H
V+×G/H,div = Rg

V+,0
= −1

6
cabc cabc − 1

2
cabc̄ cabc̄.

As a result, the generalized metric (or the corresponding pair (g, H)) V+ × G/H ⊂
g × G/H and the divergence div (or the corresponding pair (X, α) - see Example 2.4)
form a solution of the generalized string background equations iff the algebraic equations

GRicgV+,0
= 0

Rg
V+,0

= 0

are satisfied. These equations do not depend on h—this fact is the Poisson–Lie T-
duality for generalized string background equations. Dilaton exists if div = divμ for
a (necessarily g-invariant) density μ on G/H, i.e. if h is unimodular. In that case, as
σ = μ1/2 = e−φμ

1/2
g , we get the dilaton field

φ = 1

2
log

μg

μ
.

5. Poisson–Lie T-Duality

Poisson–Lie T-duality [19] is a generalization of the usual T-duality from torus bundles
to more general manifolds with possibly no isometries. In this section we shall recall its
formulation in terms ofCAs [25–28] and prove its compatibilitywith the renormalization
group flow and with the (generalized) string background equations.

Someof these results are already in the literature, eitherwithout usingCAs [29,30,33]
(for the Ricci flow) or with using CAs [17] (for the string background equations), but
they are restricted to the case of no spectators and require extensive calculations. Our
approach gives simple and transparent proofs in full generality (for the problem of the
Ricci flow it follows our previous proof [28], but gives a stronger result) and the problem
of determining the dilaton becomes basically trivial.We also discuss the case of “dressing
cosets” [21] (equivariant PL T-duality) which is necessary for most of the interesting
examples (see Sect. 8).
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5.1. PL T-duality without spectators. Let us first describe PL T-duality in the simple
case of “no spectators”. It was discussed in the previous text in several Examples, but
let us summarize it here and add some more details.

The main idea is, see Example 2.1, that given a Lie algebra g with an invariant 〈, 〉
(i.e. given a CA over a point), we have an exact CA g × G/H whenever h⊥ = h. If
V+ ⊂ g is a generalized metric then we use the generalized metric V+×G/H in the exact
CA g×G/H (Example 2.2) and, finally, we define a divergence by setting div u = 0 for
every constant section u ∈ g (Example 2.5).

Poisson–Lie T-duality is then the statement that various physically relevant properties
of this generalized metric and divergence can be obtained directly from V+ ⊂ g, i.e. that
these properties are independent of h.

Remark 5.1. Both “Poisson–Lie” and “duality” in “PL T-duality” come from the case
when there are twoLagrangian Lie subalgebras h, h∗ ⊂ g such that h∩h∗ = 0. “Duality”
then refers to the two manifolds G/H and G/H∗, and “Poisson–Lie” to the fact that H
and H∗ are Poisson–Lie groups.

5.1.1. Sigma model The generalized metric V+ × G/H in the exact CA g × G/H is
equivalent to a pair (g, H) on G/H and thus gives rise to a 2-dim σ -model with the
targetG/H. This σ -model, as a Hamiltonian system, can be (up to finitely many degrees
of freedom) formulated in terms of V+ ⊂ g:

The phase space is themoduli space of flat g-connection A ∈ 	1(Z)⊗g on an annulus
Z , with the boundary condition A|inner S1 ∈ 	1(S1)⊗ h, modulo gauge transformations
vanishing on the outer boundary circle and taking values in H on the inner boundary
circle. The Hamiltonian is

H(A) = 1

2

∫
outer S1

〈Aσ , VAσ 〉 dσ

where V : g → g is the reflection w.r.t. V+, σ is the coordinate (angle) on the outer S1,
and A|outer S1 = Aσ dσ .

This description does depend on h, but a suitable reduction (removing only finitely
many degrees of freedom), whenwe constrain the holonomy to be 1, i.e. whenwe replace
the annulus with a disk, uses only g and V+.

Full phase space : h Reduced phase space :

For details, see [20] (the original explanation) and [27] (the picture presented here
and its space-time version).

5.1.2. Ricci flow As observed in Example 3.5, we have (for constant sections of g ×
G/H)

GRicg×G/H
V+×G/H,div = GRicgV+,0

.

In particular, the generalized Ricci flow of V+ × G/H in the exact CA g × G/H (with
the divergence div), i.e. the 1-loop renormalization group flow of (g, H), is (pointwise
G/H) the same as the generalized Ricci flow of V+ in g (with the zero divergence).
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5.1.3. (Generalized) string background equations. As observed in Example 4.10, the
generalized metric V+ × G/H and the divergence div, or equivalently the quadruple
(g, H, X, α), satisfies the generalized string background equations

GRicg×G/H
V+×G/H,div = 0, Rg×G/H

V+×G/H,div = 0 (11a)

iff

GRicgV+,0
= 0, Rg

V+,0
= 0. (11b)

Moreover, if h is unimodular so that there is a g-invariant density μ on G/H, the gener-
alized string background equations become the ordinary string background equations,
with the dilaton φ = 1

2 log
μg
μ
. (If Rg

V+,0
�= 0, we can still interpret the outcome as the

string background equations for a non-critical string).
As a minor generalization, if h is coisotropic instead of Lagrangian (i.e. if h⊥ ⊂ h

instead of h⊥ = h) then the CA g × G/H is transitive instead of exact. If dim V+ =
dim g/h then the generalized metric V+ × G/H ⊂ g × G/H (together with div) is
equivalent to the (bosonic) field content of the type I SUGRA together with the gauge
fields, and (11) is again equivalent to the SUGRA equations [8]. In other words, PL
T-duality works also in this case.

5.2. CA pullbacks and PL T-duality with spectators. Poisson–Lie T-duality is most eas-
ily formulated in terms of pullbacks of CAs in the following sense:

Definition 5.2. If E → M is CA and τ : M ′ → M is a smooth map, we shall say that
E ′ := τ ∗E is a CA-pullback of E if on E ′ we have a compatible CA structure:

〈τ ∗u, τ ∗v〉′ = τ ∗〈u, v〉, [τ ∗u, τ ∗v]′ = τ ∗[u, v]
τ∗

(
ρ′(τ ∗u)

) = ρ(u) ∀u, v ∈ �(E).

Remark 5.3. While 〈, 〉′ and [, ]′ are determined by τ , ρ′ is not. CA-pullbacks were
characterized by Li-Bland and Meinrenken [22] as follows: a compatible CA structure
on τ ∗E is uniquely specified by its anchor map ρ′ : τ ∗E → T M ′, and it exists iff ρ′
satisfies

• τ∗
(
ρ′(τ ∗u)

) = ρ(u) ∀u ∈ �(E)

• [ρ′(τ ∗u), ρ′(τ ∗v)] = ρ′(τ ∗[u, v]) ∀u, v ∈ �(E)

• for any p ∈ M ′ the kernel of ρ′ at p is a 〈, 〉-coisotropic subspace of E f (p).

Example 5.4. Let us consider the case M = point: E = g is a Lie algebra with an
invariant pairing 〈, 〉. Let M ′ be a manifold with an action ρ′ of g such that the stabilizers
of points are coisotropic. Then [22] E ′ := g × M ′ is a CA: the pairing and the bracket
of constant sections is the pairing and the bracket on g, and the anchor map is the action
ρ′.

In particular, if M ′ = G/H with h⊥ = h, then E ′ is an exact CA. These exact CA-
pullbacks of g correspond to PL T-duality without spectators, as we discussed in detail
above.
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The main source of examples giving exact E ′’s is described below in Example 5.10.
If now τ ∗E is a CA-pullback and V+ ⊂ E a generalized metric then τ ∗V+ ⊂ τ ∗E

is a generalized metric. Moreover, if div is a divergence on E then there is a unique
divergence τ ∗ div on τ ∗E characterized by

(τ ∗ div)(τ ∗u) = τ ∗(div u) ∀u ∈ �(E).

If div is compatible with V+ then τ ∗ div is compatible with τ ∗V+.
Poisson–Lie T-duality is then the statement that various properties of τ ∗V+ ⊂ τ ∗E

and of τ ∗ div are determined by V+ ⊂ E and by div (the spectator-less case corresponds
to E = g and div = 0).

5.2.1. Sigma models Let us suppose that τ : M ′ → M is a surjective submersion and
that E ′ = τ ∗E → M is an exact CA (which forces E → M to be transitive), so that the
generalized metric τ ∗V+ ⊂ τ ∗E gives rise to a pair (g, H) on M ′, which can be used to
define a 2-dim σ -model with the target space M ′.

The phase space of the σ model is T ∗(L M ′) with the symplectic form twisted by
H . As in the no-spectator case, Poisson–Lie T-duality says that there is an infinite-
dimensional symplecticmanifold defined in terms of theCA E → M , and aHamiltonian
defined in terms of V+, which is at the same time a finite-codimension coisotropic
reduction of T ∗(L M ′). Up to finitely many degrees of freedom the σ -model can thus be
formulated in terms of V+ ⊂ E , without any reference to M ′ and E ′.

We shall not give a proof of this statement in this paper, as we’re more concerned here
with the Ricci flow and the string background equations. Instead, we refer the reader to
[19,20,27].

Remark 5.5. Themain idea of [27] is to use V+ ⊂ E to define a 2-dim σ -model as a 3-dim
topological field theory (Courant σ -model) with a non-topological boundary condition
given by V+. For exact CAs it gives the standard 2-dim σ -models (1). Conjecturally the
generalized Ricci flow is the renormalization group flow of this exotic σ -model and all
other “generalized things” that we consider, such as the generalized string background
equations or the generalized SUGRA equations (see Sect. 7), can be interpreted in these
terms.

5.2.2. Ricci flow Poisson–Lie T-duality for (generalized) Ricci flow is the following
simple statement.

Theorem 5.6. If E → M is a CA, V+ ⊂ E a generalized metric, div a divergence on
E, and τ ∗E a CA-pullback then GRicτ∗ E

τ∗V+,τ∗ div = τ ∗GRicE
V+,div

, i.e.

GRicτ∗ E
τ∗V+,τ∗ div(τ

∗a+, τ
∗b−) = τ ∗(GRicE

V+,div(a+, b−)) ∀a+ ∈ �(V+), b− ∈ �(V−)

Proof. Immediate from the definition of GRic.

5.2.3. (Generalized) string background equations. Poisson–Lie T-duality for (general-
ized) string background equations follows from Theorem 5.6 and from the following
equally easy result.

Theorem 5.7. If E → M is a CA, V+ ⊂ E a generalized metric, div a divergence on
E, and τ ∗E a CA-pullback then

Rτ∗ E
τ∗V+,τ∗ div = τ ∗(RE

V+,div).
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Proof. Immediate from Equation (10), if for the local frame of τ ∗E we use τ ∗eα .

As a result, if V+ ⊂ E and div satisfy the generalized string background equations
then so do τ ∗V+ ⊂ τ ∗E and τ ∗ div.
Remark 5.8. The problem of the existence of a dilaton boils down to the following: if
div = divσ 2 for a half-density σ on M , is τ ∗ div = div(σ ′)2 for some half-density σ ′ on
M ′? The answer is as follows. Let us suppose (as is true in physically relevant situations)
that τ : M ′ → M is a submersion. Then σ ′ = ς τ ∗σ for some fibrewise half-density ς

on the fibres of τ : M ′ → M , and τ ∗ div = div(σ ′)2 iff

Lρ′(τ∗u)ς = 0 ∀u ∈ �(E)

(this equality makes sense as ρ′(τ ∗u) are fibration-preserving vector fields on M ′).
Alternatively, we have

�E ′
V ′
+
(ς τ ∗σ) = ς τ ∗�E

V+
σ

for every half-density σ on M , so if �E
V+

σ = 0 and σ ′ = ς τ ∗σ then �E ′
V ′
+
σ ′ = 0.

Remark 5.9. We formulated PL T-duality in terms of CA-pullbacks. Amore general, and
arguably more conceptual approach is via Dirac relations (see e.g. [22] for definitions).
If V (1)

+ ⊂ E (1) and V (2)
+ ⊂ E (2) are generalized metrics and if C → N is a Dirac

structure in E (1) × E (2) (where N ⊂ M (1) × M (2) is a submanifold) then C gives rise
to a Lagrangian relation between the phase spaces given by E (1) and E (2). Moreover, if
C is compatible with V (1)

+ and V (2)
+ then this Lagrangian relation is, up to finitely many

degrees of freedom, an isomorphism of Hamiltonian systems.
We leave the problem of compatibility of this more general T-duality with the Ricci

flow and with the string background equations to a future work; one important problem
is to find a source of examples which are not examples of (possibly equivariant) PL
T-duality. The existence of the dilaton should correspond to unimodularity of the Dirac
structure C .

5.3. Equivariant CAs and reduction. If k is a Lie algebra with a (possibly degenerate)
invariant symmetric bilinear pairing 〈, 〉k, a (k, 〈, 〉k)-equivariant CA is a CA E → M
together with a linear map χ : k → �(E) satisfying

[χ(u), χ(v)] = χ([u, v]), 〈χ(u), χ(v)〉 = 〈u, v〉k
which is injective at every point of M (the last condition is void if 〈, 〉k is non-degenerate).
The derivations [χ(u), ·] give an action of k on E and the vector fields ρ(χ(u)) an action
of k on M . If this action integrates to an action of a connected Lie group K with the Lie
algebra k, we shall say that E is (K, 〈, 〉k)-equivariant.

Equivariant CAs can be reduced in the following way [3,26]. If E → M is a K-
equivariant CA such that the action of K on M is free and proper, let

(E/K)x := (χx (k))
⊥/χx (k

′) (∀x ∈ M)

where k′ ⊂ k is the kernel of 〈, 〉k. After taking the quotient by K, E/K becomes a vector
bundle E/K → M/K, and the CA structure on E → M descends to a CA structure on
E/K → M/K. If E is exact and 〈, 〉k = 0 then E/K is also exact; for a general 〈, 〉k the
CA E/K is only transitive (i.e. its anchor map is surjective).
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Example 5.10. Let us suppose that a connected Lie group G acts freely and properly
on a manifold P , so that P → M := P/G is a principal G-bundle, and that 〈, 〉g is a
non-degenerate invariant pairing (i.e. that g is a CA over a point). Then G-equivariant
exact CAs EP → P exist iff the 1st Pontryagin class [〈F, F〉g] ∈ H4(M,R) of P → M
vanishes, and are classified by classes ω ∈ 	3(M)/d	2(M) such that dω = 〈F, F〉g.

In this case E := (EP )/G → M is a transitive CA. If H ⊂ G is such that h⊥ = h
then E/H → P/H is an exact CA and moreover E/H is naturally a CA-pullback of
E → M under the projection P/H → M . This is the main source of CA-pullbacks for
the purpose of PL T-duality. See [26] for details. (If h is coisotropic, i.e. h⊥ ⊂ h, then
E/H is transitive, and it is still a CA-pullback of E).

From now on we shall always suppose that s is a Lie algebra with 〈, 〉|s = 0 (which
implies s′ = s) and that S is a connected Lie group integrating s.

If E is S-equivariant and if the action of S is free and proper then

C∞(M/S) ∼= C∞(M)s, �(E/S) ∼= �(s⊥
E )s/�(sE )s, (12)

where sE and s⊥
E are the subbundles of E given fiberwise byχ(s) andχ(s)⊥ respectively,

and superscript s means we are considering invariant sections, e.g.

C∞(M)s = { f ∈ C∞(M) | χ(s) · f = 0 ∀s ∈ s},
�(s⊥

E )s = {x ∈ �(s⊥
E ) | [χ(s), x] = 0 ∀s ∈ s}.

If E → M is an s-equivariant CA and div a divergence on E , we shall say that div
is equivariant if

χ(s) · div x = div[χ(s), x], ∀s ∈ s, ∀x ∈ �(E).

and if

divχ(s) = −Trs ads ∀s ∈ s. (13)

Proposition 5.11. Suppose E is S-equivariant such that the action of S is free and
proper. If div is an equivariant divergence on E then it descends, via the identification
(12), to a divergence on the reduced CA E/S.

Proof. Equivariance implies that div restricts to a map �(E)s → C∞(M)s. We thus
only have to show that div�(sE )s = 0.

Suppose ui is a basis of s and consider x = xiχ(ui ) ∈ �(sE )s, xi ∈ C∞(M). By
s-invariance, for all i we have 0 = [χ(ui ), x] = x j [χ(ui ), χ(u j )] + (χ(ui ) · x j )χ(u j ),
so χ(ui ) · xi = x j Trs adu j . Now

div x = xi divχ(ui ) + χ(ui ) · xi = xi (divχ(ui ) + Trs adui ) = 0.

Remark 5.12. If div comes from a density on M then the induced divergence on E/S
also comes from a density on M/S.

Finally, let us show that GRic and R are compatible with the CA reductions.
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Definition 5.13. Let E → M be an s-equivariant CA. A generalized pseudometric
V+ ⊂ E is admissible if it is s-invariant and if

V+ ⊂ s⊥
E (14)

(i.e. if 〈χ(s), a+〉 = 0 for all s ∈ s, a+ ∈ �(V+)).

If the action of S is free and proper, an admissible V+ ⊂ E descends to a generalized
pseudometric Ṽ+ ⊂ E/S (of the same rank as V+); we have

�(Ṽ+) ∼= �(V+)
s, �(Ṽ−) ∼= �(V− ∩ s⊥

E )s/�(sE )s

Let us choose an equivariant divergence div on E and let d̃iv be the corresponding
divergence on E/S.

Theorem 5.14. Under the above assumptions, if a+ ∈ �(V+)
s and b− ∈ �(V− ∩ s⊥

E )s,
and if ã+ and b̃− are the corresponding sections of Ṽ+ and Ṽ−, then

GRicE
V+,div(a+, b−) = π∗GRicE/S

Ṽ+,d̃iv
(ã+, b̃−)

where π : M → M/S is the projection. In other words, reduction of admissible gener-
alized pseudometrics is compatible with the generalized Ricci flow.

Proof. This is an immediate corollary of the fact that all the structures (the CA bracket,
generalized metric, divergence, etc.) involved in the definition of GRic on E/S are
induced by the corresponding structures on E .

Theorem 5.15. Under the above assumptions

RE
V+,div = π∗RE/S

Ṽ+,d̃iv

where π : M → M/S is the projection.

Proof. We can choose the local frame ea of V+ to be s-invariant, so that it descends to
a local frame of Ṽ+. The first 3 terms in the formula (10) for R are then the same in E
and in E/S, so we must only concentrate on the last term

cabc̄cabc̄ = 〈[ea, eb]−, [ea, eb]−〉. (15)

For any s ∈ s we have

〈χ(s), [ea, eb]〉 = ea · 〈χ(s), eb〉 − 〈[ea, χ(s)], eb〉 = 0

and thus [ea, eb]− ∈ �(s⊥
E ). This implies that (15) gives the same result in E and in

π∗(E/S) = s⊥
E/sE .

Remark 5.16. A similar result is valid for the Laplace operator �V+ : if we identify half-
densities on M/S with equivariant half-densities on M (this requires a choice of a
non-zero element of |∧top s|1/2), then �V+ restricted to the equivariant half-densities
is equal to �Ṽ+

. We leave the details to the reader.

5.4. Dressing cosets, or equivariant Poisson–Lie T-duality.
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5.4.1. Outlook Poisson–Lie T-duality, as we described it so far, was about CAs and CA-
pullbacks (and pullbacks of generalizedmetrics and divergences). Its original motivation
is the study of 2-dim σ -models.

The same strategy can be followed for equivariant CAs (and admissible generalized
pseudometrics and equivariant divergences); on the Physics side σ -models get replaced
with gauged σ -models.

We shall then reduce the equivariant CAs obtained by CA-pullbacks, and get just
plain CAs (and generalized (pseudo)metrics and divergences); this can be done under
the assumption of free and proper actions. The gauged σ -models then become ordinary
σ -models on the quotient targets.

This type of equivariant PL T-duality was introduced in [21] under the name “PL
T-duality of dressing cosets”.

5.4.2. Setup Let E → M be an s-equivariant CA, V+ ⊂ E an admissible generalized
pseudometric, and div an equivariant divergence.

Example 5.17. The simplest type of our setup is M = point, E = g is a quadratic Lie
algebra, div = 0, s ⊂ g a unimodular isotropic Lie subalgebra, and V+ ⊂ g a s-invariant
vector subspace s.t. V+ ⊂ s⊥ and s.t. 〈, 〉|V+ is non-degenerate.

Suppose now that τ : M ′ → M is a smooth map and that we have a CA-pullback
structure on E ′ := τ ∗E → M ′. Then E ′ is also s-equivariant, with χ ′(s) = τ ∗χ(s)
(∀s ∈ s). Moreover τ ∗V+ is admissible and τ ∗ div is equivariant.

If the action of s on M ′ integrates to a free and proper action of S on M ′ then we get
the reduced CA E ′

red := (τ ∗E)/S → M ′/S =: M ′
red, and τ ∗V+ and τ ∗ div descend to

a generalized pseudometric V ′
+,red ⊂ E ′

red (of the same rank as V+) and to a divergence
div′

red in E ′
red.

Equivariant PL T-duality is then a collection of statements that various properties of
(V ′

+,red ⊂ E ′
red, div

′
red) can be expressed in terms of (V+ ⊂ E, div, χ).

5.4.3. Sigma models As σ -models as Hamiltonian systems are not the subject of this
paper, we just describe the main idea: If E is S-equivariant, we get a Hamiltonian action
of the loop group LS on the corresponding phase space. The phase space corresponding
to E ′

red is then obtained from the one corresponding to E ′ by the symplectic reduction
w.r.t. LS. One thus just needs to combine the results of §5.2.1 with the symplectic
reduction by LS.

5.4.4. Ricci flow Let ME be the space of all generalized pseudometrics on E and
NE ⊂ ME the subset of admissible generalized pseudometrics.

Recall that GRicE
div can be seen as a vector field on ME .

Proposition 5.18. GRicE
div, seen as a vector field on ME , is tangent to NE ⊂ ME .

Proof. The vector field is certainly tangent to the subspace of all s-invariant generalized
metrics. To show that it’s tangent to NE we thus need to show that

GRicV+,div(a+, χ(s)) = 0 (16)

for any admissible V+. As div is s-equivariant and V+ is s-invariant, we have

χ(s) · div a+ = div[χ(s), a+] = div[χ(s), a+]+
so the first two terms in (5) (with b− = χ(s)) cancel. The last term vanishes, as
[·, χ(s)]− = 0 by s-invariance of V+.
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Now we can formulate the compatibility of the (generalized) Ricci flow with equiv-
ariant PL T-duality. As we observed above, every generalized pseudometric V+ ∈ NE
gives rise to a generalized pseudometric V ′

+,red ∈ ME ′
red
; let ϕ : NE → ME ′

red
denote

the map V+ �→ V ′
+,red.

Theorem 5.19. The vector field GRicE
div on NE pushes forward, via ϕ, to the vector field

GRic
E ′
red

div′
red

on ME ′
red

.

Proof. This is an immediate corollary of Theorems 5.6 and 5.14.

5.4.5. (Generalized) string background equations. Finally, we have the following result
stating that equivariant PLT-duality is compatiblewith the generalized stringbackground
equations.

Theorem 5.20. If an admissible V+ ⊂ E and an equivariant div satisfy the generalized
string background equations then so do V ′

+,red ⊂ E ′
red and div′

red.

Proof. This follows immediately from the previous Theorem (for GRic = 0) and from
Theorems 5.7 and 5.15 (forR = 0).

Remark 5.21. In [21], in place of the subbundle V+ used here, a different subbundle
W+ ⊂ E was used; it relates to our V+ via W+ = V+ + sE and is characterized by the
property sE = ker〈, 〉|W+ ⊂ W+ and by being s-invariant. While from the point of view
of the σ -model W+ is more natural than V+, we were not able to prove compatibility of
the equivariant PL T-duality with the Ricci flow and with string background equations
using only W+. Whether it’s possible remains an open problem and needs new ideas
(W+ ⊂ E is not a generalized pseudometric).

6. Differential Graded Symplectic Manifolds, Spinor Bundles and Dirac
Generating Operators

In this section we recall Dirac generating operators of CAs and motivate them using the
graded symplectic interpretations of CAs. Generating Dirac operators were introduced
in [1]; here we follow the approach of [25, letter 6], where the canonical generating
operator was first constructed.

(For a reader feeling that it’s taking us off the main road it’s enough to look at the
formulas (17) and (18) for the Dirac operators and browse through Sects. 6.4 and 6.5 to
understand the notation).

To avoid possible confusion, the Courant bracket in a CA E will be denoted in this
section by [, ]E , as [, ]will be the (graded) commutator in a (graded) associative algebra.

6.1. CAs as dg symplectic manifolds. An alternative viewpoint at CAs is provided by
graded geometry [24]. Namely, a vector bundle E with a non-degenerate symmetric
pairing 〈, 〉 is equivalent to a non-negatively graded manifold E with a symplectic form
ω of degree 2, and a CA structure on E is equivalent to a degree 3 function � on E
satisfying the master equation

{�,�} = 0.
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The correspondence is as follows. If E is such a graded manifold then the vector
bundle E → M is given by

�(E) = C∞(E)1, C∞(M) = C∞(E)0

with the pairing

〈u, v〉 = {u, v},
and the CA structure is

[u, v]E = {{�, u}, v}
ρ(u) f = {{�, u}, f },

where u, v ∈ �(V ) and f ∈ C∞(M). We also have dE f = {�, f }.
If we (locally) trivialize the bundle E → M to V × M for some vector space V

with a pairing 〈, 〉, we get E = V [1] × T ∗[2]M , with the standard symplectic structure
on T ∗[2]M and with the constant symplectic structure on V [1] given by 〈, 〉. Using this
trivialization and a basis eα of V ∼= V ∗ we then have

� = eαρ(eα) − 1

6
eαeβeγ cαβγ ∈ ∧

V ⊗ C∞(T ∗[2]M) = C∞(E)

where cαβγ = 〈[eα, eβ ]E , eγ 〉.

6.2. Differential operators with Clifford coefficients. If V is a finite-dimensional real
vector spacewith a non-degenerate symmetric pairing 〈, 〉, letCl(V )be the corresponding
Clifford algebra, i.e. the algebra generated by V modulo the relations

uv + vu = 〈u, v〉.
Let us recall some basic properties of the algebra Cl(V ). It isZ2-graded and equipped

with an increasing filtration; its associated graded is
∧

V . The complex versionCL(V )⊗
C is equipped with a “Z2-graded involution”

α �→ αT , (αT )T = (−1)|α|α, (αβ)T = (−1)|α||β|βT αT ,

determined by vT = iv (∀v ∈ V ).
If M is a manifold and t ∈ R, let Dt (M) be the algebra of differential operators

acting on t-densities on M . This algebra is naturally filtered by the orders of differen-
tial operators. On D1/2(M) we have a natural involution D �→ DT where DT is the
formally adjoint operator (i.e.

∫
M σ1Dσ2 = ∫

M σ2DT σ1 for any compactly supported
half-densities σ1, σ2).

Let us now combine Clifford algebras and differential operators to get a (filtered)
deformation quantization of the graded Poisson algebra C∞(E). If E → M is a vector
bundle with a non-degenerate symmetric pairing 〈, 〉 and t ∈ R, we shall define an
algebra At (E) containing �(Cl(E)).

If we have a trivialization E ∼= V × M , where V is a vector space with a pairing 〈, 〉,
we set

At (E) = Cl(V ) ⊗ Dt (M).

If we change the trivialization by a gauge transformation g : M → O(V ), we (locally)
lift g to g̃ : M → Pin(V ) ⊂ Cl(V ), and act on At (E) with Adg̃ . This allows us to
defineAt (E) for non-trivial bundles E , by gluing it from local Cl(V ) ⊗ Dt (Ui )’s using
the transitions gi j : Ui ∩ U j → O(V ).
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Remark 6.1. An invariant definition ofAt (E) is as follows. Let P → M be the principal
O(V )-bundle associated to E (the points of P are 〈, 〉-preserving linear bijections V →
Ex , x ∈ M). Using the standard inclusion of so(V ) to Cl(V ) and to the vector fields on
P we get the inclusion

so(V ) → Cl(V ) ⊗ Dt (P), X �→ X ⊗ 1 + 1 ⊗ LX .

We then have

At (E) = (
Cl(V ) ⊗ Dt (P)/〈so(V )〉)O(V )

where 〈so(V )〉 ⊂ Cl(V ) ⊗ Dt (P) is the ideal generated by so(V ).
This construction is a quantum version of a construction of E as a symplectic reduc-

tion, namely E = (
T ∗[2]P × V [1])//O(V ) (due to A. Weinstein).

The algebra At (E) is Z2-graded, as Cl(V ) is Z2-graded. It comes with a natural
increasing filtration, given (using a local trivialization E ∼= V × M) by the filtration
degree in Cl(V ) plus twice the filtration degree (i.e. order) in Dt (M) (this combination
is invariant under the transitions Adg̃), i.e.

F pAt (E) =
∑

r+2s=p

Fr Cl(V ) ⊗ Fs Dt (M).

In particular

F0At (E) = C∞(M), F1At (E)odd = �(E).

The associated graded Poisson algebra is C∞(E) where E is the graded symplectic
manifold corresponding to (E, 〈, 〉) (see Sect. 6.1).

Finally, the involutions on Cl(V )⊗C and on D1/2(M) give us aZ2-graded involution
on A1/2(E) ⊗ C. This Z2-graded involution induces on

C∞(E) ⊗ C = GrA1/2(E) ⊗ C

the involution αT = i |α|α.
For X ∈ F pA1/2(E) we shall call its image in

C∞(E)p = F pA1/2(E)/F p−1A1/2(E)

the principal symbol of X . As the principal symbol symbp X of X is of parity p mod 2
and it satisfies (symbp X)T = i p symbp X , we have symbp X = 0 if X is of the opposite
parity or if X T = −i p X .

6.3. Generating Dirac operator. Let E → M be a CA, and� ∈ C∞(E) the correspond-
ing degree 3 function. Let us see whether there is a canonical lift of � to At (E) ⊗ C.

For t = 1/2 there is such a canonical lift:

Proposition 6.2. There is a unique odd element D ∈ F3A1/2(E) satisfying

DT = −iD
such that its principal symbol is �. Moreover D2 ∈ C∞(M) ⊂ A1/2(E).
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Proof. Anelement of F3A1/2(E)odd is determined by its principal symbol up an element
e ∈ F1A1/2(E)odd = �(E). As eT = ie, demanding DT = −iD fixes D completely.

We have D2 = [D,D]/2 ∈ F2A1/2(E)even , and (D2)T = −(DT )2 = D2, so
D2 ∈ F0A1/2(E) = C∞(M).

The elementD is called the generating Dirac operator. Using a (local) trivialization
E = V × M we have

D = eαLρ(eα) − 1

6
eαeβeγ cαβγ ∈ Cl(V ) ⊗ D1/2(M). (17)

Remark 6.3. A quick calculation (where we can discard all terms satisfying X T = −X
appearing in D2 as they have to cancel) gives

D2 = 1

2
Lρ(eα)Lρ(eα) − 1

48
cαβγ cαβγ

i.e. D2 = 1
8�E . The function D2 vanishes for exact CAs. For a quadratic Lie algebra

it is − 1
48cαβγ cαβγ . Any transitive CA is locally T M ⊕ T ∗M ⊕ g for a quadratic Lie

algebra g, and the function is again the constant − 1
48cαβγ cαβγ .

There is no canonical lift of� toA0(E). However, given a non-vanishing half-density
σ , we can identify C∞(M) with half-densities via multiplication by σ , and thus also
D0(M)with D1/2(M) andA0(E)withA1/2(E). Under this identificationD ∈ A1/2(E)

is sent to

Dσ := eα
(
ρ(eα) +

1

2
divσ 2 eα

)
− 1

6
eαeβeγ cαβγ .

If div is an arbitrary divergence on E and σ a non-vanishing half-density, and if div =
divσ 2 +〈e, ·〉, we set [1,9]

Ddiv := Dσ + e/2.

Using a local trivialization we then get

Ddiv = eα
(
ρ(eα) +

1

2
div eα

)
− 1

6
eαeβeγ cαβγ ∈ Cl(V ) ⊗ D0(M) (18)

which also proves the independence of Ddiv on the choice of σ .

Remark 6.4. We have D2
div = (Dσ +e/2)2 = D2

σ + [Dσ , e]/2+ 〈e, e〉/8. This expression
is in C∞(M) iff [Dσ , e] ∈ C∞(M), and that happens iff the derivation [e, ·]E of E
vanishes.

Example 6.5. For the exact CAs of the type g×G/H, with the usual divergence div u = 0
(∀u ∈ g) we have Ddiv = eαρ(eα) − 1

6eαeβeγ cαβγ ∈ Cl(g) ⊗ D0(G/H), which then
gives D2

div = 1
2ρ(eα)ρ(eα) − 1

48cαβγ cαβγ . Let us recall that the differential operator
ρ(eα)ρ(eα) is actually a vector field.

On the other hand, as g × G/H is exact, we have D2 = 0. If h is unimodular (so
that Ddiv = Dσ for an invariant half-density σ ) we thus have D2

div = 0. As a result, if
cαβγ cαβγ �= 0 then g contains no unimodular Lagrangian Lie subalgebras.
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6.4. Spinors. Let us suppose that E admits a spin structure and let SE be the spinor
bundle of modules of Cl(E) (i.e. we suppose that there is a lift of the associated principal
O(V )-bundle P → M to a Pin(V )-bundle P̃ → M and SE is its associated bundle
given by the spinor space SV ). The algebra A0(E) then acts on �(SE ) by differential
operators. Likewise, A1/2(E) acts on �(SE ) where

SE := SE ⊗ |∧topT ∗M |1/2
is the bundle of spinor half-densities.

We now recall a construction of the Cl(V )-module SV . For simplicity we suppose
that dim V is even and also that 〈, 〉 has symmetric signature (the latter assumption can
be avoided by a complexification).

Choosing a lagrangian splitting of V , i.e. V = L1 ⊕ L2, we set

SV := ∧
L1 ⊗ (

∧topL1)
−1/2. (19)

The action of Cl(V ) on SV is generated by the action of L1 by multiplication and the
action of L2 ∼= L∗

1 by contraction (we act on the first factor in SV ).

Example 6.6. If E = T M ⊕ T ∗M is an exact CA given by a closed 3-form H then we
can choose L1 = T ∗M and L2 = T M and get SE = ∧

T ∗M ⊗ (
∧top T ∗M)−1/2 and

so SE = ∧
T ∗M . In this representation we get D = d + H∧.

Furthemore, we define the operator ϑ : ∧
L1 → ∧

L1 ⊗ C via a �→ i |a|a for a a
homogeneous element.

We can now construct a natural pairing (·, ·) : SV ⊗ SV → C, which, using the
identification (19), is defined as

(a ⊗ λ, b ⊗ λ) := 〈(ϑa ∧ b)top, λ2〉,
for a, b ∈ ∧

L1 and λ ∈ (
∧topL1)

−1/2. Here we have only kept the top part of the
wedge product and then contracted it with λ2 ∈ (

∧topL1)
∗. One can easily check that

the pairing is compatible with the action of Cl(V ), i.e.

(u A, B) = (−1)|u||A|(A, uT B) ∀A, B ∈ SV , u ∈ Cl(V ) (20)

and that

(A, B) = i (2|A|−1) dim L1(B, A).

Finally, let E be a CA and let V+ ⊂ E be a generalized pseudometric with a chosen
orientation. Let ea , a ∈ {1, . . . n}, be a local oriented orthonormal basis of V+ (〈ea, eb〉 =
±δab). We define

RV+ = 2n/2e1 . . . en ∈ Pin(E) ⊂ Cl(E).

This is independent of the choice of basis. RV+ is a lift of the reflectionw.r.t. V+ multiplied
by (−1)n+1 from O(E) to Pin(E). It is easy to check that

R2
V+

= (−1)

[
n+1
2

]
+q

,

where [·] denotes the integer part and q is the number of negative eigenvalues of the
inner product on V+. If R2

V+
= 1, we define self-dual spinors as the sections F ∈ �(SE )

satisfying RV+ F = F .
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6.5. Spinors and reduction of CAs. In this sections we shall summarize how spinors and
spinor half-densities behave under reduction of CAs.

If V is a vector space with a non-degenerate symmetric pairing and J ⊂ V an
isotropic subspace then we have a natural isomorphism of spinor spaces

SJ⊥/J ⊗ (
∧top J )1/2 ∼= (SV )Jε ⊂ SV . (21)

where

(SV )Jε := {A ∈ SV | (∀u ∈ J ) u A = 0}.
Let now E be an s-equivariant CA and let Cs = s⊕ sε with deg ε = −1 and ε2 = 0

be the cone of s (Cs is a graded Lie algebra, which also has a differential d/dε). We have
a natural action of Cs on SE : s acts on E via [χ(s), ·]E and thus also on the associated
bundle SE , and s[1] = sε acts via (sε) · A := χ(s)A.

If the resulting action of S is free and proper, we get from (21) (with V = E and
J = sE ) the natural isomorphism

�(SE/S) ∼= (
�(SE ) ⊗ (

∧tops)−1/2)Cs (22)

where s ⊂ Cs acts on the line (
∧tops)−1/2 naturally (via−Trs ads/2) and sε trivially. A

quick inspection shows that if div is an equivariant divergence on E and d̃iv the resulting
divergence on E/S then the isomorphism (22) is compatible with the actions of Ddiv and
Dd̃iv.

Pointwise in M the identification (21) is

Ss⊥
E /sE

∼= (SE )sε ⊗ (
∧tops)−1/2.

The pairing (·, ·) on Ss⊥
E /sE

transfered under this identification to (SE )sε ⊗ (
∧tops)−1/2

will be denoted by

(·, ·)s.
For spinorial half-densities the situation is somewhat simpler - from (22) we get a

natural isomorphism

�(SE/S) ∼= �(SE )Cs

compatible with the action of D, and we get a pairing (·, ·)s on (SE )sε with values in∧tops-valued densities.

7. Poisson–Lie T-Duality and Type II SUGRAs

7.1. Type II SUGRAs and exact CAs. The bosonic field content of the type II SUGRAs
is

(g, H, φ,F),

where g is a Lorentzian metric, H is a closed 3-form, φ is a function (scalar field)
called the dilaton and F (a collection of Ramond–Ramond fields) is an inhomogeneous
differential form of even or odd degree satisfying (d+H)F = 0 and a certain self-duality
condition. Following [5], this data is equivalent to (V+ ⊂ E, σ,F), where E → M is an
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exactCA (dim M = 10),V+ is a generalized pseudometric complementary to T ∗M ⊂ E ,
andF ∈ �(SE ) is an even or odd spinor half-density such thatDF = 0 and RV+F = F .

Indeed, V+ ⊂ E is equivalent to (g, H), σ is related to φ via σ = e−φμ
1/2
g (cf.

Example 4.5), and �(SE ) = 	(M) and D = d + H as in Example 6.6.
The type II SUGRAequations (or string background equation for a type II superstring)

in this formalism are

GRicV+,div(u+, v−) σ 2 = i
8ν (u+F , v−F) ∀u+ ∈ V+, v− ∈ V− (23a)

�V+σ = 0. (23b)

In the type IIA case F is even and ν = 1, in the type IIB case F is odd and ν = i ,
The corresponding “pseudoaction” functional is

−1

2

∫
M

σ�V+σ − ν
8 (F , RV+F)

(where “pseudo” corresponds to the fact that the self-duality condition RV+F = F has
to be imposed manually).

In modified type II SUGRA [2,32] the dilaton φ is replaced by a pair (X, α) corre-
sponding to a divergence div on E compatible with V+ and F ∈ �(SE ) is replaced by
F ∈ �(SE ) satisfying DdivF = 0 and RV+ F = F . The SUGRA equations become

GRicV+,div(u+, v−) = i
8ν (u+F, v−F) ∀u+ ∈ V+, v− ∈ V− (24a)

RV+,div = 0. (24b)

If div = divσ 2 (i.e. when the dilaton exists) the two systems are linked via

F = F σ.

We shall study the systems (23) end (24) for arbitrary (non-exact) CAs and call them
generalized SUGRA equations. Themotivation is to show that PLT-duality is compatible
with type II SUGRA, and to actually construct solutions of type II SUGRA.

To stay close to physics we shall always suppose that the signature of 〈, 〉|V+ is
Lorentzian and that rank V+ ≡ 2 mod 4 (which includes the physical case of rank V+ =
10). In particular, this implies R2

V+
= 1 and the skew-symmetry of the spinor pairing

(·, ·).

7.2. Poisson–Lie T-duality of type II SUGRAs. We now apply the main idea of PL T-
duality, i.e. CA-pullbacks, once again:

Theorem 7.1. Let E → M be a CA, τ : M ′ → M a smooth map, and E ′ = τ ∗E a CA-
pullback. If (V+ ⊂ E, div, F) is a solution of the generalized type II SUGRA equations,
then (τ ∗V+ ⊂ E ′, τ ∗ div, τ ∗F) is also a solution.

Proof. We have Dτ∗ divτ ∗F = τ ∗(DdivF) = 0, as follows for example from (18). The
remaining conditions are obvious.

To get solutions of type II SUGRA using the previous theorem we then need to make
sure that E ′ is exact and (if we want to have a dilaton) that τ ∗ div = divμ for a volume
form μ (cf. Sect. 5.1.3 and Remark 5.8).



334 P. Ševera, F. Valach

7.3. Equivariant PL T-duality of type II SUGRAs. Finally, let us extend §5.4 to general-
ized type II SUGRA. The main motivation is that it will be a great source of examples,
both known and new.

Theorem 7.2. Let E → M be an s-equivariant CA, τ : M ′ → M a smooth map, and
E ′ = τ ∗E a CA-pullback such that the s-action on E ′ → M ′ integrates to a free and
proper S-action. Let V+ ⊂ E be an admissible generalized pseudometric and div an
equivariant divergence. Finally, let us choose a section

F ∈ (
�(SE ) ⊗ (

∧tops)−1/2)Cs
.

If (V+ ⊂ E, div, F) is a solution of the “equivariant generalized type II SUGRA
equations”

RV+ F = F, DdivF = 0, RV+,div = 0 (25a)

GRicV+,div(u+, v−) = i
8ν (u+F, v−F)s ∀u+ ∈ �(V+), v− ∈ �(V− ∩ s⊥

E ) (25b)

then (V ′
+,red ⊂ E ′

red, div
′
red, F ′

red), obtained from (V+ ⊂ E, div, F) by the pullback
followed by the reduction, is a solution of the generalized type II SUGRA equations.

Proof. This follows immediately from the previous theorem.

Example 7.3. (PL T-duality for (generalized) type II SUGRA in the case of no spectators)
Let E = g be a quadratic Lie algebra, s ⊂ g a unimodular and isotropic Lie subalgebra,
and let div = 0 (which is s-equivariant as s is unimodular). Let V+ ⊂ g be an admissible
generalized pseudometric, i.e. V+ is an s-invariant subspace, s ⊥ V+, and 〈, 〉|V+ is
nondegenerate.

Let us fix an isomorphism
∧tops ∼= R and choose an element

F ∈ (Sg)
Cs ∼= (Ss⊥/s)

s.

Let us suppose that (V+ ⊂ g, div = 0, F) is a solution of Equations (25).
If H ⊂ G is a Lie subgroup such that h ⊂ g is a Lagrangian Lie subalgebra, let

M ′ = G/H, with the usual exact CA structure on E ′ = g×G/H. Let us suppose that the
action of S on G/H is free and proper (in particular, s ∩ h = 0). Then E ′

red → S\G/H
is an exact CA. If dim V+ = dim g/2 − dim s, we thus get a solution of the modified
type II SUGRA equations on the background S\G/H.1

Moreover, if h is unimodular, it is a solution of the ordinary type II SUGRAequations;
the dilaton corresponds to an invariant half-density onG pushed down to S\G/H using
invariant half-densities on H and S.

8. Examples: Symmetric Spaces

In this section we shall find various solutions of (generalized) type II SUGRA equations
using the general setup of Example 7.3. Namely, we shall get solutions on suitable
symmetric spaces. The reason to look at this type of examples is that they are quite
easy, and also have nice properties. The corresponding 2-dim σ -models are completely

1 To be precise (i.e. to satisfy all the physical requirements), we need dim V+ = 10, the signature of 〈, 〉|V+
needs to be Lorentzian, and we also need the transversality condition Adg h∩ (s + V+) = 0 for all g ∈ G (the
last condition is needed to make V ′

+,red ⊂ E ′
red correspond to a pair (g, H), and it is needed because 〈, 〉|V+

is indefinite).
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integrable systems (as shown in [18] for groups and in [6] in generality). A 1-parameter
family, η-deformed Ad S5×S5, found in [7], was shown in [2] to be a solution ofmodified
type IIB SUGRA equations.With our methodwe findmany other families, some of them
with several parameters.

8.1. Building blocks. Let a be a semisimple real Lie algebra with the invariant inner
product K = K/λ, where λ ∈ R andK is theKilling form of a. Suppose furthermore that
a is equipped with an involution, i.e. that we have an (orthogonal) splitting a = a0 ⊕ a1
such that [a0, a0] ⊂ a0, [a1, a1] ⊂ a0, [a0, a1] ⊂ a1.

Consider the commutative algebra Bc := R[t]/(t2 − c) for a fixed c ∈ R. We set

g := Bc ⊗ a with [p ⊗ u, q ⊗ v] := pq ⊗ [u, v]
and we define the inner product

〈p ⊗ u, q ⊗ v〉 = (pq)linK (u, v)

where (a + bt)lin := b (∀a, b ∈ R). For simplicity we will omit the ’⊗’ symbol from
now on. Finally, we take

s := a0 ⊂ a ⊂ g and V+ := (1 + t)a1.

This implies V− = (1 − t)a1 ⊕ (Bc ⊗ a0).
To construct the spinors, we take the lagrangian decomposition of g in the form

L1 = ta, L2 = a. We identify L1 ∼= a ∼= a∗ via K and (
∧topL1)

−1/2 as well as
(
∧tops)−1/2 with R using the volume forms associated to K and K |a0 , respectively.
Thus

Sg ∼= ∧
a∗, Ss⊥/s

∼= ∧
a∗
1, and (Sg)

Cs ∼= (
∧
a∗
1)

a0 .

We will use the notation jv for the endomorphism of Sg ∼= ∧
a∗ given by w �→ v ∧ w

for v ∈ a ∼= a∗.
Lemma 8.1. For this setup, the Dirac generating operator D0 vanishes on (Sg)Cs.

Proof. Let Eα be a basis and f ∈ ∧3a0 + (∧2a1)∧a0 the structure constants of a. Since

〈[ta, ta], a〉 = 〈[a, a], a〉 = 0,

the expression for D0 reduces to

D0 = −1

2
f αβγ jEα jEβ ιEγ − c

6
f αβγ ιEα ιEβ ιEγ = dC E − c ι f ,

where dC E is the Chevalley-Eilenberg differential. One now easily sees that both terms
vanish separately on (

∧
a∗
1)

a0 ⊂ ∧
a∗.

Lemma 8.2. We have

GRicV+,0(V+, a0) = 0

and

GRicV+,0((1 + t)u, (1 − t)v) = c−1
2 Ka(u, v)

for all u, v ∈ a1.
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Proof. The first claim is easy to check (cf. (16)). For the second one, we define

p : a1 → V+ ⊂ g, u �→ (1 + t)u.

Then we have

− GRicV+,0((1 + t)u, (1 − t)v) = TrV+[[ · , (1 − t)v]−, (1 + t)u]+
= TrV+[[ · , (1 − t)v], (1 + t)u]+ = Tra1 p−1([[p(·), (1 − t)v], (1 + t)u]+

)
= (1 − c)Tra1 [[ · , v], u].

Here in the second step we used [V+, V+]+ = 0.
To finish, let us now use the Latin indices for the elements of a basis Ea of a1, the

Greek indices for a basis Eα of a and denote again the structure constants of a by f . We
also set Eα := K αβ Eβ (the dual basis). Since

K ([a1, a1], a1) = K ([a0, a0], a1) = 0, (26)

we have

Ka(Ea, Eb) = − faγ δ f γ δ

b = − facδ f cδ
b − faγ d f γ d

b = −2 facδ f cδ
b = 2 Tra1 [[·, Ea], Eb],

implying Tra1 [[ · , v], u] = 1
2Ka(u, v).

Lemma 8.3.

RV+,0 = 1+c
4 λ dim a1.

Proof. Adopting the notation from the previous proof and using (26) we have

faβγ f aβγ = 2 fabγ f abγ

and thus

RV+,0 = − 1
8 〈[(1 + t)Ea, (1 + t)Eb], [(1 + t)Ea, (1 + t)Eb]〉

= − 1+c
2 fabγ f abγ = − 1+c

4 faβγ f aβγ = 1+c
4 K(Ea, Ea) = 1+c

4 λ dim a1.

8.2. Putting the blocks together. We now restrict our attention to the ten-dimensional
case and try to construct solutions to the (generalized) SUGRA in the form Ad Sm ×X for
X a Riemannian symmetric space. Notice that Ad Sm is itself a (Lorentzian) symmetric
space, Ad Sm = O(m − 1, 2)/O(m − 1, 1), of dimension m.

Let a(k), k = 1, . . . , N , be some real compact simple Lie algebraswith invariant inner
products Kk = λ−1

k Kk , whereKk are the respective Killing forms. Suppose also that all

these algebras are equipped with involutions,2 inducing the splittings a(k) = a
(k)
0 ⊕ a

(k)
1 .

In addition, we set

a(0) := o(m − 1, 2), a
(0)
0 := o(m − 1, 1)

for a fixed m ∈ {2, . . . , 8}, we choose ck ∈ R for k = 0, 1, . . . , N and define

g(k) := Bck ⊗ a(k), [p ⊗ u, q ⊗ v] := pq ⊗ [u, v], 〈p ⊗ u, q ⊗ v〉 = (pq)linKk(u, v).

2 We exclude the non-interesting cases when the involutions are equal to the identity.
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We set3 λ0 = 1 and impose that λk < 0 for k �= 0.
We also allow the possibility of adding an “abelian part” to the story, corresponding

to tori in the resulting symmetric space. Thus, let b be an abelian Lie algebra with a
positive definite inner product Kb. We make the (trivial) split b = b0 ⊕ b1 by taking
b0 = 0, b1 = b and define the quadratic abelian Lie algebra g(b) := B0 ⊗ b as above.

As the generalized pseudometrics we take

V (k)
+ := (1 + t)a(k)

1 ⊂ g(k), V (b)
+ := (1 + t)b ⊂ g(b).

Finally, we set

g := g(0) ⊕ · · · ⊕ g(N ) ⊕ g(b),

together with

V+ := V (0)
+ ⊕ · · · ⊕ V (N )

+ ⊕ V (b)
+ ⊂ g,

and

s := a
(0)
0 ⊕ · · · ⊕ a

(N )
0 ⊂ g

and we suppose that dim V+ = 10. Notice in particular that the inner product on V+
is Lorentzian (since K |

a
(0)
1

has the signature − + · · ·+, Kb is positive definite, and the

remaining a(k)’s have negative definite Killing forms). Let us use the notation

atotal := a(0) ⊕ · · · ⊕ a(N ) ⊕ b ⊂ g and atotal1 := a
(0)
1 ⊕ · · · ⊕ a

(N )
1 ⊕ b1 ⊂ g.

Concerning spinors,we have g = L1⊕L2, L1 = tatotal, L2 = atotal. Identifying again
L1 ∼= atotal ∼= (atotal)∗ and (

∧topL1)
−1/2 ∼= R ∼= (

∧tops)−1/2 via the corresponding
inner products and volume forms respectively, we have

Ss⊥/s
∼= ∧

(atotal1 )∗ and (Sg)
Cs ∼= (

∧
atotal∗1 )s

and also

(A, B)s = (A, B) = ((ϑ A) ∧ B)top, ∀A, B ∈ ∧
(atotal1 )∗.

8.3. The generalized SUGRA equations. First, let us discuss the self-duality condition
for spinors.

Lemma 8.4. Let ∗ denote the Hodge operator on
∧

(atotal
1 )∗ induced by K . Then

RV+ = ∗νϑ,

where ϑ : ∧
(atotal

1 )∗ → ∧
(atotal

1 )∗ is the operator ϑξ = i |ξ |ξ , and ν is equal to 1 for
even degree spinors and i for odd spinors.

3 This fixes the overall scaling freedom present in the SUGRA equations of motion.
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Proof. Using the identification (atotal1 )∗ ∼= atotal1 and an orthonormal basis Ea of atotal1 ,
we may write for ξ ∈ ∧k(atotal1 )∗

RV+ξ = [∏n
a=1(1 + t)Ea]ξ = [∏n

a=1(ιEa + jEa )]ξ = (−1)

[
k+1
2

]
+kn ∗ ξ.

Since (−1)

[
k+1
2

]
+kn

ξ = νϑξ , the lemma follows.

To deal with the RHS of (25b), let us choose F ∈ (
∧

(atotal1 )∗)s ∼= (Sg)Cs such that
RV+ F = F and define ψF ∈ (atotal ∗1 )⊗2 by

ψF (u, v) := i
4ν ((1 + t)uF, (1 − t)vF), u, v ∈ atotal1 .

Notice that ψF is s-invariant as a consequence of the invariance of F . It can be conve-
niently computed as follows:

Lemma 8.5. For u, v ∈ atotal
1

ψF (u, v) = 1
4 ([(ιu + ju)(ιv − jv)F] ∧ ∗F)top.

Proof. We have ((ϑ A) ∧ ∗B)top = (A ∧ ∗ϑ B)top for all A, B ∈ ∧
(atotal1 )∗ and

(ϑ2A, B) = (A, ϑ2B) since dim atotal1 = 10. Therefore

((1 + t)uF, (1 − t)vF) = i(ϑ2F, (u + tu)(v − tv)F) = −i(ϑ2(u + tu)(v − tv)F, F)

= −i(ϑ2(u + tu)(v − tv)F, ∗νϑ F) = −iν([(ιu + ju)(ιv − jv)F] ∧ ∗F)top.

Then, putting things together, we obtain the following.

Theorem 8.6. In the setup of Sect. 8.2, the generalized SUGRA equations (25) are equiv-
alent to

(1 + c0) dim a
(0)
1 = ∑N

k=1(−λk)(1 + ck) dim a
(k)
1 , (27a)

(ck − 1)Ka(k) (u, v) = ψF (u, v), ∀u, v ∈ a
(k)
1 , k = 0, . . . , N (27b)

ψF (b, b) = 0, (27c)

where F ∈ (
∧

(atotal
1 )∗)s is self-dual (RV+ F = F).

Proof. Recall that V− ∩ s⊥ = s ⊕ ⊕N
k=0(1 − t)a(k)

1 . Due to the s-invariance of F , the
RHS of equation (25b) vanishes for u+ ∈ V+, v− ∈ s.

The fact that

ψF (b, atotal1 ) = ψF (atotal1 , b) = ψF (a
(k)
1 , a

(l)
1 ) = 0, ∀k �= l

follows from the s-invariance ofψF . Indeed, if u ∈ a
(k)
1 (resp. u ∈ b), then for any l �= k

the element ψF (u, ·)|
a

(l)
1

∈ (a
(l)
1 )∗ is a(l)

0 -invariant and hence vanishes.

The proof then follows from lemmas (8.2), (8.3), (8.5), the fact that b is abelian and
g = ⊕N

k=0 g
(k) ⊕ g(b) is an orthogonal decomposition.



Courant Algebroids, Poisson–Lie T-Duality 339

8.4. Constructing exact Courant algebroids. Let us construct a connected Lie group
G integrating g as follows: For every k = 0, . . . , N let G(k) be a connected group
integrating g(k) and let G(b) be a torus integrating g(b) (i.e. G(b) = g(b)/� for some
lattice �; we choose G(b) to be compact because of physical considerations). We then
set G = G0 × · · · × G(N ) × G(b). Let S ⊂ G be the connected group integrating s.

We now need to choose a closed subgroup H ⊂ G such that h⊥ = h and such that
S acts freely and properly on G/H. There is no canonical choice of H. We shall use the
following H which can be defined if ck ≤ 0 for each k (but other choices are possible):

If ck = 0, let h(k) = ta(k) ⊂ g(k) and let H(k) ⊂ G(k) be the corresponding (abelian)
connected Lie group.

If ck < 0 thenBck
∼= C and thus g(k) ∼= a(k) ⊗C. Let h(k) be the direct sum of the real

Cartan subalgebra4 and the nilpotent (complex) Lie subalgebra spanned by the negative
root spaces. Notice that h(k) is not unimodular in this case. Again H(k) ⊂ G(k) is the
corresponding connected Lie subgroup. For ck ≤ 0 the subgroups H(k) ⊂ G(k) form a
continuous family (parametrized by ck).

Finally, let H(b) ⊂ G(b) be a torus such that h(b) ⊂ g(b) is lagrangian. We set
H = H(0) × · · · × H(N ) × H(b) and we get (using the Iwasawa decomposition G(i) =
A(i)
C

= A(i)H(i) for i ≥ 1 if ci < 0)

S\G/H ∼= Ad Sm × A(1)/A(1)
0 × · · · × A(N )/A(N )

0 × (S1)dim b, (28)

where A(k) and A(k)
0 are Lie groups integrating a(k) and a

(k)
0 , respectively. If ck = 0 for

every k then the generalized metric V+ gives us a pseudo-Riemannian metric g making
this manifold to a symmetric pseudo-Riemannian space, and the 3-form H vanishes.
For general ck’s the metric g (and also the 3-form H ) is quite different, but it depends
continuously on ck’s.

8.5. First ansatz. As a first example, let us consider N = 1,

a(1) = su(M + 1), a
(1)
0 = s(u(1) ⊕ u(M)),

for a fixed M ∈ {1, 2, 3}, implying S\G/H = Ad S10−2M ×CPM . The space ∧2(a
(1)
1 )∗

is spanned by the element5

	 = e1 ∧ e2 + · · · + e2M−1 ∧ e2M

for a suitable orthonormal basis (w.r.t. K1) ea of a(1)
1 and a general self-dual element of

(
∧

(atotal1 )∗)s is of the form

F = p(	) + RV+ p(	) = p(	) + ∗ϑp(	),

for p a polynomial,

p(	) =
M∑

n=0

dn

n! 	
n, dn ∈ R.

Weomit the proof of the followingproposition (it is just a straightforward calculation).

4 i.e. the real span of the coroots
5 This corresponds (up to a constant) to the symplectic form on CPM .
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Proposition 8.7. Equations (27) reduce to

(5 − M)(1 + c0) = −λ1M(1 + c1),

2(1 − c0) =
M∑

n=0

d2
n

(
M

n

)
,

−λ12M(1 − c1) =
M∑

n=0

d2
n

(
M

n

)
(2n − M),

0 =
M∑

n=1

dndn−1

(
M − 1

n − 1

)
.

Notice that there are M + 4 free parameters constrained by 4 equations, giving an
M-parameter class of solutions.

8.6. Second ansatz. Weshall nowconstruct solutionswhere F is built only out of volume
forms.

Let us denote by ωk and ωb the metric volume forms on a
(k)
1 , for k = 0, . . . , N and

on b = b1, respectively. Let us consider a general element of (Sg)Cs ∼= (
∧
atotal∗1 )s

which is a linear combination of products of ωi ’s:

F̂ :=
∑

h∈{0,1}N+2

f (h) ω
h(0)
0 ∧ · · · ∧ ω

h(N )
N ∧ ω

h(N+1)
b

(for arbitrary coefficients f (h) ∈ R) or, if b = 0,

F̂ :=
∑

h∈{0,1}N+1

f (h) ω
h(0)
0 ∧ · · · ∧ ω

h(N )
N .

Let us then set

F := F̂ + RV+ F̂ .

Clearly, F is self-dual, s-invariant, and thus D0-closed.

Lemma 8.8. If

(ιuιv F ∧ ∗F)top = 0, ∀u, v ∈ atotal
1 , (29)

then the conditions (27b), (27c) are equivalent to

2(1 − ck)λk =
∑

h

(−1)h(0)+h(k) f (h)2 (30)

for k = 0, . . . , N if b = 0 or k = 0, . . . , N + 1 if b �= 0, where we define λN+1 := 0.
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Proof. Let us consider the case b = 0; the case of b �= 0 is similar. The condition (29)
implies also ( ju jv F ∧ ∗F)top = 0 and thus, taking u, v ∈ a

(k)
1 for k ∈ {0, . . . , N },

ψF (u, v) = 1
4 ([( juιv − ιu jv)F] ∧ ∗F)top.

An easy calculation now shows that this expression equals

1
2 ([( juιv − ιu jv)F̂] ∧ ∗F̂)top = 1

2

∑
h(k)=1

f (h)([ juιvω
h(0)
0 ∧ · · · ∧ ω

h(N )
N ] ∧ ∗F̂)top

− 1
2

∑
h(k)=0

f (h)([ιu jvω
h(0)
0 ∧ · · · ∧ ω

h(N )
N ]) ∧ ∗F̂)top

= − 1
2

∑
h

(−1)h(k) f (h)2K (u, v)
(
(ω

h(0)
0 ∧ · · · ∧ ω

h(N )
N ) ∧ ∗(ω

h(0)
0 ∧ · · · ∧ ω

h(N )
N )

)top

= − 1
2 K (u, v)

∑
h

(−1)h(0)+h(k) f (h)2,

where in the next-to-last equality we have used that

(ω
h(0)
0 ∧ · · · ∧ ω

h(N )
N ) ∧ ∗(ω

h(0)
0 ∧ · · · ∧ ω

h(N )
N ) = (−1)h(0)

due to the Lorentzian signature of the inner product on a
(0)
1 .

Putting things together, we obtain:

Proposition 8.9. For this setting, supposing the conditions (27a), (29), (30) hold and the
spinor F is of a definite parity, we obtain a solution to the generalized SUGRA equations
of motion on the manifold (28).

8.7. Second ansatz: examples. We now present several interesting special cases of the
above construction. Since it is easy to check that in the following examples (29) holds,
we will only focus on the analysis of the conditions (27a) and (30).
8.7.1. Let us first consider the case N = 1, b = 0 with

f (h) =
{

a, if h = (1, 0)
0, otherwise.

This corresponds to a = o(m − 1, 2) ⊕ a(1) with

F = a(ω0 + RV+ω0) = a(ω0 − νimω1).

Here m ∈ {2, . . . , 8}. The conditions (27a) and (30) then give

(1 + c0)m = −λ1(1 + c1)(10 − m),

2(1 − c0) = a2, 2(1 − c1)λ1 = −a2,

which can be recast conveniently as

1 + c0
1 − c0

m

10 − m
= 1 + c1

1 − c1
, λ1 = −1 − c0

1 − c1
, a2 = 2(1 − c0),

and yields a one-parameter family of solutions (parametrized e.g. by c0). We thus have
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Theorem 8.10. For each real compact semisimple Lie algebra a(= a(1)) with an involu-
tion (a = a0⊕a1), such that dim a1 ∈ {2, . . . , 8}, we obtain, via the above construction,
a one-parameter family of solutions to the generalized SUGRA equations of motion on
the 10-dimensional Lorentzian manifold Ad Sm × A/A0.

Here we provide a list of irreducible6 examples, writing A/A0 and the dimension of
the quotient for each case.

Sd = SO(d + 1)/SO(d) d
CPd = U (d + 1)/(U (1) × U (d)) 2d

SU (4)/S(U (2) × U (2)) 8
Sp(2)/U (2) 6

SO(6)/(SO(2) × SO(4)) 8
G2/SO(4) 8

SU (3)/SO(3) 5
SU (3) = (SU (3) × SU (3))/SU (3) 8

Here in the first entry d ∈ {2, . . . , 8} and in the second d ∈ {2, 3, 4}. The next three
examples (as well as the projective spaces) are Grassmannian spaces. For reducible
examples, we can consider the products of elements of the above list, e.g. S2 × S2 × S3

or S2 × Sp(2)/U (2).

Remark 8.11. Notice that in the case m = dimA/A0 = 5 the family of solutions simpli-
fies to c0 ∈ R, c1 = c0, λ1 = −1, a2 = 2(1 − c0). It also contains c0 = c1 = 0, which
corresponds to a solution to (ordinary) supergravity equations. This one-parameter class
recovers in particular the η-deformed Ad S5 × S5, found in [7]. In addition, from the
above list we also get the cases Ad S5 × S3 × S2 and Ad S5 × SU (3)/SO(3).

8.7.2. Let us again take the case N = 1, b = 0 but now with m ∈ {3, . . . , 7} and

f (h) =

⎧⎪⎨
⎪⎩

a, if h = (1, 0)
b, if h = (0, 0)
0, otherwise.

This corresponds to a = o(m − 1, 2) ⊕ a(1) with

F = a(ω0 + RV+ω0) + b(1 + RV+1) = a(ω0 − imω1) + b(1 + ω0 ∧ ω1).

The conditions (27a) and (30) give

(1 + c0)m = −λ1(1 + c1)(10 − m),

2(1 − c0) = a2 + b2, 2(1 − c1)λ1 = −a2 + b2,

which yields a two-parameter class of solutions. Therefore

Theorem 8.12. For each real compact semisimple Lie algebra a(= a(1)) with an involu-
tion (a = a0⊕a1), such that dim a1 ∈ {3, . . . , 7}, we obtain, via the above construction,
a two-parameter family of solutions to the generalized SUGRA equations of motion on
the 10-dimensional Lorentzian manifold Ad Sm × A/A0.

6 in the sense of Riemannian symmetric spaces
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8.7.3. We shall illustrate the case of b �= 0 on the example of N = 1, b = u(1) for
Ad S4 × SU (3)/SO(3) × S1 with

f (h) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a, if h = (1, 0, 0)
b, if h = (0, 1, 0)
d, if h = (0, 0, 1)
0, otherwise,

corresponding to

F = a(ω0 − ω1 ∧ ω2) + b(ω1 − ω0 ∧ ω2) + d(ω2 + ω0 ∧ ω1).

The equations (27a) and (30) now read

4(1 + c0) = −5λ1(1 + c1),

2(1 − c0) = a2 + b2 + d2, 2(1 − c1)λ1 = −a2 − b2 + d2, 0 = −a2 + b2 − d2,

producing again a two-parameter class of solutions.

Remark 8.13. It is clear thatwe can continue and consider other cases: N > 1, dim b > 1,
… In this way we can produce other classes of solutions, some of them having more
than 2 free parameters.
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