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Abstract: In many contexts one encounters Hermitian operators M on a Hilbert space
whose dimension is so large that it is impossible to write down all matrix entries in an
orthonormal basis. How does one determine whether such M is positive semidefinite?
Herewe approach this problembyderiving asymptotically optimal bounds to the distance
to the positive semidefinite cone in Schatten p-norm for all integer p ∈ [1,∞), assuming
that we know the moments tr(Mk) up to a certain order k = 1, . . . , m. We then provide
three methods to compute these bounds and relaxations thereof: the sos polynomial
method (a semidefinite program), the Handelman method (a linear program relaxation),
and the Chebyshev method (a relaxation not involving any optimization). We investigate
the analytical and numerical performance of these methods and present a number of
example computations, partly motivated by applications to tensor networks and to the
theory of free spectrahedra.

1. Introduction

1.1. The setting. Positive semidefinitematrices and operators come up in a large number
of contexts throughout mathematics, physics and computer science, including the theory
of operator algebras, computations with quantum states, or semidefinite relaxations of
optimization problems. A problem that arises frequently in many of these contexts is
determining whether a given matrix M or operator is positive semidefinite (psd). In
certain applications—we describe two of them in Sects. 1.2 and 1.3 —M is of such a
large dimension that it is impossible to express M in an orthonormal basis and store
the result in a computer, let alone diagonalize it or compute determinants of principal
minors. Instead, we assume that one can compute a few of the normalized moments
tr(Mk), where we define the normalized trace as

tr(M) := s−1 tr(M),

where s is the size of M . In this paper, we answer the following questions:

http://crossmark.crossref.org/dialog/?doi=10.1007/s00220-020-03720-5&domain=pdf
http://orcid.org/0000-0002-0977-7727


106 G. De las Cuevas, T. Fritz, T. Netzer

(i) Given the first m normalized moments tr(Mk) for k = 1, . . . , m of a Hermitian
operator M with ‖M‖∞ ≤ 1, can one show that M is not psd?

(ii) Given these moments and a p ∈ [1,∞), can one optimally bound the distance of M
to the psd cone from above and below in Schatten p-norm?

Since both the moments and the positive semidefiniteness of a Hermitian opera-
tor M are characterized by the distribution of eigenvalues—or more generally by the
corresponding Borel measure on the spectrum of M—we are secretly concerned with
a version of the truncated Hausdorff moment problem. In these terms, the above two
questions become:

(i) Given only the moments

Eμ[xk] :=
∫ +1

−1
xk dμ

of a compactly supported Borel measure μ on [−1, 1] for k = 1, . . . , m, can one
show that μ is not supported on [0, 1]?

(ii) Given these moments and a p ∈ [1,∞), can one optimally bound the p-Wasserstein
distance [27] betweenμ and the set of probability measures supported on [0, 1] from
above and from below?

Given this connection with the moment problem, it should not come as a surprise that
our methods also work in certain infinite-dimensional situations. While we focus on the
matrix case in the main text, we sketch the extension to testing positivity of a Hermitian
element in a von Neumann algebra equipped with a finite faithful trace in “Appendix A”.

Let us now motivate the assumption that we have access to a few moments of M . In
the applications we have in mind, the space where M lives has a natural tensor product
structure, with respect to which M can be expressed as

M =
r∑

j=1

A[1]
j ⊗ · · · ⊗ A[n]

j , (1)

where each A[i]
j is Hermitian and of reasonably small dimension.1 Note that every M

on a tensor product space can be written this way, for large enough r . In our example
applications below, r is taken to be fixed and typically small, or not scaling with n. Thus,
the naturally available operations are those that can be directly performed in terms of
the local matrices A[i]

j . This includes taking powers of M and taking the trace, which
gives us access to the moments of M :

tr
(

Mk
)

=
r∑

j1,..., jk=1

tr
(

A[1]
j1

· · · A[1]
jk

)
· · · tr

(
A[n]

j1
· · · A[n]

jk

)
, (2)

for k ∈ N much smaller than the size of the matrix M , namely s × s.

1 If r = 1, then there is a simple criterion to determine whether M is psd: M is psd if and only if each A[i]
is either psd or negative semidefinite, and the number of negative semidefinite matrices is even. But we are
not aware of any such simple criterion for r > 1.
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1.2. Example application: tensor networks. Our first example application concerns
quantum states of a many-body system, which are modelled by psd matrices on a Hilbert
spaceH = H1 ⊗H2 ⊗ . . .⊗Hn , whereHi is the Hilbert space associated to subsystem
i . Typically, all Hi are of the same finite dimension. Since the dimension of H grows
exponentially with n, physicists have attempted to develop a scalable description of
quantum many-body systems, that is, one which grows only polynomially in n. This is
the objective of the program of tensor networks [6,19,20,26]. While this program has
been very successful for pure states (i.e. psd matrices of rank 1), its success for mixed
states has been more limited. One of the reasons for that is the positivity problem, which
is the following. In the tensor network paradigm, it is natural to use a few matrices for
each local Hilbert spaceHi . For example, the state of the system in one spatial dimension
(with periodic boundary conditions) is described by

M =
r∑

j1,..., jn=1

A j1, j2 ⊗ A j2, j3 ⊗ · · · ⊗ A jn , j1 , (3)

where each A jl , jl+1 is a Hermitian matrix in Hl [4,25]. (In general, the local matrices
A jl , jl+1 may also depend on the site l, but we do not consider this case for notational
simplicity.) Now, while M must be psd to describe a quantum state, each of the local
matrices A jl , jl+1 need not be psd. While there is a way of imposing positivity in the local
matrices (resulting in the ‘local purification form’), this generally comes at the price
of a very large increase in the number of matrices, thus making the representation very
inefficient [4].

Indeed, the hardness of deciding whether objects of the kind of (3) are psd has been
studied. Specifically:

Problem 1. Given {A j, j ′ ∈ Hers}r
j, j ′=1 with s, r ≥ 7, let

M(n) :=
r∑

j1,..., jn=1

A j1, j2 ⊗ A j2, j3 ⊗ · · · ⊗ A jn , j1 .

Decide whether M(n) ≥ 0 for all n.

Proposition 1. [5] Problem 1 is undecidable.

This holds true even if all matrices A j, j ′ are diagonal and their entries rational.
Variants of this problem are also undecidable [14], and deciding whether it is psd for a
finite number of system sizes and with open boundary conditions is NP-complete [14].
See also [28] for further perspectives on this problem.

1.3. Example application: free spectrahedra. Our second example application is in the
area of convex optimization, where we find the same algebraic structures as the ones we
have considered so far, albeit often studied from a different angle. Namely, given a tuple
(B1, . . . , Br ) of Hermitian matrices, its associated spectrahedron [3] is defined as

S(B1, . . . , Br ) =
{

(y1, . . . , yr ) ∈ R
r
∣∣∣∣

r∑
i=1

yi Bi � 0

}
,
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where � denotes positive semidefiniteness. Note that it is the intersection of an affine
spacewith the set of psdmatrices. Spectrahedra are precisely the feasible sets of semidef-
inite programimg (SDP). Characterizing which convex sets are spectrahedra is a main
objective in the area of algebraic convexity [3], and has direct implications for the many
applications of semidefinite programming.

Recently, a non-commutative generalization of spectrahedra has been proposed,
called free spectrahedra [10], defined as

FS(B1, . . . , Br ) =
∞⋃

s=1

{
(A1, . . . , Ad) ∈ Herrs

∣∣∣∣
r∑

i=1

Ai ⊗ Bi � 0

}
. (4)

Thus, asking whether
∑r

i=1 Ai ⊗ Bi is psd is equivalent to asking whether (A1, . . . , Ar )

is in the free spectrahedron defined by (B1, . . . , Br ). This is again a problem of the
form (1), with n = 2. Surprisingly, many things about standard spectrahedra can be
learned by examining their free versions. For example, the inclusion test of spectrahedra
proposed in [1] was fully understood in [11] as an inclusion test of free spectrahedra,
opening the way to analyzing the exactness of the method (see [7] and the references
therein). Also, two minimal matrix tuples defining the same spectrahedron are unitarily
equivalent if and only if they define the same free spectrahedron [11]. So the different
free spectrahedra over a standard spectrahedron characterize equivalence classes of its
defining matrix tuples. Applying these results often means checking whether a free
spectrahedron contains a certain matrix tuple, i.e. whether

∑
i Ai ⊗ Bi is psd. Since the

matrices might be of very large size, this is again a context in which our methods can be
applied.

1.4. Related work. Themethods we use to solve the problems described above are fairly
standard: a combination of techniques used for moment problems combined with results
on sums of squares representations of positive polynomials. One might therefore expect
there to exist a substantial amount of literature on the problem which we solve in this
work, but this does not seem to be the case.

There is only onework thatwe are aware of Lasserre [17] has investigated the smallest
interval [am, bm] on which the support of a measure onR can be shown to be contained,
given only its first m moments. One can think of this as providing a solution to the
problems discussed above in the case p = ∞. Lasserre found that the lower bound
am and upper bound bm are the optimal solutions of two simple semidefinite programs
involving the moments.

1.5. Overview. The rest of this paper is structured as follows. In Sect. 2, we characterize
the distance of a matrix to the psd cone. In Sect. 3, we provide upper and lower bounds to
the distance to the psd cone by using a fewmoments of the matrix. In Sect. 4, we provide
three methods to compute these bounds: the sos polynomial method, the Handelman
method and the Chebyshev method. In Sect. 5 we analyse the numerical performance of
these methods. Finally, in “Appendix A”, we will sketch the extension to von Neumann
algebras.

2. The Distance to the psd Cone

Wewill startwith somepreliminaries (Sect. 2.1) and thendefine the negative part function
and the distance to the psd cone (Sect. 2.2).
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2.1. Preliminaries. Let us first fix some notation. For a matrix M , we denote its Her-
mitian conjugate by M∗. Hers denotes the set of Hermitian matrices of size s × s. For
M ∈ Hers , M � 0 denotes that M is psd, and M � 0 that it is negative semidefinite
(i.e. −M � 0).

We now state some basic facts about matrices and their norms. Consider M ∈ Hers
and its spectral decomposition M = U∗DU , where U is a unitary matrix, D =
diag(λ1, . . . , λs), and {λ1, . . . , λs} =: sp(M) is the spectrum of M (considered as a
multiset). Any real-valued function f defined on sp(M) can be defined on M by setting

f (M) := U∗ f (D) U,

where f (D) = diag( f (λ1), . . . , f (λs)). For example, the absolute value |M | of M is
defined this way. For p ∈ [1,∞), we define the Schatten p-norm of M as

‖M‖p := (
tr(|M |p)

)1/p
,

where taking the normalized trace instead of the usual trace introduces an additional
factor of s−1/p with respect to the usual definition. This definition guarantees that‖I‖p =
1, where I is the identity matrix (of any size). The case p = 2 corresponds to the
normalized Frobenius norm, and the case p = 1 to the normalized trace norm. Note
also that if p is even, the norm is easier to compute, since in this case the absolute value
is superfluous, so that ‖M‖p = (tr(M p))1/p, which is simply the pth root of the pth
moment of M . The operator norm of M induced by the standard Euclidean norm on Cs

is defined as

‖M‖∞ := max
λi ∈sp(M)

|λi |.

We have that ‖M‖∞ = limp→∞ ‖M‖p.

Remark 1. In the following we will often assume that ‖M‖∞ ≤ 1, i.e. that the spectrum
of M lies in [−1, 1]. This can clearly be achieved by a suitable scaling of M . Of course,
since our main problem is that sp(M) cannot be computed, we cannot simply scale by
‖M‖∞. But for 1 ≤ p ≤ q ≤ ∞, we have

‖M‖p ≤ ‖M‖q ≤ s
1
p − 1

q ‖M‖p.

So we can divide M by s1/p‖M‖p (for any p ∈ N) in order to achieve ‖M‖∞ ≤ 1.

Moreover, since s
1

log s = e, the norm ‖M‖log s is only a constant factor away from
‖M‖∞.2

2.2. The negative part function and the distance to the psd cone. Given p ∈ N, let us
define the negative part function f p as

f p(x) :=
{
0 x ≥ 0
|x |p x < 0.

(5)

2 This has been pointed out to us by Richard Kueng.
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So, for example, f1(x) is the absolute value of the negative part of x . For M ∈ Hers , we
set

M− := f1(M) and M+ := M + M−,

so that we obtain the natural definition M = M+ − M−, where both the positive part M+
and the negative part M− are psd. (To define functions ofmatrices we follow the standard
procedure [13]. Namely, if the matrix is diagonalisable, as in our case M = U DU∗,
then f (M) = U f (D)U∗, where f (D) = diag( f (λ1), f (λ2), . . .), where {λi } are the
eigenvalues.)

Given a Hermitian matrix M of size s, we are interested in its distance to the cone of
psd matrices of size s, PSDs , with respect to the Schatten p-norm, namely

dp(M) := inf
N∈PSDs

||M − N ||p. (6)

We now show that this is given by the negative part of M . That is, the best psd approxi-
mation to a Hermitian matrix is given by the positive part of this matrix.

Lemma 1. For p ∈ [1,∞) and M ∈ Hers , the matrix M+ is the point in the psd cone
that is closest to M, with respect to any Schatten p-norm. That is,

dp(M) = ‖M−‖p = tr( f p(M))1/p.

Proof. Clearly M+ � 0, so that the distance can at most be ‖M−‖p. Now, for any matrix
A ∈ Hers , denote by σ(A) the diagonal matrix with the eigenvalues of A on the diagonal,
in decreasing order. It follows from [2] (IV.62) that

‖P − M‖p ≥ ‖σ(P) − σ(M)‖p (7)

holds for all P ∈ Hers and all p. If P � 0, then clearly

‖P − M‖p ≥ ‖σ(P) − σ(M)‖p ≥
⎛
⎝1

s

∑
λ∈sp(M),λ<0

|λ|p

⎞
⎠

1/p

= ‖M−‖p.

This proves the claim. ��
Remark 2. Note that ‖σ(P) − σ(M)‖p is precisely the p-Wasserstein distance [27]
between the spectralmeasures s−1 ∑

i δσ(P)i i and s−1 ∑
i δσ(M)i i of P and M . So dp(M)

is in fact also the p-Wasserstein distance of the spectral measure of M to the cone of
probability measures supported on [0,∞). ��

3. Bounds on the Distance

We will now bound the negative part function f p by polynomials (Sect. 3.1) and then
show the asymptotic optimality of our bounds (Sect. 3.2).
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3.1. Bounding the negative part function by polynomials. Clearly, M is psd if and only
if its distance to the psd cone is zero, dp(M) = 0, and dp(M) is a measure of how far M
differs from being psd. Thus, ideally, we would like to compute dp(M). Since we only
have access to a few moments of M , we will use them to estimate dp(M) as accurately
as possible.

We start by showing that dp(M) can be approximated arbitrarily well by the trace of
polynomial expressions in M . For q ∈ R[x], we write f p � q if this holds pointwise on
the interval [−1, 1].
Lemma 2. Suppose M ∈ Hers with ‖M‖∞ ≤ 1 and p ∈ N. Then

dp(M)p = inf
f p�q∈R[x] tr(q(M)) = sup

f p�q∈R[x]
tr(q(M)).

Proof. From f p � q we obtain that f p(M) � q(M), thus tr( f p(M)) ≤ tr(q(M)) and
finally

dp(M)p = tr( f p(M)) ≤ tr(q(M)).

Conversely, by standardWeierstrass approximation for continuous functions on compact
sets, for any ε > 0 there exists a polynomial q ∈ R[x] with

f p � q � f p + ε.

The same argument as above then shows

tr(q(M)) ≤ dp(M)p + ε.

This proves the first equation, and the second follows in the same fashion. ��
Thus, any polynomials q1 and q2 such that q1 � f p � q2 give the bounds

tr(q1(M)) ≤ dp(M)p ≤ tr(q2(M)).

In particular, this means that if tr(q1(M)) > 0 then M is not psd. The quality of the
bounds depends on the quality of the approximation of f p by q1, q2 on sp(M), or more
generally on [−1, 1]—see Fig. 1 for an example.

More generally, given a polynomial q which does not satisfy q � f p or q � f p,
what we can say is that

q − ‖(q − f p)+‖∞ � f p � q + ‖(q − f p)−‖∞, (8)

where we use notation for positive and negative part as in the matrix case, and similarly
‖g‖∞ := supx∈[−1,1] |g(x)|. Here, the function on the left hand side corresponds to
shifting q by an additive constant until it is below f p, and similarly for the right hand
side—see Fig. 2 for an example. This leads to the following result.

Theorem 1. Let M ∈ Hers with ‖M‖∞ ≤ 1, p ∈ N, as well as q ∈ R[x]. Then

tr(q(M)) − ‖(q − f p)+‖∞ ≤ dp(M)p ≤ tr(q(M)) + ‖(q − f p)−‖∞. (9)

In particular:

(i) If f p � q, then dp(M) ≤ tr(q(M))1/p.
(ii) If tr(q(M)) > ‖(q − f p)+‖∞, then M is not psd.
(iii) If q � f p and tr(q(M)) > 0, then M is not psd.
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Fig. 1. Polynomials of degree 7 that approximate f2 from below and from above, together with the spectrum of
M (black dots). The polynomials have been obtained with the Handelman method, to be described in Sect. 4.2

Fig. 2. A polynomial q which approximates f2 but does not satisfy q � f2 or q � f2. The polynomial is a
Chebyshev polynomial of degree 2, obtained with the Chebyshev method (Sect. 4.3). Then it is shifted up and
down by ||q − f2||∞

Remark 3. We can also try to prove that a matrix is psd with the same approach, although
this seems to be much harder in practice. Note the following: if for M ∈ Hers we find
dp(M) ≤ ε, then d∞(M) ≤ s1/pε, and therefore M + s1/pε Is � 0. So if we first replace
M by

Mε := M − s1/pε Is,

and then show that dp(Mε) ≤ ε, then we have proven that M � 0. By Theorem 1, this
can be achieved by finding q ∈ R[x] with

tr(q(Mε)) + ‖(q − f p)−‖∞ ≤ ε p. (10)

Note that the kth moment of Mε can be computed from the moments of M of order ≤ k.
Further, if M is strictly positive definite, then this strategy does indeed work: there is
ε > 0 with Mε � 0, i.e. dp(Mε) = 0. In view of Lemma 2, we can also find some q
to make (10) hold, so that this method can indeed detect that M is psd. However, we
might need to test for both very small ε and polynomials q of very high degree before
obtaining a positive answer. ��
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3.2. Optimality of the bounds. We now show that given the first m moments of M , the
best bounds to the distance to the psd cone which are independent of the size of M are
given by a polynomial approximation. More precisely, given M ∈ Hers and p, m ∈ N,
define

d+
p,m(M) := inf

f p�q, deg(q)≤m
tr(q(M))1/p

d−
p,m(M) := sup

q� f p, deg(q)≤m
tr(q(M))1/p.

(11)

Clearly, these numbers depend only on the first m moments of M , and they lower and
upper bound dp(M),

0 ≤ d−
p,m(M) ≤ dp(M) ≤ d+

p,m(M). (12)

We now show that these are the optimal upper and lower bounds to dp(M) which can
be obtained from the first m normalized moments of M and which are independent of
the size of M . We thus call them asymptotically optimal.

The following result is a variation on a classical result from the theory of moment
problems [15, Theorem 4.1(a)], for which we offer a self-contained proof.

Theorem 2. For any matrix M ∈ Hers with ‖M‖∞ ≤ 1 and any m ∈ N,

– For every ε > 0, there are N1, N2 ∈ Hert (for suitably large t) such that

|tr(Mk) − tr(N k
i )| ≤ ε for k = 1, . . . , m,

and for which

dp(N1) ≥ d+
p,m(M), dp(N2) ≤ d−

p,m(M).

– There are operators N1 and N2 in a finite von Neumann algebra N such that

tr(Mk) = tr(N k
i ) for k = 1, . . . , m,

and which saturate the bounds,

dp(N1) = d+
p,m(M), dp(N2) = d−

p,m(M).

Note that in the first case the moments are approximately reproduced but Ni has finite
size — we will see an example thereof in Example 1. In the second case, the moments
are exactly reproduced but the size of Ni may need to be infinite.

Proof. We only construct N1, since N2 is obtained similarly.
Consider the linear functional

ϕ : R[x]≤m → R

q → tr(q(M))

on the space of polynomials of degree at most m, which clearly maps polynomials
nonnegative on [−1, 1] to nonnegative numbers. Let us define the real vector space

V := { q + r f p | q ∈ R[x]≤m, r ∈ R }.
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We extend ϕ to a linear functional ψ on V by setting

ψ( f p) := inf
f p�q∈R[x]≤m

ϕ(q).

We claim that ψ still maps nonnegative functions in V to nonnegative numbers. So let
h + r f p � 0 for some h ∈ R[x]≤m and r ∈ R. The case r = 0 is clear, so assume r < 0.
Then − 1

r h � f p, and thus

ψ(h + r f p) = ϕ(h) + r inf
f p�q

ϕ(q)

≥ ϕ(h) + rϕ

(
−1

r
h

)

= ϕ(h) − ϕ(h) = 0.

If r > 0 instead, then f p � q implies 0 � h + r f p � h + rq, and thus

ϕ(h) + rϕ(q) = ϕ(h + rq) ≥ 0.

Passing to the infimum over these q proves the statement.
Since R[x]≤m already contains an interior point of the convex cone of nonnegative

continuous functions on [−1, 1] (such as the constant function 1), we can further extend
ψ to a positive linear functionalΨ on the whole of C([−1, 1]), using the Riesz Extension
Theorem [21]. By theRieszRepresentationTheorem [23], there exists a positivemeasure
μ on [−1, 1] such that

Ψ ( f ) =
∫

f dμ

for all f ∈ C([−1, 1]). From μ([−1, 1]) = ∫
1 dμ = Ψ (1) = ϕ(1) = 1, we see

that μ is a probability measure. We now take N := L∞([−1,+1], μ), equipped with
integration against μ as a finite normalized trace, and define N1 to be the multiplication
operator by the identity function, N1 : f → x f .

So for k = 0, . . . , m, the kth moment of N1 is given by
∫

xkdμ = Ψ (xk) = ϕ(xk) = tr(Mk),

and we also have

dp(N1) =
∫

f p dμ = Ψ ( f p) = ψ( f p) = inf
f p�q∈R[x]≤m

ϕ(q) = d+
p,m(M)p,

which establishes the first claim.
Concerning the realization byfinite-dimensionalmatrices,weuse thewell-known fact

that each probabilitymeasure on [−1, 1] can be approximated arbitrarilywell by uniform
atomic measures with respect to the weak-∗ topology. Concretely, we can approximateμ

by the uniform atomic measure νt := 1
t ·∑t

i=1 δai , where the ai are the right t-quantiles,

ai := inf

{
r ∈ [−1, 1]

∣∣∣∣ μ([r, 1]) ≥ i

t

}
.
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This choice guarantees that the cumulative distribution function of νt dominates the
one of μt . Therefore the expectation value of μ is not smaller than that of νt on any
monotonically nonincreasing function. In particular, we have

∫
f p dνt ≥

∫
f p dμ.

Furthermore, since νt weak-∗ converges3 to μ as t → ∞, we can moreover choose t
large enough such that

∣∣∣∣
∫

xkdμ −
∫

xkdνt

∣∣∣∣ ≤ ε for k = 0, . . . , m.

For N1 := diag(a1, . . . , at ) ∈ Hert , we then have ‖N1‖∞ ≤ 1 and

tr(N k
1 ) = 1

t

t∑
i=1

ak
i =

∫
xkdνt

as well as ∫
f p dνt = 1

t

∑
ai <0

|ai |p = ‖N1−‖p
p = dp(N1)

p,

which gives the desired bounds. This altogether finishes the proof. ��
Example 1. We show that ε = 0 can in general not be achieved in the second part of
Theorem 2. Taking m = 2, let us consider the matrix4

M = diag
[
c +

√
c(1 − c), c − √

c(1 − c)
]
,

for c ∈ (0, 1/2). Since the lower right entry is negative, M is not psd. Its first moment is
c, the second moment is 1

2

(
2c2 + 2c(1 − c)

) = c, equal to the first moment. Looking for
a probability measure μ on [0, 1] with these moments, we must have Eμ[x(1− x)] = 0,
which implies that μ must be supported on {0, 1} only. Since μ = (1 − c)δ0 + cδ1 does
indeed have these moments, we conclude that it is the unique measure on [0, 1] with
these moments; and the fact that such a μ exists implies d−

p,2(M) = 0, irrespectively of
the value of p. However, as soon as c is irrational, the measure (1 − c)δ0 + cδ1 is not
of the form s−1 ∑s

i=1 δλi for any finite sequence (λ1, . . . , λs). In particular, there is no
psd matrix of finite size with the same moments as M , and ε = 0 cannot be achieved in
Theorem 2. By a standard compactness argument, this also implies that one must take
t → ∞ as ε → 0 in the theorem. ��

3 One way to see this is by the Portmanteau theorem: the cumulative distribution functions of μ and νt
differ by at most t−1 at every point, and therefore we have (even uniform) convergence as t → ∞, which
implies weak-∗ convergence νt → μ.

4 Although M is only of size 2×2, one can clearly achieve the same moments on larger matrices by simply
repeating the eigenvalues.
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Remark 4. An interesting question5 is how close our bounds d+
p,m(M) and d−

p,m(M) are
guaranteed to be to the actual value dp,m(M). In the worst case, the actual value will
coincide with one of the two bounds, in which case the other bound differs from the
actual value by

d+
p,m(M) − d−

p,m(M) ≤ 12
p

m
,

which follows from (29) and (26).

4. Algorithms

We now present our numerical methods to compute lower and upper bounds to the
distance to the psd cone, in order of decreasing accuracy and complexity: the sos poly-
nomialmethod (Sect. 4.1), theHandelmanmethod (Sect. 4.2) and theChebyshevmethod
(Sect. 4.3). The sos polynomialmethod involves solving a semidefinite program, theHan-
delman method involves solving a linear program, and the Chebyshev method does not
require any optimization. We will compare the numerical performance of three methods
in Sect. 5.

Throughout, we fix nonzero p ∈ N.

4.1. The sos polynomial method. The sos polynomial method solves the optimization
problems of Eq. (11) exactly,6 and thereby computes d+

p,m(M) and d−
p,m(M). We start

by explaining how to compute the upper bound d+
p,m(M) via a semidefinite program.

To be able to talk about polynomials only, we first split the condition f p � q into
two parts:

0 � q(−x) − x p and 0 � q(x), both for all x ∈ [0, 1]. (13)

Now note that any polynomial of the form

σ0 + σ1x + σ2(1 − x) + σ3x(1 − x), (14)

where the σi are sums of squares of polynomials, is nonnegative on [0, 1]. In fact, the
converse is true as well:

Theorem 3 [16,18]. If q ∈ R[x]≤m is nonnegative on [0, 1], then there exist sums of
squares σ0, σ1, σ2, σ3 ∈ R[x] such that

q(x) = σ0 + σ1x + σ2(1 − x) + σ3x(1 − x)

where the degree of each σi can be chosen such that each summand has degree at most
≤ m.

5 Communicated to us by Boaz Barak.
6 This is not to be confused with the sos polynomial method of [4], which is a semidefinite program that

computes minp ‖M − p(M)‖1, where p is a sos polynomial of given degree m. The goal of the method of
[4] is to approximate M as well as possible with a sos polynomial (as this provides a purification), which is
possible only if M is psd. Note moreover that ‖M − p(M)‖1 cannot be computed from the moments of M .
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So assume that we find such representations for both polynomials in (13),

q(−x) − x p = σ0 + σ1x + σ2(1 − x) + σ3x(1 − x),

q(x) = τ0 + τ1x + τ2(1 − x) + τ3x(1 − x),

with sums of squares (sos) σi , τi ∈ R[x]. Then we have clearly ensured f p � q. This
can be rewritten as

q(x) = (−x)p + σ̃0 − σ̃1x + σ̃2(1 + x) − σ̃3x(1 + x)

= τ0 + τ1x + τ2(1 − x) + τ3x(1 − x),
(15)

where the σ̃i (x) := σi (−x) are again sos.
Now assume that every term in (15) has degree ≤ m. This imposes obvious degree

bounds on the sums of squares σ̃i , τi , namely deg(σ̃0) ≤ m, and deg(σ̃1), deg(σ̃2) ≤
m − 1 as well as deg(σ̃3) ≤ m − 2, and analogously for the τi , and note that every sos
polynomial must have an even degree. It is easy to see that every sum of squares can be
written as

σ̃i = (1, x, . . . , xli ) Si (1, x, . . . , xli )t , Si ≥ 0

τi = (1, x, . . . , xli ) Ti (1, x, . . . , xli )t , Ti ≥ 0
(16)

where li = deg(σ̃i )/2 and similarly for τi . Writing each σi , τ̃i in such a way, using
matrices with unknown entries, and then comparing coefficients with respect to x in
(15), leads to the problem of finding psd matrices with certain linear constraints on the
entries.Any solution to this problemwill provide a polynomialq ∈ R[x]≤m with f p � q.

Among all of them, we want to minimize tr(q(M)), which is a linear function in the
entries of the unknown matrices, having the moments of M as coefficients. Optimizing a
linear function over an affine section of a cone of psd matrices is known as semidefinite
programming, for which there exist efficient algorithms.

The derivation of the lower bound d−
p,m(M) is entirely parallel, except for the fact

that in (13) the two inequalities are reversed. This implies that

−q(−x) + x p = σ0 + σ1x + σ2(1 − x) + σ3x(1 − x),

−q(x) = τ0 + τ1x + τ2(1 − x) + τ3x(1 − x),

where σi , τi are sos, and thus

q(x) = (−x)p − σ̃0 + σ̃1x − σ̃2(1 + x) + σ̃3x(1 + x)

= −τ0 − τ1x − τ2(1 − x) − τ3x(1 − x).
(17)

In summary, we have obtained:

Proposition 2 (Sos polynomial method). The sos polynomial method at level m com-
putes the upper bound d+

p,m(M)p (defined in (11)) by solving the semidefinite program

min tr(q(M))

subject to Eq. (15)

and Eq. (16)

(18)
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Fig. 3. Lower and upper sos polynomial approximation of degree 7 for p = 2 and for the matrix M whose
spectrum is shown in black dots

It also computes the lower bound d−
p,m(M)p (defined in (11)) by solving the semidefinite

program

max tr(q(M))

subject to Eq. (17)

and Eq. (16)

(19)

As an example, Fig. 3 shows the sos polynomial approximation of degree 7 obtained
for a matrix M with the indicated spectrum. We will discuss numerical results more
systematically in Sect. 5.

Remark 5. For computational purposes, it may be better to use the ansatz

σ0 + σ1x(1 − x) (20)

for a polynomial nonnegative on [0, 1], instead of (14). The advantage is that this reduces
the number of sums of squares from 4 to 2. An analogue of Theorem 3 still holds [16],
but with slightly weaker degree bounds: a degree m polynomial nonnegative on [0, 1]
has a representation σ0 + σ1x(1− x) with deg(σ0) ≤ m + 1 and deg(σ1) ≤ m − 1 only.7

So if we set up our optimization problem as above, but with the simpler representation
(20) where we demand deg(σ0) ≤ m and deg(σ1) ≤ m − 2 (since moments of M are
available only up to order m), then we will obtain a bound on dp(M)which lies between
d+

p,m(M)p and d+
p,m−1(M)p. ��

4.2. The Handelman method. The Handelman method relaxes the optimization of Eq.
(11) by using another ansatz for nonnegative polynomials on [0, 1]. This results in a
linear optimization problem,which can usually be solvedmuch faster than a semidefinite
problem.

We start by splitting the condition f p � q as in (13). This time note that any poly-
nomial of the form ∑

α∈N2

bαxα1(1 − x)α2

7 This can also be deduced directly fromTheorem 3, using x = x2+x(1−x) and 1−x = (1−x)2+x(1−x).
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with bα ≥ 0 (and only finitely many different from 0) is nonnegative on [0, 1]. So if we
find coefficients bα, cα ≥ 0 with

q(−x) − x p =
∑
α∈N2

bαxα1(1 − x)α2 ,

q(x) =
∑
α∈N2

cαxα1(1 − x)α2 ,

then we can be sure to have f p � q. Assume that the degree of the polynomials is a priori
bounded by m. Then comparing coefficients with respect to x yields a finite system of
linear equations:

q(x) = (−x)p +
∑

|α|≤m

bα(−x)α1(1 + x)α2

=
∑

|α|≤m

cαxα1(1 − x)α2 ,
(21)

where |α| = α1 + α2. We look for solutions under the constraint that (bα, cα)|α|≤m , and
among all these solutions, we look for the one that minimizes the quantity tr(q(M)).
This is precisely a linear optimization problem, where information about our matrix M
enters through the objective function.

The derivation of the lower bound of d−
p,m(M) is analogous, except that in this case

−q(−x) + x p and −q(x) must be nonnegative polynomials on [0, 1]. This leads to
q(x) = (−x)p −

∑
|α|≤m

bα(−x)α1(1 + x)α2

=
∑

|α|≤m

−cαxα1(1 − x)α2 ,
(22)

In summary we have obtained:

Proposition 3 (Handelman method). The Handelman method at level m computes an
upper bound of d+

p,m(M) by solving the linear program

min tr(q(M))

subject to Eq. (21)

and bα ≥ 0, cα ≥ 0

(23)

It also computes a lower bound of d−
p,m(M) by solving the linear program

max tr(q(M))

subject to Eq. (22)

and bα ≥ 0, cα ≥ 0

(24)

Note that linear optimization problems are easy to solve algorithmically (for example,
interior point methods have polynomial complexity, but the simplex algorithm and its
variants often work best in practice). See Fig. 1 above for upper and lower Handelman
approximations of f2 for a given matrix M .

Although this method computes only a relaxation of d+
p,m(M) (and analogously for

d−
p,m(M)), the following special case of Handelman’s Positivstellensatz for polytopes

[9] ensures that these relaxations converge to the exact value dp(M) in the limitm → ∞:



120 G. De las Cuevas, T. Fritz, T. Netzer

Theorem 4 (Handelman). If q ∈ R[x] is strictly positive on [0, 1], then

q(x) =
∑
α∈N2

aαxα1(1 − x)α2

for certain aα ≥ 0, only finitely many different from 0.

Note that this result leads directly to the standard solution of the Hausdorff moment
problem in terms of complete monotonicity [24, Theorem 1.5]. We now have:

Corollary 1. Let d̃+
p,m(M) denote the pth root of the optimal value of the linear program

described in Method 3. Then we have dp(M) ≤ d+
p,m(M) ≤ d̃+

p,m(M), and

d̃+
p,m(M)

m→∞↘ dp(M).

Proof. Every feasible point in the program leads to a polynomial q ∈ R[x]≤m with
f p � q. This proves d+

p,m(M) ≤ d̃+
p,m(M). Now if q ∈ R[x] fulfills f p � q, then for

any ε > 0 there is some m ∈ N, such that q + ε corresponds to a feasible point in the
respective program, by Handelman’s theorem. This proves the claim. ��

4.3. The Chebyshev method. The Chebyshev method chooses qm as the Chebyshev
polynomial of degree m that best approximates f p, and uses (9) to derive bounds on
dp(M). This has the advantage of not involving any optimization at all, i.e. one need
only compute the Chebyshev polynomials qm once, and the method can be applied to
any matrix M .

Ideally, the best bounds of Eq. (9) are given by the polynomial q of degree m that
minimizes ||qm − f p||∞, which we call q∗

m . By Jackson’s theorem (see e.g. [22, Theorem
1.4]) we have that

‖ f − q∗
m‖∞ ≤ 6ω( f, 1/m). (25)

where ω( f, δ) denotes the modulus of continuity of a uniformly continuous function f ,
defined as

ω( f, δ) = sup
x1, x2 ∈ [−1, 1]
|x1 − x2| ≤ δ

| f (x1) − f (x2)|.

For the negative part function f p, we thus obtain that

‖ f p − q∗
m‖∞ ≤ 6

(
1 −

(
1 − m−1

)p) ≤ 6
p

m
, (26)

where the second estimate is by Bernoulli’s inequality, which is tight up to an error of
O(m−2).

However, it is in general not possible to find q∗
m (called the minimax approximation)

analytically. Instead, Chebyshev polynomials provide a good proxy: they are close to the
minimax approximation, and are straightforward to compute explicitly [22]. To obtain
an analytical upper bound of the additional error, it is known [8] that the Chebyshev
approximation qm of a continuous function f satisfies that

‖qm − f ‖∞ ≤ Cω( f, 1/m) logm
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Fig. 4. ||qm − f p ||∞ (obtained numerically) for the Chebyshev polynomial qm of (28) as a function of m for
several p

for some constant C . For our negative part function f p, it thus holds that

||qm − f p||∞ ≤ Cm−1 logm. (27)

Numerically we can see the behaviour of ||qm − f p||∞ as a function of m and p in Fig. 4.
Let us now construct the Chebyshev interpolating polynomial of degree m, qm , ex-

plicitly. It interpolates f p at the Chebyshev nodes

ak = cos(π(k + 1/2)/(m + 1)) for k = 0, 1, . . . , m,

so that qm is given by

qm =
m∑

k=0

f p(ak)�k,

where the �k are the Lagrange interpolation polynomials

�k(x) = 1∏
i �=k(ak − ai )

∏
i �=k

(x − ai ).

One can also express qm in terms of the Chebyshev polynomials of the first kind, which
are defined as tk(x) = cos(k arccos(x)) for |x | ≤ 1. In this basis, qm takes the form

qm =
m∑

k=0

cktk − c0/2, with ck = 2

m + 1

m∑
j=0

f p(a j )tk(a j ). (28)

In summary, we have obtained:

Proposition 4 (Chebyshev method). The Chebyshev method at level m computes the
polynomial qm of Eq. (28), which provides the following upper and lower bounds to
dp(M),

dp(M)p ≥ tr(qm(M)) − ‖qm − f p‖∞
dp(M)p ≤ tr(qm(M)) + ‖qm − f p‖∞.

(29)

Note that by minimizing ‖qm − f p‖∞ one minimises ‖(qm − f p)+‖∞ and ‖(qm −
f p)−‖∞ simultaneously. As an example, Fig. 5 shows two Chebyshev approximations
of f2.
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Fig. 5. The Chebyshev approximation of degree 2 and 3 of f2

Table 1. Average running time (in seconds) to compute the first m moments for n tensor factors for a matrix
of the form of (1)

n
m 8 12 16

8 0.02 0.60 13.82
16 0.09 1.44 28.01
32 0.18 2.60 55.52
64 0.33 4.88 111.44

5. Numerical Results and Examples

We now discuss the numerical performance of the three methods presented in Sect. 4.
All computations were done with Mathematica on a standard computer with a 2.9GHz
processor and 16 GB RAM. Our Mathematica code is available with this paper.

Since all three methods take the vector of the first m normalized moments of a matrix
M as input, we first study how long it takes to compute these moments for a matrix of
the form (1). Specifically, we consider random local matrices A[i]

j of size 2, a sum length
of d = 2 and several values for the number n of tensor factors. Note that this is a natural
scenario in the tensor network paradigm, where one could imagine having a numerical
tensor of the form (1) and having to decide, or give necessary or sufficient conditions,
on its positive semidefiniteness. Table 1 shows the average running time to compute the
first m moments. Note that already for n = 16 we were not able to explicitly compute
and store the matrix M , let alone decide its semidefiniteness on our computer.

Nowwe study the running time of the three methods (with p = 2) as a function of the
number m of moments used (Table 2). Note that this does not include the computation
of the moments, since they are part of the input. The moments have been produced
from random instances of matrices of the form (1) with local matrices A[i]

j of size 2,
d = 2 and n = 8. Note that the running time includes the full setup of all problems, as
provided in the attached Mathematica file. In particular, for the Chebyshev method this
includes the computation of the Chebyshev polynomial (28) of degrees k = 1, . . . , m
which interpolates f p. These, however, do not depend on the input, and thus could be
computed in advance. The algorithm itself just has to compute the inner product of the
coefficient vector and the moment vector, which can be done in almost no time.

To examine the qualitative performance of the three methods, we generated 10,000
random numbers uniformly in [−ε, 1], for several small values of ε > 0, and took



Optimal Bounds on the Positivity of a Matrix 123

Table 2. Average running time (in seconds) of the three methods, using the first m moments

m
method sos polynomial Handelman Chebyshev

8 10.20 0.16 0.37
12 18.39 0.40 0.76
16 49.71 2.22 1.17
32 717.60 23.85 3.84

Table 3. Average number of moments needed to detect non-positivity of a matrix with 10,000 random eigen-
values in the interval [−ε, 1]

ε
method sos polynomial Handelman Chebyshev

1/2 3 5 4
1/4 4 7 8
1/8 5 8 20
1/16 6 17 ?

them as eigenvalues of our matrix M . Note that the corresponding spectral measure
is a close approximation of the uniform Lebesgue measure on this interval. We then
computed the corresponding normalized moments, and checked how many moments
each method needed to produce a positive lower bound on the distance to the psd cone,
i.e. to detect non-positivity. Note that the smaller ε, the harder the task. Table 3 shows the
average number of moments needed for each method, depending on ε. For ε = 1/16,
the Chebyshev algorithm did never provide positive bounds when using a number of
moments that we could compute without running into numerical problems (for example
when computing ‖ f p − qm‖∞, which is needed in the algorithm).

Let us summarize and compare the three methods. Concerning the running time, the
Chebyshev method is clearly the best. In addition, as mentioned above, its running time
can in practice be reduced to almost zero by computing the approximating polynomials
beforehand. The Handelman method is also quite fast, in particular when compared to
the sos polynomial method. On the other hand, the sos polynomial method needs signif-
icantly fewer moments than the other methods in order to produce the same qualitative
results. Computing many moments can also require a lot of time, depending on the
format of the matrix.

In order to compare both effects (running time versus number of moments needed),
we conducted a final experiment. We produced random matrices again of the form (1)
with local matrices of size 2, d = 2 and different values for the number n of tensor
factors. For each method we first checked how many moments were needed to detect
non-positivity, and then added the time to compute these moments to the actual running
time of the method. Note that in practice one does not know in advance how many
moments are needed to detect non-positivity. Interestingly, the Chebyshev method falls
behind the other two by far, due to the large number ofmoments it needs. The comparison
of the Handelman and the sos polynomial method is summarized in Table 4. Note that
also the Handelman method did not produce any meaningful result in the case of a very
large matrix.

In summary, a general and clear decision between the three methods based on their
performance cannot be made. They differ greatly in terms of running time and in terms
of the moments needed to obtain meaningful results. However, the Chebyshev method
seems to fall behind the other two in many relevant instances, at least for single matrices.
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Table 4. Total running time (in seconds) to detect non-positivity, involving the time to compute the moments
and the running time of the algorithm, for n tensor factors

n
method sos polynomial Handelman

16 0.63 0.01
24 1.33 0.01
32 7.34 1.46
40 77 ?

If the matrices are not extremely large and the eigenvalues do not show an extreme
behavior, the Handelman methods seems to perform best. The sos polynomial method
can however solve some of these extreme cases in which the other two methods fail.

Files attached to this manuscript:

– PSDBounds.nb: ThisMathematica package contains the three functionssosApp,
handelApp and chebyApp that provide the upper and lower bounds, together with
the approximating polynomials corresponding to the sos polynomial method, Han-
delman method, and Chebyshev method, respectively.

– TensorExample.nb: This Mathematica notebook provides some examples to
illustrate the use of the above package, in particular for matrices of the form (1).
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A. Extension to Von Neumann Algebras

Let N be a von Neumann algebra equipped with a faithful normal trace tr satisfying
tr(1) = 1. For example,N may be the group von Neumann algebra of a discrete group
Γ , defined as the weak operator closure of the group algebra C[Γ ] as acting on �2(Γ );
the trace is given by tr(x) := 〈e, xe〉 with e ∈ Γ being the unit. In the case where
N = Ms(C) is just the matrix algebra, the discussion presented here specializes to that
of the main text.

For a Hermitian element M ∈ N , the Schatten p-norm is again defined as

‖M‖p := (
tr(|M |p)

)1/p
,

where the absolute value and power functions are defined in terms of functional calculus.
We can now ask the same question as in the main text: suppose we have M of which we
only know the values of the first m moments

tr(Mk) for k = 0, . . . , m.

Then what can we say about the p-distance from M to the cone of positive elements?
It is straightforward to see that essentially all of the methods of the main text still

apply without any change. The only differences are the following:
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– Remark 1 no longer applies, since the estimate that we used there involves the
matrix size explicitly. Hence there is no bound on ‖M‖∞ that could be computed
from the moments. So in order to scale M such that ‖M‖∞ ≤ 1 is guaranteed, an
a priori bound on ‖M‖∞ needs to be known in addition to the moments. Otherwise
our methods will not apply in their current form.

– The proof of Proposition 1 is still essentially the same, but σ needs to be generalized
to the spectral scale, and the corresponding inequality is [12, Corollary 3.3(1)].

Everything else is completely unchanged, including the fact that we are secretly
addressing a version of the Hausdorff moment problem.
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