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Abstract: We study the weighted light ray transform L of integrating functions on
a Lorentzian manifold over lightlike geodesics. We analyze L as a Fourier Integral
Operator and show that if there are no conjugate points, one can recover the spacelike
singularities of a function f from its the weighted light ray transform L f by a suitable
filtered back-projection.

1. Introduction

Let g be a Lorentzian metric with signature (−,+, . . . ,+) on the manifold M of dimen-
sion 1 + n, n ≥ 2. We study the weighted Light Ray Transform

Lκ f (γ ) =
∫
R

κ(γ (s), γ̇ (s)) f (γ (s)) ds, (1.1)

of functions (or distributions) over light-like geodesics γ (s), known also as null
geodesics. There is no canonical unit speed parameterization as in the Riemannian case
as discussed below, and we have some freedom to chose parameterizations locally by
smooth changes of the variables. We are interested in microlocal invertibility of Lκ , that
is, the description of which part of the singularities of the function f can be reconstructed
in a stable say when Lκ f is given. Observe that this property does not depend on the
parameterization. Here κ is a weight function, positively homogeneous in its second
variable of degree zero, which makes it parameterization independent. When κ = 1, we
use the notation L . This transform appears in the study of hyperbolic equations when we
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want to recover a potential term, or other coefficients of the equation, from boundary or
scattering information, see, e.g., [1,4,21–24,32,33,35,36,43,45,46] for time dependent
coefficients or in Lorentzian setting, and also [2,26] for time-independent ones. This
problem arises in medical ultrasound tomography (see Sect. 5 on applications for the
details). The tensorial version of inverse problem for the weighted Light Ray Transform
arises in the recovery of first order perturbations [43] and in linearized problem of recov-
ery a Lorentzian metric from remote measurements [24]. The latter is motivated by the
problem of recovering the topological defects in the early stages of the Universe from the
red shift data of the cosmic background radiation collected by the Max Planck satellite.
The light tray transform L belongs to the class of the restricted X-ray transforms since
the complex of geodesics is restricted to the lower dimensional manifold g(γ̇ , γ̇ ) = 0.

The goal of the paper is to study the microlocal invertibility of Lκ under some
geometric conditions. Injectivity of L on functions in the Minkowski case was proved
in [36]. Support theorems for analytic metrics and weights were proven in [37], see also
[31] for a support theorem of L on one-forms in the Minkowski case. Those results in
particular imply injectivity under some geometric conditions. Microlocal invertibility or
the lack of it however is important in order to understand the stability of that inversion. It
is fairly obvious that Lκ f cannot “see” thewave front setWF( f ), of the function f , in the
timelike cone because Lκ is smoothing there. This just follows from the inspection of the
wave front of the Schwartz kernel of Lκ , see also Theorem 2.1 for the Minkowski case.
Microlocal invertibility for Minkowski metrics was studied in [24,44]. We show that in
the general Lorentzian setting, one can recover WF( f ) in the spacelike cone if there are
no conjugate points. In relativistic setting, this roughly speaking means that given Lκ f ,
one can determine the discontinuities (or the other singularities) of f that move slower
than the speed of light. Some restrictions are needed even in the Riemannian case. One
possible approach is to analyze the normal operator L∗κ Lκ as in [10,11,13]. That operator
is a Fourier Integral Operator (FIO) associated with two intersecting Lagrangians, see
[12] and the references there for that class and the I p,l calculus of such operators. The
analysis of L∗κLκ in the Minkowski case for n = 2 is presented in [10,11,13] as an
example illustrating a much more general theory. Applying the I p,l calculus to get more
refinedmicrolocal results however requires the cone condition which cannot be expected
to hold on general Lorentzian manifolds due to the lack of symmetry, as pointed out in
[13]. We analyze Lκ as an FIO and show that given any conically compact set K in the
spacelike cone, one can choose a suitable pseudodifferential operator (�DO) cutoff Q
so that L∗κQLκ is a �DO elliptic in a neighborhood of K ; therefore we can recover the
singularities of f from Lκ f in K .

The paper is organized as follows. In Sect. 2, we analyze the flat Minkowski case
where the formulas are more explicit. The Lorentzian case is studied in Sect. 3, which
contains our main results. In Sect. 4, we show that when n = 2, singularities can actually
cancel each other over pairs of conjugate points, similarly to the Riemannian case [25].
In Sect. 5, we present two applications where the light ray transform appears naturally
and our results can be applied: recovery of a time dependent potential in a wave equation
in Lorentzian geometry and recovery of a linearization of a time dependent sound speed
near a background stationary one.
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2. The Minkowski Case

Let g = −dt2 + (dx1)2 + · · ·+ (dxn)2 be the Minkowski metric inR1+n . Future pointing
lightlike geodesics (lines) are given by

�z,θ (s) = (s, z + sθ), s ∈ R (2.1)

with z ∈ Rn and |θ | = 1. This definition is based on parameterization of the lightlike
geodesics by their point of intersection with the spacelike hypersurface t = 0 and
direction (1, θ). The parameterization (z, θ) defines a natural topology and a manifold
structure of the set of the future pointing lightlike geodesics, which we denote by M
below. We define the light ray transform

L f (z, θ) =
∫
R

f (s, z + sθ) ds, z ∈ Rn, θ ∈ Sn−1. (2.2)

The lightlike geodesics can be reparameterized by shifting and rescaling s. Our choice
is based on having a unit orthogonal projection θ on t = 0 but if we choose another space-
like hyperplane of hypersurface, this changes. Therefore, there is no canonical choice
of the parameter along the lightlike lines. Note also that the notion of unit projection
θ is not invariantly defined under Lorentzian transformations, but in a fixed coordinate
system, the scaling parameter 1 (i.e., dt/ds = 1) is a convenient choice. More generally,
we could use a parameterization locally near a lightlike geodesic γ0, by choosing initial
points on any hypersurface S transversal to γ0, and initial lightlike directions; and we
can identify the latter with their projections onto S. We will use such a choice in Sect. 3
below when we consider more general Lorentzian manifolds.

Given a weight κ ∈ C∞(R×Rn × Sn−1), we can define the weighted version Lκ of
L by

Lκ f (z, θ) =
∫
R

κ(s, z + sθ, θ) f (s, z + sθ) ds, z ∈ Rn, θ ∈ Sn−1.

Under a smooth change of the parameterization s �→ α(z, θ)s with some α > 0, the
weight is transformed into a new one: κ/α, and the microlocal properties we study
remain unchanged.

In the terminology of relativity theory, vectors v = (v0, v′) satisfying |v0| < |v′|
(i.e., g(v, v) > 0) are called spacelike. The simplest example are vectors (0, v′), v′ 	= 0.
Vectors with |v0| > |v′| (i.e., g(v, v) < 0) are timelike; an example is (1, 0)which points
along the time axis. Lightlike vectors are those for which we have equality: g(v, v) = 0.
For covectors, the definition is the same but we replace g by g−1, which is consistent
with the operation of raising and lowering the indices. Of course, in the Minkowski case
g and g−1 coincide. We say that a hypersurface is timelike, respectively spacelike, if its
normal (which is a covector) is spacelike, respectively timelike.

We introduce the following three microlocal regions of T ∗R1+n\0:
spacelike cone, �s = {(t, x; τ, ξ); |τ | < |ξ |};
lightlike cone, �l = {(t, x; τ, ξ); |τ | = |ξ | 	= 0};
timelike cone, �t = {(t, x; τ, ξ); |τ | > |ξ |}.

In the Minkowski case, we can think of them as products ofR1+n and the corresponding
cones in the dual space R1+n .
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Fig. 1. Knowing L f (z, θ) for all z and a fixed θ recovers the Fourier Transform of f in codirections conormal
to the lightlike lines in that set. Knowing it near some (z, θ) recovers WF( f ) near those codirections along
the line

2.1. Fourier transform analysis. By the Fourier Slice Theorem, knowing the X-ray
transform for some direction ω recovers uniquely the Fourier transform f̂ , of function
f , on ω⊥ if, say, f is compactly supported. More precisely, the Fourier Slice Theorem
in our case can be written as

f̂ |τ+ξ ·θ=0 = f̂ (−θ · ξ, ξ) =
∫
Rn

e−i z·ξ L f (z, θ) dz, ∀θ ∈ Sn−1. (2.3)

The proof is immediate, and is in fact a consequence of the Fourier Slice Theorem in
R1+n for lines restricted to lightlike ones. Indeed, the integral on the right equals∫

Rn

∫
R
e−i x ·ξ f ((0, z) + s(1, θ)) ds dz.

Set y = (0, x)+ s(1, θ) and note that y ·ζ = x ·ξ when ζ = (τ, ξ) ⊥ (1, θ). Performing
the change of variables (s, x) �→ y, we see that the integral above equals f̂ (ζ ) for such
ζ .

The union of all (1, θ)⊥ for all unit θ is {|τ | ≤ |ξ |} (the union�s∪�l of the spacelike
and the lightlike cones), as is easy to see. This correlates well with the theorems below.
In particular, we see that knowing L f for a distribution f for which L f is well defined,
and so is its Fourier transform, recovers f̂ in the spacelike cone �s uniquely and in
a stable way. Under the assumption that supp f is contained in the cylinder |x | ≤ R
for some R (and temperate w.r.t. t), one can use the analyticity of the partial Fourier
transform of f w.r.t. x to extend f̂ analytically to the timelike cone, as well. This is how
it has been shown in [36] that L is injective on such f . More general support theorems
and injectivity results, including such for analytic Lorentzian metrics, can be found in
[37].

2.2. The normal operator L ′L. We formulate here a theorem about the Schwartz kernel
of the normal operator N = L ′L , where L ′ is the transpose in terms of distributions (the
same as the L2 adjoint L∗ because the kernel of L is real). The measure on Rn × Sn−1
is the standard product one. One way to prove the theorem is to think of L as a weighted
version of the X-ray transform L with a distributional weight 2

√
2|ξ |δ(τ 2 − |ξ |2) and

use the results about the weighted X-ray transform, see e.g. [39], and allow a singular
weight there. See also [24,38].

Theorem 2.1. For every f ∈ C∞0 (R1+n),

(a) L ′L f = N ∗ f, N (t, x) = δ(t − |x |) + δ(t + |x |)
|x |n−1 .
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(b)
L ′L f = CnF−1 (|ξ |2 − τ 2)

n−3
2

+

|ξ |n−2 F f, Cn := 2π |Sn−2|.

(c) h(�) f = C−1n |Dx |n−2�
3−n
2

+ L ′L f,

where h is the Heaviside function, � = ∂2t −�z and F is the Fourier transform.

Before proving Theorem 2.1, we make some comments. Above, h(�) is defined
through the Fourier transform since � is a Fourier multiplier. We used the notation
sm+ = max(s, 0)m with the convention that s0+ is the Heaviside function. In particular,
when n = 3, we get σ(L ′L) = 4π2|ξ |−1h (|ξ |2 − τ 2

)
, where σ(P) is the symbol (both

full and principal in this case) of P . Then

h(�) f = (4π2)−1|Dz|L ′L f.
As we can expect, there is a conormal singularity of the symbol even away from ξ =
0 living on the characteristic cone. Moreover, L ′L is elliptic in the spacelike cone,
and only there. This shows that L ′L is a formal �DO with a singular symbol having
singularities conormal to the light cone τ 2 = |ξ |2, i.e., it is an FIO corresponding to two
intersecting Lagrangians. This is one of the main examples in [13]. The theorem shows
that “singularities traveling slower than light” can be recovered stably from L f known
globally. The ones traveling faster cannot.

Proof of Theorem 2.1. To compute the dual L ′ of L , write

〈L f, φ〉 =
∫
Sn−1

∫
Rn

∫
R

f (s, x + sθ)φ(x, θ) ds dx dθ

=
∫
Sn−1

∫
Rn

∫
R

f (s, x)φ(x − sθ, θ) ds dx dθ.

Therefore,

L ′φ(t, x) =
∫
Sn−1

φ(x − tθ, θ) dθ, φ ∈ C∞0 (Rn × Sn−1). (2.4)

In particular, this identity allows us to define L on E ′(R1+n) by duality.
By (1.1) and (2.4),

L ′L f (t, x) =
∫
Sn−1

∫
R

f (s, x − tθ + sθ) ds dθ

=
∫
Sn−1

(∫
s<t

+
∫
s>t

)
f (s, x − tθ + sθ) ds dθ.

For the first integral, we get
∫
Sn−1

∫
s<t

f (s, x − tθ + sθ) ds dθ =
∫
Sn−1

∫ 0

−∞
f (t + σ, x + σθ) dσ dθ

=
∫
Sn−1

∫ ∞
0

f (t − σ, x + σθ) dσ dθ

=
∫
Rn

f (t − |z|, x + z)|z|1−n dz
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=
∫
Rn

f (t − |x − x ′|, x ′)
|x − x ′|n−1 dx ′. (2.5)

For the second one, we have

∫
Sn−1

∫
s>t

f (s, x − tθ + sθ) ds dθ =
∫
Sn−1

∫ ∞
0

f (t + σ, x + σθ) dσ dθ

=
∫
Rn

f (t + |x − x ′|, x ′)
|x − x ′|n−1 dx ′.

This completes the proof of (a). To prove (b), one can take formally the Fourier transform
of N to get

N̂ (τ, ξ) = 2π
∫
Sn−1

δ(τ + θ · ξ) dθ. (2.6)

This representation can also be justified by writing (2.3) in the form

f̂ (−θ · ξ, ξ) = Fz→ξ L f (z, θ) �⇒ L f (z, θ) = F−1ξ→z f̂ (−θ · ξ, ξ).

Then

〈L f, Lg〉 = (2π)−n
∫ ∫

Sn−1
f̂ (−θ · ξ, ξ)ĝ(−θ · ξ, ξ) dθ dξ

= (2π)−n
∫ ∫

Sn−1
δ(τ + θ · ξ) f̂ (τ, ξ)ĝ(τ, ξ) dθ dτ dξ.

(2.7)

Therefore, if we denote for a moment by K the integral in (2.6) but multiplied by (2π)−n
instead of 2π , we get 〈LF−1 f̂ , LF−1ĝ〉 = 〈 f̂ , K ĝ〉; hence F∗−1L ′LF−1 = K . Since
F∗ = (2π)1+nF−1, we get (2.6).

To compute N̂ explicitly, take a test function φ(τ, ξ) and write

〈N̂ , φ〉 = 2π
∫ ∫

Sn−1
δ(τ + θ · ξ)φ(τ, ξ) dθ dτ dξ = 2π

∫ ∫
Sn−1

φ(−θ · ξ, ξ) dθ dξ

= 2π
∫∫

F(s, ξ)φ(s, ξ) ds dξ

where F is the L1
loc function in (2.9) below. This proves (b).

Part (c) of the lemma follows directly from (b). ��
In the proof above, we used the following lemma.

Lemma 2.1. For every ψ ∈ S(R1+n),

∫
Sn−1

ψ(θ · ξ) dθ = |Sn−2||ξ |2−n
∫
R

ψ(s)(|ξ |2 − s2)
n−3
2

+ ds, ξ 	= 0, (2.8)

where |Sn−2| is the area of Sn−2 if n ≥ 3; equal to 2 when n = 2.
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For a proof, we refer to Lemma II.10.11 in [38].
Note that the kernel

F(s, ξ) := |Sn−2||ξ |2−n(|ξ |2 − s2)
n−3
2

+ (2.9)

is homogeneous of order−1 and as such, it is locally integrable. It has a unique extension
as a homogeneous distribution of order −1 given by an L1

loc function. Also, the l.h.s. of
(2.8) is a smooth function of ξ everywhere, including at ξ = 0.

Operator L ′L maps S(R1+n) into C∞(R1+n) continuously by (2.2) and (2.4), and
therefore, being symmetric, it extends by duality as an operator from E ′(R1+n) to
S ′(R1+n). The formula in Theorem 2.1 (b) then extends to f ∈ E ′(R1+n).

2.3. Lκ as an FIO. Theorem 2.1(c) implies some recovery of singularities results
already. If f ∈ E ′(R1+n) and L f ∈ C∞(Rn × Sn−1), then WF( f ) does not contain
spacelike singularities (note that this argument requires global knowledge of L f ). On
the other hand, one can easily construct functions or distributions with timelike singu-
larities so that L f = 0; for example take any non-smooth h ∈ E ′(R) with integral zero,
then for any a ∈ Rn with |a| < 1, for f = h(t + x · a) we have L f = 0; and

WF( f ) = {(t, x, τ, ξ) | t = s − x · a, ξ = aτ, (s, τ ) ∈WF(h)}.
Then |ξ | = |τ ||a| < |τ | is in the timelike cone. In particular, δ′(t) is in the kernel of L
and has timelike singularities only.

We can get more precise statements by studying first the Schwartz kernel of Lκ . It is
given by

Lκ(z, θ, t, x) = κ(t, x, θ)δ(x − z − tθ). (2.10)

In other words, Lκ = κδX , where

X = {(z, θ, t, x)| x = z + tθ}
is the point-line relation. We write M = R1+n = R1+n

t,x and let M ∼= Rn
z × Sn−1θ be the

manifold of the lines in M . Clearly, X is a 2n-dimensional submanifold of the product
M × M ∼= Rn

z × Sn−1θ × R1+n
t,x which itself is 3n-dimensional. Its conormal bundle is

given by

N∗X =
{
((z, θ, t, x), (ζ, θ̂ , τ, ξ))

∣∣ x = z + tθ, ξ = −ζ, τ = −θ · ξ, θ̂ = t (−ξ + (ξ · θ)θ)
}

with θ̂ conormal to Sn−1 at θ . We consider N∗X\0 as a subset of T ∗(M× M)\0. This
is a conical Lagrangian manifold which coincides with the wave front set of the kernel
Lκ when κ is nowhere vanishing; and includes the latter for general smooth κ .

Note that (τ, ξ) is space or light-like on N∗X\0 and it is the latter if and only if

ζ ‖ θ, (2.11)

i.e., when ζ is parallel to θ . Indeed, |τ | = |ξ | is equivalent with |θ · ζ | = |ζ | on N∗X\0.
As will be explained below, the relation (2.11) allows us to choose a microlocal cutoff
on M so that when applied to Lκ f , it cuts away the singularities in WF( f ) near �l .
This will be useful in view of the singular behavior near �l , as illustrated for L ′L in
Theorem 2.1.
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Let us also mention that |τ | = |ξ | is equivalent with −ξ + (ξ · θ)θ = 0 on N∗X\0.
In particular, θ̂ = 0 in this case. We will show, see Lemma 3.4 below, that on general
Lorentzian manifolds, (τ, ξ) being lightlike on N∗X is equivalent with ζ ‖ θ and θ̂ = 0
(or rather its suitable reformulation in the more general context).

The canonical relation associated to Lκ is given by

C := N∗X ′\0 =
{
((z, θ, ζ, θ̂ ), (t, x, τ, ξ))∈ T ∗(M× M)\0 ∣∣
x = z + tθ, τ = −θ · ξ, ζ = ξ, θ̂ = t (ξ − (ξ · θ)θ)

}
.

(2.12)

Here we rearranged the variables to comply with the notational convention in [19]. If
one of the covectors (ζ, θ̂ ) and (τ, ξ) vanishes, then the other one does, too. Therefore,
C is a (homogeneous) canonical relation from T ∗M\0 to T ∗M\0 and it is also clearly
conically closed in T ∗(M × M)\0. Therefore, this, and the fact that its kernel is a
conormal distribution, show that Lκ is an FIO with the canonical relation C , see [19,
Chapter XXV.25.2]. In particular,

WF(Lκ f ) ⊂ C ◦WF( f ), (2.13)

a statement independent of the FIO theory. In order to compute the order of Lκ , we can
write its Schwartz kernel as the oscillatory integral

κ(t, x, θ)

(2π)n

∫
Rn

ei(tθ ·ξ+(z−x)·ξ)dξ,

see (2.10). Then the order m of Lκ satisfies, see [17, Def. 3.2.2],

0 = m + (dim(M) + dim(M)− 2n)/4, that is, m = −n/4, (2.14)

because M = R1+n and M ∼= Rn × Sn−1.
The relation C also allows the following interpretation: it consists of points and

lightlike lines through them; next, (τ, ξ) is conormal to (1, θ), i.e., to each such line
�z,θ ; and the dual variables (ζ, θ̂ ) can be interpreted as projections of Jacobi fields along
the line �z,θ to its conormal bundle. This interpretation is discussed further in Sect. 3
below in the context of general Lorentzian manifolds, see (3.8).

Let πM, πM be the natural projections of C onto T ∗M and T ∗M , respectively.

C

T ∗M T ∗M

πM πM (2.15)

The dimensions from left to right are 4n − 2 ≥ 3n ≥ 2n + 2. The difference between
two consecutive terms is n − 2 and they are all equal when n = 2. The manifold X can
be parameterized by (z, θ, t). Then C can be parameterized by

C0 = {(z, θ, t, ξ) ∈ Rn × Sn−1 × R × (Rn\0)}.
We have

πM((z, θ, ζ, θ̂ ), (t, x, τ, ξ)) = (z, θ, ζ, θ̂ ) = (z, θ, ξ, t (ξ − (ξ · θ)θ)). (2.16)
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This is a map from the 3n dimensional C to the 4n − 2 dimensional T ∗M. If n = 2,
πM is a local diffeomorphism when C is restricted to spacelike (τ, ξ). Indeed, we recall
that in that case ξ − (ξ · θ)θ 	= 0. Therefore, the equation θ̂ = t (ξ − (ξ · θ)θ) can be
solved for t . When n ≥ 3, dπM has full rank 3n away from the light-like cone, i.e., the
defect is (4n−2)−3n = n−2 and in particular is injective there. The projection πM is
also injective, therefore, it is an immersion (on the spacelike cone). Next, there is t ∈ R
such that θ̂ = t (ξ − (ξ · θ)θ) if and only if θ̂ is colinear with the projection of ζ = ξ to
θ⊥ = {ξ | ξ · θ = 0}, which describes the range of πM for (τ, ξ) spacelike.

If (τ, ξ) is lightlike, then the right-hand side of (2.16) reduces to (z, θ, ξ, 0). In
particular, for lightlike (τ j , ξ j ), j = 1, 2, the equation

πM((z, θ, ζ, θ̂ ), (t1, x1, τ
1, ξ1)) = πM((z, θ, ζ, θ̂ ), (t2, x2, τ

2, ξ2)) (2.17)

is equivalent with (τ 1, ξ1) = (τ 2, ξ2) and both (t j , x j ), j = 1, 2, lying on the line �z,θ .
For the second projection πM in (2.15) we get

πM ((z, θ, ζ, θ̂ ), (t, x, τ, ξ)) = (t, x, τ, ξ) = (t, z + tθ,−θ · ξ, ξ). (2.18)

Its differential has full rank for spacelike (τ, ξ). The projection πM is surjective onto the
spacelike cone, as well. Indeed, given (t, x, τ, ξ), we need to solve the equation given
by the second equality above for the parameters (z, t, θ, ξ). The variables t and ξ are
obtained trivially, and we need to solve x = z + tθ and τ = −θ · ξ for z and θ . For unit
θ , the latter equation has an (n− 2) dimensional sphere of solutions (the intersection of
the unit sphere with that plane in the θ space) when (τ, ξ) is spacelike. For each solution
θ , we obtain z by solving z + tθ = x . We can choose a locally smooth solution, which in
particular shows that the differential has full rank. If (τ, ξ) is lightlike, i.e., if |τ | = |ξ |,
the equation τ = −θ · ξ has a unique solution for θ given by θ = −sgn(τ ) ξ/|ξ |. If
(τ, ξ) is timelike, there are no solutions.

If n = 2, πM is a local diffeomorphism and it is 2-to-1 in the spacelike cone because
τ = −θ · ξ has two solutions for θ ∈ S1: θ± = ±

√
1− τ 2/|ξ |2(ξ⊥/|ξ |) − τξ/|ξ |2

for spacelike (τ, ξ) with some fixed choice of the rotation by π/2 to define ξ⊥. This
describes the non-uniqueness class of πM .

We summarize the properties of the projections πM and πM as follows.

Lemma 2.2. The differential dπM is injective and the differential dπM is surjective at
(z, θ, t, ξ) ∈ C0, with ξ spacelike. The projection πM is injective on the set of points
(z, θ, t, ξ) ∈ C0, with ξ spacelike. The projection πM is surjective onto �s .

Let us also summarize the properties of C considered as a relation (a multi-valued
map C = πM ◦ π−1M ).

Lemma 2.3. C has domain �s ∪�l . For every (t, x, τ, ξ) ∈ �s , C(t, x, τ, ξ) is the set
of all (x − tθ, θ, ξ, t (ξ − (ξ · θ)θ)) with θ ∈ Sn−1 a solution of (τ, ξ) · (1, θ) = 0.

(a) If n = 2, then C is a local diffeomorphism from �s to T ∗M\0, and a 1-to-2 map
globally on �s .

(b) If n ≥ 3, for every (t, x, τ, ξ) ∈ �s , C(t, x, τ, ξ) is diffeomorphic to Sn−2.

For every (t, x, τ, ξ) ∈ �l , C(t, x, τ, ξ) = (x − tθ, θ, ξ, 0), where θ = − sgn(τ )ξ/|ξ |.
In particular, C(�l) =

{
(z, θ, ζ, θ̂ )

∣∣ ζ ‖ θ, θ̂ = 0
}\0.
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In particular, this proposition says that WF( f ) in the spacelike cone may affect
WF(Lκ f ) at all lightlike lines � through the base point and normal to its the covector
there.

The properties of C−1 are summarized as follows.

Lemma 2.4. C−1 has domain in T ∗M\0 consisting of all (z, θ, ζ, θ̂ ) so that θ̂ is colinear
with the projection of ζ to θ⊥. Its range is �s ∪ �l . The points mapped to �l are the
ones with θ ‖ ζ . For every (z, θ, ζ, θ̂ ) in the domain with θ 	 ‖ ζ , we have

C−1(z, θ, ζ, θ̂ ) = (t, z + tθ,−θ · ζ, ζ ),

where t is the unique solution to θ̂ = t (ξ − (ξ · θ)θ).

When n = 2, the colinearity condition is automatically satisfied. Indeed, the space θ⊥
is one dimensional then and therefore any θ̂ ∈ T ∗θ S1 ∼= θ⊥ is colinear with the projection
of ζ to θ⊥. When n ≥ 3, unlike C , the relation C−1 is a map away from θ ‖ ζ . It is not
injective by Lemma 2.3.

Most importantly for the purposes of the present paper, the composition C−1 ◦ C
reduces to the identity on �s . This can be deduced directly from Lemma 2.2, as will be
done in the proof of Lemma 3.11 in the general Lorentzian context, however, we will
give here a proof based on Lemmas 2.3 and 2.4.

Lemma 2.5. For every (t, x, τ, ξ) ∈ �s it holds that (C−1◦C)(t, x, τ, ξ) = (t, x, τ, ξ).

Proof. From Lemma 2.3,

C(t, x, τ, ξ)={(z, θ, ξ, θ̂ ) | z= x − tθ, θ̂= t (ξ − (ξ · θ)θ), θ ∈ Sn−1, −θ · ξ=−τ },
and from Lemma 2.4, for (z, θ, ξ, θ̂ ) ∈ C(t, x, τ, ξ),

C−1(z, θ, ξ, θ̂ ) = (t, x, τ, ξ).

��

2.4. Recovery of spacelike singularities. Lemma 2.5 suggests that the composition of
Lκ with its transpose L∗κ could be a pseudodifferential operator when restricted on �s .
On the other hand, by Propositions 2.3 and 2.4, C maps the lightlike cone to {ζ ‖ θ},
and C−1 maps the latter to the former. As anticipated above, this suggests that we could
cut the data Lκ f microlocally near {ζ ‖ θ} to apply a cutoff to WF( f ) near �l . This
is not an automatic application of the clean intersection calculus (which we use below
after suitable cutoffs) however because C and C−1 are singular near the lightlike cone
(and its image under C). Next theorem gives local recovery of space like singularities
from local data. It is similar to Proposition 11.4 in our previous paper [24].

Theorem 2.2. Let Q = q(z, θ, Dz) be a �DO in M with a symbol q(z, θ, ζ ) of order
zero (independent of θ̂ ) supported in {|θ · ζ | < |ζ |}. Then L∗κQLκ is a �DO in M of
order −1 with essential support in the spacelike cone.

Suppose, moreover, that κ is nowhere vanishing. Let U ⊂ Rn × Sn−1 be a neighbor-
hood of (z0, θ0) ∈ Rn × Sn−1, and let (t0, x0, τ 0, ξ0) ∈ �s ∩ N∗�z0,θ0 . Then Q can be
chosen so that its essential support is contained also in U × (Rn\0) and that L∗κQLκ

is elliptic at (t0, x0, τ 0, ξ0). In particular, the latter point is inWF( f ) if and only if it is
inWF(L∗κQLκ f ).
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Proof. TheSchwartz kernelLκ of Lκ has awave front set N∗X\0 andC is its relation, see
also (2.13).We can always assume that the essential support ess-sup(Q) of Q is conically
compact. The twisted wave front set of the Schwartz kernel of Q as a relation is identity
restricted to ess-sup(Q). Then its composition with the relation C is C again with its
image restricted by Q to ess-sup(Q) which is contained in the conic set {|θ · ζ | < |ζ |}.
By (2.12), this implies |τ | < |ξ | near the wave front of the kernel of QLκ . Therefore,
QLκ is smoothing in a conic neighborhood of �l ∪�t , and so is L∗κQLκ .

The composition L∗κQLκ can be analyzed by using the the transversal intersection
calculus in the case n = 2, and the clean intersection calculus in the case n = 3. As the
composition C−1 ◦ C is the identity on �s , the calculi imply that L∗κQLκ is a �DO of
order−1. We will focus on the more complicated case n ≥ 3, and justify the application
of the clean intersection calculus in the next section.

Writing σ [·] for the principal symbol map, it holds that σ [L∗κQLκ ] is obtained from
σ [L∗κ ] = κ , σ [Q] and σ [Lκ ] = κ by an integration reducing the excess, see [18,
Theorem 25.2.3]. We will choose Q so that σ [Q] is non-negative. As κ is nowhere
vanishing, σ [L∗κQLκ ] is positive at (t0, x0, τ 0, ξ0) if and only if the integral of σ [Q]
does not vanish over the fiber C(t0, x0, τ 0, ξ0).

We set ζ 0 = ξ0 and choose Q so that σ [Q](z0, θ0, ζ0) > 0. It holds that

(z0, θ0, ζ
0, θ̂0) ∈ C(t0, x0, τ

0, ξ0),

where θ̂0 = t0(ξ0−(ξ0·θ0)θ0). Indeed, this follows fromLemma2.3 since the assumption
(t0, x0, τ 0, ξ0) ∈ N∗�z0,θ0 implies that x0 = z0 + t0θ0 and (τ 0, ξ0) · (1, θ0) = 0.
Therefore, σ [Q] does not vanish identically on C(t0, x0, τ 0, ξ0).

It still remains to show that the choice σ [Q](z0, θ0, ζ0) > 0 is compatible with the
requirement that ess-sup(Q) ⊂ {|θ ·ζ | < |ζ |}. This follows, since together with ζ 0 = ξ0

and (t0, x0, τ 0, ξ0) ∈ �s , the orthogonality (τ 0, ξ0) · (1, θ0) = 0 implies that

|θ0 · ζ 0| = |τ 0| < |ξ0| = |ζ 0|.
��

As a corollary, we have the following global result saying that the space like singu-
larities can be recovered.

Corollary 2.1. Let Lκ f ∈ C∞(M) for some f ∈ E ′(R1+n) and assume that κ vanishes
nowhere. Then it holds that WF( f ) ∩�s = ∅.
Proof. For any (t0, x0, τ 0, ξ0) ∈ �s we can choose a lightlike line �z0,θ0 such that
(t0, x0, τ 0, ξ0) is in N∗�z0,θ0 . Then the previous corollary implies that (t0, x0, τ 0, ξ0) /∈
WF( f ). ��

By combining Theorem 2.2 with a microlocal partition of unity, we can recover not
only WF( f ), but a microlocally smoothened version of f modulo a smooth function,
with the singularities cut off (in a smooth way) in any predetermined neighborhood of
�t ∪ �l . This can be viewed as a regularized inversion of Lκ with the regularization
cutting away from the ill posed region �t and its boundary �l .

Let us also give a more explicit construction as follows. We can choose φ ∈ C∞0 (R)

such that φ = 1 on [0, 1 − ε] and φ = 0 on [1 − ε/2,∞). Let Q be the zeroth order
�DO with symbol φ(|θ · ζ |/|ζ |) cut off smoothly near the origin (which is actually not
needed). Then L∗κQLκ is a �DO of order −1, elliptic away from a neighborhood of
�t ∪�l determined by ε. When κ = 1, one can compute L∗QL directly. Since |θ ·ζ |/|ζ |
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is a Fourier multiplier w.r.t. z only, it is enough to express QL f by taking the Fourier
transform of L f w.r.t. z only. Then from (2.7) we get

L∗QL = F−1φ(|τ |/|ξ |)
|ξ |

(
|1− τ 2/|ξ |2

) n−3
2 F .

Therefore,

φ(|Dt |/|Dx |) f = |Dx |
(
1− D2

t /|Dx |2
) 2

n−3
+

L∗QL f.

2.5. The clean intersection calculus. We assume that n ≥ 3, and show here that the
clean intersection calculus can be applied to L∗κQLκ in Theorem 2.2. The traditional
formulation of this calculus considers the composition A1A2 of two properly supported
Fourier integral operators A1 and A2 such that the compositionC1◦C2 of their canonical
relations

C1 ⊂ (T ∗X\0)× (T ∗Y\0), C2 ⊂ (T ∗Y\0)× (T ∗Z\0),
is clean, proper and connected [19, Th. 25.2.3]. Here X , Y and Z are smooth manifolds.
The operators A1 = L∗κ and A2 = QLκ do not quite satisfy the assumptions of the
calculus, since the compositionC−1◦C is clean only away from�l . Also, as a canonical
relation, C must be closed in T ∗(M×M)\0, and we can not simply apply the calculus
with C replaced by C\(T ∗M×�l).

The proof of [19, Th. 25.2.3] uses a microlocal partition of unity, subordinate to a
cover � j , j = 1, 2, . . ., of the intersection X ∩ Y where

X = C1 × C2, Y = T ∗X × diag(T ∗Y )× T ∗Z ,

and diag(T ∗Y ) = {(p, p); p ∈ T ∗Y }. We write K1 for the Schwartz kernel of A1, and
recall that the essential support of A1 is given by

ess-sup(A1) =WF′(K1) = {(x, ξ, y,−η) | (x, ξ, y, η) ∈WF(K1)}.
For the local step of the proof, it is enough to assume that the composition C1 ◦ C2 is
clean in each � j that intersect the product ess-sup(A1)× ess-sup(A2). The composition
C1 ◦ C2 being clean in � j means that X ∩ Y ∩ � j is a smooth manifold and that

Tp(X ∩ Y) = TpX ∩ TpY, p ∈ X ∩ Y ∩ � j . (2.19)

The local step implies that (C1◦C2)
′ is locally a conic Lagrangianmanifold, however,

global assumptions are needed, for example, to guarantee that it does not have self-
intersections. The assumptions thatC1◦C2 is proper and connected are used in the proof
[19, Th. 25.2.3] to show that C1 ◦C2 is an embedded submanifold of T ∗(X × Z)\0, and
closed as its subset.

In our case, A1 = L∗κ and A2 = QLκ ,

X = C−1 × C, Y = T ∗M × diag(T ∗M)× T ∗M,

and ess-sup(A2) ⊂ T ∗M×�s due to themicrolocal cutoff Q. Thus we need to consider
the condition (2.19) only for

� j ⊂ T ∗M × diag(T ∗M)×�s . (2.20)
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As for the global structure ofC−1◦C , we already know that A1A2 is smoothing in a conic
neighborhood of �l ∪�t , and that C−1 ◦C is the identity on �s . In particular, C−1 ◦C
is an embedded submanifold of T ∗(M × M)\0 in a neighborhood of ess-sup(A1A2),
and closed as its subset.

Let us nowshow that (2.19) holds for (2.20).WewriteC = X∩Y∩� j and C̃ = C∩�̃ j ,
where �̃ j is the projection of � j on T ∗M×�s . Also, we use∼= to denote that two mani-
folds or vector spaces are isomorphic. Let (t̃, x̃, τ̃ , ξ̃ ; z, θ, ζ, θ̂; z, θ, ζ, θ̂; t, x, τ, ξ) ∈ C.

Since

(t̃, x̃, τ̃ , ξ̃ ) = C−1(z, θ, ζ, θ̂ ) = (t, x, τ, ξ)

and (τ, ξ) is spacelike, Lemma 2.4 implies that (t̃, x̃, τ̃ , ξ̃ ) = (t, x, τ, ξ). This again
implies thatC ∼= diag(C̃) ∼= C̃ , in particular,C is a smoothmanifold.Moreover,X ∼= C2.
Let p ∈ C̃ and observe that for (δp, δq) in T(p,p)X ∼= TpC × TpC it holds that
(δp, δq) ∈ T(p,p)Y if and only if

dπMδp = dπMδq.

Since dπM is injective (again due to (τ, ξ) being spacelike), we have δp = δq for all
(δp, δq) in T(p,p)X ∩ T(p,p)Y . Therefore

T(p,p)X ∩ T(p,p)Y ∼= TpC̃ ∼= T(p,p)C.

Keeping track of the diffeomorphisms used above, this shows (2.19). We have shown
that the clean intersection calculus applies, and therefore L∗κQLκ is a pseudodifferential
operator.

To establish that L∗κQLκ has order−1,weneed to verify also that the orderm = −n/4
of Lκ and the excess e of the clean intersection satisfy 2m + e/2 = −1. We write

� : C → T ∗(M × M)\0

for the natural projection, and Cγ = �−1({γ }) for its fibers. The excess e coincides with
dim(Cγ ), and using again the identification C ∼= C̃ , we see that for all γ ∈ �(C) there
is (t, x, τ, ξ) ∈ �s such that

Cγ
∼= {(t, x, τ, ξ ; z, θ, ζ, θ̂ ); (z, θ, ζ, θ̂ ) ∈ C(t, x, τ, ξ)} ∼= C(t, x, τ, ξ) ∼= Sn−2,

where the last identification is given by part (b) of Lemma 2.3. Hence e = n − 2 and
indeed 2m + e/2 = −1.

We remark that, in the context of [19, Th. 25.2.3], the composition C1 ◦ C2 being
connected means that the fibers Cγ are connected (when C is taken to be the whole
intersection X ∩ Y). As we are assuming that n > 2, the fibers Cγ are connected in
our particular case. With a suitable cutoff, this can be arranged also in the more general
Lorentzian context considered next, however, analogously to the above discussion, such
connectedness is not essential. Even when not connected, the fibers Cγ are smooth
manifolds, since the projection � has constant rank by [18, Th. 21.2.14].
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3. The Lorentzian Case

Our aim is to prove an analogue of Theorem 2.2 in a more general Lorentzian context.
Toward this end, we will consider the light ray transform on a Lorentzian manifold
(M, g), localized near a lightlike geodesic segment γ0 : [0, �] → M , the analogue
of �z0,θ0 in Theorem 2.2. We parameterize lightlike geodesics near γ0 by choosing a
spacelike hypersurface H containing γ0(0) and semigeodesic coordinates associated to
H ,

(t, z) ∈ (−T, T )× Z , Z ⊂ Rn, (3.1)

so that in the coordinates H = {t = 0} and g = −dt2 + g′, with g′ = g′(t, z) a
Riemannian metric on Z that depends smoothly on t . Moreover, the coordinates are
chosen so that γ0(0) = 0 and γ̇0(0) = (1, θ0) where, writing h = g′(0, ·), it holds that
(θ0, θ0)h = 1. Then we choose local coordinates of the form

(z, a) ∈ Z × A, A ⊂ Rn−1, (3.2)

on the unit sphere bundle SZ with respect to h, so that writing

Z × A � (z, a) �→ (z, θ(z, a)) ∈ SZ (3.3)

for the coordinate map, it holds that θ0 = θ(0, 0). We write γz,a for the geodesic γ

satisfying γ (0) = (0, z) and γ̇ (0) = (1, θ(z, a)), and use also the notationM = Z× A.
Analogously to (2.1), this parametrization gives the smooth manifold structure in the
space of lightlike geodesics near γ0.

Let� ⊂ M be open and relatively compact, and suppose that the end points γ0(0) and
γ0(�) are outside �. By making Z and A smaller, we suppose without loss of generality
that the end points γz,a(0) and γz,a(�) are outside � for all (z, a) ∈M. In what follows
we consider the local version of the light ray transform defined as follows

Lκ f (γ ) =
∫ �

0
κ(γ (s), γ̇ (s)) f (γ (s)) ds, f ∈ C∞0 (�), γ = γz,a, (z, a) ∈M.

(3.4)

Observe that, given a geodesic γ : R → M , the integral
∫
R f (γ (s)) ds may not be

well-defined even for f ∈ C∞0 (�) if γ returns to � infinitely often. We note that if
(M, g) is globally hyperbolic, Lκ f (γ ) can be defined for all f ∈ C∞0 (M). However,
in this paper we consider only the local version (3.4) in order to avoid making global
assumptions on (M, g).

Note that the coordinates (3.1) are valid locally only; and we cannot use them in our
analysis of the contributions of possible conjugate points on the geodesics γz,a . They
are used only to parametrize these geodesics. Moreover, the parametrization and, in
particular, the normalization of γ̇ (0), is not invariant. It depends on the choice of H and
the coordinates (3.1)–(3.2). On the other hand, if H̃ is another spacelike hypersurface
intersecting γ0, then the lightlike geodesic flow provides a natural map from T H to T H̃ ,
however, the projections of the tangents of the geodesics γz,a onto T H̃ may not be of
unit length. If the geodesics γz,a are re-parameterized so that the projections are unit,
then the weight κ is multiplied by a smooth Jacobian. While this would change Lκ , it
would not change its microlocal properties. We will use this fact later to choose H in a
convenient way.
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Fig. 2. Parameterization of lightlike geodesics near γ0

3.1. Point-geodesic relation. The point-geodesic relation

X = {
(z, a, x) ∈M×�| x = γz,a(s) for some s ∈ (0, �)

}
(3.5)

is a smooth 2n dimensional submanifold of the 3n dimensionalM×�, parameterized
by the map (z, a, s) �→ (z, a, γz,a(s)). Writing x = γz,a(s), this map has differential

⎛
⎝ Id 0 0

0 Id 0
∂x/∂z ∂x/∂a γ̇z,a(s)

⎞
⎠

⎛
⎝dz
da
ds

⎞
⎠

whichhasmaximal rank2n. The conormal bundle N∗X at anypoint is the space conormal
to the range of that differential; that is, it is described by the kernel of its adjoint.
Therefore, the canonical relation C := N∗X ′\0 ⊂ T ∗(M×�)\0 is given by

C =
{(

(z, a, ζ, α), (x, ξ)
)∣∣ x = γz,a(s), 〈ξ, γ̇z,a(s)〉 = 0, ζ j = 〈ξ, ∂z j γz,a(s)〉,

j = 1, . . . , n, αk = 〈ξ, ∂akγz,a(s)〉, k = 1, . . . , n − 1, s ∈ (0, �)
}
\0.

(3.6)

Clearly ζ = 0 andα = 0 if ξ = 0. It follows fromLemma3.1below that also the converse
holds. ThereforeC is closed in T ∗(M×�)\0, and Lκ is a Fourier integral operator. The
Schwartz kernel of Lκ is a conormal distribution on X with the (un-reduced) symbol κ ,
and by [18, Th. 18.2.8], the order m of Lκ satisfies

0 = m + (3n − 2n)/4, that is m = −n/4.

As in the Minkowski case, the covector ξ must be lightlike or spacelike at x as
a consequence of 〈ξ, γ̇z,a(s)〉 = 0. Relation (2.13) holds in this case as well and it
shows that timelike singularities of f do not affect WF(Lκ f ), that is, they are invisible.
Moreover, the dimensions of the manifolds in the diagram (2.15) are unchanged from
the Minkowski case.

The canonical relation C is parameterized by

C0 = {(z, a, s, ξ) ∈M× (0, �)× T ∗γz,a(s)� | ξ 	= 0, 〈ξ, γ̇z,a(s)〉 = 0}.
More precisely, C0 is a 3n-dimensional smooth manifold and, in view of the definition
(3.6), there is a diffeomorphism between C0 and C .
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3.2. Variations of the geodesics γz,a. Let us consider the Jacobi fields associated to the
variations through the geodesics γz,a , (z, a) ∈ Z × A,

Mj (s; z, a) = ∂z j γz,a(s), j = 1, . . . , n,

Jk(s; z, a) = ∂akγz,a(s), k = 1, . . . , n − 1. (3.7)

Observe that by (3.6), it holds on C that

ζ j = 〈ξ, Mj (s; z, a)〉, αk = 〈ξ, Jk(s; z, a)〉, (3.8)

that is, the dual variables ζ and α are given by projections of the Jacobi fields Mj and
Jk to ξ . In the Riemannian case, it is known that the the dual variables to the geodesic
manifold can be identified with Jacobi fields, see, e.g., [10,25]. We have an analog of
this here as well but there are some differences since the lightlike geodesics form a
submanifold of all geodesics, and γ̇ is perpendicular to itself. In particular, the condition
on W in Lemma 3.1 below does not appear in the Riemannian case, Lemma 3.4(iii)
has the whole Tγ (s2)M on the right-hand side, and the appearance of λ in Lemma 3.5 is
specific to the Lorentzian case.

For a vector field J along a curve γ , we use the shorthand notation J ′(s) = ∇s J (s)
for the covariant derivative ∇s = ∇γ̇ along γ . We write also

γ̇ (s)⊥ = {v ∈ Tγ (s)M | (v, γ̇ (s))g = 0}.
Since every Jacobi field along a null geodesic is a certain variation of the latter, the
lemma below in particular characterizes the Cauchy data (J, J ′) of such fields at any
point.

Lemma 3.1. Let (z, a) ∈ M and write γ = γz,a. Write �(s) = sγ̇ (s), and consider
the Jacobi fields J := span{M1, . . . , Mn, J1, . . . , Jn−1, γ̇ , �} along γ . Then for any
s ∈ [0, �] it holds that

{(J (s), J ′(s))| J ∈ J } = {(V,W ) ∈ (Tγ (s)M)2| W ∈ γ̇ (s)⊥}.
In particular, {J (s)| J ∈ J } = Tγ (s)M.

Proof. Let us begin by showing that (J ′(0), γ̇ (0))g = 0 for J ∈ J . Consider the curve
r �→ (0, z + re j ) in coordinates (3.1), where z ∈ Z is fixed and e j is the n-dimensional
vector with 1 in the j th position, all other entries zero, and denote by ∇z j the covariant
derivative along this curve. Using the symmetry property ∇s∂z j γ = ∇z j ∂sγ , we see
that
(
Mj (0), M

′
j (0)

) = ((0, e j ), (0,∇z j θ)),
(
Jk(0), J

′
k(0)

) = (
(0, 0), (0, ∂ak θ)

)
, (3.9)

where θ is the map defined by (3.3). Hence (M ′j (0), γ̇ (0))g = (∇z j θ, θ)h =
∂z j (θ, θ)h/2 = 0. Similarly also (J ′k(0), γ̇ (0))g = 0. Finally, as γ̇ ′ = 0 and �′ = γ̇ , we
have shown that (J ′(0), γ̇ (0))g = 0 for J ∈ J .

Recall that ∂s(J ′(s), γ̇ (s))g = 0 for any Jacobi field J along γ . Therefore (J ′, γ̇ )g =
0 identically on [0, �] for J ∈ J . In particular,

J(s) := {(J (s), J ′(s))| J ∈ J } ⊂ {(V,W ) ∈ (Tγ (s)M)2| W ∈ γ̇ (s)⊥}. (3.10)
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The vectors (J (0), J ′(0)), J ∈ J , are linearly independent, as can be seen from (3.9)
and from

(γ̇ (0), γ ′′(0)) = ((1, θ), 0), (�(0), �′(0)) = (0, (1, θ)).

As Jacobi fields satisfy a linear second order differential equation, it follows that the
dimension of J is 2n +1 and that the same is true for J(s), s ∈ [0, �]. The claim follows
from (3.10) since both the spaces there have the same dimension. ��

For fixed s1, s2 ∈ [0, �], consider the spaces
Js1 = {J ∈ J | J (s1) = 0}, J ′s1,s2 = {J ′| J ∈ Js1 ∩ Js2}, (3.11)

and set for every s ∈ [0, �]
Js1(s) = {J (s)| J ∈ Js1}, J ′s1,s2(s) = {J ′(s)| J ′ ∈ J ′s1,s2}. (3.12)

Lemma 3.1 implies that J ′s1,s2(s) ⊂ γ̇ (s)⊥. The same is true for Js1(s) since

∂s(J, γ̇ )g = (J ′, γ̇ )g = 0, J ∈ J ,

and (J (s1), γ̇ (s1))g = 0 for J ∈ Js1 . To summarize, for every s ∈ [0, �],
Js1(s) ∪ J ′s1,s2(s) ⊂ γ̇ (s)⊥, (3.13)

and in particular, both spaces consist of spacelike or lightlike vectors. Furthermore,
γ̇ (s) ∈ Js1(s) if and only if s 	= s1, because (s − s1)γ̇ (s) ∈ Js1 . On the other hand,
γ̇ (s) ∈ J ′s1,s2(s) if and only if s = s1 = s2.

We will need below the following simple lemma, see, e.g., [34, Corollary 1.1.5].

Lemma 3.2. Two lightlike vectors v,w ∈ TxM satisfy (v,w)g = 0 if and only if they
are parallel to each other.

We will also need the following property: for any Jacobi fields I, J along a geodesic
γ , the Wronskian

(I, J ′)g − (I ′, J )g is constant along γ, (3.14)

see e.g. [30, p. 274].
In the Riemannian case, it is known that the spaces in (i) below span the whole

Tγ (s2)M . In our case, the equivalent to that property is as follows.

Lemma 3.3. Let (z, a) ∈M and write γ = γz,a. Then for every s1, s2 ∈ [0, �], we have
(i) Js1(s2) and J ′s1,s2(s2) are mutually orthogonal with respect to g,
(ii) Js1(s2) ∩ J ′s1,s2(s2) = {0},
(iii) Js1(s2) + J ′s1,s2(s2) = γ̇ (s2)⊥.

Proof. Note first that if s2 = s1, then Js1(s2) = {0} and J ′s1,s2(s2) = γ̇ (s0)⊥ by
Lemma 3.1. Therefore the lemma holds in this case, and we can assume s2 	= s1 in what
follows.

Forw ∈ Tγ (s2)M withw ∈ J ′s1,s2(s2), let I ∈ Js1 be the Jacobi fieldwithCauchy data
(0, w) at s = s2. (If I 	= 0, then γ (s1) and γ (s2) are conjugate along γ .) By (3.14), for
every J ∈ Js1 , we get (w, J (s2))g = (I ′(s1), J (s1))g− (I (s1), J ′(s1))g = 0, therefore,
w is orthogonal to Js1(s2). This proves (i).
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To prove (ii), assume that w ∈ Js1(s2)∩J ′s1,s2(s2). Then w is orthogonal to itself by
(i), therefore it is lightlike. By (3.13) it is also perpendicular to the lightlike vector γ̇ (s2),
and Lemma 3.2 implies thatw must be parallel to γ̇ (s2). That is,w = λγ̇ (s2)with some
λ ∈ R. Sincew ∈ J ′s1(s2), then there is J ∈ Js1 with Cauchy data (0, λγ̇ (s2)) at s = s2;
but then J (s) = λ(s − s2)γ̇ (s). Now J ∈ Js1 and s1 	= s2 imply λ = 0, hence J = 0
and also w = 0.

Consider now (iii). We write W = Js1(s2) + J ′s1,s2(s2). As W ⊂ γ̇ (s2)⊥ by (3.13),
it remains to show the opposite inclusion. We will establish this by showing that W⊥
is contained in Rγ̇ (s2) := {λγ̇ (s2)| λ ∈ R}. Then γ̇ (s2)⊥ ⊂ (W⊥)⊥ and (iii) follows
from (W⊥)⊥ = W , see e.g. [30, Lemma 22, p. 49] for the latter fact.

Let w ∈ W⊥ and let I be the Jacobi field with Cauchy data (0, w) at s = s2. As w

is in particular orthogonal to Js1(s2), by using (3.14) we get for every J ∈ Js1 ,

(I (s1), J
′(s1))g = (I (s2), J

′(s2))g − (I ′(s2), J (s2))g = 0.

Recall that by Lemma 3.1, {J ′(s1)| J ∈ Js1} = J ′s1,s1(s1) = γ̇ (s1)⊥. Therefore I (s1)
is in (γ̇ (s1)⊥)⊥ = Rγ̇ (s1) and we write I (s1) = λγ̇ (s1). Then for the Jacobi field

K (s) = I (s) + λ
s − s2
s2 − s1

γ̇ (s)

it holds that K (s1) = 0 and K (s2) = 0. Writing u = K ′(s2) and μ = λ(s2 − s1)−1, we
have u ∈ J ′s1,s2(s2) and u = w + μγ̇ (s2).

Let us now use the fact that w is orthogonal to the whole W . It follows from (3.13)
thatRγ̇ (s2) ⊂ W⊥ and therefore also u = w +μγ̇ (s2) ∈ W⊥. But u ∈ J ′s1,s2(s2) ⊂ W ,
and u must be lightlike. Lemma 3.1 implies that (u, γ̇ (s2))g = 0 and then u ∈ Rγ̇ (s2)
by Lemma 3.2. Hence also w ∈ Rγ̇ (s2). ��

We will denote by ζ∗ ∈ Tz Z the image of ζ ∈ T ∗z Z , with z ∈ Z , under the canonical

isomorphism induced by h, i.e., ζ j∗ = h jkζk . Analogously for ξ ∈ T ∗x M , with x ∈ M ,

we denote by ξ∗ ∈ TxM the vector defined by ξ
j∗ = g jkξk .

Recall that in the Minkowski case the lightlike covectors on the canonical relation
are characterized by (2.11), or equivalently by ξ ‖ θ . These two characterizations have
the following analogues in the present context.

Lemma 3.4. Let (z, a, s, ξ) ∈ C0. Then the following three conditions are equivalent:

(i) ξ is lightlike,
(ii) ξ∗ is parallel to γ̇z,a(s),
(iii) ζ∗ is parallel to θ(z, a) and α = 0 where ζ and α are given by (3.8).

Proof. We will suppress (z, a) in the notation below. Let us suppose first that ξ∗ is
lightlike and show that ξ∗ is parallel to γ̇ (s). As (ξ∗, γ̇ (s))g = 〈ξ, γ̇ (s)〉 = 0, Lemma 3.2
implies that ξ∗ is parallel to γ̇ (s).

Let us now suppose that ξ∗ = λγ̇ (s) for some λ ∈ R, and show that ζ∗ = λθ and
α = 0. Lemma 3.1 implies ∂s(Mj (s), γ̇ (s))g = (M ′j (s), γ̇ (s))g = 0. Hence using also
(3.9)

ζ j = λ(γ̇ (s), Mj (s))g = λ(γ̇ (0), Mj (0))g = λ((1, θ), (0, e j ))g = λθkhk j .

This establishes ζ∗ = λθ . Analogously, αk = λ(γ̇ (0), Jk(0))g = 0 since Jk(0) = 0.
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Let us now suppose that ζ∗ = λθ and α = 0 and show that ξ∗ = λγ̇ (s). The equations
in the previous step imply that

(ξ∗, Mj (s))g = ζ j = λ(γ̇ (0), Mj (0))g, (ξ∗, Jk(s))g = αk = 0 = λ(γ̇ (0), Jk(0))g.

Moreover, (ξ∗, γ̇ (s))g = 0 = λ(γ̇ (s), γ̇ (s))g . By Lemma 3.1, {J (s)| J ∈ J } =
Tγ (s)M , and hence ξ∗ = λγ̇ (s). This again implies that ξ∗ is lightlike. ��

3.3. The projection πM. We analyze πM next. We have

πM
(
(z, a, ζ, α), (x, ξ)

) = (z, a, ζ, α). (3.15)

Since C is parameterized by (z, a, s, ξ) ∈ C0, we view πM as a function of those
parameters.

Asbefore, this projection is amap from the3n dimensionalC to the 4n−2dimensional
T ∗M. To see whether πM is injective, let the right-hand side of (3.15) be given. This
means in particular that the geodesic γz,a is fixed. We want to find out whether the
defining equations of C , that is,

ζ j = 〈ξ, Mj (s; z, a)〉, αk = 〈ξ, Jk(s; z, a)〉, 〈ξ, γ̇z,a(s)〉 = 0, (3.16)

have more than one solution for s and ξ .

Lemma 3.5. Let (z, a) ∈M, s1 	= s2, J ′ ∈ J ′s1,s2 , and let λ ∈ R. Then

ξm∗ = J ′(sm) + λγ̇ (sm), m = 1, 2,

satisfy

〈ξ1, Mj (s1; z, a)〉 = 〈ξ2, Mj (s2; z, a)〉
〈ξ1, Jk(s1; z, a)〉 = 〈ξ2, Jk(s2; z, a)〉, (3.17)

and 〈ξm, γ̇z,a(sm)〉 = 0, m = 1, 2.

Proof. The claimed equations are linear, so it is enough to verify that the choices ξ
j∗ =

J ′(s j ) and ξ
j∗ = γ̇ (s j ) satisfy them. We begin with the former choice. By (3.14) it holds

that 〈
ξ1, Mj (s1)

〉
= (J ′(s1), Mj (s1))g − (J (s1), M

′
j (s1))g

= (J ′(s2), Mj (s2))g − (J (s2), M
′
j (s2))g =

〈
ξ2, Mj (s2)

〉
,

and analogously
〈
ξ1, Jk(s1)

〉 = 〈
ξ2, Jk(s2)

〉
. The last equation follows from (3.13). Let

us now consider the choice ξ
j∗ = γ̇ (s j ). By Lemma 3.1 the scalar products (M ′j , γ̇ )g

and (J ′k, γ̇ )g and vanish identically. Thus (Mj , γ̇ )g is constant along γ , and the same
holds for (Jk, γ̇ )g . Therefore γ̇ (s1) and γ̇ (s2) solve (3.17). The last equation holds since
γ is lightlike. ��
Lemma 3.6. Let (z, a, ζ, α) ∈ T ∗M and let (s j , ξ j ) ∈ [0, �] × T ∗γz,a(s j )M, j = 1, 2,
solve (3.16). Then the following hold:

(i) Either both ξ1 and ξ2 are spacelike or they are both lightlike.
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(ii) If s1 = s2 then ξ1 = ξ2.
(iii) If s1 	= s2 then there are unique J ′ ∈ J ′s1,s2 and λ ∈ R such that

ξ
j∗ = J ′(s j ) + λγ̇ (s j ), j = 1, 2.

Moreover, ξ1 and ξ2 are spacelike if and only if J ′ 	= 0.

Let us remark that the case J ′ = 0 in (iii) is the analogue of the fact that in the
Minkowski case, Eq. (2.17) for lightlike (τ j , ξ j ) is equivalent with (τ 1, ξ1) = (τ 2, ξ2)

and both (t j , x j ), j = 1, 2, lying on the same line �z,θ .

Proof. Wewill again suppress (z, a) in the notation below.We will begin by proving (i).
Recall that 〈ξ j , γ̇ (s j )〉 = 0 implies that ξ j is lightlike or spacelike. It is enough to show
that ξ1 being lightlike implies that also ξ2 is lightlike. So suppose that ξ1 is lightlike.
Then Lemma 3.4 implies that ζ∗ is parallel to θ and α = 0. Therefore ξ2 is lightlike by
the same lemma.

Let us now show (ii). When s1 = s2, Eq. (3.16) implies that〈
ξ1, Mj (s1)

〉
=

〈
ξ2, Mj (s1)

〉
,

〈
ξ1, Jk(s1)

〉
=

〈
ξ2, Jk(s1)

〉
,

〈
ξ1, γ̇ (s1)

〉
=

〈
ξ2, γ̇ (s1)

〉
,

and, as {J (s1)| J ∈ J } = Tγ (s1)M by Lemma 3.1, it holds that ξ1 = ξ2.
We turn to (iii). As ξ2∗ ∈ γ̇ (s2)⊥, there are unique u ∈ Js1(s2) and w ∈ J ′s1,s2(s2)

such that ξ2∗ = u+w by Lemma 3.3. As (s j , ξ j ) solve (3.16), it holds that for all J ∈ Js1
that

0 = (ξ1∗ , J (s1))g = (ξ2∗ , J (s2))g.

In other words, ξ2∗ ∈ Js1(s2)
⊥. By (i) of Lemma 3.3, also w ∈ Js1(s2)

⊥. Therefore

u = ξ2∗ − w ∈ Js1(s2) ∩ Js1(s2)
⊥

and u must be lightlike. As u is orthogonal to γ̇ (s2) by (3.13), it follows from Lemma 3.2
that u = λγ̇ (s2) for some λ ∈ R. Let J be the Jacobi field with Cauchy data (0, w)

at s = s2. Then J (s1) = 0 since w ∈ J ′s1,s2(s2). Setting ξ̃1∗ = J ′(s1) + λγ̇ (s1), the

covectors ξ̃1 and ξ2 give a solution to (3.17) by Lemma 3.5. It then follows from part
(ii) that ξ1 = ξ̃1.

Clearly both ξ j , j = 1, 2, are lightlike if J ′ = 0. On the other hand, if ξ j , j = 1, 2
are lightlike, then ξ

j∗ ∈ γ̇ (s j )⊥, applying Lemma 3.2, implies that J ′(s j ) = μγ̇ (s j ) for
some μ ∈ R. Now J (s1) = 0 and J ′(s1) = μγ̇ (s1) imply that J (s) = μ(s − s1)γ̇ (s),
and J (s2) = 0 implies that μ = 0. ��

The above lemma says in particular that if there are two distinct solutions (s j , ξ j ),
j = 1, 2, to (3.16) and if ξ1 is spacelike then γz,a(s1) and γz,a(s2) are conjugate along
γz,a . By Lemma 3.5 the converse holds as well. Indeed, if γz,a(s1) and γz,a(s2) are
conjugate along γz,a then there is non-zero J ′ ∈ J ′s1,s2 and for any λ ∈ R the vectors ξ

j∗
in Lemma 3.5 are spacelike solutions to (3.17).

The characterization of the pairs (ξ1, ξ2) is related to that in the Riemannian case,
see [41, Theorem 4.2] where the conjugate points are assumed to be of fold type; see
also [16] for a more general case.

We will finish our study of πM by showing that dπM is injective in the spacelike
cone.
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Lemma 3.7. Let p0 := ((z0, a0, ζ 0, α0), (x0, ξ0)) ∈ C and suppose that ξ0 is spacelike.
Then dπM is injective at p0.

Proof. After reparametrization, we can assume x0 ∈ H , x0 = (0, z0) = (0, 0) in the
semigeodesic coordinates (3.1), and a0 = 0. In particular, we can consider x = (x0, x ′)
near x0 as a point in (−T, T ) × Z . We write also ξ0 = (ξ00 , ξ0

′
). Then the points

(z, a, s, ξ) in C0 near (0, ξ0) can be parameterized by (z, a, s, ξ ′) ∈ Z × A × R ×
Rn by setting ξ = (ξ0(z, a, s, ξ ′), ξ ′) where ξ0(z, a, s, ξ ′) is the unique solution to〈
ξ, γ̇z,a(s)

〉 = 0 near ξ00 . Indeed, this follows from the implicit function theorem since
∂ξ0 〈ξ, γ̇0(0)〉 = 1.

Using the above parameterization, we write πM(z, a, s, ξ ′) = (z, a, ζ, α) with ζ

and α as in (3.8). To show that dπM is injective at p0, it is enough to show that
∂(ζ, α)/∂(s, ξ ′) is injective at (0, ξ0′). Moreover, using (3.9), we have at (0, ξ0

′
),

∂ζ

∂ξ ′
=

⎛
⎜⎝
M1

1 (0) · · · M1
n (0)

...
. . .

...

M1
n (0) · · · Mn

n (0)

⎞
⎟⎠ = Id.

As also ∂α/∂ξ ′ = 0 there, it is enough to show that ∂α/∂s 	= 0. Using once again (3.9),
it holds at (0, ξ0

′
) that

∂αk

∂s
= (∇sξ∗, Jk)g + (ξ∗,∇s Jk)g = (ξ0∗

′
, ∂ak θ)h .

To get a contradiction, suppose that (ξ0∗
′
, ∂ak θ)h = 0, k = 1, . . . , n − 1. As the

vectors ∂ak θ , k = 1, . . . , n− 1, span the tangent space of the unit sphere Sz0 Z at θ0, the
vector ξ0∗

′
must be parallel to θ0. But then

〈
ξ0, γ̇0(0)

〉 = 0 implies that ξ0∗ is parallel to
(1, θ0), a contradiction with ξ0 being spacelike. ��

3.4. The projection πM. As above, we regard the projection πM in (2.15) as a map of
C parameterized by (z, a, s, ξ) ∈ C0 to T ∗M . We have

πM
(
(z, a, ζ, α), (x, ξ)

) = (x, ξ) = (γz,a(s), ξ),

with ξ conormal to γ̇z,a(s). It maps the 3n dimensional C to the 2n + 2 dimensional
T ∗M . Moreover, πM is surjective in the sense that there are (z, a, s) ∈ Z × A × (0, �)
satisfying

x = γz,a(s),
〈
ξ, γ̇z,a(s)

〉 = 0, (3.18)

assuming that (x, ξ) ∈ �s is close to N∗γ0. Indeed, as in the Minkowski case, solving
for η∗ = γ̇z,a(s) modulo rescaling in the second equation in (3.18), we obtain a (n− 2)-
dimensional sphere of lightlike solutions when ξ is spacelike; and two distinct vectors
when n = 2. Moreover, when x is close to γ0(s0) for some s0 ∈ (0, �) and ξ is close to
N∗γ0(s0)γ0, we can choose η∗ near γ̇0(s0). Then finding z and a is straightforward because
H is transversal to γ0.
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It follows from [19, Prop. 25.3.7] that the differential dπM is surjective whenever
dπM is injective. Let us, however, show this also directly for a point p0 as in Lemma 3.7.
We re-parametrize again as in Lemma 3.7. Then at (0, ξ0

′
)

dπM = ∂(x0, x ′, ξ0, ξ ′)
∂(z, a, s, ξ ′)

=
⎛
⎜⎝

0 0 1 0
Id 0 ∂x ′/∂s 0

∂ξ0/∂z ∂ξ0/∂a ∂ξ0/∂s ∂ξ0/∂ξ ′
0 0 0 Id

⎞
⎟⎠ ,

andwe see that dπM is surjective if and only if ∂ξ0/∂a 	= 0. It follows from
〈
ξ, γ̇z,a(s)

〉 =
0 and (3.9) that

0 = ∂ξ0

∂ak
+

〈
ξ0, ∂ak γ̇0

〉
= ∂ξ0

∂ak
+ (ξ0∗

′
, ∂ak θ)h .

We showed in Lemma 3.7 that (ξ0∗
′
, ∂ak θ)h can not vanish for all k = 1, . . . , n−1 when

ξ0 is spacelike. Thus dπM is surjective in this case.

3.5. Conclusions. Analogously to Lemma 2.2, we summarize the results above:

Lemma 3.8. The differential dπM is injective and the differential dπM is surjective at
(z, a, s, ξ) ∈ C0, with ξ spacelike. The projection πM is injective in a neighborhood of
the set of points (0, 0, s, ξ) ∈ C0, with ξ spacelike, if and only if there are no conjugate
points on γ0. The projection πM is surjective onto a neighborhood of �s ∩ N∗γ0 in �s .

We have also the following partial analogues of Lemmas 2.3 and 2.4, where write
again C = πM ◦ π−1M .

Lemma 3.9. For all (x, ξ) in a small enough neighborhood of �s ∩ N∗γ0 in �s it holds
that C(x, ξ) is the (n − 2)-dimensional manifold given by

{(z, a, ζ, α) ∈ T ∗M | (3.18) and (3.8) hold for some s ∈ (0, �)}.
Proof. If ((z, a, ζ, α), (x, ξ)) ∈ π−1M (x, ξ), then (z, a) satisfies (3.18) for some s ∈
(0, �). By the argument above, the solutions to this equation form a (n−2)-dimensional
manifold. For each solution (z, a), the parameter s is fixed by x = γz,a(s), and then ζ

and α are given by (3.8). ��
Lemma 3.10. Suppose that (z, a, ζ, α) ∈ T ∗M is in the domain of C−1 and not in the
set

L = {(z, a, ζ, α) ∈ T ∗M| ζ∗||θ(z, a), α = 0}. (3.19)

Suppose, furthermore, that there are no conjugate points on γ0. Then C−1(z, a, ζ, α) =
(γz,a(s), ξ) where (s, ξ) is the unique solution of (3.16).

Proof. If ((z, a, ζ, α), (x, ξ)) ∈ π−1M(z, a, ζ, α), then ξ is spacelike by Lemma 3.4. It
follows from Lemma 3.6 that (3.16) has a unique solution (s, ξ). Finally x = γz,a(s) by
(3.6). ��

The analogue of Lemma 2.5 reads:

Lemma 3.11. Suppose that there are no conjugate points on γ0. For all (x, ξ) in a small
enough neighborhood of �s ∩ N∗γ0 in �s it holds that (C−1 ◦ C)(x, ξ) = (x, ξ).
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Proof. By Lemma 3.8, the projection πM is injective near the non-empty set π−1M (x, ξ).
Therefore (C−1 ◦ C)(x, ξ) = (πM ◦ π−1M )(x, ξ) = (x, ξ). ��

For a set V ⊂ T ∗M\0 we denote by Vc the conical set generated by V , that is,

Vc = {(x, λξ) ∈ T ∗M\0| (x, ξ) ∈ V, λ > 0}.
Similarly to Theorem 2.2, we have:

Theorem 3.1. Suppose that there are no conjugate points on γ0. Then there is a zeroth
order pseudodifferential operator χ on Z × A such that L∗κχLκ is a pseudodifferential
operator of order −1 with essential support in the spacelike cone.

Suppose moreover, that κ is nowhere vanishing. Then for any (x0, ξ0) ∈ �s∩N∗γ0∩
T ∗�, the operator χ can be chosen so that L∗κχLκ is elliptic at (x0, ξ0) and that
σ [L∗κχLκ ] is homogeneous and non-negative.

Proof. Let (x0, ξ0) ∈ T ∗�∩�s ∩ N∗γ0 and let s0 ∈ (0, �) satisfy x = γ0(s0). Writing
z0 = 0 and a0 = 0 we have (z0, a0, s0, ξ0) ∈ C0. We define also ζ 0 = ζ and α0 = α

where ζ and α are given by (3.8) with ξ = ξ0, s = s0, z = z0 and a = a0.
Lemma 3.4 implies that (z0, a0, ζ 0, α0) is outside the set L defined by (3.19). We

choose a neighborhood U ⊂ T ∗M of (z0, a0, ζ 0, α0) such that U is compact and
U ∩L = ∅. Moreover, we choose χ , with homogeneous principal symbol, so that χ = 1
near (z0, a0, ζ 0, α0) and so that it is essentially supported in Uc.

The closed setπ−1M (�l) is disjoint from the closed setπ−1M(U) by Lemma 3.4.Wewill

shownext that there is a conical neighborhoodW ofπ−1M (�l) such thatW∩π−1M(U) = ∅.
It is enough to show thatπ−1M (U) is bounded. This boils down showing that there isC > 0

such that all (z, a, s, ξ) ∈ π−1M(U) satisfy |ξ | ≤ C . Consider themap F taking (z, a, s, ξ)

to the point in R2n with the coordinates

〈ξ, M1(z, a, s)〉 , . . . , 〈ξ, Mn(z, a, s)〉 , 〈ξ, J1(z, a, s)〉 , . . . , 〈ξ, Jn−1(z, a, s)〉 , 〈ξ, γ̇z,a(s)
〉
.

Clearly F is homogeneous of degree one in ξ , and by (3.6),

F(π−1M(U)) = {(ζ, α, 0) | (z, a, ζ, α) ∈ U for some (z, a)}.

But this set is bounded due to U being compact. Therefore also π−1M(U) is bounded.
As dπM is surjective, πM is an open map and πM (W ) is a neighborhood of �l ,

considered as a subset of the rangeπM (C0).Wemay choose a pseudodifferential operator
χ̃ so that χ̃ = 1 near�l and that is essentially supported in πM (W ). Then χLκ(1−χ̃ ) =
χLκ modulo a smoothing operator. Moreover, Lκ(1− χ̃ ) is smoothing on �l .

We can nowapply the clean intersection calculus: the proof that (2.19) holds for (2.20)
is in verbatim the same as in the Minkowski case, except that we invoke Lemma 3.10
instead of Lemma 2.4. Also C−1 ◦ C has the same global structure. Furthermore, the
order is computed as in the Minkowski case, except that Lemma 3.9 is used instead of
Lemma 2.3.

For the claimed ellipticity, we choose χ so that σ [χ ] is non-negative. Note that the
point (z0, a0, ζ 0, α0) is on thefiberC(x0, ξ0).Asχ = 1near (z0, a0, ζ 0, α0), the integral
of σ [χ ] does not vanish over the fiber C(x0, ξ0). The ellipticity, and also homogeneity
and non-negativity of the principal symbol, follow again from [18, Theorem 25.2.3]. ��
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Examples of metrics which do not allow conjugate points along lightlike geodesics
include the Minkowski metric, product type of metrics −dt2 + g(x) with g having no
conjugate points, the Friedmann–Lemaître–Robertson–Walker (FLRW) metric −dt2 +
a2(t)dx2 with a > 0, and in particular the Einstein–de Sitter metric corresponding to
a(t) = t2/3; as well as metric conformal to them and small perturbations of all those
examples on compact manifolds. Of course, any Lorentizan metric is free of conjugate
points on small enough subset of M . We refer to [24] for the conformal invariance of this
problem: the FLRW metric can be transformed into a2(s)(−ds2 + dx2) after a change
of variables s = s(t) solving ds/dt = a−1(t). Next two metrics conformal to each
other have the same lightlike geodesics as smooth curves, but possibly parameterized
differently, which does not change the property of existence or not of conjugate points.
Going back to the original parameterization would multiply the weight κ by a smooth
non-vanishing factor, which would not change our conclusions.

3.6. Globally hyperbolic case. Let us now discuss the important special case of a glob-
ally hyperbolic Lorentzian manifold (M, g). We refer to [30, Chapter 14] for an intro-
duction to this class of manifolds, and to [3] for the following definition:

Definition 3.1. A connected, time-oriented Lorentzian manifold (M, g) is globally
hyperbolic if there are no closed causal paths in M , and the closed causal diamond

{x ∈ M; p ≤ x ≤ q}
is compact for any pair of points p, q ∈ M . Here p ≤ q means that p = q or there is
future pointing causal curve from p to q.

If K ⊂ M is compact and γ is a null geodesic on M , it follows from global hyper-
bolicity that γ (s) /∈ K when |s| is large enough, see e.g. [30, Lemma 13, p. 408]. In
particular, the integral

∫
R f (γ (s))ds is well-defined for any f ∈ C∞0 (M).

Of course, we still need to fix a parametrization of γ . To that end, we recall that
a globally hyperbolic Lorentzian manifold (M, g) has a Cauchy hypersurface, that is,
a spacelike submanifold of codimension one which is intersected by any causal curve
exactly once. It is natural to choose the parametrization (3.1)–(3.4) so that the hypersur-
face H is a Cauchy hypersurface.

We can now replace the integral over the finite interval [0, �] by the same integral
over the whole R in the local definition (3.4) and redefine Lκ by

Lκ f (γ ) =
∫
R

κ(γ (s), γ̇ (s)) f (γ (s))ds, f ∈ C∞0 (M), γ = γz,θ , (z, θ) ∈M.

Here we can takeM = SH , the unit sphere bundle of the Cauchy hypersurface H , and
γ = γz,θ is then the lightlike geodesic with γ (0) = z and γ̇ (0) = ν + θ with ν the future
pointing unit normal to H . That is, (ν, ν)g = −1 and (∂ν, w)g = 0 for all w ∈ T H . We
have the following global corollary of Theorem 3.1 for this Lκ .

Corollary 3.1. Let (M, g) be a globally hyperbolic Lorentzian manifold on which there
are no conjugate points on lightlike geodesics, and suppose that κ is nowhere vanishing.
Let K ⊂ �s be compact. Then there is a zeroth order pseudodifferential operator χ on
M such that L∗κχLκ is a pseudodifferential operator of order−1 with essential support
in the spacelike cone. Moreover, L∗κχLκ is elliptic inK and σ [L∗κχLκ ] is homogeneous
and non-negative.
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Proof. Let (x, ξ) ∈ K. As in theMinkowski case there is non-zero lightlike η ∈ ξ⊥. The
lightlike geodesic with the initial data (x, η) intersects H and can be reparametrized so
that it coincides with γz,θ for some (z, θ) ∈M. We apply Theorem 3.1 with γ0 = γz,θ ,
and obtain a zeroth order pseudodifferential operator χx,ξ onM such that L∗κχx,ξ Lκ is
elliptic at (x, ξ), and hence also in a neighbourhood Ux,ξ of (x, ξ).

There is a finite cover Ux j ,ξ j , j = 1, . . . , J , of K. We define χ = ∑J
j=1 χx j ,ξ j .

The principal symbols σ [L∗κχx j ,ξ j Lκ ] are homogeneous and non-negative, and for all
(x, ξ) ∈ K there is j = 1, . . . , J such that σ [L∗κχx j ,ξ j Lκ ](x, ξ) is strictly positive.
Hence L∗κχLκ is elliptic in K. ��

We have also the following immediate corollary.

Corollary 3.2. Let (M, g) and κ be as in Corollary 3.1. If f ∈ E ′(M) and Lκ f ∈
C∞(M), then

WF( f ) ∩�s = ∅.

4. Cancellation of Singularities in two Dimensions

Non-detectability and invisibility results have been extensively studied for inverse prob-
lems, see [6–9] and references therein. For the Riemannian geodesic ray transform, it
was shown in [25], see also [15], that in presence of conjugate points, singularities can-
not be resolved locally, at least, i.e., knowing the ray transform near a single (directed)
geodesic. We will prove an analogous result in the Lorentzian case in 1 + 2 dimensions.

We will review some of the results in Sect. 3 emphasizing on the specifics for the
n = 2 case. The point-geodesic relation X , see (3.5), is 4-dimensional, and all manifolds
in the diagram (2.15) (valid in the variable curvature case as well) are 6 dimensional. The
projection πM is a local diffeomorphism in a neighborhood of a point (γ0, γ̂ 0, x0, ξ0) ∈
C with (x0, ξ0) spacelike (here, γ̂ is a dual variable to γ = (z, a)), if and only if there are
no points onγ0 conjugate to x0. The projectionπM is a 2-to-1 local diffeomorphismunder
the same non-conjugacy condition. As a result, the canonical relation C = πM ◦π−1M is
a 1-to-2 map, and each branch is a local diffeomorphism from �s to its image, see also
Lemma 3.9 and Lemma 3.10. The composition as in Theorem 2.2 then follows without
the need to invoke the clean intersection calculus.

We take a closer look at the geometry of the conjugate points when n = 2. Two points
along a geodesic are conjugate when there exists a non-zero Jacobi field vanishing at
those points. This property is invariant under rescaling and shifting of the parameter s of
γ (s), so we can take s1 = 0. A basis for J0 (the Jacobi fields vanishing at 0, see (3.11)),
in local coordinates, is given by J1, see (3.7), and sγ̇ (s). Since the second one does not
vanish at s 	= 0, a conjugate point could be at most at of order 1, that is, the Jacobi fields
J with J (0) = J (1) = 0 form an one-dimensional linear space, also true pointwise. On
the other hand, at any point γ (s), the conormal bundle to γ is two-dimensional; and this
is true for its restriction to the spacelike cone as well.

Proposition 4.1. C(x, ξ) = C(y, η) if and only of there is a lightlike geodesic joining
x and y, that is, γ (0) = x, γ (1) = y, so that

(a) x and y are conjugate to each other on γ ,
(b) ξ∗ = J ′(0) + λγ̇ (0), η∗ = J ′(1) + λγ̇ (1) with some λ ∈ R, where J is a Jacobi field

with J (0) = J (1) = 0.
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The proposition follows from Lemma 3.6. Note that the proposition is consistent
with the observation that at every point of γ , its conormal bundle is two-dimensional:
the Jacobi field J in the lemma is scaled so that the proposition holds, andλ is responsible
for the second dimension.

Assume that γ0 : [0, �] → M is a lightlike geodesic with endpoints outside�, where
f ∈ E ′(�). We restrictM to a small neighborhoodM0 of γ0. Assume that x1 := γ0(s1)
and x2 := γ0(s2) are conjugate along γ0. Let Vj , j = 1, 2 be conic sets in T ∗M defined
as the covectors (γ (s), ξ) for s close to s j and ξ any spacelike covectors at γ (s). Then
C is a diffeomorphism from Vj to its image inM0 if Vj is small enough. We can choose
Vj so that C(V1) = C(V2) =: V ⊂ T ∗M0 and so that Vj projected to the base M is a
neighborhood of x j . Set C j = C |Vj , j = 1, 2 and define C21 := C−12 ◦ C1 : V1 → V2.

Then C21 is the canonical relation of L−12 L1 where L j is Lκ microlocalized to Vj ,
j = 1, 2.

Assume that f = f1 + f2 with f j supported near x j but away from the endpoints of
γ j , j = 1, 2.

Theorem 4.1. Suppose that κ does not vanish near x1 and x2. Let f j ∈ E ′(�) with
WF( f j ) ⊂ Vj with Vj as above and small enough, j = 1, 2. Then

Lκ( f1 + f2) ∈ Hs(V)

if and only if

f2 + L−12 L1 f1 ∈ Hs−1/2(V1),

where the inverses are microlocal parametrices.

The proof is immediate given the properties of L j above whichmake L j elliptic FIOs
of order −1/2 with diffeomorphic canonical relations. The significance of the theorem
is that given f1 with spacelike singularities near x2 in a neighborhood of the conormal
bundle to γ at x1, one can also construct f2 singular near x2 so that Lκ( f1+ f2) is smooth.
This statement is symmetric w.r.t. s1 and s2, of course. Therefore, the singularity in the
light ray transform that is produced by f1 is cancelled by the singularity produced by
f2. On a manifold that contains many conjugate points, Theorem 4.1 can be considered
as a cloaking result for the singularities. For instance, on a Lorentzian manifold (M, g),
that is conformal to the product space (R × S2,−dt2 + g

S2
), any space-like element

((t1, y1), (τ1, η1)) ∈WF( f1) can be cancelled by a function f2 that is supported near a
point (t2, y2), where t2 = t1 + (2π + 1)m, m ∈ Z, and y2 is an antipodal point to y1.
Also, observe that the function f2 that hides an element of the wave front set of f1 can
be supported either in the future or in the past of the support of function f1. This has
similar spirit to results on cloaking for the Helmholtz equation by anomalous localized
resonance [29] and the active cloaking results [5], where scattered field produced by an
object is cancelled by a metamaterial object or an active source located near the object.

Theorem 4.1 also describes the microlocal kernel of Lκ in V1 ∪ V2, i.e., those f ∈
E ′(�) with Lκ f ∈ C∞ near some γ0.

5. Applications

We discuss two application we already mentioned in the introduction.
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5.1. A time dependent potential. Let �g be the wave operator related to a Lorentzian
metric g on M with a timelike boundary ∂M :

�gu = | det g|− 1
2 ∂xi (| det g|

1
2 gi j∂x j u). (5.1)

One can introduce a magnetic field A as in [43] but to keep it simple, we assume that
A = 0. We assume that there is a smooth real valued function t so that its level sets are
compact and spacelike. Set Mab = {a ≤ t ≤ b} with some a < b. By [18], see also
[43], the following problem is well posed

(�g + q)u = 0 in M, u|t<a = 0, u|∂M = f, (5.2)

where q is a smooth potential in M and f ∈ Hs(∂M), s ≥ 1 is a given function with
f = 0 for t < 0. We have u ∈ Hs(M) and the DN map � : f �→ ∂νu|∂M is well
defined, where ∂ν is the conormal derivative. As shown in [43], the second term in the
singular expansion of � recovers algorithmically and stably the light ray transform Lq
of q. By our results, in absence of conjugate points along lightlike geodesics, one can
recover (stably) the spacelike singularities of q.We can interpret those as the singularities
moving slower that light.

A special case is to assume that M is the cylinder M = [a, b] × M ′ where M ′ is
compact with a boundary and g = −dt2 + g′(x), where g0 is a (time independent)
Riemannian metric on M ′. Assume that q = q(t, x), x ∈ M . Then the future pointing
lightlike geodesics in M are given by (t, γ ′(t)), up to a reparameteriation, where γ ′ are
unit speed geodesics in M . Then � recovers

Lq =
∫

q(t, γ ′(t)) dt

for various γ ′. This transform has been studied in [4]. An even more special case is to
assume that g′ is Euclidean. This leads us to the Minkowski light ray transform studied
in Sect. 2. This problem was considered in [36].

5.2. Time dependent speed. Assume again thatM is the cylinderM = [a, b]×M ′where
M ′ is compact with a boundary and g = −dt2 + g′(t, x), with g′ a Riemannian metric
on M ′ depending smoothly on the time variable. Here and below, we follow the same
notational convention as above—primes denote projections onto the last n components
of the 1+n dimensional vectors of covectors. Locally, every Lorentzianmetric can be put
in this form,. As shown in [43], the Dirichlet-to-Neumann map � for the wave operator
�g +q is an FIO of order zero away from the diagonal, with the canonical relation equal
to the lens relation L associated with g. In particular, we recover L. The linearization of
L near a fixed g′ is a light ray transform but it involves derivatives of the perturbation
δg′, see, for example, [42] for the time independent case. Instead of linearizing L, we
will linearize the travel times between boundary points, defined locally as we explain
below.

Let (t1, x1) and (t2, x2) be the endpoints of a lightlike geodesic γ0(t) inM , transversal
to the boundary at both ends, with t1 < t2 and x1 ∈ M ′, x2 ∈ M ′. We parameterize the
lightlike geodesics γ (s) near γ0 by initial points (t1, x) on t = t1 (here, x plays the role
of z before), and we require γ̇ (0) = (1, θ) where γ ′(0) = θ must be unit in the metric
g′(t1, ·). Assume now that (t1, x1) and (t2, x2) are not conjugate along γ0. Fix (t1, x1)
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and denote temporarily the geodesics issued from this point in the direction (1, θ) by
γ (s, θ).

As before, we can parameterize θ locally by a ∈ Rn−1. By the non-conjugate assump-
tion, the differential dγ (s, θ(a))/d(s, a) is injective at (s, a) = (0, a0), where a0 corre-
sponds to θ0 := γ̇ ′0(0). By Lemma 3.3 its range is γ̇ (t2)⊥, which is also the tangent space
at γ (s, θ(a)) of the lightlike cone (or flowout) with vertex γ (0, θ(a0)). The projection
of γ̇ (t2)⊥ to its last n variables, i.e., to the tangent space spanned by ∂x1 , . . . , ∂xn , is in
direction transversal to γ̇ (t2)⊥, since ∂/∂t does not belong to the latter; hence it is also a
hyperplane of dimension n. Therefore, dγ ′(s, θ(a)))/d(s, a) is an invertible n×n Jaco-
bian, and the map (s, θ) �→ γ ′0(s, θ) is a local diffeomorphism, smoothly depending on
(t1, x1). In particular, given x close to x2, one can define the local travel time τ(t1, x1, x)
from (t1, x1) to x by setting x = γ ′0(s, θ), solving for s and θ and then plugging them
into the zeroth component of γ0(s, θ). Restricting x to ∂M ′, we get the travel times
τ(t, x, y) (since we can vary (t1, x1) as well) for (t, x, y) close to (t1, x1, x2), satisfying
τ(t1, x1, x2) = t2. Note that we defined τ using geodesics close to γ0 only. In the applied
literature, those times are also called arrival times since they correspond to times a wave
produced by a point source at (t, x) arrives at y.

Assume now that we have a fixed background g′0 which is stationary, i.e., g′0 = g′0(x)
and g0 := −dt2+g′0(x). Then the future pointing light geodesics for g0, parameterized as
above, take the formγ (s) = (s, γ ′(s)),whereγ ′ are unit speedgeodesics in themetric g′0.
The non-conjugacy assumption we made is equivalent to x1 and x2 not being conjugate
along γ ′0. Then τ(t, x1, y) = τ ′(x1, y)+ t , where τ ′ is the localized (Riemannian) travel
time defined similarly to the one above, see also [40].

We want to linearize the travel times τ for a family of metrics gε = −dt2 + g′ε(t, x)
near g0. We write γ (s, ε) for the null geodesics associated to gε and use an analogous
notation for the local travel times. Let γ (s, ε) be a smooth variation of γ0(s)with |ε|  1
so that γ (s, 0) = γ0(s); with the same endpoints for all s in the following sense:

γ (0, ε) = (t1, x1) and γ (t2 − t1, ε) = (τ (t1, x1, x2, ε), x2) (5.3)

with τ(t1, x1, x2, 0) = τ0(t1, x1, x2), where τ0 corresponds to g0. The second identity
in (5.3) says that γ ′(s) = x2 for s = t2 − t1 (rather for some ε-dependent s). This can
always be achieved by parameterizing γ (·, ε) appropriately, depending on ε.

Set

E0(ε) :=
∫ t2−t1

0
(g0)i j (γ (s, ε))γ̇ i (s, ε)γ̇ j (s, ε) ds,

E(ε) :=
∫ t2−t1

0
(gε)i j (γ (s, ε))γ̇ i (s, ε)γ̇ j (s, ε) ds, (5.4)

where the integrands are written in local coordinates. Then writing Dε∂t = Dt∂ε, with
Dε and Ds being covariant derivatives with respect to metric g0, and integrating by parts,
we get

E ′0(0) = 2
∫ t2−t1

0
g0(Dε|ε=0γ̇ (s, ε), γ̇ (s, 0)) ds

= 2
∫ t2−t1

0
g0(Ds∂ε|ε=0γ (s, ε), γ̇0(s)) ds

= 2
∫ t2−t1

0
∂sg0(∂ε|ε=0γ (s, ε), γ̇0(s)) ds
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= −2∂ε|ε=0τ(t1, x1, x2, ε). (5.5)

The last equality follows by differentiating the second identity in (5.3) w.r.t. ε at ε = 0.
As curves γ (s, ε) are null-geodesics with respect themetric gε , we see that E(ε) = 0.

Writing g′ε(t, x) = g′0(x) + εh(t, x) and using the calculation in (5.5), we get

0 = E ′(0) = 2
∫ t2−t1

0
g0(Dε|ε=0γ̇ (s, ε), γ̇ (s, 0)) ds

+ ∂ε

∫ t2−t1

0
gε(γ̇0(s), γ̇0(s)) ds

∣∣∣∣
ε=0

= −2∂ε|ε=0τ(t1, x1, x2, ε) +
∫ t2−t1

0
h(γ̇0(s), γ̇0(s)) ds. (5.6)

This yields

∂

∂ε

∣∣∣
ε=0τ(t1, x1, x2, ε) = 1

2

∫ t2−t1

0
h(γ̇0(s), γ̇0(s)) ds. (5.7)

Therefore, the linearization of the travel times, up to the constant factor 1/2 is the
tensorial lightlike transform written in local coordinates in the form

L(2)h(γ ) =
∫

hi j (γ (s))γ̇ i (s)γ̇ j (s) ds,

where, in this particular application, the symmetric tensor h satisfies h0 j = 0. Recall
that γ runs over null geodesics for the metric g0 = −dt2 + g′0(x) between points of
[a, b] × ∂M ′. In particular, if g′0(t, x) = c−20 (x)dx2, and

gε = −dt2 + 1

(c0(x) + (δc)(t, x))2
dx2,

is the Lorentzian metric corresponding to the perturbed time-dependent speed c0(x) +
(δc)(t, x), then in linearization, we get the scalar light ray transform L f , see (3.4), of

f (t, x) := −2c−30 (x)δc(t, x).

The problem of recovering the perturbation of the wave speed δc is encountered in the
ultrasound imaging methods in medical imaging. When δc = δc(x) is independent of
time, the waves that travel through the medium and collect information along geodesics
γ of g′0(x) are used in TransmissionUltrasound Tomography. This imagingmodality has
been used since the pioneering study of J. Greenleaf [14] on 1980’s. The case when the
perturbation of the wave speed δc(x, t) depends on time is studied in Doppler ultrasound
tomography, see [20,27] and references there in. The methods developed in this paper
could be applicable in transmission ultrasound imaging of moving tissues and organs,
e.g. in the analogous imaging taskswhere the backscatteringmeasurements are presently
used in Doppler echocardiography, where the Doppler ultrasound tomography is used
to examine the heart [28].
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